Antivirals for Herpes Simplex Virus (HSV) Review

FDA-Approved Indications

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturer</th>
<th>FDA-Approved Indications</th>
</tr>
</thead>
</table>
| acyclovir (Zovirax®)¹ | generic | ♦ Treatment of herpes zoster (shingles)
♦ Treatment of varicella (chickenpox) in patients > two years old
♦ Treatment of genital herpes simplex (initial and recurrent episodes) |
| famciclovir (Famvir®)² | generic | ♦ Treatment of herpes zoster (shingles)
♦ Treatment and suppression of recurrent genital herpes in immunocompetent patients
♦ Treatment of recurrent mucocutaneous herpes infections in HIV-infected patients
♦ Treatment of recurrent herpes simplex labialis (cold sores) in immunocompetent patients |
| valacyclovir (Valtrex®)³ | generic | ♦ Treatment of herpes zoster (shingles)
♦ Treatment of genital herpes
♣ Immunocompetent patients with initial or recurrent episode
♣ Suppression in immunocompetent or HIV-infected patients
♣ Reducing heterosexual transmission to susceptible partners
♦ Treatment of herpes labialis (cold sores) in patients ≥12 years old
♦ Treatment of varicella (chickenpox) in patients two to 18 years old |

Overview

Herpes simplex virus (HSV) infections are the most common cause of genital ulceration in the United States, affecting more than 50 million people.¹ HSV is most often transmitted by people unaware they have infection and/or are asymptomatic. HSV shedding can occur when the patient is asymptomatic. There are two types of herpes simplex virus, HSV-1 and HSV-2. HSV-1 usually establishes latency in the trigeminal ganglion and produces lesions on the lower lip or face. HSV-2 resides in the sacral ganglion at the base of the spine and produces lesions and/or viral shedding in the genital area. It is possible to have either virus affecting either region as well as other areas. HSV-2, by causing genital ulcerations, has been found to increase the risk of acquiring human immunodeficiency virus (HIV).²
HSV infections are chronic, life-long infections. Management of genital herpes includes counseling and methods to reduce transmission such as use of condoms, avoidance of sexual activity during infection recurrences, and suppressive antiviral therapy. Antivirals do not eradicate HSV. Antivirals partially control the signs and symptoms of infection and are used for treatment of initial and recurrent herpes episodes and as daily suppressive therapy to reduce the frequency of episodes.

The 2006 Centers for Disease Control and Prevention (CDC) Sexually Transmitted Diseases (STD) recommendations for genital herpes either for initial or recurrent episodes indicate no preference for any one of these three oral agents. Chronic suppressive therapy for patients with frequent recurrences may include any one of the three oral agents according to the CDC STD guidelines.

Varicella-zoster virus (VZV) causes an acute, localized infection commonly known as chickenpox, and then VZV lies dormant in the dorsal root ganglia for many years before potentially re-emerging to cause herpes zoster, commonly known as shingles. Approximately one in three persons will develop herpes zoster during their lifetime, resulting in an estimated one million episodes in the United States annually. The risk of post-herpetic neuralgia in patients with herpes zoster is 10 to 18 percent.

Reactivation of VZV may be due to aging, stress, or immunosuppression. The virus spreads along nerve tracts, causing pain or a burning sensation followed by a painful, blistering rash. The infection may spontaneously disappear after two to three weeks and rarely recurs. Relief of pain may be all that is required. In severe cases of shingles, nerve palsy, continued neuralgia, or blindness as a result of eye lesions caused by VZV, may persist after the acute infection disappears. The goal of treatment of herpes zoster is to reduce pain in immunocompetent patients and stop viral replication in immunocompromised patients and those with ophthalmic herpes zoster. Antivirals reduce the duration of viral shedding, new lesion formation, and healing of the rash. The effect of antivirals on the development of postherpetic neuralgia are less clear; however, several meta-analyses and clinical trials have demonstrated that antivirals significantly reduce the duration or incidence of prolonged pain. Risk factors for postherpetic neuralgia include older age, female gender, presence of prodromal symptoms, greater rash severity, and greater acute pain severity. Guidelines for the management of herpes zoster support the use of any of the three agents for first line therapy. The Advisory Committee on Immunization Practices (ACIP) recommends the use of a live attenuated vaccine for persons 60 years and older for the prevention of herpes zoster.
Pharmacology

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
</tr>
</thead>
</table>
| acyclovir (Zovirax) | ♦ Acyclovir is an acyclic analogue of the natural nucleoside, guanosine. It is activated via monophosphorylation by HSV-induced thymidine kinase. Selective affinity results in the activation and concentration of acyclovir in virus-infected cells over normal cells. Two additional phosphorylations result in acyclovir triphosphate, a substrate for and preferential inhibitor of viral, rather than cellular, DNA polymerase. It binds to HSV DNA polymerase, is incorporated into viral DNA, and thereby inhibits viral DNA replication.
♦ Acyclovir has in vitro inhibitory activity against HSV-1, HSV-2, VZV, Epstein-Barr virus (EBV), and cytomegalovirus (CMV). |
| famciclovir (Famvir) | ♦ Famciclovir is a pro-drug; it is the diacetyl 6-deoxy analog of the active antiviral compound, penciclovir. Penciclovir is phosphorylated into a monophosphate form that is converted into penciclovir triphosphate. Viral DNA synthesis and replication are inhibited by penciclovir.
♦ Famciclovir has inhibitory activity against HSV-1, HSV-2, VZV, and EBV. |
| valacyclovir (Valtrex) | ♦ Valacyclovir is the L-valyl ester prodrug of acyclovir and is rapidly converted to acyclovir, which has affinity for the viral enzyme thymidine kinase encoded by HSV and VZV. Therefore, valacyclovir has similar viral inhibitory activity as acyclovir. |

Pharmacokinetics

<table>
<thead>
<tr>
<th>Drug</th>
<th>Bioavailability (%)</th>
<th>Half-Life (hr)</th>
<th>Metabolism</th>
<th>Excretion (%)</th>
</tr>
</thead>
</table>
| acyclovir (Zovirax) | 10-20 | 2.5-3.3 | At least one metabolite | Renal: 62-91
Fecal: minimal |
| famciclovir (Famvir) | 77 | 2.3 for penciclovir | One active – penciclovir; three inactive | Renal: 73
Fecal: 27 |
| valacyclovir (Valtrex) | 55 | 2.5-3.3 | Rapidly converted to acyclovir | Renal: 45.6
Fecal: 47.12 |
Contraindications/Warnings\(^{21,22,23}\)

Acyclovir (Zovirax) and valacyclovir (Valtrex) are contraindicated in patients with hypersensitivity to acyclovir. Famciclovir (Famvir) is contraindicated in patients with known hypersensitivity to the product, its components or penciclovir cream (Denavir\(^{®}\)).

Renal failure, in some cases resulting in death, has been observed with acyclovir therapy. Thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS), which has resulted in death, has occurred in immunocompromised patients receiving acyclovir or valacyclovir including patients with advanced HIV disease, patients having undergone allogenic bone marrow transplant and renal transplant.

Central nervous system adverse effects such as agitation, hallucinations, confusion, and encephalopathy may occur in elderly patients (with or without reduced renal function) and in patients with underlying renal disease who receive higher than recommended doses of valacyclovir for their level of renal function. Use with caution in elderly patients and reduce dosage in patients with renal impairment.

Drug Interactions\(^{24,25,26}\)

Coadministration of probenecid with intravenous acyclovir (Zovirax) has been shown to increase the mean acyclovir half-life and the area under the concentration-time curve. Urinary excretion and renal clearance were correspondingly reduced.

No clinically significant drug interactions have been observed with famciclovir (Famvir) or valacyclovir (Valtrex).

Adverse Effects

<table>
<thead>
<tr>
<th>Drug</th>
<th>Headache</th>
<th>Nausea</th>
<th>Dizziness</th>
<th>Abd. Pain</th>
<th>↑ AST</th>
<th>Diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>acyclovir (Zovirax)(^{27})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg twice daily n=586</td>
<td>reported (2.2)</td>
<td>4.8 (2.4)</td>
<td>reported</td>
<td>nr</td>
<td>reported</td>
<td>2.4 (2.7)</td>
</tr>
<tr>
<td>famciclovir (Famvir)(^{28})</td>
<td>13.5-22.7 (5.4-17.8)</td>
<td>2.5-12.5 (3.6-11.6)</td>
<td>nr</td>
<td>0-1.1 (1.2-3.4)</td>
<td>nr</td>
<td>4.9-7.7 (1.2-4.8)</td>
</tr>
<tr>
<td>500 mg three times daily to 1 gm twice daily n=436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valacyclovir (Valtrex)(^{29})</td>
<td>11-16 (8-14)</td>
<td>4-6 (5-6)</td>
<td>nr</td>
<td>nr</td>
<td>1 (0.5)</td>
<td>nr</td>
</tr>
<tr>
<td>500 mg twice daily to 1 gm twice daily n=2,050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adverse effects are reported as a percentage. Adverse effects data are obtained from prescribing information and are not meant to be comparative. Incidences for the placebo group are indicated in parentheses. nr = not reported. AST = aspartate aminotransferase
In clinical studies for the treatment of herpes labialis in adolescents, the adverse effects most commonly reported were headache (17 percent) and nausea (eight percent). In pediatric patients (ages one month to 12 years of age), adverse effects reported in pharmacokinetic and safety studies included diarrhea (five percent), pyrexia (four percent), dehydration (two percent), and herpes simplex (two percent).

Special Populations

Pediatrics

Herpes infections

Intravenous acyclovir (Zovirax) has been shown to be safe in pediatric patients, but safety and effectiveness of oral formulations of acyclovir in children less than two years of age have not been established. Safety and efficacy in children less than 18 years of age have not been established for famciclovir (Famvir).

Valacyclovir (Valtrex) is approved for the treatment of herpes labialis episodes in children 12 years of age and older.

Varicella infections

Acyclovir is approved for treatment of varicella in children two years of age and older. The use of acyclovir for the treatment of varicella in children has decreased since the arrival of the varicella vaccine for the prevention of varicella infections in children. Valacyclovir is approved for the treatment of chickenpox in children ages two to 18 years of age. Valacyclovir oral suspension (25 mg/mL or 50 mg/mL) can be prepared from the 500 mg caplets; acyclovir is available as an oral suspension.

Acyclovir has been shown to be effective in the treatment of chickenpox in at least two double-blind placebo-controlled studies in normal children ages two to 16 years that were performed in the early 1990’s prior to the availability of the varicella vaccine for children. Treatment in both studies began within 24 hours of rash onset and was given as acyclovir 20 mg/kg four times daily for five to seven days. Children ages 12 to 16 years received 10 mg/kg four times daily orally for five to seven days. Beneficial effects of acyclovir included earlier defervescence, fewer varicella lesions, absence of new lesions after three days of acyclovir, and accelerated crusting and healed stages. No differences in disease complications were noted in either study. Acyclovir was well tolerated in the children with no serious adverse effects reported.

Pregnancy

Acyclovir, famciclovir, and valacyclovir are Pregnancy Category B.

Prevention of neonatal exposure to herpes requires the avoidance of contracting genital HSV during the third trimester and avoidance of exposure of the infant to active herpetic lesions during delivery. Safety data for agents in this category are not robust; the majority of data are with acyclovir.

HIV-positive patients

Patients with HIV may have severe and prolonged episodes of HSV lesions. In general, HSV shedding is more common in patients with HIV. The CDC recommends any one of the three
agents for daily suppressive therapy in patients infected with HIV. Resistance of HSV to all of these drugs is higher in immunocompromised patients (six to seven percent) than in immunocompetent patients (<0.5 percent).38,39,40

\textit{Renal Impairment}

All products in this category require dose and/or interval adjustments for renal impairment.

\textit{Elderly}

Elderly patients are more likely to have reduced renal function and require dose reduction. Elderly patients are also more likely to have renal or CNS adverse events.
Dosages

FDA-Approved Dosages

<table>
<thead>
<tr>
<th>Drug/Dosage Forms</th>
<th>Initial genital herpes</th>
<th>Recurrent genital herpes</th>
<th>Chronic suppressive genital herpes</th>
<th>Herpes zoster</th>
<th>Herpes labialis (cold sores)</th>
<th>Varicella</th>
</tr>
</thead>
<tbody>
<tr>
<td>acyclovir (Zovirax)</td>
<td>200 mg five times per day for 10 days</td>
<td>200 mg five times per day for 5 days</td>
<td>400 mg twice daily for up to 12 months</td>
<td>800 mg five times per day for seven to ten days</td>
<td>--</td>
<td>2 years and older:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less than 40 kg:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80 mg/kg/day divided into four doses for five days</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 kg and up:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800 mg four times a day for five days</td>
</tr>
<tr>
<td>famciclovir (Famvir)</td>
<td>--</td>
<td>1 gm twice daily for one day</td>
<td>250 mg twice daily for up to 12 months</td>
<td>500 mg three times daily for seven days</td>
<td>1,500 mg as a single dose</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For HIV+ patients, 500 mg twice daily for seven days or orolabial or genital herpes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valacyclovir (Valtrex)</td>
<td>1 gm twice daily for ten days</td>
<td>500 mg twice daily for three days</td>
<td>500 mg – 1 gm daily</td>
<td>1 gm three times daily for seven days</td>
<td>≥ 12 years:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 gm twice daily for one day; do not exceed one day of treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ages 2 to <18 years:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 mg/kg three times daily for five days; not to exceed 1 gm three times daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 mg capsule; 400, 800 mg tablets; 200 mg/5 mL suspension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125, 250, 500 mg tablets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500, 1,000 mg caplets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CDC Recommended Dosages for Genital HSV infections

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial genital herpes</th>
<th>Recurrent genital herpes</th>
<th>Chronic suppressive genital herpes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acyclovir (Zovirax)</td>
<td>200 mg five times per day for seven to 10 days OR 400 mg three times daily for seven to 10 days</td>
<td>400 mg three times daily for five days OR 800 mg twice daily for five days OR 800 mg three times daily for two days</td>
<td>400 mg twice daily</td>
</tr>
<tr>
<td>famciclovir (Famvir)</td>
<td>250 mg three times daily for seven to 10 days</td>
<td>125 mg twice daily for five days OR 1 gm twice daily for one day</td>
<td>250 mg twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For HIV-positive patients: 400 mg three times daily for five to 10 days</td>
<td>For HIV-positive patients: 400 to 800 mg twice to three times daily</td>
</tr>
<tr>
<td>valacyclovir (Valtrex)</td>
<td>1 gm twice daily for seven to 10 days</td>
<td>500 mg twice daily for three days OR 1 gm once daily for five days</td>
<td>500 mg – 1 gm daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For HIV-positive patients: 1 gm twice daily for five to 10 days</td>
<td>For HIV-positive patients: 500 mg twice daily</td>
</tr>
</tbody>
</table>

Clinical Trials

Search Strategy

Studies were identified through searches performed on PubMed and review of information sent by manufacturers. Search strategy included the FDA-approved use of all drugs in this class. Randomized, comparative, controlled trials performed in the United States comparing oral agents within this class in an outpatient setting for the approved indications are considered the most relevant in this category. Studies included for analysis in the review were published in English, performed with human participants, and randomly allocated participants to comparison groups. In addition, studies must contain clearly stated, predetermined outcome measure(s) of known or probable clinical importance, use data analysis techniques consistent with the study question, and include follow-up (endpoint assessment) of at least 80 percent of participants entering the investigation. Despite some inherent bias found in all studies, including those sponsored and/or funded by pharmaceutical manufacturers, the studies in this therapeutic class review were determined to have results or conclusions that do not suggest systematic error in their experimental study design. While the potential influence of manufacturer sponsorship/funding must be considered, the studies in this review have also been evaluated for validity and importance.
Herpes Zoster - uncomplicated

acyclovir (Zovirax) versus famciclovir (Famvir)

In a double-blind, parallel-group study, 55 immunocompetent adults with acute uncomplicated herpes zoster were randomized to treatment with famciclovir 250 mg three times daily or acyclovir 800 mg five times daily.\(^{42}\) This study compared the clinical efficacy of acyclovir and famciclovir in the treatment of acute uncomplicated herpes zoster. Treatment was initiated within 72 hours of onset of the zoster rash and was continued for seven days. Famciclovir was as effective as acyclovir for healing the cutaneous lesion, as indicated by the time to full crusting (11 days with famciclovir, 10 days with acyclovir; \(p=0.761\)) and loss of acute phase pain (famciclovir 20 days, acyclovir 27 days; \(p=0.683\)). Both groups experienced loss of vesicles on day six. Loss of ulcers occurred in one day in both groups. Loss of crusts were similar between the two groups (acyclovir 27 days; famciclovir 20 days; \(p=0.558\)). Famciclovir was well tolerated and had a more favorable adverse event profile compared to acyclovir. Constipation, hematuria, and glycosuria were the most commonly reported adverse events. The dose of famciclovir used in this study is 50 percent lower than the approved dosage for this indication.

Another double-blind study compared the clinical efficacy of acyclovir 800 mg five times daily and famciclovir 750 mg once daily, 500 mg twice daily, or 250 mg three times daily in the treatment of acute uncomplicated herpes zoster in immunocompetent adults.\(^{43}\) Patients (n=559) presented within 72 hours after rash onset and were randomized to famciclovir 750 mg daily, 500 mg twice daily, or 250 mg three times daily or acyclovir 800 mg five times daily. All patients were given treatment for seven days. Complete healing was assessed at four weeks or whenever completed healing occurred. Healing was defined as time to full crusting of lesions, loss of vesicles, cessation of new lesion formation, and a 50 percent reduction in affected skin. Healing and loss of acute pain were similar among the four groups. The development of postherpetic neuralgia was not assessed in this study. Headache was the most commonly reported adverse effect. Five discontinuations were reported with both famciclovir and acyclovir. The doses of famciclovir used in this study are one-third to one-half lower than the dose recommended for this indication.

acyclovir (Zovirax) versus valacyclovir (Valtrex)

A randomized, double-blind, multicenter trial evaluated the safety and efficacy of acyclovir and valacyclovir in the treatment of herpes zoster in 1,141 immunocompetent adults.\(^{44}\) Patients presented within 72 hours of onset of rash. Patients were randomized to one of three groups: valacyclovir 1 gm three times daily for seven or 14 days or acyclovir 800 mg five times daily for seven days. The primary outcome parameters were the succession of pain, time to cessation of new lesion formation and/or increase in lesion area, and time to greater than 50 percent crusting or healed rash. Valacyclovir treatment for seven or 14 days significantly accelerated the resolution of pain (\(p=0.001\) and \(p=0.03\), respectively) compared with acyclovir treatment. Median cessation of pain was 38 and 44 days, respectively, with valacyclovir seven- or 14-day treatments compared to 51 days with acyclovir. No significant differences in time to cessation of new lesions and or increase in lesion area were reported among the groups [valacyclovir seven-day versus acyclovir [HR=1.03 (95% CI, 0.89-1.20)]; valacyclovir 14-day versus acyclovir [HR=0.99 (95% CI, 0.85-1.14)]; valacyclovir seven- versus 14-day [HR=1.05 (95% CI, 0.91-1.21)]. No significant differences in the time to greater than 50 percent crusting or healing lesions were reported among the groups [valacyclovir seven-day versus acyclovir [HR=1.00 (95% CI, 0.87-1.16)]; valacyclovir 14-day versus acyclovir [HR=1.02 (95% CI, 0.88-1.18)]; valacyclovir seven- versus 14-day [HR=0.98 (95% CI, 0.85-1.14)]. Valacyclovir 14-day group...
had a shorter duration of abnormal sensations compared to acyclovir [HR=1.27 (95% CI, 1.07-1.52)]. All other groups were similar. No significant differences in pain intensity, quality of life or unpleasantness were reported among the groups. Valacyclovir seven- and 14-day groups had a similar percentage of patients reporting pain after six months (19.9 and 18.6 percent, respectively) that was significantly lower than the percent reporting the same in the acyclovir group (25.7 percent; valacyclovir versus acyclovir, p=0.02). No differences in adverse drug events were observed among the groups.

famciclovir (Famvir) versus valacyclovir (Valtrex)

A study compared the clinical efficacy of valacyclovir 1 gm three times per day to famciclovir 500 mg three times a day for seven days in the treatment of acute uncomplicated herpes zoster. A total of 597 outpatients, aged 50 years and older, who had herpes zoster were enrolled in a double-blind, randomized trial. The primary outcome was complete cessation of zoster-related pain. The occurrence of postherpetic neuralgia was also assessed. Secondary endpoints included time to cessation of zoster-associated abnormal sensations, pain intensity, rash healing, and lesion dissemination. No difference in resolution of zoster related pain were seen in this comparison of valacyclovir (42 days) and famciclovir [49 days; HR=1.02 (95% CI, 0.84-1.23)]. Postherpetic neuralgia was similar in both groups [HR=1.01 (95% CI, 0.84-1.23)]. No differences were reported with any of the secondary endpoints including time to cessation of zoster-associated abnormal sensations, pain intensity, rash healing (p=0.26), and lesion dissemination. Headache and nausea were the most common events reported for each agent.

Herpes zoster – immunocompromised patients

acyclovir (Zovirax) versus famciclovir (Famvir)

In a randomized, double-blind, multicenter study, 148 patients (ages 12 years and older) with clinical evidence of localized herpes zoster received either oral famciclovir 500 mg three times daily or acyclovir 800 mg five times daily for ten days. The efficacy and safety of famciclovir were evaluated for the treatment of herpes zoster in patients who were immunocompromised following bone marrow (BMT) or solid organ transplantation or oncology treatment. An equivalent percentage of patients in the famciclovir and acyclovir groups, 77 and 73 percent, respectively, reported new lesion formation while on therapy. The median time to cessation of new lesions was three days with acyclovir and four days with famciclovir. The median time to full crusting was eight days for famciclovir and nine days for acyclovir [HR=1.26 (95% CI, 0.88-1.82)]. The median time to complete healing was 20 days with famciclovir and 21 days with acyclovir [HR=0.98 (95% CI, 0.67-1.42)]. The median time to loss of acute pain was 14 and 17 days for famciclovir and acyclovir, respectively [HR=0.71 (95% CI, 0.71-1.75)]. In summary, there were no significant differences between the groups in the median time to cessation of new lesion formation, full crusting, complete healing of lesions, or loss of acute phase pain.

Treatment with famciclovir was well tolerated with a safety profile comparable to that of acyclovir.

Herpes Zoster - ophthalmic

acyclovir (Zovirax) versus famciclovir (Famvir)

Famciclovir and acyclovir were compared in a randomized, double-blind trial with 454 patients with ophthalmic herpes zoster involving the trigeminal nerve. Therapy was famciclovir 500 mg three times daily or acyclovir 800 mg five times daily for seven days. Ocular manifestations of ophthalmic zoster were similar in the two groups (famciclovir, 58 percent versus acyclovir, 58.2
percent). There was no difference in visual acuity loss either. Both therapies were well tolerated.

Acyclovir (Zovirax) versus Valacyclovir (Valtrex)

A multicenter, double-blind study enrolled 110 immunocompetent patients with ophthalmic herpes zoster diagnosed within 72 hours of skin eruption. Patients were randomized to treatment with valacyclovir 1 gm three times daily or acyclovir 800 mg five times daily, each with matching placebo control. Ocular complications of ophthalmic herpes zoster were similar in the valacyclovir and acyclovir treatment groups with the main complications being conjunctivitis (54 and 52 percent), superficial keratitis, stromal keratitis (both 13 percent), and uveitis (13 and 17 percent). Pain duration and severity and outcome of skin lesions were similar between groups. Pain was reported after one month in 25 percent of the valacyclovir group and 31 percent in the acyclovir group. Three percent of each group reported pain at week 24. Both valacyclovir and acyclovir produced similar outcome for skin lesions. Total healing (100 percent) was reported in 83 and 87 percent of the valacyclovir and acyclovir groups, respectively, at day 14. The most frequent adverse events were vomiting and edema of the eyelids or face, which occurred in three to five percent of patients.

Genital Herpes Simplex – initial episode

Acyclovir (Zovirax) versus Valacyclovir (Valtrex)

A multicenter, randomized, double-blind clinical trial compared ten-day regimens of valacyclovir 1 gm twice daily and acyclovir 200 mg five times daily in the treatment of 643 healthy adults with first-episode genital herpes. Patients were enrolled if symptoms had presented in less than 72 hours prior to enrollment. Patients received the randomized therapy plus a matching placebo. Patients (n=24) who had antibodies to HSV-1 and HSV-2 were excluded from the analysis since this represented a recurrent infection. Time to healing of all lesions and the duration of viral shedding were the primary outcome parameters. Valacyclovir and acyclovir did not differ significantly in efficacy with respect to duration of viral shedding (three days in both groups), portion of patients forming new lesions, duration of pain, maximum number of lesions, and time to loss of all symptoms. Adverse experiences were generally infrequent and mild and were comparable in the two treatment groups.

Genital Herpes Simplex - recurrent

Acyclovir (Zovirax) versus Famciclovir (Famvir)

Two hundred and four patients with recurrent genital herpes were randomized in a double-blind, double-placebo, parallel-design study to famciclovir 125 mg twice daily or acyclovir 200 mg five times daily. The mean time to complete healing of lesions was 5.1 days for famciclovir and 5.4 days for acyclovir (p=NS). There were no differences detected in the proportion of patients having complete healing at the different days of evaluation as well as in the duration until the complete resolution of all the symptoms. The frequency, nature, and severity of adverse events did not differ between the two treatment groups.

Acyclovir (Zovirax) versus Valacyclovir (Valtrex)

In a double-blind study, 739 patients with a history of recurrent genital HSV infection were randomized to receive either oral valacyclovir 500 mg twice daily or acyclovir 200 mg five times daily for five days for treatment of their next recurrent episode. Patients self-initiated therapy at the first signs and/or symptoms of the HSV recurrence, then were assessed in clinic on five
occasions over seven days, then twice weekly thereafter until lesions had healed. The time to healing of all lesions and the duration of all signs and symptoms were the primary endpoints. Duration of episode which was the time from treatment initiation to complete resolution of all signs and symptoms was similar between valacyclovir (4.7 days) and acyclovir [4.6 days (HR=0.93; 95% CI, 0.79-1.08, p=0.34)]. Lesion healing time was similar between valacyclovir (4.4 days) and acyclovir [4.5 days (HR=0.96; 95% CI, 0.80-1.14)]. Percentages of patients in whom all HSV cultures were negative were similar in the valacyclovir and acyclovir groups at 59 and 54 percent, respectively. There was no difference in the ability of each drug to prevent the development of vesicular/ulcerative lesions (HR=1.08, 95% CI, 0.82-1.42). Duration and severity of pain were similar between the two groups (HR=0.93; 95% CI, 0.78-1.06). The safety profiles of valacyclovir and acyclovir were comparable with adverse experiences being infrequent and generally mild. In patient-initiated therapy, acyclovir 200 mg five times daily and valacyclovir 500 mg twice daily provide similar time to healing all lesions and reduce the development of new lesions in recurrent genital HSV infections.

In a multicenter, double-blind study, 1,200 people with recurrent genital HSV infections were randomized to self-initiated oral therapy with valacyclovir 1 gm twice daily, acyclovir 200 mg five times daily, or placebo for five days. The primary endpoints include the length of the episode and time to lesion healing. Secondary endpoints include duration and severity pain and discomfort, viral shedding, and proportion of aborted episodes. Valacyclovir [median duration until herpetic resolution 4.8 days, HR=1.66 (95% CI, 1.33-2.01)] and acyclovir [4.8 days, HR=1.71 (95% CI, 1.41-2.06)] significantly reduced the length of time of episode compared to placebo (5.9 days). Median healing times were significantly earlier with valacyclovir [4.8 days, HR=1.88 (95% CI, 1.53 -2.32)] and acyclovir [4.8 days, HR=1.90 (95% CI, 1.55-2.34)] compared to placebo (6.0 days). Pain duration was shorter in both active treatment groups (both p<0.05), and viral shedding stopped earlier in patients on active treatment (both p<0.001). Both active treatments reduced the severity of pain and discomfort compared to placebo on day three (valacyclovir, p<0.001; acyclovir, p=0.001). Aborted episodes occurred more frequently with valacyclovir (25.9 percent) and acyclovir (24.8 percent) than placebo (19.8 percent), although this did not achieve statistical significance. The safety profiles of valacyclovir and acyclovir were comparable. Valacyclovir and acyclovir reduce the length of a genital HSV episode and reduced the time to healing compared to placebo. The dose of valacyclovir studied in this trial is twice the dosage recommended by the CDC for this patient population.

A study examined the dose-response relationship of valacyclovir given once daily for the suppression of genital HSV infections in 1,479 immunocompetent patients with frequently recurring infections over 52 weeks. Twice-daily acyclovir and valacyclovir were also evaluated. In the randomized, double-blind study, patients were randomized to valacyclovir 250, 500, or 1,000 mg once daily or 250 mg twice daily, acyclovir 400 mg twice daily, or placebo for one year. All patients had a history of at least six recurrences of genital herpes per year. Suppressive therapy was discontinued for at least three months prior to enrollment. Episodic therapy with valacyclovir was given for five days for recurrences. The primary endpoint was the time to first recurrence of genital HSV infection which was defined as number of days since randomization until first onset of lesions. No significant difference between active treatments for suppression HSV recurrences was demonstrated (all tested comparisons, p=NS); all were significantly more effective than placebo at suppressing HSV recurrences (all comparisons versus placebo; p<0.01). All valacyclovir treatment groups had longer time to first recurrence compared to placebo. Acyclovir was not tested versus placebo but numerically looked to favor acyclovir. The percentage of patients without recurrences were reported as follows: 48 percent of valacyclovir 1 gm daily group, 40 percent of valacyclovir 500 mg daily group, 50 percent of...
valacyclovir 250 mg twice daily group, 22 percent of valacyclovir 250 mg daily group, 49 percent acyclovir group, and five percent of the placebo group. Patients with >10 recurrences had a lower rate of response to suppression overall. These patients are best treated with valacyclovir 1 gm daily, valacyclovir 250 mg twice daily, or acyclovir 400 mg twice daily. Patients with <10 recurrences per year had a similar response rate with valacyclovir 500 mg or 1 gm once daily or 250 mg twice daily or acyclovir 400 mg twice daily. Adverse events were generally mild, infrequent, and similar in nature to placebo. The most common adverse event reported in all groups was headache. The dosage of acyclovir used in this study is lower than that recommended by the CDC for this indication.55

In a double-blind, three-period crossover trial, the efficacy in suppression of shedding of genital HSV in 69 immunocompetent patients was compared.56 Patients received valacyclovir 500 mg twice daily, acyclovir 400 mg twice daily, or placebo for seven-week time periods in random order. Daily genital mucosal swabs were collected from the patients. HSV was detected at least once in 90 percent of patients by culture and 98 percent by DNA polymerase chain reaction (PCR). Genital HSV shedding detected by culture was detected in 86 percent while on placebo, 12 percent while on valacyclovir and 24 percent while on acyclovir (both p<0.01). By PCR detection, HSV shedding was detected in 93, 65, and 76 percent while on placebo, valacyclovir, and acyclovir, respectively (valacyclovir versus placebo, p<0.001; acyclovir versus placebo, p=0.01). Antiviral therapy significantly reduced the HSV shedding compared to placebo by both culture and PCR detection methods with no significant differences in frequency or quantity of HSV shedding between the two antivirals. The geometric mean number of HSV DNA detected PCR copies/mL decreased from 10^{5.2} for placebo to 10^{3.9} and 10^{3.6} with valacyclovir and acyclovir, respectively (both p<0.001 versus placebo). The levels of valacyclovir and acyclovir suppression of HSV DNA were similar. Valacyclovir was associated with a significant decrease in the frequency of total HSV shedding by both viral culture [RR=0.03 (95% CI, 0.01–0.07); p<0.001] and PCR [RR=0.18 (95% CI, 0.12–0.26); p=0.001] compared to placebo. A similar decrease in the frequency of total HSV shedding was observed with acyclovir compared with placebo [RR=0.05 (95% CI, 0.03–0.10) for culture and RR=0.20 (95% CI, 0.15–0.28) for PCR; p<0.001 for both]. Days with genital lesions were reported in 2.8 percent for valacyclovir (p<0.001), 3.1 percent with acyclovir (p<0.001), and 22.1 percent with placebo.

famciclovir (Famvir) versus valacyclovir (Valtrex)

In a multicenter, multinational, double-blind, parallel-group study, 1,179 adults with a history of recurrent genital herpes were randomized to receive either single-day famciclovir 1 gm (administered twice daily) versus three-day valacyclovir 500 mg (administered twice daily).57 Patients initiated treatment within six hours after a recurrence. Single-day famciclovir therapy was non-inferior to three-day valacyclovir therapy in reducing time to healing of all genital herpes lesions (median time to healing, 4.25 days versus 4.08 days, respectively). There was no significant difference in time to resolution of symptoms associated with recurrence. The overall incidence of adverse events was similar (23.2 percent for the famciclovir group versus 22.3 percent for the valacyclovir group). Additionally, the median time to next recurrence from treatment initiation was 33.5 days for famciclovir and 38.0 days for valacyclovir.58 No drug resistance to penciclovir, the active metabolite of famciclovir, was observed at baseline nor did any develop by the time of the next recurrence. The study had no placebo arm, typing of viral isolates was not performed, and viral resistance testing was restricted to penciclovir only.
Genital Herpes Simplex – reduced transmission

valacyclovir (Valtrex) versus placebo

A randomized, double-blind study evaluated the effectiveness of valacyclovir in reducing the risk of transmission of genital herpes in heterosexual, monogamous discordant couples \(n=1,484 \) couples.\(^{59} \) The patients with HSV-2 were randomized to valacyclovir 500 mg once daily or placebo for eight months. Of the participating couples, 78.1 percent completed the study. Over 70 percent of the source partners reported taking at least 95 percent of the prescribed doses. Immunocompetent, heterosexual, monogamous couples with one clinically infected with HSV-2 and the other susceptible to HSV-2 were eligible for participation. The patient with recurrent genital herpes must have had fewer than 10 episodes per year, over 18 years of age, and use of daily antiviral therapy outside the study protocol was not permitted. The inclusion criteria for the susceptible partner were an age of 18 years or older and HSV-2 seronegativity. Both partners were required to be immunocompetent and in good health, and the couple was required to use effective contraception. Acquisition of HSV-2 infection was defined as the isolation of HSV-2 in culture, the detection of HSV-2 DNA, or HSV-2 seroconversion in the susceptible partner during the course of the trial. Clinically symptomatic genital herpes infection in the susceptible partner was a primary outcome of the study. A total of 41 new HSV-2 and four HSV-1 infections were acquired during the course of the study in the susceptible partners. Of these 45 new infections, 14 were from sexual partners receiving valacyclovir and 31 were from partners receiving placebo. Of the 20 symptomatic acquisitions of HSV-2, 16 occurred among the 741 partners of placebo recipients (2.2 percent), as compared with four among the 743 partners of valacyclovir recipients (0.5 percent) (relative risk, 0.25; 95% CI, 0.08 to 0.74; \(p=0.01 \)). HSV-2 had been acquired by 27 of the susceptible partners of placebo recipients (3.6 percent) as compared with 14 of the susceptible partners of valacyclovir recipients (1.9 percent) (hazard ratio, 0.52; 95% CI, 0.27 to 0.99; \(p=0.04 \)). HSV-2 shedding occurred on 3.3 percent and 0.9 percent of the days among the valacyclovir-treated women and men, respectively, as compared with 11.4 percent and 9.2 percent of the days among placebo-treated women and men. Adverse effects were similar between the valacyclovir- and placebo-treated patients. Valacyclovir 500 mg daily reduces the transmission of genital herpes in immunocompetent, heterosexual, monogamous couples with one clinically infected with HSV-2 and the other susceptible to HSV-2.

Herpes Labialis

There are no direct comparative trials with the oral antivirals for the treatment or prevention of herpes labialis. All agents in this category have shown to prevent and treat oral HSV lesions in placebo-controlled studies.

The early trials with acyclovir from the 1980’s were generally small populations and open-label.\(^{60,61} \) A number of other double-blind trials with acyclovir for oral herpes have been completed.\(^{62,63} \) Famciclovir has also been shown to be effective and safe in the prevention and treatment of oral HSV infections and in the HIV-positive population.\(^{64,65,66,67} \) Valacyclovir has been studied in a variety of dosage regimens for the treatment of recurring oral HSV infections including a simple two dose regimen.\(^{68,69} \)

Meta-analysis

Acyclovir has been shown to reduce fever earlier in acute varicella infection in otherwise healthy children and adolescents according to a systematic review that included data through June
2005. Studies were randomized controlled studies in children through age 18 years. Three studies were included. Acyclovir reduced the number of days with fever (-1.1 days, 95% CI, -1.3 to -0.9) and reduced the maximum number of lesions (-76 lesions, -145 to -8). Complications with chickenpox and adverse effects were clinically important differences between acyclovir and placebo.

A meta-analysis compared the clinical efficacies of the different oral antiviral drugs prescribed prophylactically to suppress recurrent genital herpes. A total of 14 randomized clinical trials were selected, including a total of 6,158 patients. The global relative risk of developing at least one recurrence during the study was reduced by 47 percent (95% CI, 45-49 percent) in antiviral drug groups compared with the placebo. The best evaluated regimens, with comparable efficacies, were acyclovir 400 mg twice daily, valacyclovir 250 mg twice daily, famciclovir 250 mg twice daily, and valacyclovir 500 mg once daily. The analysis confirmed high clinical efficacy of all agents for the prevention of recurrent genital herpes.

Summary

The oral agents which are approved for herpes infections include acyclovir (Zovirax), famciclovir (Famvir), and valacyclovir (Valtrex). Based on available data, all of the agents have similar efficacy and adverse effects.

The 2006 CDC STD recommendations for genital herpes indicate no preference for any one of these three agents over another. Patients presenting with an initial or a recurrent episode of genital HSV infection should be treated with any one of the three agents. Chronic suppressive therapy for patients with frequent recurrences may include any one of the three agents.

All three agents have similar efficacy for the treatment of herpes zoster, and recent guidelines support the use of any of the three agents for first line therapy.

Both acyclovir and valacyclovir are approved for the treatment of varicella (chickenpox).

References

Antivirals for HSV