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Types of Surveys

Surveying has to do with the determination of the relative spatial location of
points on or near the surface of the earth.  It is the art of measuring horizontal
and vertical distances between objects, of measuring angles between lines, of
determining the direction of lines, and of establishing points by predetermined
angular and linear measurements.  Along with the actual survey measurements
are the mathematical calculations.  Distances, angles, directions, locations,
elevations, areas, and volumes are thus determined from the data of the survey.
Survey data is portrayed graphically by the construction of maps, profiles, cross
sections, and diagrams.

Types of Surveys:

Geodetic Surveying: The type of surveying that takes into account the
true shape of the earth.  These surveys are of
high precision and extend over large areas.

Plane Surveying: The type of surveying in which the mean surface
of the earth is considered as a plane, or in which
its spheroidal shape is neglected, with regard to
horizontal distances and directions.

Operations in Surveying:

Control Survey: Made to establish the horizontal and vertical
positions of arbitrary points.

Boundary Survey: Made to determine the length and direction of
land lines and to establish the position of these
lines on the ground.

Topographic Survey: Made to gather data to produce a topographic
map showing the configuration of the terrain
and the location of natural and man-made
objects.

Hydrographic Survey: The survey of bodies of water made for the
purpose of navigation, water supply, or sub-
aqueous construction.

Mining Survey: Made to control, locate and map underground
and surface works related to mining operations.

Construction Survey: Made to lay out, locate and monitor public and
private engineering works.

1
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Route Survey: Refers to those control, topographic, and
construction surveys necessary for the location
and construction of highways, railroads, canals,
transmission lines, and pipelines.

Photogrammetric Survey: Made to utilize the principles of aerial photo-
grammetry, in which measurements made on
photographs are used to determine the positions
of photographed objects.
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Review of Basic Trigonometry

Pythagorean Theorem

Attributed to and named for the Greek philosopher and mathematician
Pythagoras, the Pythagorean Theorem states:

In a right triangle, the square of the hypotenuse is equal to the sum of the
squares of the other two sides.

(For the derivation of the Pythagorean Theorem, see the appendix.)

C 2 = A2 + B2

where: C is the hypotenuse (side opposite the right angle). A and B are
the remaining sides.

Solving for C:

C2  = A2  + B2

C = A2 + B2 (take the square root of each side)

Solving for A:

C2  = A2  + B2

C2  - B2  = A2 (subtract B2 from each side)

A2  = C2  - B2 (reverse the equation)

A = C2 - B2 (take the square root of each side)

Solving for B:

B = C2 - A2 (identical to solving for A)

2
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Using one of the forms of the Pythagorean Theorem on the previous
page, solve for the unknown side in each triangle.

AediS BediS CediS

1 3 4

2 21 31

3 8 71

4 54 35

5 04 69

6 63 111

7 6.5 5.6

8 5.3 4.8

9 1.2 9.2

The first two are solved for you.

First Triangle Second Triangle

A = 3, B = 4, C = ? A = ?, B = 12, C = 13

Since C is the unknown, Since A is the unknown,
we solve for C. we solve for A.

C2 = A2 + B2 A = C2 - B2

C = (3)2+ (4)2 A = (13)2 - (12)2

C = 9 + 16 A = 169 - 144

C = 25 A = 25

C = 5 A = 5
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Units of Angular Measurement

The most common angular units being employed in the United States is
the Sexagesimal System.

This system uses angular notation in increments of 60 by dividing the
circle into 360 degrees; degrees into 60 minutes; and minutes into 60
seconds. Each unit has a corresponding symbol: degrees are indicated by  °;
minutes by  ´; and seconds by  ˝.

Therefore;

1 circle = 360° = 21,600´ = 1,296,000˝
1°  = 60´ = 3600˝
1´  = 60˝

Usually angles are expressed in Degrees, Minutes, and Seconds as
applicable, but can be expressed in any combination. For example,
35.37° 2122.2´ 127332˝, 34°  81´  72˝ , and 35°  22´  12˝  all represent the
same magnitude of angle. However, in the last form, which is the
preferred notation, notice that minutes and seconds equal to or greater
than 60 are carried over to the next larger unit and that degrees and
minutes do not have decimals. Decimal seconds are acceptable.

Figure 2
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The primary unit of angular measurement in the metric system is the
radian. A radian is defined as the angle between radius lines from either
end of an arc of radius length.

The circumference of a circle is twice the radius length times π, or C =
2πr.  Therefore, 1 circle = 2π radians.

Since 1 circle = 360° = 2πrad.,
then 1 rad. = 360°/2π = 57.29578...°

The use of radians and the value of 57.29578° will be mentioned again
when dealing with circular and spiral curves.

Another unit is the grad or gon.  A grad is defined as 1/400 of a circle.
The grad is widely used in much of the world as part of the metric
system, even though the radian is the primary unit.

For performing certain mathematical operations with angles, it is some-
times easier to convert to decimal degrees first, perform the necessary
math, then convert back to degrees, minutes, and seconds.

sdnoceS-setuniM-seergeD seergeDlamiceD

01 21°32 ' 81 "

11 °588.24

21 °545.36

31 85°78 ' 84 "

23°  + (12´ ÷ 60) + (18˝ ÷ 3600) = 23.205°
42°  + (0.885° x 60´) = 42° 53´ + (0.1´ x 60˝) = 42° 53´ 06˝

Figure 3
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Ratios and Proportions

A ratio is a comparison of two values or quantities, and can be expressed
in numerous ways.  The ratio of 2 to 5, 2:5, 2 ÷ 5, or 2/5, are all expres-
sions of the same ratio.

As a fraction, a ratio can be treated like any other fraction.  The ratio is
the quotient of the first value divided by the second value, and as such,
can also be expressed as a decimal.  In our example above, the ratio of 2
to 5 is 0.4000.

A proportion is a statement of equality between two ratios.  Since the
ratio of 2 to 5 is the same as the ratio of 4 to 10, we can say that the two
ratios are a proportion.  The same proportion can be expressed as 2:5 =
4:10, 2 ÷ 5 = 4 ÷ 10, or 2/5 = 4/10.  Notice that 2/5 = 0.4000 = 4/10.

Find the value of x.

14)
1
2 =

x
4 x =

15)
2
3 =

x
12 x =

16)
5
3 =

15
x x =

17)
789
375 = x x =

18) 4.875 =
x

124 x =
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Definition of Trigonometric Functions

All trigonometric functions are simply ratios of one side of a right triangle
to a second side of the same triangle, or one side over another side.  The
distinction between functions is which two sides are compared in the ratio.

The figure below illustrates the side opposite from and the side adjacent
to Angle A, and the hypotenuse (the side opposite the right angle).
The trigonometric functions of any angle are by definition:

sine = Opposite Side / Hypotenuse
cosine = Adjacent Side / Hypotenuse
tangent = Opposite Side / Adjacent Side

and inverting each ratio, we have

cosecant = Hypotenuse / Opposite Side = 1/sine
secant = Hypotenuse / Adjacent Side = 1/cosine
cotangent = Adjacent Side / Opposite Side = 1/tangent

Practice Problems:

19) Given a right triangle as shown above, and given side a = 3, side
b = 4, and side c = 5, list the 6 trigonometric functions of angle A
as a fraction and as a decimal.

20) Given side a = 42, side b = 56, and side c = 70, list the functions of
angle A.

21) Given side a = 5, side b = 12, list the functions of angle A.

22) Given sin A = 0.2800, list cos A and tan A.

Figure 4
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Trigonometric Functions of 45°

In the examples on the previous page, we developed trig functions for
various angles A without determining the value of angle A. In order for
trig functions to be of significant value, there must be a known correla-
tion between the magnitude of the angle and the magnitude of the
trigonometric functions.

We can develop the functions for a 45° angle as follows:
Assume a 45° right triangle as shown. If we assign a value of 1 to side a,
then we know that side b = 1 also.

Using the Pythagorean Theorem, side c = 2 .

The sin, cos, and tan of 45° are:

sin 45° = 
1
2  = 0.7071

cos 45°=
1
2 = 0.7071

tan 45°=
1
1 = 1.0000

Figure 5

b

c

45o

a



Basic Surveying - Theory and Practice

Oregon Department of Transportation • February 20002-8

Trig Functions -vs- Size of the Triangle

On the previous page, we developed values for the trig functions of a 45°
angle given assumed lengths of the sides of the triangle. But if the
lengths of the sides were altered and the 45° angle held, would the trig
functions remain unchanged? Let’s find out.

Assuming a hypotenuse of c = 1, we can solve for the other two sides,
again using the Pythagorean Theorem.

c = a2 + b2

a = b

c = a2 + a2

c2 = 2a2

a2 = c2

2

a = c2

2

a = 12

2

a = 1
2  = 0.7071

b = a = 0.7071

Therefore our three primary trig functions are:

sin 45° = 0.7071/1 = 0.7071
cos 45° = 0.7071/1 = 0.7071
tan 45° = 0.7071/0.7071 = 1.0000

We can see that the trig functions, (the ratios between the sides) are not
dependent on the size of the triangle.  Try developing the functions for
the 45° angles in the following triangles.

23) hypotenuse (c) = 187,256

24) side opposite (a) = 0.0027
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Trig Functions -vs- the Magnitude of the Angle

Now that we know that the size of a triangle does not affect the trig
functions of its angles, let’s find out what happens if we alter the shape
of the triangle by increasing or decreasing the magnitude of the acute
angles. The right angle cannot be modified since trig functions are the
ratios of one side to another side of a right triangle.

Let’s start with our 45° triangle from the previous page, having a hypot-
enuse of 1.0000 and the other two sides of 1/2 , or 0.7071 each.  If we
maintain the length of the hypotenuse while decreasing the angle A, the
figure at the right shows that the side opposite also decreases, while the
side adjacent to angle A increases.

Let’s decrease angle A until side a is shortened from 0.7071 to 0.6000.  At
this point, we don’t know the size of angle A, except that it is less than
45°.  But knowing the lengths of sides a and c, we can determine side b
to be 0.8000 and the trig functions of angle A to be:

sin A = 0.6000/1.0000 = 0.6000 ≠ sin 45° = 0.7071
cos A = 0.8000/1.0000 = 0.8000 ≠ cos 45° = 0.7071
tan A = 0.6000/0.8000 = 0.7500 ≠ tan 45° = 1.0000

From this we know that changing the magnitude of the angle changes all
of the trig functions associated with that angle.

Figure 6
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Figure 7

Trigonometric Functions of 30° and 60°

We can develop trig functions for a 60° right triangle similar to the
method used on the 45° triangle.

We can construct a 60° angle by creating an equilateral triangle having
three 60° angles. If we assign a value of 1 to each side, bisect the triangle
through the base and the vertex, we have a right, 60° triangle with a
hypotenuse of 1 and the side adjacent to the 60° angle of 1/2. The side
opposite then is 3/4 or 0.8660 and the trig functions are:

sin 60° = 3
4 /1 = 3/4  = 0.8660

cos 60° =
1
2 /1 = 1/2 = 0.5000

tan 60° = 3
4 /

1
2  = 2 3

4  = 1.7321

25) Having bisected the 60° angle at the vertex of our equilateral
triangle, we now have two 30° angles. Based on the above figure,
what are the trig functions of 30°?

sin 30° =

cos 30° =

tan 30° =

1/21/2

1 1

30o30o

60o
60o

3/4
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Cofunctions

Of the six trigonometric functions that have been discussed, three have
the prefix “co” in their names.  The “co” functions of sine, tangent, and
secant are cosine, cotangent, and cosecant respectively.

Any function of an acute angle is equal to the cofunction of its comple-
mentary angle.  Complementary angles are two angles whose sum is 90°.

Since the two acute angles in any right triangle are complementary, the
functions of one angle are equal to the cofunctions of the other.  We
found this in our work with 30° and 60° angles.

sine 30° = 0.5000 = cosine 60°
cosine 30° = 0.8660 = sine 60°

Sin A = Cos B = Side a / Side c
Cos A = Sin B = Side b / Side c
Tan A = Cot B = Side a / Side b
Cot A = Tan B = Side b / Side a
Sec A = Csc B = Side c / Side b
Csc A = Sec B = Side c / Side a

Figure 8
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Trigonometric Functions for Angles Greater than 90°

So far we have only dealt with functions for angles between 0° and 90°.
Angles outside of this range cannot be included in a right triangle as
specified in the earlier definitions of the functions.

However, if we place the right triangle on x,y axes as shown, we can
rewrite the trigonometric functions.  The hypotenuse becomes r, or the
radial distance from the origin.  The adjacent side becomes x, or the
distance along the x-axis.  The opposite side becomes y, or the right angle
distance from the x-axis.

The trigonometric functions of 0 then are:

sin0 = opposite side / hypotenuse = a/c = y/r
cos0 = adjacent side / hypotenuse = b/c = x/r
tan0 = opposite side / adjacent side = a/b = y/x

With these definitions, we can increase or decrease 0 by any amount we
choose and still have x and y, either or both of which may be positive,
negative, or zero.  The radial distance, r, is always considered positive in
the 0 direction.

Since x and/or y may be negative, the trigonometric functions may also
be negative based on the algebraic signs of x and y.

Figure 9

θ

y (a)
r (c)

x (b)
(X)

(Y)
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Algebraic Signs of
the Trigonometric Functions in each Quadrant

Using the definitions on the previous page, we can determine the values
of the functions for each angle shown below.  List the Sine, Cosine, and
Tangent of each angle in both fractional and decimal form.  Three are
already done.

26) Sin0 = 3/5 = 0.6000 32) Sin 180 + 0 =
27) Cos0 = 33) Cos 180 + 0 =
28) Tan0 = 34) Tan 180 + 0 = -3/-4 = 0.7500
29) Sin 180 - 0 = 35) Sin 360 - 0 =
30) Cos 180 - 0 = -4/5 = -0.800 36) Cos 360 - 0 =
31) Tan 180 - 0 = 37) Tan 360 - 0 =

Notice that the angle 0 becomes a “reference angle” for each of the
other three, and that the magnitude of the functions are the same for
each angle with only the algebraic signs differing.

38) The signs of the functions in quadrant 1 are all positive.  Show
the signs of the others in the chart below.

1dauQ 2dauQ 3dauQ 4dauQ

niS +

soC +

naT +

Figure 10
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3 4

θ

180o - θ

180o+ θ

360o - θ
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-3 -3

-4
(x)

( Y )
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Trigonometric Functions of Quadrantal Angles

The Quadrantal Angles (0°, 90°, 180°, 270°, and 360°) have unique
functions in that all cases, the opposite side (x) and the adjacent side (y)
always meet the following condition.  One is equal to plus or minus the
hypotenuse ( r) and the other is equal to zero.  This combination can only
yield three possible values for the trig functions: 0, ±1, and an unidenti-
fied value (division by 0).

39) List the values of x and y as 0 or r and show the resulting
functions below.

=X =Y eniS enisoC tnegnaT

°0

°09

°081

°072

°063

A closer look at the undefined values is in order.  The tangent of 90° has
an x value of 0 causing a division by zero.  If we consider the tangent of
an angle slightly less than 90°, we have a y value very near to r and a
very small x value, both positive.  Dividing by a very small number
yields a large function.  The closer the angle gets to 90°, the smaller the x
value becomes, the closer the y value becomes to r, and the larger the
tangent function becomes.  When the angle reaches 90°, the tangent
approaches infinity, or tan 90°= ∞.  But if an angle slightly larger than 90°
is evaluated in a similar way, division by a very small negative x occurs,
creating a tangent function approaching negative infinity, or tan 90°= -∞.
In reality, the function is undefined and we express it as tan 90°= ±∞.

Figure 11

(X)

(Y)

x
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Values of Trigonometric Functions

There are several possible ways to determine the values of the trigono-
metric functions of a given angle:

1) The infinite series for Sine and Cosine functions.

2) Interpolation of values from published Trigonometric Tables.

3) Select the appropriate button on a scientific calculator.

The first is long and involved and beyond the scope of this course.  Both
(1) and (2) have become obsolete due to (3).  We will assume that our
little electronic wonders will return the proper value when a function is
calculated.  Notice that only three functions exist on most electronic
calculators, as the others can be expressed as reciprocals of those shown,
or otherwise easily reached.

While each angle has only one value for each of its trigonometric func-
tions, exercise problems 26-37 reveal that more than one angle can have
the same trigonometric values.  Sin0 and Sin 180° - 0 , Cos0 and Cos 360°
- 0 , and Tan0 and Tan 180° + 0 are just three examples.  Your calculator
cannot determine which value is truly correct when taking an inverse or
arc function (determining an angle from a function) so it will return a
value between -90° and +180° depending on the function.  It will be up to
the individual to evaluate whether that is the correct value for the
particular situation.

Practice Problems:

40) Determine the missing side of a 30° right triangle with a hypot-
enuse of 6.

41) Determine the angles in a 3,4,5 triangle.

42) Measured slope distance is 86.95 feet at +8.5°.  What is the
horizontal distance and the elevation difference?
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Distance Measuring (Chaining)

History of Chaining

The Egyptians were one of the first known people to use some form of
chaining in both land surveying and construction surveying.  On a wall
in the tomb of Thebes and carved on a stone coffin are drawings of rope
stretchers measuring a field of grain.  The Great Pyramid of Gizeh (2900
B.C.) was constructed with an error of 8 inches in it’s 750 foot base.  This
is an error of 1 in 1000 on each side.

English mathematician Edmund Gunter (1581-1626) gave to the world
not only the words cosine and cotangent, and the discovery of magnetic
variation, but the measuring device called the Gunter’s chain shown
below.  Edmund also gave us the acre which is 10 square chains.

The Gunter’s chain is 1/80th of a mile or 66 feet long.  It is composed of
100 links, with a link being 0.66 feet or 7.92 inches long.  Each link is a
steel rod bent into a tight loop on each end and connected to the next
link with a small steel ring.

Starting in the early 1900’s surveyors started using steel tapes to measure
distances.  These devices are still called “chains” to this day.  The terms
“chaining” and “chainman” are also legacies from the era of the Gunter’s
chain.

3

Figure 12
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Procedures for Chaining

It must be remembered in surveying, that under most circumstances, all
distances are presumed to be horizontal distances and not surface
distances.  This dictates that every field measurement taken be either
measured horizontally or, if not, reduced to a horizontal distance math-
ematically.

In many instances, it is easiest to simply measure the horizontal distance
by keeping both ends of the chain at the same elevation.  This is not
difficult if there is less than five feet or so of elevation change between
points.  A hand level or “pea gun” is very helpful for maintaining the
horizontal position of the  chain when “level chaining.”  A pointed
weight on the end of a string called a “plumb bob” is used to carry the
location of the point on the ground up to the elevated chain by simply
suspending the plumb bob from the chain such that the point of the
plumb bob hangs directly above the point on the ground.

When the difference in elevation along the measurement becomes too
great for level chaining, other methods are called for.  One option, “break
chaining”, involves simply breaking the measurement into two or more
measurements that can be chained level.  This works well for measure-
ments along a gentle slope where a reasonable distance can be measured
between break chaining points.
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In some cases, it becomes impractical to break chain.  When the slope
becomes so steep that frequent chaining points are required, a vertical
surface must be measured across, or  intermediate chaining points are
not readily accessible, it may be more desirable to determine the horizon-
tal distance indirectly.  The most frequently used method is “slope
chaining”, where the distance along the slope is measured, the slope rate
is determined, and the horizontal distance calculated.

Slope rate angles are measured as Vertical Angles (+/- from horizontal),
or as Zenith Angles (Measured downward from a imaginary point on the
celestial sphere directly above the instrument).

When the vertical angle (v) is used, the horizontal distance (HD) is
calculated by multiplying the slope distance (SD) by the cosine of the
vertical angle.  This is the solution of a right triangle for the side adjacent
(horizontal distance) with the hypotenuse (slope distance) known.

From basic trigonometry, we know that;

cosine = Adjacent Side / Hypotenuse

Substituting the known values, we have;

cos(v) = HD / SD

Solving for HD by multiplying both sides of the equation by SD, we get;

HD = SDcos(v)

If the zenith angle (z) is measured rather than the vertical angle, the
calculations are nearly identical.  The only variation is that the zenith
angle is the complimentary angle of the vertical angle, so the sine func-
tion must be used. The formula is;

HD = SDsin(z)
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Errors in Chaining

Every measurement made with a mechanical device is subject to any
error that could possibly be caused by the condition of the device or by
the procedure used in taking the measurement.  Some of the more
common sources of errors are the standards to which the chain was
manufactured, any damage to the chain, sag in the chain, variation in the
tension on the chain, and changes in the temperature of the chain.  With
proper care of the chain and reasonable effort made with each use, the
effects of these errors can be kept within acceptable tolerances for all but
the most precise measurements.  When necessary, however, each of these
conditions can be compensated for mathematically if they are monitored
and compared to a known standard.

Proportional Errors

When a chain is manufactured, it is intended to be a specific length, plus
or minus some tolerance.  It may or may not actually meet those specifi-
cations.  When a field measurement is taken, the acceptable error may be
more or less than what the chain was designed for.  For high precision
work, we need to measure several known distances and determine if this
chain is the proper length.  If not, we need next to determine if the error
is in one or more specific locations along the chain or if the error is
proportional along the length.  If a known 50 foot distance is measured to
be 49.995 feet and a known 100 foot distance to be 99.99 feet, all measure-
ments made with that chain should be multiplied by a factor of 100/
99.99 (known distance over measured distance).

Constant Errors

If a chain has been kinked or broken and spliced back together, there is a
good chance that there will be a consistent error for any distances
measured using that portion of the chain.  This error needs to be added
or subtracted as appropriate each time.

Sag Correction

When a chain is suspended from each end and not supported along it’s
length, the weight of the chain causes it to sag and pull the two ends
toward each other.  It is impossible to exert enough outward force to
fully overcome the sag.  For all measurements, adequate tension should
be applied to minimize the effective shortening of the chain.  For precise
measurements, a correction should be applied using the formula given in
the appendix.
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Tension Correction

While a certain amount of tension is desirable to help offset the sag
effect, it will also stretch the chain.  Steel is generally thought of as not
being very easily stretched and indeed it is not.  That is one of the
reasons it is used for making chains.  But steel will still stretch to some
degree if tension is applied.  When a chain is checked against a known
distance, the applied tension should be controlled.  Subsequent precise
measurements should be made using the same tension, or if not, a
correction should be applied.  The formula for this is also in the appen-
dix.

Temperature Correction

Whatever material is used to make a chain, that material will expand and
contract with any change in temperature.  Some materials are more
affected than others, but every chain will change length somewhat if
warmed or cooled.  If precise measurements are needed, an adjustment
needs to be made for the change in temperature between the current
temperature and the temperature at the time the chain was checked
against a known distance.  This formula is also in the appendix.
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Distance Measuring
(Electronic Distance Meters)

In the early 1950’s the first Electronic Distance Measuring (EDM) equip-
ment were developed.  These primarily consisted of electro-optical (light
waves) and electromagnetic (microwave) instruments.  They were bulky,
heavy and expensive.  The typical EDM today uses the electro-optical
principle.  They are small, reasonably light weight, highly accurate, but
still expensive.  This chapter will focus on electro-optical instruments
only.

Basic Principle

To measure any distance, you simply compare it to a known or calibrated
distance; for example by using a scale or tape to measure the length of an
object.  In EDM’s the same comparison principle is used.  The calibrated
distance, in this case, is the wavelength of the modulation on a carrier
wave.

Modern EDM’s use the precision of a Quartz Crystal Oscillator and the
measurement of phase-shift to determine the distance.

The EDM is set up at one end of the distance to be measured and a
reflector at the other end.  The EDM generates an infrared continuous-
wave carrier beam, which is modulated by an electronic shutter (Quartz
crystal oscillator).  This beam is then transmitted through the aiming
optics to the reflector.  The reflector returns the beam to the receiving
optics, where the incoming light is converted to an electrical signal,
allowing a phase comparison between transmitted and received signals.
The amount by which the transmitted and received wavelengths are out
of phase, can be measured electronically and registered on a meter to
within a millimeter or two.

4

Figure 13
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Suppose the distance to be measured is an exact multiple (n) of 10 m.
The optical path however, will be 2n x 10 m (this is the double distance).
As the total path is 2n x 10 m, the total phase delay is n x 360°.  Each 10
m wavelength represents a full 360° phase delay.  The phase difference
between a transmitted and received beam is also n x 360°, which cannot
be distinguished from a 0° phase shift.

In general, the distance to be measured may be expressed as n x 10 + d.
The total phase delay Φ between transmitted and received signals
becomes:

Φ = n x 360° + ∆Φ

In which ∆Φ equals the phase delay due to the distance d.  As n x 360° is
equivalent to 0° for a phase meter, the angle can be measured and will
represent d according to the relation.

d =   ∆Φ  x 10 m
360°

Most EDM’s use four modulation frequencies to measure long distances
without ambiguity.

The EDM first transmits a particular frequency generating a 10 m
wavelength which determines the fraction of 10 m measured, it then
switches to a 100 m wavelength to determine the fraction of 100 m, 1000
m wavelength to determine the fraction of 1000 m and 10 000 m wave-
length to determine the fraction of 10 000 m.

detareneGhgnelevaW ecnatsiDevloseR

m01 012.3xxx

m001 012.37xx

m0001 012.372x

00001 012.3721

The final distance is then converted and displayed in the units desired.

In the latest generation instruments, this process is done in less that 2
seconds.
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Accuracy Specifications

EDM specifications are usually given as a standard deviation.  The
specification given is a two part quantity.  A constant uncertainty (re-
gardless of the distance measured) and a parts-per-million (ppm) term
(proportionate to the distance measured).

EDM Make and Model Constant Proportion

Wild D14 and D14L +/–  5 mm +/–  5 ppm

Wild D15 and D15S +/–  3 mm +/–  2 ppm

Wild/Leica DI1600 +/–  3 mm +/–  2 ppm

Wild DI2000 +/–  1 mm +/–  1 ppm

TCA 1800 +/–  1 mm +/–  2 ppm

For short distances, the constant part of the error is significant and could
exceed the normal errors of ordinary taping.  As in angle measurements,
short traverse sides should be avoided.

Environmental Correction

The procedures used to measure distances depends entirely on an
accurate modulation wavelength.  When the infrared beam is transmit-
ted through the air, it is affected by the atmospheric conditions that exist.
To correct for these conditions, the barometric pressure and temperature
must be measured and the appropriate corrections made.  All EDM’s
come with charts and formulas to compute this PPM correction.  This
value can usually be stored in the instrument.  Optionally, the PPM
correction could by applied later instead.  An example ppm chart is
shown in the appendix.
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Prisms

The reflector, or prism, is a corner cube of glass in which the sides are
perpendicular to a very close tolerance.  It has the characteristic that
incident light is reflected parallel to itself, thus returning the beam to the
source.  This is called a retrodirective prism or retro reflector.

These reflectors have a so-called “effective center”.  The location of the
center is not geometrically obvious because light travels slower through
glass than air.  The effective center will be behind the prism itself and  is
generally not over the station occupied.  Thus there is a reflector constant
or prism constant to be subtracted from the measurement.  Some manu-
facturers shift the center of the EDM forward the same amount as the
prism offset to yield a zero constant.  All Wild/Leica EDM’s are shifted
forward by 35 mm.

Always use prisms designed for your EDM system.  Virtually all
electro-optical EDM’s of today mount to the theodolite and, depending
on the type of the mount (scope, yoke, built in, etc), the prism housing
has to be designed accordingly.

Figure 14

a

b

c

t

D

1.57 x 2t

offset

From EDM

To EDM
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Slope Reduction

EDM instruments all measure (line of sight) slope distances only.  In
surveying, we are primarily concerned with horizontal distances.
Therefore, this slope distance must be reduced to a horizontal distance.
Most EDM’s have the ability to make these computations through the
use of a keyboard or by passing the raw distance to an electronic theodo-
lite which in turn performs the function.  For short distances, a simple
right triangle reduction may be applied:

Horizontal Distance = s x sin(z)

When larger distances are involved, the earth’s curvature and atmo-
spheric refraction need to be taken into account.  The equations are as
follows:

Horizontal Distance in meters = s(sinz - E1cosz)

Vertical Distance in meters = s(cosz + Esinz)

Where:
E1 = 0.929 s(sinz)

        6 372 000 m

E = 0.429 s(sinz)
       6 372 000 m

s = slope distance in meters

z = zenith angle

The horizontal distance equation uses the instrument elevation as the
datum.  If the sight is long and steeply inclined, a reciprocal observation
(from the other end) would give a different answer.  Each can be reduced
to sea level by multiplying them by the following factor:

 6 372 000
6 372 000 + H

H = station elevation in meters

Where H is the station elevation in meters.  A more modern approach
producing better results is the use of reciprocal zenith computations where
the zenith angles and slope distances are measured from both ends of the
line.  The difference in elevation is the average of the elevations and the
correction for earth curvature and refraction cancels.
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Angle Measuring

Measuring distances alone in surveying does not establish the location of
an object.  We need to locate the object in 3 dimensions.  To accomplish
that we need:

1.  Horizontal length (distance)

2.  Difference in height (elevation)

3.  Angular direction.

This chapter discusses the measurement of both horizontal and vertical
angles.

An angle is defined as the difference in direction between two convergent
lines.  A horizontal angle is formed by the directions to two objects in a
horizontal plane.  A vertical angle is formed by two intersecting lines in a
vertical plane, one of these lines horizontal.  A zenith angle is the comple-
mentary angle to the vertical angle and is formed by two intersecting
lines in a vertical plane, one of these lines directed toward the zenith.

5

Figure 15



Basic Surveying - Theory and Practice

Oregon Department of Transportation • February 20005-2

Exterior Angles

Deflection LeftDeflection Right

Backsight

Foresight

180o

Back Line Produced
Backsight

Foresight 180o

Back Line Produced

Backsight

Foresight

Interior Angles

Backsight

Foresight

Angles to the LeftAngles to the Right

Types of Measured Angles

Interior angles are measured clockwise or counter-clockwise between two
adjacent lines on the inside of a closed polygon figure.

Exterior angles are measured clockwise or counter-clockwise between two
adjacent lines on the outside of a closed polygon figure.

Deflection angles, right or left, are measured from an extension of the
preceding course and the ahead line.  It must be noted when the deflec-
tion is right (R) or left (L).

Angles to the right are turned from the back line in a clockwise or right
hand direction to the ahead line.  This is ODOT’s standard.

Angles to the left are turned from the back line in a counter-clockwise or
left hand direction to the ahead line.

Angles are normally measured with a transit or a theodolite, but a
compass may be used for reconnaissance work.

Figure 16
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Figure 17

A Transit is a surveying instrument having a horizontal circle divided
into degrees, minutes, and seconds.  It has a vertical circle or arc.  Tran-
sits are used to measure horizontal and vertical angles.  The graduated
circles (plates) are on the outside of the instrument and angles have to be
read by using a vernier.

A Theodolite is a precision surveying instrument; consisting of an alidade
with a telescope and an accurately graduated circle; and equipped with
the necessary levels and optical-reading circles.  The glass horizontal and
vertical circles, optical-reading system, and all mechanical parts are
enclosed in an alidade section along with 3 leveling screws contained in
a detachable base or tribrach.

Figure 18
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As surveyors we must know several relationships between an angular
value and its corresponding subtended distance.

Surveyors must strive to maintain a balance in precision for angular and
linear measurements.  If distances in a survey are to be measured with a
relative precision of 1 part in 20,000, the angular error should be limited
to 10 seconds or smaller.

Comparison of Angular and Linear Errors

Standard error
of angular

measurement

05’

Linear error
in 1000 Units.

(Feet – Meters)

Accuracy
Ratio

01’

30”

20”

10”

05”

01”

1.454

0.291

0.145

0.097

0.048

0.024

0.005

1:688

1:3436

1:6897

1:10,309

1:20,833

1:41,667

1:200,000



Geometronics • February 2000

Chapter 5:  Angle Measuring

5-5

Repeating Instruments

All transits and some theodolites are constructed with a double vertical
axis.  They are equipped with upper and lower circle clamps and tangent
screws, sometimes referred to as upper and lower motions.  The lower
clamp secures the horizontal circle to the base of the instrument while
the upper clamp secures the circle to the alidade (the upper body of the
instrument).Through the use of both clamps and their accompanying
tangent (fine adjustment) screws, these instruments can be used to
measure angles by repetition.

In ODOT’s survey equipment fleet, the Wild T16’s are Repeating Instru-
ments.  These instruments have a modified design providing tangent
screw and one traditional type clamp that actually secures the alidade to
the base.  This clamp acts as either upper or lower motion depending on
the position of the locking lever located near the tangent screw.  With the
lever in the down position, the circle is clamped to the alidade and the
lock and tangent screw function as a lower motion.  When the lever is
moved to the up position, the circle is released from the alidade and
allowed to rest on the base of the instrument, causing the clamp and
tangent to function as an upper motion.
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Measuring Angles with a Repeating Instrument

Repeated measurements of an angle increase accuracy over that obtained
from a single measurement.  A horizontal angle may be accumulated and
the sum can be read with the same precision as the single value.  When
this sum is divided by the number of repetitions, the resulting angle has
a precision that exceeds the nominal least count of the instrument.

To measure an angle set by repetition:

1. Set zero on the horizontal plate, and lock the upper motion.

2. Release the lower motion, sight the backsight, lock the lower
motion, and perfect the sighting with the lower tangent screw.

3. Release the upper motion, turn to the foresight, lock the upper
motion, and perfect the sighting.

4. Record the horizontal angle.

5. Release the lower motion, plunge (invert) the scope and point to
the backsight in the reverse position, lock the lower motion, and
perfect the sighting.

6. Release the upper motion, turn to the foresight, lock the upper
motion, and perfect the sighting.

7. Record the double angle.  Compute the mean angle.

8. If further accuracy is desired continue this process until 6 angles
are accumulated.  Divide the result by 6 and compare the result
to the mean of the first 2.  If they agree within 6 seconds accept
the angle.  Otherwise redo the set.  In ODOT, we are required to
turn (6) angles for Traverse and (2) for other less critical control
points.

The expected accuracy of a measurement, as computed, is in direct
proportion to the number of observations.  However, factors limiting
accuracy include, eccentricity in instrument centers, errors in the plate
graduations, instrument wear, setting up and pointing the instrument,
and reading the scale or vernier.  A practical limit to the number of
repetitions is about 6 or 8, beyond which there is little or no appreciable
increase in accuracy.
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Example of an angle set turned by a REPEATING instrument:

Figure 19

2)   78o 43. 3'

BS

FS

STA ANGLE RIGHT

FS

BS

6)  236o 09. 9'

M)   39o 21' 39"

1)   39o 21. 6'

m)   39o 21' 39"



Basic Surveying - Theory and Practice

Oregon Department of Transportation • February 20005-8

Measuring Angles with a Directional Instrument

A Directional Theodolite is not equipped with a lower motion.  It is con-
structed with a single vertical axis and cannot accumulate angles.  It
does, however, have a horizontal circle positioning drive to coarsely
orient the horizontal circle in any desired position.  In ODOT’s survey
equipment fleet, the T2000’s, T1600’s and T1610’s are all Directional Instru-
ments.

A directional theodolite is more precise than a repeating theodolite.
Directions, rather than angles are read.  After sighting on a point, the line
direction from the instrument to the target is noted.  When a pointing is
taken on the next mark, the difference in directions between them is the
included angle.

To measure an angle set with a directional theodolite:

1. Point to the backsight in the direct position, lock on the target
and record the plate reading.  Although not mathematically necessary, we set
the horizontal circle to zero to simplify the calculations and to aid in any
necessary debugging of the data.

2. Loosen the horizontal motion and turn to the foresight.  Lock the
horizontal motion, perfect the sighting, then record the horizontal plate
reading.

3. Loosen both horizontal and vertical motions, plunge the scope
and point to the foresight.  Again ( in the reverse position) lock the
horizontal motion, perfect the sighting and record the horizontal plate
reading.

4. Loosen the horizontal motion and turn to the backsight, lock the
horizontal motion, perfect the sighting and record the horizontal plate
reading.

This completes one set.  Depending on the accuracy required additional
sets should be turned.

In ODOT, we are required to turn (2) sets for Traverse angles and (1) set
for other less critical control points.

To reduce the notes, mean the direct and reverse observations to the
backsight and foresight.  Compute the mean direction to the foresight by
subtracting the value of the meaned initial direction (backsight) to get
final directions.  If any set varies from the mean of all sets by more than
+/- 5 seconds, reject that set and re-observe that particular set.
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Example of two angle sets turned by a Directional Instrument:

Figure 20

218o 21'  40"

BS

FS

STA PLATE
READING

ADJ. PLATE
READING SET ANGLE FINAL ANGLE

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

0o 00" 00" 0o 00" 02"

180o 00' 04"

38o 21' 43" 38o 21' 41.5"

38o 21' 39.5"

0o 00' 00"

179o 59' 57"

38o 21' 42"

218o 21' 36"

-00o 00' 01.5"

38o 21' 39"

38o 21' 40.5"

38o 21' 40"
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Zenith Angles

Unlike transits, theodolites are not equipped with a telescope level.
Modern theodolites have an indexing system that utilizes an automatic
compensator responding to the influence of gravity.

When the theodolite is properly leveled, the compensator is free to bring
the vertical circle index to its true position.  Automatic compensators are
generally of two types:

1. Mechanical, whereby a suspended pendulum controls prisms
directing light rays of the optical-reading system.

2. Optical, in which the optical path is reflected from the level
surface of a liquid.

To measure a zenith angle:

1. Point the instrument to the target object in a direct position.

2. Lock the vertical motion, perfect the sighting and record the
zenith angle.

3. Loosen both the horizontal and vertical motions, plunge the
scope, rotate the alidade 180° and re-point to the target in the
reverse position.

4. Lock the vertical motion, perfect the pointing and record the
zenith angle.

A mean zenith angle is obtained by first adding the direct and reverse
readings to obtain the algebraic difference between their sum and 360°;
then dividing this difference by 2, and algebraically adding the result to
the first (direct) series measurement.

The result is the zenith angle corrected for any residual index error.

Example:

tceriD "61'82°38

esreveR "83'13°672

muS "45'95°953

muSsunim°063 "60'00°00

)rorre(eulaVflaH "30'00°00

elgnAlanigirOsulP "61'82°38

ELGNALANIF "91'82°38
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Exercise - Calculate Final Angles from given

2)   114o 04.5'

BS

FS

STA ANGLE RIGHT

FS

BS

6)  342o 13.7'

1)   57o 02.2'

307o 57'  21"

BS

FS

STA PLATE
READING

ADJ. PLATE
READING SET ANGLE FINAL ANGLE

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

0o 00" 00"

179o 59' 54"

127o 57' 14"

359o 59' 58"

180o 00' 07"

127o 57' 11"

307o 57' 16"

data:

elgnAhtineZtceriD 21°201 ' 54 "

elgnAhtineZesreveR 74°752 ' 12 "

elgnAhtineZlaniF
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Bearings and Azimuths

The Relative directions of lines connecting survey points may be obtained
in a variety of ways.  The figure below on the left shows lines intersect-
ing at a point.  The direction of any line with respect to an adjacent line is
given by the horizontal angle between the 2 lines and the direction of
rotation.

The figure on the right shows the same system of lines but with all the
angles measured from a line of reference (O-M).  The direction of any line
with respect to the line of reference is given by the angle between the
lines and its direction of rotation.

The line of reference we use is a Meridian

There are several types of meridians: Astronomical or True, Magnetic,
Grid, and Assumed.

6

Figure 21

A

B

C

D

O

A

B

C

D

O

M

a1

a2

a3

a4

b1
b2

b3
b4

Directions by angles Directions referred to meridian



Basic Surveying - Theory and Practice

Oregon Department of Transportation • February 20006-2

Astronomical or True Meridians
A plane passing through a point on the surface of the earth and contain-
ing the earth’s axis of rotation defines the astronomical or true meridian
at that point.  Astronomical meridians are determined by observing the
position of the sun or a star.  For a given point on the earth, its direction
is always the same and therefore directions referred to the astronomical
or true meridian remain unchanged.  This makes it a good line of refer-
ence.

Convergence
Astronomical or true meridians on the surface of the earth are lines of
geographic longitude and they converge toward each other at the poles.
The amount of convergence between meridians depends on the distance
from the equator and the longitude between the meridians.

Figure 22

Rotational Axis

Astronomical
Meridian

North Pole

South Pole
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Magnetic Meridian
A magnetic meridian lies parallel with the magnetic lines of force of the
earth.  The earth acts very much like a bar magnet with a north magnetic
pole located considerably south of the north pole defined by the earth’s
rotational axis.  The magnetic pole is not  fixed in position, but rather
changes its position continually.  The direction of a magnetized needle
defines the magnetic meridian at that point at that time.  Because the
magnetic meridian changes as magnetic north changes, magnetic merid-
ians do not make good lines of reference.

Figure 23

Rotational Axis
North Magnetic Pole

South Magnetic Pole

Magnetic
Meridian
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Grid Meridians
In plane surveys it is convenient to perform the work in a rectangular XY
coordinate system in which one central meridian coincides with a true
meridian.  All remaining meridians are parallel to this central true
meridian.  This eliminates the need to calculate the convergence of
meridians when determining positions of points in the system.  The
methods of plane surveying, assume that all measurements are projected
to a horizontal plane and that all meridians are parallel straight lines.
These are known as grid meridians.

The Oregon Coordinate System is a grid system.

Figure 24

Central Meridian

Grid Meridians
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Assumed Meridians
On certain types of localized surveying, it may not be necessary to
establish a true, magnetic, or grid direction.  However it is usually
desirable to have some basis for establishing relative directions within
the current survey.  This may be done by establishing an assumed
meridian.

An assumed meridian is an arbitrary direction assigned to some line in
the survey from which all other lines are referenced.  This could be a line
between two property monuments, the centerline of a tangent piece of
roadway, or even the line between two points set for that purpose.

The important point to remember about assumed meridians is that they
have no relationship to any other meridian and thus the survey cannot
be readily (if at all) related to other surveys.  Also, if the original monu-
ments are disturbed, the direction may not be reproducible.

It is good practice when assuming a direction to avoid directions that
might appear to be true.  If assuming a direction on a line that runs
generally north and south, do not assume a north direction, as some
future surveyor may mistakenly use your direction as true.
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Azimuths
The azimuth of a line on the ground is its horizontal angle measured
from the meridian to the line.  Azimuth gives the direction of the line with
respect to the meridian.  It is usually measured in a clockwise direction
with respect to either the north meridian or the south meridian.  In plane
surveying, azimuths are generally measured from the north.

When using azimuths, one needs to designate whether the azimuth is
from the north or the south.

Azimuths are called true (astronomical) azimuths, magnetic azimuths,
grid azimuths, or assumed azimuths depending on the type of meridian
referenced.

Azimuths may have values between 0 and 360 degrees.

The azimuth from the North for each line is:

Figure 25

A

B

C

D

O

Azimuths

S

N

54o

133o

211o

334o

Line Azimuth

O – A

O – B

O – C

O – D

54°

133°

211°

334°
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A

B

C

D

E

F

North

South

46o 30' Left

113o 40' Left

61o Right

113o 40' Right

AZ = 150o

Figure 26

Using the deflection angles shown, calculate North azimuths of the lines.

Line Azimuth

A – B

B – C

C – D

D – E

E – F
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Bearings

The bearing of a line also gives the direction of a line with respect to the
reference meridian.  The bearing states whether the angle is measured
from the north or the south and also whether the angle is measured
toward the east or west.  For example, if a line has a bearing of S 47° E,
the bearing angle 47° is measured from the south meridian eastward.

A stated bearing is said to be a true bearing, a magnetic bearing, an
assumed bearing, or a grid bearing, according to the type of meridian
referenced.

Figure 27

A

B

C

D

O

54o

Bearings

South

North

EastWest

26o

31o

47o

NW NE

SESW

Line Bearing

O – A

O – B

O – C

O – D

N 54° E

S 47° E

S 31° W

N 26° W
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N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

A

B

C

D

62o
25o

68o

62o

25o

68o

17o

17o

Figure 28

For the figure below, calculate the bearings for each line.

Line Bearing

A – B

B – C

C – D

D – A
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Relation between Bearing and Azimuths

To simplify computations based on survey data, bearings may be con-
verted to azimuths or azimuths to bearings.

In the figure below, the first azimuth of 37° 30' is in the northeast quad-
rant since the angle eastward is less than 90°.  In the northeast quadrant
the bearing angle and the azimuth are identical.
The second azimuth, 112°45' is 112°45' from the north meridian.  The
bearing angle for this quadrant must be determined from the south
meridian.  Since the north and south meridian are 180° apart, one would
subtract the azimuth, 112°45' from 180° to arrive at the bearing of 67°15'.
Because it is in the southeast quadrant the bearing is S 67°15' E.

N.E. Quadrant: Bearing equals Azimuth

S.E. Quadrant: 180° - Azimuth = Bearing
and 180° - Bearing = Azimuth

S.W. Quadrant: Azimuth - 180° = Bearing
and Bearing + 180° = Azimuth

N.W. Quadrant: 360° - Azimuth = Bearing
and 360° - Bearing = Azimuth

Figure 29
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N

N E

E S

S

W

W

A

B

68o
68o

248o

Bearing or Azimuth and Back Bearing or Back Azimuth

Back Azimuths and Back Bearings

The back azimuth or back bearing of a line is the azimuth or bearing of a
line running in the reverse direction.  The azimuth or bearing of a line in
the direction in which a survey is progressing is called the forward
azimuth or forward bearing.  The azimuth or bearing of the line in the
direction opposite to that of progress is called the back azimuth or back
bearing.

The back azimuth can be obtained by adding 180° if the azimuth is less
than 180° or by subtracting 180° if the azimuth is greater than 180°.  The
back bearing can be obtained from the forward bearing by changing the
first letter from N to S or from S to N and the second letter from E to W
or from W to E.

The bearing of the line A-B is N 68° E

The bearing of the line B-A is S 68° W.

The azimuth of the line A-B is 68°

The azimuth of the line B-A is 248°

Figure 30
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Using angles to the right, calculate the bearings and azimuths of the
lines.

Figure 31
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Line Azimuth

A – B

B – C

C – D

D – E

E – A

Bearing
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Coordinates

In Surveying, one of the primary functions is to describe or establish the
positions of points on the surface of the earth.  One of the many ways to
accomplish this is by using coordinates to provide an address for the
point.  Modern surveying techniques rely heavily on 3 dimensional
coordinates.

In order to understand the somewhat complex coordinate systems used
in surveying, we must first look at the Rectangular Coordinate System
(or Cartesian Plane) from basic mathematics.

To keep it simple let’s start by looking at a 1 dimensional system for
locating points.  Consider the horizontal line shown on the left of figure
32.  A point on the line marked “0” is established as the origin.  The line
is graduated and numbered (positive to the right of the origin and
negative to the left).  Any number can be plotted on this line by its value
and distances to other points on the line can be easily calculated.  If all of
our work was done precisely along a line, this system would be suffi-
cient.  We live in a 3 dimensional world, therefore we need a better
system.

Let’s look at a 2 dimensional system for locating points.  The right of
figure 32 shows a similar graduated line but in a vertical position.  This
line would function in a similar way as the horizontal line but giving
locations of points in a different direction.  By coinciding those lines at
their respective origins we provide the foundation for a rectangular
coordinate system.

7

Figure 32
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In the right of figure 33, is what is described as a rectangular coordinate
system.  A vertical directed line (y-axis) crosses the horizontal directed
line (x-axis) at the origin point.  This system uses an ordered pair of
coordinates to locate a point.  The coordinates are always expressed as
(x,y).

The horizontal distance from the y-axis to a point is known as the
abscissa.  The vertical distance from the x-axis is known as the ordinate.
The abscissa and ordinate are always measured from the axis to the point
- never from the point to the axis.

The x and y axes divide the plane into four parts, numbered in a counter-
clockwise direction as shown in the left of figure 33.  Signs of the coordi-
nates of points in each quadrant are also shown in this figure.

Note:  In surveying, the quadrants are numbered clockwise starting with
the upper right quadrant and the normal way of denoting coordinates (in
the United States) is the opposite (y,x) or more appropriately North, East.

Figure 33
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Determine the coordinates of the points shown in the figure below.

tnioP X Y tnioP N E

A D

B E

C F
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2

0
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Polar Coordinates

Another way of describing the position of point P is by its distance r
from a fixed point O and the angle θ that  makes with a fixed indefinite
line oa (the initial line).  The ordered pair of numbers (r,θ) are called the
polar coordinates of P.  r is the radius vector of P and θ its vectorial angle.

Note:  (r,θ), (r, θ + 360o), (-r, θ + 180o) represent the same point.

Transformation of Polar and Rectangular coordinates:

1. x = rcosθ y = rsinθ (if θ and r are known)

2. r= x2 + y2 θ = tan-1 (
y
x ) (if x and y are known)

Figure 34
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Measuring distance between coordinates

When determining the distance between any two points in a rectangular
coordinate system, the pythagorean theorem may be used (see Review of
Basic Trigonometry).  In the figure below, the distance between A and B
can be computed in the following way :

AB = [4-(-2)]2+[3-(-5)]2 AB = [4+2)]2+[3+5)]2 AB = 10

CB=+4-(-2)=4+2 AC=+3-(-5)=3+5

Point C in this figure was derived by passing a horizontal line through
point B and a vertical line through point A thus forming an intersect at
point C, and also forming a right triangle with line AB being the hypot-
enuse.  The x-coordinate of C will be the same as the x-coordinate of A (4)
and the y-coordinate of C will be the same y-coordinate of B (-5).

Figure 35
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Inverse

In mathematics, the coordinates of a point are expressed as (x,y).  In
surveying, as mentioned earlier, the normal way of denoting coordinates
(in the United States) is the opposite (y,x) or more appropriately North,
East.  The difference in Eastings between 2 points is referred to as the
departure and the difference Northings is the Latitude.

To inverse between points means to calculate the bearing and distance
between 2 points from their coordinate values.

Start by algebraically subtracting the Northings to get the Latitude, and
the Eastings to get the Departure.  A simple right triangle is formed and
the pythagorean theorem can be used to solve for the hypotenuse (distance
between points).  To find the bearing we need to calculate the angle from
the North/South line at one of the points by using basic trigonometry.

Figure 36
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1. Plot the following points (N,E) and connect with lines in the follow-
ing order ABCDEA.

A (12,6)   B (-14,12)   C (-12,1)  D (-3,-9)   E (16,-10)

2. Find the bearing of each line (i.e. AB, BC, etc.) and the perimeter
distance.
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Area by Coordinates

Area of a trapezoid: one-half the sum of the bases times the altitude.

Area of a triangle: one-half the product of the base and the altitude.

The area enclosed within a figure can be computed by coordinates.  This
is done by forming trapezoids and determining their areas.

Trapezoids are formed by the abscissas of the corners.  Ordinates at the
corners provide the altitudes of the trapezoids.  A sketch of the figure
will aid in the computations.

This is similar to the double meridian distance method but does not use
meridian distances.  For land area calculations following a boundary
traverse, the DMD method for area is more commonly used.  The DMD
method will not be discussed here.

Figure 37
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1. Find the latitude and departure between points.

2. Find the area of the figure.
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Complete the table below, then plot the points and lines.

tnioP gniraeB ecnatsiD edutitaL erutrapeD gnihtroN gnitsaE

A 8 8
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Traverse

Definition of a traverse

A Traverse is a succession of straight lines along or through the area to be
surveyed.  The directions and lengths of these lines are determined by
measurements taken in the field.

Purpose of a traverse

A traverse is currently the most common of several possible methods for
establishing a series or network of monuments with known positions on
the ground.  Such monuments are referred to as horizontal control points
and collectively, they comprise the horizontal control for the project.

In the past, triangulation networks have served as horizontal control for
larger areas, sometimes covering several states.  They have been replaced
recently in many places by GPS networks.  (GPS will be discussed in
more detail later.)  GPS and other methods capitalizing on new technol-
ogy may eventually replace traversing as a primary means of establish-
ing horizontal control.  Meanwhile, most surveys covering relatively
small areas will continue to rely on traverses.

Whatever method is employed to establish horizontal control, the result
is to assign rectangular coordinates to each control point within the
survey.  This allows each point to be related to every other point with
respect to distance and direction, as well as to permit areas to be calcu-
lated when needed.

8
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Types of traverses

There are several types or designs of traverses that can be utilized on any
given survey.  The terms open and closed are used to describe certain
characteristics of a traverse.  If not specified, they are assumed to refer to
the mathematical rather than geometrical properties of the traverse.

A Geometrically Closed Traverse creates a closed geometrical shape, such as
the first two examples in Figure 38.  The traverse ends on one of two
points, either the on same point from which it began or on the initial
backsight.  The first two traverses in Figure 38 are geometrically closed.

A Geometrically Open Traverse does not create a closed shape because it
ends at some point other than the initially occupied point or the initial
backsight.  This type of traverse is sometimes expedient for the survey of
a strip project such as a pipeline or highway.  The third example in
Figure 38 is a geometrically open traverse.

A Mathematically Open Traverse or simply an Open Traverse begins at a
point of known position and ends at a point of previously unknown
position.  There is no method to verify that the measurements of the
angles and distances are free from error.  Consequently, this is not a
desirable survey method.

A Mathematically Closed Traverse or simply a Closed Traverse begins at a
point of known position and ends at a point of known position.  Calcula-
tions can be made to check for errors.  This method is preferred because
the numbers can be confirmed.  Figure 38 shows three different types of
closed traverses.

Figure 38
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One form of a closed traverse is a “closed loop traverse” which begins at a
point of known position and ends at that same point.  The first example
in Figure 38 is a closed loop traverse.  While the angles in this form of
traverse can be checked for errors, no systematic error in the measuring
device can be detected.  Only blunders can be found.

To point this out lets consider an example of a closed loop traverse done
with a transit and chain. The first time the traverse is run early in the
morning on a cold day.  No correction is used for the chain.  The traverse
is adjusted and meets the standards.  Now the traverse is run again on a
hot summer afternoon.  No correction is used for the chain.  Again the
traverse is adjusted and meets the standards.  Now when the coordinates
of the first points are compared to the coordinates of the second points,
we find that some of them  are not close to one another . This is particu-
larly true of those that are the farthest from the beginning of the traverse.
The problem was that the chain was not the same length due to tempera-
ture changes, and this type of traverse will not show this type of error.

In a closed loop traverse, or on any geometrically closed traverse, there is
also no check on the “basis of bearing.”

This is an acceptable traverse method but care should be taken that the
distance measuring equipment is properly calibrated and that the basis
of bearing is correct.
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Procedure for running a traverse

To begin any traverse, a known point must be occupied.  (To occupy a
point means to set up and level the transit or theodolite, directly over a
monument on the ground representing that point.)  Next, a direction
must be established.  This can be done by sighting with the instrument a
second known point, or any definite object, which is in a known direc-
tion from the occupied point.  The object that the instrument is pointed
to in order to establish a direction is known as a backsight.  Possible
examples would be another monument on the ground, a radio tower or
water tank on a distant hill, or anything with a known direction from the
occupied point. A celestial body such as Polaris or the sun could also be
used to establish an initial direction.

Once the instrument is occupying a known point, for example point
number 2, and the telescope has been pointed toward the backsight,
perhaps toward point number 1, then an angle and a distance is mea-
sured to the first unknown point.  An unknown point being measured to
is called a foresight.  With this data, the position of this point (lets call it
point number 100) can be determined.  In Figure 38, there are graphical
representations of three sample traverses, each beginning with the
process described here.

The next step is to move the instrument ahead to the former foresight
and duplicate the entire process.  The former occupied point becomes the
backsight and a new unknown point becomes the foresight.  This proce-
dure is repeated at each point until measurements have been taken to all
the needed points.
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Calculating coordinates for traverse

To calculate the coordinates for each point on a traverse, the direction
and distance from a known point must be also be known.  Typically, the
distance is measured in the field, but the direction is not.  It must be
computed from the angles measured in the field.  The specific procedure
will vary depending on the type of field angles measured and whether
bearings or azimuths are used to describe directions.  Refer to the section
of this manual on “Bearings and Azimuths” for more detail.  It is also
helpful to draw a sketch of each angle to help visualize what is happen-
ing.

Once the distance and direction are known, the latitude and departure
can be calculated using right triangle trigonometry as discussed in the
previous section on “Coordinates.”  These values will indicate the
distances north or south and east or west between the two points.  The
coordinates on the unknown point can then be determined by algebra-
ically adding the latitude to the northing of the known point and the
departure to the easting of the known point.  A positive, or north,
latitude is added to the northing while a negative, or south, latitude (or
the absolute value of the latitude) is subtracted from the northing.  A
positive, or east, departure is added to the easting while a negative, or
west, departure (or the absolute value of the departure) is subtracted
from the easting.

These calculations are repeated for each point along the traverse. The
coordinates of the last point are used as a base for each new point. The
new latitude and departure are added to this base.  The last point of a
(mathematically) closed  traverse is designated as the closing point.  If
the traverse is a (mathematically) closed traverse, the calculated coordi-
nates for the closing point should be equal to or nearly equal to the
record or previously known coordinate values for that point.
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Precision of the traverse

The odds having exact closure using the raw angles and distances from a
traverse are astronomical.  There will usually be some discrepancy
between the record coordinates and those calculated in the traverse.  By
inversing between the two sets of coordinates, the linear distance be-
tween them can be computed.  This value is called the linear closure for
the traverse and gives us an idea of how much error there was in the field
measurements.  A small error is most likely due to the limitations on how
precisely the angles and distances can be measured with the specific
equipment.  A large error would indicate that there is a blunder in the
measurements.

The linear closure suggests how well the measuring was done.  But while
a half foot might seem like a small error when measuring ten miles, it
would seem a rather large error when cutting an eight-foot board.  To
better determine whether the error in a particular traverse is acceptable
or not, we compare it to the distance traversed.  This comparison is
frequently called precision, and gives us a much better way to evaluate
the error.

The Precision of a traverse is expressed as the ratio of the “linear error of
closure” to the “traverse perimeter”, and is called the “closure ratio.”  A
traverse that is 12,000 feet in length and does not close by 1 foot, is said to
have “1 in 12,000 closure.”  If that same traverse does not close by 0.10
feet, then it has 1 in 120,000 closure.
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Balancing a traverse

Balancing the traverse is a procedure that distributes and apportions field
measurement errors.  Adjustments are made to give the traverse an exact
closure.  In a closed-loop traverse the Northings and the Southings must
be equal to each other and the Eastings must be equal to the Westings.
There are several methods for balancing coordinates.

The Transit Rule is used when angular measurement is much better than
distance measurement.  This procedure was developed for chain and
transit surveys where angles could be measured rather precisely.  The
distances, on the other hand, were subject to all of the possible errors of
break and slope chaining over rough terrain.  It distributes the traverse
error in latitude proportionally to the latitude of the individual legs.
Traverse legs with the largest change in latitude absorb the most error in
latitude.  The traverse error in departure is distributed in proportion to
the departure of the individual legs.

The Crandall Method is also used when angular measurement is much
better than distance measurement.  It also distributes the error in a
comparable way.

The Compass Rule is used when the accuracy of angular measurement is
about equal to the accuracy of distance measurement.  This procedure
was developed during the days of surveying with a chain and staff
compass.  It is a two-step process.  First, the angular error is meted out to
provide angular closure.  Secondly, the coordinates are developed using
the adjusted angles and then the coordinates are adjusted.  It distributes
the traverse error in proportion to the length of the individual legs.
Although this method was designed for some early, low precision
equipment, this method works well for an EDM-theodolite traverse.  The
assumption that the precision of angles and distances is comparable
generally holds true.

The Least Squares Method works well whatever the relative accuracy of
angular or distance measurements.  Weighted values can be given for
each measurement.  This causes more reliable measurements to be given
more influence in the adjustment.  This procedure also does not require a
single line traverse.  The Least Squares Method can be applied to com-
plex networks and traverses with measurements between multiple
points.  This allows more flexibility in establishing control and greater
opportunities for locating blunders.  Error distribution is similar to the
compass rule.  The calculations are much more complex and demand a
computer.  The Federal Geodetic Control Committee cites this method in
their standards.
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Closed - Loop Traverse

Closed - Loop Traverse

Exterior
Angles

Exterior
AnglesInterior

Angles

Exterior
Angles Interior

Angles

Exterior
Angles

Exterior
Angles

Sum Interior Angles = 180o(n-2)
Sum Exterior Angles = 360o + 180n
n = # of angle points = # of sides

Sum Interior Angles = 180o(n-2)
Sum Exterior Angles = 360o + 180n
n = # of angle points = # of sides

Balancing a traverse by Compass Rule

Balancing by the Compass Rule is a two-step process.  First, the angular
error is meted out to provide angular closure.  This is done by computing
a direction on the closing course of the traverse and comparing it to the
record direction.  Any difference between the two is divided by the
number of angles measured and each angle modified by that amount.
Care needs to be taken, particularly if types of angles measured were not
consistent, that each angle is modified in the right direction.  The final
course should now agree and the direction of each coarse should have
changed by a prorated amount.

If certain conditions are met, the angular error can be determined using
the formula shown in Figure 39.  The traverse must be geometrically
closed as shown at the top of Figure 39.  In addition, all angles must be
measured in the same direction, either as internal angles or as external
angles.    This method will still work on the traverse in the bottom of
Figure 39.  However, care should be taken that only the required angle is
counted at the initial point of the traverse, regardless of how many
angles were actually measured.

Figure 39
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Calculate and balance the traverse azimuths below using the
compass rule.

Point
I.D.

Measured
Angle

Measured
Azimuth

Azimuth
Adjustment

Adjusted
Azimuth

1415.50

1645.55

227o 01´ 24˝

252o 48´ 15˝

115o 19´ 54˝

N 89o 26´ 03˝ W 180o 18´ 36˝ 304o 32´ 06˝

2732.11

“B”

“C”

“D”“A”

10
35

.9
2

“X”
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Next, the coordinates for each point are developed and recorded using
the adjusted angles. Then the errors in latitude and departure are distrib-
uted in proportion to the lengths of the traverse legs.  The longest leg of
the traverse will receive the most adjustment in both latitude and
departure.  The shortest leg will receive the least.

The latitude adjustment for any one leg is:

(Latitude Adjustment) = 
(Total Latitude Adjustment)

(Traverse Perimeter)  (Length Of The Leg)

Similarly, the departure adjustment for any one leg is:

(Departure Adjustment) = 
(Total Departure Adjustment)

(Traverse Perimeter)  (Length Of The Leg)

The adjustments for both latitude and departure are computed and
recorded for each course.  The final adjusted latitudes and departures are
determined by algebraically adding the corrections to the latitudes and
departures that were calculated from the adjusted angles.

To complete the process, the final adjusted coordinates are calculated by
algebraically adding the latitude and departure for each point to the
coordinates of the prior point.  The closing point should have the same
coordinates as record.
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Calculate and balance the traverse coordinates using the compass rule.

Point
I.D.

Adjusted
Azimuth

Horizontal
Distance

Latitude Departure Latitude Departure Northing Easting

Adjustment Coordinates
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The Global Positioning System

The Global Positioning System (GPS) is a navigational or positioning
system developed by the United States Department of Defense.  It was
designed as a fast positioning system for 24 hour a day, three
dimensional coverage worldwide.

It is based on a constellation of 21 active and 3 spare satellites orbiting
10,900 miles above the earth.  The GPS (NAVSTAR) satellites have an
orbital period of 12 hours and are not in geosynchronous orbit (they are
not stationary over a point on the earth).  They maintain a very precise
orbit and their position is known at any given moment in time.  This
constellation could allow a GPS user access to up to a maximum of 8
satellites anywhere in the world.

GPS provides Point Position (Latitude/Longitude) and Relative Position
(Vector).  GPS can differentiate between every square meter on the
earth’s surface thus allowing a new international standard for defining
locations and directions.

The  applications (military or civilian) for GPS are almost limitless, from
guiding a missile to a target with incredible accuracy or tracking and
monitoring the location of a city’s emergency vehicles or providing a
zero visibility landing and air collision avoidance system to a variety of
surveying applications.

The Basic Principles of GPS

For centuries man has used the stars to determine his position.  The
extreme distance from the stars made them look the same from different

9
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locations and even with the most sophisticated instruments could not
produce a position closer then a mile or two.  The GPS system is a
constellation of Manmade Stars at an orbit high enough to allow a field of
view of several satellites, yet low enough to detect a change in the
geometry even if you moved a few feet.

A typical conventional survey establishes positions of unknown points
by occupying a known point and measuring to the unknown points.
GPS is somewhat the opposite.  We occupy the unknown point and
measure to known points.  In conventional surveying this is similar to
the process of doing a resection, the slight difference is that the targets
are 10,900 miles away and travelling at extremely high speeds!

How positions are computed

Think of the satellites as precise reference points for our survey and we
are using satellite ranging to trilaterate our position (trilateration is the
process of determining positions by measuring the lengths of triangles,
while triangulation is the process of determining the positions by
measuring the angles of triangles).  If we know the distance from one
satellite our position could be anywhere on the surface of an imaginary
sphere with the satellite at the center of that sphere.  This obviously does
not give us our position.  If we knew the distance to a second satellite our
position could be anywhere on the circle formed by the intersection of
the two imaginary spheres with the satellites at their centers.  This still
does not give us a single position.  If we include the distance to a third
satellite into our scenario, we find that by intersecting three spheres, two
solutions exist.  Usually one of these solutions yields a position nowhere
near the earth and can be discarded.  If you know the elevation of your
position, you can eliminate the need for one satellite.  One of the spheres
in the computation would be the earth with a radius of the earth plus
your elevation.

How satellite distance is measured

Each GPS satellite continually broadcasts a radio signal.  Radio waves
travel at the speed of light (186,000 miles per second) and if we measure
how long it took for the signal to reach us we could compute the distance
by multiplying the time in seconds by 186,000 miles per second.

In order to measure the travel time of the radio signal, the satellite
broadcasts a very complicated digital code.  The receiver on the ground
generates the same code at the exact time and when the signal is received
from the satellite, the receiver compares the two and measures the phase
shift to determine the time difference.
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If the satellites are orbiting about 10,900 miles above the surface of the
earth and the radio signal travels at 186,000 miles per second, a satellite
directly above takes about 0.06 seconds to transmit its signal to earth.  To
be able to measure the distance to the accuracy needed, the satellite and
the receiver must be perfectly in sync and we must have the ability to
measure time with extreme accuracy.  Each satellite is equipped with 4
atomic clocks which keep almost perfect time and the receivers that we
use can measure time to an accuracy of 0.000000001 of a second.  The
problem is that the receivers are not in sync with the atomic clocks.  If the
receiver is out of sync with the satellite by even 0.001 of a second, the
computed distance would be off by 186 miles!

To solve this problem we include the measurement to an extra satellite.
The added sphere to the equation would intersect at the same point as
before if the receiver were in perfect sync with the satellite.  If the added
sphere does not intersect at the same point, then the clocks are not in
perfect sync and a clock offset for the receiver can be calculated.  For
accurate 3D positions, 4 satellites must be in view of the receiver.

The Ephemeris

Once we know the distance to the satellite, we need to know exactly
where the satellite was at the moment of the measurement.  Receivers
have an almanac stored in their memory which gives each satellite’s
position in the sky at any given time.  Contradicting what was
mentioned earlier, the satellite’s orbit does decay changing its position,
altitude and speed.  This change is extremely minuscule and is
monitored by the Department of Defense every 12 hours and these
variations (ephemeris errors) are transmitted back to the satellite.  The
satellite transmits a data message along with its pseudo-random code.
The data message contains information about its exact orbital location
(with the ephemeris error corrections) and its system’s health.

Figure 41

Code Generated
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Sources of error and expected GPS accuracy

GPS positions are affected by various errors such as the clock and satellite
position errors mentioned earlier.  Other errors include: ionospheric and
atmospheric errors which are caused by the slowing down the radio
waves as they travel through the ionosphere and lower atmosphere;
multipath errors which are caused by the radio waves bouncing off
objects before reaching the receiver; and poor geometry in the satellite
positions.  In addition to all these errors there is a deliberately caused
error called Selective Availability (SA) which is the degrading of the radio
signal by the Department of Defense.  This manmade error can be turned
on as needed to deny hostile forces the advantage of GPS positioning.

The ultimate accuracy of GPS positions are determined by the sum of all
these errors.  It is difficult to quantify this specification as receiver
manufacturers are constantly finding new ways to improve accuracy.
There are a variety of receivers on the market yielding a variety of levels
of accuracy.  Receivers typically fall into 3 categories; Survey, mapping,
and navigation grades.  Currently, survey grade receivers can achieve
accuracies in the millimeter range, mapping grade receivers through the
use of post-processing or real time correction using a base station can
achieve 1 to 3 meter accuracy, and navigational receivers can achieve 5 to
12 meter accuracy (with SA off).

Differential GPS

To achieve sub-centimeter accuracies in positions, we need a survey
grade receiver and a technique called Differential GPS.  By placing a
receiver at a known location, a total error factor which accounts for all
the possible errors in the system, can be computed which can be applied
to the position data of the other receivers in the same locale.  The
satellites are so high-up that any errors measured by one receiver could
be considered to be exactly the same for all others in the immediate area.

Figure 42

Known Position

Unknown Position
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Differential Leveling

Differential leveling is the process used to determine a difference in
elevation between two points.  A Level is an instrument with a telescope
that can be leveled with a spirit bubble.  The optical line of sight forms a
horizontal plane, which is at the same elevation as the telescope
crosshair.  By reading a graduated rod held vertically on a point of
known elevation (Bench Mark) a difference in elevation can be measured
and a height of instrument (H.I.) calculated by adding the rod reading to
the elevation of the bench mark.  Once the height of instrument is
established, rod readings can be taken on subsequent points and their
elevations calculated by simply subtracting the readings from the height
of instrument.

10

Figure 43
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Running a line of levels

In the following example, the elevation at BM-A is known, and we need to
know the elevation of BM-K.  The level is set up at a point near BM-A, and a
rod reading taken.  The height of instrument (HI) is calculated and a rod
reading to a turning point (TP1) is taken.  The reading of the foresight is
subtracted from the height of instrument to obtain the elevation at TP1.  The
rod stays at TP1, the level moves ahead and the rod at TP1 now becomes the
backsight.  This procedure is repeated until the final foresight to BM-K.

Figure 44

Sta BS (+) H.I. FS (-) Elev Description

BM A 8.42 820.00 BM A: Top of Iron Pipe, 3" diameter

828.42 at corner of Wishburn and Oak Dr.

TP 1 11.56 1.20 827.22

838.78

TP 2 6.15 1.35 837.43

843.58

TP 3 4.39 10.90 832.68

837.07

BM K 5.94 831.13 BM K: Top of iron pipe, 2" diameter

Corner of Wishburn and Oxford.

BS Sum = 30.52 FS Sum = 19.39 CHECK:

Difference = 30.52 - 19.39 = 11.13

=

BS/FS Difference

Ending Elevation

Begin Elevation

=

=

820.00

11.13
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837.43 ft.
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Closing the Level Loop

A level loop is closed either to another Benchmark or back to the starting
Benchmark.  To check for errors in the loop sum the Backsights (BS) and
the Foresights (FS). Calculate the difference between the BS and FS (BS-
FS).  Algebraically add this difference to the starting elevation, to yield
the closing elevation.  This elevation should be within accepted industry
standards tolerances of the closing Benchmark’s published elevation.

Instrumental Errors

The most common instrumental error is caused by the level being out of
adjustment.  As has been previously stated, the line of sight of the
telescope is horizontal when the bubble is in the center of the tube,
provided the instrument is in perfect adjustment.  When it is not in
adjustment, the line of sight will either slope upward or downward
when the bubble is brought to the center of the tube.

Instrumental errors can be eliminated if kept at a minimum by testing
the level frequently and adjusting it when necessary.  Such errors can
also be eliminated by keeping the lengths of the sights for the backsight
and foresight readings nearly equal at each setting of the level.  Since it is
never known just when an instrument goes out of adjustment, this latter
method is the more certain and should always be used for careful
leveling.

Extremely long sights should also be avoided.  The further the rod is
from the level, the greater the space covered on the rod by the cross hair
and the more difficult it will be to determine the reading accurately.  For
accurate results, sights with the engineer’s level should be limited to
about 300 feet.
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Complete the following level circuit, compute misclosure.

Sta BS (+) H.I. FS (-) Elev Description

BM X 6.72 935.42 BM X: Brass Disk in walk

N.W. corner 12th and Sunset

TP 1 7.13 2.18

TP 2 4.19 3.23

TP 3 6.72 5.11

7.23

BM Y

S.E. Corner 18th and Sunrise

Elev: 941.19

BM Y: 1/2” Iron Rod

TP 4 1.09

2.36

Elev: 935.42
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Trigonometric Leveling

This leveling procedure involves observing the vertical (or zenith) angle and
slope distance between two points.  The difference in elevation can then be
calculated.  Within the limits of ordinary practice, triangle BEC (figure 45) can
be assumed to be a right triangle and:

EC = BC x cos(zenith angle)

A major source of error in determining the difference in elevation by this method
is the uncertainty in the curvature and refraction caused by variations in the
atmospheric conditions.

11

Figure 45
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The effects of Earth Curvature and Atmospheric Refraction must be taken into
account when using trigonometric methods to determine elevations.  A line of
sight perpendicular to a plumb line lies in a horizontal plane.  The earths curved
surface departs from this line by the value c (shown in Figure 45, as the distance
E-F).

For most surveys, a practical value for curvature is:

c = 0.667M2

Where M is the sight distance in Miles
and c is the earths curvature in Feet.

Due to the density of the air, the optical line of sight refracts or bends back
towards the earth, negating about 14% of the effects of curvature.

The combined effect of Curvature and Refraction is:

(c+r) = 0.574M2

There are two acceptable methods to correct for Curvature and Refraction if the
formulas are not applied:

Balance the Backsights and Foresights

Observe the zenith angles from both ends of the line (reciprocal zeniths).

The effects of Curvature and Refraction increases rapidly with distance as shown
in the table below:

Effects of Curvature and Refraction

Distance 200 ft 500 ft 1000 ft 1 mile 2 mile

(h) feet 0.001 0.005 0.021 0.574 2.296
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When using trigonometric methods to establish accurate elevations, the follow-
ing must be taken into consideration:

• Due to the effects of curvature and refraction, the instrument to
target distance must be kept relatively short.  A good rule of thumb
is not to exceed 1000 feet.

• Make sure you understand your equipment’s capabilities.  Instru-
ments that can measure zenith angles and slope distances to a high
order of accuracy will produce good trigonometric elevations.

• Setup and level your instrument and target carefully.  Measure the
height of instrument and height of target accurately.

• Measure several slope distances and use a representative or mean
value.  Make sure that your EDM is correcting for the appropriate
atmospheric conditions.

• Measure Direct and Reverse zenith angles, and use the adjusted
value for your calculations.

• For lines longer than 500 feet, correct for curvature and refraction.

Modern Total Station instruments have built in capabilities to reduce and display
trigonometric elevations.
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Refer to figure 45, for the following exercise.

Given the following:

Elevation of Point A

Height of Instrument

Height of Target

Measured Slope Distance

Direct Zenith Angle

Reverse Zenith Angle

506.78 ft

5.21 ft

5.46 ft

837.58 ft

78°37’42”

281°22’28”

Correcting for curvature and refraction, calculate the elevation of point D.
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Cross Sections

Cross sections are lines 90 degrees perpendicular to the alignment (P-
Line, L-Line, centerline of stream, etc.), along which the configuration of
the ground is determined by obtaining elevations of points at known
distances from the alignment.

Cross sections are used to determine the shape of the ground surface
through the alignment corridor.  The shape of the ground surface helps
the designer pick his horizontal and vertical profile.  Once the alignment
is picked, earthwork quantities can be calculated.  The earthwork
quantities will then be used to help evaluate the alignment choice.

In addition to earthwork calculations, cross sections are used in the
design of storm sewers, culvert extensions and the size and location of
new culverts.  Because of this fact it becomes more important to get the
additional sections at the points of interest that do not fall on the 50 foot
stations.

The traditional method of taking cross sections starts with an alignment
staked out in the field.  A profile is run over the centerline stations by
differential leveling.  Cross section lines are laid out 90 degrees to the
alignment, often with a right angle prism.  Usually elevations are
determined with an engineer’s level and rod in level terrain or with a
hand level and rod in rough, irregular country.  For each cross section,
the height of instrument is determined by a backsight on the centerline
station.  The rod is then held on the cross section line at breaks in the
surface slope, where rod readings are observed and distances measured
with a tape.  Cross sections are usually taken at even stations and points
of interest or irregularity along the alignment.

12
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An example of cross section notes:

1. Stationing runs from the bottom of the page to the top.

2. Notes are taken looking ahead on line.

3. Record all topographical features that you encounter: roads, fences,
ditches, curbs, striping, etc.

4. Leave plenty of space on the notes for the unexpected.  Cross sections
can grow and you may need to add a section at a pipe crossing, ditch
crossing, road intersection, etc.
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Cross sections can be taken from contour maps.  The example shows a
cross section picked from the contour map for station 1+50.

Figure 46
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Digital Terrain Models

A digital Terrain Model (DTM) is numerical representation of the
configuration of the terrain consisting of a very dense network of points
of known X,Y,Z coordinates.  Modern surveying and photogrammetric
equipment enables rapid three dimensional data acquisition.  A
computer processes the data into a form from which it can interpolate a
three dimensional position anywhere within the model.

Think of a DTM as an electronic lump of clay shaped into a model
representing the terrain.  If an alignment was draped on the model and a
vertical cut made along the line, a side view of the cut line would yield
the alignment’s original ground profile.  If vertical cuts were made at
right angles to the alignment at certain prescribed intervals, the side
views of the cuts would represent cross sections.  If horizontal cuts were
made at certain elevation intervals, the cut lines when viewed from
above would represent contours.

A DTM forms the basis for modern highway location and design.  It is
used extensively to extract profiles and cross sections, analyze alternate
design alignments, compute earthwork, etc.

Example of Digital Terrain Model:

Figure 47
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Horizontal Curves

Highway Curves

Many alignments are composed of one or more straight lines, or tangent
alignments.  Power lines, pipe lines, and low speed city streets are
several examples.  But for railroad or higher speed vehicular traffic,
instantaneous changes in direction, either horizontally or vertically, are
at best uncomfortable for the passengers and at worst, hazardous.

To lessen the forces involved when a vehicle changes direction, a gradual
change is utilized resulting in a curve in the alignment.  There are three
general types of curves; Circular (or simple) curves, Spiral (or transition)
curves, and Vertical (or parabolic) curves.  This chapter will focus on the
simple circular curve.

Stationing

One of the basic tasks of a survey crew is to layout or stake centerline
and vertical alignments.  One of the tools available to make this job
easier is centerline stationing.  Stationing is the assignment of a value
representing the distance from some arbitrary starting point.  Where the
stationing begins is not generally too important, but any point along the
alignment can be related to any other point on the same alignment by
using the stationing.

A station is a linear distance of 100 feet along some described alignment.
Without a described alignment, the station has no direction and therefore
is rather meaningless.

Stationing is usually expressed as number of stations or 100 foot units
plus the number of feet less than 100 and any decimal feet.  This value is
preceded by an alphanumeric alignment designation.  A point on an
alignment called B3 and 1345.29 feet from the beginning of the stationing
would be designated as “B3 13+45.29”.  To perform math with stationing,
the “+” can be dropped and the distance treated as feet.

13
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Circular Curves

The simplest of the three curves is the circular or simple curve.  The
circular curve is exactly what the name implies, a segment of a circle.
Circular curves are used for horizontal alignments because they can be
laid out on the ground using basic surveying tools and techniques.

To layout a circular curve, the surveyor usually uses a chain or EDM to
measure distances along the arc of the curve and a transit or theodolite
to measure the horizontal angles from a reference line to the station to be
set.  Before laying out a circular curve we need to know it’s parameters.

• The radius of the curve.
• The beginning station.
• The distances along the arc between the instrument and the points to

be set.

Knowing these basics we can determine the deflection angles between
stations.

From basic geometry we know that:

• Circumference = πD or 2πR

Where, π = 3.1415926 and D = the Diameter of the circle, and
R = the Radius.

• We also know that there are 360 degrees in a circle.

If we say that the length along the arc is L, then we can determine the
interior angle of the circle subtended by the arc.  To do that, let’s calcu-
late the fractional part of the arc to the circumference.

(Fractional Portion) =   (Arc Length)  .
(Circumference)  = 

  L  .
2πR

This represents the fractional part of the total circle subtended by the arc.
We will call the subtended angle ∆.

  ∆ .
360o =

  L  .
2πR  ...   ∆ = 

L x 360o

2πR

We also know that the deflection angle α is 1/2 ∆, by combining terms
we can write the deflection angle like so,

α = 360L
4πR =

90L
πR

These are the formulas we would use to calculate the curve deflections
for circular curves.
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The Degree of Curve is defined as the angle subtended by an arc whose
length is 100 ft.

A Radian is the angle subtended by an arc whose length equals the length
of the Radius, or
57° 17’ 44.8”, or 57.295779513°.

Pi = π = 3.1415926
Circumference = 2πR
Degrees in a circle = 360°
Radius of a one degree curve = 5729.5779513 ft.
D = Degree of Curve.
R = Radius of the curve.
∆ = Delta, the central angle of the curve.
α = Alpha, the deflection angle to the point to be set.
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R = 
5729.578

D D = 
5729.578

R

T = R*Tan ∆
2 C = 2R*Sin ∆

2

M = R(1-Cos ∆
2 ) L =

100∆
D =

πR∆
180°

E = (
R

Cos ∆/2 )-R

Figure 48
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Calculate the following horizontal curve elements:

Chord Length

Degree of Curve

Delta

External Distance

Length of Curve

Middle Ordinate

P.C. Station

P.I. Station

P.T. Station

Radius

Tangent Distance

4° Lt

20°

125+52.00

Station Deflection Long Chord

Calculate the curve layout data:



Basic Surveying - Theory and Practice

Oregon Department of Transportation • February 200013-6

Chord Length

Degree of Curve

Delta

Length of Curve

P.C. Station

P.I. Station

P.T. Station

Station Deflection Long Chord

Calculate a 30’ right offset curve for the same curve as that on page 13-5:

Calculate the offset curve layout data:
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Spiral Curves

Spiral Curve Definition

The Oregon Department of Transportation 1973 Standard Highway
Spiral Manual gives the following definition for a spiral curve:

The Standard Highway Spiral is a curve whose degree varies directly as its
length, beginning at zero at the P.S. and reaching a degree of curve equal to
the simple curve at the P.S.C.

In simple terms, a spiral is a curve whose radius keeps getting shorter,
like a dog running around a tree with his chain getting shorter and
shorter.

Spirals are sometimes called transition curves because they are used to
transition into and out of circular curves.

The Purpose in using Spiral Curves

To understand the rational for using Spiral curves, we must take a brief
look at the basic physics involved when a vehicle travels through a
curve.  The first figure below shows the forces at work as a truck negoti-
ates a right-hand turn on a flat roadway. There is the force of gravity
pulling the truck toward the center of the earth.  There is also the cen-
trifugal force caused by the continuous change in the direction required
to successfully navigate a curve.  This centrifugal force causes the truck
to want to slide to the left off the roadway.  If the friction of the tires on
the roadway is sufficient to prevent this sideways slide, the centrifugal
force then creates a torsional or rotating force that will try to tip the truck
over.  The sharper the curve, the greater this force will be at a given
speed.

14

Figure 49
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To lessen the effect of these potentially hazardous forces, roadways are
super elevated or banked through corners.  The super elevation is
designed such that the road surface is near perpendicular to the resultant
force of gravity and centrifugal inertia.  The second figure shows this
situation.  However, in order to transition from a flat roadway to a fully
super elevated section and still maintain the balance of forces, the degree
or sharpness of the curve must begin at zero and increase steadily until
maximum super elevation is reached.  This is precisely what a Spiral
Curve does.

Spiral Curve Nomenclature

The P.S. or “point of spiral” is the point of change from tangent to spiral.
The P.S.C. or “point of spiral to curve” is the point where the radius of
the spiral has decreased to match that of the circular curve.  It is the point
of change from spiral to circular curve.  These terms apply to the spiral
that is transitioning into the curve travelling ahead on line.  On the
outgoing spiral, the P.C.S. or “point of curve to spiral” and P.T. or “point
of tangency” are mathematically identical to the P.S.C. and the P.S.
respectively.

The difference in stationing between the P.S. and the P.S.C. is the length
of the spiral.  It is expressed as “L”.  The degree of curve of the circular
curve and the length of the spiral dictates the rate of change in the radius
of the spiral.  This rate of change, known as “a”, is the change in degree
of curve per station (100 feet) of spiral or:

a = 
100D

L

Where: D = the degree of curve of the simple curve.
L = the total length of the spiral in feet

For a 5 degree curve with a 250 foot spiral

a = (100) (5)
250 = 2

Exercise:  Compute a  for the following spirals.

foeergeD
evruC evruC evruC evruC evruC

fohtgneL
laripS laripS laripS laripS laripS

a eulav

1 °01 002 '

2 03°7 ' 052 '

3 °4 005 '

4 03°1 ' 053 '
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S° angle (or Delta “∆“) of a spiral curve.

Within a spiral curve some change in direction occurs reducing the ∆
value of the central curve by some amount.  Also this angle referred to as
the S° angle is needed in order to determine most of the other properties
of the spiral.

In a simple curve, ∆ is the degree of curve (D), times the length of curve
(L) in stations, or:

∆=
DL
100

Where: D = degree of curve
L = length of curve in feet

Since a spiral has a constantly variable D, beginning at zero and ending
at D of the simple curve, S° is the average degree of curve (or D/2) times
the length of the spiral in stations, or:

S° =
DL
200

Where: D = the degree of curve of the circular curve
L = the length of the spiral in feet

Exercise:  Using this formula, determine the S° for the following spirals:

noitamrofnIneviG s °

5 002 ' evruc°4aotnilarips

6 004 ' naotnilarips a 1foeulav

7 nahtiwlarips a evruc°5aotni2foeulav

8 005 ' 51°6aotnilarips ' evruc
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X and Y, the Ordinate and the Abscissa.

The ordinate, represented by X, and the abscissa, represented by Y, are
the backbone of most of the calculations of spiral elements.  The ordinate,
X, is the right angle offset distance from the P.S.C. to a point on the
tangent line.  This point on the tangent is called the x-point. The abscissa,
Y, is the distance along the tangent from the P.S. to the x-point.

The calculation of X and Y is probably not something most of us would
choose to do more than once without a computer.  They are described as:

X=LM and Y=LN

Where: L = Spiral Length
M & N each represent the summation of a different infinite series
involving S° expressed in radians.  These formulae can be found
on pages 8 and 9 of the spiral manual.

Fortunately for us, somebody has calculated M and N for every minute
of S° angle from 0° to 100° and recorded them in Table IV of the spiral
manual.

Figure 50
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Other Spiral Elements

Some elements that we need for designing, drafting, and field layout of
spiral curves are listed on the next few pages.

The deflection from the tangent to the P.S.C.

i = atan(
x
y  )

The chord from the P.S. to the P.S.C.

C = x2 + y2

Besides X and Y, table IV also  contains factors for i, c, p, q, u and v.  All
we have to do is multiply the values in Table IV by L to get to get these
elements.  All of the spiral elements are shown graphically in Figure 54.

Figure 51
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The long spiral tangent is represented by u and the short one by v, as
shown above.  These two lines intersect at an angle equal to S°.

The offset from the main tangent to the point where the tangent to the
circular curve becomes parallel to the main tangent is known as p.  The
distance along the tangent from the PS or PT to a point perpendicular
from the radius point is called q.

Figure 52

Figure 53

u
v

so

P
S

PS
C

q

p

so

R
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q
u

y

Ts So

PS
P

S
C P

C
S

PT

SPI

PI

p

R

v

x

T

T

So
So

I

i

• The semi-tangent distance from the P.S. to the P.I. of the total curve,
given equal spirals on each end.

SemiTangent = q + (R + p) tan
1
2  ∆

Where:
R=radius

q=Y-RsinS°

p=X-R(1 - cosS°)

Figure 54
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Typical Solution of Spiral Elements

Given L = 400,  a = 0.5, T∆ = 14°

a=
100D

L

Multiplying both sides by L/100 we get:

D=
 aL.
100 =

(0.5)(400)
100 =2° 00’

And solving for the spiral angle and the radius of the circular curve:

S° =
DL
200 =

(2)(400)
200 =4° 00’

R=
5729.578

2 =2,864.79

Taking the following values from Table IV of the Spiral manual and
multiplying both sides of the equation by L (400) we get:

i = 1° 20’
C/L = 0.999783 C = 399.91
Y/L = 0.999513 Y = 399.81
X/L = 0.023263 X = 9.31
P/L = 0.005817 p = 2.33
q/L = 0.499919 q = 199.97

and

SemiTangent=q+(R+p)tan
T∆
2 =199.97+(2864.79+2.33)tan(

14o

2 )=552.01

Practice exercise:

9) Given D = 6°, T∆ = 45°, and L = 400’ and using the excerpt from
Table IV in the appendix, solve for a, S° , i, C, Y, X, and the semi-
tangent.
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Deflection Angles

It should be apparent that deflection angles for the spiral in exercise 9
could be computed by determining the X and Y values to each point to be
staked or plotted and then use the formula:

i= atan
X
Y

Another option is by calculating the S° to each point and then reading the
deflection angle directly from Table IV of the Spiral manual.  Table II also
lists deflections in minutes on angle divided by a, for each foot of the
spiral.  We could read this table  for each point and multiply by the a
value of 1.5.  A similar value can be interpolated from Table III.

However for most situations the following formula will give adequate
results.  Errors will be less than one minute if the S° is 25° or less.  The
greater the S° and the longer the spiral, the greater the error will be in the
calculated position of the point.

i = 10ad2

Where:

i = deflection in minutes.
d = distance from the PS in stations.

or

i =
ad2

60,000

Where:

i = deflection in degrees
d = distance from the PS in feet

Practice exercise:

10) Given a PS station at 321+11.50, compute deflections to even 50’
stations on the spiral from the previous exercise.  The deflection to station
321+50 is done for you.

d = (Station 321+50) - (Station 321+11.50) = 38.50 feet

i  = (1.5)(38.5)2/60000 = 0° 02’ 13”
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Vertical Curves

We have covered both the simple and spiral horizontal curves.  These are
used to give us stations along the alignment.  Now we will look at the
vertical alignment and the vertical curve.  The vertical or parabolic curve
gives us a smoother transition for elevations than either the simple or the
spiral curve.

There is a simple method to calculate the elevation of any point along the
vertical curve that uses the following procedure:

• Calculate the elevation along the tangent, at each station needed.
• Calculate the vertical offset for each station needed.
• Add the tangent elevation and the vertical offset for each station.

The Tangent Grade Elevation is calculated by using:

Tangent Elevation = (G1 * D) + PC Elevation

The Vertical Offset is calculated by:

v = gD2

Where,

g=
(G2-G1)

2L
G1=Grade of the back tangent
G2=Grade of the ahead tangent
L=Length of the vertical curve
D=Distance from the PC to the station

15

Figure 55

v

D

A

B

PC

PI PT

G

G2

1
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Example of Crest Vertical Curve computation:

g =
-0.020-0.025

2(400) = -0.00005625

10+06.12

10+50

11+00

11+50

12+00

12+50

13+00

13+50

14+00

14+06.12

0

43.88

93.88

143.88

193.80

243.88

293.88

343.88

393.88

400.00

100.00

101.10

102.35

103.60

104.85

106.10

107.35

108.60

109.85

110.00

0

-0.11

-0.50

-1.16

-2.11

-3.35

-4.86

-6.65

-8.73

-9.00

100.00

100.99

101.85

102.44

102.74

102.75

102.49

101.95

101.12

101.00

Station Distance
Tangent

Elevation
Grade

Elevation
V

Figure 56

PC

PI

PT

10+06.12
100.00

+2.5%
-2.0%

11+56.12

14+06.12

400'  VC
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Exercise: Complete table below for Crest Vertical Curve

g =
+0.01-0.025

2(300) = -0.000025

Station

10+06.12

10+50

11+00

11+50

12+00

12+50

13+00

13+06.12

Distance
Tangent

Elevation
Grade

Elevation
V

Figure 57

PC
10+06.12
100.00

PT
13+06.12

PI
11+56.12

+ 2.5%

+ 1.0%

300' V.C.
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Exercise:  Complete the table below for Sag Vertical Curve

g=
0.015+0.02

2(300) = 0.000058333

Station

15+12.67

15+50

16+00

16+50

17+00

17+50

18+00

18+12.67

Distance
Tangent

Elevation
Grade

Elevation
V

Figure 57

PC
15+12.67
102.41

-2.0%

PI
16+62.67

+1.5%

300' V.C.

PT
18+12.67
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Law of Sines/Cosines

Law of Sines

sinA
a =

sinB
b =

sinC
c

sinA =
a*sinB

b =
a*sinC

c

a =
b*sinA

sinB =
c*sinA
sinC

Law of Cosines

c2 = a2 + b2 - 2ab* cosC

cosC = a2+b2-c2

2ab

Figure 59

A-1

a

b

c

A 90o

B

C

h
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Construct a rectangle of A width and B height.  Next, create two right
triangles by placing a diagonal, C.  Note that the acute angles in each
triangle must total 90  or it is not a right triangle.

Now construct a square with sides C (equal to the hypotenuse of our
right triangle).  Place four copies of our triangle into the square as
shown.

Figure 60

Derivation of the
Pythagorean Theorem

Figure 61

A-3

A

A

BB C

A

A

A

A

B

B
B

C

C

C C

A-B

A-B

A
-B

A
-B
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It can now be seen that the area of the larger square is equal to the area of
the four triangles plus the area of the smaller square.

or C2 = 4(
1
2 AB) + (A - B)2

C2 = 2AB + (A2 - AB - AB + B2)

C2 = 2AB - 2AB + A2 + B2

C2 = A2 + B2
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Chaining Formulas

Slope Correction

H=scosθ

where:
H = Horizontal Distance
s = Slope Distance
θ = Vertical Angle

Temperature Correction

ct = αL(T - To)

where:
α  = Coefficient of thermal expansion (0.00000645 / 1o F)
L  = Measured Length
T  = Temperature of Chain
To = Standard Temperature ( 68o F )

Tension Correction

Cp = 
(P-P0)L

aE

where:
Cp = Correction per distance L
P  = Applied Tension (Lb.s)
Po = Tension for which the tape was standardized.
L  = Length, (Ft.)
a  = Cross-Sectional Area of the Chain.
E  = Modulus of Elasticity of Steel. (30 * 106 lb/in2)

Sag Correction

Cs = w2L2

24P2 or Cs = W2L
24P2

where:
Cs = Sag Correction between points of support, (Ft.)
w  = Weight of tape, (Lb.s / Ft.)
W  = Total Weight of tape between supports, (Lb.s)
L  = Distance between supports (Ft.)
P  = Applied Tension, (Lb.s)

A-5
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Units of Measurement

1 Acre = 43,560 Square Feet
= 10 Square Chains
= 4046.87 Square Meters

1 Chain (Gunter’s) = 66 Feet
= 22 Yards
= 4 Rods

1 Degree (angle) = 0.0174533 Radians
= 17.77778 Mils
= 1.111111 Grads

1 Foot (U.S. Survey) = 0.30480061 Meters (1200/3937)

1 Foot (International) = 0.3048 Meters (Exactly)

1 Grad (angle) = 0.9 Degrees
= 0.01570797 Radians

1 Inch = 25.4 Millimeters

1 Meter (m) = 3.2808 Feet (U.S. Survey)
= 39.37 Inches (U.S. Survey)

1 Mil (angle) = 0.05625 Degrees
= 3,037,500 Minutes

1 Mile (statute) = 5280 Feet
= 80 Chains
= 320 Rods
= 1.1508 Nautical Miles
= 1.609347 Kilometers

1 Kilometer (km) = 0.62137 Miles

1 Minute (angle) = 0.29630 Mils
= 0.000290888 Radians

1 Radian (angle) = 57.2957795 Degrees

1 Rod = 16.5 Feet
= 1 Pole

1 Second (angle) = 4.84814 x 10-6 Radians

1 Square Mile = 640 Acres
= 27,878,400 Square Feet

A-7
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 Metric Prefixes

1 000 000 000 000 000 000 000 000 = 1024 yotta Y
1 000 000 000 000 000 000 000 = 1021 zetta Z

1 000 000 000 000 000 000 = 1018 exa E
1 000 000 000 000 000 = 1015 peta P

1 000 000 000 000 = 1012 tera T
1 000 000 000 = 109 giga G

1 000 000 = 106 mega M
1 000 = 103 kilo k

100 = 102 hecto h
10 = 101 deka da

1 = 100
0.1 = 10-1 deci d

0.01 = 10-2 centi c
0.001 = 10-3 milli m

0.000 001 = 10-6 micro µ
0.000 000 001 = 10-9 nano n

0.000 000 000 001 = 10-12 pico p
0.000 000 000 000 001 = 10-15 femto f

0.000 000 000 000 000 001 = 10-18 atto a
0.000 000 000 000 000 000 001 = 10-21 zepto z

0.000 000 000 000 000 000 000 001 = 10-24 yocta y

Commonly Used Constants

Coefficient of expansion of invar tape = 0.0000001 per Degree Fahrenheit

Coefficient of expansion of steel tape = 0.00000645 per Degree Fahren-
heit

1 Degree of Latitude = 69.1 Miles

1 Minute of Latitude = 1.15 Miles

1 Second of Latitude = 101 Feet

Length and Width of a Township = 6 Miles or 480 Chains

Number of Sections in a Township = 36

1 Normal Section = 640 Acres

360 Degrees = 400 Grads or 6400 Mils

Typical Stadia Ratio = 100

Mean Radius of the Earth = 20,906,000 Feet
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Glossary of Terms

Benchmark: A fixed reference point or object, the elevation of which is known.

Contour: An imaginary line of constant elevation on the ground surface.

Deflection Angle: An angle between a line and the extension of the preceding line.

Departure: The departure of a line is its orthographic projection on the east-west axis
of the survey.  East departures are considered positive, West ones
negative.

Height of Instrument: The height of the line of sight of the telescope above the survey station or
control point (h.i).  Sometimes referred to as the actual elevation of the
telescope (H.I.).

Height of Target: The height of the target or prism above the survey station or control
point.  Sometimes the H.T. is referred to as the actual elevation of the
target or prism.

Horizontal Angle: An angle formed by the intersection of two lines in a horizontal plane.

Horizontal Datum: The surface to which horizontal distances are referred and consists of (1)
an initial point of origin, (2) the direction of a line from its origin, and (3)
the polar and equatorial axes of the figure of the earth that best fits the
area to be surveyed.

Horizontal Line: A line tangent to a level surface. In surveying, it is commonly
understood that a horizontal line is straight, as opposed to a level line
which follows the earths curved surface.

Hub: A Heavy stake (generally 2" x 2" x 12") set nearly flush with the ground
with a tack in the top marking the exact survey point.  An instrument is
usually set up over this point.

Least Count: The smallest graduation shown on a vernier.  This would allow the
smallest possible measurement to be made on an instrument without
interpolation.

Level Surface: A curved surface - every element of which is normal to a plumb line.

Latitude (traverse): The latitude of a line is its orthographic projection on the north-south
axis of the survey.  North latitudes are considered positive, south ones
negative.

Latitude (astronomical): Angle measured along a meridian north (positive) and south (negative)
from the equator, it varies from 0 degrees to 90 degrees.

Longitude: Angle measured at the pole, East or West from the Prime Meridian,
varies from 0 degrees to 180 degrees East or 180 degrees West.

A-9
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Meridian (astronomical): An imaginary line on the earths surface having the same astronomical
longitude at every point.

Meridian (magnetic): The vertical plane in which a freely suspended magnetized needle, under
no transient artificial magnetic disturbance, will come to rest.

Meridian (grid): A line parallel to the central meridian or Y-axis of a rectangular
coordinate system.

Pacing: A means of getting approximate distances by walking using steady
paces.  Under average conditions a person can pace with a relative
precision of 1:200.  Each two paces is called a stride.  A stride is usually 5
feet, there would be roughly 1000 strides per mile.

Plumb Bob: A pointed metal weight used to project the horizontal location of a point
from one elevation to another.

Range pole: Metal, wooden, or fiberglass poles used as temporary signals to indicate
the location of points or direction of lines.  Usually the pole is painted
with alternate red and white one foot long bands.  These poles come in
sections and the bottom section shod with a steel point.

Stadia: A method of measurement to determine an approximate horizontal
distance using the cross-hairs in a telescope and a leveling rod.

Vernier: A short auxiliary scale placed alongside the graduated scale of an
instrument, by means of which the fractional parts of the least division of
the main scale can be measured precisely.

Vertical Datum: The level surface to which all vertical distances are referred.

Vertical Line: A line perpendicular to the level plane.

Vertical Angle: An angle formed between two intersecting lines in a vertical plane.  In
surveying, it is commonly understood that one of these lines is
horizontal.

Zenith Angle: An angle formed between two intersecting lines in a vertical plane where
one of these lines is directed towards the zenith.
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Glossary of Abbreviations

A area

ac acres

alt. altitude

BM bench mark

BS back sight

BT bearing tree

C cut

CC closing corner

Con. Mon. concrete monument

const. construction

decl. declination

delta central angle

dep. departure

diam. diameter

dir. direct

dist. distance

Dr. drive

elev. elevation

esmt. easement

Ex. existing

F fill

F.H. fire hydrant

F.L. flow line (invert)

frac. fraction

A-11
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F.S. foresight

G.M. guide meridian

h.i. height of inst. above sta.

HI height of inst. above datum

H & T hub and tack

hor. horizontal

I.P. iron pipe

I.R. iron rod

L left (x-section notes)

lat. latitude

long. longitude

max. maximum

MC meander corner

meas. measurement

min. minimum

M.H. manhole

M.H.W. mean high water

M.L.W. mean low water

Mon. monument

obs. observer

obsn. observation

orig. original

pt. point

pvmt. pavement

R right (x-section notes)

R, Rs range, ranges
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R 1 W range 1 west

rev. reverse

RP reference point

R/W right-of-way

SC standard corner

S.G. subgrade

spec. specifications

Sq. square

St. street

sta. station

Std. standard

T, Tp, Tps township, townships

TBM temporary bench mark

temp. temperature

T 2 N township 2 north

TP turning point

WC witness corner

X-sect. cross-section

yd. yard
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Example PPM Chart A-15
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Example Traverse
Calculation Sheet

A-17

Point
I.D.

Adjusted
Azimuth

Horizontal
Distance

Latitude Departure Latitude Departure Northing Easting

Adjustment Coordinates

Project:

Purpose:

Traverse ID:

Page:                  of:

Calculated By:

Checked By:

Date:

Date:
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Excerpt from Table IV
(Spiral Book)

A-19
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Basic Trigonometry
Answer Key

1) C = 5
2) A = 5
3) B = 15
4) A = 28
5) C = 104
6) B = 105
7) A = 3.3
8) C = 9.1
9) B = 2.0
10) 23.205°
11) 42° 53’ 06”
12) 63° 32’ 42”
13) 87.980°
14) x = 2
15) x = 8
16) x = 9
17) x = 2.104
18) x = 604.5
19) Sin A = 3/5 = 0.6000

Cosine A = 4/5 = 0.8000
Tangent A = 3/4 = 0.7500
Cosecant A = 5/3 = 1.6667
Secant A = 5/4 = 1.2500
Cotangent A = 4/3 = 1.3333

20) Sine A = 42/70 = 3/5 = 0.6000
Cosine A = 56/70 = 4/5 = 0.8000
Tangent A = 42/56 = 3/4 = 0.7500
Cosecant A = 70/42 = 5/3 = 1.6667
Secant A = 70/56 = 5/4 = 1.2500
Cotangent A = 56/42 = 4/3 = 1.3333

21) side c = 13
Sine A = 5/13 = 0.3846
Cosine A = 12/13 = 0.9231
Tangent A = 5/12 = 0.4167
Cosecant A = 13/5 = 2.6000
Secant A = 13/12 = 1.0833
Cotangent A = 12/5 = 2.4000

22) cos A = 0.9600
tan A = 0.2917

23) sin 45° = 0.7071
cos 45° = 0.7071
tan 45° = 1.0000

24) Same answers as #23.
25) sin 30° = 0.5000

cos 30° = 0.8660
tan 30° = 0.5774

26) sinθ = 3/5 = 0.6000
27) cosθ = 4/5 = 0.8000

B-1
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28) tanθ = 3/4 = 0.7500
29) sin 180° - θ = 3/5 = 0.6000
30) cos 180° - θ = -4/5 = -0.8000
31) tan 180° - θ = 3/-4 = -0.7500
32) sin 180° + θ = -3/5 = -0.6000
33) cos 180° + θ = -4/5 = -0.8000
34) tan 180° + θ = -3/-4 = 0.7500
35) sin 360° - θ = -3/5 = -0.6000
36) cos 360° - θ = 4/5 = 0.8000
37) tan 360° - θ = -3/4 = -0.7500

38)

1dauQ 2dauQ 3duaQ 4dauQ

niS + + - -

soC + - - +

naT + - + -

39)

=X =Y eniS enisoC tnegnaT

°0 r 0 0=r/0 1=r/r 0=r/0

°09 0 r 1=r/r 0=r/0 ±=0/r ∞

°081 r- 0 0=r/0 1-=r/r- 0=r/0

°072 0 r- 1-=r/r- 0=r/0 ±=0/r ∞

°063 r 0 0=r/0 1=r/r 0=r/0

40) Adjacent side = 5.1962
Opposite side = 3.0000

41) 36° 52’ 12”+ and 53° 07’48”
42) Horizontal Distance = 85.99

Elevation Difference = +12.85
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m)   57o 02.15'

M)   57o 02.17'

2)   114o 04.5'

BS

FS

STA ANGLE RIGHT

FS

BS

6)  342o 13.7'

1)   57o 02.2'

Angle Measuring
Answer Key

B-3
Answers to exercises on page 5-11

elgnAhtineZtceriD 21°201 ' 54 "

elgnAhtineZesreveR 74°752 ' 12 "

elgnAhtineZlaniF 21°201 ' 24 "

307o 57'  21"

BS

FS

STA PLATE
READING

ADJ. PLATE
READING SET ANGLE FINAL ANGLE

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

1 - (DIR)  BS

4 - (REV)   BS

2 - (DIR)   FS

3 - (REV)   FS

0o 00’ 00"

179o 59' 54"

127o 57' 14"

359o 59' 58"

180o 00' 07"

127o 57' 11"

307o 57' 16"

-00o 00’ 03"

127o 57' 17.5"

00o 00' 02.5"

127o 57' 13.5"

127o 57' 20.5"

127o 57' 11.0"

127o 57' 16"
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Bearings and Azimuths
Answer Key

B-5
Answers to exercises for the following pages:

Page 6-7

eniL htumizA

B–A °051

C–B 03°301 '

D–C 05°943 '

E–D 05°05 '

F–E 03°461 '

Page 6-9

eniL gniraeB

B–A W°52N

C–B E°86N

D–C W°71S

A–D W°26S

Page 6-12

eniL gniraeB htumizA

B–A E°55S °521

C–B E°98S °19

D–C E°94N °94

E–D W°08N °082

A–E W°46S °442
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Coordinates
Answer Key

Answers to exercise on page 7-3:

tnioP X Y tnioP N E

A 5- 6 D 4- 4

B 3 7 E 8- 0

C 2 1 F 1- 6-

Answers to exercise on page 7-7:

B-7

20

18

16

14

12

10

8

6

4

2

-2

-4

-6

-8

-10

-12

-14

-16

-18

-20

-8 -6 -4 -2 0 2 4 6 8-14 -12 -10 10 12 14

East

North

S 75 o 57’ 50” E16.49

S 12
o 59’ 41” E

26.68

Perimeter - 86.83

C

B

A

D

E

N
 3

o 00’ 46” W
19.03

N 48 o 00’ 46” W

13.45

N 79 o 41’ 43” W11.18
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8

6

4

2

0

-2

-4

-6

-8

-8 -6 -4 -2 0 2 4 6 8

East

North

E

C

IH

G

F

A

B

D

edutitaL erutrapeD

B-A 21- 2-

C-B 3 8-

D-C 4 2

A-D 5 8

aerA stinUerauqS26

A simple method to compute an area of a figure is to form a rectangle
bounding the outermost points of the figure.  Form rectangles, triangles,
or trapezoids within the larger rectangle but outside the figure in ques-
tion.  The area of the figure is computed by subtracting the sum of the
areas of the outer shapes from the area of the larger rectangle.

An alternate method is shown on the following page.

Answers to exercise on page 7-9:
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Appendix B:  Coordinates - Answer Key

B-9

Alternate method to solve exercise on page 7-9:

By establishing a baseline on the grid adjacent to the figure, several
trapezoids can be formed between the baseline and points on the figure.
To calculate the area within the figure subtract the areas of the trapezoids
outside the figure from the area of the larger trapezoid formed by the
baseline and the two furthermost points of the figure.  See Area by
Coordinates on page 7-8.

8

6

4

2

0

-2

-4

-6

-8

-8 -6 -4 -2 0 2 4 6 8

East

North

C

B

D

A
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Answers to exercise on page 7-10:

tnioP gniraeB ecnatsiD edutitaL erutrapeD gnihtroN gnitsaE

A 8 8

01S o 73 ' 11 " W 82.61 61- 3-

B 8- 5

47N o 44 ' 24 " W 04.11 3 11-

C 5- 6-

01N o 81 ' 71 " E 81.11 11 2

D 6 4-

08N o 23 ' 61 " E 71.21 2 21

A 8 8

C

B

8

6

4

2

0

-2

-4

-6

-8

-8 -6 -4 -2 0 2 4 6 8

East

North

A

D
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Traverse
Answer Key

B-11
Answers to exercise on page 8-9

tnioP
DIDIDIDIDI

derusaeM
elgna elgna elgna elgna elgna

derusaeM
htumizA htumizA htumizA htumizA htumizA

htumizA
tnemtsujdA tnemtsujdA tnemtsujdA tnemtsujdA tnemtsujdA

detsujdA
htumizA htumizA htumizA htumizA htumizA

X

”75’33°072

A ”45’91°511

”15’35°52 ”30’00°0- ”84’35°52

B ”42’10°722

”51’55°27 ”60’00°0- ”90’55°27

C ”51’84°252

”03’34°541 ”90’00°0- ”12’34°541

D ”60’23°403

”63’51°072 ”21’00°0- ”42’51°072

A ”63’81°081

”21’43°072 ”51’00°0- ”75’33°072

X
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 Answers to exercise on page 8-11

Point
I.D.

Adjusted
Azimuth

Horizontal
Distance Latitude LatitudeDeparture Departure Northing Easting

Adjustment Coordinates

270°33’57”
°

25°53’48”

72°55’09”

145°43’21”

270°15’24”

270°33’57”

Totals 6829.08

2732.11

1645.55

1415.50

1035.92 +931.896

+415.762

-1359.750

+12.239

0 0

-2732.083

926.776

+1353.064

+452.438 -0.022

-0.031

-0.035

-0.059

+0.147 +0.195

-0.078

-0.047

-0.040

-0.030

3000.00

3931.874

4347.605

2987.820

3000.00

7000.00

7452.408

8805.432

9732.161

7000.00
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Sta BS (+) H.I. FS (-) Elev Description

BM X 6.72 935.42 BM X: Brass Disk in walk

N.W. corner 12th and Sunset

TP 1 7.13 2.18

TP 2 4.19 3.23

TP 3 6.72 5.11

7.23

BM Y

S.E. Corner 18th and Sunrise

Elev: 941.19

BM Y: 1/2” Iron Rod

TP 4 1.09

2.36

Elev: 935.42

942.14

947.09

948.05

949.66

943.53

939.96

943.86

942.94

942.43

941.16

Differential Leveling
Answer Key

B-13

∑ Backsights = 25.85
∑ Foresights = 20.11
Difference = 5.74

Check:

Begin Elev. = 935.42
BS/FS Diff. = +5.74
Ending Elev. = 941.16

True Elev = 941.19
Closing Elev. = 941.16
Misclosure = 0.03

Answers to exercise on page 10-4
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Trigonometric Leveling
Answer Key

B-15
Answers to exercise on page 11-4

Elevation of Point A

Height of Instrument

Height of Target

Measured Slope Distance

Direct Zenith Angle

Reverse Zenith Angle

506.78 ft

5.21 ft

5.46 ft

837.58 ft

78°37’42”

281°22’28”

Zenith Angle Reduction

Direct Zenith Angle

Reverse Zenith Angle

Sum

360° Minus Sum

Half Value (error)

Plus Original Angle

Final Zenith Angle

78°37’42”

281°22’28”

360°00’10”

-0°00’10”

-0°00’05”

78°37’42”

-78°37’37”

Curature and Refraction

Sight Distance in Miles (837.58/5280)

Curvature and Refraction (0.574)(0.1586)2

0.1586

0.01 ft
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Solving for Elevation at D

Elevation at B (tilting axis)

Elevation difference between B & C

Elevation at C (target tilting axis)

Elevation at D (without C&R)

Elevation at D (adjusted for C&R)

511.99

165.17

677.16

671.70

671.69

Elevation at A plus H.I.

Slope Distance x COS (zenith angle)

Elevation at B plus elevation difference

Elevation at C minus height of target

Elevation at D minus C&R



Geometronics • February 2000 B-17

Horizontal Curves
Answer Key

B-17

Station Deflection Long Chord

127+99.43 P.T.

127+50

127+00

126+50

126+00

125+50

125+00

124+50

124+00

123+50

123+00

122+99.43 P.C.

10°00’00”

9°00’41”

8°00’41”

7°00’41”

6°00’41”

5°00’41”

4°00’41”

3°00’41”

2°00’41”

1°00’41”

0°00’41”

0°00’00”

497.47

448.71

399.27

349.70

300.02

250.25

200.41

150.50

100.55

50.57

0.57

0.00

Chord Length

Degree of Curve

Delta

External Distance

Length of Curve

Middle Ordinate

P.C. Station

P.I. Station

P.T. Station

Radius

Tangent Distance

497.47

4° Lt

20°

22.10

500

21.76

122+99.43

125+52.00

127+99.43

1432.40

252.57

Answers to exercise on page 13-5
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Answers to exercise on page 13-6

Chord Length

Degree of Curve

Delta

Length of Curve

P.C. Station

P.I. Station

P.T. Station

507.88

3°55’05”

20°

510.47

122+99.43

127+99.43

1462.40

Station Deflection Long Chord

127+99.43 P.T.

127+50

127+00

126+50

126+00

125+50

125+00

124+50

124+00

123+50

123+00

122+99.43 P.C.

10°00’00”

9°00’41”

8°00’41”

7°00’41”

6°00’41”

5°00’41”

4°00’41”

3°00’41”

2°00’41”

1°00’41”

0°00’41”

0°00’00”

507.88

458.11

407.63

357.02

306.30

255.49

204.60

153.65

102.66

51.63

0.58

0.00
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Spiral Curves
Answer Key

B-19
1) a = 5

2) a = 3

3) a = 0.8

4) a = 0.4

5) S = 4° 00’

6) S = 8° 00’

7) S = 6° 15’

8) S = 15° 37’ 30”

9) a = 1.5
S = 12° 00’
i = 3° 59’ 55”
C = 399.22’
Y = 398.25’
X = 27.84’
T = 598.14’

10) 321+50 i =  0° 02’ 13”
322+00 i =  0° 11’ 45”
322+50 i =  0° 28’ 46”
323+00 i =  0° 53’ 18”
323+50 i =  1° 25’ 19”
324+00 i =  2° 04’ 51”
324+50 i =  2° 51’ 52”
325+00 i =  3° 46’ 24”
325+11.50 i =  4° 00’ 00”

s
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Vertical Curves
Answer Key

B-21
Answers to exercise on page 15-3:

g=
+0.01-0.025

2(300) = -0.000025

Station

10+06.12

10+50

11+00

11+50

12+00

12+50

13+00

13+06.12

Distance
Tangent

Elevation
Grade

Elevation
V

0

43.88

93.88

143.88

193.88

243.88

293.88

300.00

100.00

101.10

102.35

103.60

104.85

106.10

107.35

107.50

0

-0.05

-0.22

-0.52

-0.94

-1.49

-2.16

-2.25

100.00

101.05

102.13

103.08

103.91

104.61

105.19

105.25

PC
10+06.12
100.00

PT
13+06.12

PI
11+56.12

+ 2.5%

+ 1.0%

300' V.C.
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Answers to exercise on page 105:

g =
0.015-0.02

2(300) = 0.000058333

Station

15+12.67

15+50

16+00

16+50

17+00

17+50

18+00

18+12.67

Distance
Tangent

Elevation
Grade

Elevation
V

o

37.33

87.33

137.33

187.33

237.33

287.33

300.00

102.41

101.66

100.66

99.66

98.66

97.66

96.66

96.41

0

0.08

0.44

1.10

2.05

3.29

4.82

5.25

102.41

101.74

101.10

100.76

100.71

100.95

101.48

101.66

PC
15+12.67
102.41

-2.0%

PI
16+62.67

+1.5%

300' V.C.

PT
18+12.67
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