Seasonal Climate Forecast March – May 2024 Tssued: February 15, 2024

Contact: ODF Lead Meteorologist Pete Parsons
503-945-7448 or peter giparsons@odf.oregon.gov

ODA Team: Diana Walker; Andy Zimmerman; Jenn Ambrose; Taylor Harding
ODF-Team: Julie Vondrachek; Kristin Cody

A Meyer

El Niño vs La Niña

(SST Patterns in the Tropical Pacific Ocean)

Courtesy: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/ensocycle.shtml

Sea Surface Temperatures (SSTs)

Animated (PowerPoint only) SSTs (top) / Anomalies (bottom)

El Niño Southern Oscillation (ENSO) Current Status and Forecast

- The January Southern Oscillation Index (SOI) rose to 0.5, reflecting strengthening of easterly trade winds across the tropical Pacific Ocean (indicating that El Niño is weakening).
- The November January Oceanic Niño Index (ONI +2.0°C) remained in the strong El Niño range. This index lags real-time sea surface temperatures (SSTs), which show El Niño weakening.
- NOAA's Climate Prediction Center (CPC) expects a rapid transition from El Niño to ENSO-neutral this spring and to La Niña this summer.

Important Note: This "Seasonal Climate Forecast" does not consider NOAA's ENSO forecast. It uses only historical and current ENSO conditions to find "analog years" that most-closely match the evolution of the current ENSO state.

Southern Oscillation Index (SOI)

SOI values from the top "analog years" compared

Month

SOI data courtesy https://www.cpc.ncep.noaa.gov/data/indices/soi

Oceanic Niño Index (ONI)

3-Month Running Mean

The Pacific Decadal Oscillation (PDO) (Reflects SST "Phase" in the North Pacific Ocean)

Positive (Warm)
"Phase"

Negative (Cool)
"Phase"

Courtesy: http://research.jisao.washington.edu/pdo/img/pdo_warm_cool.jpg

North Pacific Ocean

(Poleward of 20°N Latitude)

Month

PDO data courtesy https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat

SST Anomalies Comparison

January Analogs

January 2024

- The January analog composite (left) has a similar SST anomaly pattern ("good match"), compared to that of January 2024 (right).
- Both charts show moderate-to-strong El Niño (warm) conditions in the tropical Pacific but have significant differences in the north Pacific.

Global Temperature Changes Increase Error in Analog Forecasts!

March 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean IOAA Physical Sciences Laboratory 30N

Upper-Air Anomalies

- A "split-flow" jet stream pattern should continue across the Pacific Northwest with enhanced storm activity directed towards California.
- Although storms will weaken as they approach the Oregon Coast, their frequency should be high enough to bring precipitation most days.

March 2024 Forecast

Temperatures

March 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average -0.6 -0.7 0.0 -1.4 -1.1

Precipitation

- All 3 analog years had near or below-average temperatures.
- Expect precipitation most days, but the "split-flow" jet stream pattern will tend to weaken storms as they come ashore...leading to mostly below average rain and mountain snow, especially north and east.

April 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean NOAA Physical Sciences Laboratory 70N 30N 20N 10N

Upper-Air Anomalies

- The analog composite shows anomalous ridging extending from the eastern Gulf of Alaska to the Pacific NW Coast.
- This pattern, typically associated with El Niño, favors near-average temperatures but also opens the door for a late-season freeze.

April 2024 Forecast

Temperatures

April 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average 0.0 -0.6 -1.1 -0.3

Precipitation

- Analogs had mostly near-average temperatures, but a cold snap in April 1966 caused considerable damage to fruit trees.
- Precipitation was above average in 1958 but well-below average in 1966
 & 1973, which skews the overall forecast to below average.

May 2024 Forecast

Mean Upper-Air Pattern

Upper-Air Anomalies

- A "split-flow" pattern should continue over the Pacific Northwest with mean ridging over the Rockies.
- Despite a weakening El Niño, analogs consistently maintained anomalous ridging over Oregon.

May 2024 Forecast

Temperatures

May 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average 3.1 2.9 4.0 3.9 3.0

Precipitation

- Analog temperatures varied...ranging from a cool 1966 to an extremely mild 1958. 1966 had a western valley freeze late in the month.
- Precipitation should be below average, but 1958 had considerable thunderstorm activity across the state.

March – May 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean NOAA Physical Sciences Laboratory 30N 20N

Upper-Air Anomalies

- Expect a classic El Niño "split-flow" jet stream pattern coming into the Pacific Northwest with increased storminess across the SW US.
- Overall, this pattern tends to produce relatively mild and dry weather across Oregon but not without "nested" cool and/or damp periods.

March – May 2024 Forecast

Temperatures

Precipitation

- Slightly above-average temperatures but not without cool periods. The 1966 analog year had western valley freezing periods in April and May.
- Expect an abundance of days with precipitation but overall rain and mountain snow should generally fall short of average.

Forecast Highlights

- This forecast is based on weather that occurred during the (1958; 1966; 1973) analog years (no changes to the analogs from last month).
- A dominant "split-flow" jet stream pattern is expected to weaken and shear apart storms as they approach Oregon.
- Above-average temperatures & below-average precipitation is favored. Snowpacks will likely finish the season below average, especially north.
- Brief cool/damp periods, counter to the overall trend, are likely.
- Late-season freezes (April and May) occurred in the 1966 analog year.

Disclaimer: This forecast is not associated with NOAA's CPC (see "Forecasting Methods..." at: https://oda.direct/Weather) nor the official CPC "Three-Month Outlooks," which are available at: https://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=1

Oregon SNOTEL Current Snow Water Equivalent (SWE) % of Normal

https://www.nrcs.usda.gov/wps/portal/wcc/home/

the first reading of the day (typically 00:00).

Oregon SNOTEL Current Snow Water Equivalent (SWE) % of Normal

Oregon SNOTEL Current Snow Water Equivalent (SWE) % of Normal

https://www.nrcs.usda.gov/wps/portal/wcc/home/

the first reading of the day (typically 00:00).

Drought Has Improved for Much of Oregon

(January replenishing of the statewide snowpack was welcome)

Courtesy: National Drought Mitigation Center (NDMC)

<u> https://droughtmonitor.unl.edu/</u>

Forecast Resources

ODA Seasonal Climate Forecast Home:

https://www.oregon.gov/ODA/programs/NaturalResources/Pages/Weather.aspx

CPC Official US Three-Month Forecasts (Graphics):

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=01

□ CPC US 30-Day & 90-Day Forecasts (Discussions):

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/fxus07.html

- □ CPC Weekly & Monthly ENSO Discussions:
- https://www.cpc.ncep.noaa.gov/products/analysis monitoring/enso advisory
- Australian Government Climate Model Summary:

http://www.bom.gov.au/climate/model-summary/#region=NINO34&tabs=Overview

Australian Government ENSO Wrap-Up:

http://www.bom.gov.au/climate/enso

■ IRI ENSO Quick Look:

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

Water Supply / Fire-Potential Outlook

CPC U.S. Seasonal Drought Outlook:

https://www.cpc.ncep.noaa.gov/products/expert_assessment/season_drought.png

■ NRCS Snow Water Equivalent Oregon Map:

https://www.wcc.nrcs.usda.gov/ftpref/data/water/wcs/gis/maps/or_swepctnormal_update.pdf

■ NRCS/USDA Snow Water Equivalent Products:

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/

■ NDMC U.S. Drought Monitor:

https://droughtmonitor.unl.edu/

■ NIDIS North American Drought Portal:

https://www.drought.gov/nadm/content/percent-average-precipitation

■ WRCC WestWideDroughtTracker:

https://www.wrcc.dri.edu/wwdt/

■ NWCC Northwest Interagency Coordination Center (video)

https://gacc.nifc.gov/nwcc/predict/outlook.aspx

