2.3 Regional Risk Assessments

The purpose of the Regional Risk Assessment is to assess risks at a regional scale by profiling the characteristics, natural hazards and vulnerabilities within the eight OEM Hazard Mitigation Regions (Figure 78). Each Hazard Mitigation Region has its own Risk Assessment. Together, the eight Regional Risk Assessments combine to describe the State’s overall risk to natural hazards.

Figure 78. || 2-CC-2: OEM Hazard Mitigation Regions

Each Regional Risk Assessment includes three sections:

1) The Summary provides a general overview of (1) the Regional Profile, (2) the Regional Hazards and Vulnerability, and (3) how climate change models predict hazards in the region will be impacted based on statewide data.

2) The Profile section provides an overview of the region’s unique characteristics including profiles of the natural environment, social and demographic situation, economic environment, infrastructure, and built environment.

The research of Susan Cutter, Professor of Geography at the University of South Carolina, Columbia, on vulnerability and environmental hazards provides the framework for discussion of vulnerability in the Regional Profile section. Cutter’s framework helps to illustrate the geographic variability of vulnerability and allows policy makers to better understand how to prepare for, mitigate and reduce vulnerability.

3) The Hazards and Vulnerability section first identifies each hazard and its characteristic in the region. Then, the historical events that have impacted the region are listed. Lastly, probabilities and
vulnerabilities are discussed as identified by local and state risk assessments. Vulnerabilities to and potential impacts from each hazard in the region are described including the identification and analysis of the region’s state owned/leased facilities and critical/essential facilities located within hazard zones and seismic lifeline vulnerabilities.

Regional Risk Assessments add to the current body of literature and technical resource guides available to Oregon communities. The three levels of government – federal, state, and local – will find the Regional Risk Assessments useful when assessing natural hazards and vulnerabilities and when planning mitigation activities. Local governments can use the Regional Risk Assessments in the development of their jurisdiction's natural hazards mitigation plan. Information from these assessments is intended to be used as a springboard for more detailed community profiles. Likewise, information from local plans helps to inform the Oregon NHMP risk assessment overall.
2.3.5 Region 5: Mid-Columbia Region

Gilliam, Hood River, Morrow, Sherman, Umatilla, and Wasco Counties
2.3.5.1 Summary

Regional Profile

The region’s social, economic, infrastructure and development patterns indicate that some populations, structures and places may be more vulnerable to certain natural hazards than others. The Regional Profile for Region 5 indicates the following vulnerabilities for the Mid-Columbia Region. Mitigation efforts directed at these vulnerabilities may help boost the area’s ability to bounce back after a natural disaster.

Across the region, social vulnerability is driven by fewer college degrees and high numbers of housing rentals and vacancies. At the county level the numbers of disabled persons in Gilliam; homeless people in Wasco and Umatilla; children in Hood River, Morrow and Umatilla; seniors in Gilliam and Sherman; and people who do not speak English “very well” in Hood River and Umatilla are notable.

Overall, Region 5 has been rebounding from the Great recession. Economic vulnerability is driven by high unemployment rates in Morrow and Umatilla Counties and low wages in Morrow and Hood River Counties.

I-84, two railyards, Amtrak, three ports and one commercial airport support the regional economy and daily operations. These integral transportation systems are susceptible to a variety of hazards, including winter storms, windstorms and seismic activity. Damage or interruption to the services these systems provide could be devastating to the region and state.

The region’s diversity in energy and drinking water systems helps reduce its vulnerability to damage and disruptions in service that can happen during a natural hazard event. The Mid-Columbia Region’s energy portfolio has 31 power generating facilities, including hydroelectric, natural gas, wind, and coal facilities. Four additional wind facilities are proposed.

Surface water, wells, and springs supply to local drinking water. These systems are vulnerable to non-point source pollution, erosion and sedimentation that can adversely impact water quality. Rigid buried infrastructure are vulnerable to seismic activity.

Region 5 is largely rural, with urban development occurring in communities along I-84 in Hood River County. A significant share of the region’s housing units are mobile homes, which are inherently more vulnerable to natural hazards. Over 80% of homes in Gilliam and Sherman Counties were built before 1990 and current seismic building standards. With the exception of Morrow and Umatilla counties, none of the region’s FIRMs have been modernized or updated—leaving this region’s flood maps less up to date as other areas of the state.

Regional Hazards and Vulnerability

Region 5 is affected by nine of the 11 natural hazards that affect Oregon communities. Coastal hazards and tsunami do not directly impact this region.

Drought: Drought is common in Region 5, particularly within Gilliam, Morrow, and Sherman counties. Agricultural industries in the region are vulnerable to scarcity of water supplies during drought events.
Dust Storms: Strong winds can carry fine silt, sand, and clay particles over hundreds of miles, over 10,000 feet, and at least 25 miles per hour. These storms are most common over the areas of dry land that are prevalent in this region. Dust storms affect the region annually, during summer months and periods of drought. Morrow and Umatilla counties are the most vulnerable counties in the state.

Earthquakes: Overall, the region is moderately vulnerable to three types of earthquakes—shallow crustal events, deep intra-plate events within the subducting Juan de Fuca plate, and the offshore Cascadia Fault Zone (CSZ). Primary vulnerabilities are due to shallow crustal and intraplate earthquakes that cause earthquake-induced landslides in the Cascades,ground shaking and liquefaction. A CSZ event will greatly affect the region’s as markets to east will be greatly disrupted.

There are 411 state-owned/leased facilities in the earthquake hazard zone in this region, valuing over $528 million. Of these, 76 are critical/essential facilities. An additional 1,446 non-state-owned/leased critical/essential facilities are also located within this hazard zone.

Flooding: Rain on snow events during unseasonably warm winters create disastrous riverine flooding events in the Mid-Columbia Region. Flash floods associated with summer thunderstorms are also exceptionally damaging. All of the region’s counties are considered moderately vulnerable to flooding. There are 265 state-owned/leased facilities located in the region’s flood hazard zone, valuing approximately $6 million. Of these, three are considered critical/essential facilities. An additional 35 non-state-owned/leased critical/essential facilities are located in this hazard zone.

Landslides: Landslides can occur throughout the region, though areas with steeper slopes, weaker geology, and higher annual precipitation tend to have more. Rain-induced landslides can occur during winter months; and earthquakes can trigger landslides at any time. Vulnerability is increased in populated areas within the Columbia River Gorge, along the I-84 corridor and in the Cascade Mountains. There are 631 state-owned/leased facilities are located in this hazard zone in Region 5, valuing over $744 million. Of these, 121 are critical/essential facilities. An additional 1,541 non-state-owned/leased critical/essential facilities are also located within this hazard zone.

Volcanoes: There are several active and potentially active volcanoes in the Cascade Range along the western border of the Mid-Columbia Region. Areas particularly vulnerable to volcanic activity include the Cities of Parkdale and Hood River near Mount Hood, and communities along the White River in Wasco County. Though most volcanic activity is considered local, lahars and ash fall can travel many miles and can impact. Small mountain communities, dams, reservoirs, energy-generating facilities, and highways in their path. There are 321 state-owned/leased facilities located in a volcanic hazard zone in this region, valuing approximately $259 million. Of these, 59 are critical/essential facilities. An additional 1,377 non-state-owned/leased critical/essential facilities are also located in this hazard zone.

Wildfire: This region has unique geographic features, weather characteristics, a history of unmanaged fuels, and an expanding wildland urban interface that contribute to extreme wildfire behavior. The majority of the forestlands in Region 5 are historically prone to wildfire. Summer weather patterns can produce lightning storms that start many fires.
The entire region is susceptible to wildfire, and the most vulnerable counties are Hood River, east and south Wasco, south Morrow and south and east Umatilla. Other areas of vulnerability are within the identified wildland-urban interface communities. There are 239 state-owned/leased facilities located in this region's wildfire hazard zone, valuing approximately $81.5 million. Of these, 23 are identified as critical/essential facilities. An additional 1,072 non-state-owned/leased critical/essential facilities are also located in this hazard zone.

Windstorms: High winds within Region 5 in the Columbia River Gorge are legendary, sometimes reaching 80 miles per hour. They can damage buildings, utilities, and transportation systems, farmland, tree-lined roads, transmission lines, and residential parcels. Special building codes in this region require tie downs for mobile homes within 30 miles of the Columbia River. The most vulnerable communities are those near the Columbia Gorge within Gilliam, Hood River, Morro, and Sherman Counties.

Winter Storms: Frigid air emanating from the Wallowa Mountains and traveling through the Columbia River Gorge bring winter storms to this region annually. Though winter storms have the potential to affect the entire region, particularly transportation along the I-84 corridor, this area is known for cold winters so residents and visitors are usually repared for these storms.

Climate Change

The most reliable information on climate change to date is at the state level. The state information indicates that hazards projected to be impacted by climate change in Region 5 include drought and wildfire. Climate models project warmer drier summers and a decline in mean summer precipitation for Oregon. Coupled with projected decreases in mountain snowpack due to warmer winter temperatures, all eight regions are expected to be affected by an increased incidence of drought and wildfire. An increase in drought could result in the increase incidence of dust storms; though no current research is available on the direct effects of future climate conditions on the incidence of dust storms. While winter storms and windstorms affect Region 5, there is insufficient research available indicating any change in the incidence of either in Oregon due to changing climate conditions. For more information on climate drivers and the projected impacts of climate change in Oregon, see the section, [Introduction to Climate Change](#).

2.3.5.2 Profile

Natural Environment

Geography

Oregon’s Mid-Columbia Region is approximately 10,178 square miles in size, and includes Gilliam, Hood River, Morrow, Sherman, Umatilla, and Wasco counties. The Columbia River and the eastern slope of the Cascades shape the region’s topography. Region 5 begins at the Cascades crest in the west, and extends east to the Idaho border. The region’s northern border is the Columbia River and extends to the northern ridges of the Blue Mountains in the south. The region’s major watershed is the Columbia River with all smaller water bodies feeding it as it flows west into the Pacific Ocean. The region supports crop farming as well as livestock grazing.
The U.S. EPA’s ecoregions are used to describe areas of ecosystem similarity. Region 5 is comprised of four ecoregions: the Cascades, the Eastern Cascades Slopes and Foothills, the Blue Mountains and is predominantly in the Columbia Plateau (Figure 149).

Source: Department of Land Conservation and Development, 2014
Figure 149. || Figure 2-R5-RP-2: Region 5 Ecoregions

Blue Mountains: This ecoregion is complex and diverse with many subecoregions with unique conditions. In general, the Blue Mountains areas of Region 5 have dry Continental climate with Marine intrusions because of proximity to the Columbia Gorge. While much of the Blue Mountains are underlain with volcanic rock, land in the Wallowas and Elkhorn Mountains ranges is composed of granitic intrusives, deep sea sediments, and metamorphic rocks. Grazing, logging, and fire suppression regimes have altered landcover throughout the region where Juniper woodlands have given way to sagebrush grasslands and grandfir forests have given way to spruce-fir forests. Other forests in the region predominantly have either a Douglas fir or Ponderosa pine canopy. Ponderosa forests tend towards sparsley vegetated understories the ecoregion’s Douglas fir forests tend towards dense shrub understories, making them more difficult to log. Some high meadows also exist within the Blue Mountains in Region 5 and
unchannelized streams tend towards a meandering nature within wide floodplains, moving dynamically through the landscape. Riparian areas of the region have a diverse palette of understory shrubs with black cottonwoods, grand firs, and alders in the canopy layer.210

\textbf{Cascades:} This ecoregion is underlayed by volcanic soils and naturally occurring mixed conifer forests have given way to predominantly Douglas Fir forests that are managed for commercial logging. Logging activities have put a strain on the ecological health of streams in the area.211 Waterways in the steeper valleys support threatened cold-water salmonids including Chinook salmon, steelhead, and bull trout. Streams, lakes, reservoirs, rivers, and glacial lakes at higher elevations are key sources of water. Large volcanic peaks, glaciers and year-round snowfields punctuate the alpine and subalpine areas of the ecoregion.212

\textbf{Columbia Plateau:} The Columbia River has shaped this arid, sagebrush steppe. This ecoregion is underlain by basaltic bedrock up to two miles deep. Naturally occurring wheatgrass, sagebrush, sagegrass and other drought tolerant plants have given way to crop farming and grazing. Higher elevation areas support Douglas fir and Ponderosa pine forests while narrow canyons provide habitat for riparian species such as white alders and mock orange. Deep Loess soil deposits cover some areas, making them more agriculturally productive than areas with spare soils.213

\textbf{Eastern Cascades Slope and Foothills:} The Region 5 section of this ecoregion is dominated by Grand Fir mixed forests in the uplands and mixed oak/conifer forests in the foothills. The Columbia River Gorge influences lower elevations with marine weather systems while the uplands are moister with richer soils. Because of its location in the rainshadow of the Cascades, the ecoregion often experiences dramatic temperature extremes and native plants are adapted to dry climates and frequent wildfires. Logging and recreation are common land uses throughout and rural residential development and agricultural uses can be found in the foothills.214

\textbf{Climate}

Climate refers to the temperatures, weather patterns, and precipitation in the region. This section covers historic climate information. For estimated future climate conditions and possible impacts refer to the \textit{State Risk Assessment} for statewide projections.

211 ibid.

212 ibid.

213 ibid.

214 ibid.
Region 5 has diverse ecoregions with varying climatic conditions with the majority of the region’s land in Columbia Plateau. The Columbia Plateau’s arid climate supports a variety of agricultural activities, most notably wheat, barley, alfalfa, corn and potato production. The region is subject to drought, floods, landslides and wildfires. When considering the climate, snowfall should also be taken into account. Flooding can be a direct result of rain-on-snow events. Likewise, the amount of snowpack in a region can also impact the ability of communities to cope with drought. Table 2-291 shows mean annual precipitation and temperatures for the three ecoregions in Region 5. Variations in temperature and precipitation vary widely by subecoregion and microclimates. For more detailed and locally relevant climate data refer to the Oregon Climate Service.

Table 2-291. || Table 2-R5-RP-1: Average Rainfall and Temperatures in Region 5 Ecoregions

<table>
<thead>
<tr>
<th>Ecoregion</th>
<th>Mean Annual Precipitation Range (inches)</th>
<th>Mean Temperature Range (°F) January min/max</th>
<th>Mean Temperature Range (°F) July min/max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascades</td>
<td>60-120</td>
<td>26/41</td>
<td>44/78</td>
</tr>
<tr>
<td>Eastern Cascades</td>
<td>16-55</td>
<td>16-40</td>
<td>40-82</td>
</tr>
<tr>
<td>Columbia Plateau</td>
<td>9-25</td>
<td>24-41</td>
<td>52-89</td>
</tr>
<tr>
<td>Blue Mountains</td>
<td>9-25</td>
<td>16/37</td>
<td>43/80</td>
</tr>
</tbody>
</table>

Note: *Data has been aggregated from all subregions present in the ecoregion

Demography

Population

Population forecasts are an indicator of future development needs and trends. Community demographics may indicate where specific vulnerabilities may be present in the aftermath of a natural hazard (Cutter, 2003). If a population is forecasted to increase substantially, a community’s capacity to provide adequate housing stock, services, or resources for all populations post disaster may be stressed or compromised.

Overall, from 2000-2013 Region 5’s growth rate is roughly 5% less than the state. The majority of the region’s growth occurred in the largest cities, Hood River, Umatilla and Wasco Counties. Sherman was the only county in the region to decline in population. By 2020, all counties in Region 5, except Hood River County, are projected to grow at a rate less than the state overall.
Table 2-292. Table 2-R5-RP-2: Population Estimate and Forecast for Region 5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>3,421,399</td>
<td>3,919,020</td>
<td>14.5%</td>
<td>4,252,100</td>
<td>8.5%</td>
</tr>
<tr>
<td>Region 5</td>
<td>129,594</td>
<td>142,150</td>
<td>9.7%</td>
<td>152,460</td>
<td>7.3%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,915</td>
<td>1,945</td>
<td>1.6%</td>
<td>2,062</td>
<td>6.0%</td>
</tr>
<tr>
<td>Hood River</td>
<td>20,411</td>
<td>23,295</td>
<td>14.1%</td>
<td>25,628</td>
<td>10.0%</td>
</tr>
<tr>
<td>Morrow</td>
<td>10,995</td>
<td>11,425</td>
<td>3.9%</td>
<td>12,307</td>
<td>7.7%</td>
</tr>
<tr>
<td>Sherman</td>
<td>1,934</td>
<td>1,780</td>
<td>-8.0%</td>
<td>1,716</td>
<td>-3.6%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>70,548</td>
<td>77,895</td>
<td>10.4%</td>
<td>83,359</td>
<td>7.0%</td>
</tr>
<tr>
<td>Wasco</td>
<td>23,791</td>
<td>25,810</td>
<td>8.5%</td>
<td>27,388</td>
<td>6.1%</td>
</tr>
</tbody>
</table>

Source: Population Research Center, Portland State University, 2013; U.S. Census Bureau, 2010 Decennial Census. Table DP-1; Office of Economic Analysis, Long-Term Oregon State’s County Population Forecast, 2010-2050, 2013

Tourists

Tourists are not counted in population statistics and are therefore considered separately in this analysis. Tourism activities in Region 5 are largely centered on outdoor activities (hiking/backpacking, visiting national/state parks etc.), touring (traveling to experience scenic beauty, history and culture), and special events (such as fairs, festivals or sporting events). Over nine percent (2.5 million) of all overnight trips to Oregon spent time within Region 5. Two-thirds of trips to the region occur between April and September and the average travel party contains 4 persons. The average trip length is over 4 nights. From 2011 to 2013, the majority of visitors to the Mid-Columbia Region lodged in either hotels/motels or other accommodations.

Difficulty locating or accounting for travelers increases their vulnerability in the event of a natural disaster. Furthermore, tourists are often unfamiliar with evacuation routes, communication outlets, or even the type of hazard that may occur. Targeting natural hazard

217 Data for Morrow and Umatilla counties are not included in this count.

218 Ibid.

outreach efforts to places where tourist lodge can help increase awareness of hazards in the area and minimize the vulnerability of this population group.

Table 2-293. Table 2-R5-RP-3: Annual Visitor Estimates in Person Nights in Region 5

<table>
<thead>
<tr>
<th></th>
<th>2011 Number</th>
<th>2011 Percent</th>
<th>2012 Number</th>
<th>2012 Percent</th>
<th>2013 Number</th>
<th>2013 Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 5</td>
<td>3,907</td>
<td>-</td>
<td>3,835</td>
<td>-</td>
<td>3,878</td>
<td>-</td>
</tr>
<tr>
<td>Gilliam and Sherman</td>
<td>149</td>
<td>100%</td>
<td>153</td>
<td>100%</td>
<td>142</td>
<td>100%</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>50</td>
<td>33.6%</td>
<td>51</td>
<td>33.3%</td>
<td>40</td>
<td>28.2%</td>
</tr>
<tr>
<td>Private Home</td>
<td>36</td>
<td>24.2%</td>
<td>37</td>
<td>24.2%</td>
<td>36</td>
<td>25.4%</td>
</tr>
<tr>
<td>Other</td>
<td>63</td>
<td>42.3%</td>
<td>65</td>
<td>42.5%</td>
<td>66</td>
<td>46.5%</td>
</tr>
<tr>
<td>Hood River</td>
<td>819</td>
<td>100%</td>
<td>853</td>
<td>100%</td>
<td>850</td>
<td>100%</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>367</td>
<td>44.8%</td>
<td>389</td>
<td>45.6%</td>
<td>386</td>
<td>45.4%</td>
</tr>
<tr>
<td>Private Home</td>
<td>284</td>
<td>34.7%</td>
<td>292</td>
<td>34.2%</td>
<td>289</td>
<td>34.0%</td>
</tr>
<tr>
<td>Other</td>
<td>168</td>
<td>20.5%</td>
<td>172</td>
<td>20.2%</td>
<td>175</td>
<td>20.6%</td>
</tr>
<tr>
<td>Morrow</td>
<td>252</td>
<td>100%</td>
<td>244</td>
<td>100%</td>
<td>261</td>
<td>100%</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>77</td>
<td>30.6%</td>
<td>72</td>
<td>29.5%</td>
<td>82</td>
<td>31.4%</td>
</tr>
<tr>
<td>Private Home</td>
<td>114</td>
<td>45.2%</td>
<td>110</td>
<td>45.1%</td>
<td>116</td>
<td>44.4%</td>
</tr>
<tr>
<td>Other</td>
<td>61</td>
<td>24.2%</td>
<td>62</td>
<td>25.4%</td>
<td>63</td>
<td>24.1%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>1,681</td>
<td>100%</td>
<td>1,588</td>
<td>100%</td>
<td>1,652</td>
<td>100%</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>668</td>
<td>40%</td>
<td>597</td>
<td>38%</td>
<td>628</td>
<td>38%</td>
</tr>
<tr>
<td>Private Home</td>
<td>775</td>
<td>46%</td>
<td>748</td>
<td>47%</td>
<td>779</td>
<td>47%</td>
</tr>
<tr>
<td>Other</td>
<td>238</td>
<td>14%</td>
<td>243</td>
<td>15%</td>
<td>245</td>
<td>15%</td>
</tr>
<tr>
<td>Wasco</td>
<td>1,006</td>
<td>100%</td>
<td>997</td>
<td>100%</td>
<td>973</td>
<td>100%</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>401</td>
<td>40%</td>
<td>380</td>
<td>24%</td>
<td>359</td>
<td>37%</td>
</tr>
<tr>
<td>Private Home</td>
<td>247</td>
<td>25%</td>
<td>250</td>
<td>16%</td>
<td>250</td>
<td>26%</td>
</tr>
<tr>
<td>Other</td>
<td>358</td>
<td>36%</td>
<td>367</td>
<td>23%</td>
<td>364</td>
<td>37%</td>
</tr>
</tbody>
</table>

Persons with Disabilities

Disabilities appear in many different forms. While some disabilities may be easily identified, others may be less perceptible. Some common disabilities include autism, diabetes, sensory impairments, spinal injuries, post-traumatic stress syndrome and mental disabilities.220 Most

notably, roughly 22% of Gilliam County’s population – and half of its senior population – of have a mental or physical disability.

Special needs populations are disproportionately affected during disasters. Because of their invisibility in communities, the affects of hazard events on this community are difficult to identify and measure. As a result, they are mostly ignored during recovery (Cutter, 2003). Local natural hazard mitigation plans should specifically target outreach programs to help these communities better prepare for and recover from hazard events.

Table 2-294. || Table 2-R5-RP-11 People with a Disability by Age Groups in Region 5, 2012

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Population*</th>
<th>With a disability (Total Population)</th>
<th>Under 18 years with a disability</th>
<th>65 years and over with a disability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Estimate Percent</td>
<td>Estimate Percent</td>
<td>Estimate Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,796,881</td>
<td>511,297 13.5%</td>
<td>39,439 4.6%</td>
<td>200,374 37.8%</td>
</tr>
<tr>
<td>Region 5</td>
<td>133,922</td>
<td>18,074 13.5%</td>
<td>1,282 3.6%</td>
<td>7,355 39.6%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,897</td>
<td>425 22.4%</td>
<td>21 5.8%</td>
<td>199 49.9%</td>
</tr>
<tr>
<td>Hood River</td>
<td>22,118</td>
<td>2,217 10.0%</td>
<td>140 2.4%</td>
<td>874 31.9%</td>
</tr>
<tr>
<td>Morrow</td>
<td>11,137</td>
<td>1,748 15.7%</td>
<td>163 5.1%</td>
<td>621 45.5%</td>
</tr>
<tr>
<td>Sherman</td>
<td>1,865</td>
<td>339 18.2%</td>
<td>19 4.8%</td>
<td>159 39.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>72,178</td>
<td>9,710 13.5%</td>
<td>684 3.4%</td>
<td>3,990 42.5%</td>
</tr>
<tr>
<td>Wasco</td>
<td>24,727</td>
<td>3,635 14.7%</td>
<td>255 4.5%</td>
<td>1,512 35.1%</td>
</tr>
</tbody>
</table>

Note: *Total population does not include institutionalized population
Note: **Percent of age group
Source: U.S. Census Bureau, 2008-2012 American Community Survey 5-Year Estimates, Table DP02

Homeless Population

Population estimates of the homeless are performed in Oregon each January. These are rough estimates and can fluctuate with many factors, including the economy or season. The overwhelming majority of homeless are either single adult males or families with children. Communities located along major transportation corridors, such as I-84, tend to have higher concentrations of homeless populations. Throughout the region, with the exception of Gilliam and Sherman Counties, this population increased significantly from 2009 to 2010. The next year these numbers almost doubled in Wasco and Umatilla Counties; and decreased by half or more in Hood River and Morrow. Extra attention is needed to care for and serve homeless communities. Many homeless people choose to remain hidden or anonymous, while others are

simply unnoticed. To serve these communities post-disaster, it is important to provide easy and accessible shelter and social services.

Extra attention is needed to care for and serve homeless communities. Many homeless people choose to remain hidden or anonymous, while others are simply unnoticed. To serve these communities post-disaster, it is important to provide easy and accessible shelter and social services.

Table 2-295. || Table 2-R5-RP-12: Homeless Population Estimate for Region 5

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>Three Year Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>17,122</td>
<td>19,208</td>
<td>22,116</td>
<td>19,482</td>
</tr>
<tr>
<td>Region 5</td>
<td>310</td>
<td>1,052</td>
<td>939</td>
<td>767</td>
</tr>
<tr>
<td>Gilliam</td>
<td>14</td>
<td>0</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Hood River</td>
<td>18</td>
<td>482</td>
<td>284</td>
<td>261</td>
</tr>
<tr>
<td>Morrow</td>
<td>179</td>
<td>241</td>
<td>10</td>
<td>143</td>
</tr>
<tr>
<td>Sherman</td>
<td>5</td>
<td>0</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>Umatilla</td>
<td>61</td>
<td>104</td>
<td>235</td>
<td>133</td>
</tr>
<tr>
<td>Wasco</td>
<td>33</td>
<td>225</td>
<td>401</td>
<td>220</td>
</tr>
</tbody>
</table>

Gender

Region 5 has slightly more males than females (Male: 51.1%, Female 48.9%), an inverse ratio to that of the state.\(^{222}\) It is important to recognize that women tend to have more institutionalized obstacles than men during recovery due to sector-specific employment, lower wages, and family care responsibilities.\(^{223}\)

Age

More than one fifth of the population in Gilliam and Sherman are seniors. Senior citizens may require special consideration due to their sensitivities to heat and cold, their reliance upon transportation for medications, and their comparative difficulty in making home modifications that reduce risk to hazards. In addition, the elderly may be reluctant to leave their homes in a

\(^{222}\) U.S. Census Bureau; American Community Survey, 2010 Demographic Profile Data, Table DP-1; using American FactFinder (4 March 2014).

disaster event. This implies the need for targeted preparatory programming that includes evacuation procedures and shelter locations accessible to the elderly populations.

Over a quarter of the population in Hood River, Morrow and Umatilla Counties are children. Special considerations should be given to young children, schools and parents during the natural hazard mitigation process. Young children are more vulnerable to heat and cold, have fewer transportation options, and require assistance to access medical facilities. Parents may lose time and money when their children’s childcare facilities and schools are impacted by disasters.

Table 2-296. || Table 2-R5-RP-7: Population by Vulnerable Age Groups, in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Total Population</th>
<th>Under 18 years old</th>
<th>65 years and older</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,836,628</td>
<td>22.5%</td>
<td>540,527</td>
</tr>
<tr>
<td>Region 5</td>
<td>138,081</td>
<td>25.7%</td>
<td>19,148</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,904</td>
<td>19.0%</td>
<td>406</td>
</tr>
<tr>
<td>Hood River</td>
<td>22,207</td>
<td>25.8%</td>
<td>2,799</td>
</tr>
<tr>
<td>Morrow</td>
<td>11,146</td>
<td>28.5%</td>
<td>1,368</td>
</tr>
<tr>
<td>Sherman</td>
<td>1,865</td>
<td>21.1%</td>
<td>401</td>
</tr>
<tr>
<td>Umatilla</td>
<td>75,846</td>
<td>26.5%</td>
<td>9,685</td>
</tr>
<tr>
<td>Wasco</td>
<td>25,113</td>
<td>22.7%</td>
<td>4,489</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau; 2008-2012 American Community Survey 5-Year Estimates, Table DP05

Language

Most notably, there are considerably high percentages of the populations in Hood River and Umatilla Counties who do not speak English “very well”, roughly 18% and 14% respectively. Outreach materials used to communicate with and plan for these populations should take into consideration language needs.

Table 2-297. | Table 2-R5-RP-8: English Usage in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Speak English "Very Well"</th>
<th>Speak English less than "very well"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,376,744</td>
<td>93.8%</td>
</tr>
<tr>
<td>Region 5</td>
<td>115,667</td>
<td>90.0%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,781</td>
<td>98.9%</td>
</tr>
<tr>
<td>Hood River</td>
<td>17,134</td>
<td>82.5%</td>
</tr>
<tr>
<td>Morrow</td>
<td>8,928</td>
<td>86.3%</td>
</tr>
<tr>
<td>Sherman</td>
<td>1,695</td>
<td>96.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>64,574</td>
<td>91.9%</td>
</tr>
<tr>
<td>Wasco</td>
<td>21,555</td>
<td>91.5%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau; 2008-2012 American Community Survey 5-Year Estimates, Table DP02

Education Level

Studies show, education and socioeconomic status are deeply intertwined, with higher educational attainment correlating to increased lifetime earnings. The region has a 7% lower rate of high school graduates (including GEDs) and a 12% lower rate of persons with a bachelor’s degree, compared to statewide percentages. Hood River County has the largest percentage of its population with a bachelor’s degree or higher, while Morrow County has the lowest percentage.

Education can influence the ability to access resources, while lack of resources may constrain the ability to understand warning information. Therefore, levels of education within the region should be considered when designing hazard outreach materials to local communities.

226 Ibid.
Figure 150. Figure 2-R5-RP-4: Educational Attainment in Region 5, 2012

Source: U.S. Census Bureau; 2008-2012 American Community Survey 5-Year Estimates, Table DP02
Income

The impact of a disaster in terms of loss and the ability to recover varies among population groups. “The causes of social vulnerability are explained by the underlying social conditions that are often quite remote from the initiating hazard or disaster event” (Cutter, 1996). Historically, 80% of the disaster burden falls on the public. Of this number, a disproportionate burden is placed upon those living in poverty. People living in poverty are more likely to be, are less likely to have the savings to rebuild after a disaster, and are less likely to have access to transportation and medical care.

The recent Great Recession appears to have minimally affected Region 5’s median household incomes. Contrary to statewide trends between 2009 and 2014, median household incomes increased in all counties in Region 5, except in Wasco County. Sherman County experienced the largest growth (almost 190%) in household income. In all but one county in the region, median household incomes are lower than the statewide average by $1,500-$6,400. The exception is Hood River County, in which households make on average of $6,300 more than the statewide average.

Table 2-298. || Table 2-R5-RP-4: Median Household Income in Region 5

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2012</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>$52,474</td>
<td>$50,036</td>
<td>-4.6%</td>
</tr>
<tr>
<td>Region 5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Gilliam</td>
<td>$45,070</td>
<td>$45,833</td>
<td>1.7%</td>
</tr>
<tr>
<td>Hood River</td>
<td>$53,289</td>
<td>$56,355</td>
<td>5.8%</td>
</tr>
<tr>
<td>Morrow</td>
<td>$46,639</td>
<td>$48,457</td>
<td>3.9%</td>
</tr>
<tr>
<td>Sherman</td>
<td>$37,578</td>
<td>$44,583</td>
<td>18.6%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>$48,404</td>
<td>$48,452</td>
<td>0.1%</td>
</tr>
<tr>
<td>Wasco</td>
<td>$44,206</td>
<td>$43,601</td>
<td>-1.4%</td>
</tr>
</tbody>
</table>

n/a = data not aggregated at the regional level.

The region has about the same household income distribution as the state as a whole. Within the region, Sherman County has the highest percentage of households (42.1%) making less than $35,000 per year; while Hood River County has the highest percentage of households (34.2%) making more than $75,000 per year. Just over one-third of the region’s households make between $35,000-$75,000 per year.
The share of the Mid Columbia Region’s individuals and children living in poverty are comparable to statewide numbers. Sherman and Wasco counties have the highest percentages of their population living in poverty. Gilliam and Wasco Counties have had the greatest increases in poverty rates. Conversely, poverty has been on the decline in Hood River and Morrow Counties. Child poverty rates have significantly increased by more than 25% in Sherman and Wasco Counties. Notably, 44% of children in Sherman County are living in poverty.

Table 2-299. || Table 2-R5-RP-5: Poverty Rates in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Total Population in Poverty</th>
<th>Children Under 18 in Poverty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>584,059</td>
<td>15.5%</td>
</tr>
<tr>
<td>Region 5</td>
<td>20,495</td>
<td>15.6%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>238</td>
<td>12.6%</td>
</tr>
<tr>
<td>Hood River</td>
<td>2,235</td>
<td>10.1%</td>
</tr>
<tr>
<td>Morrow</td>
<td>1,726</td>
<td>15.5%</td>
</tr>
<tr>
<td>Sherman</td>
<td>413</td>
<td>22.4%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>11,149</td>
<td>15.5%</td>
</tr>
<tr>
<td>Wasco</td>
<td>4,734</td>
<td>19.3%</td>
</tr>
</tbody>
</table>

Note: *Percent change since 2009

Source: U.S. Census Bureau; 2008-2012 American Community Survey 5-Year Estimates, Table DP03
Low-income populations require special consideration when mitigating loss to a natural hazard. Often, those who make less have little to no savings and other assets to withstand economic setbacks. When a natural disaster interrupts work, the ability to provide housing, food, and basic necessities becomes increasingly difficult. In addition, low-income populations are hit especially hard as public transportation, public food assistance, public housing, and other public programs upon which they rely for day-to-day activities are often impacted in the aftermath of the natural disaster. To reduce the compounded loss incurred by low income populations post-disaster, mitigation actions need to be specially tailored to ensure safety nets are in place to provide further support to those with fewer personal resources.

Housing Tenure

Wealth can increase the ability to recover following a natural disaster (Cutter, 2003), and homeownership, versus renting, is often linked to having more wealth. Renters often do not have personal financial resources or insurance to help recover post-disaster. On the other hand, renters tend to be more mobile and have fewer assets at risk. In the most extreme cases, renters lack sufficient shelter options when lodging becomes uninhabitable or unaffordable due to natural disaster events.

Collectively, about one-third of housing units in Region 5 are rentals. Morrow County has the highest percentage of owner-occupied units—10% more than the regional average. Gilliam County has the highest percentage of rental units. The region has a roughly 3% higher vacancy rate than the state—the highest percentage in Gilliam County (about 15%), and the highest number of units are in Umatilla County (2,044). In addition, the region has a slightly higher percentage of seasonal, or recreational homes than the state.

228 U.S. Census Bureau, 2008-2012 American Community Survey, Table DP04 and Table B25004.
Table 2-300. || Table 2-R5-RP-6: Housing Tenure in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Occupied Units</th>
<th>Owner-occupied</th>
<th>Renter-occupied</th>
<th>Vacant^</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
<td>Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,512,718</td>
<td>62.5%</td>
<td>566,894</td>
<td>37.5%</td>
</tr>
<tr>
<td>Region 5</td>
<td>50,034</td>
<td>66.3%</td>
<td>16,878</td>
<td>33.7%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>894</td>
<td>62.8%</td>
<td>333</td>
<td>37.2%</td>
</tr>
<tr>
<td>Hood River</td>
<td>8,027</td>
<td>5,498</td>
<td>2,529</td>
<td>31.5%</td>
</tr>
<tr>
<td>Morrow</td>
<td>3,791</td>
<td>2,769</td>
<td>1,022</td>
<td>27.0%</td>
</tr>
<tr>
<td>Sherman</td>
<td>788</td>
<td>525</td>
<td>263</td>
<td>33.4%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>26,786</td>
<td>17,391</td>
<td>9,395</td>
<td>35.1%</td>
</tr>
<tr>
<td>Wasco</td>
<td>9,748</td>
<td>6,412</td>
<td>3,336</td>
<td>34.2%</td>
</tr>
</tbody>
</table>

^ = Functional vacant units, computed after removing seasonal, recreational, or occasional housing units from vacant housing units.

Source: U.S. Census Bureau, 2008-2012 American Community Survey 5-Year Estimates, Table DP04 and Table B25004.

Families and Living Arrangements

Family care and obligations can create additional hardship during post-disaster recovery, especially for single parent households. Region 5 is predominately comprised of family households, and roughly one-third of those have children. Similar to statewide numbers, there are more than twice as many single parent households that are headed by females than by males.

Table 2-301. || Table 2-R5-RP-9: Family vs. Non-family Households in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Total Households</th>
<th>Family Households</th>
<th>Nonfamily Households</th>
<th>Householder Living Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,512,718</td>
<td>964,274</td>
<td>63.7%</td>
<td>548,444</td>
</tr>
<tr>
<td>Region 5</td>
<td>50,034</td>
<td>34,196</td>
<td>68.3%</td>
<td>15,838</td>
</tr>
<tr>
<td>Gilliam</td>
<td>894</td>
<td>543</td>
<td>60.7%</td>
<td>351</td>
</tr>
<tr>
<td>Hood River</td>
<td>8,027</td>
<td>5,341</td>
<td>66.5%</td>
<td>2,686</td>
</tr>
<tr>
<td>Morrow</td>
<td>3,791</td>
<td>2,737</td>
<td>72.2%</td>
<td>1,054</td>
</tr>
<tr>
<td>Sherman</td>
<td>788</td>
<td>476</td>
<td>60.4%</td>
<td>312</td>
</tr>
<tr>
<td>Umatilla</td>
<td>26,786</td>
<td>18,553</td>
<td>69.3%</td>
<td>8,233</td>
</tr>
<tr>
<td>Wasco</td>
<td>9,748</td>
<td>6,546</td>
<td>67.2%</td>
<td>3,202</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau, 2008-2012 American Community Survey 5-Year Estimates, Table DP04
Table 2-R5-RP-10: Family Households with Children by Head of Household in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Family Households with Children</th>
<th>Single Parent (male)</th>
<th>Single Parent (female)</th>
<th>Married Couple with Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Percent</td>
<td>Estimate</td>
<td>Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>415,538</td>
<td>27.5%</td>
<td>35,855</td>
<td>2.4%</td>
</tr>
<tr>
<td>Region 5</td>
<td>15,236</td>
<td>30.5%</td>
<td>1,349</td>
<td>2.7%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>185</td>
<td>20.7%</td>
<td>23</td>
<td>2.6%</td>
</tr>
<tr>
<td>Hood River</td>
<td>2,545</td>
<td>31.7%</td>
<td>150</td>
<td>1.9%</td>
</tr>
<tr>
<td>Morrow</td>
<td>1,335</td>
<td>35.2%</td>
<td>132</td>
<td>3.5%</td>
</tr>
<tr>
<td>Sherman</td>
<td>176</td>
<td>22.3%</td>
<td>10</td>
<td>1.3%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>8,711</td>
<td>32.5%</td>
<td>880</td>
<td>3.3%</td>
</tr>
<tr>
<td>Wasco</td>
<td>2,284</td>
<td>23.4%</td>
<td>154</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Note: The table shows the percent of total households represented by each family household structure category.
Source: U.S. Census Bureau; 2008-2012 American Community Survey 5-Year Estimates, Table DP04

Social and Demographic Trends

The Social and Demographic analysis shows that Region 1 is particularly vulnerable during a hazard event in the following ways:

- Almost a quarter of the population has a disability, including half the senior population, in Gilliam County;
- Significant increases in homeless populations in Wasco and Umatilla Counties;
- Over one quarter of the population are children in Hood River, Morrow and Umatilla Counties;
- Over one fifth of the population are seniors in Gilliam and Sherman Counties;
- High numbers of people who do not speak English “very well” in Hood River and Umatilla Counties;
- Lower share of people with a college degree; and
- Roughly one third of housing units are rentals and high vacancy rates.

Economy

Economic characteristics include the financial resources present and revenue generated in the community to achieve a higher quality of life. Employment characteristics, income equality, employment and industry sectors are measures of economic capacity. However, economic resilience to natural disasters is far more complex than merely restoring employment or income in the local community. Building a resilient economy requires an understanding of how employment sectors, workforce, resources and infrastructure are interconnected in the existing economic picture.
Employment

Employment status and salary level may impact the resilience of individuals and families in the face of disasters as well as their ability to mitigate against losses due to natural hazards (Cutter, 2003). “The potential loss of employment following a disaster exacerbates the number of unemployed workers in a community, contributing to a slower recovery from the disaster” (Cutter, 2003). Since the Great Recession, the region has made a broad recovery, with an 11% increase in its labor force. 229 Regional unemployment rates have been declining steadily. Umatilla County has the largest labor force in the region and the highest unemployment rate. Average salaries are low, between 73% and 92% of the statewide average. 230 For example, the average salary in Morrow County is $41,352 and $31,215 in Hood River County.

Table 2-303. | | Table 2-R1-RP-13: Unemployment Rates in Region 1, 2009-2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>11.1%</td>
<td>10.8%</td>
<td>9.7%</td>
<td>8.8%</td>
<td>7.7%</td>
<td>-3.4%</td>
</tr>
<tr>
<td>Region 5</td>
<td>9.1%</td>
<td>9.4%</td>
<td>8.8%</td>
<td>8.1%</td>
<td>7.5%</td>
<td>-1.6%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>6.8%</td>
<td>7.0%</td>
<td>7.5%</td>
<td>7.6%</td>
<td>6.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Hood River</td>
<td>8.1%</td>
<td>8.3%</td>
<td>7.9%</td>
<td>7.1%</td>
<td>6.1%</td>
<td>-2.0%</td>
</tr>
<tr>
<td>Morrow</td>
<td>9.2%</td>
<td>9.4%</td>
<td>8.8%</td>
<td>8.3%</td>
<td>7.8%</td>
<td>-1.4%</td>
</tr>
<tr>
<td>Sherman</td>
<td>9.0%</td>
<td>9.9%</td>
<td>9.2%</td>
<td>8.7%</td>
<td>7.3%</td>
<td>-1.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>9.6%</td>
<td>10.0%</td>
<td>9.2%</td>
<td>8.5%</td>
<td>8.1%</td>
<td>-1.5%</td>
</tr>
<tr>
<td>Wasco</td>
<td>8.9%</td>
<td>9.4%</td>
<td>8.6%</td>
<td>8.0%</td>
<td>7.1%</td>
<td>-1.9%</td>
</tr>
</tbody>
</table>

Source: Oregon Employment Department, 2014.

230 Data is for “Covered Employment”, workers covered by state Unemployment Insurance (UI) laws and for civilian workers covered “by the program of Unemployment Compensation for Federal Employees
Table 2-304. | Table 2-R5-RP-14: Employment and Unemployment Rates in Region 5, 2013

<table>
<thead>
<tr>
<th></th>
<th>Civilian Labor Force</th>
<th>Employed Workers</th>
<th>Unemployed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Percent</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,924,604</td>
<td>1,775,890</td>
<td>92.3%</td>
</tr>
<tr>
<td>Region 5</td>
<td>74,367</td>
<td>68,801</td>
<td>92.5%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,050</td>
<td>978</td>
<td>93.1%</td>
</tr>
<tr>
<td>Hood River</td>
<td>14,215</td>
<td>13,353</td>
<td>93.9%</td>
</tr>
<tr>
<td>Morrow</td>
<td>5,339</td>
<td>4,923</td>
<td>92.2%</td>
</tr>
<tr>
<td>Sherman</td>
<td>1,000</td>
<td>927</td>
<td>92.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>38,255</td>
<td>35,138</td>
<td>91.9%</td>
</tr>
<tr>
<td>Wasco</td>
<td>14,508</td>
<td>13,482</td>
<td>92.9%</td>
</tr>
</tbody>
</table>

Source: Oregon Employment Department, 2014.

Table 2-305. | Table 2-R5-RP-15: Employment and Payroll in Region 5, 2013

<table>
<thead>
<tr>
<th></th>
<th>Employees</th>
<th>Average Pay</th>
<th>Percent State Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>1,679,364</td>
<td>$45,010</td>
<td>100%</td>
</tr>
<tr>
<td>Region 5</td>
<td>60,049</td>
<td>$34,649</td>
<td>77.0%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>746</td>
<td>$36,145</td>
<td>80.3%</td>
</tr>
<tr>
<td>Hood River</td>
<td>12,892</td>
<td>$31,215</td>
<td>69.4%</td>
</tr>
<tr>
<td>Morrow</td>
<td>4,805</td>
<td>$41,352</td>
<td>91.9%</td>
</tr>
<tr>
<td>Sherman</td>
<td>751</td>
<td>$38,749</td>
<td>86.1%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>29,275</td>
<td>$35,594</td>
<td>79.1%</td>
</tr>
<tr>
<td>Wasco</td>
<td>11,580</td>
<td>$32,939</td>
<td>73.2%</td>
</tr>
</tbody>
</table>

Source: Oregon Employment Department, 2014

Employment Sectors and Key Industries
In 2013, the five major employment sectors in Region 5 were: Government, Trade Transportation and Utilities, Natural Resources and Mining, Education and Health Services, and Manufacturing. Between 2012-2022, projected growth is expected to create a 9% increase in employment in the Columbia Basin, including Morrow and Umatilla Counties; and 15% increase in employment in the Columbia Gorge Region, including Gilliam, Hood River, Sherman, and Wasco Counties.231

Table 2-306. || Table 2-R5-RP-16a: Covered Employment by Sector in Region 5, 2013

<table>
<thead>
<tr>
<th>Industry</th>
<th>Region 5</th>
<th>Gilliam County</th>
<th>Hood River County</th>
<th>Morrow County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Employment</td>
<td>Percent</td>
<td>Employment</td>
<td>Percent</td>
</tr>
<tr>
<td>Total All Ownership</td>
<td>60,049</td>
<td>746</td>
<td>100%</td>
<td>12,892</td>
</tr>
<tr>
<td>Total Private Coverage</td>
<td>80.6%</td>
<td>572</td>
<td>70.0%</td>
<td>11,661</td>
</tr>
<tr>
<td>Natural Resources & Mining</td>
<td>14.4%</td>
<td>43</td>
<td>5.8%</td>
<td>2,667</td>
</tr>
<tr>
<td>Construction</td>
<td>2.8%</td>
<td>51</td>
<td>6.8%</td>
<td>296</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>11.3%</td>
<td>(c)</td>
<td>0.0%</td>
<td>1,362</td>
</tr>
<tr>
<td>Trade, Transportation & Utilities</td>
<td>18.1%</td>
<td>127</td>
<td>17.0%</td>
<td>1,905</td>
</tr>
<tr>
<td>Information</td>
<td>1.0%</td>
<td>127</td>
<td>0.0%</td>
<td>138</td>
</tr>
<tr>
<td>Financial Activities</td>
<td>2.2%</td>
<td>127</td>
<td>2.0%</td>
<td>226</td>
</tr>
<tr>
<td>Professional & Business Services</td>
<td>6.2%</td>
<td>134</td>
<td>18.0%</td>
<td>898</td>
</tr>
<tr>
<td>Education & Health Services</td>
<td>12.1%</td>
<td>55</td>
<td>7.4%</td>
<td>1,822</td>
</tr>
<tr>
<td>Leisure & Hospitality</td>
<td>9.8%</td>
<td>45</td>
<td>6.0%</td>
<td>2,008</td>
</tr>
<tr>
<td>Other Services</td>
<td>2.6%</td>
<td>33</td>
<td>4.4%</td>
<td>337</td>
</tr>
<tr>
<td>Private Non-Classified</td>
<td>0.0%</td>
<td>(c)</td>
<td>0.0%</td>
<td>2</td>
</tr>
<tr>
<td>Total All Government</td>
<td>19.4%</td>
<td>224</td>
<td>30.0%</td>
<td>1,231</td>
</tr>
<tr>
<td>Federal Government</td>
<td>1.8%</td>
<td>10</td>
<td>1.3%</td>
<td>107</td>
</tr>
<tr>
<td>State Government</td>
<td>4.0%</td>
<td>17</td>
<td>2.3%</td>
<td>118</td>
</tr>
<tr>
<td>Local Government</td>
<td>13.6%</td>
<td>198</td>
<td>25.5%</td>
<td>1,006</td>
</tr>
</tbody>
</table>

Note: (c) = confidential, information not provided by Oregon Employment Department to prevent identifying specific businesses.

Source: Oregon Employment Department, 2013

Table 2-307. || Table 2-R5-RP-16b: Covered Employment by Sector in Region 5, 2013

<table>
<thead>
<tr>
<th>Industry</th>
<th>Region 5</th>
<th>Sherman County</th>
<th>Umatilla County</th>
<th>Wasco County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Employment</td>
<td>Percent</td>
<td>Employment</td>
<td>Percent</td>
</tr>
<tr>
<td>Total All Ownership</td>
<td>60,049</td>
<td>751</td>
<td>100%</td>
<td>29,275</td>
</tr>
<tr>
<td>Total Private Coverage</td>
<td>80.6%</td>
<td>434</td>
<td>57.8%</td>
<td>22,284</td>
</tr>
<tr>
<td>Natural Resources & Mining</td>
<td>14.1%</td>
<td>13</td>
<td>1.7%</td>
<td>2,919</td>
</tr>
<tr>
<td>Construction</td>
<td>2.8%</td>
<td>(c)</td>
<td>0.0%</td>
<td>877</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>11.3%</td>
<td>(c)</td>
<td>0.0%</td>
<td>3,235</td>
</tr>
<tr>
<td>Trade, Transportation & Utilities</td>
<td>18.1%</td>
<td>235</td>
<td>31.3%</td>
<td>6,079</td>
</tr>
<tr>
<td>Information</td>
<td>1.0%</td>
<td>(c)</td>
<td>0.0%</td>
<td>174</td>
</tr>
<tr>
<td>Financial Activities</td>
<td>2.2%</td>
<td>(c)</td>
<td>0.0%</td>
<td>687</td>
</tr>
<tr>
<td>Professional & Business Services</td>
<td>6.2%</td>
<td>12</td>
<td>1.6%</td>
<td>1,999</td>
</tr>
<tr>
<td>Education & Health Services</td>
<td>12.1%</td>
<td>14</td>
<td>1.9%</td>
<td>3,196</td>
</tr>
<tr>
<td>Leisure & Hospitality</td>
<td>9.8%</td>
<td>124</td>
<td>16.5%</td>
<td>2,376</td>
</tr>
<tr>
<td>Other Services</td>
<td>2.6%</td>
<td>19</td>
<td>2.5%</td>
<td>739</td>
</tr>
<tr>
<td>Private Non-Classified</td>
<td>0.0%</td>
<td>(c)</td>
<td>0.0%</td>
<td>4</td>
</tr>
<tr>
<td>Total All Government</td>
<td>19.4%</td>
<td>31/</td>
<td>42.2%</td>
<td>6,991</td>
</tr>
<tr>
<td>Federal Government</td>
<td>1.8%</td>
<td>130</td>
<td>17.3%</td>
<td>511</td>
</tr>
<tr>
<td>State Government</td>
<td>4.0%</td>
<td>38</td>
<td>5.1%</td>
<td>1,761</td>
</tr>
<tr>
<td>Local Government</td>
<td>13.6%</td>
<td>149</td>
<td>19.8%</td>
<td>4,719</td>
</tr>
</tbody>
</table>

Note: (c) = confidential, information not provided by Oregon Employment Department to prevent identifying specific businesses.

Source: Oregon Employment Department, 2013
Each industry faces distinct vulnerabilities to natural hazards. Identifying key industries in the region enables communities to target mitigation activities towards those industries’ specific sensitivities. Each of the primary private employment sectors has sensitivity to natural hazards, as follows.

Trade, Transportation and Utilities: Retail Trade is the largest employment subsector within the Trade, Transportation and Utilities sector. Retail Trade is vulnerable to disruptions in the disposable income of regional residents and to disruptions in the transportation system. Residents’ discretionary spending diminishes after natural disasters as spending priorities tend to focus on essential items. Disruption of the transportation system could sever connectivity of people and retail hubs. Retail businesses are concentrated in the larger cities of the region.

Natural Resources and Mining: The primary industries within this sector regionally are largely crop and animal production. These industries tend to fluctuate seasonally and are vulnerable to a variety of natural hazard (winter storms, floods, etc.). In addition to the loss of farm production, wages could be lost due to natural disasters. In addition, these industries are dependent upon transportation systems that are vulnerable to disasters.

Education and Health Services: The industries in these sectors play important roles in emergency response in the event of a disaster. Health care is a relatively stable revenue sector regionally with an increasing distribution of businesses primarily serving a local and aging population.

Manufacturing is highly dependent upon transportation networks in order to access supplies and send finished products to outside markets. For these reasons the manufacturing sector may be susceptible to disruptions in transportation infrastructure. However, manufacturers are not dependent on local markets for sales, which may contribute to the economic resilience of this sector.

Revenue by Sector

In 2007 Trade (Retail and Wholesale), Manufacturing, and Healthcare and Social Assistance were the highest revenue grossing industries in Region 5. Combined, these three industries generated over $2.9 billion (83% total revenue) for the region ([Table 2-308](#)). Trade (Retail and Wholesale) is the largest grossing sector in all counties.

Note: Due to the small size and few industries in the region, data is withheld in several categories, especially manufacturing data, to avoid disclosing information on individual companies. Therefore, data is aggregated to the county level.

[232] Revenue data from the 2012 Economic Census will not be released prior to the publication of this Plan.
Table 2-308. Table 2-R5-RP-17: Revenue of Top Industries (in Thousands of Dollars) in Region 5

<table>
<thead>
<tr>
<th>Sector</th>
<th>Total Revenue (in Thousands)</th>
<th>Trade (Retail & Wholesale)</th>
<th>Manufacturing</th>
<th>Health Care and Social Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>$277,017,733</td>
<td>44.4%</td>
<td>24.1%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Region 5</td>
<td>$3,447,733</td>
<td>61.7%</td>
<td>-</td>
<td>14.4%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>$46,622</td>
<td>96.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hood River</td>
<td>$1,047,637</td>
<td>49.4%</td>
<td>23.5%</td>
<td>10.3%</td>
</tr>
<tr>
<td>Morrow</td>
<td>$115,354</td>
<td>57.9%</td>
<td>D</td>
<td>9.7%</td>
</tr>
<tr>
<td>Sherman</td>
<td>$74,222</td>
<td>91.7%</td>
<td>-</td>
<td>0.3%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>$1,545,252</td>
<td>67.8%</td>
<td>D</td>
<td>15.6%</td>
</tr>
<tr>
<td>Wasco</td>
<td>$618,646</td>
<td>61.7%</td>
<td>-</td>
<td>22.2%</td>
</tr>
</tbody>
</table>

Notes: D = Withheld to avoid disclosing data for individual companies; data are included in higher level totals, and “-“ = data not provided.

Source: U.S. Census, Economic Census. 2007. Table EC0700A1

Sectors that are anticipated to be major employers in the future warrant special attention, especially in the hazard mitigation planning process so workforces and employers can be more prepared to respond and adapt to needs that arise after a natural hazard event. According to the Oregon Employment Department, between 2012 and 2022 the largest job growth in Region 5 is expected to occur in the following sectors: education and health services; trade, transportation and utilities (including retail trade); natural resources and mining; leisure and hospitality; government, and manufacturing.

Identifying sectors with a large number of businesses, and targeting mitigation strategies to support those sectors, can help the region’s resiliency. The Trade, Transportation and Utilities sector includes the most businesses in Region 5. The Natural Resources and Mining sector has the second most businesses. Professional and Business Services, Education and Health Services, Leisure and Hospitality, and the Other Services round out the regions’ top 5 sectors. While many of these are small businesses, employing fewer than 20 employees, collectively they represent almost three-fourths of the businesses in the region. Due to their small size and large collective share of the economy, these businesses are particularly sensitive to temporary decreases in demand, such as may occur following a natural hazard event.

234 Oregon Employment Department, 2012.
Economic Trends and Issues

Current and anticipated financial conditions of a community are strong determinants of community resilience, since a strong and diverse economic base increases the ability of individuals, families and communities to absorb impacts of a disaster and recover more quickly. The Economic analysis shows that Region 5 is particularly vulnerable during a hazard event due to the following characteristics:

- Higher unemployment in Morrow and Umatilla Counties; and
- Significantly lower regional wages than statewide numbers in Hood River and Morrow County.

The Columbia Gore and Basin regions have largely rebounded from the Great Recession. Much of the region’s growth in employment is spurred by the health care and construction industries, which are driven by an aging population and an increase in retiring baby boomers. Supporting the growth of dominant industries and employment sectors, as well as emerging sectors identified in this analysis, can help the region become more resilient to economic downturns that often follow a hazard event.

Infrastructure

Infrastructure analyzed in this Plan include, transportation networks, power transmission systems, telecommunications, and water systems.

Transportation

Roads
The largest population bases in Region 5 are located along the region’s major freeways, Interstate 84. I-84 runs is the main east/west passage for automobiles and trucks traveling between the northwest and states to the east.

Region 5’s growing population centers bring more workers, automobiles and trucks onto roads. A high percentage of workers driving alone to work coupled with interstate and international freight movement on the I-84 corridor create additional stresses on transportation systems. Some of these include added maintenance, congestion, oversized loads, and traffic accidents.

Natural hazards and emergency events can further disrupt automobile traffic, create gridlock, and shut down local transit systems, making evacuations and other emergency operations difficult. Hazards such as localized flooding can render roads unusable. Likewise, a severe winter storm has the potential to disrupt the daily driving routine of thousands of people.

Because of earthquake risk in Region 5, the seismic vulnerability of the region’s bridges is an important issue. Non-functional bridges can disrupt emergency operations, sever lifelines, and disrupt local and freight traffic. These disruptions may exacerbate local economic losses if industries are unable to transport goods. The region’s bridges are part of the state and interstate highway system that is maintained by the Oregon Department of Transportation (ODOT) or that are part of regional and local systems that are maintained by the region’s counties and cities. For information on ODOT’s Seismic Lifeline Report findings for Region 5, see Seismic Lifelines.

Table 2-309 shows the structural condition of bridges in the region. A distressed bridge (Di) is a condition rating used by the Oregon Department of Transportation (ODOT) indicating that a bridge has been identified as having a structural or other deficiency, while a deficient bridge (De) is a federal performance measure used for non-ODOT bridges; the ratings do not imply that...
a bridge is unsafe.237 The region has about the same percentage of bridges that are distressed or deficient (20%), as does the state.

Table 2-309. || Table 2-R5-RP-18: Bridge Inventory for Region 5

<table>
<thead>
<tr>
<th></th>
<th>State Owned Di</th>
<th>County Owned (Di)</th>
<th>City Owned (Di)</th>
<th>Other Owned (Di)</th>
<th>Area Total</th>
<th>Historic Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST</td>
<td>%D*</td>
<td>ST</td>
<td>%D</td>
<td>ST</td>
<td>%D</td>
</tr>
<tr>
<td>Oregon</td>
<td>610</td>
<td>2,718</td>
<td>22%</td>
<td>633</td>
<td>3,420</td>
<td>19%</td>
</tr>
<tr>
<td>Region 5</td>
<td>31</td>
<td>123</td>
<td>25%</td>
<td>8</td>
<td>73</td>
<td>11%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>4</td>
<td>19</td>
<td>21%</td>
<td>2</td>
<td>16</td>
<td>13%</td>
</tr>
<tr>
<td>Hood River</td>
<td>16</td>
<td>45</td>
<td>33%</td>
<td>1</td>
<td>15</td>
<td>7%</td>
</tr>
<tr>
<td>Morrow</td>
<td>2</td>
<td>24</td>
<td>9%</td>
<td>3</td>
<td>33</td>
<td>9%</td>
</tr>
<tr>
<td>Sherman</td>
<td>9</td>
<td>35</td>
<td>26%</td>
<td>2</td>
<td>9</td>
<td>22%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>9</td>
<td>117</td>
<td>8%</td>
<td>37</td>
<td>168</td>
<td>22%</td>
</tr>
<tr>
<td>Wasco</td>
<td>11</td>
<td>51</td>
<td>26%</td>
<td>9</td>
<td>65</td>
<td>14%</td>
</tr>
</tbody>
</table>

Note: Di = ODOT bridges identified as distressed with structural or other deficiencies; De = Non-ODOT bridge identified with a structural deficiency or as functionally obsolete; D = Total ODOT bridge identified with a structural deficiency; ST = Jurisdictional Subtotal; %D = Percent distressed (ODOT) and/or deficient bridges; * = ODOT bridge classifications overlap and total (ST) is not used to calculate percent distressed, calculation for ODOT distressed bridges accounts for this overlap.

Source: Oregon Department of Transportation, 2014; Oregon Department of Transportation (2013), Oregon’s Historic Bridge Field Guide

Railroads

Railroads that run through Region 5 support cargo and trade flows. The region's major freight rail providers are the Union Pacific (UP) and the Burlington Northern-Santa Fe (BNSF) railroads. There are two major rail yards in the region — in The Dalles and Hinkle — operated by UP.238 The Hinkle Yard serves as UP’s system yard and locomotive service and repair yard for Oregon and the greater northwest area.239

Amtrak provides passenger rail service along the Columbia Gorge and eastward via the Empire Builder line.

Rails are sensitive to icing from winter storms that can occur in Region 5. Disruptions in the rail system can result economic losses for the region. The potential for harm from rail accidents can also have serious implications for local communities, particularly if hazardous materials are involved.

238 Oregon. Department of Transportation (2014). DRAFT Oregon State Rail Plan: Freight and Passenger Rail Inventory. Salem, Oregon: Oregon Department of Transportation.

239 Ibid.
Airports
The Eastern Oregon Regional Airport is the only commercial airport in the region. It serves one passenger airline, SeaPort Airlines, providing service to Portland and North Bend.

In the event of a natural disaster, public and private airports are important staging areas for emergency response activities. Public airport closures will impact the region’s tourism industries, as well as the ability for people to leave the region by air. Businesses relying on airfreight may also be impacted by airport closures.

Table 2-R5-RP-18: Public and Private Airports in Region 5

| Source: FAA Airport Master Record (Form 5010) |

<table>
<thead>
<tr>
<th>Number of Airports by FAA Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Airport</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Region 5</td>
</tr>
<tr>
<td>Gilliam</td>
</tr>
<tr>
<td>Hood River</td>
</tr>
<tr>
<td>Morrow</td>
</tr>
<tr>
<td>Sherman</td>
</tr>
<tr>
<td>Umatilla</td>
</tr>
<tr>
<td>Wasco</td>
</tr>
</tbody>
</table>

Ports
Oregon’s ports have historically been used for timber transport, and, commercial and recreational fishing. With the decline in the timber industry ports have evolved to embrace economic development and tourism by offering industrial land and river, rail, road, and air infrastructure. There are three ports within Region 5: The Port of Cascade Locks, The Port of The Dalles, and the Port of Hood River. The Port of Cascade Locks includes industrial land, a marine park, and the Bridge of the Gods, and promotes recreation tourism. The Port of Hood River encompasses industrial land, business parks, an expo center, the Hood River Marina and waterfront area, Hood River Airport, and the Hood River/White Salmon Bridge.

240 City of Pendleton Website, http://www.pendleton.or.us/pendleton-airport

242 Port of Cascade Locks, information retrieved from http://portofcascadelocks.org/

243 Port of Hood River, information retrieved from http://www.portofhoodriver.com/
The Dalles district is approximately 425,000 square acres and covers the northern third of Wasco County and includes industrial land and The Dalles Marina.\(^{244}\)

Energy

Electricity
The region is served by several investor-owned, public, cooperative and municipal utilities. The Bonneville Power Administration is the areas wholesale electricity distributor. Pacific Power and Light (Pacific Power) is the primary investor-owned utility company serving portions of Gilliam, Hood River, Morrow, Sherman, and Umatilla counties. The regions electric cooperatives include: the Hood River Electric Cooperative (Hood River County), Wasco Electric Cooperative (Gilliam, Hood River, Sherman, Wasco), Columbia Basin Cooperative (Gilliam, Morrow, Umatilla), Umatilla Cooperative (Umatilla), Columbia Power Cooperative (Umatilla) and Central Electric Cooperative (Wasco). Two utility districts serve the region: City of Cascade Locks (Hood River) and Milton-Freewater (Umatilla). In addition, the Northern Wasco People’s Utility District (Wasco) serves portions of the region.

The region has a total of 31 power-generating facilities: 4 hydroelectric power facilities, three natural gas power facilities, 23 wind power facilities, and one coal power facility. In total, the power generating facilities have the ability to produce up to 11,227 megawatts (MW) of electricity. The region also includes four wind power facilities that are approved, but not constructed, that will have the capacity to generate up to 1,205 MW of electricity.\(^{245}\)

\(^{244}\) Port of The Dalles, information retrieved from http://www.portofthedalles.com/

Table 2-311. **Table 2-R5-RP-20: Power Plants in Region 5**

<table>
<thead>
<tr>
<th></th>
<th>Hydro-electric</th>
<th>Natural Gas</th>
<th>Wind</th>
<th>Coal</th>
<th>Other*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 5</td>
<td>4</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Gilliam</td>
<td>0</td>
<td>0</td>
<td>8^</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Hood River</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Morrow</td>
<td>0</td>
<td>1</td>
<td>3^</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sherman</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Umatilla</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Wasco</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Energy Production (MW)

| | 6,458 | 1,265 | 3,044 | 460 | 0 | 11,227 |

Note: *“Other” includes biomass, geothermal, landfill gas, solar, petroleum, and waste; ^ There are four wind power facilities that are located in both Gilliam and Morrow counties, this table places half of each facility in each county.

Source: Army Corps of Engineers; Biomass Power Association; Calpine Corporation; Eugene Water and Electric Board; Iberdola Renewables; Idaho Power Company; Klamath Energy LLC; Oregon Department of Energy; Owyhee Irrigation District; Form 10K Annual Report (2013), PacifiCorps; Form 10K Annual Report (2013), Portland General Electric; U.S. Geothermal, Inc.

Hydropower

The Bonneville Power Administration (BPA), provides hydro-generated electricity to the states consumer owned utilities. The major BPA dams in the region are located on the Columbia River in communities of The Dalles, John Day, and McNary.

Minor dam failures can occur at any time. Most dam failures result in minor damage to structures and pose little or no risk to life safety. However, the potential for severe damage and fatalities does exist (major dam failures have occurred most recently near Hermiston, 2005, and Klamath Lake, 2006). 246 The Oregon Water Resources Department maintains an inventory of all large dams located in Oregon (using the National Inventory of Dams (NID) threat potential methodology). The table below lists the number of dams included in the inventory. The majority of dams in the region are located in Umatilla (19) and Wasco (30) counties. There are 14 High Threat Potential dams and 6 Significant Threat Potential dams in the region.

Table 2-312. || Table 2-R5-RP-21: Threat Potential of Dams in Region 5

| Source: Oregon Water Resources Department, Dam Inventory Query 2014 |

<table>
<thead>
<tr>
<th>Region</th>
<th>High</th>
<th>Significant</th>
<th>Low</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilliam</td>
<td>14</td>
<td>6</td>
<td>57</td>
<td>77</td>
</tr>
<tr>
<td>Hood River</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Morrow</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Sherman</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Umatilla</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Wasco</td>
<td>8</td>
<td>0</td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>

Source: Oregon Water Resources Department, Dam Inventory Query 2014

Figure 153. || Figure 2-R5-RP-9: Region 5 Dam Hazard Classification

Source: National Inventory of Dams, USACE, 2013
Natural Gas

Although natural gas does not provide the most energy to the region, it does contribute a significant amount of energy to the region’s energy portfolio. Liquefied Natural Gas (LNG) is transported via pipelines throughout the United States. The Gas Transmission Northwest (GTN) line runs through Gilliam, Morrow, and Umatilla counties. LNG pipelines, like other buried pipe infrastructure are vulnerable to earthquakes and can cause danger to human life and safety, as well as environmental impacts in the case of a spill.

Utility Lifelines

The Mid-Columbia region is an important thoroughfare for oil and gas pipelines and electricity transmission lines. The region is also a major producer of hydropower. The infrastructure associated with power generation and transmission plays a critical role in supporting the regional economy. These lines may be vulnerable to severe, but infrequent natural hazards, such as earthquakes.

Communities in this region primarily receive oil and gas from Alaska by way of the Puget Sound through pipelines and tankers. The region is at the southern end of this pipeline network. Oil and gas are supplied by Northern California from a separate network. The electric, oil, and gas lifelines that run through the region are both municipally and privately owned.

The network of electricity transmission lines running through Region 5 is operated primarily by Pacific Power, regional electrical cooperatives, and Bonneville Power Administration. Most of the natural gas Oregon uses originates in Alberta, Canada. Avista Utilities owns the main natural gas transmission pipeline.

Telecommunications

Telecommunications infrastructure includes television, telephone, broadband internet, radio, and amateur radio (Ham radio). Region 5 is part of the Columbia Gorge Operational Area (Hood River, Wasco, Sherman, Gilliam), Central Oregon Operational Area (Wheeler, Southern Wasco), and Eastern Oregon Operational Area (Morrow, Umatilla) under The Oregon State Emergency Alert System Plan. There is a memorandum of understanding between these counties that facilitates the launching of emergency messages. Counties in these areas can launch emergency messages.

249 Ibid.

250 Ibid.

messages by contacting the Oregon Emergency Response System (OERS), which in turn creates emergency messages to communities statewide.

Beyond day to day operations, maintaining communications capabilities during disaster events and other emergency situations helps to keep citizens safe by keeping them informed of the situation’s status, areas to avoid, and other procedural information. Additionally, responders depend on telecommunications infrastructure to be routed to sites where they are needed.

Television
Television serves as a major provider for local, regional, and national news and weather information and can play a vital role in emergency communications. The Oregon State Emergency Alert System Plan does not identify a local primary station for emergency messages.

Telephone and Broadband
Landline telephone, mobile wireless telephone and broadband service providers serve Region 5. Broadband technology (including mobile wireless) is provided in the region via five primary technologies: cable, digital subscriber line (DSL), fiber, fixed wireless and mobile wireless. Internet service is readily available throughout most parts the region with a smaller number of providers and service types available in the southern parts of the region (south of I-84). Wireless providers sometimes offer free emergency mobile phones to those impacted by disasters, which can aid in communication when landlines and broadband service are unavailable.

Radio
Radio is readily available to those who live within Region 5 and can be accessed through car radios, emergency radios, and home sound systems. Radio is a major communication tool for weather and emergency messages. Radio transmitters for The Columbia Gorge Operational Area include:

- KMSW-FM 92.7 MHZ, The Dalles, 102.9 MHZ, Hood River
- KHRV-FM 90.1 MHZ, Hood River, OPB Radio Network
- KOTD, 89.7 MHZ, The Dalles, OPB Radio Network

Ham Radio

Amateur Radio, or Ham Radio, is a service provided by licensed Amateur Radio operators (hams) and is considered to be an alternate means of communicating when normal systems are down or at capacity. Emergency communications is a priority for the Amateur Radio Relay League (ARRL). Region 5 is served by ARES Districts 2 and 3. Radio Amateur Civil Emergency Services (RACES) is a special phase of amateur radio recognized by FEMA that provides radio communications for civil preparedness purposes including natural disasters\(^\text{254}\). The official Ham emergency station calls for Region 5 include\(^\text{255}\):

- Gilliam County: W7ILD
- Hood River County: K7VEW
- Morrow County: N7ZHG
- Sherman County: WB7PPK
- Umatilla County: N7ZH
- Wasco County: KF7LN

Water

Water infrastructure includes drinking water, stormwater, and wastewater systems. All of these systems possess some level of vulnerability to natural hazards that can have repercussions on human health, ecosystems, and industry.

Drinking Water

The drinking water supply in Region 5 is drawn from a combination of surface, well, and spring sources. Surface water is drawn from rivers and smaller tributaries. In the eastern and western portions of the region these surface water sources are often backed up by groundwater that is drawn from an aquifer when surface water levels get low, especially in summer months. However, in the region’s central counties municipal wells drawing from the aquifer are primary sources with springs used as a backup where they are available. In this central part of the region water shortages in wells are increasing although flow levels tend to stay consistent throughout the year. Water quality in the region’s municipal supply is high. Chemical and fuel spills are a concern when surface waterways intersect with or parallel major roadways. Water quality could be threatened as older or damaged well infrastructure may not filter coliform and other bacteria as effectively as newer infrastructure.

Rural residences draw water from surface water, groundwater wells, or springs. Surface water is usually used for irrigation, and wells are used as backup source. Groundwater wells serve residential needs. In rural areas storage ponds or small dams are sometimes created on private land to provide additional on site drinking water storage. Water quality for rural residences is primarily affected by nitrates from agricultural activities and by low flow levels, which can increase the density of pollutants.

Surface sources for drinking water are vulnerable to pollutants caused by non-point sources and natural hazards. An example of non-point source pollution is storm water runoff from roadways, agricultural operations, timber harvest, erosion and sedimentation. Landslides, flood events, and earthquakes and resulting liquefaction can cause increased erosion and sedimentation in waterways.

Underground water supplies and aging or outdated infrastructure —such as reservoirs, treatment facilities, and pump stations — can be severed during a seismic event. Rigid materials such as cast iron may snap under the pressure of liquefaction. More flexible materials such as polyvinal chloride (PVC) and ductile iron may pull apart at joints under the same stresses. These types of infrastructure damages could result in a loss of water pressure in municipal water supply systems, thus limiting access to potable water. This can lead to unsanitary conditions that may threaten human health. Lack of water can also impact industry, such as the manufacturing sector. Moreover, if transportation infrastructure is impacted by a disaster event, repairs to water infrastructure will be delayed.

Stormwater and Wastewater

In urbanized areas severe precipitation events may cause urban flooding, leading to stormwater runoff—and this can become a serious issue. Stormwater is one non-point source of water pollution and may impact drinking water quality. Other environmental impacts of stormwater runoff include increased temperatures in surface water quality, adversely affecting habitat health, flooding, and erosion due to the fast moving large volumes of water entering surface waterways from storm sewer systems.
Stormwater can also impact water infrastructure. Leaves and other debris can be carried into storm drains and pipes, which can clog storm water systems. In areas where stormwater systems are combined with wastewater systems, a.k.a. combined sewers, flooding events can lead to combined sewer overflows (CSOs). CSOs present a heightened health threat as sewage can flood urban areas and waterways. Underground stormwater and wastewater pipes are also vulnerable to damage by seismic events.

In Region 5, most municipal building codes and stormwater management plans (city and county) emphasize use of centralized storm sewer systems to manage stormwater. Requirements for stormwater mitigation vary in Region 5. Low impact development (LID) mitigation strategies can alleviate or lighten the burden to a jurisdiction’s storm sewer system by allowing water to percolate through soil onsite or detaining water so water enters the storm sewer system at lower volumes, at lower speed, and at lower temperatures. The four largest municipalities in the region, Hood River, Hermiston, The Dalles and Pendleton, do not require LID strategies in their building code. Promoting and requiring decentralized LID stormwater management strategies could help reduce the burden of new development on storm sewer systems and could increase a community’s resilience to many types of hazard events.

Infrastructure Trends and Issues

Physical infrastructure is critical for every day operations and is essential following a disaster. Lack, or poor condition, of infrastructure can negatively affect a community’s ability to cope, respond and recover from a hazard event. Diversity, redundancy and consistent maintenance in infrastructure systems help to create system resiliency.

The effects of road, bridge, rail and port failures could be devastating to the economy and public health in the Mid-Columbia Region. 1-84 supports the main east/west passenger and freight travel and is subject to winterstorms and wind storms. Rail systems are vulnerable to icy conditions in the Gorge. In Region 5, there are two railyards that service the state and greater Northwest region. Amtrak provides passenger service through the Columbia River Gorge. Three ports and one commercial airport are economic engines for the region, including tourism, recreation, and business and industrial parks.

A varied portfolio of energy systems that support the region may help increase the area’s ability to communicate and transport goods and emergency services after a hazard event. There are 31 power-generating facilities: four hydroelectric, three natural gas, 23 wind, and one coal facility. Four additional wind facilities have been proposed for this region. Three of BPA’s large dams and hydroelectric projects are here on the Columbia River.

Decentralization and redundancy in the region’s telecommunication systems can help boost the area’s ability to communicate before, during, and after a disaster event. It is important to note that broadband and mobile telephone services may not cover rural areas of the region that are

distant from I-84. This may present a communication challenge in the wake of a hazard event. Encouraging residents to keep AM/FM radios available for emergency situations could help increase the capacity for communicating important messages throughout the region.

Drinking water is sourced from surface water, wells, and springs. Water quality can be threatened by non-point source pollution from storm water runoff and agricultural activities in the area. Erosion and sedimentation caused by natural hazard events could also threaten the water quality. In addition, outdated, damaged or rigid buried water infrastructure are vulnerable to seismic activity. Though Low Impact Development (LID) stormwater systems can increase the region’s capacity to better manage high precipitation events, no communities in this region require LID practices.

Built Environment

Requirement: *44 CFR §201.4(d):* The Plan must be reviewed and revised to reflect changes in development...

Development Patterns

Balancing growth with hazard mitigation is key to planning resilient communities. Therefore, understanding where development occurs and the vulnerabilities of the region’s building stock is integral to developing mitigation efforts that move people and property out of harm’s way. Eliminating or limiting development in hazard prone areas can reduce exposure to hazards, and potential losses and damages.

Since 1973, Oregon has maintained a strong statewide program for land use planning. The foundation of Oregon’s program is 19 land use goals that “help communities and citizens plan for, protect and improve the built and natural systems.” These goals are achieved through local comprehensive planning. The intent of Goal 7, Areas Subject to Natural Hazards, is to protect people and property from natural hazards.\(^ {257} \)

Settlement Patterns

Between 2000 and 2010, growth in the region’s urban areas has been about 10% less than urban growth statewide. While Umatilla County has the greatest number of people and housing in urban areas, urban populations and homes in Hood River County have grown considerably, by roughly 22% and 32% respectively. Gilliam and Sherman Counties do not have urban populations –based on U.S. Census definitions – and are also losing the greatest share of their rural populations. Rural homes have increased by almost 10% in Gilliam and Wacso Counties. The region’s population is clustered around the I-84 corridor and the cities of Hood River, Pendleton and The Dalles.

Table 2-313. || Table 2-R5-RP-22: Urban and Rural Populations in Region 5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>2,694,144</td>
<td>3,104,382</td>
<td>15.2%</td>
<td>727,255</td>
<td>726,692</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Region 5</td>
<td>79,500</td>
<td>87,442</td>
<td>10.0%</td>
<td>50,094</td>
<td>50,815</td>
<td>1.4%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1,915</td>
<td>1,871</td>
<td>-2.3%</td>
</tr>
<tr>
<td>Hood River</td>
<td>8,727</td>
<td>10,687</td>
<td>22.5%</td>
<td>11,684</td>
<td>11,659</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Morrow</td>
<td>5,790</td>
<td>6,048</td>
<td>4.5%</td>
<td>5,205</td>
<td>5,125</td>
<td>-1.5%</td>
</tr>
<tr>
<td>Sherman</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1,934</td>
<td>1,765</td>
<td>-8.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>49,253</td>
<td>53,831</td>
<td>9.3%</td>
<td>21,795</td>
<td>22,058</td>
<td>3.6%</td>
</tr>
<tr>
<td>Wasco</td>
<td>15,730</td>
<td>16,876</td>
<td>7.3%</td>
<td>8,061</td>
<td>8,337</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Note: The U.S. Census Bureau defines “urban” as either an “urbanized area” of 50,000 or more people, or an “urban cluster” of at least 2,500 people (but less than 50,000). Gilliam and Sherman counties do not meet either definition, therefore all of their populations are considered rural even though the counties include incorporated cities.

Source: U.S. Census Bureau. 2000 Decennial Census, Table P002 and 2010 Decennial Census, Table P2

Table 2-314. || Table 2-R5-RP-23: Urban and Rural Housing Units in Region 5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>1,131,574</td>
<td>1,328,268</td>
<td>17.4%</td>
<td>321,135</td>
<td>347,294</td>
<td>8.1%</td>
</tr>
<tr>
<td>Region 5</td>
<td>31,453</td>
<td>34,811</td>
<td>10.7%</td>
<td>20,946</td>
<td>22,156</td>
<td>5.8%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1,043</td>
<td>1,156</td>
<td>10.8%</td>
</tr>
<tr>
<td>Hood River</td>
<td>3,681</td>
<td>4,870</td>
<td>32.3%</td>
<td>4,137</td>
<td>4,401</td>
<td>6.4%</td>
</tr>
<tr>
<td>Morrow</td>
<td>1,957</td>
<td>2,010</td>
<td>2.7%</td>
<td>2,319</td>
<td>2,432</td>
<td>4.9%</td>
</tr>
<tr>
<td>Sherman</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>935</td>
<td>918</td>
<td>-1.8%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>19,124</td>
<td>20,755</td>
<td>8.5%</td>
<td>8,552</td>
<td>8,938</td>
<td>4.5%</td>
</tr>
<tr>
<td>Wasco</td>
<td>6,691</td>
<td>7,176</td>
<td>7.2%</td>
<td>3,960</td>
<td>4,311</td>
<td>8.9%</td>
</tr>
</tbody>
</table>

Note: The U.S. Census Bureau defines “urban” as either an “urbanized area” of 50,000 or more people, or an “urban cluster” of at least 2,500 people (but less than 50,000). Gilliam and Sherman counties do not meet either definition, therefore all of their populations are considered rural even though the counties include incorporated cities.

Source: U.S. Census Bureau. 2000 Decennial Census, Table H002 and 2010 Decennial Census, Table H2
Land Use and Development Patterns
Region 5 embraces the Columbia River Plateau, where land use issues have traditionally been dominated by agriculture and beef cattle.

Over the past forty years – since all counties and incorporated municipalities were required to prepare comprehensive land use plans in accordance with 19 statewide planning goals (the Land Conservation and Development Act in 1973) – little has changed in this region’s land use. According to a study by the Department of Forestry, between 1974 and 2009 very little loss in the area of private land in forest, agricultural, and range uses occurred in Wasco, Gilliam, Sherman Counties. The study does note an exception in Morrow County between 1974 and
1984, where private owners converted an estimated 33,000 acres of land in wildland range use to agricultural use. 258

The community of Arlington (Gilliam County) has maintained a steady growth rate, while the Port of Morrow, 25 mile to the east in Umatilla County remains the second busiest port in Oregon. Development can be limited in Region 5 along the Columbia River area partly due to the geography. For example, buildable land in the community of Hood River is partly constrained by floodplains.

In the past few years, there has been significant growth in the development of wind farms. Shepherds Flat – located in both Morrow and Gilliam counties – officially opened in 2012 and is one of the largest land-based wind farms in the world. Built entirely on private land, construction of nearly 100 miles of power lines and 85 miles of roads is expected on the 30-square-mile project. Through the Mid-Columbia Region the potential effect of wind turbines, distribution lines, road building, and the region’s changing viewshed is a developing conversation.

New FEMA floodplain mapping in Umatilla County in 2010 included significant changes for the community of Milton-Freewater: the major levee along the Walla Walla River providing protection for much of the community was de-certified, effectively moving three-quarters of the population into the NFIP regulatory floodplain. After some effort, the community approved a bond to repair the levee and new maps went into effect in 2013 reflecting that change.

Figure 155. | Figure 2-R5-RP-12: Region 5 Land Use

Source: Department of Land Conservation and Development, 2014
In addition to location, the character of the housing stock can also affect the level of risk a community faces from natural hazards. **Table 2-315** provides a breakdown by county of housing types (single, multi-family and mobile homes). The data show that the majority (69.1%) of the region’s housing stock is single-family homes. Multi-family housing represents a smaller portion (15.5%) of housing within the region. Umatilla County has nearly half of the region’s supply of multi-family units (5,049). Mobile residences

259 The total housing units includes boats, RVs, vans, etc. that are used as a residence. These homes are not included in the table as a separate category since they represent a small percentage of the overall housing profile.
make up 15.1% of Region 5’s housing (Umatilla County has the highest number of mobile homes, while almost one-third of the total housing units in Morrow and Sherman counties are mobile homes). In natural hazard events, such as earthquakes and floods, moveable structures like mobile homes are more likely to shift on their foundations and create hazardous conditions for occupants.260

Table 2-315. || Table 2-R5-RP-24: Housing Profile for Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Total Housing Units</th>
<th>Single Family</th>
<th>Multi-Family</th>
<th>Mobile Homes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent of Total</td>
<td>Number</td>
<td>Percent of Total</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,673,593</td>
<td></td>
<td>1,140,319</td>
<td>68.1%</td>
</tr>
<tr>
<td>Region 5</td>
<td>56,938</td>
<td></td>
<td>39,319</td>
<td>69.1%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,173</td>
<td>827</td>
<td>70.5%</td>
<td>92</td>
</tr>
<tr>
<td>Hood River</td>
<td>9,280</td>
<td>7,116</td>
<td>76.7%</td>
<td>1,399</td>
</tr>
<tr>
<td>Morrow</td>
<td>4,448</td>
<td>2,690</td>
<td>60.5%</td>
<td>485</td>
</tr>
<tr>
<td>Sherman</td>
<td>900</td>
<td>589</td>
<td>65.4%</td>
<td>50</td>
</tr>
<tr>
<td>Umatilla</td>
<td>29,707</td>
<td>20,433</td>
<td>68.8%</td>
<td>5,049</td>
</tr>
<tr>
<td>Wasco</td>
<td>11,430</td>
<td>7,664</td>
<td>67.1%</td>
<td>1,733</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau. 2008-2012. American Community Survey 5-Year Estimates, Table B25024

Aside from location and type of housing, the year structures were built has implications. Seismic building standards were codified in Oregon building code starting in 1974; more rigorous building code standards were passed in 1993 that accounted for the Cascadia earthquake fault.261 Therefore, homes built before 1993 are more vulnerable to seismic events. Also in the 1970s, FEMA began assisting communities with floodplain mapping as a response to administer the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. Upon receipt of floodplain maps, communities started to develop floodplain management ordinances to protect people and property from flood loss and damage (see tables below for more information on floodplain maps). Table 2-316 illustrates the number and percent of homes built between 1970 and 2012. Regionally 44.5% of the housing stock was built prior to 1970, before the implementation of floodplain management ordinances (about 60% within Gilliam and Sherman counties). Regionally, approximately 75% of the housing stock was built before 1990 and the codification of seismic building standards. Twenty-five percent of the region’s housing stock was built after 1990.

Note: The percentages listed above do not reflect the number of structures that are built within special flood hazard areas, or that are at risk of seismic damage.

Table 2-316. || Table 2-R5-RP-25: Age of Housing Stock in Region 5, 2012

<table>
<thead>
<tr>
<th></th>
<th>Total Housing Units</th>
<th>Pre 1970</th>
<th>1970 to 1989</th>
<th>1990 or later</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent of Total</td>
<td>Number</td>
<td>Percent of Total</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,673,593</td>
<td>36.4%</td>
<td>518,569</td>
<td>31.0%</td>
</tr>
<tr>
<td>Region 5</td>
<td>56,938</td>
<td>44.5%</td>
<td>16,881</td>
<td>29.6%</td>
</tr>
<tr>
<td>Gilliam</td>
<td>1,173</td>
<td>60.2%</td>
<td>246</td>
<td>21.0%</td>
</tr>
<tr>
<td>Hood River</td>
<td>9,280</td>
<td>43.9%</td>
<td>2,128</td>
<td>22.9%</td>
</tr>
<tr>
<td>Morrow</td>
<td>4,448</td>
<td>28.3%</td>
<td>1,618</td>
<td>36.4%</td>
</tr>
<tr>
<td>Sherman</td>
<td>900</td>
<td>61.2%</td>
<td>186</td>
<td>20.7%</td>
</tr>
<tr>
<td>Umatilla</td>
<td>29,707</td>
<td>43.9%</td>
<td>9,556</td>
<td>32.2%</td>
</tr>
<tr>
<td>Wasco</td>
<td>11,430</td>
<td>49.6%</td>
<td>3,147</td>
<td>27.5%</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau. 2008-2012. American Community Survey 5-Year Estimates, Table B25034

The National Flood Insurance Program’s (NFIP’s) Flood Insurance Rate Maps (FIRMs) delineate flood-prone areas. They are used to assess flood insurance premiums and to regulate construction so that in the event of a flood, damage minimized. Table 2-317 shows the initial and current FIRM effective dates for Region 5 communities. For more information about the flood hazard, NFIP, and FIRMs, please refer to the State Risk Assessment, Flood section.
Table 2-317. || Table 2-R5-RP-26: Community Flood Map History in Region 5

<table>
<thead>
<tr>
<th>Location</th>
<th>Initial FIRM</th>
<th>Current FIRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilliam</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Arlington</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Condon</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Hood River</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Cascade Locks</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>City of Hood River</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Morrow</td>
<td>April 1, 1981</td>
<td>December 18, 2007</td>
</tr>
<tr>
<td>Boardman</td>
<td>December 18, 2007</td>
<td>December 18, 2007 (M)</td>
</tr>
<tr>
<td>Heppner</td>
<td>April 1, 1981</td>
<td>December 18, 2007</td>
</tr>
<tr>
<td>Ione</td>
<td>April 1, 1981</td>
<td>December 18, 2007</td>
</tr>
<tr>
<td>Irrigon</td>
<td>December 18, 2007</td>
<td>December 18, 2007</td>
</tr>
<tr>
<td>Lexington</td>
<td>April 1, 1981</td>
<td>December 18, 2007</td>
</tr>
<tr>
<td>Sherman</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Grass Valley</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Rufus</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>City of Wasco</td>
<td>September 15, 1989</td>
<td>September 15, 1989</td>
</tr>
</tbody>
</table>

(M) – No elevation determined, All Zone A, C and X
NSFHA – No special flood hazard area (all Zone C)
Table 2-318. || Table 2-R5-RP-26: Community Flood Map History in Region 5 (continued)

<table>
<thead>
<tr>
<th>Community</th>
<th>Initial FIRM</th>
<th>Current FIRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umatilla</td>
<td>June 15, 1978</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Adams</td>
<td>May 15, 1984</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Athena</td>
<td>July 16, 1984</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Echo</td>
<td>May 15, 1984</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Helix</td>
<td>June 1, 1984</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Hermiston</td>
<td>October 28, 1977</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Milton-Freewater</td>
<td>September 12, 1978</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Pendleton</td>
<td>November 3, 1978</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Pilot Rock</td>
<td>August 4, 1988</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Stanfield</td>
<td>August 15, 1984</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Ukiah</td>
<td>September 24, 1984</td>
<td>September 3, 2010 (M)</td>
</tr>
<tr>
<td>City of Umatilla</td>
<td>September 24, 1984</td>
<td>September 3, 2010 (M)</td>
</tr>
<tr>
<td>Weston</td>
<td>September 18, 1987</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Umatilla Indian Reservation</td>
<td>September 3, 2010</td>
<td>September 3, 2010</td>
</tr>
<tr>
<td>Wasco</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Dufur</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Maupin</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Mosier</td>
<td>February 17, 1989</td>
<td>February 17, 1989</td>
</tr>
<tr>
<td>The Dalles</td>
<td>September 24, 1984</td>
<td>September 24, 1984 (M)</td>
</tr>
<tr>
<td>Warm Springs Reservation</td>
<td>See Jefferson County</td>
<td>See Jefferson County</td>
</tr>
</tbody>
</table>

(M) – No elevation determined, All Zone A, C and X

Note: The Umatilla and Warm Springs Indian reservation information is provided for reference only. The State of Oregon has no jurisdiction over tribal lands.

State-Owned/Leased and Critical and Essential Facilities

In 2014 the Department of Geology and Mineral Industries updated the 2012 Oregon NHMP inventory and analysis of state owned and leased facilities and critical and essential facilities. Results from this report relative to Region 5 can be found in Table 2-319. The region contains 10.1% of the total value of state-owned or leased critical and essential facilities.
2.3.5.3 Hazards and Vulnerability

Drought

Characteristics

Region 5 has experienced drought conditions on several occasions. Most recently, Gilliam and Morrow County were declared a drought emergency by the Governor in 2013. Region 5 is susceptible to drought impacts, particularly since this region is predominantly supported by an agriculturally-based economy.
Historic Drought Events

Table 2-320. Table X: Historic Droughts

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928-41</td>
<td>Statewide</td>
<td>Prolonged statewide drought that caused major problems for agriculture. Statewide, the northern coast was the only area spared, with abundant rains in 1930-1933. The three Tillamook burns, the first in 1933, were the most significant impacts of this very dry period.</td>
</tr>
<tr>
<td>1959-1964</td>
<td>Eastern Oregon</td>
<td>Streamflows were low through eastern Oregon during this period.</td>
</tr>
<tr>
<td>1985-94</td>
<td>Statewide</td>
<td>Generally dry period, capped by statewide droughts in 1992 and 1994. Although not as severe the 1976-1977 drought, ten consecutive years of dry conditions caused problems throughout the state, such as fires and insect outbreaks.</td>
</tr>
<tr>
<td>2001</td>
<td>Regions 4-8 (18 counties)</td>
<td>Governor declared drought in Hood River, Wasco, Sherman, Gilliam, and Morrow</td>
</tr>
<tr>
<td>2002</td>
<td>Region 1, and 4-8</td>
<td>2001 drought declaration still in effect; Governor also declares 5 additional counties, including Umatilla County.</td>
</tr>
<tr>
<td>2003</td>
<td>Regions 5-8</td>
<td>8 counties declared; For Region 5, this included Sherman County. Hood River, Wasco, Gilliam, Morrow, and Umatilla County drought declarations from 2001 and 2002 were in effect through June 23, 2003. Other counties outside of Region 5 under a drought declaration included Wheeler and Crook County from Region 6; Baker, Union, and Wallowa from Region 7; and Malheur and Harney County from Region 8. The Klamath County (Region 6) 2001 drought declaration remained in effect through December 31, 2003.</td>
</tr>
<tr>
<td>2004</td>
<td>Eastern Oregon</td>
<td>Governor declared drought for Morrow County in Region 5; three other counties also declared in neighboring regions.</td>
</tr>
<tr>
<td>2005</td>
<td>Region 5-7</td>
<td>All 6 counties within Region 5 declared drought by the Governor, along with 5 counties in Region 6, and 2 counties in Region 7.</td>
</tr>
<tr>
<td>2008</td>
<td>Region 5 only</td>
<td>Governor issues a drought declaration for Sherman and Gilliam Counties in September.</td>
</tr>
<tr>
<td>2013</td>
<td>Regions 5-8</td>
<td>5 counties affected statewide; For Region 5: Gilliam and Morrow; Region 6: Klamath County, Region 7: Baker County, and Region 8: Malheur County</td>
</tr>
</tbody>
</table>

Source: Taylor, George and Raymond R Hatton. (September 1999). The Oregon Weather Book: State of Extremes and the Oregon Secretary of State’s Office, Archives Division

Historic drought information can also be obtained from the National Climatic Data Center, which provides climate data showing wet and dry conditions, using the Palmer Drought Severity Index (PDSI) that dates back to 1895. The Palmer Index is not the best indicator of water availability for Oregon as it does not account for snow or ice (delayed runoff), but it has the advantage of providing the most complete, long-term record. The following PDSI graph shows years where drought or dry conditions affected the north central area of Oregon (Climate Division 6). Based on this index, 1939 was an extreme drought year, while 1940, 1977, 2001, and 2005 were severe drought years for this region.
Figure 157. Palmer Drought Severity Index
Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers the probability (High, Moderate, Low) that Region 5 will experience drought is depicted Table 2-321. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-321. || Table X: Local Probability Assessment of Drought

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>H</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment

A comprehensive risk analysis is needed to fully assess the probability and impact of drought to Oregon communities. Such an analysis should be completed statewide to analyze and compare the risk of drought across the state.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to drought is depicted in Table 2-322. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-322. || Table X: Local Vulnerability Assessment of Drought

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>M</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment
Oregon has not undertaken a comprehensive statewide analysis to identify which communities are most vulnerable to drought. However, based on a review of Governor drought declarations since 1992, Region 5 is vulnerable to drought-related impacts. Sherman, Gilliam, and Morrow have been under seven different drought declarations each since 1992.
Dust Storms

Characteristics

The characteristics of dust storms in Region 5 are well described in the State Risk Assessment, Dust Storms section. There is nothing about the dust storms in this region that differs from the general description, except to note that some of these storms in Morrow and Umatilla counties in the past were possibly exacerbated by the agricultural practices at that time.

There are many examples of dust storms in this region. One of the most recent significant storms occurred on January 4, 2008. That morning, Oregon State Police responded to three semi-trailer trucks overturned on Interstate 84 in Region 5, a day of blowing snow, dust, and debris that created near-zero visibility in some locations. The eastbound freeway lanes were closed near mile point 193 west of Pendleton because of high winds, crashes, and visibility issues in Morrow and Umatilla counties. However, no injuries were reported related to the overturned vehicles between milepost 216 and 218 east of Pendleton. Five police patrol cars and two pickup trucks operated by troopers responding to the overturned vehicles received windshield and body damage from wind-blown rocks. Also that day, ODOT closed Oregon 11 between Pendleton and Milton-Freewater. Police reported several accidents there caused by low visibility, blowing dust and debris.

Historic Dust Storm Events

Table 2-323. Table X: Historic Dust Storms

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1843</td>
<td>Columbia Gorge</td>
<td>Rev. Gustavus Hines, who was traveling by canoe with a Dr. Davis in the Columbia Gorge, reported this storm.</td>
</tr>
</tbody>
</table>
| Feb. 1909 | Between Pendleton and Pilot Rock | "The dust storm (is) now blowing great holes in the ground wherever there are any plowed fields... sand and soil are being scooped up in vast quantities (and) deposited in large drifts... roads are being blocked... travelers were obliged to stop and wait until the blackness caused by the dust disappeared before they could tell where they were going."
| June 1912 | Pendleton area | "The worst wind storm of the year... brought with it a great burden of dust (which) made it extremely disagreeable as well as harmful." |
| May 1975 | Near Echo Junction | Winds up to 45 mph blew dust from nearby plowed fields, resulting in a seven-car accident on a Friday afternoon in the eastbound lanes of Interstate 80 (now I-84); four injured. |
| March | Near Stanfield | Eighteen vehicles piled-up in two separate accidents on Interstate 80, now |

262 Diary of Rev. Gustavus Hines

263 East Oregonian, February 3, 1909

264 East Oregonian, May 24, 1975
Hazards and Vulnerability

Dust Storms

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>I-84</td>
<td>These accidents killed one and injured 20 people; they were caused by a dust storm (referred to in the press as a sand storm) that produced “near zero” visibility; one of the pile-ups was a fiery accident involving a loaded fuel tanker truck, two other trucks, and two cars; this dust storm also caused road closures both south and north of Hermiston, and caused other accidents on Highway 207 about nine miles south of I-80 (84).</td>
</tr>
<tr>
<td>July 1979</td>
<td>Near Stanfield</td>
<td>This dust storm caused two deaths and six injuries in a freeway pile-up on I-80 (84) very close to the location of the previous event; winds near 60 mph; some of the injured were hit as pedestrians while trying to assist those already injured or pinned in automobiles.</td>
</tr>
<tr>
<td>April 1996</td>
<td>Near Hepner</td>
<td>“Strong winds in the Columbia Basin produced a dust storm near Hepner.”</td>
</tr>
<tr>
<td>June 1997</td>
<td>Near Hermiston</td>
<td>“Highway 395 south of Hermiston was closed for a few hours when high wind and blowing dust reduced visibility to less than 50 feet. The dust is believed to have played a role in a minor accident on the highway.”</td>
</tr>
<tr>
<td>Sept. 1999</td>
<td>Morrow and Umatilla Counties</td>
<td>Blowing dust off wheat fields killed eight and injured more than twenty people in chain-reaction auto crashes.</td>
</tr>
<tr>
<td>Sept. 2001</td>
<td>Near Pendleton</td>
<td>Blowing dust contributed to an eight vehicle accident on State Highway 11 ten miles northeast of Pendleton. Windy conditions, combined with loose topsoil from a freshly plowed field, created blowing dust that locally reduced visibilities to less than 100 feet. A series of chain reaction collisions occurred as vehicles slowed as they entered into the area of low visibility. Five minor injuries were reported according to the Oregon State Police.</td>
</tr>
<tr>
<td>Oct. 2003</td>
<td>Morrow and Umatilla Counties</td>
<td>“A dust storm lowered visibilities to less than a quarter mile along the foothills of the Blue Mountains... ODOT led traffic on Highway 265...”</td>
</tr>
</tbody>
</table>

265 *East Oregonian*, March 24, 25, and 26, 1976, including articles titled “18 Vehicles Crash in Dust Storm; Woman Killed” and “Dust Problem Stymies Farmers”; *Oregon Statesman*, “Dust Storms Hit E. Oregon...”, March 25, 1976

266 *Oregon Statesman*, “2 Dead, 6 Injured in Freeway Accident; Dust Storm Blamed,” July 11, 1979

267 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=5556785

268 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=5597478

270 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=5268728
<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
</table>
| March 2005 | Morrow and Umatilla Counties | Weather stations at nineteen locations measured peak wind gusts from 45 to 64 mph. Visibility restrictions down to near zero due to blowing dust occurred along I-84 between Boardman and Pendleton. Extremely low visibilities led to road closures and multiple vehicle pileups. Vehicles pulled off the road to avoid collisions. “On Highway 207 near Hermiston visibility was reduced to near zero due to blowing dust. The extremely low visibility contributed to a non-injury collision near the Boardman Bombing Range. In addition, four miles north of Heppner on State Route 207, blowing dust reduced visibilities to near zero.”

May 2006 | Near Boardman | “I came around the corner (to) a giant dust cloud that looked like a brown fog bank... within the cloud was regular lightning bolts.”

Jan. 2008 | Morrow and Umatilla Counties | ODOT closed the freeway’s westbound lanes between Baker City and La Grande about noon because of blowing snow, dust, and debris that created near-zero visibility in the Ladd Canyon area east of La Grande. The eastbound freeway lanes were closed between mile point 193 west of Pendleton and Baker City because of high winds, crashes, and visibility issues. Five patrol cars and two pickup trucks operated by troopers responding to overturned vehicles received windshield and body damage from wind-blown rocks. ODOT also closed Oregon 11 between Pendleton and Milton-Freewater. Police reported several accidents caused by low visibility, blowing dust and debris.

May 2010 | Morrow and Umatilla Counties | “Blowing dust in the Columbia Basin reduced visibility to near zero around Stanfield, Pendleton, and between Lexington and Hermiston. The blowing dust caused traffic accidents with an injury near Stanfield on Interstate 84.”

Sept. 2013 | Umatilla County | Dust storms two weeks apart hit Weston.

Sources: various – see footnotes

272 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=5439648 and https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=5439653

273 This is from a letter to the editor of The Dalles Chronical dated July 6, 2006; it conveys trucker Greg Jones’ experience on a “run one night in May... to Hermiston.”

274 https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=222144

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers the probability (High, Moderate, Low) that Region 5 will experience dust storms is depicted in Table 2-324. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-324. | | Table X: Local Probability Assessment of Dust Storms

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>-</td>
<td>-</td>
<td>H</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment

Using history as a guide (nine significant storms in Region 5 over the past 40 years), the probability of dust storms occurring in Region 5 is high. These storms may be slightly less likely than in the past due to changes in agricultural practices, but changes in climate, ENSO cycles, and other natural factors may offset reductions in occurrence linked to farming.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to dust storm is depicted in Table 2-325. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-325. | | Table X: Local Vulnerability Assessment of Dust Storms

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>-</td>
<td>-</td>
<td>M</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment
Morrow and Umatilla counties are not only the most vulnerable counties to dust storms in this region, but are also the most vulnerable in the State of Oregon. These two counties seem to be most vulnerable due to a combination of soil types, exposed soil due to farming, period high wind events, and big open areas that help dust storms to develop. Wasco County is also vulnerable in this region.

Poor visibility leading to motor vehicle crashes is the worst potential impact of these storms; often these crashes result in fatalities and major injuries. Other impacts include poor air quality, including dust infiltration of equipment and engines, loss of productive soil, and an increase in fine sediment loading of creeks and rivers.
Earthquakes

Characteristics

The geographical position of this region makes it susceptible to earthquakes from three sources: subduction zone, intraplate, and crustal events. Most of the region is within a relatively moderate seismicity area, except for Hood River and Wasco Counties which are mostly within relatively moderate to high zones as shown in the map below.

Figure 158. Figure X: USGS map of Quaternary Faults and Folds in Region 5

Source: Personius et al., 2003

Figure 159 displays the areas in the region with greater and lesser ground shaking amplification hazard.
The five class scale of hazard generally corresponds to the NEHRP soil class scale: None (not depicted on map), Low, Moderate, High, and Very High.

During seismic shaking, deposits of loose saturated sands can be subjected to contraction resulting in an increase in pore water pressure. If the increase in pore water pressure is high enough, the deposit becomes “liquefied,” losing its strength and thus its ability to hold support loads. Figure 160 displays the areas in the region with greater and lesser liquefaction hazard.
Strong ground shaking can also cause landslides and reactivate dormant landslides. Commonly, slopes that are marginally stable prior to an earthquake become unstable and fail. Some landslides result from liquefaction that causes lateral movement of soil, or lateral spread. Figure 161 displays the areas in the region with greater and lesser earthquake induced landslide hazard.
Figure 161. || Figure 6: Map of the relative earthquake-induced landslide susceptibility hazard in Region 5

Region 5 has experienced many earthquakes as shown in Figure 162 and Table 2-326. Three historic earthquakes of significance that were centered in the region include: the 1893 Umatilla, 1936 Milton-Freewater (M6), 1951 Hermiston, and the 1976 Maupin area (M4.8), all shallow crustal earthquakes. There are also identified faults in the region that have been active in the last 20,000 years. The region has also been shaken historically by crustal and intraplate earthquakes and prehistorically by subduction zone earthquakes centered outside the area.

The map displays over 1,000 earthquakes that have been recorded in the region during the last century. Since the instrument network in the region has been very sparse until the mid 2000s it is likely that thousands of earthquakes have occurred in the region, but were not recorded and thus do not appear on this map.
Figure 162. | Figure X: Selected earthquakes in Region 5, 1841-2002

Historic Earthquake Events

Table 2-326. | Table X: Significant Earthquakes

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Magnitude (M)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate years:</td>
<td>Offshore, Cascadia subduction zone</td>
<td>Probably 8-9</td>
<td>These are the midpoints of the age ranges for these six events.</td>
</tr>
<tr>
<td>1400 BCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050 BCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 BCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400, 750, 900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 26, 1700</td>
<td>Offshore, Cascadia Subduction zone</td>
<td>Approximately 9</td>
<td>Generated a tsunami that struck Oregon, Washington and Japan. Destroyed Native American villages along the coast.</td>
</tr>
<tr>
<td>November 23, 1873</td>
<td>near Brookings, OR, at the Oregon/California border,</td>
<td>6.8</td>
<td>May have been an intraplate event because of lack of aftershocks. Felt as far away as Portland and San Francisco.</td>
</tr>
<tr>
<td>March, 1893</td>
<td>Umatilla, OR</td>
<td>VI-VII (Modified Mercalli Intensity)</td>
<td>Damage: unknown.</td>
</tr>
<tr>
<td>July 15, 1936</td>
<td>Milton-Freewater, OR</td>
<td>6.4</td>
<td>Two foreshocks and many aftershocks felt; Damage: $100,000 (in 1936 dollars).</td>
</tr>
<tr>
<td>April 13, 1949</td>
<td>Olympia, WA</td>
<td>7.1</td>
<td>Fatalities: Eight. Damage: $25 million (in 1949 dollars); cracked plaster, other minor damage in northwest Oregon.</td>
</tr>
</tbody>
</table>
Chapter 2: RISK ASSESSMENT | Regional Risk Assessments–Region 5: Mid-Columbia Region

Hazards and Vulnerability

Earthquakes

January, 1951
Hermiston, OR
V (Modified Mercalli Intensity)
Damage: unknown.

November 5, 1962
Portland, OR and Vancouver, WA
5.5
Shaking up to 30 seconds; chimneys cracked, windows broke, furniture moved.

May-June 1968
Adel
5.1
Increased flow at a hot spring.

April 12, 1976
Near Maupin, OR
4.8
Sounds described as distant thunder, sonic booms, and strong wind.

April 25, 1992
Cape Mendocino, California
7.0
Subduction earthquake at the triple-junction of the Cascadia subduction zone and the San Andreas and Mendocino faults.

March 25, 1993
Scotts Mill
5.6
Center: Mount Angel-Gates Creek fault. Damage: $30 million; including Molalla High School and Mount Angel church.

September 20, 1993
Klamath Falls
5.9 and 6.0
Fatalities: two. Damage: $10 million; including county courthouse; rockfalls.

Notes: * BCE: Before the Common Era

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment
Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience earthquakes is depicted in Table 2-327. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-327. Table X: Local Probability Assessment of Earthquakes

January, 1951	Hermiston, OR	V (Modified Mercalli Intensity)	Damage: unknown.
November 5, 1962	Portland, OR and Vancouver, WA	5.5	Shaking up to 30 seconds; chimneys cracked, windows broke, furniture moved.
May-June 1968	Adel	5.1	Increased flow at a hot spring.
April 12, 1976	Near Maupin, OR	4.8	Sounds described as distant thunder, sonic booms, and strong wind.
April 25, 1992	Cape Mendocino, California	7.0	Subduction earthquake at the triple-junction of the Cascadia subduction zone and the San Andreas and Mendocino faults.
March 25, 1993	Scotts Mill	5.6	Center: Mount Angel-Gates Creek fault. Damage: $30 million; including Molalla High School and Mount Angel church.
September 20, 1993	Klamath Falls	5.9 and 6.0	Fatalities: two. Damage: $10 million; including county courthouse; rockfalls.

State Assessment

The probability of damaging earthquakes varies widely across the state. In Region 5, the hazard is dominated by local faults and background seismicity. We define the probability of earthquake hazards occurring in Oregon in the following two ways.

For Region 5, we show the probabilistic hazard in Figure 163. This map shows the expected level of earthquake damage that has a 2 percent chance of occurring in the next 50 years. The map is based on the 2008 USGS National Seismic Hazard Map, and has been adjusted to account for the effects of soils following the methods of Madin and Burns, 2013. In this case, the strength of shaking, calculated as peak ground acceleration and peak ground velocity, have been expressed as Mercalli intensity, which describes the effects of shaking on people and structures, and is more readily understandable for a general audience. These maps incorporate all that is known about the probabilities of earthquake on all Oregon faults, including the Cascadia Subduction Zone.

For Oregon west of the crest of the Cascades, the Cascadia subduction zone is responsible for most of the hazard. The paleoseismic record includes 18 Mw 8.8-M 9.1 megathrust earthquakes in the last 10,000 years that affected the entire subduction zone. The return period for the largest earthquakes is 530 years, and the probability of the next such event occurring in the next 50 years ranges from 7-12%. An additional 10-20 smaller Mw 8.3-8.5 earthquakes only affected the southern half of Oregon and northern California. The average return period for these is about 240 years, and the probability of a small or large subduction earthquake occurring in the next 50 years is 37-43%.

Figure 163. || Figure X: Region 5 Probabilistic Earthquake Hazard
Color zones show the maximum level of earthquake shaking and damage (Mercalli Intensity Scale) expected with a 2% chance of occurrence in the next 50 years. A simplified explanation of the Mercalli levels is:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Felt by all, weak buildings cracked</td>
</tr>
<tr>
<td>VII</td>
<td>Chimneys break, weak buildings damaged, better buildings cracked</td>
</tr>
<tr>
<td>VIII</td>
<td>Partial collapse of weak buildings, unsecured wood frame houses move</td>
</tr>
<tr>
<td>IX</td>
<td>Collapse and severe damage to weak buildings, damage to wood-frame structures</td>
</tr>
<tr>
<td>X</td>
<td>Poorly built structures destroyed, heavy damage in well-built structures</td>
</tr>
</tbody>
</table>

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to earthquakes is depicted in Table 2-328. See the [State Risk Assessment](#) for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-328. **Table X: Local Vulnerability Assessment of Earthquakes**

<table>
<thead>
<tr>
<th></th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

State Assessment

According to the ranking of the counties’ expected damages and losses, based on the 500 year model, none of the counties in Region 5 were ranked among the top 15. None-the-less, the Mid-Columbia Gorge Region is considered moderately vulnerable to earthquake hazards from earthquake-induced landslides in the Cascades, ground shaking and liquefaction.
Most of the people and infrastructure are along the I-84 corridor which runs along the northern portion of the region. This multimodal transportation corridor is vital to Oregon’s economy and includes a major Interstate Highway, I-84, two transcontinental rail lines, Union Pacific and Burlington Northern Santa Fe, the Columbia River inland water navigation, major electric power and gas lines, and communication conduits. In a study by Wang and Chaker in 2004, they found that roughly $14 billion worth of goods are carried through the corridor each year. The map below displays the general exposure of the region.

The geographical size of the region is roughly 13,700 square miles and contains 36 census tracts. There are over 54,000 households in the region and it has a total population of over 150,000 people (FEMA, 2006). There are an estimated 52,000 buildings in the region with a total building replacement value (excluding contents) of $8,527,000,000 ($8.5 billion). Approximately 99.00% of the buildings (and 84% of the building value) are associated with residential housing. The replacement value of the transportation system is estimated to be roughly $16,494,000,000 (~$16.5 billion) and utility lifeline systems and $4,823,670,000 (~$4.8 billion), respectively.

276 Wang and Chaker, 2004
Table 2-329 shows the number of school and emergency response buildings surveyed in each county with their respective rankings.

Table 2-329. || Table X: School and Emergency Response Buildings Collapse Potential

<table>
<thead>
<tr>
<th>County</th>
<th>Low (< 1%)</th>
<th>Moderate (>1%)</th>
<th>High (>10%)</th>
<th>Very High (100 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilliam</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Hood River</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Morrow</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Sherman</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Umatilla</td>
<td>40</td>
<td>24</td>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>Wasco</td>
<td>23</td>
<td>7</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

As mentioned in the State Risk Assessment, DOGAMI developed two earthquake loss models for Oregon based on the two most likely sources of seismic events: (1) a M 6.5 Arbitrary Crustal event and (2) a 2500 year mean return period probabilistic earthquake scenario (2500-year Model). Both models are based on HAZUS-MH, a computer program currently used by the Federal Emergency Management Agency (FEMA) as a means of determining potential losses from earthquakes. The arbitrary crustal event is based on a potential M6.5 earthquake generated from an arbitrarily chosen fault using the HAZUS software, and assuming a worst-case scenario. The 2500-Year crustal model does not look at a single earthquake (as in the CSZ model); it encompasses many faults, each with a 2% chance of producing an earthquake in the next 50 years. The model assumes that each fault will produce a single “average” earthquake during this time.

DOGAMI investigators caution that the models contain a high degree of uncertainty and should be used only for general planning purposes. Despite their limitations, the models do provide some approximate estimates of damage. Results are found in the Table 2-330 and Table 2-331.

Table 2-330. || Table X: Total Building, Transportation, and Utility Exposure and Potential Losses, From a 2500 Year Return Interval Ground Motion

<table>
<thead>
<tr>
<th>REGION 5 COUNTRIES</th>
<th>BUILDING EXPOSURE</th>
<th>TRANSPORTATION EXPOSURE</th>
<th>UTILITY EXPOSURE</th>
<th>TOTAL EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilliam</td>
<td>148,000,000</td>
<td>1,777,000,000</td>
<td>153,000,000</td>
<td>2,078,000,000</td>
</tr>
<tr>
<td>Hood River</td>
<td>1,282,000,000</td>
<td>1,413,000,000</td>
<td>702,000,000</td>
<td>3,397,000,000</td>
</tr>
<tr>
<td>Jefferson</td>
<td>1,009,000,000</td>
<td>1,185,800,000</td>
<td>405,910,000</td>
<td>2,600,710,000</td>
</tr>
<tr>
<td>Morrow</td>
<td>517,000,000</td>
<td>1,592,600,000</td>
<td>740,040,000</td>
<td>2,849,640,000</td>
</tr>
<tr>
<td>Sherman</td>
<td>124,000,000</td>
<td>1,299,700,000</td>
<td>117,520,000</td>
<td>1,541,220,000</td>
</tr>
<tr>
<td>Umatilla</td>
<td>3,837,000,000</td>
<td>4,956,900,000</td>
<td>1,390,340,000</td>
<td>10,184,240,000</td>
</tr>
<tr>
<td>Wasco</td>
<td>1,513,000,000</td>
<td>3,305,400,000</td>
<td>1,162,950,000</td>
<td>5,981,350,000</td>
</tr>
<tr>
<td>Region Total</td>
<td>8,430,000,000</td>
<td>15,530,400,000</td>
<td>4,671,760,000</td>
<td>28,632,160,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUILDING LOSSES</th>
<th>TRANSPORTATION LOSSES</th>
<th>UTILITY LOSSES</th>
<th>TOTAL LOSSES</th>
<th>LOSS % OF TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilliam</td>
<td>6,300,000</td>
<td>12,700,000</td>
<td>6,040,000</td>
<td>25,040,000</td>
</tr>
<tr>
<td></td>
<td>Gilliam</td>
<td>Hood River</td>
<td>Morrow</td>
<td>Sherman</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>INJURIES (5 pm Time Frame)</td>
<td>3</td>
<td>120</td>
<td>126</td>
<td>4</td>
</tr>
<tr>
<td>DEATHS (5 pm Time Frame)</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>DISPLACED HOUSEHOLDS</td>
<td>3</td>
<td>419</td>
<td>521</td>
<td>6</td>
</tr>
<tr>
<td>ECONOMIC LOSSES FOR BUILDINGS</td>
<td>$9.21 mil</td>
<td>$189.96 mil</td>
<td>$109.9 mil</td>
<td>$8.4 mil</td>
</tr>
<tr>
<td>OPERATIONAL THE DAY AFTER THE EVENT</td>
<td>100%</td>
<td>60%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Fire stations</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Police stations</td>
<td>100%</td>
<td>21%</td>
<td>43%</td>
<td>33%</td>
</tr>
<tr>
<td>Schools</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>Bridges</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
</tr>
<tr>
<td>ECONOMIC LOSSES TO INFRASTRUCTURE</td>
<td>$0.1 mil</td>
<td>$3.2 mil</td>
<td>$37.2 mil</td>
<td>$1.7 mil</td>
</tr>
<tr>
<td>Highways</td>
<td>$0.1 mil</td>
<td>$3.2 mil</td>
<td>$37.2 mil</td>
<td>$1.7 mil</td>
</tr>
<tr>
<td>Airports</td>
<td>$37.2 mil</td>
<td>$7.3 mil</td>
<td>$1.7 mil</td>
<td>$2.5 mil</td>
</tr>
<tr>
<td>Communications</td>
<td>$37.2 mil</td>
<td>$7.3 mil</td>
<td>$1.7 mil</td>
<td>$2.5 mil</td>
</tr>
<tr>
<td>DEBRIS GENERATED (million tons)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chapter 2: RISK ASSESSMENT | Regional Risk Assessments–Region 5: Mid-Columbia Region

Hazards and Vulnerability

Earthquakes

<table>
<thead>
<tr>
<th>Bridges</th>
<th>100%</th>
<th>82%</th>
<th>100%</th>
<th>76%</th>
<th>93%</th>
<th>96%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway</td>
<td>$6.3 mil</td>
<td>$71.9 mil</td>
<td>$36.4 mil</td>
<td>$42.2 mil</td>
<td>$173.8 mil</td>
<td>$63.1 mil</td>
</tr>
<tr>
<td>Airports</td>
<td>$5.7 mil</td>
<td>$7.6 mil</td>
<td>$5.2 mil</td>
<td>$1.8 mil</td>
<td>$19.7 mil</td>
<td>$15.8 mil</td>
</tr>
<tr>
<td>Communications</td>
<td>$0</td>
<td>$0.05 mil</td>
<td>$0</td>
<td>$0</td>
<td>$0.24 mil</td>
<td>$0.05 mil</td>
</tr>
<tr>
<td>Debris generated (million tons)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

State Owned/Leased Facilities and Critical and Essential Facilities

The following information is based on a state facility and critical and essential facility vulnerability assessment update completed by DOGAMI in 2014. See the State Risk Assessment, Oregon Vulnerabilities section for more information.

Of 5,693 state facilities evaluated, 411 totaling roughly $528 million are located in an earthquake hazard zone in Region 5 (Figure 165). Among the 1,141 critical and essential state facilities, 76 are in an earthquake hazard zone in Region 5. Additionally, 1,446 non-state critical/essential facilities in Region 5 are located in an earthquake hazard zone.
Figure 2-R5-EQ-8: State Owned/Leased Facilities and Critical/Essential Facilities in an Earthquake Zone in Region 5

Source: DOGAMI
Seismic Lifelines

According to the Oregon Department of Transportation’s (ODOT) Oregon Seismic Lifeline Report (OSLR), Region 3 has the following vulnerabilities to seismic lifelines. For a detailed description of the OSLR report and findings see Section 2.2.3.6 Seismic Transportation Lifeline Vulnerabilities.

The following geographic zones identified in the OSLR are located within Region 5:

- **Cascades Geographic Zone**: OEM Mitigation Planning Region 5 is located in part within the OSLR Cascades Geographic Zone. Two crossings of the Cascades from western to central Oregon are partly within this zone and connect the highly seismically impacted western portion of the state to the central portion of the state that is expected to have less impact from a Cascadia Subduction Zone event. This area includes one Tier 1 route: I-84. It also includes part of the Tier 2 route: OR 212 and US 26.

- **Central Geographic Zone**: Region 5 also encompasses the northerly part of the Central Geographic Zone which includes Tier 1 routes I-84 from The Dalles to Biggs Junction and US 97. These roadways are subject to rockfall risks in several areas. There are no Tier 2 routes in this Region, and one Tier 3 corridor: the north end of US 197.

Regional Impact

Ground Shaking: Ground shaking damage from a CSZ event is not expected to be significant in this Region.

Landslides and Rockfall: Landslide and rockfall damage are not anticipated to be activated by a CSZ event in this Region.

Liquefaction: Structures in wetland, alluvial and other saturated areas may be subject to liquefaction damage, particularly in areas associated with the Columbia River near the western end of the Region.

Other: Damage to shipping channels and shore facilities, and Columbia River bridge failures west of this Region may have long term impacts on freight shipments into and out of this Region.

Regional Loss Estimates

The highway related losses include disconnection from supplies and replacement inventory, and the loss of tourists and other customers who must travel to do business with affected businesses.

Most Vulnerable Jurisdictions

Gilliam, Hood River, Morrow, Sherman, Umatilla and Wasco have similar, relatively low vulnerability to ground shaking from a CSZ event. However, connections to markets and services will likely be disrupted due to the vulnerability of river transportation and ports and surface routes to freight intermodal connections in the Portland Metro area.
Flood

Characteristics

Region 5 is subject to a variety of flood conditions. The most common type of flooding is associated with unseasonably warm weather during the winter months, which can quickly melt snow. This condition has produced devastating floods throughout the region. Flash floods, another type of flooding experienced in the region, are almost always a summer phenomenon associated with intense local thunderstorms. The flash flood of June 1903 in the City of Heppner (Morrow County) is a benchmark event. No flood in Oregon has been more lethal: 247 fatalities. Heppner’s vulnerability to flash flood hazards has since been reduced through the construction of the Willow Creek Dam. The region’s other flood events are linked to normal seasonal snowmelt and run-off from agricultural fields.

There are several rivers in the region that produce natural extreme flood conditions. Surprisingly, the Columbia is not one of them, nor is the lower Deschutes or the John Day. The Columbia is regulated by up-stream dams. A swollen Columbia River, however, can back up tributary streams to the point where they constitute a significant hazard. This has occurred on a number of occasions. The lower Deschutes and John Day are confined to fairly deep canyons with small floodplains. Consequently, they do not present the flood problems associated with smaller rivers, such as the Umatilla, the Walla Walla, and their tributaries.

Historic Flood Events

Table 2-332. || Table X: Significant Historic Floods

<table>
<thead>
<tr>
<th>Date</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>TYPE OF FLOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>June, 1894</td>
<td>Main stem Columbia River (Region 5 communities)</td>
<td>Largest flood observed on the Columbia River (1,200,000 cfs). City of Umatilla inundated. Widespread damage.</td>
<td>Snow melt (SM)</td>
</tr>
<tr>
<td>June, 1903</td>
<td>Morrow County (Willow Creek)</td>
<td>Very devastating flash flood. Forty-foot wall of water in City of Heppner. 247 Fatalities; 141 homes destroyed.</td>
<td>Flash flood (FF)</td>
</tr>
<tr>
<td>Jan., 1923</td>
<td>Mid-Columbia region</td>
<td>Widespread flooding. Unusually warm weather, intense rain.</td>
<td>Rain-on-snow (ROS)</td>
</tr>
<tr>
<td>Jan., 1933</td>
<td>Mid-Columbia region</td>
<td>Widespread flooding. Heavy mountain snow pack followed by rain and mild temperatures.</td>
<td>ROS</td>
</tr>
<tr>
<td>Dec., 1955</td>
<td>Mid-Columbia region</td>
<td>Mild temperatures and rain. Farms, highways flooded.</td>
<td>ROS</td>
</tr>
<tr>
<td>Dec., 1964</td>
<td>Entire State</td>
<td>Record-breaking floods throughout state. Heavy snow in mountains followed by intense rain. Considerable flood damage</td>
<td>ROS</td>
</tr>
<tr>
<td>July, 1965</td>
<td>Lane / Spears Canyons (Umatilla Co.)</td>
<td>Thunderstorm. Eight to ten-foot wall of water from canyon. Considerable damage. One fatality; several people injured</td>
<td>FF</td>
</tr>
<tr>
<td>Dec., 1980</td>
<td>Polallie Creek (Hood River Co.)</td>
<td>Debris flow from vicinity of Mount Hood. Debris dam formed a small lake that was later breeched. Damage to highways and utilities.</td>
<td>Debris flow</td>
</tr>
<tr>
<td>Feb., 1985</td>
<td>Umatilla County</td>
<td>Warm rain on snow at higher elevations. Flooding throughout county.</td>
<td>ROS</td>
</tr>
<tr>
<td>Feb., 1986</td>
<td>Entire state</td>
<td>Warm rain on snow. Widespread flooding. Considerable damage</td>
<td>ROS</td>
</tr>
</tbody>
</table>
Chapter 2: RISK ASSESSMENT | Regional Risk Assessments—Region 5: Mid-Columbia Region
Hazards and Vulnerability Flood

May, 1998	Central and eastern Oregon	Widespread flooding. Rain melting mountain snow.	ROS
Aug., 2003	Gilliam County	$7,000 in property damage	
Aug., 2003	Sherman County	Flash Flood (Gerking Canyon) * excerpted from State Plan, 2006	
April, 2005	Morrow County	$2,000 in property damage	
April, 2005	Umatilla County	$170,000 in property damage	
March 2006	Morrow	Flash flood from a collapsed irrigation dike embankment floods the south side of I-84 near Boardman, closing down the road.	Flash Flood
Nov. 2006	Hood River	Hood River near the City of Hood River caused extensive damage on Highway 35 closing the highway for a month. Moderate damage done to irrigation works. Total $30 million in damage	Riverine
May/June 2011	Morrow	Intense rainfall in the Heppner and Lexington areas resulting in damage to roads, bridges, and the Morrow County Fairgrounds. Total of $164,000 in damage	Flash Flood

<table>
<thead>
<tr>
<th>Gilliam County</th>
<th>Hood River County</th>
<th>Morrow County</th>
<th>Sherman County</th>
<th>Umatilla County</th>
<th>Wasco County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River*</td>
<td>Columbia River*</td>
<td>Columbia River*</td>
<td>Columbia River*</td>
<td>Columbia River*</td>
<td>Columbia River*</td>
</tr>
<tr>
<td>Thirty Mile Creek</td>
<td>Hood River</td>
<td>Hinton Creek</td>
<td>Birch Creek</td>
<td>Spanish Hollow Creek</td>
<td></td>
</tr>
<tr>
<td>Indian Creek</td>
<td>Little Blackhorse Canyon Cr.</td>
<td>McKay Creek</td>
<td>Fifteen Mile Creek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shobe Creek</td>
<td>Mill Creek</td>
<td>Mosier Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow Creek</td>
<td>Patawa Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhea Creek</td>
<td>Stage Gulch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutuilla Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umatilla River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walla Walla River</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waterman Gulch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greasewood Creek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-333. || Table X: Principal Flood Sources

Source: FEMA Flood Insurance Studies for Gilliam, Hood River, Morrow, Sherman, Umatilla, and Wasco counties.

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to
which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience flooding is depicted in Table 2-334. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-334. Table X: Local Probability Assessment of Flood

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment

The Federal Emergency Management Agency (FEMA) has mapped most flood-prone streams in Oregon. The maps depict the 1% flood (100-year) upon which the National Flood Insurance Program is based. All of the Region 5 counties have Flood Insurance Rate Maps (FIRM); however, some of the maps are old and could be outdated. The FIRM maps were issued at the following times:

- Gilliam, September 24, 1984;
- Hood River, September 24, 1984;
- Morrow, December 18, 2007;
- Sherman, September 24, 1984;
- Umatilla, September 2010;
- Wasco, September 24, 1984;

Significant flooding occurs at least once every 5-7 years.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers the region’s vulnerability (High, Moderate, Low) to flooding is depicted in Table 2-335. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.
Table 2-335. Table X: Local Vulnerability Assessment of Flood

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

State Assessment

Each of the counties in Region 5 had a flood vulnerability score of 5, except for Sherman County with a score of 4. This is below average for the state.

Region 5 is exposed to flood hazards. Most of the people and infrastructure are along the I-84 corridor which runs along the northern portion of the region. This multimodal transportation corridor is vital to Oregon’s economy and includes a major Interstate Highway, I-84, two transcontinental rail lines, Union Pacific and Burlington Northern Santa Fe, the Columbia River inland water navigation, major electric power and gas lines, and communication conduits. In a study by Wang and Chaker in 2004, they found that roughly $14 billion worth of goods are carried through the corridor each year.

The vulnerability from the hazard can be examined through the spatial relationship of the percent of a city’s total area versus the percent of the city’s area within the 100 year flood zone. Four of the top ten cities in Oregon examined using this metric are located in Region 5: Helix, Ione, Adams, and Athena. This indicates that damaging floods are indeed possible in developed areas of the Region, but lower than average vulnerability is due to low populations in those cities. Nevertheless, floods can devastate these small cities.

FEMA has identified no Repetitive Loss properties in Region 5. State Owned/Leased Facilities and Critical and Essential Facilities

Of the 5,693 state facilities evaluated, 265 are currently located within a flood hazard zone in Region 5 and have an estimated total value of $6 million (Figure 166). Of these, 3 are identified as a critical or essential facility. An additional non-state owned/leased critical or essential facilities and are located in a flood hazard zone in Region 5.

277 FEMA BureauNet, accessed 12/1/2014
Figure 2-R5-FL-1: State Owned/Leased Facilities and Critical/Essential Facilities in a Flood Hazard Zone in Region 5

Source: DOGAMI
Landslide

Characteristics

Landslides occur throughout this region of the state, although areas with steeper slopes, weaker geology, and higher annual precipitation tend to have more landslides. In general, the Cascade Mountains and the Columbia River Gorge have very high incidence of landslides. On occasion, major landslides occur on US or State Highways that sever these major transportation routes (including rail lines) causing temporary but significant economic damage.

For example, the new geology map of the Hood River area and the Mt Hood Multi-Hazard and Risk study both found hundreds of landslides in this area (McClaughry et al., 2012; Burns et al., 2012). In February 2014, a large rock slide in Hood River closed Interstate 84 for almost a week.

Figure 167. | | Figure X: Geology of the Hood River Valley

Historic Landslide Events

Table 2-336. Table X: Historic Landslides

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Sherman and Wasco Counties</td>
<td>Property damage: $35,000 (includes Jefferson County).</td>
</tr>
<tr>
<td>2009</td>
<td>Hood River County</td>
<td>Property damage: $78,571.</td>
</tr>
<tr>
<td>2014</td>
<td>Hood River County</td>
<td>Rock slide on I-84. Interstate closed for days.</td>
</tr>
</tbody>
</table>

Another significant existing landslide area was mapped in DOGAMI Bulletin 91 shown in the figure below, which includes significant portions of the city of The Dalles.

Figure 168. Significant Landslide Area: The Dalles, Oregon

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience landslides is depicted in Table 2-337. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration. These cases are noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment

Landslides are found in every county in Oregon. There is a 100% probability of landslides occurring in this region in the future. Although we do not know exactly where and when they will occur, they are more likely to happen in the general areas where landslides have occurred in the past. Also, they will likely occur during heavy rainfall events or during a future earthquake.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to landslides is depicted in Table 2-338. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration. These cases are noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.
State Assessment

The Mid-Columbia Gorge Region is moderate to highly vulnerable to landslide hazards. Most of the people and infrastructure are along the I-84 corridor which runs along the northern portion of the region. This multimodal transportation corridor is vital to Oregon’s economy and includes a major Interstate Highway, I-84, two transcontinental rail lines, Union Pacific and Burlington Northern Santa Fe, the Columbia River inland water navigation, major electric power and gas lines, and communication conduits. In a study by Wang and Chaker in 2004, they found that roughly $14 billion worth of goods are carried through the corridor each year. Many of the communities in this region are vulnerable to landslide hazard, for example the city of Hood River and The Dalles has a moderate to high exposure to landslides.

State Owned/Leased Facilities and Critical and Essential Facilities

The following information is based on a state facility and critical and essential facility vulnerability assessment update completed by DOGAMI in 2014. See the State Risk Assessment, Oregon Vulnerabilities for more information.

Of the 5,693 state facilities evaluated, 631 are located within landslide hazard areas in Region 5, totaling roughly $744 million (Figure 169). This includes 121 critical or essential facilities. An additional 1,541 critical/essential facilities, not owned/leased by the state, also reside within a landslide hazard zone in Region 5.

Figure 169. Figure 2-R5-LS-3: State Owned/Leased Facilities and Critical/Essential Facilities in a Landslide Hazard Zone in Region 5

Source: DOGAMI
Volcano

Characteristics

The western boundary of the region coincides with the Cascade Range, which are mountains derived from volcanic activity. Within this range of mountains are several active and potentially active volcanoes. Mount Hood, Mount Jefferson, and Mount Adams are all potentially active volcanoes close to Region 5 that can impact these communities.

Volcanic activity can produce many types of hazardous events including landslides, fallout of ash, lahars, pyroclastic flows, and lava flows (Scott et al., 2001). Pyroclastic flows are fluid mixtures of hot rock fragments, ash, and gases that can move down the flanks of volcanoes at speeds of 50 to more than 150 kilometers per hour (30 to 90 miles per hour) (Scott et al., 2001). Lahars or volcanic debris flows are water-saturated mixtures of soil and rock fragments and can travel very long distances (over 100 km) and travel as fast as 80 kilometers per hour (50 miles per hour) in steep channels close to a volcano (Scott et al., 1997). These hazards can affect very small local zones (only meters across) to areas hundreds of kilometers downwind (Walder et al., 1999).

Mount Hood’s eruptive history can be traced to late Pleistocene times (15-30,000 years ago) and will no doubt continue. But the central question remains: When? The most recent series of events 1760 and 1810 consisted of small lahars and debris avalanches; steam explosions and minor tephra falls occurred between 1856 and 1865. Mount Hood’s recent history also includes ash falls, dome building, lahars, pyroclastic flows and steam explosions.

Historic Volcanic Events

Table 2-339. || Table X: Historic Volcanic Activity

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~20,000 - 13,000 YBP</td>
<td>Polallie Eruptive episode, Mount Hood</td>
<td>Lava dome, pyroclastic flows, lahars, tephra</td>
</tr>
<tr>
<td>~7,700 YBP</td>
<td>Parkdale, north-central Oregon</td>
<td>Eruption of Parkdale lava flow.</td>
</tr>
<tr>
<td>~1,500 YBP</td>
<td>Timberline eruptive period, Mount Hood</td>
<td>Lava dome, pyroclastic flows, lahars, tephra</td>
</tr>
<tr>
<td>1760-1810</td>
<td>Crater Rock/Old Maid Flat on Mount Hood</td>
<td>Pyroclastic Flows in upper White River; lahars in Old Maid Flat; dome building at Crater Rock</td>
</tr>
<tr>
<td>1859/1865</td>
<td>Crater Rock on Mount Hood</td>
<td>Steam explosions/tephra falls</td>
</tr>
<tr>
<td>1907 (?)</td>
<td>Crater Rock on Mount Hood</td>
<td>Steam explosions</td>
</tr>
</tbody>
</table>

Scott et al. (1997)

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to...
which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience volcanic hazards is depicted in Table 2-340. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>L</td>
<td>L</td>
<td>-</td>
<td>L</td>
<td>-</td>
</tr>
</tbody>
</table>

State Assessment

Mount St. Helens remains a probable source of ash fall. It has repeatedly produced voluminous amounts of this material and has erupted much more frequently in recent historic time than any other Cascade volcano. It blanketed Yakima and Spokane, Washington during the 1980 eruption and it continues to be a concern. The location, size and shape of the area affected by ash fall are determined by the vigor, and duration of the eruption and the wind direction. Because wind direction and velocity vary with both time and altitude, it is impossible to predict the direction and speed of ash transport more than a few hours in advance.

Geoscientists have provided some estimates of future activity in the vicinity of Crater Rock, a well-known feature on Mount Hood. They estimate a 1 in 300 chance that some dome activity will take place in a 30-year period (1996-2026). For comparison, the 30-year probability of a house being damaged by fire in the United States is about 1 in 90.

The probability of 1 cm or more of ash fall from eruptions anywhere in the Cascade Range, include:

- Gilliam County: 1 in 1,000
- Hood River County: Between 1 in 500 and 1 in 1,000
- Morrow County: 1 in 1,000
- Sherman County: 1 in 1,000
- Umatilla County: Between 1 in 1,000 and 1 in 5,000
- Wasco County: Between 1 in 500 and 1 in 1,000
Vulnerability

Local Assessment
Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to volcanic hazards is depicted in Table 2-341. In some cases, counties either did not rank a particular hazard or did not find it to be a significant consideration, noted with a dash (-). See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-341. Table X: Local Vulnerability Assessment of Volcanic Activity

<table>
<thead>
<tr>
<th></th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>M</td>
<td>L</td>
<td>-</td>
<td>L</td>
<td>-</td>
<td>L</td>
</tr>
</tbody>
</table>

State Assessment
The U.S. Geological Survey has addressed volcanic hazards at Mount Hood (Scott et al., 1997). This report includes maps depicting the areas at greatest risk. The communities which are closer to the Mount Hood, such as the Parkdale and the City of Hood River in Hood River County, are at risk from proximal as well as the distal hazards, such as lahars and ash fall. In Wasco County, those communities situated along the White River may be at risk from pyroclastic flows and far-reaching lahars. Counties in region 5, further east of Mount Hood, are only at risk from the distal hazards such as ash fall.

State Owned/Leased Facilities and Critical and Essential Facilities
The following information is based on a state facility and critical and essential facility vulnerability assessment update completed by DOGAMI in 2014. See the State Risk Assessment, Oregon Vulnerabilities for more information.

Of the 5,693 state facilities evaluated, 321 are located within a volcanic hazard area in Region 5; totally over $259 million. Furthermore, there are 1,377 non-state owned/leased critical/essential facilities located within a volcanic hazard zone in Region 5 (Figure 170).
Figure 170. Figure 2-R5-V-1: State Owned/Leased Facilities and Critical/Essential Facilities in a Volcanic Hazard Zone in Region 5

Source: DOGAMI
Wildfire

Characteristics

In Region 5, Senate Bill (SB) 360 (Oregon Forestland / Urban Interface Protection Act) has been implemented in Hood River, Wasco and Umatilla counties. Wildfires burn primarily in vegetative fuels outside the urban areas, and can generally be categorized as agricultural, forest, range, or wildland-urban interface fires.

Region 5 has unique geographic features, weather characteristics, a history of unmanaged fuels, and an expanding Urban Interface. Douglas-fir, grand fir, and Western Hemlock (fire interval between 150-400 years) dominate in the wetter forests of the western Columbia River Gorge, while Ponderosa Pine, Oregon White Oak brush and grass are more characteristic toward the east (15 year fire intervals). Historically, the region consisted of pine forests. More recently, due to decay in forest health and changes in forest practices, Ponderosa pine has given way to brush and mixed conifer (Douglas-fir, grand fir, and subalpine fir) at higher elevations. North and east facing slopes are typically forested while south and westerly aspects are generally open and grass covered.

This region is subject to weather patterns that can contribute significantly to extreme fire behavior. Annual precipitation levels vary from 8-10 inches along the Columbia River, to as high as 60 inches in the higher elevations of the Blue Mountains. Wind in the gorge is a constant variable. The east end of the gorge tends to be minimal; however in the west portion experiences 20 – 30 mph winds daily and can, at times, exceed 40 mph. Significant drying occurs as sustained winds, coupled with high daytime temperatures and drier air from the desert, pushes towards the coast.

Land ownership, and resultant management and suppression capabilities/protocols in this area also affect the potential for wildfires. In region 5, the most significant land ownership falls to federal agencies, and includes forested and wilderness areas. Federal lands in this area are characterized by dense stands, heavy underbrush and ladder fuels, increasing the potential for wildfires. County, state and private lands contribute to the remainder. These lands have a variety of management practices resulting in a mix of stand conditions and resultant fire potential.

Regardless of ownership, the majority of the forestlands in Region 5 are historically prone to wildfire. As the number of dwellings extends into these areas the potential for ignition and losses increases. Many of these communities in the wildland urban interface fall just outside of any agency’s primary protection coverage, which reduces their likelihood of surviving a wildfire.
Historic Wildfire Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Name of Fire</th>
<th>Location</th>
<th>Acres Burned</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>Wasco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>Pine Grove/Juniper Flat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Moro</td>
<td>Sherman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>Maupin</td>
<td>Wasco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>Wasco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>Falls</td>
<td></td>
<td>1,100</td>
<td>Fire along the Columbia Gorge.</td>
</tr>
<tr>
<td>1994</td>
<td>Smith Canyon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Rowena</td>
<td>Wasco</td>
<td>2,208</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Reith Barnhart/Coombs Canyon</td>
<td>Umatilla</td>
<td>45,000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Willow Creek</td>
<td>Morrow and Gilliam</td>
<td>27,000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Antelope</td>
<td>Wasco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Two Rivers</td>
<td>Umatilla</td>
<td>7,011</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Bridge Creek</td>
<td>Umatilla</td>
<td>9,230</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Sheldon Ridge</td>
<td>Wasco</td>
<td>12,681</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Herman Creek</td>
<td>Wasco</td>
<td>300</td>
<td>3 structures were lost in this fire that affected Cascade Locks *excerpted from the State Plan, 2006</td>
</tr>
<tr>
<td>2003</td>
<td>Umatilla County</td>
<td></td>
<td></td>
<td>$40,000 in property damage, $200,000 in crop damage</td>
</tr>
<tr>
<td>2003</td>
<td>Umatilla County</td>
<td></td>
<td></td>
<td>$15,000 in property damage, $500 in crop damage</td>
</tr>
<tr>
<td>2004</td>
<td>Gilliam, Morrow, Umatilla Counties</td>
<td></td>
<td></td>
<td>$6,000 in property damage</td>
</tr>
<tr>
<td>2005</td>
<td>Sherman, Wasco Counties</td>
<td></td>
<td></td>
<td>$1000 in property damage *damage estimate includes Jefferson County</td>
</tr>
<tr>
<td>2005</td>
<td>Morrow, Umatilla Counties</td>
<td></td>
<td></td>
<td>$2500 in property damage and $11,500 in crop damage</td>
</tr>
<tr>
<td>March 2005</td>
<td>Gilliam, Morrow, Umatilla Counties</td>
<td></td>
<td></td>
<td>$113,900 in crop damage</td>
</tr>
<tr>
<td>July 2005</td>
<td>Umatilla, Morrow Counties</td>
<td></td>
<td></td>
<td>$5000 in property damage, $23,000 in crop damage</td>
</tr>
<tr>
<td>May 2006</td>
<td>Gilliam, Morrow, Umatilla Counties</td>
<td></td>
<td></td>
<td>$10,000 in property damage</td>
</tr>
<tr>
<td>June 2006</td>
<td>Gilliam, Morrow, Umatilla Counties</td>
<td></td>
<td></td>
<td>$500,000 in property damage</td>
</tr>
<tr>
<td>2009</td>
<td>Microwave Fire</td>
<td>Wasco County</td>
<td></td>
<td>Fire threatened Maupin, burned 2 residences</td>
</tr>
<tr>
<td>2011</td>
<td>High Cascade Complex</td>
<td>Wasco County</td>
<td>101,292</td>
<td>Fire burned into Warm Springs</td>
</tr>
<tr>
<td>2013</td>
<td>Government Flats Complex</td>
<td>Wasco County</td>
<td>11,450</td>
<td>Fire burned four homes in The Dalles. Fire suppression costs more than $15 million.</td>
</tr>
</tbody>
</table>

Source: Oregon Department of Forestry, 2013
Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment
Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience wildfire is depicted in Table 2-343. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment
In Region 5, weather patterns can produce summer lightning storms that start many fires. These multiple starts can put a strain on the wildland firefighting resources spread across the county. With the drying of fuels over time and the low relative humidity factored in, the probability for large fires can significantly increase during these lightning events. The number of days per season that forest fuels are capable of producing a significant fire event is also important to consider. Oregon Department of Forestry has determined that eastern Oregon is at the highest hazard rating for weather. This value was assigned through an analysis of daily wildfire danger rating indices in each regulated use area of the state.

The Westside of the region includes the heavily wooded hills and mountains of the Cascades; the Eastside is lined with hills that are also wooded but drier along with significantly more oak and grasses; the west end of the heavily wooded region is pinched between the Columbia River and the near vertical sides of the river gorge.

A healthy forest across this region is never free of insects, disease, or other disturbances and infestations can increase the likelihood of ignition and fire spread. The potential for extreme fire behavior is of concern for any valued property, whether it be a structure or scenic vista that resides at the top of a bluff, hill or canyon that has enough fuels to sustain a fire. The more fuels on a bluff, hill or canyon, the more active the fire will become. As the percentage of slope increases more preheating of fuels preceding the fire front will occur. The fire front will proceed
up the hill at a faster rate and the fire will burn more intensely. Coupled with high winds and low humidity, this region has the potential for a severe wildfire.

This region is susceptible to wildfire when favorable East wind conditions prevail. Fires have the potential to spread from Washington State across the river into Oregon via long-range spotting.

Sources of human-caused ignition would include: discarded cigarettes, motor cars and trucks, railroads, mowing, acts of nature, and fire emanating from adjoining land. Most fuels adjacent to the freeway start as fine grasses and can rapidly progress into conifers that line the safety zone for almost the entire breath of the region’s west end.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to wildfire is depicted in Table 2-344. See the **State Risk Assessment** for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-344. || Table X: Local Vulnerability Assessment of Wildfire

<table>
<thead>
<tr>
<th></th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

State Assessment

The counties most vulnerable to wildfire in Region 5 include Hood River County, east and south Wasco County, south Morrow County and south and east Umatilla County. Communities directly at risk to wildfires are shown in Table 2-345.

In addition, there is also critical infrastructure beyond the urban interface that is vulnerable to wildfire. Disruption to the municipal water supply and irrigation water supply from wildfires would negatively impact all of the residents and agricultural operators that depend on this resource by reducing water quality and availability. Roads, bridges, and evacuation routes could be compromised, limiting the ability of firefighters to reach the fire as well as inhibiting evacuation procedures. Utilities including BPA power lines, PGE and NWN electrical and gas distribution lines and communication infrastructure are also at risk.

The economic stability of the Region is dependent on a major interstate highway (I-84). This highway runs East – West paralleling the Columbia River from MP 35 to MP 69. This four lane highway is considered part of the “National Defense Highway System” and as such some federal entities are sensitive to highway closures that impede or stop the flow of traffic. Most frequently closures or restrictions are for motor vehicle accidents (MVC’s); however closures can also be expected in the face of low of no visibility secondary to wildfire or inclement winter weather. Additional economic sectors that could be affected by wildfire are agriculture, forest products, tourism, manufacturing, recreation, and power generation. Community values and natural resources at risk to wildfire include agriculture and livestock, wildlife and salmonids, and historic buildings.
Table X: Wildland-Urban Interface Communities

<table>
<thead>
<tr>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arlington</td>
<td>Cascade Locks</td>
<td>Boardman</td>
<td>Moro</td>
<td>Adams</td>
<td>Antelope</td>
</tr>
<tr>
<td>Condon</td>
<td>Dee</td>
<td>Heppner</td>
<td>North Sherman</td>
<td>Athena</td>
<td>Dufur</td>
</tr>
<tr>
<td>Gilliam</td>
<td>Hood River</td>
<td>Ione</td>
<td>Rufus</td>
<td>East Umatilla</td>
<td>Juniper Flats</td>
</tr>
<tr>
<td>Lonerock</td>
<td>Odell</td>
<td>Irrigon</td>
<td>South Sherman</td>
<td>Echo</td>
<td>Maupin</td>
</tr>
<tr>
<td>North Gilliam</td>
<td>Parkdale</td>
<td>Lexington</td>
<td>Wasco</td>
<td>Helix</td>
<td>Mid-Columbia</td>
</tr>
<tr>
<td>South Gilliam</td>
<td>Pine Grove</td>
<td>Morrow</td>
<td></td>
<td>Hermiston</td>
<td>Mosier</td>
</tr>
<tr>
<td></td>
<td>West Side</td>
<td></td>
<td></td>
<td>Lower Mckay</td>
<td>Pine Grove</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mckay</td>
<td>Pine Hollow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milton-Freewater</td>
<td>Shaniko</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pendelton</td>
<td>The Dalles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pilot Rock</td>
<td>Tygh Valley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Riverside</td>
<td>Wamic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stanfield</td>
<td>Warm Springs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ukiah</td>
<td>Wasco</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Umatilla</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston</td>
<td></td>
</tr>
</tbody>
</table>

Oregon Dept. of Forestry Statewide Forest Assessment September, 2006

State Owned/Leased Facilities and Critical and Essential Facilities

The following information is based on a state facility and critical and essential facility vulnerability assessment update completed by DOGAMI in 2014. See the State Risk Assessment, [Oregon Vulnerabilities](#) for more information.

Of the 5,693 state facilities evaluated, 239 are within a wildfire hazard zone in Region 5 and total $81.5 million in value ([Figure 171](#)). Among state critical/essential facilities, 23 are located in a wildfire hazard zone in Region 5. An additional 1,072 non-state critical/essential facilities are also located in Region 5.
Figure 171. Figure 2-R5-WF-1: State Owned/Leased Facilities and Critical/Essential Facilities in a Wildfire Hazard Zone in Region 5

Source: DOGAMI
Windstorms

Characteristics

Extreme winds are experienced in all of Oregon’s eight regions. The most persistent high winds occur along the Oregon Coast and the Columbia River Gorge, so much so that these areas have special building code standards. All manufactured homes in Region 5 that are within 30 miles of the Columbia River must meet special anchoring standards. High winds in this area of Oregon are legendary. The Columbia Gorge is the most significant east-west gap in the mountains between California and Canada. It serves as a funnel for east and west winds, where direction depends solely on the pressure gradient. Once set in motion, the winds can attain speeds of 80 mph, halt truck traffic, and damage a variety of structures and facilities. The average wind speed at Hood River is 13 mph, not much less than the notoriously windy Texas and Kansas plains whose wind speeds average 15 mph.279

Though their occurrence is somewhat less frequent, Region 5 has also experienced tornadoes. For the most part, these tornadoes have not resulted in major damages. Table 2-346, below, describes the history of tornadoes in the region.

Historic Winter Storm Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Affected Area</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr., 1931</td>
<td>N. Central Oregon</td>
<td>Unofficial wind speeds reported at 78 mph. Damage to fruit orchards and timber.</td>
</tr>
<tr>
<td>Dec., 1935</td>
<td>W. Columbia Gorge, OR</td>
<td>Damage to automobiles. Wind gusts at 120 mph</td>
</tr>
<tr>
<td>Nov. 10-11,1951</td>
<td>Statewide</td>
<td>Widespread damage; transmission and utility lines; Wind speed 40-60 mph; Gusts 75-80 mph</td>
</tr>
<tr>
<td>Dec., 1951</td>
<td>Statewide</td>
<td>Wind speed 60 mph in Willamette Valley. 75 mph gusts. Damage to buildings and utility lines.</td>
</tr>
<tr>
<td>Dec., 1955</td>
<td>Statewide</td>
<td>Wind speeds 55-65 mph with 69 mph gusts. Considerable damage to buildings and utility lines</td>
</tr>
<tr>
<td>Nov., 1958</td>
<td>Statewide</td>
<td>Wind speeds at 51 mph with 71 mph gusts. Every major highway blocked by fallen trees</td>
</tr>
<tr>
<td>Oct., 1962</td>
<td>Statewide</td>
<td>Columbus Day Storm; Oregon’s most destructive storm to date. 116 mph winds in Willamette Valley. Estimated 84 houses destroyed, with 5,000 severely damaged. Total damage estimated at $170 million</td>
</tr>
<tr>
<td>Mar., 1971</td>
<td>Most of Oregon</td>
<td>Greatest damage in Willamette Valley. Homes and power lines destroyed by falling trees. Destruction to timber in Lane Co.</td>
</tr>
<tr>
<td>Nov., 1981</td>
<td>Statewide</td>
<td>Severe wind storm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec., 1987</td>
<td>Umatilla County, OR</td>
<td>Damaging wind storm; 2 fatalities</td>
</tr>
<tr>
<td>Mar., 1991</td>
<td>Mid – Columbia / NE Oregon</td>
<td>Severe wind storm</td>
</tr>
<tr>
<td>Dec., 1991</td>
<td>N. Central Oregon</td>
<td>Severe wind storm; Blowing dust.</td>
</tr>
<tr>
<td>Jan., 1993</td>
<td>Northern Oregon</td>
<td>Severe wind storm. Damage to utilities</td>
</tr>
<tr>
<td>Dec., 1995</td>
<td>Statewide</td>
<td>Severe wind storm. Widespread Damage</td>
</tr>
<tr>
<td>Oct., 2003</td>
<td>Umatilla County, OR</td>
<td>$1,000 in property damage</td>
</tr>
<tr>
<td>Jan., 2004</td>
<td>Morrow, Umatilla Counties, OR</td>
<td>$2,500 in property damage</td>
</tr>
<tr>
<td>Feb., 2004</td>
<td>Umatilla County, OR</td>
<td>$3,000 in property damage *damage estimate includes Jefferson County</td>
</tr>
<tr>
<td>April, 2004</td>
<td>Hood River County, OR</td>
<td>$25,000 in property damage</td>
</tr>
<tr>
<td>Apr., 2004</td>
<td>Wasco County, OR</td>
<td>$1,000 in property damage</td>
</tr>
<tr>
<td>Oct., 2004</td>
<td>Gilliam, Morrow, Umatilla Counties, OR</td>
<td>$333.33 in property damage</td>
</tr>
<tr>
<td>Dec., 2004</td>
<td>Gilliam, Morrow, Umatilla Counties, OR</td>
<td>$166.66 in property damage</td>
</tr>
<tr>
<td>Dec., 2004</td>
<td>Sherman, Wasco Counties, OR</td>
<td>$3,333.33 * damage estimate includes Jefferson County</td>
</tr>
<tr>
<td>Feb., 2005</td>
<td>Gilliam, Morrow, Umatilla Counties, OR</td>
<td>$3,000 in property damage</td>
</tr>
<tr>
<td>Mar., 2005</td>
<td>Sherman, Wasco Counties, OR</td>
<td>$2,500 in property damage *damage estimate includes Jefferson County</td>
</tr>
<tr>
<td>Nov., 2005</td>
<td>Umatilla County, OR</td>
<td>$400 in property damage.</td>
</tr>
<tr>
<td>April, 2006</td>
<td>Umatilla County, OR</td>
<td>$10,000 in property damage in Hermiston</td>
</tr>
<tr>
<td>May, 2006</td>
<td>Morrow County, OR</td>
<td>$500,000 in property damage with a high wind gust measured at 117 mph. $1 million in crop damage.</td>
</tr>
<tr>
<td>May, 2006</td>
<td>Sherman County, OR</td>
<td>$50,000 in property damage in Grass Valley. Winds ranged from 70 to 80 mph.</td>
</tr>
<tr>
<td>Nov. 2006</td>
<td>Morrow, Umatilla Counties, OR</td>
<td>$35,000 in property damage from 80 mph winds. Property damage also occurred in Union and Wallowa Counties, for a total storm damage of $70,000.</td>
</tr>
<tr>
<td>Jan., 2007</td>
<td>Gilliam, Morrow, Sherman, Wasco, Umatilla Counties, OR</td>
<td>$5,000 in property damage from 64 mph winds. Damage estimate includes Jefferson County.</td>
</tr>
<tr>
<td>June 2008</td>
<td>Umatilla County, OR</td>
<td>Powerful windstorm with wind speeds at 58 mph caused $10,000 in damage to buildings in Pendleton.</td>
</tr>
<tr>
<td>June 2008</td>
<td>Morrow, Umatilla Counties, OR</td>
<td>Wind damage downed several trees and power lines, caused $250,000 in property damage and $100,000 crop damage in Morrow County, and $108,000 in property damage in Umatilla County.</td>
</tr>
<tr>
<td>July 2010</td>
<td>Umatilla County, OR</td>
<td>64 mph winds caused $40,000 in property damage in the Hermiston area.</td>
</tr>
<tr>
<td>November 2012</td>
<td>Wasco, Sherman, Umatilla, Gilliam, Morrow, Union, Wallowa Counties, OR</td>
<td>74 mph winds $120,000 in damage *includes Jefferson County</td>
</tr>
</tbody>
</table>

2015 Oregon NHMP DRAFT February 2015
Table 2-347. Historic Tornadoes

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>June, 1888</td>
<td>Morrow County (Lexington, Sand Hill, Pine City)</td>
<td>30 buildings, including two schools destroyed. Six people killed (including two children); 4 people injured</td>
</tr>
<tr>
<td>April, 1925</td>
<td>Gilliam County</td>
<td>Warehouse and automobiles destroyed in Condon. About $10,000 in damages</td>
</tr>
<tr>
<td>April, 1957</td>
<td>Gilliam and Morrow Counties</td>
<td>Minor damage (rangeland)</td>
</tr>
<tr>
<td>April, 1970</td>
<td>Wasco County</td>
<td>Observed. No damage</td>
</tr>
<tr>
<td>May, 1991</td>
<td>Umatilla County</td>
<td>Some damage to wheat fields</td>
</tr>
<tr>
<td>July, 1995</td>
<td>Umatilla County</td>
<td>Some damage to wheat fields</td>
</tr>
<tr>
<td>May, 2006</td>
<td>Morrow County</td>
<td>$20,000 in property damage, F1 intensity</td>
</tr>
<tr>
<td>May, 2009</td>
<td>Umatilla County</td>
<td>$50,000 in property damage, F1 intensity</td>
</tr>
</tbody>
</table>

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience windstorms is depicted in Table 2-348. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.
Table 2-348. **Table X: Local Probability Assessment of Windstorm**

<table>
<thead>
<tr>
<th></th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment
High winds occur yearly in the Columbia River Gorge. The 100-year event in this region consists of one-minute average winds of 90 mph. A 50 year event has average winds of 80 mph. A 25 year event has average winds of 75 mph.

Vulnerability

Local Assessment
Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to windstorm is depicted in Table 2-349. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

Table 2-349. **Table X: Local Vulnerability Assessment of Windstorm**

<table>
<thead>
<tr>
<th></th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability</td>
<td>L</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment
Gilliam, Hood River, Morrow, and Sherman Counties are the most vulnerable to windstorms because of their proximity to the Columbia River.

Many buildings, utilities, and transportation systems within Region 5 are vulnerable to wind damage. This is especially true in open areas, such as natural grasslands or farmlands. It also is true in forested areas, along tree-lined roads and electrical transmission lines, and on residential parcels where trees have been planted or left for aesthetic purposes. Structures most vulnerable to high winds include insufficiently anchored manufactured homes and older buildings in need of roof repair.

Fallen trees are especially troublesome. They can block roads and rails for long periods, which can affect emergency operations. In addition, up-rooted or shattered trees can down power and/or utility lines and effectively bring local economic activity and other essential facilities to a standstill. Much of the problem may be attributed to a shallow or weakened root system in saturated ground. Uprooted trees growing next to a house have destroyed roofs when they fall as a result of windstorms. In some situations, strategic pruning may be the answer. Prudent counties will work with utility companies in identifying problem areas and establishing a tree maintenance and removal program.
Winter Storm

Characteristics

Severe winter weather in Region 5 can be characterized by extreme cold, snow, ice, and sleet. Winter storm events are an annual occurrence in Region 5; and most communities are prepared for them. This is particularly true through the Columbia River Gorge where frigid air sometimes moves westward out of the Wallowa Mountains. During these periods, it is not unusual to receive snow or ice storms. Severe weather conditions do not last long in Region 5; consequently, winter-preparedness is a moderate priority. This is advantageous in at least one respect: in general, the region is prepared, and those visiting the region during the winter usually come prepared. However, there are occasions when preparation cannot meet the challenge.

Historic Winter Storm Events

Table 2-350. Table X: Historic Winter Storms

<table>
<thead>
<tr>
<th>DATE</th>
<th>LOCATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec., 1861</td>
<td>Entire state</td>
<td>Storm produced 1 to 3 feet of snow throughout Oregon.</td>
</tr>
<tr>
<td>Dec., 1884</td>
<td>Columbia Basin, OR</td>
<td>Heavy snowfall. 29.5 inches in the Dalles in one day.</td>
</tr>
<tr>
<td>Dec., 1885</td>
<td>Wasco County, OR</td>
<td>Most snow recorded (6-10 feet). Trains had difficulty reaching Portland.</td>
</tr>
<tr>
<td>Dec., 1892</td>
<td>Northern counties, OR</td>
<td>15 to 30 inches of snow throughout northern counties</td>
</tr>
<tr>
<td>Jan., 1916</td>
<td>Entire state</td>
<td>Two storms. Very heavy snowfall, especially in mountainous areas.</td>
</tr>
<tr>
<td>Jan., 1950</td>
<td>Entire state</td>
<td>Record snow falls; Property damage throughout state.</td>
</tr>
<tr>
<td>Mar., 1960</td>
<td>Entire state</td>
<td>Many automobile accidents; Two fatalities.</td>
</tr>
<tr>
<td>Jan., 1969</td>
<td>Entire state</td>
<td>Heavy snow throughout state.</td>
</tr>
<tr>
<td>Feb., 1985</td>
<td>Entire state</td>
<td>Two feet of snow in northeast mountains; Downed power lines. Fatalities.</td>
</tr>
<tr>
<td>Feb., 1986</td>
<td>Central / Eastern Oregon</td>
<td>Heavy snow in Deschutes Basin. Traffic accidents; Broken power lines.</td>
</tr>
<tr>
<td>Mar., 1988</td>
<td>Entire state</td>
<td>Strong winds; Heavy snow.</td>
</tr>
<tr>
<td>Feb., 1990</td>
<td>Entire state</td>
<td>Heavy snow throughout state.</td>
</tr>
<tr>
<td>Nov., 1993</td>
<td>Cascade Mountains, OR</td>
<td>Heavy snow throughout region.</td>
</tr>
<tr>
<td>Mar., 1994</td>
<td>Cascade Mountains, OR</td>
<td>Heavy snow throughout region.</td>
</tr>
<tr>
<td>Winter 1998-99</td>
<td>Entire state</td>
<td>One of the snowiest winters in Oregon history (Snowfall at Crater Lake: 586 inches).</td>
</tr>
<tr>
<td>Jan., 2005</td>
<td>Gilliam, Morrow, Umatilla Counties, OR</td>
<td>33 injuries.</td>
</tr>
<tr>
<td>Nov. 2006</td>
<td>Hood River County, OR</td>
<td>Heavy freezing rain along I-84, closing the highway near Hood River.</td>
</tr>
<tr>
<td>Dec. 2006</td>
<td>Hood River County, OR</td>
<td>Freezing rain and sleet caused ice conditions from Cascade Locks to Hood River. Black ice on I-84.</td>
</tr>
<tr>
<td>Jan. 2008</td>
<td>Hood River County, OR</td>
<td>Heavy freezing rain from Bonneville westward through Columbia Gorge causing accidents on I-84. 1 fatality.</td>
</tr>
</tbody>
</table>

Probability and Vulnerability

As stated in the State Risk Assessment, different methods are used to assess risk at local and state levels. All methods employ history, probability and vulnerability data to determine probability and vulnerability scores for each hazard. These scores identify high priority areas to which local and state governments can target mitigation actions. The challenge with these varied methodologies is that access to, interpretation of, and scale of the data is not necessarily the same at local and state levels. As a result, local and state probability and vulnerability scores for a specific hazard in a specific community are not always the same. In some instances, probability and vulnerability scores are even quite different. The state recognizes these inconsistencies and has prioritized the analysis of local and state probability and vulnerability scores during the next plan update. Following are the local and state probability and vulnerability descriptions as they stand, without analysis of similarities and differences.

Probability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the probability (High, Moderate, Low) that Region 5 will experience winter storms is depicted in Table 2-351. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment

Winter storms occur annually in Region 5. Based on historical events severe winter storms may impact the region approximately every four years. We can expect to have continued annual storm events in this region however there is no statistical data available other than the historical events that have occurred to base these judgments on. There is no statewide program to study the past, present and potential future impacts of winter storms in the state of Oregon at this time.

Vulnerability

Local Assessment

Based on the OEM Hazard Analysis conducted by county emergency program managers, the region’s vulnerability (High, Moderate, Low) to winter storms is depicted in Table 2-352. See the State Risk Assessment for background information on the OEM Hazard Analysis and scoring methodology.

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Gilliam</th>
<th>Hood River</th>
<th>Morrow</th>
<th>Sherman</th>
<th>Umatilla</th>
<th>Wasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

State Assessment
Within the State of Oregon, Region 5 communities are known for cold winter conditions. This region is the commodity flow route to Eastern Oregon. With long road closures the communities suffer from the loss of traffic and revenue. Drifting, blowing snow has brought highway traffic to a standstill. Also, windy and icy conditions have closed Oregon's principal east-west transportation route, Interstate Highway 84, for hours. In these situations, travelers must seek accommodations – sometimes in communities where lodging is very limited. And local residents also experience problems. During the winter, heat, food, and the care of livestock are everyday concerns. Access to farms and ranches can be extremely difficult and present a serious challenge to local emergency managers.