	A	B	C	D	E
1		Date:	Site Name:		Investigator:
2	Field F data form. ORWAP version 2.0.1. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answer these questions primarily based on your onsite observations and interpretations. Do not write in any shaded parts of this data form. Answering some questions accurately may require conferring with the landowner or other knowledgable persons, and/or reviewing aerial imagery. Although accuracy will be greater if questions are answered for the entire wetland (not limiting only to the part potentially affected by a project), most questions may be answered for just part of a wetland-- the assessment area (AA). HOWEVER, questions with a W in the gray box in column D must be answered for the ENTIRE wetland of which the AA is a part.				
3	\#	Indicator	Conditions	Data	Explanations, Definitions
4	F1	Presence of Specific Wetland Types	Does the AA contain, or is it part of, any of these wetland types? Mark "1" next to all that apply.	W	
5			Tidal wetland: receives tidal water at least once during a normal year, regardless of salinity, and dominated by emergent or woody vegetation.		tidal = level of surface water fluctuates every ~ 6 hours on a daily basis in response to tides. [All functions, as classifier]
6			Lacustrine wetland: an undiked non-tidal wetland bordering a body of standingopen water that is >20 acres.		open water = surface water that contains no vegetation (except perhaps floating-leaved or completely submersed species). [WBN+]
7			Fringe wetland: an undiked "shoreline" wetland bordering persistent open water that is >3 times wider than the wetland (includes most tidal, lacustrine, large riverine, some others).		[WSv-, T-, FA+,FR+, WBF+]
8			NONE of above		
9	F2	Wetland Type of Conservation Concern	Does the AA contain, or is it part of, any of these wetland types? Mark "1" next to all that apply. Consult the "Rare Wetland Type" reported for the general vicinity by the Oregon Explorer web site, but be aware that those may not apply to the exact AA you have delimited.	W	
			Bog or Fen: contains a sponge-like organic soil layer which covers most of the AA AND often has extensive cover of sedges and/or broad-leaved evergreen shrubs (e.g., Ledum). Often lacks tributaries, being fed mainly by groundwater and/or direct precipitation.		[CS+,Sens+]
			Playa, Salt Flat, or Alkaline Lake a non-tidal ponded water body usually having saline (salinity >1 ppt or conductivity $>1000 \mu \mathrm{~S}$) or alkaline (conductivity $>2000 \mu \mathrm{~S}$ and $\mathrm{pH}>9$) conditions and large seasonal water level fluctuations (if inputs-outputs unregulated). If a playa or salt flat, vegetation cover is sparse and plants typical of saline or alkaline conditions (e.g.,Distichlis , Atriplex) are common.		See file ORWAP_SuppInfo, worksheet P_Salt for species typically occurring in tidal or saline conditions. [PR+,CS+,INV+,FA-,FR-,AM-,WBF+]
			Hot spring (anywhere in Oregon): a wetland where discharging groundwater in summer is >10 degrees (F) warmer than the expected water temperature.		
13			Native wet prairie (west of the Cascade crest): a seasonally inundated wetland, usually without a naturally-occurring inlet or outlet, and dominated primarily by graminoids often including species in column E .		Deschampsia caespitosa, Danthonia californica, Camassia quamash, Triteleia hyacinthina, Carex densa, C. aperta, and/or C. unilateralis [PDv,CQc]
14			Vernal pool (Willamette Valley): a seasonally inundated wetland, underlain by hardpan or claypan, with hummocky micro-relief, usually without a naturally-occurring inlet or outlet, and with plant species distinctly different from those in slightly higher areas, and often including species in column E.		Downingia elegans, Isoetes nuttallii, Triteleia hyacinthina, Eleocharis spp., Eryngium petiolatum, Plagiobothrys figuratus, Plagiobothrys scouleri, Grindelia nana, Veronica peregrina, Lasthenia glaberrima , Cicendia quadrangularis, Kickxia elatine, Gnaphalium palustre, and/or Callitriche spp.[PDv]
15			Vernal pool (Medford area): a seasonally inundated acidic wetland, underlain by hardpan, with hummocky micro-relief, usually without a naturally-occurring inlet or outlet, and having concentric rings of similar vegetation, often including species in column E.		Downingia vina, Isoetes nuttalli, Pilularia americana, Triteleia hyacinthina, Eleocharis spp., Eryngium petiolatum, Plagiobothrys brachteatus, Plagiobothrys scouleri, Grindelia nana, Veronica peregrina, Alopecurus saccatus, Lasthenia californica, Deschampsi danthonioides, and/or Callitriche spp. [PDv]
			Vernal pool (Modoc basalt \& Columbia Plateau): a seasonally inundated wetland, usually without a naturally-occurring inlet or outlet, located on shallow basalt bedrock and often having species in column E.		Blennosperma nanum, Camassia quamash, Epilobium densiflorum, Callitriche marginata, Cicendia quadrangularis, Eryngium vaseyi, Psilocarphus brevissimus, and/or Sedella pumila. [PDv]

	A	B	C	D	E
36	F5	Interannual Water Dynamics	Select one:		[PR-,NR-,-CS-,OE+,INV+,FR-,WBF+,WBN+,PD+]
			throughout the last 5 years most of the AA has been constantly covered with surface water, except for once or twice (for a period of <6 continuous months) when most of the AAwent dry (lacked surface water, due to drawdown, drought, etc.).		
38			throughout the last 5 years most of the AA hasconstantly lacked surface water, except for once or twice (for a period of <6 continuous months) when most of the AA wasinundated (had surface water).		
39			neither of above		
40			unknown		
	F6	Surface Water Occurrence	No part of the AA is ever inundated (contains at least 1 inch of water above the land surface) for more than 14 consecutive days during a normal year. That is, it is asaturated-only wetland. If true, mark "1" here, then SKIP TO F39 (Herbaceous Extent)		[classifier for all functions]
42	F7	Seasonal Water Extent	During normal years, the percent of the AA that is inundatedonly seasonally (more than 14 consecutive days but no more than 9 months, or in tidal wetlands is "high marsh" that is inundated by tides fewer than half the days in any month) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. Vegetation may be patterned in concentric or parallel zones, as one moves outward \& away from the deepest part of the wetland or channel. Although useful only as a general guide, the NRCS county soil survey descriptions of the predominant soil types usually includes information on flooding frequency and saturation persistence. [WS,$+ \mathrm{SR}+, \mathrm{NR}+, \mathrm{CS}+, \mathrm{OE}+, \mathrm{INV}-, \mathrm{FA}+, \mathrm{AM}-$-, Sens +]
43			>75\% of the AA		
44 45			50-75\% of the AA		
46			5-25\% of the AA		
47			<5\% of the AA, or none		
48	F8	Extent of Persistent Surface Water (Dry Season)	When the AA's surface water is at its lowest annual level, the percent of the AA still containing surface water (whether obscured by vegetation or not) is:		For tidal sites, consider the condition that would exist at annual lowest tide. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. In the county soil survey, the NRCS descriptions of the predominant soil types may include information on saturation persistence in those types. [WS-,PR-,NR-,CS-,POL-,INV+,FR+,AM+,WBF+,WBN+,SB-]
49			>95\% of the AA		
50			50-95\% of the AA		
51			25-50\% of the AA		
52			1-25\% of the AA		
			None of the above, and the AA contains or is part of a fringe wetland,SKIP to F10		
54			None of the above, and not a fringe wetland,SKIP to F10		
	F9	Onsite Surface Water Isolation (Dry Season)	When the AA's surface water is at its lowest annual level (for tidal wetlands = annual lowest tide), the percent of the surface water that is in or connected to flowing channels that exit the AA, compared to surface water that is outside of channels and their floodplains (e.g., in small depressions that do not connect annually to the channel if any), is:		For tidal sites, consider the condition that would exist at annual lowest tide. See illustration in Appendix A of ORWAP manual. $[\mathrm{WS}+, \mathrm{SR}+, \mathrm{PR}+, \mathrm{NR}+, \mathrm{OE}-, \mathrm{T}-, \mathrm{INV}+, \mathrm{FA}-, \mathrm{FR}+, \mathrm{AM}+, \mathrm{WBF}+, \mathrm{WBN}+, \mathrm{Sens}+]$
56			all (100\%) located in channels, swales, or with a contiguous surface water connection to a lake or estuary at all times of year		
57			75-99\% in or connected to channels, swales, or contiguous lake/ estuary, 1-25\% in isolated pools		
58			$50-75 \%$ in or connected to channels, swales, or contiguous lake/ estuary, 25-50\% in isolated pools		
59			$25-50 \%$ in or connected to channels, swales, or contiguous lake/ estuary, $50-75 \%$ in isolated pools		
60			1-25\% in or connected to channels, swales, or contiguous lake/ estuary, $75-99 \%$ in isolated pools		
61			all located in isolated pools or a single isolated pond from which no surface water exits when levels are lowest		

	A	B	C	D	E
62	F10	Onsite Surface Water Isolation (Wet Season)	During most of the wettest time of a normal year, the percent of the surface water that is in or connected to ditches, swales, or flowing channels that exit the AA, compared to surface water tha is in isolated pools that do not connect annually to channels or swales (if any), is:		For tidal sites, consider the condition at mean high tide. See Appendix A of ORWAP manual. Swales are sloping areas that contain >1 inch of surface water for at least 2 consecutive days per year, and are less distinct (broader and flatter in cross-section) than channels. Sites fed by unregulated streams that descend on north-facing slopes tend to remain wet longer into the summer, especially in montane snow-fed areas.[WS,$+ \mathrm{SR}+, \mathrm{PR}+, \mathrm{NR}+, \mathrm{CS}+, \mathrm{OE}-, \mathrm{INV}+, \mathrm{FA}-, \mathrm{FR}+, \mathrm{AM}+, \mathrm{WBF}+]$
63			all (100\%) located in channels, swales, or in other areas with a wet-season surface connection to channels or to a contiguous lake or estuary		
64			75-99\% in or connected to channels, swales, or contiguous lake/ estuary, 1-25\% in isolated pools		
65			$50-75 \%$ in or connected to channels, swales, or contiguous lake/ estuary, $25-50 \%$ in isolated pools		
66			$25-50 \%$ in or connected to channels, swales, or contiguous lake/ estuary, $50-75 \%$ in isolated pools		
67 68			$1-25 \%$ in or connected to channels, swales, or contiguous lake/ estuary, $75-99 \%$ in isolated pools all located in isolated pools or a single isolated pond from which no surface water exits		
69	F11	Predominant Water Fluctuation Range	During most years, the difference in surface water level between the driest and wettest time of year in most of the area that is not inundated year-round is:		In farmed wetlands that have different crops from year to year, consider vegetation condition as it probably existed during most of the past 5 years. See photographs in Appendix A of manual. [WS+,PR-,NR+,CS-,OE+,INV-, AM-,WBN-]
70			$>6 \mathrm{ft}$ change		
71			3-6 ft change		
72			1-3 ft change		
73			0.5-1 ft change		
74			<0.5 ft or no change (stable)		
75	F12	Predominant Depth Class	When present, surface water in most of the AA is usually:		"Usually" means the majority of the weeks during which the AA is at least partly inundated. This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the AA is brief, the answer will be based on the depth of the most persistently inundated part of the AA. Include surface water in channels and ditches as well as ponded areas. See diagram in Appendix A of the manual. For tidal sites, assess the condition as it exists at mean high tide. [SR+,PR+,CS-,OE-,T+,INV-,FA+,FR+,WBF-,WBN-,PD-,Sens-]
76			$>6 \mathrm{ft} \mathrm{deep}$		
77			2-6 ft deep		
78			1-2 ft deep		
79			0.5-1 ft deep		
80			<0.5 ft deep (but >0)		
81	F13	Depth Class Distribution	When at least part of the AA is inundated (select one):		Estimate these proportions by considering the gradient and microtopography of the site. See diagram in Appendix A of the manua $[\mathrm{INV}+$, FR + , WBF + , $\mathrm{WBN}+\mathrm{]}$
			One depth class (use the classes in F12) comprises >90\% of the AA's inundated area		
82					
83			One depth class comprises >50\% of the AA's inundated area		
84			Neither of above		
85	F14	Deep Spots	Ponded nontidal water deeper than 3 ft covers at least 1 acre or $>5 \%$ of the AA during (checkall that apply):		
86			most of the period November-April		
87			most of the period May-October		
88			neither of above (no ponded water >3 ft deep is that extensive)		
89			impossible to tell		

	A	B	C	D	E
	F25	Sheltering of Water	At mid-day in summer, the area of surface water within the AA that is shaded by herbaceous or woody vegetation, incised channels, streambanks, or other features also present within the AA is:		For tidal sites, consider the condition at mean low tide. For all sites, consider the aspect and surrounding topographic relief as wel as vegetation height and density. [T+,FA+]
135			>75\% of the water		
136			50-75\% of the water		
137			25-50\% of the water		
138			5-25\% of the water		
139			<5\% of the water		
140			(surface water is typically absent in summer or during low tide)		
141	F26		The number of downed wood pieces thicker than 4 inches that remain only partly underwater during most of the spring or early summer, thus potentially serving asbasking sites for turtles, birds, or frogs, is:		For tidal sites, consider the condition at mean high tide. Only the wood that is at or above the water surface is assessed because of the impracticality of assessing underwater wood accurately when using a rapid assessment method.$[\mathrm{FA}+, \mathrm{FR}+, \mathrm{AM}+, \mathrm{WBF}+, \mathrm{SBM}+]$
142			Several		
143			Few or none, or AA never has any surface water at that time		
144	F27	Islands	Select all that apply:	W	island = terrestrial or wetland area larger than 400 sq.ft, and smaller than 1 sq. mi, and separated from "mainland" by water deepe than 3 ft over a distance of $>50 \mathrm{ft}$ during early summer. [AM,$+ \mathrm{WBF}+, \mathrm{WBN}+$]
			During early summer the wetland contains a floating vegetation mat suitable for nesting birds and isolated from the shore by water depths $>3 \mathrm{ft}$. Or AA is an island with similar isolation and a gently-sloping water edge that is mostly vegetated.		
			During early summer the wetland contains (or is) an island with a gently-sloping water edge, that is mostly bare and is isolated from the shore by water depths $>3 \mathrm{ft}$.		
147			Neither of above		
148	F28	Shorebird Feeding Habitats	The extent of mudflats or unwooded shortgrass areas within the AA during April or August (or for tidal AAs, during mean low tide) is usually:		These areas must have (a) no vegetation (bare/ fallow), or herbaceous cover comprised mainly of grasses shorter than 4 inches during April and/or August, and (b) soils that either are saturated or covered with <1" of water during April and/or August, and (c) n detectable surrounding slope (e.g., not the bottom of an incised dry channel), and (d) no substantial areas of shrubs or trees. See photograph in Appendix A of manual.This addresses needs of most migratory sandpipers, plovers, stilts, avocets, curlews, and godwits. [WBF+]
149			none, or <100 sq. ft, and there are none that cover > 10,000 sq. ft anywhere within 300 ft of the AA		
150			none, or <100 sq. ft, but some that cover $>10,000$ are within 300 ft of the AA		
151			100-1000 sq. ft. within AA		
152			$1000-10,000$ sq. ft. within AA		
153			>10,000 sq. ft within AA		
154	F29	Waves	Which of the following is most true:		Erosive wave conditions often occur where adjoining open water has a fetch (uninterrupted distance) of greater than approximately 1 mile in the direction of the strongest and most frequent wind. [SRv+, PD-, STR+]
			Wind or boats frequently generate waves of $>1 \mathrm{ft}$ near the AA , those waves are intercepted by the wetland, and structures behind the AA are protected from wave erosion		
			Wind or boats frequently generate waves of $>1 \mathrm{ft}$ near the AA , those waves are intercepted by the wetland, but there are no structures behind the wetland		
157			Neither wind nor boats frequently generate waves of $>1 \mathrm{ft}$ near the AA		
158	F30	Vectors for Waterborne Pests	Select all that apply:		[SRV+, FA-,FR-,AM-, PD-,STR+]
159			a regularly-used boat dock is present within or contiguous to the AA		
			a regularly-used boat dock is not within the AA, but there is one within 300 ft of the AA and there is a persistent or tidal surface connection between the dock and the AA		
			large ships that empty ballast water are regularly present in nearby contiguous waters		
			the AA has a persistent surface water connection (>9 mos./yr, via ditch, pipe, channel, tidegate, or floodplain) to a nearby perennial stream, river, lake, or estuary		
163			none of the above		

