EXHIBIT DD

SPECIFIC STANDARDS FOR WIND FACILITIES

OAR 345-021-0010(1)(dd)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD.1 INTRODUCTION</td>
</tr>
<tr>
<td>DD.2 SPECIFIC STANDARDS FOR WIND ENERGY FACILITIES</td>
</tr>
<tr>
<td>DD.2.1 PUBLIC HEALTH AND SAFETY STANDARDS</td>
</tr>
<tr>
<td>DD.2.1.1 Protect the Public from Proximity to Turbines and Electrical Equipment</td>
</tr>
<tr>
<td>DD.2.1.2 Avoid Structural Failure that Could Affect Public Safety</td>
</tr>
<tr>
<td>DD.2.2 MEASURES FOR REDUCING CUMULATIVE ADVERSE EFFECTS</td>
</tr>
<tr>
<td>DD.2.2.1 New Access Roads</td>
</tr>
<tr>
<td>DD.2.2.2 Underground and Overhead Electrical Lines</td>
</tr>
<tr>
<td>DD.2.2.3 Substations</td>
</tr>
<tr>
<td>DD.2.2.4 Raptor and Wildlife Protection</td>
</tr>
<tr>
<td>DD.2.2.5 Visual Features</td>
</tr>
<tr>
<td>DD.2.2.6 Lighting</td>
</tr>
<tr>
<td>DD.3 SPECIFIC STANDARDS FOR GAS FACILITIES</td>
</tr>
<tr>
<td>DD.4 SPECIFIC STANDARDS FOR TRANSMISSION LINES UNDER COUNCIL JURISDICTION</td>
</tr>
</tbody>
</table>
DD.1 INTRODUCTION

EC&R Development, LLC (Applicant) proposes to construct the Brush Canyon Wind Power Facility (Facility) in Wasco and Sherman counties, Oregon. The proposed Facility is expected to provide up to 535 megawatts (MW) of nominal generating capacity.

OAR 345-021-0010(1)(dd) If the proposed facility is a facility for which the Council has adopted specific standards, information about the facility providing evidence to support findings by the Council as required by the following rules:

DD.2 SPECIFIC STANDARDS FOR WIND ENERGY FACILITIES

Response: The Facility will comply with OARs 345-024-0010 and -0015 as described in Sections DD.2.1 and DD.2.2 below.

DD.2.1 PUBLIC HEALTH AND SAFETY STANDARDS

OAR 345-024-0010 To issue a site certificate for a proposed wind energy facility, the Council must find that the applicant:

DD.2.1.1 Protect the Public from Proximity to Turbines and Electrical Equipment

OAR 345-024-0010(1) Can design, construct and operate the facility to exclude members of the public from close proximity to the turbine blades and electrical equipment.

Response: The Facility will be located on private property. Public access is restricted. During construction and operation, members of the public typically will not have access to the lands on which the turbines and other Facility components are located.

Lockable gates and signage will be used to discourage unauthorized access. Electrical equipment will be contained within locked turbine towers or locked cabinets, and within the operations and maintenance facility, which will be staffed 24 hours per day, 7 days per week. A permanent, fenced, graveled parking and storage area will be located adjacent to the operations and maintenance facility. In addition, the substations will be located within a fenced and locked area, thereby restricting public access to these Facility components.

The Applicant will maintain setbacks from residences, property lines, and roads to provide additional protection in the unlikely event of a structural failure. Specific setback requirements are described in Exhibit K.

DD.2.1.2 Avoid Structural Failure that Could Affect Public Safety

OAR 345-024-0010(2) Can design, construct and operate the facility to preclude structural failure of the tower or blades that could endanger the public safety and to have adequate safety devices and testing procedures designed to warn of impending failure and to minimize the consequences of such failure.

Response: The wind turbines will meet international design and manufacturing safety standard for tower, blade, and generator design. Quality assurance/quality control (QA/QC) inspections of the wind turbine generators and towers typically will include, but not be limited to, inspection of turbines at manufacturer’s facilities; review and inspection of manufacturer’s QA/QC procedures; manufacturing drawing review and verification; verification of welding procedure specifications compliance; overall visual inspection; witness or review of turbine load testing; inspection of paint finishing and protection; inspection of painting, marking,
and preparation for shipment; verification of field wiring and tagging; and precommissioning field testing and verification.

The Applicant has a strong history of safe construction and operation of wind farms. As described in Exhibit D, just one finding is noted. In 2009, Texas Reliability Entity conducted an audit on behalf of North American Reliability Corporation of E.ON’s Roscoe, Champion, Sand Bluff, Forrest Creek, and Panther Creek facilities. The audit resulted in a single finding concerning a required methodology to identify facility ratings; the methodology was not in place for the entire audit period. No corrective actions were necessary as the methodology was established before the finding. The finding affected all five facilities but did not impact operations or construction. The level of severity was deemed extremely low.

The Applicant is committed to ensuring excellence in Health, Safety, Security and Environmental (HSSE) performance for all employees, contractors, and stakeholders. Attachment D-1 in Exhibit D contains a copy of the Applicant’s HSSE Policy Management System.

DD.2.2 MEASURES FOR REDUCING CUMULATIVE ADVERSE EFFECTS

OAR 345-024-0015 To issue a site certificate for a proposed wind energy facility, the Council must find that the applicant can design and construct the facility to reduce cumulative adverse environmental effects in the vicinity by practicable measures including, but not limited to, the following:

DD.2.2.1 New Access Roads

OAR 345-024-0015(1) Using existing roads to provide access to the facility site, or if new roads are needed, minimizing the amount of land used for new roads and locating them to reduce adverse environmental impacts.

Response: The transportation route to and from the Facility is detailed in Exhibit U and includes a network of existing Interstate and State highways and new roads constructed specifically for Facility access. New access road construction and upgrades or improvements to existing roads will be completed according to Sherman and Wasco county ordinances and through approval of the Sherman and Wasco county public works departments, as stated in Exhibit B.

As described in Exhibit B, the Applicant will implement improvements to existing roads and proposes to construct new gravel roads along the length of turbine strings and in areas where existing roads do not provide access to wind turbine locations. New roads will be designed to have the minimum land disturbance necessary for safe construction and operation of the Facility.

New access roads generally will be 16 to 18 feet wide. The Applicant will design new access roads under the direction of a licensed engineer and Sherman and Wasco county requirements. Roads will be compacted to meet load requirements for equipment. The roads will be retained to 16 to 18 feet wide after construction for use during Facility operations. The Applicant will ensure that adverse environmental impacts from road construction are reduced to the minimum area necessary to safely achieve access to the Facility components. The roads will be constructed to avoid impacts to wetlands, waterbodies, and sensitive habitat, where practicable and as described in Exhibits J and P of this ASC. Approximately 95 miles of new access roads will be required for construction.

DD.2.2.2 Underground and Overhead Electrical Lines

OAR 345-024-0015(2) Using underground transmission lines and combining transmission routes.

Response: Energy generated from the turbines will be collected by underground and overhead 34.5-kV collector lines that connect to the Facility collector substations. Whenever feasible, underground collector
lines will be installed. In some locations, the collector lines may be constructed aboveground. Aboveground structures will allow the collector cables to span terrain such as canyons and intermittent streams, thus reducing environmental impacts. The Facility will include approximately 92 miles of underground collector lines and 3 to 5 miles of overhead collector lines.

The Applicant is proposing a new 32-mile overhead, 230-kV transmission line that will connect the Facility to the 500-kV transmission line at the existing Bonneville Power Administration (BPA) Buckley substation. The 230-kV transmission line route will extend for approximately 12 miles from the southern Facility collector substation to the northern Facility collector substation, and continue for 20 miles from the northern collector substation to interconnect with BPA’s existing 500-kV line at the Buckley substation, as shown on Figures C-2 and C-3 in Exhibit C.

DD.2.2.3 Substations

OAR 345-024-0015(3) _Connecting the facility to existing substations, or if new substations are needed, minimizing the number of new substations._

Response: The Applicant is proposing to construct two onsite Facility collector substations. One collector substation will be located in the southern portion of the site boundary, and the second collector substation will be located in the northern portion of the site boundary (see Figure C-3 in Exhibit C for approximate locations). Power from the turbines will be collected at 34.5 kV and transmitted by underground or overhead lines to the Facility collector substations where the power will be converted to 230 kV. The 230-kV transmission line will connect the southern collector substation to the northern collector substation, and continue from the northern collector substation to BPA’s existing 500-kV line at the Buckley substation, which BPA proposes to rebuild. Section B.3.2 in Exhibit B provides further description of the proposed substation locations and components.

DD.2.2.4 Raptor and Wildlife Protection

OAR 345-024-0015(4) _Designing the facility to reduce the risk of injury to raptors or other vulnerable wildlife in areas near turbines or electrical equipment._

Response: The Facility will be designed using the suggested practices outlined by the Avian Powerline Interaction Committee (APLIC). Disturbance to wildlife habitats will be minimized during siting and through implementation of the Oregon Department of Fish and Wildlife (ODFW) mitigation guidelines. Exhibits P and Q provide more detailed information regarding protection of raptors and wildlife.

DD.2.2.5 Visual Features

OAR 345-024-0015(5) _Designing the components of the facility to minimize adverse visual features._

Response: See Exhibit R, Scenic and Aesthetic Values.

DD.2.2.6 Lighting

OAR 345-024-0015(6) _Using the minimum lighting necessary for safety and security purposes and using techniques to prevent casting glare from the site, except as otherwise required by the Federal Aviation Administration or the Oregon Department of Aviation._

Response: The minimum lighting necessary for safety and security purposes will be implemented at the Facility. Federal Aviation Administration (FAA) and Oregon Department of Aviation lighting requirements will be met.
Permanent facilities will be equipped with nighttime and motion sensor lights for safety and security and emergency lighting with backup power will be allowed so that personnel can perform manual operations during an outage of normal power sources. To prevent casting glare from the site, sensors and switches will be used to keep the lights off when not required, and emergency lighting will be used only in the event of a power outage.

The Facility will be constructed and operated in accordance with FAA rules for turbine lighting, locations, and height. The number of turbines with lighting and the lighting plan will be determined in consultation with the FAA. Lights typically used to meet FAA requirements will to some extent be shielded from ground level view due to a constrained (3 to 5 degree) vertical beam. The Facility and individual turbines will be independently reviewed during the micrositing process by the FAA and mitigation will be determined through consultation with the FAA. Towers will be uniformly painted an FAA-approved color suitable for daytime marking and air navigation. Permanent met towers will be fitted with safety lighting and paint as required by the FAA. Daytime lighting of the wind turbines will not be necessary if turbine towers are painted white.

DD.3 SPECIFIC STANDARDS FOR GAS FACILITIES

OAR 345-021-0010(1)(dd)(B) For surface facilities related to underground gas storage reservoirs, OAR 345-024-0030, including information required by OAR 345-021-0020.

Response: The proposed Facility does not include underground gas storage reservoirs. Therefore, OAR 345-021-0010(1)(dd)(B) does not apply.

DD.4 SPECIFIC STANDARDS FOR TRANSMISSION LINES UNDER COUNCIL JURISDICTION

Response: The proposed 230-kV overhead transmission line is a related or supporting facility. The Applicant has proposed a transmission line corridor (also referred to as the transmission line route) that minimizes or avoids impacts to wildlife, habitat, and other sensitive resources. The proposed 230-kV transmission line route is shown on Figures C-2 and C-3 in Exhibit C.

The Applicant selected the proposed route after determining that no other route would better meet the Applicant’s own criteria for successful siting and at the same time satisfy the Council’s standards. Siting criteria that influenced the Applicant’s selection process included identifying a direct route from the proposed turbines to the interconnection point at the Buckley substation while minimizing disturbance and avoiding sensitive resources; minimizing impacts to agricultural practices by routing along property lines; navigating difficult and varied topography; and locating the route through land for which the Applicant has negotiated or is in the process of negotiating long-term wind leases or easements. Exhibit B provides additional description of the selection process.