Assessing the Status of Riparian Restoration, Protection, and Shading in the Southern Willamette Basin

TMDL Implementation Workshop Salem, OR | April 3, 2019

Ryan Michie Oregon Department of Environmental Quality

DE0

Background

Project Questions and Objectives

Results

Source: Ryan Michie

Willamette Basin Temperature TMDLs

~1300 known miles of streams impaired (DEQ 1998, 2002)

TMDL Approved by EPA in 2006

Major sources of warming

- Loss of streamside vegetation
- Dams / dam management
- Loss of channel complexity
- Water withdrawals
- Point source discharges

Willamette TMDL pollution reduction targets and other measures

Reduction in solar radiation load* = 14.53 teracalories/day

* along modeled streams

Restore and protect streamside vegetation

Achieve effective shade targets

Stream temperature targets for dams/reservoirs

Cold water refuge requirements

Point source effluent discharge limits

Picture Source: Ryan Michie

Effective Shade

Percent of the daily solar radiation flux blocked by vegetation and topography

Study Questions

How much riparian tree planting and protection has been completed?

Where are these projects located?When were they implemented?How much has been spent on these projects?Who are the funders?What is the expected solar radiation reduction?

- What are current effective shade levels and status toward achieving the TMDL shade targets?
- What are the stream temperature trends?

How much riparian tree planting has been completed in the Willamette Basin?

Source: OWEB OWRI version 122618

DEQ DEQ State of Oregon Department of Environmental Quality

Riparian tree planting by Willamette Subbasins

8

DEQ State of Oregon Department of Environmental Quality

How much riparian tree protection has been completed in the Willamette Basin?

Source: OWEB OWRI version 122618

Who are the Top Funders?

Projects with Riparian Tree Planting 1998 – 2017

Participant	Cash		Inkind	Total
City of Portland	\$ 22,956,061	\$3	3,008,739	\$ 25,964,800
OWEB	\$ 15,877,321	\$	-	\$ 15,877,321
ODFW	\$ 1,176,565	\$	254,109	\$ 1,430,674
Clackamas County	\$ 710,731	\$	464,498	\$ 1,175,229
Private Landowners	\$ 374,875	\$	675,037	\$ 1,049,912
ODOT	\$ 934,800	\$	15,400	\$ 950,200
BPA	\$ 941,302	\$	-	\$ 941,302
USFS	\$ 701,283	\$	190,154	\$ 891,437
NRCS	\$ 716,975	\$	47,844	\$ 764,819
Clean Water Services	\$ 563,418	\$	173,224	\$ 736,642
City of Eugene	\$ 667,000	\$	1,832	\$ 668,832
USFWS	\$ 277,681	\$	380,611	\$ 658,292
Meyer Memorial Trust	\$ 604,636	\$	6,000	\$ 610,636
McKenzie River Trust	\$ 111,955	\$	331,381	\$ 443,336
Farm Service Agency	\$ 389,130	\$	22,710	\$ 411,840

11

Note: Totals by funder reflect total project contribution which may include additional activities beyond tree planting or tree retention.

Source: OWEB OWRI version 122618

Who are the Top Funders?

Projects with Voluntary Riparian Tree Retention 1998 – 2017

Participant	Cash			Inkind	Total
Longview Fibre Co.	\$2	2,066,064	\$	-	\$ 2,066,064
Willamette Industries	\$	203,521	\$1	,090,983	\$ 1,294,504
Longview Timberlands LLC	\$	157,630	\$	249,410	\$ 407,040
Starker Forests	\$	194,954	\$	95,200	\$ 290,154
Weyerhaeuser Company	\$	152,228	\$	43,752	\$ 195,980
Port Blakely Tree Farms	\$	-	\$	17,700	\$ 17,700
Hampton Resources	\$	552	\$	12,500	\$ 13,052
Giustina Land and Timber Co.	\$	_	\$	8,500	\$ 8,500
Roseburg Resources Company	\$	1,500	\$	-	\$ 1,500

Note: Totals by funder reflect total project contribution which may include additional activities beyond tree retention.

Source: OWEB OWRI version 122618

What are current effective shade levels and status toward achieving the TMDL shade targets?

Solar pathfinder

Picture Source: Ryan Michie

- Mechanistic model
- Simulates 1D open channel hydraulics, heat flux, mass transfer, and stream temperature
- Developed in 1996 at Oregon State University
- Independently peer reviewed
- Applied in multiple published studies
- Open source: https://github.com/rmichie/heatsource-9

http://www.deq.state.or.us/wq/TMDLs/tools.htm

Model Inputs

Boundary Conditions & In/Out Flows

- Stream Temperature
- Stream Flow

Met Data

- Cloudiness
- Wind Speed
- Wind Coefficients "a" & "b"
- Relative Humidity
- Air Temperature

Substrate

- Deep Alluvium Temperature
- Sediment Thermal Conductivity
- Sediment Thermal Diffusivity
- Hyporheic zone thickness
- Percent Hyporheic exchange
- Porosity

Model Outputs

Temperature

- Stream Temperature
- Sediment Temperature

<u>Flux</u>

- Streambed Conduction
- Convection
- Evaporation

Longwave

Solar Modeling

- Solar Radiation (Above Topography)
- Solar Radiation (Blocked by LULC)
- Solar Radiation (Above Stream Surface)
- Solar Radiation (Penetrating Stream)
- Effective Shade
- Thermal Radiation (Total)

Hydraulics

- Flow Rate
- Hyporheic Exchange (cms)
- Flow Velocity
- Top Wetted Width
- Average Wetted Depth
- Maximum Wetted Depth

<u>Others</u>

- Hydraulic Dispersion (square meters/second)
- Evaporation Rate (mm/hour)
- View To Sky

$$\theta_T = \tan^{-1}\left(\frac{Z_T - Z_S}{d}\right)$$
 Topog

raphic Shade Angle

where, $\theta_T =$

d =

- The topographic shade angle (degrees)
- $Z_T =$ The elevation (meters) at the topographic feature. $Z_S =$
 - The elevation (meters) at the stream node.
 - Horizontal distance (meters) from the stream node to the topographic feature.

Stream Position

Solar Path and Flux Modeling

Modeling Study Area

Mapped DMAs

What is the status toward achieving the TMDL shade targets?

What are the stream temperature trends in the Southern Willamette?

- Seasonal Kendall test for trend
- Evaluated data collected between January 01, 1998 to December 01, 2018
- Minimum of 8 years with results in the same month
- 25 stations had sufficient data for trend All USGS and some USFS.
- All significant (p <= 0.20) with a degrading trend (warmer temperatures)

Thank You!

Ryan Michle

Senior Water Quality Analyst Oregon DEQ michie.ryan@deq.state.or.us 503-229-6162

