

Oregon's Toxics Monitoring Program: A Year-One Update

Pesticide Analytical Response Center Meeting- September 16th, 2009

Topics

Today's Presentation

- Program Objectives
- Programmatic Development
- Approach
- Analytical findings
- Linkages to other programs
- Communication / Outreach
- Next Steps

Program Objectives

- Establish state-wide, watershed-based toxic pollutant monitoring and evaluation program
- Document environmental concentrations of toxic pollutants in Oregon waters and biota and interpret findings relevant to established criteria
- Support pollutant reduction strategies and assess progress towards meeting established criteria

Programmatic Development

Program Spatial Scope - Initial / Long Term

- Initial 3 years
 - Focus on Willamette River Basin and associated tributaries
- Long-term
 - All major basins, state-wide on a rotating schedule (3 basins/year)

Programmatic Development (Continued)

2008 Programmatic Milestones

Administrative

Hired program staff

Plan Development / Stakeholder Review

- Synthesized existing Willamette River Basin contaminant information
- Drafted initial plan, circulated for review
- Revised plan and implemented monitoring

Capital Investments / Capability Enhancements

• Selected/acquired "state-of-the-art" High Resolution Gas Chromatograph/High Resolution Mass Spectrometer)

Approach

Toxic pollutants and media of interest

Toxic pollutants which are likely to:

- be present in Oregon's surface waters
- pose the greatest threat to human health and the environment

Environmental media

بالمسان	Water column	and	fish tissue	(2008)
		Contract to the contract of		

- Aquatic invertebrates i.e., crayfish (Future)
- Sediment (Future)
- Passive integrative samplers (Future)

Rationale for selecting 2008 target analytes

- Analytical targets identified <u>prior</u> to establishment of SB 737 Workgroup
- Based largely on DEQ's **Drinking Water Protection Program** analytical suite
- Includes many pesticides measured by Pesticide
 Stewardship Partnership
- Future analytical targets to include toxic persistent and bioaccumulative pollutants identified by SB 737 Workgroup and Toxics Reduction Strategy

Initial (2008) Target Analytes

Water

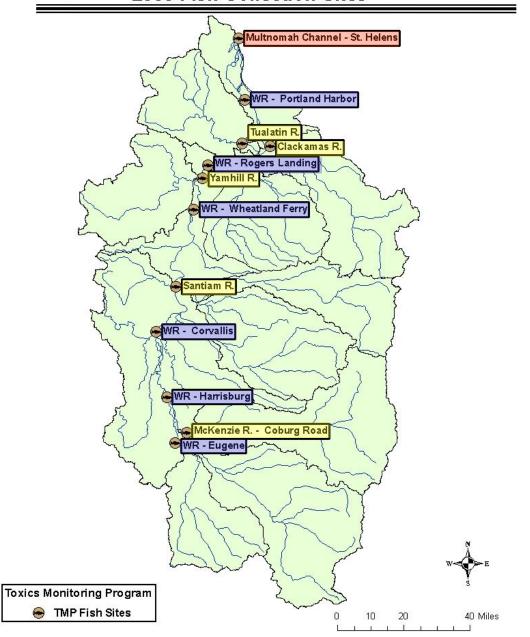
- PAHs
- PBDEs

- PCBs
- Metals
- Current-use & Legacy Pesticides
- Industrial Materials & Solvents
- "Contaminants of Emerging Concern"
 - pharmaceuticals, personal care products, plasticizers

Fish

- Dioxins/ Furans
- PCB Congeners
- Mercury

- OC Pesticides
- PBDE Congeners


Fish Collection Reaches

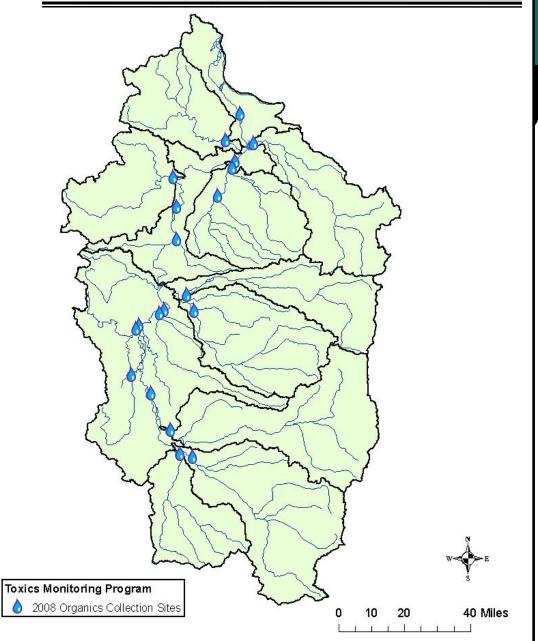
Multnomah Channel (1)

6 Mainstem (6)

Major Tributaries (5)

Willamette River Basin Toxics Monitoring Program 2008 Fish Collection Sites

Water Collection—organics


• 7 Mainstem

- Hawthorn Bridge
- Canby Ferry
- Wheatland Ferry
- Salem
- Albany
- Corvallis
- Harrisburg

• 13 Tributaries

- Clackamas
- Tualatin
- Molalla
- Pudding
- Yamhill
- North Santiam
- South Santiam
- Calapooia
- Mary's
- Long Tom
- McKenzie
- Coast Fork
- Middle Fork

Willamette River Basin Toxics Monitoring Program 2008 Water (Organics) Collection Sites

Water Collection-metals

Long Tom River

Calapooia River

Middle Fork Willamett

Coast Fork Willamette

Queen Road

Jasper Bridge

McKenzie River

Hendricks Brdg

McKenzie Brdg

Mt. Pisgah Park

Coburg Road

Monroe

Columbia River

Upstream of Willamette

Columbia Slough

Landfill Road

Swan Island Channel

Willamette River

Hawthorne Brdg Portland SP&S Brdg Portland

Salem

Springfield Canby Ferry

Wheatland Ferry

Albany

Corvallis

Harrisburg

Tualatin River

Near Elsner Road

Hwy 210

Rood Road

Boones Ferry Road

Fanno Creek

Beaverton Creek

Clackamas River

Mciver Park Memaloose Road High Rocks

Johnson Creek

Portland

Pudding River

Woodburn

Yamhill River

Dayton

North Yamhill

Poverty Bend Road

South Yamhill River

Mcminnville

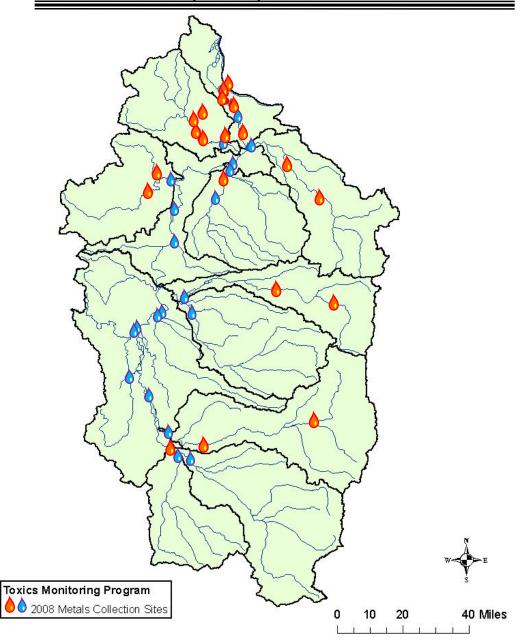
North Santiam River

Gates School Road Brdg Coopers Ridge Road Brdg

Greens Bridge

South Santiam River

Crabtree


Mary's River

Corvallis

Molalla River

Canby

Willamette River Basin Toxics Monitoring Program 2008 Water (Metals) Collection Sites

2008 Accomplishments

- Water samples collected for determination of organic pollutant concentrations at 20 mainstem and tributary locations
- Re-initiated metals analyses at 40 ambient water quality sites in Willamette Basin
- Fish sampled at 11 mainstem and tributaries reaches (smallmouth bass and northern pikeminnow)
- Mercury analysis of fish tissue completed
- Analytical results for water sampling completed
- Organic analytical results for fish tissue completed

Summary Findings: Waterborne Metals

2008 Findings (April – December)

- 40 sites sampled 5 to 9 times each
- Water quality aquatic life criteria exceedances documented for copper and lead only
- Exceedances driven by low water hardness

Summary Findings: Waterborne Organics

2008 Findings (April – December)

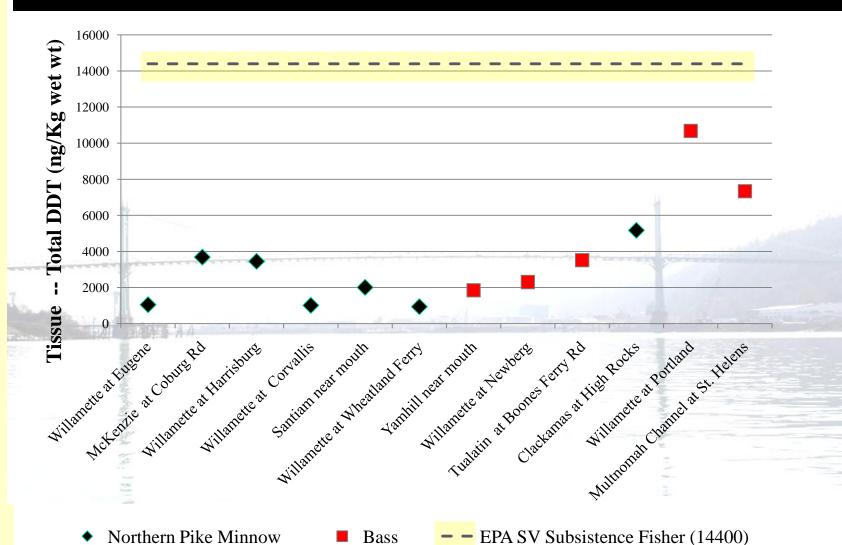
- 20 sites sampled twice
- No water quality criteria exceedances documented
- Herbicides were most frequently detected pollutant class; insecticides rarely detected
- Sewage indicators found at nearly every site
- Multiple, low-level detects for "emerging contaminants"

Summary Findings: <u>Waterborne Organics</u> (Continued)

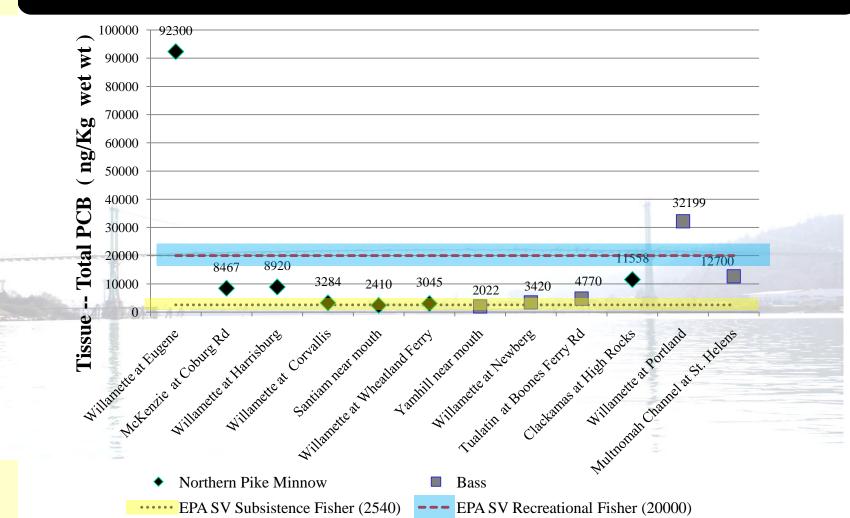
Herbicide detections and concentration in surface water

Herbicide	EPA	Oregon	SB 737	MRL	Detection	Number	Detection	Number of
	Priority	Table 20 /		(ng/L)	Range	of	Range	Detects
	Pollutant 33				(Low-Flow)	Detects	(Rising-Flow)	
Diuron	No	No	(3)	2.0	< 2.0 - 255	10	< 2.0 - 103	15
Atrazine	No	No	No	2.0	< 2.0 - 8.4	10	< 2.0 - 7.8	14
Propiconazole	No	No	No	10.0	< 10 - 21	3	< 10 - 23	7
Simazine	No	No	No	2.0	< 2.0 - 17.8	2	< 2.0 - 12.3	8
Metolachlor	No	No	(3)	5.0	<5.0 - 41.6	2	< 5 – 23	9
Prometon	No	No	No	2.0	<2.0 - 2.8	1	No Detc.	0
Metribuzin	No	No	No	2.0	No Detc	0	< 2.0 - 10.9	8
Terbutylazine	No	No No 1.0		1.0	< 1.0 - 3.5	3	No Detc	0

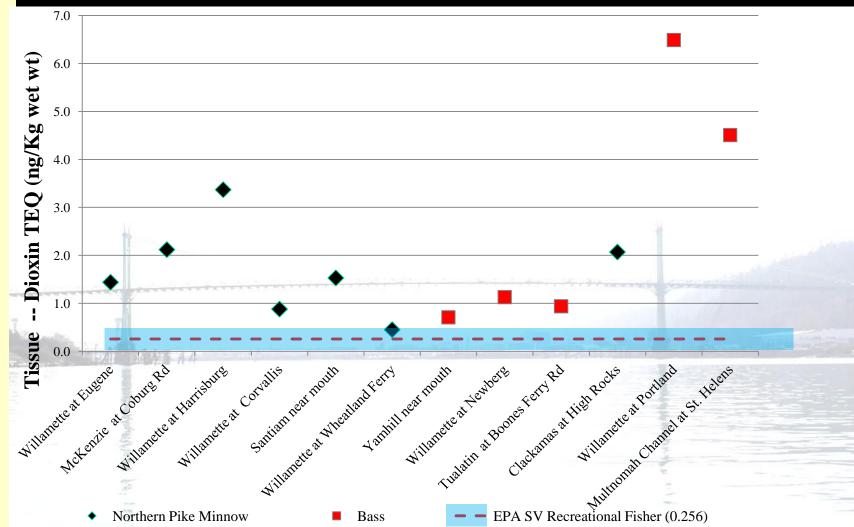
Summary Findings: <u>Waterborne Organics</u> (Continued)


"Pesticides of Interest" or "Pesticides of Concern" in water - 2008.

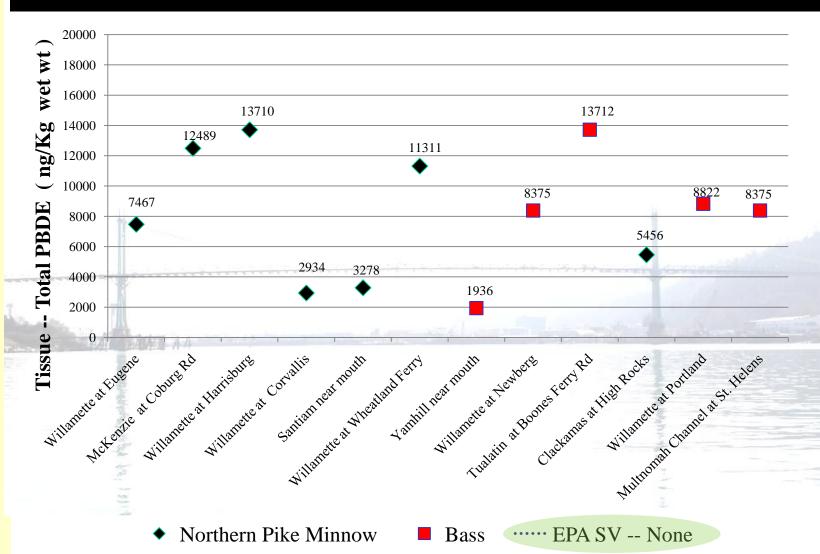
			Lo	w Flow		Rising Flow				
Pesticide of		Minimum	Maximum	Average	Detects >	Minimum	Maximum	Average	Detects >	
Interest	MRL	Value	Value		MRL	Value	Value		MRL	
2,4-D	0.1 μg/L	0.1	0.1	0.1	0	0.1	0.11	0.1	1	
Triclopyr	0.3 μg/L	0.1	0.3	0.29	0	0.29	0.32	0.30	5	
Diuron	2 ηg/L	<2	255		10	<2	103		15	
Trifluralin	20 ng/L	20	20	20	0	20	20	20	0	
Carbaryl	2.5 ng/L	2.5	3.9	2.57	1	2.3	16.8	4.0	11	
Esfenvalerate	1 ηg/L									
Imidacloprid	10 ηg/L	10	30	11	1	9	20	13.5	7	
Chlorothalonil	20 ηg/L	25	25	25	0	20	20	20	0	
Pesticide of Concern						_				
Atrazine	2 ηg/L	2	8.4	3.11	5	2	10.4	3.875	11	
Simazine	2 ηg/L	2	17.8	3	2	2	12.3	3.2	9	
Diazinon	20 ηg/L									
Ethoprop	20 ηg/L									
Endosulfan	20 ηg/L	20	20	20	0	20	20	20	0	
Azinphos-methyl	10 ηg/L						-			
Chlorpyrifos	20 ng/l									


Summary Findings: Fish Tissue

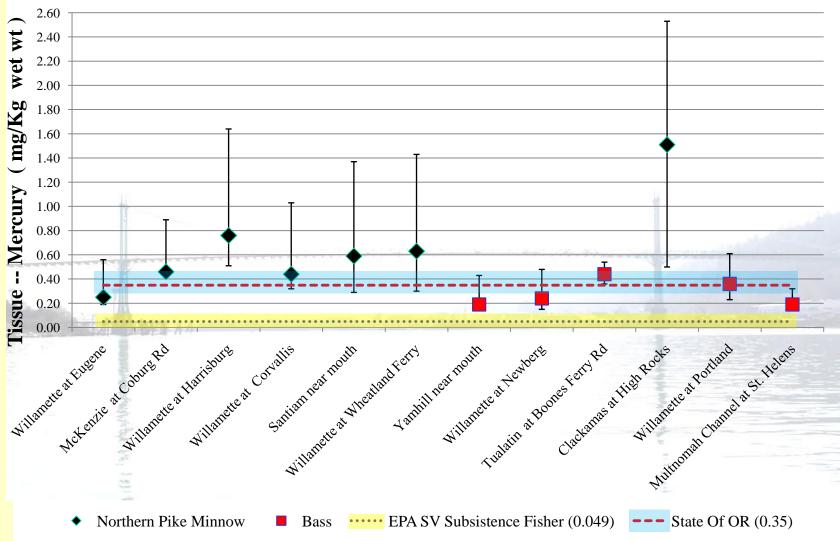
Total DDT



Total PCBs



2,3,7,8 Dioxin Equivalents



Total PBDE

Mercury

Toxics Monitoring Program: Year 1 Executive Summary

2008 Findings

Water Column

Exeedences of water quality criteria for copper and lead

Herbicides most commonly detected class of pesticides but found at low concentrations

"Emerging contaminants" widespread at low concentrations

Fish Tissue

Legacy pesticides generally below screening level criteria for the protection of human health

Halogenated industrial chemicals remain a concern

Mercury levels remain elevated

Year 1 - Communication / Outreach

Strengthen linkages / relevance to Agency Programs

- Oregon's Toxics Monitoring Program Supports Multiple Agency Priorities
 - Fish Consumption Rate
 - SB 737 recommendations operational
 - Pesticide Stewardship Partnership
 - Drinking Water Source Protection
 - WQ Integrated Report
 - NPDES Permit Program
 - Agency Toxic Reduction Strategy

Year 1 - Communication / Outreach (Continued)

Strengthen linkages / relevance to State and external groups

- State Agencies
 - Department of Human Services
 - Department of Agriculture (Pesticides of Interest / Concern)

External Stakeholders

- ACWA
- Tribes
- Environmental / Resource Conservation Groups

Next Steps

Communication of 2008 findings

- Fact Sheet/Web
- Year One Report
- Oregon Insider Article
- Meet with Internal and External Stakeholders

Develop 2009 – 2010 monitoring plans

- Collect/follow-up samples from upper Willamette sites
- Confirm 2008 findings
- Evaluate spatial pollutant distribution patterns in selected watersheds
- Fish tissue / other media

Finis

Thanks for your time and interest in Oregon's Toxics Monitoring Program!

Questions? Comments?

Toxics Monitoring Targets vs. SB 737 Recommendations

SB 737 list contains roughly **140** chemicals based on **toxicity, bio-accumulation potential**, and **persistence**

TMP analytes includes **274** individual compounds (not including TOC or field-measured constituents)

TMP list incorporates approximately 40% of pollutants recommended by the SB 737 Wrokgroup