EXHIBIT D

APPLICANT’S ORGANIZATIONAL, MANAGERIAL, AND TECHNICAL EXPERTISE

OAR 345-021-0010(1)(d)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>INTRODUCTION...</td>
<td>D-1</td>
</tr>
<tr>
<td>D.2</td>
<td>APPLICANT’S PREVIOUS EXPERIENCE</td>
<td>D-1</td>
</tr>
<tr>
<td>D.3</td>
<td>QUALIFICATIONS OF APPLICANT’S PERSONNEL</td>
<td>D-2</td>
</tr>
<tr>
<td>D.3.1</td>
<td>General Qualifications</td>
<td>D-2</td>
</tr>
<tr>
<td>D.3.2</td>
<td>Qualifications of Key Personnel</td>
<td>D-3</td>
</tr>
<tr>
<td>D.4</td>
<td>QUALIFICATIONS OF KNOWN CONTRACTORS</td>
<td>D-4</td>
</tr>
<tr>
<td>D.5</td>
<td>APPLICANT’S PAST PERFORMANCE</td>
<td>D-4</td>
</tr>
<tr>
<td>D.6</td>
<td>APPLICANT WITH NO PREVIOUS EXPERIENCE</td>
<td>D-5</td>
</tr>
<tr>
<td>D.7</td>
<td>ISO CERTIFIED PROGRAM</td>
<td>D-5</td>
</tr>
<tr>
<td>D.8</td>
<td>MITIGATION</td>
<td>D-5</td>
</tr>
</tbody>
</table>

ATTACHMENT

D-1 Health, Safety, Security, and Environmental Policy

TABLE

D-1 Current E.ON Climate & Renewables North America Wind Projects .. D-1

FIGURE

D-1 Map of E.ON Climate & Renewables North America Wind Farms ... D-8
D.1 INTRODUCTION

OAR 345-021-0010(1)(d) Information about the organizational expertise of the applicant to construct and operate the proposed facility, providing evidence to support a finding by the Council as required by OAR 345-022-0010, including:

Response: EC&R Development, LLC (Applicant), is a wholly owned subsidiary of E.ON Climate & Renewables North America Inc. (E.ON). Exhibit A of this Application for Site Certificate describes the E.ON ownership structure. E.ON is a leading renewable energy company headquartered in Chicago, Illinois. The focus of E.ON’s business is the development, construction, ownership, and operation of large-scale wind farms and other renewable energy systems that generate clean, quiet, fuel- and emissions-free power from domestic resources. The company has established itself as a leader in the renewable energy sector since 2006. E.ON owns some of the most efficient, highest-performing renewable energy projects in the United States.

Further, E.ON is wholly owned by E.ON AG, one of the largest investor-owned energy companies in the world. E.ON AG employs nearly 80,000 people around the world and has energy-generating facilities in Europe, Russia, and North America. E.ON AG is a publicly traded company based in Dusseldorf, Germany, and has a strong commitment to providing cleaner and better energy. Through its parent company’s support, E.ON has invested more than $5 billion in wind energy in North America since 2006.

The following sections demonstrate that the Applicant has the organizational expertise to construct, operate, and retire the Facility in a manner that protects public health and safety, and when the Facility retires, the Applicant will restore the site to a useful, nonhazardous condition.

D.2 APPLICANT’S PREVIOUS EXPERIENCE

OAR 345-021-0010(1)(d)(A) The applicant’s previous experience, if any, in constructing and operating similar facilities.

Response: E.ON currently owns and operates 16 United States (U.S.) wind farms with more than 2,000 megawatts (MW) of capacity, using turbines from several major turbine manufacturers. A number of E.ON projects are under construction, and additional projects will begin construction in each of the next several years throughout the U.S. and Canada, as shown in Table D-1. See Figure D-1 at the end of text for a map illustrating E.ON’s nationwide presence.

<table>
<thead>
<tr>
<th>Table D-1. Current E.ON Climate & Renewables North America Wind Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>1 Forest Creek Wind Farm</td>
</tr>
<tr>
<td>2 Sand Bluff Wind Farm</td>
</tr>
<tr>
<td>3 Munnsville Wind Farm</td>
</tr>
<tr>
<td>4 Roscoe Wind Farm</td>
</tr>
<tr>
<td>5 Champion Wind Farm</td>
</tr>
<tr>
<td>6 Pyron Wind Farm</td>
</tr>
</tbody>
</table>
Table D-1. Current E.ON Climate & Renewables North America Wind Projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location (U.S.)</th>
<th>Wind Technology</th>
<th>Year</th>
<th>Rated Capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadale Wind Farm</td>
<td>Texas</td>
<td>Mitsubishi MWT-1000</td>
<td>2009</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther Creek Wind Farm</td>
<td>Texas</td>
<td>GE SLE 1.5 MW</td>
<td>2008</td>
<td>142.5</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther Creek Wind Farm</td>
<td>Texas</td>
<td>GE SLE 1.5 MW</td>
<td>2008</td>
<td>115.5</td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panther Creek Wind Farm</td>
<td>Texas</td>
<td>GE SLE 1.5 MW</td>
<td>2009</td>
<td>199.5</td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papalote Creek Wind Farm I</td>
<td>Texas</td>
<td>Vestas V 82 1.65 MW</td>
<td>2009</td>
<td>179.9</td>
</tr>
<tr>
<td>Papalote Creek Wind Farm II</td>
<td>Texas</td>
<td>Siemens Mark II 2.3 MW</td>
<td>2010</td>
<td>200.1</td>
</tr>
<tr>
<td>Stony Creek Wind Farm</td>
<td>Pennsylvania</td>
<td>GE SLE 1.5 MW</td>
<td>2009</td>
<td>52.5</td>
</tr>
<tr>
<td>Settler’s Trail Wind Farm</td>
<td>Illinois</td>
<td>GE 1.6 MW</td>
<td>2011</td>
<td>150</td>
</tr>
<tr>
<td>Pioneer Trail Wind Farm</td>
<td>Illinois</td>
<td>GE 1.6 MW</td>
<td>2011</td>
<td>150.4</td>
</tr>
<tr>
<td>Magic Valley Wind Farm</td>
<td>Texas</td>
<td>GE 1.6 MW</td>
<td>2012</td>
<td>203.3</td>
</tr>
<tr>
<td>TOTAL MW = 2,423.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.3 QUALIFICATIONS OF APPLICANT’S PERSONNEL

OAR 345-021-0010(l)(d)(B) The qualifications of the applicant’s personnel who will be responsible for constructing and operating the facility, to the extent that the identities of such personnel are known when the application is submitted.

D.3.1 General Qualifications

Response: The Applicant is a subsidiary of E.ON, which has permitted, designed, and constructed more than 2,000 MW of wind energy facilities in four states since 2006. Before December 2007, E.ON operated as Airtricity North America. During this period, one of the currently operating wind farms (Forrest Creek) was completed and several more commenced construction. A number of the Applicant’s key personnel, including Vice President of Development for North America Paul Bowman and Chief Operating Officer Patrick Woodson, participated in the transition from Airtricity to E.ON and continue to serve the company. E.ON operates all of the facilities listed above with industry-leading performance, delivering wind energy to multiple commercial customers through a variety of market arrangements, including power purchase agreements and merchant electricity sales. E.ON prides itself on its experienced staff at all levels, from senior executives to maintenance technicians. Specific personnel to be assigned to the Brush Canyon Wind Power Facility (Facility) have not yet been determined, but as the project progresses, E.ON will supply qualification information on the project manager, site manager, and other key staff responsible for constructing and operating the Facility.
D.3.2 Qualifications of Key Personnel

Mike Greczyn is E.ON’s Development Manager. Mike holds a Bachelor degree in English Literature from Texas A&M University and a Master of Business Administration from the University of Texas at Austin. He has more than 4 years of experience in wind energy and has been with E.ON since May 2008. During his time with E.ON, Mike has been involved with the development and permitting of wind projects in Colorado, Oregon, and Texas. Before becoming a wind energy professional, Mike was a Captain in the U.S. Air Force.

Paul Bowman is E.ON’s Senior Vice President of Development for North America. Paul had a significant role in developing the Pyron, Inadale, Papalote Creek 1, and Settler’s Trail wind farms listed in Table D-1. In his current role, Paul is responsible for all North American wind development activities, and is closely involved with reviewing each project’s potential impacts on wildlife. Paul has 6 years of experience in wind energy. He has been a project developer and manager with E.ON since August 2007, contributing his expertise to the development, permitting, and construction of wind projects in Texas, Colorado, Illinois, Indiana, and Pennsylvania.

Patrick Woodson is E.ON’s Chief Operating Officer. Patrick has more than 15 years of experience in wind energy. As one of the original founders of the predecessor company to E.ON, he has been intimately involved with the development, permitting, construction and operation of all 16 of the wind projects listed in Table D-1. Patrick currently is the Chief Operating Officer, and oversees all aspects of development, construction, and operations for E.ON.

Jeffrey Wolf is E.ON’s Director of Environment, Health, and Safety. Jeffrey holds a Master degree in Management from the Naval Postgraduate School and a Bachelor degree in Political Science from the University of New Mexico. A former Safety/Risk Management Officer in the U.S. Navy, Jeffrey has worked in the private sector as a senior safety representative since 2004, and is currently Environment, Health, and Safety Manager. Jeffrey manages E.ON’s International Organization for Standardization (ISO)-14001-certified Health, Safety, Security and Environmental program for all of E.ON’s operating North American wind farms as well as those currently under construction.

John Badeusz is E.ON’s Vice President of Construction and Engineering. John has more than 20 years experience in the power and energy field, managing the construction of power projects all over North America. John holds a Bachelor degree in Mechanical Engineering from the University of Notre Dame and is a licensed professional engineer in Illinois and Hawaii. He serves as Vice President of Construction and Engineering, and oversees the construction of all of E.ON’s North American projects. John had a significant construction role in the Papalote II, Stony Creek, and Settler’s Trail wind farms listed in Table D-1. Notably, he is a veteran of the Energy Facility Siting Council (EFSC) process. While at People’s Energy, John was extensively involved in the siting of the COB Energy Combined-Cycle Generation Facility in Klamath County, Oregon.

John Franklin is E.ON’s Senior Vice President of Operations. John has more than 30 years experience in the power industry where he has been the Engineering and General Manager of conventional and nuclear power plants. In his role as E.ON’s Senior Vice President of Operations, John is responsible for operations at all 16 of the projects listed in Table D-1. John’s job starts where John Badeucz’ job finishes, and he has supervised the transition of each E.ON wind farm from construction projects to operating power plants. John holds a Bachelor degree in Electrical Engineering from the Lowell Technological Institute and is a graduate of the U.S. Naval Nuclear Power Program.

Matthew Meyers is E.ON’s Head of Wind Yield Assessment. Matthew holds a Master degree in Atmospheric Sciences from the University of Nevada, Reno, and a Bachelor degree in Meteorological
Studies from the University of North Dakota. He has worked in the wind energy industry since 2001, and has managed E.ON’s Wind Resource Analysis Department since 2009. Matthew has been responsible for assessing the wind resource and project layout design at all of the projects listed in Table D-1 with the exception of Forrest Creek and Sand Bluff, as well as at all of E.ON’s development projects throughout North America.

Patrick McCoyd is E.ON’s Manager of Civil Engineering. Patrick holds a Master in Business Administration from DePaul University and a Bachelor degree in Civil Engineering from the University of Notre Dame. He is a licensed professional engineer in Illinois, Nebraska, Iowa, Minnesota, North Dakota, Missouri, South Dakota, and Wisconsin. Pat has led civil engineering projects for more than 10 years, and as Manager of Civil Engineering for E.ON, he led the civil engineering for Panther Creek 1/2/3, Papalote Creek 1 and 2, Stony Creek, and Settler’s Trail wind farms.

Michael Sisk is E.ON’s Manager of Electrical Engineering. Michael holds a Bachelor degree in Electrical and Computer Engineering from the University of Texas at Austin, and is a Texas registered professional engineer. Michael has worked as a senior engineer in the energy industry for more than 10 years and in his current role as Manager of Electrical Engineering for E.ON, he has led electrical engineering efforts for all 16 of the projects listed in Table D-1 as well as for projects currently under construction.

Christine Fernandez is E.ON’s Assistant General Counsel. Christine has worked in the wind industry for more than 3 years and, previous to her position as Assistant General Counsel, held the role of Development Manager for E.ON. Christine was in charge of development efforts at the Papalote Creek Wind Farms during 2009 and 2010. Now she assists developers and others in the company with legal issues related to real estate, permitting, regulatory requirements, and corporate matters. Christine holds a Bachelor of Science degree in Environmental Engineering and Policy from the University of Michigan in Ann Arbor and a JD from George Washington University Law School. Before working at E.ON, she practiced environmental law in Texas for 6 years.

D.4 QUALIFICATIONS OF KNOWN CONTRACTORS

OAR 345-021-0010(1)(d)(C) The qualifications of any architect, engineer, major component vendor, or prime contractor upon whom the applicant will rely in constructing and operating the facility, to the extent that the identities of such persons are known when the application is submitted.

Response: E.ON has extensive experience managing the construction and operation of wind energy facilities, with more than 2,000 MW in operation across the United States (see Table D-1). Managing prime contractors and navigating the complex process of constructing a wind farm are skills integral to E.ON’s experience in the industry. E.ON has longstanding, positive working relationships with multiple prime contractors at the national level and with most major equipment vendors serving the wind energy industry on an international level, stemming from its parent company in Germany. These relationships ensure that E.ON has a strong pool of competent suppliers, contractors, and subcontractors from which to choose, who are well versed in E.ON’s first-rate Quality Assurance/Quality Control and Safety Program. Prime contractors and major equipment vendors have not yet been selected for the Facility. As the Brush Canyon project progresses, the Applicant will supply qualification information on all contractors and equipment vendors selected to participate.

D.5 APPLICANT’S PAST PERFORMANCE

OAR 345-021-0010(1)(d)(D) The past performance of the applicant, including but not limited to the number and severity of any regulatory citations in constructing or operating a facility, type of equipment, or process similar to the proposed facility.
Response: In 2009, Texas Reliability Entity (TRE) conducted an audit on behalf of North American Energy Reliability Corporation (NERC) of E.ON’s Roscoe, Champion, Sand Bluff, Forest Creek, and Panther Creek facilities. The multiple-facility audit only resulted in a single finding concerning a required methodology to identify facility ratings; the methodology was not in place for the entirety of the audit period. A mitigation plan was developed in conjunction with TRE to document resolution of the incident. No corrective actions were necessary as the methodology was established before the finding. The finding affected all five facilities but did not affect operations or construction, nor was the finding referred to the Federal Energy Regulatory Commission as a violation. The level of severity was deemed extremely low. Since 2009, TRE has conducted audits of four additional facilities owned by E.ON and did not find any issues during those audits.

D.6 **APPLICANT WITH NO PREVIOUS EXPERIENCE**

OAR 345-021-0010(1)(d)(E) If the applicant has no previous experience in constructing or operating similar facilities and has not identified a prime contractor for construction or operation of the proposed facility, other evidence that the applicant can successfully construct and operate the proposed facility. The applicant may include, as evidence, a warranty that it will, through contracts, secure the necessary expertise.

Response: Not applicable.

D.7 **ISO CERTIFIED PROGRAM**

OAR 345-021-0010(1)(d)(F) If the applicant has an ISO 9000 or ISO 14000 certified program and proposes to design, construct and operate the facility according to that program, a description of the program.

Response: E.ON is ISO 14001 and Occupational Health and Safety Advisory Service (OSHAS) 18001 certified, and E.ON’s parent company, E.ON AG, is ISO 9001-2000 certified. The Quality Assurance/Quality Control and Safety Program and standards are carried out through all E.ON companies, including EC&R Development, LLC. ISO 14001 serves as a framework to assist organizations in developing their own environmental management systems, with the purpose of meeting environmental targets and goals. OSHAS 18001 is an international health and safety assessment standard intended to help organizations control occupational health and safety risks.

E.ON’s Environmental Management and Occupational Health and Safety Management systems are registered under Lloyd’s of London (Lloyd’s Register of Quality Assurance) in compliance with the ISO 14001 and OHSAS 18001 standards. E.ON’s construction and operation procedures are developed to support the requirements of maintaining these certifications, and are integral to all processes and required of all subcontractors. E.ON will design, construct, and operate the Facility according to these programs. E.ON is the only renewable energy company in North America to hold these certifications.

Attachment D-1 contains documentation of E.ON’s Health, Safety, Security, and Environmental (HSSE) Policy Management System. The HSSE Management System demonstrates certified compliance with ISO 14001 environmental management system requirements and standards and with OHSAS 18001 occupational health and safety management system requirements and standards.

D.8 **MITIGATION**

OAR 345-021-0010(1)(d)(G) If the applicant relies on mitigation to demonstrate compliance with any standards of Division 22 or 24 of this chapter, evidence that the applicant can successfully complete such proposed mitigation, including past experience with other projects and the qualifications and experience of
E.ON requests that the Siting Council presume E.ON’s compliance with EFSC’s Organizational Standard, OAR 345-022-0010, based on E.ON’s ISO 9000 and 14000 certification, as described above. Given the information provided below, the experience of E.ON’s team, and a lack of any material regulatory citations, the compliance finding should be considered sustained.

E.ON’s approach to managing the environmental impact of its wind energy facilities is to first avoid, then minimize, and finally mitigate the impact of each project. The general siting approach is to start with regional wind and transmission maps, then overlay maps of special-status species and sensitive habitat to arrive at potential wind farm sites with low probability of adverse impacts to high-value biological resources. As E.ON learns more about the proposed facility site and its habitat and wildlife attributes during the permitting phase, further impacts are avoided through facility micrositing. Although this approach mirrors the recommendations found in the Oregon Columbia Plateau Ecoregion Wind Energy Siting and Permitting Guidelines, E.ON has used it at other project sites in other parts of the country, and its application has served the Applicant well at Brush Canyon. For example, impacts to many special-status species, such as the Greater Sage Grouse, have been avoided simply by selecting a site outside of that species’ known current ranges. Other special status species, notably raptors, are difficult if not impossible to avoid completely due to their ubiquitous nature, but the Applicant process resulted in a site with very low raptor use compared with similar facilities in the Pacific Northwest. By siting the project on actively grazed rangeland, Category 1 and 2 habitat were completely avoided. E.ON has applied this approach to wind farm siting consistently throughout its history as an organization, resulting in over 2,000 MW of projects constructed with very few impacts requiring mitigation. E.ON’s historical success as a company in avoiding impacts to wildlife and habitat, combined with the diverse permitting requirements in other jurisdictions throughout the country where the company has operating projects, as well as Oregon’s comparatively rigorous requirements, are the primary reasons that E.ON does not have a significant mitigation track record to point to in our response.

E.ON’s Mitigation Programs

- **Stony Creek – Pennsylvania Voluntary Wind Energy Program.** E.ON is a participant in the Pennsylvania Game Commission’s Wind Energy Voluntary Cooperation Agreement (WEVCA) on behalf of its 52.5-MW Stony Creek Wind Farm. As part of the WEVCA, E.ON has conducted 2 years of post-construction monitoring for birds and bats surrounding the Stony Creek Wind Farm. Further, as part of a voluntary agreement with the U.S. Fish and Wildlife Service, E.ON is continuing the post-construction monitoring at Stony Creek through a third year, which will be completed at the end of 2012.

- **Papalote Creek Wind Farm Whooping Crane identification Training.** Because of its proximity to known habitat for the endangered Whooping Crane, the staff at Papalote Creek Wind Farms have been trained to identify Whooping Cranes and report any sighting of the crane. To date, no whooping cranes have been seen on site.

- **Papalote Creek Wind Farms Bird and Bat Monitoring.** E.ON has conducted 2 years of post-construction monitoring for birds and bats at the Papalote Creek wind farms on a purely voluntary basis. This program was not required by any regulatory body.

E.ON’s general lack of a mitigation track record for other successfully operating projects aside, the company is familiar with and capable of implementing environmental mitigation when required as a result of impacts to natural and cultural resources. E.ON consistently works to minimize the impact of personnel upon whom the applicant will rely, to the extent that the identities of such persons are known at the date of submittal.
construction on the environment and employs the following methods to ensure compliance with federal, state, and local regulations and industry best practice:

- Environmental supervisor—Each E.ON project is assigned an environmental supervisor who will ensure that onsite work conforms to appropriate environmental rules and that subcontractors are environmentally conscious when using and maintaining their equipment. E.ON employees participate in a safety training program where they are trained to be aware of onsite environmental concerns and assist in observing and reporting any concerns.

- Clearing limits—Construction boundaries are identified and visibly marked before construction activities take place. These boundaries are deliberately constrained as much as reasonably possible, and any activity or traffic outside these limits must be deemed necessary and approved by E.ON.

- Best Management Practices—E.ON aggressively uses Best Management Practices to reduce the potential impact to areas immediately surrounding the construction site. Straw wattles, silt fence, rock check dams, and ditching are used to control erosion and contamination of discharged stormwater. Water is sprayed in high-traffic areas to prevent fugitive dust from blowing offsite. Regular inspections are performed by a Certified Professional in Erosion and Sediment Control or other suitably qualified individual, to ensure all measures are adequate and in compliance with the National Pollutant Discharge Elimination System (NPDES) permit. Dust control measures are deployed throughout project sites, and palliative measures are undertaken within one-quarter mile of each side of residential structures.

- Hazardous material containment—Hazardous materials generated by construction are collected and disposed of properly. Concrete trucks are required to wash out in designated plastic lined collection pits to prevent alkaline runoff. Equipment maintenance is performed over drip pans and equipment is inspected for leaks regularly. Waste oil and contaminated earth from minor spills or drips is collected for disposal. Any contaminated earth is treated by a qualified management and disposal company and the manifest records are obtained and kept by E.ON as proof of proper treatment. Spills are reported in accordance with the NPDES permit requirements.

- Restoration—A period of restoration occurs at the conclusion of every E.ON project. The restoration includes clearing any remaining debris from construction, performing final grading of road surfaces and ditches, and installing any culverts or water dispersion pads required to ensure proper stormwater flow. Finally, any remaining disturbed ground is prepared and sown with an appropriate native mix to ensure rapid growth and erosion prevention.

Mitigation for the Facility may be required for impacts to wildlife habitat and other resources. E.ON has developed and implemented a mitigation project at the Stony Creek Wind Farm in Pennsylvania by installing a gate on a bat hibernaculum. In addition, E.ON is conducting post-construction mortality surveys at this project in accordance with the WEVCA established with the Pennsylvania Game Commission. E.ON has also funded the Oregon Eagle Foundation effort to establish a population baseline for golden eagles in Oregon. In designing and executing these mitigation projects, E.ON relies on in-house expertise (including Mr. Greczyn) and on the selection and management of qualified outside contractors such as biologists from ABR and CH2M HILL.
Figure D-1. Map of E.ON Climate & Renewables North America Wind Farms
ATTACHMENT D-1

Health, Safety, Security, and Environmental Policy
Table of Contents

Health, Safety, Security and Environmental Policy

Twelve HSSE Management System Elements:

1. Management Commitment and Credible Leadership
2. Hazard and Risk Management
3. Objectives, Targets and HSSE Programs
4. Organization and Responsibilities
5. Personnel and Training
6. Information, Documentation and Communication
7. Contractor Management
8. Operational Controls
9. Emergency Preparedness and Response
10. Incident Reporting and Investigation
11. Monitoring
12. Assessment and Improvement

Document Change Log

Issued By: [Signature] Corporate EHS Manager Date: 10-21-10

Approved By: [Signature] Chief Executive Officer Date: 10-27-10
Health, Safety, Security and Environmental Policy

E.ON Climate & Renewables North America is committed to ensuring excellence in Health, Safety, Security and Environmental (HSSF) performance for all our employees, contractors and other stakeholders. Meeting this commitment is a primary line management objective and the individual and collective responsibility of all our employees.

Our principles

• We expect all employees at every level of our business to lead by example and take personal responsibility for HSSE, and report all injuries, illnesses, near miss events, and environmental concerns expeditiously.

• We comply with all applicable HSSE laws, company rules and regulations and other requirements in all of our activities and seek collaborative relationships with regulatory bodies and industry stakeholders.

• We are committed to preventing injuries and illnesses of our employees, contractors and the general public.

• We make the HSSE performance of contractors an evaluation criterion when awarding contracts.

• We commit to minimizing environmental impacts by preventing pollution and by continuously improving the effectiveness of our operations.

• We actively involve our people, as the experts, and encourage an HSSE dialogue to improve safe and environmentally aware behavior.

• We communicate the lessons learned from incidents to prevent recurrence and create a culture of trust.

• We motivate and train all employees and contractors to create a safe and healthy workplace and to protect the environment.

• We systematically review our HSSE performance and communicate it internally and externally on a regular basis.

• We continually strive to improve our HSSE performance, by setting objectives and targets and reviewing progress towards achieving them.

These principles will help us to achieve our goal:

“Safety and environmental excellence are core values and integral to everything we do.”
Purpose

The purpose of this procedure is to introduce our Health, Safety, Security and Environmental Management System to employees and contractors of E.ON Climate & Renewables North America (ECRNA).

The ECRNA HSSE Management System is certified by an external body demonstrating compliance with ISO 14001 (Environmental management systems - requirements) and OHSAS 18001 (Occupational health and safety management systems - requirements) standards.

What is the HSSE Management System?

The ECRNA HSSE Management System is designed to make sure HSSE is managed properly and our Policy objectives can be met.

The HSSE Policy defines how ECRNA will operate in the worldwide renewable energy industry. It sets the foundation for the HSSE Management System and its key objectives are:

- Continuous improvement in HSSE;
- To hurt nobody, to harm nobody; and
- To protect the environment.

These key objectives are in line with sustainable economic success.

To achieve these objectives, we must actively manage HSSF in our business, as virtually everything we do or plan to do, will in some way effect health, safety, security and the environment. That is why we must fully integrate HSSE Management into our business.

Scope of the E.ON Climate and Renewables North America Business Unit

The Business Unit's scope is the production of electricity through the development, construction and operation of renewable energy projects in North America
HSSE Management System

The HSSE Management System applies to all operations under the responsibility of E.ON Climate & Renewables with more than 50% share or if E.ON Climate & Renewables are managing the operations of the joint-venture.

Our HSSE Management System is based on international best practice and is set up as follows:

12 Elements to Success

Plan

1 Management Commitment and Credible Leadership
2 Hazard and Risk Management
3 Objectives, Targets and HSSE Programs

Do

4 Organization and Responsibilities
5 Personnel and Training
6 Information, Documentation and Communication
7 Contractor Management
8 Operational Controls
9 Emergency Preparedness and Response

Check

10 Incident Reporting and Investigation
11 Monitoring

Act

12 Assessment and Improvement

This procedure provides a description of all 12 elements listed above and the expectations relating to each one. More information is provided in the detailed HSSE Management System procedures referenced. The valid version of this procedure is published on the Business Unit intranet pages via the"Safety and Environmental" tab in the left hand margin of the SharePoint website page.
1. Management Commitment and Credible Leadership

ECRNA Management leads our continuous HSSE improvement process, sets expectations and provides the resources necessary for success. Personal involvement of line management is essential to make this leadership credible.

Expectations:

1.1 Members of the Extended Leadership Team (XLT) must assign and publish a local HSSE Policy, which complies with the Market Unit HSSE Policy of ECRNA and demonstrates their commitment.

1.2 Management commitment must be backed by the necessary resources to develop and implement the HSSE Management System in order to achieve the objectives of the HSSE Policy.

1.3 HSSE is a line management responsibility and must be integrated into all aspects of ECRNA’s business.

1.4 HSSE performance and issues should be a key topic in all business meetings.

1.5 Management shall participate in all serious incident investigations involving company employees and ensure that appropriate actions are taken to prevent a recurrence.

1.6 Management shall personally undertake regular HSSE walk & talks, observe employees at work, listen to their concerns and suggestions, and ask them to identify improvement opportunities. See Business Unit Procedure BU-1.1 HSSE Observations and Tours.

1.7 The implementation of identified measures should be systematically checked and documented.
PLAN

2. Hazard and Risk Management

Operations must be managed in a way that business can be conducted efficiently, and risks are minimized as far as reasonably practical. Hazard and risk management involves the systematic identification of hazard and risks, starting with the identification, followed by an assessment and the introduction of appropriate measures to control the risks. Hazard and risk assessment includes the identification and evaluation of environmental aspects and impacts. It also includes the identification legal requirements and evaluation of legal compliance.

Expectations:

2.1 It must be ensured that a systematic and documented identification of hazards and risks for all tasks and operational activities, including relevant tools, substances and facilities is done. See BU-2.1 Hazard and Risk Assessment.

2.2 Hazard and environmental aspect information shall be used in conjunction with information on operational practices to assess the risk of each hazard also in terms of probability and consequence of exposure. See BU-2.2 Identification and Evaluation of Environmental Aspects and Impacts.

2.3 Risk assessment information shall be used to determine risk control measures. See BU-2.1

2.4 In the case of new projects or major modifications, the hazard and risk assessments shall be considered early enough for risk control measures to be promulgated in the procurement stage, for incorporation in design.

2.5 HSSE experts should be involved in project development and project organization.

2.6 Procedures shall be established to ensure the updating of hazard and risk assessments at specific intervals, when there are changes to operational activities or if non-routine tasks are undertaken. See BU-2.1

2.7 Procedures shall be established to ensure that hazard and risk assessment information and documentation is communicated to all those persons involved in the operation available on the internet. See BU-2.1

2.8 Procedures shall be established for the identification of legal and other HSSE requirements and the evaluation of legal and other compliance requirements on a regular basis. See BU-2.3 Identification of Legal and Other Requirements.
3. Objectives, Targets and HSSE Programs

To drive the continuous improvement process, specific objectives need to be set, measured and communicated in order to ensure the system to be efficient and effective.

Expectations:

3.1 Following the Management Review of the Management System, HSSE objectives and targets will be set at ECRNA Market Unit level for the company as a whole via the HSSE Programme. ECRNA will perform this function for itself during the end of year Management Review.

3.2 Objectives and targets will be related to the significant risks and impacts of the business, identified and assessed through the hazard and risk assessment. See BU-3.1 HSSE Program.

3.3 Objectives and targets will be measurable; performance during the year will be monitored by management.

3.4 Business Unit Procedure 3.1 describes the actions required to achieve the objectives and targets set in the Management Reviews. Timeframes and responsibilities are defined in the Program.

3.5 Each department should contribute relevant measures.

3.6 HSSE measures to achieve the objectives must be assigned to designated employees.
4. Organization and Responsibilities

In order for all duties to be performed with due regard to HSSE, specific roles and responsibilities need to be defined and communicated. See BU-4.1 HSSE Roles and Responsibilities.

Expectations:

4.1 HSSE roles and responsibilities (duties and accountabilities) must be defined for all XLT members and all safety-critical positions (managers, supervisors and workforce), and identified by letters of delegation and job description.

4.2 Delegation of responsibilities needs to be in written form and documented.

4.3 Job descriptions should detail individual responsibilities and highlight specific HSSE issues. Deputies should be nominated and briefed where necessary.

4.4 The CEO shall appoint HSSE experts or representatives, who should report directly to them.

4.5 HSSE experts should assist line managers in meeting their HSSE responsibilities, without reducing the line manager's personal accountability.

4.6 Arrangements will be in place to ensure ECRNA employees and contractors are involved in and consulted on HSSE matters.

4.7 The managers responsible have to ensure that adequate tools, personnel and financial resources are available.
DO

5. Personnel and Training

ECRNA employees and contractors’ personnel shall be appropriately trained, experienced and competent to work in a way which minimizes HSSE risk.

Expectations:

5.1 HSSE qualification requirements for all ECRNA employee activities will be defined and documented. See BU-5.1 HSSE Competence and Training.

5.2 ECRNA personnel will be selected and appointed with due regard to their ability to perform their work safely and meet the requirements of their job.

5.3 All ECRNA personnel shall have basic HSSE indoctrination and training, relevant to the risks in their workplace and the applicable legal and other requirements.

5.4 New employees of ECRNA receive systematic job-specific training. Trainees will not be allowed to work unsupervised.

5.5 Management will allocate sufficient resources for training of ECRNA employees to ensure the correct levels of competence are reached and maintained.

5.6 Training and competence requirements will be reviewed when operations change or ECRNA personnel are transferred to new locations.

5.7 All regular training is conducted and documented as prescribed in annual training plans.
6. Information, Documentation and Communication

HSSE information and communications are essential to drive the continuous improvement process. Open dialogue about HSSE with employees, partners, customers, investors and neighbors helps to strengthen mutual trust and to foster an atmosphere of improving and learning from each other.

Expectations:

6.1 HSSE roles and responsibilities will be communicated to all relevant persons, including contractors. See BU-4.1

6.2 There will be a system for collecting HSSE information throughout ECRNA in order to promote cross-functional learning and the sharing of best practice.

6.3 All ECRNA employees and contractors will have access to the HSSE Policy as well as the relevant HSSE Management System procedures.

6.4 Arrangements will be in place to develop local HSSE procedures and guidance, as required, and making them available to the workforce. These will include information on operational and material hazards and risks and the measures to control them. See BU-2.1 and the OP series of procedures for site-specific requirements.

6.5 All HSSE Management System procedures should be documented in written form and signed by the CEO.

6.6 Procedures shall be in place to ensure that HSSE documentation is periodically reviewed and revised by authorized personnel and that only the most up-to-date versions are in use. See BU-6.1 HSSE Document Control.

6.7 Drawings and other documentation necessary for the sound operation and maintenance of facilities are identified, accessible, accurate and appropriately safeguarded. See BU-6.1

6.8 Significant environmental aspects will be communicated externally by the Market Unit through the yearly corporate responsibility report.
DO

7. Contractor Management

All contractors of ECRNA will operate in compliance with our standards in order to achieve consistent HSSE performance. ECRNA will ensure that contractors have a correspondingly high level of competence.

Expectations:

7.1 Contractors are evaluated and selected using the criteria defined in the HSSE Management System procedures that include an assessment of capabilities to perform in a safe and environmental friendly manner. See BU-7.1 Contractor Management.

7.2 The HSSE roles and responsibilities of contractors and their interface with company personnel will be defined and effectively managed.

7.3 HSSE terms and conditions should be a part of each contract.

7.4 Contractor personnel must be instructed about all specific hazards and risks with respect to the operations before starting the work.

7.5 Contractor HSSE performance is monitored and assessed, feedback is provided and deficiencies are corrected.

7.6 ECRNA shall have procedures in place to ensure an efficient system for the selection, control and evaluation of contractors regarding HSSE is available.

7.7 Only safe and suitable equipment is to be used by contractors.

7.8 Contractor must implement safe working practices at all times.
DO

8. Operational Controls

All ECRNA operations will be conducted according to the HSSE standards that have been set in this HSSE Management System to minimize risk. The adverse HSSE consequences of temporary and permanent changes in operations will be assessed, managed and authorized.

Expectations:

8.1 Applicable laws, regulations, permits and other requirements are met, and the resulting operating requirements are documented accordingly. Compliance is periodically verified. See BU-11.2 HSSE Audits and Inspections.

8.2 It shall be ensured, that for operations and projects HSSE programs for inspection, predictive and preventative maintenance are developed and implemented.

8.3 Critical HSSE equipment, e.g. protective and safety systems are periodically checked and tested and are subject to a preventative maintenance. The result of the checks and corrective actions need to be documented. Corrective actions are followed up. See BU-11.2 and relevant Operations Procedures.

8.4 Operating, maintenance and inspection procedures with due regard to HSSE are developed and implemented. These procedures take human factors into consideration wherever practicable and are updated at specific intervals and when changes are made.

8.5 Systems are in place for re-assessing risk and applying appropriate controls when operational parameters change (management of change).

8.6 The need for, and the suitability of, personal protective equipment must be assessed. Instructions for its use should be documented as part of our standard procedures, and employees should be trained accordingly.

8.7 All high-risk and non-routine activities shall be governed by safe work procedures and Job Hazard Analyses/permits as warranted.
DO

9. Emergency Preparedness and Response

Plans and procedures will be in place to respond to emergencies and to minimize their impacts. The established plans and procedures will be periodically checked, tested and if necessary, improved.

Expectations:

9.1 ECRNA has established an emergency notification plan to ensure proper and fast reaction to emergencies and that the notification lines are being correctly followed.

9.2 ECRNA has established an Emergency Operations Plan and an Emergency Management Committee to handle emergencies in a manner appropriate to the risk.

9.3 All plants, facilities and locations under ECRNA responsibility will have plans and procedures for responding to fire and evacuation. Other types of emergencies will be addressed according to the level of risk.

9.4 The Emergency Operations Plan will be documented, accessible and easy to understand.

9.5 A sufficient number of ECRNA employees at each plant, facility, site or office building should be trained to provide first aid, CPR and an AED.

9.6 Emergency operations procedures will be supported by training and exercises.

9.7 Technical equipment for detecting and responding to emergencies will be subject to a preventative maintenance programme, including testing and calibration, according to the relevant standards.
CHECK

10. Incident Reporting and Investigation

All incidents in the area of responsibility of ECRNA will be strictly reported to the appropriate level of management according to the agreed reporting system. All these incidents will be investigated in a manner appropriate to the level of risk, in order to determine root causes and prevent recurrence.

Expectations:

10.1 Procedures will be in place to enable an immediate response to incidents.

10.2 Procedures will be in place for reporting incidents to the appropriate level of management and, where applicable, to external authorities. See BU-10.1 Reporting and Investigation of Injuries, Incidents, and Near-Miss Events.

10.3 The resources allocated to incident investigation and corrective action will reflect the level of risk potential.

10.4 Investigations will be conducted in a fair and just manner in order to determine root causes and to identify corrective actions. See BU-10.2 Root Cause Analysis.

10.5 Preventative actions and lessons learned from incidents will be communicated appropriately within ECRNA.
CHECK

11. Monitoring

Monitoring and measurement of HSSE performance is required in order to correct deficiencies in the system and to provide continual improvement.

Expectations:

11.1 The status of the applicable HSSE Programme will be the subject of a periodic report to Senior Management of ECRNA.

11.2 The scope and frequency of inspections and audits will be appropriate to the level of risks. See BU-11.2 HSSE Audits and Inspections.

11.3 ECRNA will develop an annual plan for systematic audits and inspections. See BU-11.2

11.4 The audit schedule should be part of the HSSE Programme.

11.5 Audits will be carried out according to an agreed and transparent system.

11.6 Monitoring and measuring equipment will be installed at all locations where a failure to detect a release of hazardous material or energy would result in a serious incident, as determined by the Risk Assessment Matrix.

11.7 Good HSSE performance will be recognized and rewarded.
ACT

12. Assessment and Improvement

Management will formally review the effectiveness of HSSE Management System implementation. Actual performance will be compared with the requirements of the HSSE Policy, and the HSSE Management System, and opportunities for improvement will be identified.

Expectations:

12.1 ECRNA shall have a follow-up system in order to guarantee the correct, systematic and fast implementation of all identified HSSE-related actions.

12.2 ECRNA will undertake an HSSE review on a periodic basis. Reports of these meetings including the follow up actions will be provided to managers and copied to the Market Unit HSSE team. See BU-12.1 HSSE Management Review.

12.3 HSSE performance will be reviewed and assessed in terms of incidents, audit findings and how well objectives and targets have been met.

12.4 Identified opportunities for improvement of HSSE performance will be documented and will form the basis of HSSE objectives and targets in the HSSE programme for the following period.
Document Change Log

<table>
<thead>
<tr>
<th>DATE</th>
<th>NATURE OF CHANGE</th>
<th>AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>