Exhibit B Project Description and Schedule

Wagon Trail Solar Project December 2023

Prepared for

Prepared by

Tetra Tech, Inc.

This page intentionally left blank

Table of Contents

1.0	Intro	roduction			
2.0	Description of the Proposed Facility1				
	2.1	Major (Components, Structures, and Systems	2	
		2.1.1	Solar Modules and Racking	2	
		2.1.2	Tracker Systems	3	
		2.1.3	Posts	3	
		2.1.4	Cabling	4	
		2.1.5	Inverters	4	
		2.1.6	Transformers	5	
		2.1.7	Collection System	5	
	2.2	Site Pla	an and General Arrangement	5	
	2.3	Fuel an	nd Chemical Storage	6	
	2.4	.4 Fire Prevention and Control			
		2.4.1	Battery Energy Storage System		
3.0	Relat	Related or Supporting Facilities9			
	3.1	Battery	v Energy Storage System	10	
		3.1.1	Battery Energy Storage System Equipment	11	
		3.1.2	Battery Energy Storage System Operations and Maintenance	11	
	3.2	Collect	or Substations	12	
	3.3	230-kV	Transmission Line	12	
	3.4	Operations and Maintenance Building13			
	3.5	Meteorological Stations13			
	3.6	Site Access, Service Roads, Perimeter Fencing, and Gates13			
	3.7	Tempo	rary Construction Areas	14	
	3.8	Comm	unication and SCADA System	14	
4.0	Dime	ensions o	f Major Structures and Features	14	
	4.1	Solar Array Dimensions			
	4.2	Battery Storage Dimensions			
	4.3	Substation Dimensions			
	4.4	34.5-kV Underground Collector Line Dimensions16			
	4.5	230-kV Transmission Line Dimensions			

	4.6	O&M Building Dimensions			
	4.7	Meteorological Station Dimensions			
	4.8	Temporary Construction Areas Dimensions	.16		
5.0	Transr	nission Line Corridor	17		
6.0	Description of Transmission Line1				
7.0	Construction Schedule1'				
8.0	Submittal Requirements and Approval Standards1				
	8.1	Submittal Requirements	.18		
	8.2	Approval Standards	.20		
9.0	References				

List of Tables

Table B-1. Example Construction Schedule	
Table B-2. Submittal Requirements Matrix	

List of Attachments

Attachment B-1. Facility Component Table
Attachment B-2. Oregon Department of Energy Correspondence – Site Boundary Expansion
Attachment B-3. NextEra Energy Resources, LLC Solar Energy Booklet
Attachment B-4. Spill Prevention, Control, and Countermeasure Plan Template
Attachment B-5. Energy Storage Emergency Operation Plan
Attachment B-6. NextEra Energy Resources, LLC Energy Storage Booklet

AC	alternating current
Applicant	Wagon Trail Energy Center, LLC c/o NextEra Energy Resources, LLC
ASC	Application for Site Certificate
CFR	Code of Federal Regulations
DC	direct current
Council	Energy Facility Siting Council
EPA	U.S. Environmental Protection Agency
Facility	Wagon Trail Solar Project
HV	high voltage
I-84	Interstate 84
kV	kilovolt
Li-ion	lithium-ion
met	meteorological
MW	megawatts
0&M	operations and maintenance
OAR	Oregon Administrative Rule
ORS	Oregon Revised Statutes
РСВ	polychlorinated biphenyl
SCADA	supervisory control and data acquisition
SPCC Plan	Spill Prevention, Control, and Countermeasure Plan
Wheatridge Facilities	Wheatridge Renewable Energy Facilities I, II, III, and East

Acronyms and Abbreviations

This page intentionally left blank

1.0 Introduction

Wagon Trail Energy Center, LLC c/o NextEra Energy Resources, LLC (Applicant) proposes to construct and operate the Wagon Trail Solar Project (Facility), a solar energy generation facility and related or supporting facilities in Morrow County, Oregon (see Attachment B-1 for a full Facility Component Table). This Exhibit B was prepared to meet the submittal requirements in Oregon Administrative Rule (OAR) 345-021-0010(1)(b).

The Applicant is requesting to permit a range of photovoltaic and associated or supporting facility technology within a site boundary that provides for micrositing flexibility in consideration of perpetual technological advances and offering maximum efficiency in use of space, providing development flexibility for potential customer's varying market requirements. Therefore, Exhibit B provides a representative description of components and accompanying analysis for the maximum footprint or buildable area (for the solar arrays) within the site boundary, also known as solar micrositing corridors, to address the greatest potential impact. The information summarized in this exhibit and described throughout this Application for Site Certificate (ASC) demonstrates that the Facility, as proposed, can be designed, engineered, constructed, operated, and decommissioned in a manner that satisfies the applicable Energy Facility Siting Council (Council) standards.

Note that the Facility site boundary has expanded by 119 acres (making the site boundary a total of 7,450 acres) since the last issuance of the Applicant's Notice of Intent on June 11, 2021. The Oregon Department of Energy has confirmed that this addition will not require an amended Notice of Intent; thus, this change is reflected herein and in subsequent exhibits of this ASC (see Attachment B-2). This new area intersects the Wheatridge Renewable Energy Facilities I and II (both operational) and the Wheatridge Renewable Energy Facility III (under construction; see Exhibit C for the Facility location).

2.0 Description of the Proposed Facility

OAR 345-021-0010(1)(b) Exhibit B. Information about the proposed facility, construction schedule and temporary disturbances of the site, including:

(A) A description of the proposed energy facility, including as applicable:

(*i*) The nominal electric generating capacity and the average electrical generating capacity, as defined in ORS 469.300.

The Facility will be a photovoltaic solar energy generation facility with a nominal and average generating capacity of up to 500 megawatts (MW), as defined in Oregon Revised Statutes (ORS) 469.300(4)(c). The Facility will generate electricity using solar panels wired in series and in parallel to form arrays and connected to electrical infrastructure. The Facility will also include a battery energy storage system for stabilizing the solar resource with up to 500 MW of storage capability.

2.1 Major Components, Structures, and Systems

(ii) Major components, structures and systems, including a description of the size, type and configuration of equipment used to generate electricity and useful thermal energy.

The solar energy will be generated by using multiple arrays of solar panels connected to electrical infrastructure. (The term "array" refers to solar panels wired in series and in parallel.) Solar panels generate electricity by means of a photoelectric effect, whereby the materials in the panels absorb the sun's energy in the form of photons and release electrons. The capture of these free electrons produces an electrical current that can be collected and supplied to the electrical power grid. The solar panels, known in the industry as modules, will be installed to form module blocks. Attachment B-3 provides a diagram of how a solar facility works and an example pictures of module blocks.

The solar arrays will be composed of a combination of solar modules, tracker systems, posts, and related electrical equipment. These components are combined to form a solar array. The layout of the solar array can vary depending on project size, technology, topography, and other constraints. Therefore, the Applicant seeks to permit a range of technology to preserve design flexibility. The solar modules and associated equipment, and precise layout of the solar array and related or supporting facilities, have not yet been finalized. Because technology is changing rapidly, this ASC analyzes impacts associated with the largest anticipated solar array footprint, or about 3,641 acres within a 7,450-acre site boundary (see Exhibit C). The solar array area is considered all permanent impact (see Exhibit C for an impact analysis).

During final design, the Applicant will consider all micrositing factors and solar technology available at that time to design the most efficient and effective solar array layout. At this time, the Applicant will specify the precise details of the energy generation and related or supporting facilities equipment and layout in accordance with reporting requirements to the Oregon Department of Energy. However, the actual solar array equipment and layout selected will not exceed the impacts analyzed. Therefore, the following description of major components is based on the best available design information at this time and largest anticipated footprint but may not reflect the final design or equipment used.

The Applicant proposes to construct the Facility in phases with each phase being constructed over the course of approximately a single year (see Section 7.0). Phasing, if applied, will be in 100-200 MW increments, beginning construction of the first phase by 2025. The impact analysis presented in this ASC represents the fully built-out scenario of 500 MW.

2.1.1 Solar Modules and Racking

Solar modules use mono- or poly-crystalline cells to generate electricity by converting sunlight into direct current (DC) electrical energy. The electrical generation from a single module varies by module size and the number of cells per module. The dimensions of each module will be approximately 6 feet long and 3 feet wide. The crystalline cells are contained within antireflective glass panels and a metal frame and linked together with factory-installed wire connectors. The modules will be connected in series to form long rows. The rows of modules are then connected via

combiners, cables, and switchboards. The configuration of multiple rows (also referred to as an "array") can vary depending on the module technology, spacing, mounting equipment, and other design criteria, which are subject to change during final design. Each row will be spaced approximately 24.67 feet.

Exhibit C, Figure C-2 depicts the solar layout developed for purposes of analyzing impacts, using approximately 965,007 modules (each approximately 320 watts) in strings of 27 modules per string for 35,741 strings. The actual number of modules will vary depending on the module technology, energy output, spacing, mounting equipment, phase of the Facility, and other design criteria, which are subject to change during final design. Impact assumptions are based on this use of 965,007 modules for the 500-MW solar array and that all areas within the site boundary will be permanently impacted by construction of the Facility. See Exhibit C for temporary and permanent impact calculations.

2.1.2 Tracker Systems

Strings of solar modules will be mounted on single-axis tracker systems that optimize electricity production by rotating the solar modules to follow the path of the sun throughout the day. The length of each tracker row may vary by topography and the number of modules that the tracker can hold. The actual number of tracker systems and modules will depend on the system selected. The depicted layout in Figure C-2 assumes approximately 54 modules per rack. The drive unit for the tracking system can control a single row or multiple rows of modules through a series of mechanical linkages and gearboxes. As the solar modules tilt throughout the day, the height of their top edges will shift accordingly (i.e., up to 16 feet high). Each set of approximately 54 racked modules will be mounted approximately 5 feet off the ground on a single-axis tracker that rotates 60 degrees to the east and west. The tracker system, and associated posts, will be specifically designed to withstand wind, snow, and seismic loads anticipated at the site.

2.1.3 Posts

Each tracker will be supported by multiple steel posts, which could be round hollow posts or piletype posts (i.e., H-pile, C-pile, S-pile). Post depth may vary depending on soil conditions, but the posts are typically installed 5 to 20 feet below the surface and protrude approximately 5 feet above grade. Posts at the end of tracker rows are usually installed to greater depth to withstand wind uplift. In some soil conditions, concrete backfill is required for each post. For the purposes of this ASC, the Applicant assumes that approximately 213,585 posts will be installed and that all posts will use concrete foundations. Concrete foundations are estimated to be approximately five feet deep and up to two feet wide. The actual number of posts and foundation method may vary depending on the final tracker system, ground coverage ratio, topography, height of the solar modules, and site-specific geological conditions. Post locations will be determined by the final layout of the tracker system and geotechnical investigations of the site boundary.

3

2.1.4 Cabling

The electrical current produced by solar modules is in the form of DC voltage. Cables collect and aggregate the DC before it is converted to alternating current (AC) and sent to the Facility substations. Low-voltage cabling will connect the solar modules of each tracker string in series and combine two strings to a single combiner box. Cabling from multiple combiner boxes will connect to a single inverter, which will convert the DC to AC and connect to the buried collection system. For example, the cabling system for the site plan shown on Exhibit C, Figure C-2 connects 27 modules in series per string, 54 modules (two strings) per tracker rack, with a single pad-mounted combiner box per rack, for a total of 17,870 combiner boxes. A larger DC cable will run between each combiner box and then to the module block inverter. This cable will hang underneath the modules. Cabling can be mounted to the tracker system, placed in cable trays, or buried. The majority of buried cable associated with the solar array will be located within the site boundary and included in the estimated total permanent impact associated with the solar array (i.e., no temporary impacts are calculated for buried cable inside the site boundary).

2.1.5 Inverters

The solar modules will be arranged into blocks, with each block connecting via collector lines to a modular inverter enclosure. In order to be sent to the electrical grid, the DC collected from the solar modules via combiner boxes must be converted into AC before connecting to the collector substations. Inverters serve the function of converting DC power supply to an AC power supply in accordance with electrical regulatory requirements. The conversion is accomplished by rapidly switching the DC power supply; by varying the length of time that the switch is on, as well as the polarity, the inverter creates the positive and negative swells of an AC wave. This waveform is then smoothed with an output filter. Inverters employ several advanced control systems, switching algorithms, and ancillary services for both the input and output stages. For the input stage, the inverters can manipulate the DC voltage to ensure maximum power harvest of input, and on the output various sensors ensure that AC power production is in accordance with regulatory requirements. Low-voltage cabling will link each solar module to inverters to convert panel output from 400-watt DC to 1,500-volt AC. For example, Figure C-2 in Exhibit C depicts a solar site plan with 142 inverter/transformer stations to convert the DC from the modules to AC (51 inverter/transformers in the northern portion of the site boundary and 91 in the southern portion of the site boundary). The final number of inverters will vary depending on the actual generation output of the solar array. While Figure C-2 depicts inverters co-located with transformers on the same concrete slab, string inverters may also be used. Collocated inverters are installed at each solar panel and have a smaller footprint than string inverters. String inverters are larger and are installed in order to link several solar panels together rather than being located at each solar panel. Although less string inverters are technically required, they require a much larger footprint, thus the assumption of installing collocated inverters was used for the purposes of this ASC. Additionally, collocated inverters have a higher performance rate than string inverters. This is due to each solar panel only performing as well as the worst performing solar panel when string

inverters are used. Regardless, the inverter specification will comply with the applicable requirements and standards of the National Electric Code and Institute of Electrical and Electronics Engineers standards.

2.1.6 Transformers

The AC from the inverters will be routed to transformers that will increase the output voltage from the inverter (1,500 volts) to the desired substation feed voltage (34.5 kilovolts [kV]). For the purposes of analysis, the site plan on Figure C-2 shows 142 inverters/transformer stations. The transformers will contain up to 244 gallons of oil and will be mounted on concrete pads with secondary spill containment traps designed to minimize the possibility of accidental leakage. From the inverters, the AC electricity is aggregated via an underground 34.5-kV cables to the collector transmission lines, which will be underground (see discussion below). Transformers will be non-polychlorinated biphenyl (PCB) oil-filled types.

2.1.7 Collection System

The transformers will connect the generation output of the solar array to the 34.5-kV collector lines, which will be underground. Underground AC electrical cables will be buried to a minimum of 3 feet. These cables will be located underground to the extent practicable. In this maximum footprint layout for analysis, approximately 67.9 miles of underground 34.5-kV collector lines will be installed (see Exhibit C, Figure C-2). No overhead collector lines are proposed.

2.2 Site Plan and General Arrangement

(iii) A site plan and general arrangement of buildings, equipment and structures.

The Facility is located entirely on private land. The number, size, and actual layout of the Facility infrastructure has not yet been determined. Facility components proposed include a battery storage system, collector substations, electrical collection systems connecting the solar arrays, 230-kV transmission line connecting to the existing Blue Ridge Substation, an operations and maintenance (O&M) building, meteorological (met) stations, some new private access and service roads, gates and security fencing, temporary construction areas, and a supervisory control and data acquisition (SCADA) system. Figure C-2 in Exhibit C shows the site boundary and an overview of the Facility. The Facility will overlap with portions of the Wheatridge Facilities¹ (see Exhibit C, Figure C-2).

The Facility layout with the general arrangement of buildings, equipment, and structures is shown on Figure C-2 of Exhibit C. Preliminary site plans for the Facility are also provided as part of Figure C-2. Note that the Facility will either utilize the existing Wheatridge Facilities O&M building or construct a new O&M building. As noted above, these site plans are provided for the purposes of the ASC analysis; although the final Facility design may differ from the preliminary site plan provided, the actual solar array equipment and layout selected will not exceed the impacts analyzed. The

¹ Wheatridge Renewable Energy Facilities I, II, III, and East.

Applicant seeks micrositing flexibility within the site boundary for the layout of the solar fields and related and supporting facilities, as well as flexibility to develop the Facility in phases and to subsequently divide the overall Facility into separate energy facilities (with separate site certificates) to provide for the maximum efficiency of space and available technology while also providing for the maximum flexibility of potential customers. Prior to each phase of construction, the site plan will be submitted to the Morrow County Planning Department for the zoning permits, Public Works Department for the access permits, and Building (City of Boardman) Department for the building permits.

2.3 Fuel and Chemical Storage

(iv) Fuel and chemical storage facilities, including structures and systems for spill containment.

The Facility does not require fuel or chemicals for the generation of electricity. The primary chemical storage will be transformers that use oil for cooling. Transformers for the solar array and battery energy storage system will be ground-mounted units constructed on concrete pads with secondary spill containment traps designed to minimize the possibility of accidental leakage. The concrete catchment system is sized to contain approximately 1.25 times the amount of oil inside the transformer. Transformers typically use mineral oil or seed oil that is considered nontoxic. Transformer coolant does not contain PCBs or compounds listed as extremely hazardous by the U.S. Environmental Protection Agency. The small quantity and nontoxic nature of the oils combined with the fact that the transformers will be included in secondary containment on concrete pads will minimize risk effects of potential spills on soils. In the unlikely event of a spill, the Applicant will follow response measures outlined in its construction or operations Spill Prevention, Control, and Countermeasure Plan (SPCC Plan) as required under 40 Code of Federal Regulations (CFR) 112 (see Attachment B-4 for a SPCC Plan Template that will be updated and finalized prior to construction). As part of this plan, equipment containing oil or hazardous materials will be regularly monitored for leaks, and measures will be put in place if any are found to quickly control and remove spills.

Small quantities of lubricants, degreasers, herbicides, or other chemicals may be stored in the O&M building. Storage of these chemicals will follow label instructions. No underground storage tanks will be installed at the O&M building. No extremely hazardous materials (as defined by 40 CFR 355) are anticipated to be produced, used, stored, transported, or disposed of at this Facility during operations.

During construction, on-site fuel storage may be placed in designated areas within the temporary construction areas (aboveground 1,000-gallon diesel and 500-gallon gasoline tanks). Secondary containment and refueling procedures for on-site fuel storage will follow the contractor's SPCC Plan.

The battery energy storage system (see Section 3.1) may contain chemical electrolyte. Lithium-ion (Li-ion) battery systems are modular systems that contain multiple smaller battery cells. The cells are the primary containment for the gel or liquid electrolyte materials. The module containing the cells is relatively small, generally about the size of a desktop computer processer, and serves as

leak-proof secondary containment. Modules are placed in anchored racks within the steel containers. Although leaks from the modules are very unlikely because any leak will require failure of the individual cells as well as the sealed module, any material that might leak from the cell into the module and then to the floor of the container will be contained within the container. Note that used Li-ion batteries are not considered hazardous waste by the U.S. Environmental Protection Agency (EPA).

2.4 Fire Prevention and Control

(v) Equipment and systems for fire prevention and control.

Solar facilities do not pose a significant fire risk, but the greatest risk of fire will occur during construction of the Facility, when welding and metal cutting for foundation rebar frames will take place, and vehicles and construction equipment may be used in areas of tall, dry grass. In order to prevent fires from occurring, the construction contractor will implement a number of systems and procedures. These will include requirements to conduct welding or metal cutting only in areas that are graveled or cleared of vegetation, and to keep emergency firefighting equipment on-site when potentially hazardous operations are taking place. Employees will be required to keep vehicles on roads and off dry grassland during the dry months of the year, unless such activities are required for emergency purposes, in which case fire precautions will be observed. On-site employees will also receive training on fire prevention and response. In the rare event of an electrical fire in the solar module blocks or collector substations, Facility staff will monitor and contain the fire, but not try to extinguish it.

The Facility equipment will meet the standards of the National Electrical Code and the Institute of Electrical and Electronics Engineers, and will not pose a significant fire risk. Facility roads will be sufficiently sized for emergency vehicle access. Specifically, internal roads at the solar array sites will be approximately 12 feet to 20 feet wide, depending on location, with an internal turning radius of likely up to 28 feet. These roads will also have less than a 10 percent grade, or a similar profile, depending on exact siting. Vegetation will be cleared and maintained along perimeter roads to provide a vegetation clearance for fire safety. Road cross sections consist of 6 inches of compacted gravel supported on 6 inches of compacted native dirt.

The solar array will have shielded electrical cabling, as required by applicable code, to prevent electrical fires. In addition, the collector system and substations will have redundant surge arrestors to deactivate the Facility during unusual operational events that could start fires. The collector substations will have sufficient spacing between equipment to prevent the spread of fire. All electrical equipment will meet National Electrical Code and Institute of Electrical and Electronics Engineers standards and will not pose a significant fire risk.

Smoke/fire detectors will be placed around the site that will be tied to the SCADA system (see Section 3.8) and will contact local firefighting services. The O&M building will have basic firefighting equipment for use on-site during maintenance activities, such as shovels, beaters, portable water for hand sprayers, fire extinguishers, and other equipment. The construction contractor will be trained in fire prevention awareness and have on-site fire extinguishers to respond to small fires. In the event of a large fire, emergency responders will be dispatched.

At the beginning of Facility operations, a copy of the site plan indicating the arrangement of the Facility structures and access points will be provided to the Heppner Volunteer Fire Department and the Ione Rural Fire Protection District, which are the local fire districts (see Exhibit U). Exhibit U provides additional information regarding local public service providers.

Where the ground is relatively level and grading is not required, the area where the solar array, roads, and other site facilities are sited will be left intact but brush-free and mowed to a non-combustible height.

2.4.1 Battery Energy Storage System

The Facility may use Li-ion batteries to store up to 500 MW of the energy generated by the solar arrays. Section 3.1 provides a detailed description of the selected battery storage option. The following paragraphs summarize the information pertinent to fire prevention and control for the battery energy storage system.

The chemicals used in Li-ion batteries are generally nontoxic but do present a flammability hazard. However, Li-ion batteries are susceptible to overheating and require cooling systems, especially at the utility scale (LAZARD 2016). The gas released by an overheating Li-ion cell is mainly carbon dioxide. The electrolyte solution, usually consisting of ethylene or propylene, may also vaporize and vent if the cell overheats (Battery University 2019).

The Applicant will implement the following fire prevention and control methods to minimize fire and safety risks if Li-ion batteries are used for battery storage:

- The batteries will be stored in completely contained, leak-proof modules.
- Ample working space will be provided around the battery energy storage system for maintenance and safety purposes.
- Off-site, 24-hour monitoring of the battery energy storage system will be implemented and will include shutdown capabilities.
- The Emergency Response Plan will have response procedures specific to the battery energy storage system in the event of an emergency, such as a fire (see Attachment B-5 for an Energy Storage Emergency Operation Plan that will be updated and finalized prior to construction).
- Transportation of Li-ion batteries is subject to 49 CFR 173.185 Department of Transportation Pipeline and Hazardous Material Administration. This regulation contains requirements for prevention of a dangerous evolution of heat; prevention of short circuits; prevention of damage to the terminals; and prevention of batteries coming into contact with other batteries or conductive materials. Adherence to the requirements and regulations,

personnel training, safe interim storage, and segregation from other potential waste streams will minimize any public hazard related to transport, use, or disposal of batteries.

- Design of battery energy storage system will be in accordance with applicable Underwriters Laboratories (specifically, 1642, 1741, 1973, 9540A), National Electric Code, and National Fire Protection Association (specifically 855) standards, which require rigorous industry testing and certification related to fire safety and/or other regulatory requirements applicable to battery energy storage at the time of construction.
- Additionally, the Applicant will employ the following design practices, as applicable to the available technology and design at time of construction:
 - Use of Li-ion phosphate battery chemistry that does not release oxygen when it decomposes due to temperature;
 - Employment of an advanced and proven battery management systems;
 - Employment of Fike fire control panels with 24-hour battery backup at every battery container;
 - Installation of fire sensors, smoke and hydrogen detectors, alarms, emergency ventilation systems, cooling systems, and aerosol fire suppression/extinguishing systems in every battery container;
 - Installation of doors that are equipped with a contact that will shut down the battery container if opened;
 - Installation of fire extinguishing and thermal insulation sheets between each individual battery cell;
 - Implementation of locks and fencing to prevent entry of unauthorized personnel;
 - Installation of remote power disconnect switches; and
 - Clear and visible signs to identify remote power disconnect switches.

3.0 Related or Supporting Facilities

OAR 345-021-0010(1)(b)(B) A description of major components, structures and systems of each related or supporting facility.

Related or supporting facilities consist of the battery energy storage system, collector substations, 230-kV transmission line, O&M building, met stations, access roads and security infrastructure, temporary construction areas, and a communication and SCADA system. As noted earlier, the Applicant is requesting micrositing flexibility for the solar modules and associated equipment, as well as the layout of the solar arrays and related or supporting facilities. Therefore, the following descriptions are based on the best available information at this time and consider the potential for various phases of development.

3.1 Battery Energy Storage System

The Applicant proposes the option to construct up to two AC coupled battery storage sites within the site boundary (Exhibit C, Figure C-2). The battery energy storage system will be capable of storing and later deploying approximately 500 MW of energy generated by the Facility or other sources connected to Blue Ridge Substation. One of the AC coupled battery storage sites will consist of up to 182 battery storage units and will be located adjacent to the proposed northern substation, occupying approximately 10 acres. The second of the two AC coupled battery storage sites will consist of up to 422 battery storage units and will be collocated with the proposed southern substation, occupying approximately 25 acres. Both sites will be fenced separately from the solar array. See Attachment B-6 for a typical NextEra battery energy storage system arrangement. The system as a whole will use a series of self-contained containers located within a fenced area, or within a single warehouse-type enclosure of a similar scale and size. For purposes of the analysis presented in this ASC, containers are assumed because they will generally have a greater potential impact from a noise and visual perspective, and a similar disturbance area. If developed, the warehouse-type enclosure will be designed generally consistent with the character of similar buildings and painted in a low-reflectivity, neutral color to blend with the surrounding landscape. The enclosure will be constructed in compliance with State of Oregon structural and electrical code requirements, to the extent applicable, and in compliance with applicable site certificate conditions.

Additionally, the Applicant proposes to maintain flexibility to have DC coupled distributed battery storage sites as an additional option to the AC coupled battery storage sites. These DC units would have comparable characteristics to the AC units except that the DC units would be distributed and collocated with the solar array inverters/transformer stations, located within the solar array area fence line. Thus, for purposes of the analysis, AC units are assumed because they will have a larger disturbance area since they are not contained within the footprint of the solar array area and will generally have a greater potential impact from a noise and visual perspective.

Each container will be placed on a concrete foundation, measuring 9.5 feet wide, 20 feet long, and 8 feet tall. Each container holds the batteries, a supervisory and power management system, and a fire prevention system. See Section 2.4.1 for fire prevention and control methods as they relate to the battery energy storage system. Li-ion battery systems are modular systems in which each module contains multiple smaller battery cells, each measuring up to 3.2 by 7 centimeters. The cells are the primary containment for the gel or liquid electrolyte materials. The module containing the cells is relatively small, generally about the size of a desktop computer processer, and serves as leak-proof secondary containment. Modules are placed in anchored racks within the concrete containers; typically, each rack houses 8 to 15 battery modules along with a switchgear assembly depending on the configuration chosen. Cooling units will be placed either on top of the concrete containers or along the side.

Li-ion batteries are the most common type of utility-scale battery energy storage system technologies at this time, although other technologies are used and are being developed. Li-ion batteries are a type of solid-state rechargeable battery where lithium ions, suspended in an electrolyte, move from negative to positive electrodes and back when recharging. A variety of chemistries fall under the "Li-ion" term, each with varying performance, cost, and safety characteristics (Energy Storage Association 2020). Li-ion batteries have a typical lifespan of 5 to 10 years and will experience a consistent degradation of performance over that time. Li-ion batteries are generally used in utility-scale applications when rapid, short-term (minute) deployments of power are needed. For example, Li-ion batteries can smooth the fluctuating generation from solar arrays, which can vary based on time of day and cloud cover, to deliver consistent and predictable power to the grid.

3.1.1 Battery Energy Storage System Equipment

The battery storage design will include the following elements:

- Battery storage equipment, including batteries and racks or containers, inverters, isolation transformers, and switchboards;
- Balance of plant equipment (more advanced systems required for Li-ion); medium-voltage and low-voltage electrical systems; fire suppression; heating, ventilation, and air-conditioning systems; building auxiliary electrical systems; and network/SCADA systems;
- Cooling system (more advanced systems required for Li-ion), which may include a separate chiller plant located outside the battery racks with chillers, pumps, and heat exchangers; and
- High-voltage (HV) equipment, including a step-up transformer, HV circuit breaker, HV current transformers and voltage transformers, a packaged control building for the HV breaker and transformer equipment, HV towers, structures, and HV cabling.

The battery technology will be placed in concrete containers on concrete slabs. Each container holds the batteries, a supervisory and power management system, and a fire prevention system. Cooling units will be placed either on top of the concrete containers or along the side. By connecting multiple containers, the battery energy storage system can be scaled to the desired capacity. Containers may be stacked up to two levels with an estimated maximum height of approximately 20 feet.

3.1.2 Battery Energy Storage System Operations and Maintenance

The batteries and other materials for the battery energy storage system will be manufactured offsite and transported to the Facility by truck. As applicable, defective or decommissioned parts will be disposed of or recycled in compliance with 49 CFR 173.185, which regulates the transportation of Li-ion batteries.

The O&M activities will mainly consist of minimal procedures that do not require tampering with the battery cell components. Li-ion systems will require replacement of the batteries every 5 to 10 years.

The battery energy storage system will be stored in completely contained, leak-proof modules. The modules will be stored on a concrete pad to capture any leaks that may occur. O&M staff will conduct inspections of the battery energy storage systems according to the manufacturer's recommendations, which are assumed to be monthly inspections.

As described in Section 2.3, an SPCC Plan will be developed to manage, prevent, contain, and control potential releases, with provisions for quick and safe cleanup of hazardous materials. An Emergency Response Plan will also be developed with response procedures in the event of an emergency, such as a fire (Section 2.4).

3.2 Collector Substations

The up to two collector substations will combine and step up the voltage of energy generated by the Facility to the desired transmission voltage. Prior to construction, any new substation sites will be cleared and graded, with a bed of crushed rock applied for a durable surface. The southern collector substation will be located on an approximately 5-acre site and the northern (alternate) collector substation will be located on an approximately 11-acre site, enclosed by a locked 6- to 8-foot-tall wire mesh fence; both areas will be fenced separately from the solar array areas (Exhibit C, Figure C-2). Additional substation equipment may include circuit-breakers and fuses, power transformer(s), bus bar and insulators, disconnect switches, relaying, battery and charger, surge arresters, AC and DC supplies, control systems, metering equipment, grounding, and associated control wiring. Any additional equipment will be located within the fenced substation areas. Transformers will be non-PCB oil–filled types and will be up to 25 feet tall. Dead end structures at the substation will be a maximum of 65 feet tall (i.e., the tallest component of the substations).

3.3 230-kV Transmission Line

The Facility will require construction of an associated transmission line that will connect the southern solar array areas to the regional grid. The associated transmission line, in and of itself, is not a transmission line within the meaning of Council jurisdiction (see Section 5.0 below). The associated transmission line will be approximately 0.6 miles of 230-kV overhead line, running east along Strawberry East Road to connect the southern collector substation to the existing Blue Ridge Substation (Exhibit C, Figure C-2). The 230-kV overhead line will be supported either by H-frame structures with two galvanized steel or wood poles, or by galvanized steel or wood monopole structures; a maximum of four poles will be used. The structures will rise to a height of approximately 70 to 180 feet above grade depending on design and terrain. The transmission line will be within the site boundary but outside the solar array fence line. The northern substation (and in turn the northern solar array areas) will interconnect with the directly adjacent, existing Umatilla Electric Cooperative/Columbia Basin Electric Cooperative 230-kV transmission line adjacent to the Facility, running north to south through the northern solar array areas; there will be no interconnection line required

3.4 Operations and Maintenance Building

The Facility may share the O&M building with the Wheatridge Facilities², or construct a new O&M building. A new O&M building will be located on up to 0.2 acre, be one-story, prefabricated, and approximately 6,000 to 9,000 square feet in size. The O&M building will include an office, break room, kitchen, lavatory with shower, utility room, covered vehicle parking, storage for maintenance supplies and equipment, and SCADA system. A permanent, fenced, graveled parking and storage area for employees, visitors, and equipment will be located adjacent to the O&M building. The building will be served by an exempt, on-site groundwater well or wells, which allows the use of up to 5,000 gallons per day of groundwater for industrial and commercial applications, and septic system (see Exhibit O) and power supplied by a local service provider using overhead and/or underground lines. The O&M building will be within the site boundary but outside the solar array fence line (Exhibit C, Figure C-2).

3.5 Meteorological Stations

The Facility will have approximately up to four permanent met stations. Each permanent met station will be made up of a met sensor support tower, support enclosure, datalogger enclosure (mounts above support enclosure), AC/ethernet pull box, soiling station, and met station pull box. Each permanent met station will be installed on a met station pad, which will be approximately 8 by 8 feet and will have a minimum thickness of 6 inches. The height of each permanent met station will each require a 30- by 30-foot temporary disturbance area.

All permanent met stations will be within the solar array fence line (Exhibit C, Figure C-2).

3.6 Site Access, Service Roads, Perimeter Fencing, and Gates

The Facility will utilize existing access roads to the extent practicable. Primary transportation corridors to the Facility include Interstate 84 (I-84) and Oregon Route 207. Other major county and state roads that will be heavily utilized include Bombing Range Road, Strawberry East Road, and Oregon Route 320. Approximately 47 miles of new roads will be constructed to access Facility infrastructure in areas not previously reviewed through the Council. Exhibit C, Figure C-2 depicts the Facility layout. Existing roads are not anticipated to require improvements or alterations.

All newly constructed roads will be graded and graveled to meet load requirements for all equipment. Service roads, approximately 12 feet wide, will be constructed within the solar array fence line, to facilitate access for construction and maintenance purposes. Approximately 20-footwide service roads will be constructed outside the solar array fence line to reach the separately fenced substations. Vegetation will be cleared and maintained along service roads to provide a vegetation clearance area for fire safety. Service roads will be all-weather, compacted soil or gravel, with an internal turning radius of 28 feet. Vegetation maintenance along service roads will include

² Wheatridge Wind II, LLC owns the existing 0&M building (Site Certificate for the Wheatridge Renewable Energy Facility II, November 19, 2020), which if the option of sharing is ultimately selected, would be contracted to utilize the same building with the proposed Facility.

mowing as needed for fire safety requirements. Use of the roads may continue after construction, or new roads may be removed and the land reclaimed to pre-construction conditions.

The locations of specific access points and gates will depend on the final configuration of the solar array and related infrastructure. Chain-link perimeter fencing, 6 to 8 feet in height, will enclose the solar arrays, O&M building, and the battery storage system; the substations will be enclosed by a 6-to 8-foot-high wire mesh fence. The total fenced area is approximately 3,692 acres. The perimeter fencing will have lockable vehicle and pedestrian access gates.

3.7 Temporary Construction Areas

During construction, up to four temporary construction areas (laydown areas) will be used to support construction, store supplies and equipment, and facilitate the delivery and assembly of materials and equipment. The construction areas will be up to 10 acres each. These construction areas may contain temporary storage of diesel and gasoline fuels, located in an aboveground 1,000-gallon diesel and 500-gallon gasoline tanks, within designated secondary containment areas. Additional details regarding fuel storage construction/type of secondary containment, risks, applicable permits, level of refueling activity, etc. shall be addressed in the Facility's SPCC Plan (see Attachment B-4 for a SPCC template that will be updated and finalized prior to construction). The temporary construction areas will be within the site boundary, both inside and outside the solar array fence line (Exhibit C, Figure C-2). The construction areas will consist of a crushed gravel surface that will be removed following construction.

3.8 Communication and SCADA System

A SCADA system will be installed to collect operating and performance data from the solar array. The SCADA system provides for remote operation of the Facility from the O&M building.

Fiber optic cables for the SCADA system will be installed with the collection system (Section 2.1.7). In areas where the collection system is buried, the fiber cables will be installed in the same trench. Where the collection system is above ground, the fiber cables will be mounted on overhead poles along with conductors.

4.0 Dimensions of Major Structures and Features

OAR 345-021-0010(1)(b)(C) The approximate dimensions of major facility structures and visible features.

The most notable features of the Facility are: (1) the various components of the solar array; (2) the battery energy storage system; (3) the substations; (4) the collector lines; (5) the 230-kV overhead transmission line; (6) the O&M building; (7) the met stations; and (8) the temporary construction areas. The estimated dimensions of the major Facility structures, as currently available, are summarized below. Dimensions included in the descriptions are for representative purposes only. The vendor, size, number, and arrangement of the solar modules (as arrays) and other Facility

features have not yet been determined. Ultimately, the solar modules will not be higher than 16 feet at full tilt and will at maximum occupy the full site boundary (see Exhibit C, Figure C-2). All fenced areas amount to approximately 3,692 acres (solar array areas, O&M building, substations, battery storage system). Attachment B-3 provides pictures of existing NextEra solar arrays to provide examples of how solar arrays generally appear in scope and size. Additionally, Attachment B-6 provides pictures of an existing NextEra energy storage system.

4.1 Solar Array Dimensions

The solar array will comprise linear rows of modules within the perimeter fence line depicted in Exhibit C, Figure C-2. The solar modules will be grouped in blocks approximately 3 feet wide by 6 feet long; this will be a targeted standard dimension, with variations at each block due to micrositing considerations. The maximum height of the solar array will be 16 feet when the modules are tilted on the tracker system. Chain-link perimeter fencing, 6 to 8 feet in height, will enclose the solar arrays. The exact number and size of modules, layout, and associated equipment specifications will be determined during micrositing; however, as noted earlier, the actual solar array equipment and layout selected will not exceed the impacts analyzed.

4.2 Battery Storage Dimensions

The Facility as a whole will include up to 604 battery units, to be contained within up to two AC coupled battery storage sites. The two AC battery storage sites will be located adjacent to the proposed northern and southern substations, occupying areas of approximately 10 and 25 acres, respectively. These areas will be fenced separately from the solar array. The Li-ion battery technology will be placed in concrete containers on concrete slabs. Each individual container will include a concrete container housing, with each container measuring up to 9.5 feet wide, 20 feet long, and 8 feet tall. Each container holds the batteries, a supervisory and power management system, and a fire prevention system. Cooling units will be placed either on top of the concrete containers or along the side.

By connecting multiple containers, the battery energy storage system can be scaled to the desired capacity. Containers may be stacked up to two levels with an estimated maximum height of approximately 20 feet.

The entire footprint of the battery storage sites is assumed to be permanently disturbed by placement of containers, cooling systems, transformers, and cabling (see Exhibit C). During final design, the Applicant may decide to use an unstacked battery container layout, which will be located within the same permanently disturbed areas. As described earlier, the Applicant may also decide to enclose the battery energy storage system in a warehouse-type structure of similar scale and size. However, as containers will generally have a greater potential impact from a noise and visual perspective, and a similar disturbance area, containers are assumed for the purposes of this ASC. Similarly, the Applicant may also decide to use DC coupled distributed battery storage sites as an additional option to AC coupled battery storage sites. Nevertheless, AC units are assumed for the purposes of this analysis due to having a larger disturbance area (i.e., not contained within the solar

array area footprint) and generally having a greater potential impact from a noise and visual perspective.

4.3 Substation Dimensions

The two Facility collector substations will be situated on one 5-acre and one 11-acre site, locked and within the Facility site boundary but fenced separately from the solar array areas. The substations will be approximately 25 feet tall, with the tallest component being the dead end structures (maximum of 65 feet tall).

4.4 34.5-kV Underground Collector Line Dimensions

The medium-voltage conductors will run underground for improved reliability. The approximately 67.9 miles of collector lines will be directly buried at a depth up to 3 feet.

4.5 230-kV Transmission Line Dimensions

The 230-kV line will be supported either by H-frame structures with two galvanized steel or wood poles or by a galvanized steel or wood monopole structure; a maximum of four poles will be used. The structures will rise to a height of approximately 70 to 180 feet above grade, depending on the terrain. The transmission line corridor is approximately 1,000 feet in width. The 230-kV lines will generally have 850-foot-long spans between structures; however, spans may be shorter or longer depending on the terrain. Approximately 0.6 mile of 230-kV transmission line will be used.

4.6 **O&M Building Dimensions**

If a new O&M building is constructed, the building will be a one-story structure located on up to 0.2 acre with an area of approximately 6,000 to 9,000 square feet. A permanent, fenced, graveled parking and storage area for employees, visitors, and equipment will be located adjacent to the O&M building. The O&M building will be approximately 20 feet high feet.

4.7 Meteorological Station Dimensions

The four permanent met stations will each occupy an 8- by 8-foot area and will have a maximum height of approximately 8.5 feet. The met stations will each require a 30- by 30-foot temporary disturbance area.

4.8 Temporary Construction Areas Dimensions

The four construction areas will occupy up to 10 acres each and may contain temporary aboveground 1,000-gallon diesel and 500-gallon gasoline tanks.

5.0 Transmission Line Corridor

OAR 345-021-0010(1)(b)(D) If the proposed energy facility is a pipeline or a transmission line or has, as a related or supporting facility, a transmission line or pipeline that, by itself, is an energy facility under the definition in ORS 469.300, a corridor selection assessment explaining how the applicant selected the corridor(s) for analysis in the application. [...]

As noted above, the transmission line is not an energy facility as defined in ORS 469.300 because it does not cross more than one city or county. The associated transmission line will be approximately 0.6 miles total of 230-kV overhead line to connect the southern Facility collector substation to the existing Blue Ridge Substation, entirely within the unincorporated areas of Morrow County. Therefore, a corridor selection assessment is not required.

6.0 Description of Transmission Line

OAR 345-021-0010(1)(b)(E) If the proposed energy facility is a pipeline or a transmission line or has, as a related or supporting facility, a transmission line or pipeline of any size:

[...]

As noted above, the transmission line is not an energy facility as defined in ORS 469.300 because it does not cross more than one city or county. The associated transmission line will be approximately 0.6 miles total of 230-kV overhead line to connect the southern Facility collector substation to the existing Blue Ridge Substation, entirely within the unincorporated areas of Morrow County. Therefore, a corridor selection assessment is not required.

7.0 Construction Schedule

OAR 345-021-0010(1)(b)(F) A construction schedule including the date by which the applicant proposes to begin construction and the date by which the applicant proposes to complete construction. Construction is defined in OAR 345-001-0010. The applicant shall describe in this exhibit all work on the site that the applicant intends to begin before the Council issues a site certificate. The applicant shall include an estimate of the cost of that work. For the purpose of this exhibit, "work on the site" means any work within a site or corridor, other than surveying, exploration or other activities to define or characterize the site or corridor, that the applicant anticipates or has performed as of the time of submitting the application.

The Applicant anticipates that Facility construction may begin as early as Winter 2024 (see Table B-1). The Facility may be constructed in phases. The size and construction schedule for each phase (and various solar array areas) will depend on market demand. Table B-1 provides an example phasing schedule. Construction of full-build out of the Facility, over all phases, will be completed by the end of 2030 unless the Applicant seeks an amendment to extend the construction deadline. The Applicant proposes findings and conditions throughout this ASC to allow phasing during Facility design and construction. Phasing Facility design and construction allows the Applicant the ability to tailor delivery of power for a particular customer, depending on market demands. The Applicant may own and operate the entire Facility or the Applicant may seek to transfer one or more portions of the Facility to a new owner/operator (see Exhibit A). In accordance with ORS 469.300(6), preconstruction conditions may be satisfied for the applicable facility, facility component, or phase, as applicable, based on final design and configuration.

Year	Activity	
Winter 2024	Issuance of Wagon Trail Solar Project Site Certificate	
Phase 1, 2024/2025	Phase 1 Begin and Complete Construction – \sim 200-MW Development	
Phase 2, 2026	Phase 2 Begin and Complete Construction – \sim 150-MW Development	
Phase 3, 2027	Phase 3 Begin and Complete Construction – \sim 150-MW Development	
Winter 2030	Construction Completion Deadline for All Phases	

8.0 Submittal Requirements and Approval Standards

8.1 Submittal Requirements

Table B-2. Submittal Requirements Matrix

Requirement	Location
OAR 345-021-0010(1)(b) Exhibit B. Information about the proposed facility, construction schedule and temporary disturbances of the site, including:	-
(A) A description of the proposed energy facility, including as applicable:	Section 2.0
(i) The nominal electric generating capacity and the average electrical generating capacity, as defined in ORS 469.300.	Section 2.0
(ii) Major components, structures and systems, including a description of the size, type and configuration of equipment used to generate electricity and useful thermal energy.	Section 2.1
(iii) A site plan and general arrangement of buildings, equipment and structures;	Section 2.2
(iv) Fuel and chemical storage faculties, including structures and systems for spill containment	Section 2.3
(v) Equipment and systems for fire prevention and control.	Section 2.4
(vi) For thermal power plants: (i) A discussion of the source, quantity and availability of all fuels proposed to be used in the facility to generate electricity or useful thermal energy. (ii) Process flow, including power cycle and steam cycle diagrams to describe the energy flows within the system; (iii) equipment and systems for disposal of waste heat; (iv) The fuel chargeable to power heat rate.	N/A

Requirement	Location
(vii) For surface facilities related to underground gas storage, estimated daily injection and withdrawal rates, horsepower compression required to operate at design injection or withdrawal rates, operating pressure range and fuel type of compressors.	N/A
(viii) For facilities to store liquefied natural gas, the volume, maximum pressure, liquefaction and gasification capacity in thousand cubic feet per hour.	N/A
(B) A description of major components, structures and systems of each related or supporting facility.	Section 3.0
(C) The approximate dimensions of major facility structures and visible features.	Section 4.0
(D) If the proposed energy facility is a pipeline or a transmission line or has, as a related or supporting facility, a transmission line or pipeline that, by itself, is an energy facility under the definition in ORS 469.300, a corridor selection assessment explaining how the applicant selected the corridor(s) for analysis in the application. In the assessment, the applicant shall evaluate the corridor adjustments the Department has described in the project order, if any. The applicant may select any corridor for analysis in the application and may select more than one corridor. However, if the applicant selects a new corridor, then the applicant must explain why the applicant did not present the new corridor for comment at an information meeting under OAR 345-015-0130. In the assessment, the applicant shall discuss the reasons for selecting the corridor(s), based upon evaluation of the following factors:	Section 5.0
(i) Least disturbance to streams, rivers and wetland during construction.	N/A
(ii) Least percentage of the total length of the pipeline or transmission line that would be located within areas of Habitat Category 1, as described by the Oregon Department of Fish and Wildlife.	N/A
(iii) Greatest percentage of the total length of the pipeline or transmission line that would be located within or adjacent to public roads, and existing pipeline or transmission line rights-of-way.	N/A
(iv) Least percentage of the total length of the pipeline or transmission line that would be located within lands that require zone changes, variances or exceptions.	N/A
(v) Least percentage of the total length of the pipeline or transmission line that would be located in a protected area as described in OAR 345-022-0040.	N/A
(vi) Least disturbance to areas where historical, cultural or archaeological resources are likely to exist.	N/A
(vii) Greatest percentage of the total length of the pipeline or transmission line that would be located to avoid seismic, geological and soils hazards.	N/A
(viii) Least percentage of the total length of the pipeline or transmission line that would be located within lands zoned for exclusive farm use.	N/A
(E) If the proposed energy facility is a pipeline or transmission line, or has, as a related or supporting facility, a transmission line or pipeline of any size:	Section 6.0
(i) The length of the pipeline or transmission line.	N/A
(ii) The proposed right-of-way width of the pipeline or transmission line, including to what extent new right-of-way will be required or existing will be widened.	N/A

Requirement	Location
(iii) If the proposed transmission line or pipeline corridor follows or includes public right-of-way, a description of where the transmission line or pipeline would be located within the public right-of-way, to the extent known. If the applicant proposes to locate all or part of a transmission line or pipeline adjacent to but not within the public right-of-way, describe the reasons for locating the transmission line or pipeline outside the public right-of-way. The applicant must include a set of clear and objective criteria and a description of the type of evidence that would support locating the transmission line or pipeline outside the public right-of-way, based on those criteria.	N/A
(iv) For pipelines, the operating pressure and delivery capacity in thousand cubic feet per day and the diameter and location, above or below ground, of each pipeline.	N/A
(v) For transmission lines, the rated voltage, load carrying capacity, and type of current and a description of transmission line structures and their dimensions.	N/A
(F) A construction schedule including the date by which the applicant proposes to begin construction and the date by which the applicant proposes to complete construction. Construction is defined in OAR 345-001-0010. The applicant shall describe in this exhibit all work on the site that the applicant intends to begin before the Council issues a site certificate. The applicant shall include an estimate of the cost of that work. For the purpose of this exhibit, "work on the site" means any work within a site or corridor, other than surveying, exploration or other activities to define or characterize the site or corridor that the applicant anticipates or has performed as of the time of submitting the application.	Section 7.0

8.2 Approval Standards

OAR 345 Division 22 does not provide an approval standard specific to Exhibit B.

9.0 References

- Battery University. 2019. BU-304a: Safety Concerns with Li-ion. Last Updated April 2019. <u>http://batteryuniversity.com/learn/article/safety_concerns_with_li_ion</u>. Accessed October 2020.
- Energy Storage Association. 2020. *Lithium Ion (LI-ION) Batteries*. <u>http://energystorage.org/energy-storage/technologies/lithium-ion-li-ion-batteries</u>. Accessed October 2020.
- LAZARD. 2016. Lazard's Levelized Cost of Storage—Version 2.0. December 2016. https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf

Attachment B-1. Facility Component Table

This page intentionally left blank

Table 1: Facility Description and Components

Facility Component(s)	Quantity ¹	Unit	Additional Details
Site Boundary		 Approximately 7,450 acres of private land; All land within site boundary to be considered a micrositing corridor All land within the site boundary (except for state and county road rights-of-way [ROW]) is on private land in Morrow County zoned Exclusive Farm Use (EFU). 	
Solar Array			 Nominal and average generating capacity of up to 500 megawatts (MW) Largest anticipated solar array footprint: 3,641 acres, within the 7,450 acre micrositing corridor
Solar Module	965,007	Each	 Dimensions: 6 feet long by 3 feet wide Coating: Antireflective glass Approximately 320 watts per module
Solar Tracker System	35,741	Strings	 Type: Single axis tracker Height of combined tracker system and solar module = 16 feet 27 modules per string
Posts	213,585	Posts	 Typically installed 5-20 feet below surface, and protrude 5 feet above grade Concrete backfill may be required, based on soil conditions Posts are made of steel
Cabling	17,870	Combiner Boxes	 Low voltage (DC) cabling will connect, in series, two strings of solar modules to an inverter DC energy = 400 watt
Inverters	142	Inverter/ transformer stations	 The inverter converts the DC energy to AC energy AC output voltage = 1500 volts Could be co-located with transformers on the same concrete slab, or string inverters may be used Noise level, per unit = 99 dBA (see Exhibit Y for further details)
Transformers	142	Inverter/ transformer stations	 The pad mounted transformer will step up the AC output voltage to a higher voltage of 34.5 kV

Collection System	67.9	miles	 Transformers will be non-polychlorinated biphenyl (PCB) oil–filled types 34.5 kV cables Underground cables, no overhead
Battery Energy Storage Syst	em (BESS)	 collector lines proposed Located adjacent to the proposed northern and southern substations Both would be fenced separately from the solar array areas Would be contained in either a warehouse-type enclosure, or self- contained containers Containers placed on a concrete foundation, 20 feet by 8 feet each Dimensions of Containers: 9.5 feet tall, 20 feet wide, and 8 feet tall; may be stacked up to two levels (estimated height of 20 feet) Lithium-ion battery storage technology Lifespan of 5 to 10 years Chain-link perimeter fencing, 6 to 8 feet in height Noise level, per unit = 100 dBA (see Exhibit Y for further details) Uses contained, leak-proof modules, off- site 24-hour monitoring, Fike fire control panels, fire sensors, smoke and hydrogen detectors, alarms, emergency ventilation systems, cooling systems, and aerosol fire suppression/extinguishing systems in every battery container (see Exhibit B Section 2.4.1 for further details) 	
Northern Battery Energy Storage System	10	Acres	182 battery storage units
Southern Battery Energy Storage System	25	Acres	422 battery storage units
Collector substations		 Height = 10 feet Both would be fenced separately from the solar array areas with a 6- to 8-foot- tall wire mesh fence Transformers will be non-PCB oil-filled types 	

			 Noise level, per unit = 98 dBA (see Exhibit Y for further details) Additional substation equipment may include circuit-breakers and fuses, power transformer(s), bus bar and insulators, disconnect switches, relaying, battery and charger, surge arresters, AC and DC supplies, control systems, metering equipment, grounding, and associated control wiring 		
Northern Project Substation	11.2	Acre	 Starting at the southern collector substation, the 230-kV transmission line corridor extends east along Strawberry East Road to the Blue Ridge Substation on the northern side of the road. The northern substation (and in turn the northern solar array areas) will interconnect with the existing Umatilla Electric Cooperative/Columbia Basin Electric Cooperative 230-kV transmission line directly adjacent to the Facility, running north to south through the northern solar array areas. 		
Southern Project Substation	5	Acre	 The 230-kV transmission line will extend approximately 0.6 miles from the southern collector substation to the existing Blue Ridge Substation, interconnecting the southern solar array areas 		
230-kV Transmission Line	0.6	Mile	 Either H-frame structure or monopole, both utilizing galvanized steel or wood Four poles estimated, up to 850 foot spans Transmission line will be sited such that received sound levels at NSRs will adhere to the applicable ODEQ Noise Rules (see Exhibit Y for further details) Height = 70 to 180 feet above grade Within the site boundary, but outside of the solar array fence line Transmission Line Corridor is approximately 1,000 feet in width 		
Operation and Maintenance Building					

(If new)	6,000 to 9,000	Square feet	 Single-story structure adjacent the northern substation Built outside of the solar array fence line, but within the site boundary Located on up to 0.2 acres Would include a communication and SCADA system (see below for additional details on Communication System) Up to four meteorological (met) stations Up to one temporary met tower up to four temporary construction areas occupying approximately 10 acres each Height = approximately 20 feet Chain-link perimeter fencing, 6 to 8 feet in height (quantity included in total fencing amount, i.e., 247,632 feet) Served by a single onsite well, 5,000 gallon per day capacity Served by a single onsite septic system, 2,500 gallon per day discharge capacity
(If shared)		 May share, or expand the Wheatridge Facilities O&M building within the existing developed O&M yard 	
Meteorological Stations an	d Tower	Within the solar array fence line	
Permanent met station	4	each	 Consists of a met sensor support tower, support enclosure, datalogger enclosure (mounts above support enclosure), AC/ethernet pull box, soiling station, and met station pull box Installed on an approximate 8 by 8 foot met station pad Height = approximately 8.5 feet Would require a 30 by 30 foot temporary disturbance area
Temporary met tower	1	each	 Height = approximately 7 feet Requires a 30 by 30 foot temporary disturbance area
Roads and Access			
Access roads (new)	47	miles	 Graded and graveled Service roads within solar array = 12 feet wide

			 Service roads outside of solar array = 20 feet wide 		
Temporary Construction Areas	4	each	 Up to 10 acres each May contain temporary storage of diesel and gasoline fuels, located in an aboveground 1,000-gallon diesel and 500-gallon gasoline tanks, within designated secondary containment areas. 		
Communication and SCADA System			 Collects operating and performance data from the solar array Provides remote operation of the Facility from the O&M building The SCADA system will be installed with the solar array collection system 		
Fencing			 Total fenced area is approximately 3,692 acres Will include lockable vehicle and pedestrian access gates Chain-link perimeter fencing, 6 to 8 feet in height 247,632 total feet of fencing (includes enclosures of the solar arrays, O&M building, battery energy storage system, substations, and perimeter fencing) 		
Notes:	tative of maxin	num amount			
1. Quantity is representative of maximum amount.					

This page intentionally left blank

Attachment B-2. Oregon Department of Energy Correspondence – Site Boundary Expansion

This page intentionally left blank

F	Culiel, Kristen
From:	Gulick, Kristen
To:	Gulick, Kristen
Subject:	FW: Wagon Trail Solar Project: Additional Site Boundary Area
Date:	Tuesday, October 26, 2021 10:21:05 AM
Attachments:	image002.png
	image003.png
	image005.png
	image006.png
	image007.png
	image008.png

From: ESTERSON Sarah * ODOE <<u>Sarah.ESTERSON@energy.oregon.gov</u>> Sent: Wednesday, August 18, 2021 6:40 AM

To: Konkol, Carrie <<u>Carrie.Konkol@tetratech.com</u>>; MCVEIGH-WALKER Chase * ODOE <<u>Chase.MCVEIGH-WALKER@energy.oregon.gov</u>> Cc: Powers, Christopher <<u>Christopher.Powers@nexteraenergy.com</u>>; Lawlor, David <<u>David.Lawlor@nexteraenergy.com</u>>; Solsby, Anneke <<u>Anneke.Solsby@nexteraenergy.com</u>>; Curtiss, Sarah Stauffer <<u>SSCURTISS@stoel.com</u>> Subject: RE: Wagon Trail Solar Project: Additional Site Boundary Area

🛕 CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. 🛕

Good morning,

We apologize for the delayed response – Chase and I have reviewed the information below and concur with your description of the process. Keep us posted on timing of pASC submittal.

Thanks, Sarah

Sarah T. Esterson Senior Policy Advisor 550 Capitol St. NE | Salem, OR 97301 P: 503-373-7945 C: 503-385-6128 P (In Oregon): 800-221-8035


Stay connected!

From: Konkol, Carrie <<u>Carrie.Konkol@tetratech.com</u>>
Sent: Friday, July 30, 2021 8:48 AM
To: ESTERSON Sarah * ODOE <<u>Sarah.ESTERSON@energy.oregon.gov</u>>; MCVEIGH-WALKER Chase * ODOE <<u>Chase.MCVEIGH-</u>
WALKER@energy.oregon.gov>
Cc: Powers, Christopher <<u>Christopher.Powers@nexteraenergy.com</u>>; Lawlor, David <<u>David.Lawlor@nexteraenergy.com</u>>; Anneke.Solsby
<<u>Anneke.Solsby@nexteraenergy.com</u>>; Curtiss, Sarah Stauffer <<u>SSCURTISS@stoel.com</u>>
Subject: Wagon Trail Solar Project: Additional Site Boundary Area

Hello Sarah,

Thank you for your time last week to discuss the proposed ~119-acre additional area to the Wagon Trail Solar Project site boundary. More details about this new area are below:

- See screen shot pasted below of ~119-acre triangular area (orange)
- The updated site boundary total is 7,449.49 acres
- This new 119-acre area is on 2 taxlots (01N26E000003502 and 01N26E000003500)
- The 2 taxlots have the same land owners (RJK Family, LLC)
- Both of these taxlots intersect the existing WREFII (blue) and WREFIII (green) site boundaries and the proposed Wagon Trail Solar (pink) site boundary

Per our conversation, the Applicant will incorporate this new 119-acre area into the site boundary proposed in the pASC and will highlight that this new area was not included in the original (Nov 2020) or amended (June 2021) Notice of Intent. If after receipt of the pASC, ODOE determines a need to update the Project Order with anything specific to this new additional area, ODOE would amend the Project Order accordingly.

Please let us know if we have a correct understanding of next steps.

Thank you, Carrie

Carrie Konkol | Senior Project Manager Pronouns: she, her, hers Direct (503) 721-7225 | Mobile (503) 830-8587 | carrie.konkol@tetratech.com

Tetra Tech | Complex World, Clear Solutions ™ | CES 1750 S Harbor Way | Suite 400 | Portland, OR 97201 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

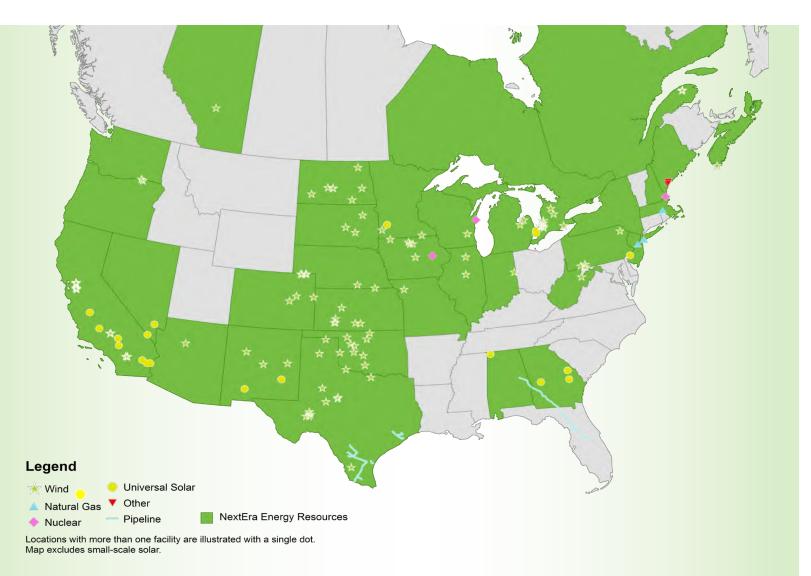
F Delease consider the environment before printing. Read more

Attachment B-3. NextEra Energy Resources, LLC Solar Energy Booklet

This page intentionally left blank

Our Solar Energy Business

Our Business Operations


Based in Juno Beach, Florida, NextEra Energy Resources, LLC, is the competitive energy subsidiary of NextEra Energy, Inc., a Fortune 200 company and a leading clean energy provider with consolidated revenues of approximately \$17.2 billion in 2017.

NextEra Energy Resources is primarily a wholesale power generator, operating power plants and selling the output to utilities, retail electricity providers, power cooperatives, municipal electric providers and large industrial companies. Nationally recognized as a leading clean energy provider, NextEra Energy Resources has a portfolio of facilities, totaling more than 19,000 net megawatts (MW) of generating capacity in the United States and Canada. In 2017, nearly all of the electricity we generated was derived from clean or renewable resources, including wind, solar, natural gas and nuclear energy.

NextEra Energy Resources' operations are diversified not only by fuel sources, but by geographic regions. This helps us manage our power generation business more efficiently and economically, especially in today's volatile energy markets.

NextEra Energy Resources Generation Facilities in Operation

(As of 12/31/17)

Provider of Energy Services

NextEra Energy Resources has established a strong reputation based on outstanding performance at every level. We continue to solidify our position as one of the nation's leading energy providers by focusing on:

Development, construction and operation

NextEra Energy Resources is a world leader in the development, construction and operation of wind energy centers. Standardized processes, best practices and superior execution have earned us the top position in the field.

We are also experienced in other areas of power generation, including solar, nuclear energy and fossil fuels. Given our experience in these areas, NextEra Energy Resources is uniquely suited to continue developing and acquiring power plants to meet the nation's growing energy needs.

Transmission facilities

Power plants are only part of the energy equation. As additional power generation facilities become operational, we need to move this power from the generation sites to where it is needed. To do that, the electric transmission system must be improved, and NextEra Energy Resources is doing its part. Although we own transmission lines across the country, we are pursuing additional large-scale opportunities to develop, build and operate new transmission facilities through an affiliate company, NextEra Energy Transmission.

Renewable energy expertise at WindLogics

WindLogics, one of our subsidiaries based in St. Paul, Minnesota, provides renewable energy consulting services, using industry-leading scientific analysis for planning, siting and forecasting renewable energy projects. Besides being the lead wind and solar advisor to NextEra Energy Resources, WindLogics also serves the renewable energy and electric utility industries throughout North America and around the world. The company employs meteorologists, computing experts and other industry specialists.

Energy marketing

NextEra Energy Marketing (NEM), LLC, a subsidiary of NextEra Energy Resources, is one of the top ten marketers of power in the nation. NEM buys and sells wholesale energy commodities, such as natural gas, oil and electricity; manages all the fuel needs of NextEra Energy Resources' power generation fleet; and markets the output to customers across the country.

Renewable energy market

NEM markets the largest renewable energy portfolio in the country. NEM provides custom renewable energy solutions for customers with specific needs, from meeting regulatory mandates associated with a renewable portfolio standard to working with businesses to meet their goals on renewable energy generation or carbon emissions management.

Distributed or private generation

Our distributed generation (DG) team tailors solar solutions that enable customers to generate clean, reliable energy from their rooftops, parking structures and open land. DG develops, builds, finances and operates the systems for commercial, institutional, utility and public power customers, helping them to control costs and make a meaningful impact on their renewable energy goals.

Retail energy

NextEra Energy Resources entered the retail market in 2005. NextEra Energy Services and Gexa Energy serve customers in numerous U.S. retail markets and manage the related billing, customer service, collections and remittance services to residential and commercial customers.

Energy storage

Our team of specialists has spent years researching energy storage technologies. Today, we have more than 100 megawatts of operational energy storage and a pipeline of development projects across the U.S. and Canada. With our best-in-class development skills, we are positioned to be a leader in the energy storage market.

The 250-megawatt Silver State South Solar Energy Center in Nevada.

Investment in Energy Infrastructure

The 119-megawatt Bluff Point Wind Energy Center in Indiana.

Long before clean energy became a popular choice in the United States, NextEra Energy Resources has been leading the way in using clean fuels to produce electricity that is environmentally friendly.

Our renewable or clean energy mix includes:

Wind

NextEra Energy Resources remains the world's largest operator of U.S. wind-generating facilities. We have approximately 120 wind facilities in operation in North America capable of producing more than 13,000 MW of electricity.

NextEra Energy Resources' wind facilities have enabled our customers, who have purchased renewable attributes, to reduce emissions that would have otherwise been released into the atmosphere from other sources of power generation.

In the coming years, NextEra Energy Resources plans to continue the aggressive expansion of its wind business.

Solar

NextEra Energy Resources is also a leading operator of solar energy. We generate solar energy at nine sites in California, as well as sites in Alabama, Georgia, Minnesota, Nevada, New Jersey, New Mexico and Canada. The company operates more than 2,000 MW of solar generation.

Natural gas

We have incorporated the cleanest burning fossil fuel into our portfolio with natural gas-fired facilities in three states. We often install combined-cycle technology that uses waste heat to drive an additional power generator for increased energy efficiency and lower emissions than conventional fossil-fueled units. This type of plant is about 30 percent more efficient than a traditional steam plant.

Nuclear energy

NextEra Energy Resources also incorporates clean nuclear energy into the fuel mix through Seabrook Station in New Hampshire, Duane Arnold Energy Center in Iowa and Point Beach Nuclear Plant in Wisconsin. Nuclear power plants produce virtually no air emissions during operation, representing a responsible energy choice for the future as global warming and climate change concerns intensify. All three NextEra Energy Resources' nuclear power plants have excellent safety records and are focused on reliable operation.

Bringing Solar Energy to Market

Solar energy benefits

Solar plants operate when energy consumption needs are at their highest, effectively matching energy supply and demand. Solar energy is cost effective. The cost of large, universal solar installations has dropped significantly in recent years due to advances in technology and design of solar panels. It has reached parity with natural gas in certain markets.

The other benefits of NextEra Energy Resources' photovoltaic (PV) solar portfolio are considerable, including:

- » Creates no greenhouse gases or other air pollutants;
- » Uses no water resources to generate electricity;
- » Provides a renewable fuel supply;
- » Creates no waste byproducts for disposal;
- » Results in no hazardous cleanup at the end of a project's productive life; and
- » Is a completely silent operation.

Our solar expertise

NextEra Energy Resources entered the solar generation business in 1989 through its interest in Solar Electric Generating System (SEGS), one of seven solar thermal projects sited in Kramer Junction and Harper Lake, California.

Since then, the company has significantly expanded its solar development to approximately 2,000 MW of operating assets.

Vital landowner relationships

PV solar facilities require a large area for development. Our general rule of thumb is that each MW of power will require five to eight acres of land to support the solar equipment, as well as easements for power line infrastructure. For example, a 20 MW facility will require about 100 to 160 acres.

We generally aim to site a project as close as possible to existing electrical transmission or distribution infrastructure. We try to avoid too much land variation, extreme terrain and trees when siting a project because such characteristics can cause shading, reducing the project's electrical production.

A solar PV project only requires water during construction for dust control, as well as infrequent panel cleaning during operations.

If an area is promising after our initial assessment, NextEra Energy Resources will enter into a purchase or lease option agreement with landowners, which provides additional time for further evaluation of the property.

Landowners receive option payments based upon the final agreed dollar-per-acre value of the property. Throughout the option period, landowners are able to continue to conduct business as usual on their land. Landowners are not the only beneficiaries. Their decision to help develop a solar project in their community brings additional jobs to the area, increased tax revenue and our purchases of local goods and services.

Solar and Storage

When paired with an energy storage system, solar offers an attractive combination. Together, they can improve the operation of the electrical grid, reduce the need for additional generation and provide additional options to meet peak energy demands.

Environmental stewardship

- » NextEra Energy Resources works closely with federal, state and local environmental organizations.
- » Environmental assessments determine suitability of prospective solar sites.
- » Land and wildlife are respected and protected during construction and operations.
- » Land is restored after construction.

A solar technician inspects the panels at the Blythe and McCoy Solar Energy Centers in California.

Extensive Construction Experience

Siting a solar project

Siting a solar project is challenging work and includes finding the right combination of solar conditions, power transmission lines and land. In addition to working with landowners to familiarize them with the process and what to expect, our developers are busy on a wide range of issues related to developing a solar site, including:

- Meeting with and providing information to local officials on project progress;
- » Conducting environmental assessments;
- » Completing historical and archaeological reviews;
- » Arranging to connect to the local power grid;
- » Securing customers for the site's generated electricity;
- Attending public meetings to gain approval for construction;
- » Permitting and land use zoning, as applicable; and
- » Procuring equipment.

Construction is carefully planned

NextEra Energy Resources' construction team is experienced in building solar PV plants. When all approvals are in place and landowners have signed their contracts, construction can begin. Our construction managers and engineers oversee and are responsible for all work and all contractors at a construction site. They, and often their families, live in the community during construction. Approximately 90 to 120 contractors can be involved in a typical solar construction project. Our goal is to hire as many workers from the area as possible, including heavy equipment operators, electricians, laborers, security and others.

Construction typically takes between six and 12 months. Our construction manager and staff stay in close contact not only with landowners, but also with local government, to keep interested parties apprised of progress and to ensure adherence to all local building code requirements.

Some of the major steps involved include:

- » Erecting a fence for safety;
- » Laying high-quality gravel roads to accommodate heavy equipment;
- » Constructing a substation, and possibly an operations and maintenance building;
- » Installing the solar arrays, which are typically about six to eight feet tall and are erected on steel posts driven into the ground; and
- » Testing and commissioning the completed arrays.

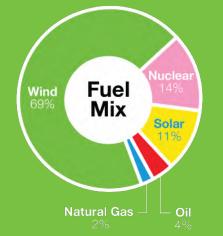
When construction is complete and the plant has begun commercial operation, the site is turned over to our operations staff who operate and maintain the solar plant.

As sunlight hits the solar panels, the photovoltaic energy is converted into direct current electricity (DC). The direct current flows from the panels through inverters and is converted into alternating current (AC). Finally, the electricity travels through transformers, and the voltage is boosted for delivery onto the transmission lines, so the local electric utility can distribute the electricity to homes and businesses.

How a photovoltaic solar plant works

Generating Home-Grown Solar Energy

The 75-megawatt River Bend Solar Energy Center in Alabama.


NextEra Energy Resources is a leader in solar energy. Lower solar panel costs have greatly improved the economics of solar power, and the benefits are significant. For local communities, it means clean, home-grown energy that also provides much-needed tax income to rural communities—to schools, libraries and other public services, benefiting the entire community.

Highlights of solar operations

- » We have more than 90 solar projects with ownership interest with a total net generating capacity of more than 2,000 megawatts of owned solar generation.
- » Thousands more megawatts are in the development pipeline for future construction and operation.
- » Solar PV generation does not use water for power generation.
- » Solar PV generation is emissions free.

A Diversified Portfolio

Total Net Megawatts: 19,060 (As of 12/31/17)

* Includes megawatts associated with noncontrolling interests related to NextEra Energy Partners, LP.

NextEra Energy Resources, LLC 700 Universe Boulevard Juno Beach, FL 33408

NextEraEnergyResources.com

P100001651

Attachment B-4. Spill Prevention, Control, and Countermeasure Plan Template

This page intentionally left blank

U.S. ENVIRONMENTAL PROTECTION AGENCY TIER I QUALIFIED FACILITY SPCC PLAN TEMPLATE

Instructions to Complete this Template

This template is intended to help the owner or operator of a Tier I qualified facility develop a self-certified Spill Prevention, Control, and Countermeasure (SPCC) Plan. To use this template, your facility must meet all of the applicability criteria of a Tier I qualified facility listed under §112.3(g)(1) of the SPCC rule. This template provides every SPCC rule requirement necessary for a Tier I qualified facility, which you must address and implement.

You may use this template to comply with the SPCC regulation or use it as a model and modify it as necessary to meet your facility-specific needs. If you modify the template, your Plan must include a section cross-referencing the location of each applicable requirement of the SPCC rule and you must ensure that your Plan is an equivalent Plan that meets all applicable rule requirements of 40 CFR 112.6(a)(3).

You may complete this template either electronically or by hand on a printed copy. This document is a reformatted version of the template found in Appendix G of 40 CFR part 112.^a No substantive changes have been made. Please note that a "Not Applicable" ("N/A") column has been added to both Table G-10 (General Rule Requirements for Onshore Facilities) and Table G-11 (General Rule Requirements for Onshore Oil Production Facilities). The "N/A" column should help you complete your self-certification when a required rule element does not apply to your facility. Use of the "N/A" column is optional and is not required by rule.

All Tier I qualified facility self-certifiers must complete Sections I, II, and III. Additionally, the owner or operator of an:

- Onshore facility (excluding production) must complete Section A.
- Onshore oil production facility (excluding drilling and workover facilities) must complete Section B.
- Onshore oil drilling and workover facility must complete Section C.

Complete and include with your Plan the appropriate attachments. You should consider printing copies of the attachments for use in implementing the SPCC Plan (e.g. Attachment 3.1 - Inspection Log & Schedule; Attachment 4 - Discharge Notification Form).

To complete the template, check the box next to the requirement to indicate that it has been adequately addressed. Either write "N/A" in the column or check the box under the "N/A" column to indicate those requirements that are not applicable to the facility. Where a section requires a description or listing, write in the spaces provided (or attach additional descriptions if more space is needed).

Below is a key for the colors used in the section headers:

Sections I, II, and III: Required for all Tier I qualified facilities
Section A: Onshore facilities (excluding production)
Section B: Onshore oil production facilities (excluding drilling and workover facilities)
Section C: Onshore oil drilling and workover facilities
Attachments:1 - Five Year Review and Technical Amendment Logs 2 - Oil Spill Contingency Plan and Checklist 3 - Inspections, Dike Drainage and Personnel Training Logs 4 - Discharge Notification Form

After you have completed all appropriate sections, certify and date your Plan, and then implement it by the compliance date. If your facility was in operation before August 16, 2002, and you do not already have a Plan, then implement this template immediately. Conduct inspections and tests in accordance with the written procedures that you have developed for your facility. You must keep with the SPCC Plan a record of these inspections and tests, signed by the appropriate supervisor or inspector, for a period of three years.

Do not forget to periodically review your Plan (at least once every five years) or to update it when you make changes to your facility. You must prepare amendments within six months of the facility change, and implement them as soon as possible, but not later than six months following preparation of any amendment.

In the event that your facility releases oil to navigable waters or adjoining shorelines, immediately call the National Response Center (NRC) at 1-800-424-8802. The NRC is the federal government's centralized reporting center, which is staffed 24 hours per day by U.S. Coast Guard personnel.

^a Please note that the use of this template is not mandatory for a Tier I qualified facility. You may also meet the SPCC Plan requirement by preparing a satisfactory Tier II qualified facility Plan, preparing a satisfactory Plan that is certified by a Professional Engineer, or by developing an equivalent Plan for a Tier I qualified facility. Further information on the requirements of these methods can be found in 40 CFR part 112.6(a)(1). If you use any of these alternative methods you must include a cross reference in your Plan that shows how the equivalent Plan meets all applicable 40 CFR part 112 requirements.

Tier I Qualified Facility SPCC Plan

This template constitutes the SPCC Plan for the facility, when completed and signed by the owner or operator of a facility that meets the applicability criteria in §112.3(g)(1). This template addresses the requirements of 40 CFR part 112. Maintain a complete copy of the Plan at the facility if the facility is normally attended at least four hours per day, or for a facility attended fewer than four hours per day, at the nearest field office. When making operational changes at a facility that are necessary to comply with the rule requirements, the owner/operator should follow state and local requirements (such as for permitting, design and construction) and obtain professional assistance, as appropriate.

Facility Description

Facility Name			
Facility Address			
City	s	State	ZIP
County	Tel. Nun	nber () -	
Owner or Operator Name			
Owner or Operator Address			
City		State	ZIP
County	Tel. Nun	nber () -	

I. Self-Certification Statement (§112.6(a)(1))

The owner or operator of a facility certifies that each of the following is true in order to utilize this template to comply with the SPCC requirements:

I

certify that the following is accurate:

- 1. I am familiar with the applicable requirements of 40 CFR part 112;
- 2. I have visited and examined the facility;
- 3. This Plan was prepared in accordance with accepted and sound industry practices and standards;
- 4. Procedures for required inspections and testing have been established in accordance with industry inspection and testing standards or recommended practices;
- 5. I will fully implement the Plan;
- 6. This facility meets the following qualification criteria (under §112.3(g)(1)):
 - a. The aggregate aboveground oil storage capacity of the facility is 10,000 U.S. gallons or less; and
 - b. The facility has had no single discharge as described in §112.1(b) exceeding 1,000 U.S. gallons and no two discharges as described in §112.1(b) each exceeding 42 U.S. gallons within any twelve month period in the three years prior to the SPCC Plan self-certification date, or since becoming subject to 40 CFR part 112 if the facility has been in operation for less than three years (not including oil discharges as described in §112.1(b) that are the result of natural disasters, acts of war, or terrorism); and
 - c. There is no individual oil storage container at the facility with an aboveground capacity greater than 5,000 U.S. gallons.
- This Plan does not deviate from any requirement of 40 CFR part 112 as allowed by §112.7(a)(2) (environmental equivalence) and §112.7(d) (impracticability of secondary containment) or include any measures pursuant to §112.9(c)(6) for produced water containers and any associated piping;
- 8. This Plan and individual(s) responsible for implementing this Plan have the full approval of management and I have committed the necessary resources to fully implement this Plan.

I also understand my other obligations relating to the storage of oil at this facility, including, among others:

- 1. To report any oil discharge to navigable waters or adjoining shorelines to the appropriate authorities. Notification information is included in this Plan.
- 2. To review and amend this Plan whenever there is a material change at the facility that affects the potential for an oil discharge, and at least once every five years. Reviews and amendments are recorded in an attached log [See Five Year Review Log and Technical Amendment Log in Attachments 1.1 and 1.2.]
- 3. Optional use of a contingency plan. A contingency plan:
 - a. May be used in lieu of secondary containment for qualified oil-filled operational equipment, in accordance with the requirements under §112.7(k), and;
 - b. Must be prepared for flowlines and/or intra-facility gathering lines which do not have secondary containment at an oil production facility, and;
 - c. Must include an established and documented inspection or monitoring program; must follow the provisions of 40 CFR part 109; and must include a written commitment of manpower, equipment and materials to expeditiously remove any quantity of oil discharged that may be harmful. If applicable, a copy of the contingency plan and any additional documentation will be attached to this Plan as Attachment 2.

I certify that I have satisfied the requirement to prepare and implement a Plan under §112.3 and all of the requirements under §112.6(a). I certify that the information contained in this Plan is true.

Signature	Title:					
Name	 Date:	/	/	/ 20		

II. Record of Plan Review and Amendments

Five Year Review (§112.5(b)):

Complete a review and evaluation of this SPCC Plan at least once every five years. As a result of the review, amend this Plan within six months to include more effective prevention and control measures for the facility, if applicable. Implement any SPCC Plan amendment as soon as possible, but no later than six months following Plan amendment. Document completion of the review and evaluation, and complete the Five Year Review Log in Attachment 1.1. If the facility no longer meets Tier I qualified facility eligibility, the owner or operator must revise the Plan to meet Tier II qualified facility requirements, or complete a full PE certified Plan.

Table G-1 Technical Amendments (§§112.5(a), (c) and 112.6(a)(2))	
This SPCC Plan will be amended when there is a change in the facility design, construction, operation, or maintenance that materially affects the potential for a discharge to navigable waters or adjoining shorelines. Examples include adding or removing containers, reconstruction, replacement, or installation of piping systems, changes to secondary containment systems, changes in product stored at this facility, or revisions to standard operating procedures.	
Any technical amendments to this Plan will be re-certified in accordance with Section I of this Plan template. [§112.6(a)(2)] [See Technical Amendment Log in Attachment 1.2]	

III. Plan Requirements

1. Oil Storage Containers (§112.7(a)(3)(i)):

Table G-2 Oil Storage Containers and Capacities					
This table includes a complete list of all oil storage containers (aboveground containers ^a and completely buried					
tanks ^b) with capacity of 55 U.S. gallons or more, unless otherwise exempt from the rule. For mobile/portable containers, an estimated number of containers, types of oil, and anticipated capacities are provided.					
	es of oil, and anticipated capacities are	provided.			
Oil Storage Container (indicate whether aboveground (A) or completely buried (B))	Type of Oil	Shell Capacity (ga	gallons)		
Tota	al Aboveground Storage Capacity ^c	aal	ons		
	ompletely Buried Storage Capacity		ons		

Facility Total Oil Storage Capacity gallons

^a Aboveground storage containers that must be included when calculating total facility oil storage capacity include: tanks and mobile or portable containers; oil-filled operational equipment (e.g. transformers); other oil-filled equipment, such as flow-through process equipment. Exempt containers that are not included in the capacity calculation include: any container with a storage capacity of less than 55 gallons of oil; containers used exclusively for wastewater treatment; permanently closed containers; motive power containers; hot-mix asphalt containers; heating oil containers used solely at a single-family residence; and pesticide application equipment or related mix containers.

^b Although the criteria to determine eligibility for qualified facilities focuses on the aboveground oil storage containers at the facility, the completely buried tanks at a qualified facility are still subject to the rule requirements and must be addressed in the template; however, they are not counted toward the qualified facility applicability threshold.

^c Counts toward qualified facility applicability threshold.

2. Secondary Containment and Oil Spill Control (§§112.6(a)(3)(i) and (ii), 112.7(c) and 112.9(c)(2)):

Table G-3 Secondary Containment and Oil Spill Control

Appropriate secondary containment and/or diversionary structures or equipment^a is provided for all oil handling containers, equipment, and transfer areas to prevent a discharge to navigable waters or adjoining shorelines. The entire secondary containment system, including walls and floor, is capable of containing oil and is constructed so that any discharge from a primary containment system, such as a tank or pipe, will not escape the containment system before cleanup occurs.

Use one of the following methods of secondary containment or its equivalent: (1) Dikes, berms, or retaining walls sufficiently impervious to contain oil; (2) Curbing; (3) Culverting, gutters, or other drainage systems; (4) Weirs, booms, or other barriers; (5) Spill diversion ponds; (6) Retention ponds; or (7) Sorbent materials.

Table G-4 below identifies the tanks and containers at the facility with the potential for an oil discharge; the mode of failure; the flow direction and potential quantity of the discharge; and the secondary containment method and containment capacity that is provided.

ind the secondary containment method and	Table G-4 Containers with Pot	ential for an Oi	l Discharge		
Area	Type of failure (discharge scenario)	Potential discharge volume (gallons)	Direction of flow for uncontained discharge	Secondary containment method ^a	Secondary containment capacity (gallons)
Bulk Storage Containers and Mobile/F	Portable Containers ^b	,	J J	•	
Oil-filled Operational Equipment (e.g.,	budraulia aquiament transformara) ^c				
Oli-illied Operational Equipment (e.g.,	, nyuraunc equipment, transformers)				Γ
Piping, Valves, etc.		T			I
Product Transfer Areas (location whe	re oil is loaded to or from a container, pipe or	other piece of e	quipment.)		1
Other Oil-Handling Areas or Oil-Filled	Equipment (e.g. flow-through process vesse	ls at an oil produ	uction facility)		
		1		1	L

^a Use one of the following methods of secondary containment or its equivalent: (1) Dikes, berms, or retaining walls sufficiently impervious to contain oil; (2) Curbing; (3) Culverting, gutters, or other drainage systems; (4) Weirs, booms, or other barriers; (5) Spill diversion ponds; (6) Retention ponds; or (7) Sorbent materials.

^b For storage tanks and bulk storage containers, the secondary containment capacity must be at least the capacity of the largest container plus additional capacity to contain rainfall or other precipitation.

^c For oil-filled operational equipment: Document in the table above if alternative measures to secondary containment (as described in §112.7(k)) are implemented at the facility.

Inspections, Testing, Recordkeeping and Personnel Training (§§112.7(e) and (f), 112.8(c)(6) and (d)(4), 112.9(c)(3), 112.12(c)(6) and (d)(4)):

Table G-5 Inspections, Testing, Recordkeeping and Personnel Training			
An inspection and/or testing program is implemented for all above ground bulk storage containers and piping at this facility. [$\$12.8(c)(6)$ and (d)(4), 112.9(c)(3), 112.12(c)(6) and (d)(4)]			
Inspections, tests, and records are conducted in accordance with written procedures developed for the facility. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of			
this paragraph. [§112.7(e)] A record of the inspections and tests are kept at the facility or with the SPCC Plan for a period of three years.			
[§112.7(e)] [See Inspection Log and Schedule in Attachment 3.1]			
Inspections and tests are signed by the appropriate supervisor or inspector. [§112.7(e)] Personnel, training, and discharge prevention procedures [§112.7(f)]			
Oil-handling personnel are trained in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; applicable pollution control laws, rules, and regulations; general facility operations; and, the contents of the facility SPCC Plan. [§112.7(f)]			
A person who reports to facility management is designated and accountable for discharge prevention. [§112.7(f)] Name/Title:			
Discharge prevention briefings are conducted for oil-handling personnel annually to assure adequate understanding of the SPCC Plan for that facility. Such briefings highlight and describe past reportable discharges or failures, malfunctioning components, and any recently developed precautionary measures. [§112.7(f)] [See Oil-handling Personnel Training and Briefing Log in Attachment 3.4]			

4. Security (excluding oil production facilities) §112.7(g):

5. Emergency Procedures and Notifications (§112.7(a)(3)(iv) and 112.7(a)(5)):

Table G-7 Description of Emergency Procedures and Notifications

The following is a description of the immediate actions to be taken by facility personnel in the event of a discharge to navigable waters or adjoining shorelines [§112.7(a)(3)(iv) and 112.7(a)(5)]:

6. Contact List (§112.7(a)(3)(vi)):

Table G-8 Contact List				
Contact Organization / Person	Telephone Number			
National Response Center (NRC)	1-800-424-8802			
Cleanup Contractor(s)				
Kay Facility Personnel				
Key Facility Personnel Designated Person Accountable for Discharge Prevention:				
5	Office:			
	Emergency:			
	Office:			
	Emergency:			
	Office:			
	Emergency:			
	Office:			
	Emergency:			
State Oil Pollution Control Agencies				
Other State, Federal, and Local Agencies				
Local Fire Department				
Local Police Department				
Hospital				
Other Contact References (e.g., downstream water intakes				
or neighboring facilities)				

7. NRC Notification Procedure (§112.7(a)(4) and (a)(5)):

Table G-9 NRC Notification Procedure				
In the event of a discharge of oil to navigable waters or adjoining shorelines, the following information identified in Attachment 4 will be provided to the National Response Center immediately following identification of a discharge to navigable waters or adjoining shorelines [See Discharge Notification Form in Attachment 4]: [§112.7(a)(4)]				
 The exact address or location and phone number of the facility; Date and time of the discharge; Type of material discharged; Estimate of the total quantity discharged; Estimate of the quantity discharged to navigable waters; Source of the discharge; 	 Description of all affected media; Cause of the discharge; Any damages or injuries caused by the discharge; Actions being used to stop, remove, and mitigate the effects of the discharge; Whether an evacuation may be needed; and Names of individuals and/or organizations who have also been contacted. 			

8. SPCC Spill Reporting Requirements (Report within 60 days) (§112.4):

Submit information to the EPA Regional Administrator (RA) and the appropriate agency or agencies in charge of oil pollution control activities in the State in which the facility is located within 60 days from one of the following discharge events:

A single discharge of more than 1,000 U.S. gallons of oil to navigable waters or adjoining shorelines or Two discharges to navigable waters or adjoining shorelines each more than 42 U.S. gallons of oil occurring within any twelve month period

You must submit the following information to the RA:

- (1) Name of the facility;
- (2) Your name;
- (3) Location of the facility;
- (4) Maximum storage or handling capacity of the facility and normal daily throughput;
- (5) Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;
- (6) An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;
- (7) The cause of the reportable discharge, including a failure analysis of the system or subsystem in which the failure occurred; and
- (8) Additional preventive measures you have taken or contemplated to minimize the possibility of recurrence
- (9) Such other information as the Regional Administrator may reasonably require pertinent to the Plan or discharge

* * * * *

NOTE: Complete one of the following sections (A, B or C)

as appropriate for the facility type.

A. Onshore Facilities (excluding production) (§§112.8(b) through (d), 112.12(b) through (d)):

The owner or operator must meet the general rule requirements as well as requirements under this section. Note that not all provisions may be applicable to all owners/operators. For example, a facility may not maintain completely buried metallic storage tanks installed after January 10, 1974, and thus would not have to abide by requirements in §§112.8(c)(4) and 112.12(c)(4), listed below. In cases where a provision is not applicable, write "N/A".

Table G-10 General Rule Requirements for Onshore Facilities		N/A
Drainage from diked storage areas is restrained by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. Diked areas may be emptied by pumps or ejectors that must be manually activated after		
inspecting the condition of the accumulation to ensure no oil will be discharged. [§§112.8(b)(1) and 112.12(b)(1)]		
Valves of manual, open-and-closed design are used for the drainage of diked areas. [§§112.8(b)(2) and 112.12(b)(2)]		
The containers at the facility are compatible with materials stored and conditions of storage such as pressure and temperature. [§§112.8(c)(1) and $112.12(c)(1)$]		
Secondary containment for the bulk storage containers (including mobile/portable oil storage containers) holds the capacity of the largest container plus additional capacity to contain precipitation. Mobile or portable oil storage containers are positioned to prevent a discharge as described in §112.1(b). [§112.6(a)(3)(ii)]		
If uncontaminated rainwater from diked areas drains into a storm drain or open watercourse the following procedures will be implemented at the facility: $[\$\$12.8(c)(3) \text{ and } 112.12(c)(3)]$		
Bypass valve is normally sealed closed		
 Retained rainwater is inspected to ensure that its presence will not cause a discharge to navigable waters or adjoining shorelines 		
 Bypass valve is opened and resealed under responsible supervision 		
 Adequate records of drainage are kept [See Dike Drainage Log in Attachment 3.3] 		
For completely buried metallic tanks installed on or after January 10, 1974 at this facility [§§112.8(c)(4) and 112.12(c)(4)]:		
 Tanks have corrosion protection with coatings or cathodic protection compatible with local soil conditions. 		
Regular leak testing is conducted.		
For partially buried or bunkered metallic tanks [§112.8(c)(5) and §112.12(c)(5)].		
 Tanks have corrosion protection with coatings or cathodic protection compatible with local soil conditions. 		
Each aboveground bulk container is tested or inspected for integrity on a regular schedule and whenever material repairs are made. Scope and frequency of the inspections and inspector qualifications are in		
accordance with industry standards. Container supports and foundations are regularly inspected.		
[See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule in Attachments 3.1 and 3.2] [§112.8(c)(6) and §112.12(c)(6)(i)]		
Outsides of bulk storage containers are frequently inspected for signs of deterioration, discharges, or		
accumulation of oil inside diked areas. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(c)(6) and 112.12(c)(6)]		
For bulk storage containers that are subject to 21 CFR part 110 which are shop-fabricated, constructed of		
austenitic stainless steel, elevated and have no external insulation, formal visual inspection is conducted on a regular schedule. Appropriate qualifications for personnel performing tests and inspections are	_	
documented. [See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule		
in Attachments 3.1 and 3.2] [§112.12(c)(6)(ii)]		

Table G-10 General Rule Requirements for Onshore Facilities	1	N/A
Each container is provided with a system or documented procedure to prevent overfills for the container. Describe:		
Liquid level sensing devices are regularly tested to ensure proper operation [See Inspection Log and Schedule in Attachment 3.1]. [§112.6(a)(3)(iii)]		
Visible discharges which result in a loss of oil from the container, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts are promptly corrected and oil in diked areas is promptly removed. [§§112.8(c)(10) and 112.12(c)(10)]		
Aboveground valves, piping, and appurtenances such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces are inspected regularly. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(d)(4) and 112.12(d)(4)]		
Integrity and leak testing are conducted on buried piping at the time of installation, modification, construction, relocation, or replacement. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(d)(4) and 112.12(d)(4)]		

B. Onshore Oil Production Facilities (excluding drilling and workover facilities) (§112.9(b), (c), and (d)):

The owner or operator must meet the general rule requirements as well as the requirements under this section. Note that not all provisions may be applicable to all owners/operators. In cases where a provision is not applicable, write "N/A".

Table G-11 General Rule Requirements for Onshore Oil Production Facilities		N/A
At tank batteries, separation and treating areas, drainage is closed and sealed except when draining		
uncontaminated rainwater. Accumulated oil on the rainwater is returned to storage or disposed of in		
accordance with legally approved methods. [§112.9(b)(1)]		
 Prior to drainage, diked areas are inspected and [§112.9(b)(1)]: Retained rainwater is inspected to ensure that its presence will not cause a discharge to 		
 Retained failwater is inspected to ensure that its presence will not cause a discharge to navigable waters 		
Adequate records of drainage are kept [See Dike Drainage Log in Attachment 3.3] Field drainage systems and all trans symmetry are kimmers are inspected at regularly scheduled intervals		
Field drainage systems and oil traps, sumps, or skimmers are inspected at regularly scheduled intervals for oil, and accumulations of oil are promptly removed [See Inspection Log and Schedule in		
Attachment 3.1] [§112.9(b)(2)]		
The containers used at this facility are compatible with materials stored and conditions of storage.		
[§112.9(c)(1)]		
All tank battery, separation, and treating facility installations (except for flow-through process vessels) are		
constructed with a capacity to hold the largest single container plus additional capacity to contain rainfall.		
Drainage from undiked areas is safely confined in a catchment basin or holding pond. [§112.9(c)(2)]	 	
Except for flow-through process vessels, containers that are on or above the surface of the ground,		
including foundations and supports, are visually inspected for deterioration and maintenance needs on a		
regular schedule. [See Inspection Log and Schedule in Attachment 3.1] [§112.9(c)(3)]	ļ!	
New and old tank batteries at this facility are engineered/updated in accordance with good engineering practices to prevent discharges including at least one of the following:		
practices to prevent discharges including at least one of the following.		
i. adequate container capacity to prevent overfill if regular pumping/gauging is delayed;		
ii. overflow equalizing lines between containers so that a full container can overflow to an adjacent		
container;		
iii. vacuum protection to prevent container collapse; or		
iv. high level sensors to generate and transmit an alarm to the computer where the facility is subject to a		
computer production control system. [§112.9(c)(4)]		
Flow-through process vessels and associated components are:		
Are constructed with a capacity to hold the largest single container plus additional capacity to		
contain rainfall. Drainage from undiked areas is safely confined in a catchment basin or holding		
pond; <i>[§112.9(c)(2)]</i> and		
That are on or above the surface of the ground, including foundations and supports, are visually		
inspected for deterioration and maintenance needs on a regular schedule. [See Inspection Log		
and Schedule in Attachment 3.1] [§112.9(c)(3)]		
Or		
Visually inspected and/or tested periodically and on a regular schedule for leaks, corrosion, or		
other conditions that could lead to a discharge to navigable waters; and		
Corrective action or repairs are applied to flow-through process vessels and any associated		
components as indicated by regularly scheduled visual inspections, tests, or evidence of an oil discharge; and		
 Any accumulations of oil discharges associated with flow-through process vessels are promptly 		
removed; and		
 Flow-through process vessels are provided with a secondary means of containment for the entire 		
capacity of the largest single container and sufficient freeboard to contain precipitation within six		
months of a discharge from flow-through process vessels of more than 1,000 U.S. gallons of oil in		
a single discharge as described in §112.1(b), or a discharge more than 42 U.S. gallons of oil in		
each of two discharges as described in §112.1(b) within any twelve month period. [§112.9(c)(5)]		
(Leave blank until such time that this provision is applicable.)		

Ver. 1-L-doc-3-18-10

Table G-11 General Rule Requirements for Onshore Oil Production Facilities		N/A
All aboveground valves and piping associated with transfer operations are inspected periodically and upon a regular schedule. The general condition of flange joints, valve glands and bodies, drip pans, pipe supports, pumping well polish rod stuffing boxes, bleeder and gauge valves, and other such items are included in the inspection. [See Inspection Log and Schedule in Attachment 3.1] [§112.9(d)(1)]		
An oil spill contingency plan and written commitment of resources are provided for flowlines and intra- facility gathering lines [See Oil Spill Contingency Plan and Checklist in Attachment 2 and Inspection Log and Schedule in Attachment 3.1] [\S 112.9(d)(3)] or		
Appropriate secondary containment and/or diversionary structures or equipment is provided for flowlines and intra-facility gathering lines to prevent a discharge to navigable waters or adjoining shorelines. The entire secondary containment system, including walls and floor, is capable of containing oil and is constructed so that any discharge from the pipe, will not escape the containment system before cleanup occurs.		
A flowline/intra-facility gathering line maintenance program to prevent discharges from each flowline has been established at this facility. The maintenance program addresses each of the following:		
• Flowlines and intra-facility gathering lines and associated valves and equipment are compatible with the type of production fluids, their potential corrosivity, volume, and pressure, and other conditions expected in the operational environment;		
• Flowlines, intra-facility gathering lines and associated appurtenances are visually inspected and/or tested on a periodic and regular schedule for leaks, oil discharges, corrosion, or other conditions that could lead to a discharge as described in §112.1(b). The frequency and type of testing allows for the implementation of a contingency plan as described under part 109 of this chapter.		
 Corrective action and repairs to any flowlines and intra-facility gathering lines and associated appurtenances as indicated by regularly scheduled visual inspections, tests, or evidence of a discharge. 		
 Accumulations of oil discharges associated with flowlines, intra-facility gathering lines, and associated appurtenances are promptly removed. [§112.9(d)(4)] 		
The following is a description of the flowline/intra-facility gathering line maintenance program implemented a facility:	at this	
C. Onshore Oil Drilling and Workover Facilities (§112.10(b), (c) and (d)):		

The owner or operator must meet the general rule requirements as well as the requirements under this section.

Table G-12 General Rule Requirements for Onshore Oil Drilling and Workover Facilities				
Mobile drilling or worker equipment is positioned or located to prevent discharge as described in §112.1(b).				
[§112.10(b)]				
Catchment basins or diversion structures are provided to intercept and contain discharges of fuel, crude oil, or				
oily drilling fluids. [§112.10(c)]				
A blowout prevention (BOP) assembly and well control system was installed before drilling below any casing				
string or during workover operations. [§112.10(d)]				
The BOP assembly and well control system is capable of controlling any well-head pressure that may be				
encountered while the BOP assembly and well control system are on the well. [§112.10(d)]				

ATTACHMENT 1.1 – Five Year Review Log

I have completed a review and evaluation of the SPCC Plan for this facility, and will/will not amend this Plan as a result.

Table G-13 Review and Evaluation of SPCC Plan for Facility					
Review Date	Plan Ar Will Amend	nendment Will Not Amend	Name and signature of person authorized to review this Plan		

ATTACHMENT 1.2 – Technical Amendment Log

Any technical amendments to this Plan will be re-certified in accordance with Section I of this Plan template.

	Table G-15 Description and Certification of Technical Amendments					
Review Date	Description of Technical Amendment	Name and signature of person certifying this technical amendment				
ale						

ATTACHMENT 2 – Oil Spill Contingency Plan and Checklist

An oil spill contingency plan and written commitment of resources is required for:

- Flowlines and intra-facility gathering lines at oil production facilities and
- Qualified oil-filled operational equipment which has no secondary containment.

An oil spill contingency plan meeting the provisions of 40 CFR part 109, as described below, and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful is attached to this Plan.

Complete the checklist below to verify that the necessary operations outlined in 40 CFR part 109 - Criteria for State, Local and Regional Oil Removal Contingency Plans - have been included.

Table G-15 Checklist of Development and Implementation Criteria for State, Local and Regional Oil Ren Contingency Plans (§109.5) ^a	noval
(a) Definition of the authorities, responsibilities and duties of all persons, organizations or agencies which are to be involved in planning or directing oil removal operations.	
(b) Establishment of notification procedures for the purpose of early detection and timely notification of an oil discharge including:	
 (1) The identification of critical water use areas to facilitate the reporting of and response to oil discharges. (2) A current list of names, telephone numbers and addresses of the responsible persons (with alternates) and organizations to be notified when an oil discharge is discovered. 	
(3) Provisions for access to a reliable communications system for timely notification of an oil discharge, and the capability of interconnection with the communications systems established under related oil removal contingency plans, particularly State and National plans (e.g., NCP).	
(4) An established, prearranged procedure for requesting assistance during a major disaster or when the situation exceeds the response capability of the State, local or regional authority.	
(c) Provisions to assure that full resource capability is known and can be committed during an oil discharge situation including:	
(1) The identification and inventory of applicable equipment, materials and supplies which are available locally and regionally.	
(2) An estimate of the equipment, materials and supplies which would be required to remove the maximum oil discharge to be anticipated.	
(3) Development of agreements and arrangements in advance of an oil discharge for the acquisition of equipment, materials and supplies to be used in responding to such a discharge.	
(d) Provisions for well defined and specific actions to be taken after discovery and notification of an oil discharge including:	
(1) Specification of an oil discharge response operating team consisting of trained, prepared and available operating personnel.	
(2) Predesignation of a properly qualified oil discharge response coordinator who is charged with the responsibility and delegated commensurate authority for directing and coordinating response operations and who knows how to request assistance from Federal authorities operating under existing national and regional contingency plans.	
(3) A preplanned location for an oil discharge response operations center and a reliable communications system for directing the coordinated overall response operations.	
(4) Provisions for varying degrees of response effort depending on the severity of the oil discharge.	
(5) Specification of the order of priority in which the various water uses are to be protected where more than one water use may be adversely affected as a result of an oil discharge and where response operations may not be adequate to protect all uses.	
(6) Specific and well defined procedures to facilitate recovery of damages and enforcement measures as provided for by State and local statutes and ordinances.	

^a The contingency plan must be consistent with all applicable state and local plans, Area Contingency Plans, and the National Contingency Plan (NCP)

ATTACHMENT 3 – Inspections, Dike Drainage and Personnel Training Logs

ATTACHMENT 3.1 – Inspection Log and Schedule

This log is int	Table G-16 Inspection Log and Schedule This log is intended to document compliance with §§112.6(a)(3)(iii), 112.8(c)(6), 112.8(d)(4), 112.9(b)(2), 112.9(c)(3), 112.9(d)(1), 112.9(d)(4), 112.12.(c)(6), and 112.12(d)(4), as applicable.					
Date of Inspection	Container / Piping / Equipment	Describe Scope (or cite Industry Standard)	Observations	Name/ Signature of Inspector	Records maintained separately ^a	

^a Indicate in the table above if records of facility inspections are maintained separately at this facility.

ATTACHMENT 3.2 – Bulk Storage Container Inspection Schedule – onshore facilities (excluding production):

To comply with integrity inspection requirement for bulk storage containers, inspect/test each shop-built aboveground bulk storage container on a regular schedule in accordance with a recognized container inspection standard based on the minimum requirements in the following table.

Table G-17 Bulk Storage Container Inspection Schedule					
Container Size and Design Specification	Inspection requirement				
Portable containers (including drums, totes, and intermodal bulk containers (IBC))	Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas				
55 to 1,100 gallons with sized secondary containment 1,101 to 5,000 gallons with sized secondary containment and a means of leak detection ^a	Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas plus any annual inspection elements per industry inspection standards				
1,101 to 5,000 gallons with sized secondary containment and no method of leak detection ^a	Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas, plus any annual inspection elements and other specific integrity tests that may be required per industry inspection standards				

^a Examples of leak detection include, but are not limited to, double-walled tanks and elevated containers where a leak can be visually identified.

ATTACHMENT 3.3 – Dike Drainage Log

	Table G-18 Dike Drainage Log							
Date	Bypass valve sealed closed	Rainwater inspected to be sure no oil (or sheen) is visible	Open bypass valve and reseal it following drainage	Drainage activity supervised	Observations	Signature of Inspector		

ATTACHMENT 3.4 – Oil-handling Personnel Training and Briefing Log

	Table G-19 Oil-Handling Persor	nnel Training and Briefing Log
Date	Table G-19 Oil-Handling Person Description / Scope	Attendees
	· · ·	

ATTACHMENT 4 – Discharge Notification Form

In the event of a discharge of oil to navigable waters or adjoining shorelines, the following information will be provided to the National Response Center [also see the notification information provided in Section 7 of the Plan]:

Table G-20 Information provided to the National Response Center in the Event of a Discharge						
Discharge/Discovery Date		Time				
Facility Name						
Facility Location (Address/Lat-						
Long/Section Township Range)						
		· - · ·	1			
Name of reporting individual		Telephone #				
Type of material discharged		Estimated total quantity	Gallons/Barrels			
		discharged				
Source of the discharge		Media affected	☐ Soil			
			Water (specify)			
			Other (specify)			
Actions taken						
Damage or injuries	No Yes (specify)	Evacuation needed?	No Yes (specify)			
<u> </u>						
Organizations and individuals	National Response (L Center 800-424-8802 Time				
contacted	· · ·					
	Cleanup contractor (Specify) Time				
	Facility personnel (S	pecify) Time				
	State Agency (Specify) Time					
	Other (Specify) Time					

This page intentionally left blank

Attachment B-5. Energy Storage Emergency Operation Plan

This page intentionally left blank

Energy Storage Emergency Operation Plan Updated January 13, 2023

Energy Storage is a 500 MW/ 4 Hour Battery Energy Storage System (BESS) facility located in Morrow County, Oregon. This facility will consist of a 230 KV substation, xxx inverters, xxx battery containers and xxx Battery container augmentation blocks (future expansion capability).

NextEra Energy's geographic presence allows us to optimize staffing where appropriate. We leverage synergies across sites and as a result resources can be pulled from nearby sites. The Renewables Operations Control Center also provides support during regular and overnight hours to respond efficiently to any emergencies on site.

Facility Technical Specifications

Site Name	Capacity	Battery Mfg	Battery P/N	Inverter Mfg	Inverter P/N
Wagon Trail	500 MW				

Emergency Action Plan

Wagon Trail Solar Energy Storage facility will have an Emergency Action Plan (EAP) that will establish actions to be taken by the personnel responsible for the facility in the event of an emergency. Below are topics discussed in the EAP:

- Document Records
- Safety Protocols
- State & Federal Compliance
- Emergency Contacts
- Training & Annual Drills
- Information for Outside Responders
- Fire Responder Information
- General Emergency Event Procedures
 - Natural Disaster & Severe Weather
 - o Fire Response
 - Physical & Cyber Security
 - o Environmental
 - o Gas or Oil Pipeline
 - o Pandemic
 - o Immediate or Delayed Site Evacuation
 - o Designated Evacuation Egress Routes & Muster Areas
 - Personnel Injuries & Serious Health Conditions

Safety & Training Programs

NextEra Energy's Safety & Training Programs are a critical asset when managing emergency conditions. Personnel that respond to emergency events must have all required electrical qualifications up to date and keep safety top of mind. NextEra Energy is committed to providing a safe and healthy work environment for all employees and requires that safety should not be compromised for any other business priority

Emergency Operation Procedures

Operation Procedures of the Battery Containers under an emergency will involve EAP, Safety Protocol, Training Requirements and Manufacturer Operational Guidelines. All these references will establish procedures to be followed under emergency conditions. The list of procedures will be changing during the different phases of the project, once the site is approaching its operational date it will be complete. Below is a list of common procedures for emergency conditions:

- Notification of Emergency Event
- Safe Start Up & Shutdown
- Equipment De-energization and Isolation
- Equipment Inspection & Testing
- Fault Code & Troubleshooting
- Damaged Equipment Replacement
- Hazardous Conditions
- Fire Hazard & Alarm System

Attachment B-6. NextEra Energy Resources, LLC Energy Storage Booklet

This page intentionally left blank

Our Energy Storage Business

A Promising Future For Energy Storage

Technology offers flexibility, value in today's energy market

Meeting today's energy challenges is complicated. The power infrastructure must be able to balance supply and demand instantaneously while taking into account the impacts of intermittent renewable energy. Consumers are also looking for energy services and products that provide flexibility and value in the areas of renewable energy, grid reliability and peaking power.

NextEra Energy Resources is helping meet these needs through battery energy storage technology, which is providing a promising way to store electrical energy so it can be available to meet demand whenever needed. While there are many energy storage technologies, NextEra Energy Resources has focused on the use of batteries as costs have declined, but is continuing to evaluate other storage technologies.

"(Our) company expects to invest more than \$1 billion in storage in 2021, which would be the largest-ever annual battery storage investment by any power company in history."

Jim Robo, Chairman and CEO, NextEra Energy, April 22, 2020

Energy storage delivers advantages to the power grid and our customers

What makes energy storage attractive is that it allows energy to be delivered instantly, in the required amount. By doing this, energy storage provides many advantages, such as improving the operation of the electrical grid, integrating renewable resources and helping investment decisions.

- » Grid enhancement. Energy storage can balance load on the power system grid by moving energy when demands are low to times when demands are high. The technology also allows for a seamless switch between power sources and protects equipment by controlling voltage and frequency.
- » Renewable resources. Energy storage fills in the gaps resulting from intermittent resources like wind and solar generation. That means operators can more easily bring on and off renewable energy, reducing the need for load balancing services and rapid generation ramping.
- » Electrical system investments. By reducing the load on congested transmission and distribution systems, energy storage may defer expensive upgrades. In some cases, storage may also reduce new investment in conventional resources, such as adding generating plants to meet systemwide peak load.

In 2018, NextEra Energy Resources' 20-megawatt (MW) Pinal Central Solar Energy Center in Arizona became the company's first project to pair solar energy with an on-site, state-of-the-art 10-MW battery storage system (shown in cover photo, lower right, February 2020). More than 50% of the company's new solar projects in 2019 also included a storage component. Renewable energy projects, coupled with battery storage, provide power to customers long after the sun goes down and demand for electricity goes up.

NextEra Energy Resources employees at the 16.2-MW Casco Bay Energy Storage Facility in Maine (April 2017). The company is developing additional energy storage facilities across North America.

Projects require little land, provide many benefits

Energy storage projects do not require a large area for development, are scalable in size and can be located in many places. NextEra Energy Resources generally seeks to site a project as close as possible to existing electrical transmission or distribution infrastructure and often, close to an existing renewable project.

Other benefits of energy storage include no greenhouse gases or other air pollutants, no use of water to generate electricity, and a renewable supply of energy.

Interest in energy storage is growing

The growing interest in energy storage is being driven by a number of factors, including:

- » Reductions in technology costs.
- » The rapid development of intermittent renewable energy resources.
- » The evaluation of new policy initiatives by states.
- » Regulatory changes.

For example, the Federal Energy Regulatory Commission has mandated policy changes in the frequency regulation market that have helped spur the use of energy storage for this purpose. Certain markets are now encouraging utilities to use energy storage to manage the intermittent energy that flows into the grid and to supply the grid with energy during times of peak use.

Costs are expected to decline

While emerging technology costs tend to be higher and therefore less competitive during the early evolution phase, technological efficiencies, improved manufacturing productivity and economies of scale help lower cost over time. As batteries gain wider industry adoption, prices are expected to decrease further.

Energy storage is safe, reliable

Safety is always a top priority in NextEra Energy Resources' operations, and energy storage systems are no exception.

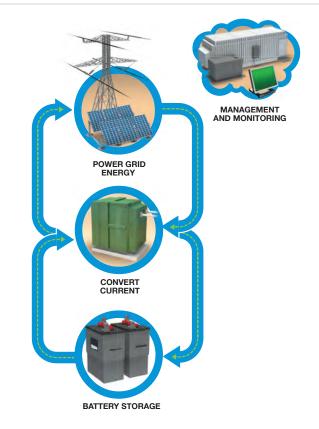
Our energy storage systems are safe and reliable. Overall, energy storage has been a part of the U.S. electric system since the 1930s. Today, it makes up approximately 2% of the nation's generation capacity, according to the Energy Storage Association. The safety record of the industry is similar to or better than other forms of power generation or distribution.

NextEra Energy Resources is experienced in energy storage

Our team of specialists has spent years researching energy storage technologies, applications and use cases, leading to two demonstration projects in 2012 and 2013.

Today, NextEra Energy Resources has more than 145 MW of operational energy storage, including the Lee DeKalb Energy Storage Facility in Illinois and the Blue Summit Energy Storage Facility in Texas. These facilities are being used for frequency regulation. Traditionally, fossil and hydroelectric power plants have been used for frequency regulation. Now, batteries can also accomplish this task more efficiently.

In addition to the growth of operational facilities, the company has a robust pipeline of development projects across the U.S. and Canada.


Batteries are placed into removable racks similar to a computer server. There are also monitoring, control and power conversion systems, as well as cooling and fire suppression systems.

NextEra Energy Resources' Minuteman Energy Storage Facility in Massachusetts went into service in 2019. It provides 5 MW of energy storage.

How energy storage systems work

- » A battery management system monitors the individual cells and controls the voltage, temperature and current for safe, reliable transfer of energy. The system automatically shuts off if the batteries are operating outside of predefined parameters.
- » A computerized monitoring system provides up-to-date weather forecasts, power prices, historical electrical use, the amount of charge remaining in the batteries and when to use the energy storage system.
- » Energy from the power grid or from renewable energy sources is delivered via a bidirectional inverter, which converts the energy from alternating current (AC) into direct current (DC). Today's batteries can only store DC. This energy goes into an array of batteries that is typically housed within a battery container or a building structure.
- » When the energy is needed on the power system, the inverters are then used again, but this time to convert the DC from the batteries into AC. Once the power has been transformed, it is stepped up in voltage and subsequently sent to an on-site substation or directly to a distribution or transmission line.
- » The electricity is then distributed to homes, schools, businesses and other consumers.

NextEra Energy Resources has a proven reputation for excellence

As the world's largest generator of renewable energy from the wind and the sun, NextEra Energy Resources has earned a reputation for excellence. Our scale, size and scope of services allow us to offer innovative energy solutions to customers, and energy storage is a natural extension of our development business.

By working with NextEra Energy Resources, customers can realize the monetary benefits of energy storage while mitigating technology complexity and vendor risk. With our significant purchasing power, we can buy energy storage equipment at the lowest possible costs. With our best-in-class development skills, we can also build customized storage solutions to meet customers' unique requirements.

Energy storage has the potential to be a game changer for the energy industry, and NextEra Energy Resources is a leader in the market.

NEXT**ERA**® ENERGY

NextEraEnergyResources.com

NextEra Energy Resources, LLC | 700 Universe Boulevard | Juno Beach, Florida 33408