National Fire Protection Association - 1003

The following information contains excerpts from NFPA 1003. The DPSST Fire Certification Program has provided an overview for the applicant to use in conjunction with the application process. This document was approved by the NFPA Airport Fire Fighter Task Force.
The NFPA Airport Fire Fighter Task Force created the following examples of current courses that meet requirements for NFPA Airport Fire Fighter. Also included is additional information regarding the NFPA Airport Fire Fighter Task Book.

Alternative course material can be evaluated as an equivalency, however is not guaranteed to be approved. This must be accomplished through course curriculum and course outlines, for the requested course comparison. It is the responsibility of the applicant to provide their certification information to the Department of Public Safety Standards and Training Fire Certification Section for review. All information must first be approved through the applicants Training Officer or Fire Chief of their respective department.

Oregon Administrative Rule

259-009-0062

(A) 6.1 General. Prior to certification as a Fire Service Agency NFPA 1003 Airport Fire Fighter, the requirements of NFPA 1001 Fire Fighter II as specified by the Department, and the job performance requirements defined in sections 5.1 through 5.4 must be met.

(B) All applicants for certification must complete a Department-approved Task Book for Airport Fire Fighter. The Task Book must be approved by the Agency Head or Training Officer before an applicant can qualify for certification.

NOTE TO APPLICANT:

1. DPSST approved courses must be successfully “Passed” in order to receive credit towards certification.
2. College courses must be passed with a grade of a “C” or better in order to receive credit towards certification.
3. Placement tests will not be accepted as an equivalent to any course requirements.
4. Transcripts that document transfer credits as a “Transfer” or “T” grade will not be accepted. Applicants must provide transcripts from the transferring college with a passing grade of a “C” or better.
NFPA Airport Fire Fighter Requirements

5.1 General. To be qualified as an airport fire fighter, the candidate shall meet each of the job performance requirements defined in this chapter. These requirements shall be divided into three major duties: response, fire suppression, and rescue. The primary function of the airport fire fighter shall be to execute fire suppression and rescue activities.

5.2 Response. This duty involves the timely arrival at an incident or accident and the capability to perform emergency functions. The duty also includes responding to hazardous conditions and performing standby operations.

5.3 Fire Suppression. This duty involves the attack, control, and extinguishment of fires involving aircraft, aircraft cargo, airport facilities, and other equipment related to airport operations and property conservation. The primary purpose of this duty is to protect lives and property.

5.4 Rescue. This duty involves gaining access to an aircraft and assisting in the evacuation process, performing disentanglement, and initial triage.

Course Requirement Options

- DPSST approved “NFPA Airport Fire Fighter” courses or;
- DPSST approved college courses that meets the standard for NFPA 1003 Fire Instructor I or;
- Federal Aviation Administration (FAA) courses that meet the standard for NFPA 1003 or;
- Salt Lake City Aircraft Rescue courses that meet the standard for NFPA 1003 or;
- Equivalent Course

Completion of the NFPA Airport Fire Fighter task book is required.
NOTE: The following section of the NFPA standard for Airport Fire Fighter should be used when determining the size of the aircraft utilized for training purposes.

A.5.3.5 This requirement can be met by using a structural burn facility that is configured to simulate the interior layout and dimensions of an aircraft fuselage and that contains mannequins to simulate victims. The mock-up should include at least three metal seats and training dummies to simulate victims. It is intended that the size of the aircraft be the largest type that normally uses the airport and that the hand line be appropriate to the size of the aircraft.

The following Annex A, Annex B and Annex C have been provided in this guide to aid in the completion of the task book. The annexes have been copied from the NFPA standard for Airport Fire Fighter, with the permission on NFPA. Reprinting this information is permitted from this guide, however, altering the following information is not permitted.

Annex A Explanatory Material

Annex A is not a part of the requirements of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.3.1 Definitions of action verbs used in the job performance requirements in this document are based on the first definition of the word found in Merriam-Webster’s Collegiate Dictionary, 11th edition.

A.3.2.1 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A.3.2.2 Authority Having Jurisdiction (AHJ). The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes,
an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.3.3.7 Hazardous Area. The hazardous area can be adjusted by the incident commander, based on site conditions and risk analysis.

A.3.3.9 National Defense Area. Establishment of a national defense area temporarily places such nonfederal lands under the effective control of the Department of Defense and results only from an emergency event. The senior DOD representative at the scene will define the boundary, mark it with a physical barrier, and post warning signs. The landlord's consent and cooperation will be obtained whenever possible; however, military necessity will dictate the final decision regarding location, shape, and size of the national defense area.

A.3.3.10 Personal Protective Equipment. For fire fighters, approved personal protective equipment should meet the most recent edition of NFPA 1971, Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting, with self-contained breathing apparatus (SCBA) meeting NFPA 1981, Standard on Open-Circuit Self-Contained Breathing Apparatus (SCBA) for Emergency Services, and personal alert safety systems (PASS) meeting NFPA 1982, Standard on Personal Alert Safety Systems (PASS).

A.3.3.15 Theoretical Critical Fire Area (TCA). The TCA is the theoretical area adjacent to an aircraft in which fire must be controlled for the purpose of ensuring temporary fuselage integrity and providing an escape area for its occupants. The “Report of the Second Meeting of the ICAO Rescue and Fire Fighting Panel” (RFFP-II) was prepared with the benefit of large test fire experiments conducted by a member country aimed at estimating the size of the TCA (Geyer 1972). Geyer's study paid particular attention to the width on each side of the fuselage that would have to be secured to protect the aircraft’s skin from melting under severe fire conditions. On the basis of the data presented in the resulting report, the RFFP agreed that the TCA should be a rectangle having as one dimension the overall length of the aircraft and the other dimension determined by the following:

(1) For aircraft with an overall length of less than 20 m (65 ft), 12 m (40 ft) plus the width of the fuselage

(2) For aircraft with an overall length of 20 m (65 ft) or more, 30 m (100 ft) plus the width of the fuselage

The theoretical critical area serves only as a means for categorizing aircraft in terms of the magnitude of the potential fire hazard in which they may become involved. It is not intended to represent the average, maximum, or minimum spill fire size associated with a particular aircraft. The original formula for the maximum theoretical critical area, as presented in the RFFP-II report, was given as follows:

\[A_T = L \times (30 + w) \text{ where } L \geq 20 \text{ m} \]

\[A_T = L \times (100 + w) \text{ where } L \geq 65 \text{ ft} \]
\[A_T = L \times (12 + w) \text{ where } L < 20 \text{ m} \]

\[A_T = L \times (40 + w) \text{ where } L < 65 \text{ ft} \]

where:

\(L \) = overall length of the aircraft
\(w \) = width of the aircraft fuselage
\(A_T \) = theoretical critical area (TCA)

The data analyzed by RFFP-II in its effort to respond to the issue of TCA versus practical critical area (PCA) appeared to indicate that the PCA was approximately two-thirds of the TCA. This had been verified by a study conducted by one of the member countries of actual spill fire sizes and aircraft accidents (Ansart 1970). Another analysis of aircraft rescue and fire-fighting operations had not included the study of the PCA as compared to the TCA. However, that study did compare the actual amount of water used for foam at those accidents with the amounts recommended by RFFP-I. It was found that in 93 percent of accidents for which this information was available (99 cases out of 106), the amounts recommended by the Panel were in excess of those required in the actual aircraft accident. In light of this, the Panel decided to use two-thirds of the TCA as the PCA. (See Figure A.3.3.15 for a graphic display of this concept.) The formula for the PCA developed by RFFP-II for fixed-wing aircraft can be expressed as follows:

\[PCA = (0.67) \times (TCA) \]

FIGURE A.3.3.15 Theoretical Critical Fire Area (TCA) Relative to Practical Critical Fire Area (PCA). [403, 2009]

A.3.3.16.1 Cold Zone. The purpose of the cold zone is to ensure that there is an easily recognized boundary for arriving fire fighters and support personnel so that they do not impinge on the hazardous area, where SCBA and PPE are required. The secondary purpose of the cold zone is a distance sufficient for an initial hand line to reach the entrance of the aircraft interior.
A.3.3.16.2 Hot Zone. This zone is also referred to as the exclusion zone or the restricted zone in other documents.

A.3.3.16.3 Warm Zone. The warm zone includes control points for the decontamination corridor, thus helping to reduce the spread of contamination. This zone is also referred to as the decontamination zone or limited access zone in other documents.

A.4.1 Due to improvements in the design and construction of modern aircraft and the increased structural integrity that results, the potential exists for significant interior fires that cannot be extinguished using external aircraft fire-fighting tactics. Because extinguishing aircraft interior fires is an essential task of the airport fire fighter, the Fire Fighter II requirement in this document is primary. The basic fire-fighting skills and knowledge required for Fire Fighter II in NFPA 1001, Standard for Fire Fighter Professional Qualifications, are essential to the airport fire fighter.

A.4.4.1 Continuing education or training is necessary to ensure that fire fighters remain current and update their knowledge and skills in the evolving field of ARFF by attending workshops and seminars, undergoing competency testing, participating in recurring proficiency evolutions, and/or accessing professional publications as determined by the AHJ. Nationally recognized certification is one means of demonstrating proficiency in current practices.

A.5.1.1.3 Airport fire fighters should possess knowledge of military aircraft at those airports that accept military aircraft or at those airports that are co-located with a military installation with either separate or shared runways. This knowledge should include the following:

1. Military cargo/passenger aircraft
2. Military tanker aircraft
3. Military fighter/attack aircraft
4. Military helicopter aircraft
5. USAF Technical Order 00-105E-9, Aerospace Emergency Rescue and Mishap Response Information (Emergency Services), contains specific information concerning aircraft rescue and fire-fighting procedures and should be consulted prior to any attempt to perform rescue operations if trained military specialists are not available for immediate assistance. USN/USMC aircraft information is located in NAVAIR 00-80R-14 and 00-80R-14-1. These documents contain specific information concerning fire-fighting and rescue operations for aircraft in the military inventory. They specifically address the following:

(a) Entry. If the emergency controls are activated, an explosive charge will explosively separate the canopy from the aircraft.

(b) Ejection Systems. All fighter, bomber, and attack aircraft are equipped with ejection seats. Once access has been gained to the cockpit, caution is extremely important, because these ejection seats, when activated, are propelled out of the aircraft by an explosive charge. Airport fire fighters should not touch or activate any controls. Note that if a canopy or hatch has been separated from an aircraft, the ejection seat is automatically armed. Extreme caution must be exercised in crew removal.
(c) Extrication. The aircrew member is secured to the seat by a series of straps, harnesses, and restraint belts. These restraints can be released by cutting if the release procedure is unknown.

(d) Ordnance. Fighter and attack aircraft will have forward firing ordnance located in the forward part of the fuselage or wings.

(e) Engine Shutdown. Engine shutdown usually can be accomplished by pulling T-handles, as on a commercial jet.

The NFPA Aircraft Familiarization Charts Manual, which contains complete diagrams of 115 types of aircraft, detailing their physical characteristics, is also helpful.

A.5.2.4 Hazardous conditions include special fuels, fueling operations (grounding and bonding), welding operations, hazardous materials operations, corrosion control, fuel cell maintenance, and military operations.

A.5.3.1 Concerns with the environmental impact of traditional flammable liquid training fires have caused many facilities to convert to propane-fueled simulators. The intent of this requirement is a safe and proper extinguishment technique for pool fires involving aircraft fuels. The use of pressurized flammable gas or flammable liquid is acceptable for this simulation.

A.5.3.2 The use of pressurized flammable gas or flammable liquid is acceptable for this simulation. Depending on the square footage of the local training simulators and the flow rate of the assigned application device, the specified time of extinguishment might need to be modified. When using simulators with lower square footage or different flow rates of agent application, the specified time of extinguishment will need to be proportional.

For example, a hand line flowing 359 L/min (95 gpm) would be required to extinguish a fire of 750 ft² in 90 seconds. The formula is 95 gpm/0.13 = 730 fire square footage for 69.7 m² (750 ft²) fire with a flow rate at 359 L/min (95 gpm).

A.5.3.3 See A.5.3.2. For example, a candidate using a turret flowing 946 L/min (250 gpm) is required to extinguish a fire of 2067 ft² in 90 seconds for 192 m² (2067 ft²) fire with a flow rate at 946 L/min (250 gpm).

A.5.3.4 Three-dimensional or running fuel fires involve a fuel leak from an elevated or pressurized source. The fuel burns as it falls through the air, and, once on the ground, the burning fuel can pool or run across the ground surface. These fuel fires are extremely difficult to extinguish. They must be recognized and action must be taken to extinguish them early in the incident or accident for successful fire-fighting operations. Typically, these fires cannot be extinguished by smothering agents such as AFFF, because those agents cannot seal the surface and exclude oxygen. Such fires are more successfully extinguished by shutting off the fuel flow or by using agents, such as dry chemicals, that interfere with the chemical or chain reaction.

A.5.3.5 This requirement can be met by using a structural burn facility that is configured to simulate the interior layout and dimensions of an aircraft fuselage and that contains mannequins to simulate victims. The mock-up should include at least three metal seats and training dummies to simulate victims. It is intended that the size of the aircraft be the largest type that normally uses the airport and that the hand line be appropriate to the size of the aircraft.

A.5.3.8 Training and evaluation of this task can be accomplished using actual aircraft or mock-ups and smoke-generation devices used for training.

A.5.3.9 The replenishment task is time critical. Evaluating the proficiency of potential ARFF
personnel to replenish the extinguishing agents on an ARFF vehicle requires that the AHJ evaluate several factors related to its own airport emergency plan in order to establish a fair benchmark for personnel. The following factors influence this time constraint:

(1) Size of the ARFF vehicles' agent reservoirs

(2) Available replenishment methods and their agent flow capacities

(3) Proximity of replenishment means to the potential ARFF emergency locations in and around the airport

In making these evaluations, the AHJ must keep in mind that its overall objective is to ensure an adequate agent flow at the scene during an emergency. The following is an example of determining the replenishment time variable:

If the typical ARFF vehicle on the airport runway holds 5677 L (1500 gal) of water and 568 L (150 gal) of AFFF, the replenishment means is a fixed water hydrant located at the midway point of the runways. If a hydrant flow capacity is 946 L/min (250 gpm) and if the average time to drive from the approach and departure end of any runway to the midpoint is 2 minutes, then a reasonable time to replenish a vehicle and return it to operation from the end of the runway is 18 minutes. This allows 2 minutes to drive to the hydrant, 4 minutes to connect to the hydrant, 7 minutes to fill the water tank, 3 minutes to disconnect from the hydrant, and 2 minutes to drive back to the end of the runway.

This might be considered a reasonable amount of time to replenish the vehicle at this particular airport, if additional vehicles are available to continue support at the emergency scene, but it might be entirely too slow for an airport where this ARFF vehicle is the only vehicle available to support an aircraft scene. In this case, the replenishment plan should be reevaluated and adjusted to reduce the time required.

A.5.4 One of the primary tasks of rescue operations is for the airport fire fighter to maintain a habitable environment around the fuselage and to assist with aircraft evacuation by stabilizing slide chutes and assisting and controlling the evacuees.

A.5.4.1 Training and evaluation of this task can be accomplished using actual aircraft or mock-ups.

A.5.4.2 Training and evaluation of this task can be accomplished using actual aircraft or mock-ups.
Annex B Using Job Performance Requirements

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

B.1 Explanation of the Standards and Concepts of Job Performance Requirements (JPRs). The primary benefit of establishing national professional qualification standards is to provide the public and private sectors with a framework of the job requirements for the fire service. Other benefits include enhancement of the profession, individual as well as organizational growth and development, and standardization of practices.

NFPA professional qualification standards identify the minimum JPRs for specific fire service positions. The standards can be used for implementing training design and evaluation; certifying, measuring, and critiquing on-the-job performance; defining hiring practices; and setting organizational policies, procedures, and goals. (Other applications are encouraged.) Professional qualification standards for a specific job are organized by major areas of responsibility defined as duties. For example, the fire fighter's duties might include fire suppression, rescue, and water supply; and the public fire educator's duties might include education, planning and development, and administration. Duties are major functional areas of responsibility within a job.

The professional qualification standards are written as JPRs. JPRs describe the performance required for a specific job. JPRs are grouped according to the duties of a job. The complete list of JPRs for each duty defines what an individual must be able to do in order to successfully perform that duty. Together, the duties and their JPRs define the job parameters; that is, the professional qualification standard as a whole is a job description.

B.2 Breaking Down the Components of a JPR. The JPR is the assembly of three critical components. *(See Table B.2.)* These components are as follows:

1. Task that is to be performed
2. Tools, equipment, or materials that must be provided to successfully complete the task
3. Evaluation parameters and/or performance outcomes

Table B.2 Example of a JPR

<table>
<thead>
<tr>
<th>Task</th>
<th>Tools, equipment, or materials</th>
<th>Evaluation parameters and performance outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1) Ventilate a pitched roof</td>
<td>(3) So that a 1.22 m × 1.22 m (4 ft × 4 ft) hole is created; all ventilation barriers are removed; ladders are properly positioned for ventilation; ventilation holes are correctly placed; and smoke, heat, and combustion by-products are released from the structure</td>
</tr>
</tbody>
</table>
B.2.1 **The Task to Be Performed.** The first component is a concise statement of what the person is supposed to do.

B.2.2 **Tools, Equipment, or Materials That Must Be Provided to Successfully Complete the Task.** This component ensures that all individuals completing the task are given the same minimal tools, equipment, or materials when being evaluated. By listing these items, the performer and evaluator know what must be provided in order to complete the task.

B.2.3 **Evaluation Parameters and/or Performance Outcomes.** This component defines how well one must perform each task — for both the performer and evaluator. The JPR guides performance outcomes. This portion of the JPR promotes consistency in evaluation by reducing the variables used to gauge performance.

In addition to these three components, the JPR contains requisite knowledge and skills. Just as the term *requisite* suggests, they are the necessary knowledge and skills one must have prior to being able to perform the task. Requisite knowledge and skills are the foundation for task performance. Once the components and requisites are put together, the JPR might read as follows.

B.2.3.1 Example 1. The Fire Fighter I shall ventilate a pitched roof, given an ax, a pike pole, an extension ladder, and a roof ladder, so that a 1.22 m × 1.22 m (4 ft × 4 ft) hole is created, all ventilation barriers are removed, ladders are properly positioned for ventilation, and ventilation holes are correctly placed.

(A) **Requisite Knowledge.** Pitched roof construction, safety considerations with roof ventilation, dangers associated with incorrect ventilation, knowledge of ventilation tools, effects of ventilation on fire growth, smoke movement in structures, signs of backdraft, and knowledge of vertical and forced ventilation.

(B) **Requisite Skills.** Remove roof covering; correctly initiate roof cuts; use the pike pole to clear ventilation barriers; use ax correctly for sounding, cutting, and stripping; position ladders; and climb and position self on ladder.

B.2.3.2 Example 2. The fire investigator shall interpret burn patterns, given standard equipment and tools and some structural/content remains, so that each individual pattern is evaluated with respect to the burning characteristics of the material involved.

(A) **Requisite Knowledge.** Fire development and the interrelationship of heat release rate, form, and ignitibility of materials.

(B) **Requisite Skill.** Interpret the effects of burning characteristics on different types of materials.

B.3 **Examples of Potential Uses.**

B.3.1 Certification. JPRs can be used to establish the evaluation criteria for certification at a specific job level. When used for certification, evaluation must be based on the successful completion of JPRs.

First, the evaluator would verify the attainment of requisite knowledge and skills prior to JPRs evaluation. Verification might be through documentation review or testing.

Next, the candidate would be evaluated on completing the JPRs. The candidate would perform the task and be evaluated based on the evaluation parameters, the performance outcomes, or both.
This performance-based evaluation can be either practical (for psychomotor skills such as “ventilate a roof”) or written (for cognitive skills such as “interpret burn patterns”).

Note that psychomotor skills are those physical skills that can be demonstrated or observed. Cognitive skills (or mental skills) cannot be observed but are evaluated on how one completes the task (process oriented) or on the task outcome (product oriented).

Using Example 1 in B.2.3.1, a practical performance-based evaluation would measure the ability to “ventilate a pitched roof.” The candidate passes this particular evaluation if the standard was met, that is, if a 1.22 m × 1.22 m (4 ft × 4 ft) hole was created; all ventilation barriers were removed; ladders were correctly positioned for ventilation; ventilation holes were correctly placed; and smoke, heat, and combustion by-products were released from the structure.

For Example 2 in B.2.3.2, when evaluating the task “interpret burn patterns,” the candidate might be given a written assessment in the form of a scenario, photographs, and drawings and then be asked to respond to specific written questions related to the JPR’s evaluation parameters. It is important to remember that when a candidate is being evaluated, he or she must be given the tools, equipment, or materials listed in the JPRs before he or she can be correctly evaluated: for example, an ax, a pike pole, an extension ladder, and a roof ladder.

B.4 Curriculum Development/Training Design and Evaluation. The statements contained in this document that refer to job performance were designed and written as JPRs. Although a resemblance to instructional objectives might be present, these statements should not be used in a teaching situation until after they have been modified for instructional use.

JPRs state the behaviors required to perform a specific skill(s) on the job, as opposed to a learning situation. These statements should be converted into instructional objectives with behaviors, conditions, and standards that can be measured within the teaching/learning environment. A JPR that requires a fire fighter to “ventilate a pitched roof” should be converted into a measurable instructional objective for use when teaching the skill. [See Figure B.4(a).]

Using Example 1 in B.2.3.1, a terminal instructional objective might read as follows: The candidate will ventilate a pitched roof, given a simulated roof, an ax, a pike pole, an extension ladder, and a roof ladder, so that 100 percent accuracy is attained on a skills checklist. (At a minimum, the skills checklist should include each of the measurement criteria from the JPR.)

Although the differences between job performance requirements and instructional objectives are subtle in appearance, the purpose of each statement differs greatly. JPRs state what is necessary to perform the job in the “real world.” Instructional objectives, however, are used to identify what students must do at the end of a training session and are stated in behavioral terms that are measurable in the training environment.

By converting JPRs into instructional objectives, instructors will be able to clarify performance expectations and avoid confusion related to using statements designed for purposes other than teaching. Additionally, instructors will be able to add local/state/regional elements of performance into the standards as intended by the developers.
FIGURE B.4(a) Converting JPRs into Instructional Objectives.

OBJECTIVE: The fire fighter shall demonstrate ventilating a pitched roof, given the proper tools, within 5 minutes and with 100 percent accuracy on the skills checklist.

YES

- 1. 1.22 m × 1.22 m (4 ft × 4 ft) hole was created.
- 2. All ventilation barriers were removed.
- 3. Ladders were properly positioned.
- 4. Ventilation holes were correctly placed (directly over fire, at highest point, and so forth)
- 5. The task completed within 5 minutes.

(Time to complete task: ___________)

FIGURE B.4(b) Sample Skills Checklist (roof ventilation).
Requisite skills and knowledge should be converted into enabling objectives. These objectives help to define the course content. The course content should include each of the requisite knowledge and skills. Using Figure B.4(b), the enabling objectives are pitched roof construction, safety considerations with roof ventilation, removal of roof covering, proper roof cuts, and so on. These objectives ensure that the course content supports the terminal objective.

Note that it is assumed that the reader is familiar with curriculum development or training design and evaluation.

B.5 Other Uses. While the professional qualifications standards are used principally to guide the development of training and certification programs, there are a number of other potential uses for these documents. Because they are written in JPR terms, they lend themselves well to any area of the profession where a level of performance or expertise must be determined. Such areas might include the following:

(1) Employee evaluation/performance critiquing: JPRs can be used as a guide by both the supervisor and the employee during an evaluation. The JPRs for a specific job define tasks that are essential to perform on the job, as well as the evaluation criteria to measure when those tasks are completed.

(2) Establishing hiring criteria: Professional qualifications standards can be used in a number of ways to further the establishment of hiring criteria. The authority having jurisdiction could simply require certification at a specific job level, for example, Fire Fighter I. The JPRs could also be used as the basis for pre-employment screening by establishing essential minimal tasks and the related evaluation criteria. An added benefit is that individuals interested in employment can work toward the minimal hiring criteria at local colleges.

(3) Employee development: The professional qualifications standards can be useful to both the employee and the employer in developing a plan for the individual's growth within the organization. The JPRs and the associated requisite skills and knowledge can be used as a guide to determine additional training and education required for the employee to master the job or profession.

(4) Succession planning: Succession planning, or career pathing, addresses the efficient placement of people into jobs in response to current needs and anticipated future needs. A career development path can be established for targeted individuals to prepare them for growth within the organization. The JPRs and requisite knowledge and skills could then be used to develop an educational path to aid in the individual's advancement within the organization or profession.

(5) Establishing organizational policies, procedures, and goals: The JPRs can be incorporated into organizational policies, procedures, and goals where employee performance is addressed.

B.6 Bibliography. See Section C.2 for a bibliography for Annex B.
Annex C Informational References

C.1 Referenced Publications. The documents or portions thereof listed in this annex are referenced within the informational sections of this standard and are not part of the requirements of this document unless also listed in Chapter 2 for other reasons.

C.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

C.1.2 Other Publications.
Ansart, F., Analysis of Reports of Accidents No. 1 to 217 Filed with ICAO as of March 1970, Unpublished meeting records of reference material used by RFFP-II.
NAVAIR 00-80R-14 and 00-80R-14-1, available at https://www.natec.navy.mil/ (registration required).
USAF Technical Order 00-105E-9, Aerospace Emergency Rescue and Mishap Response Information (Emergency Services), HQ AFCESA/CEXF, 139 Barnes Drive, Suite 1, Tyndall AFB, FL 32403-5319, phone: 1-888-AFCE-SA-1.

C.2 Informational References. The following documents or portions thereof are listed here as informational resources only. They are not a part of the requirements of this document.

