

2022 Oregon Science Standards

K-12 Science Education

Adopted: June 2022

[This page is left intentionally blank]

Table of Contents

Ore	gon K-12 Science Vision	
K-12 Science Education for Every Student: The Vision		4
Three Dimensional Learning: Putting it Together		5
*	Dimension 1: Science and Engineering Practices	
*	Dimension 2: Crosscutting Concepts	
*	Dimension 3: Disciplinary Core Ideas	
Dee	per Integration of Climate Change Education and Engineering Design	
Inte	gration of K-12 Climate Change Education^	8
Inte	gration of Engineering Design*	8
Mid	Idle School Science Standards	
Flexibility in Middle School Science Sequencing		9
Middle School Earth & Space Science Standards		10
*	Grade 6 : Earth & Space Science	
*	Grade 7: Earth & Space Science	
*	Grade 8: Earth & Space Science	
Middle School Engineering, Technology, and the Application of Science 12		
*	Grade 6-8 Engineering, Technology, and the Application of Science	
Mid	ldle School Life Science Standards	14
*	Grade 6: Life Science	
*	Grade 7: Life Science	
*	Grade 8: Life Science	
Mid	ldle School Physical Science Standards	17
*	Grade 6: Physical Science	
*	Grade 7: Physical Science	
*	Grade 8: Physical Science	

K-12 Science Education for Every Student: The Vision

<u>A K–12 Framework Science Education</u> (National Research Council, 2012) is a compilation of science education research identifying critical topics and best practices for youth to learn science that centers students' cultures, interests, and identities as they make sense of their world. The Framework highlights how "all science learning can be understood as a cultural accomplishment." Research shows that a cultural perspective can transform learning experiences to be more engaging and meaningful for learners. This is a fundamental shift from **learning about** a science topic, **to figuring out** why or how something happens. These <u>instructional sequences</u> are more coherent when students investigate compelling natural phenomena (in science) or work on meaningful design problems (in engineering) by engaging in science and engineering practices.

"Equity in science education requires that all students are provided with equitable opportunities to learn science and become engaged in science and engineering practices; with access to quality space, equipment, and teachers to support and motivate that learning and engagement; and adequate time spent on science. In addition, the issue of connecting to students' interests and experiences is particularly important for broadening participation in science." (NRC, 2012).

From the research publication of the Framework, the Next Generation Science Standards were developed in partnership with the coordination of 26 states, including Oregon, along with critical partners in science, science education, higher education, and industry. As part of the development process, the standards underwent multiple reviews, including two public drafts, allowing all who have a stake in science education an opportunity to inform the development of the standards. This included input from over 50,000 educators. In 2014, and again in 2022, based on the recommendation from the Oregon Science Standards Advisory Panels, **the Oregon State Board of Education adopted the NGSS as Oregon's K-12 Science Standards**.

There is no doubt that science - and therefore, **science education - is central to the lives of every community member**. Never before has our world been so complex and scientific literacy so critical to making sense of it all. Science is also at the heart of each community's ability to continue innovating, leading, and creating jobs for the future. That's why **all students** - regardless of whether they pursue college or STEM careers - **should have access to a high-quality K-12 science education**. (nextgenscience.org, 2013).

For more information on Next Generation Science Standards (NGSS) and supporting resources, please visit the <u>NextGenScience</u> website.

Three Dimensional Learning: Putting it Together

<u>A K–12 Framework Science Education</u> (National Research Council, 2012) describes a vision of what it means to be proficient in science; it rests on a view of science as both a body of knowledge and an evidence-based, model and theory building enterprise that continually extends, refines, and revises knowledge. It presents three dimensions that will be combined to form each standard. These three dimensions, **science and engineering practices**, **crosscutting concepts**, and the **disciplinary core ideas**, make up distinct but equally

important components of what students should know and be able to demonstrate. The three dimensions are:

Dimension 1: Science and Engineering Practices

The practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems. <u>A Framework for K-12 Science Education</u> uses the term practices instead of a term like "skills" to emphasize that engaging in scientific investigation requires not only skill but also the knowledge that is specific to each practice. Part of the NRC's intent is to better explain and extend what is meant by "inquiry" in science and the range of cognitive, social, and physical practices that it requires.

Although engineering design is similar to scientific inquiry, there are significant differences. For example, scientific inquiry involves the formulation of a question that can be answered through investigation, while engineering design involves the formulation of a problem that can be solved through design. Strengthening instruction involving engineering will clarify for students the relevance of science, technology, engineering, and mathematics (the four STEM fields) to everyday life.

* Asking Questions and Defining Problems

A practice of science is to ask and refine questions that lead to descriptions and explanations of how the natural and designed world(s) works and which can be empirically tested.

Developing and Using Models

A practice of both science and engineering is to use and construct models as helpful tools for representing ideas and explanations. These tools include diagrams, drawings, physical replicas, mathematical representations, analogies, and computer simulations.

Planning and Carrying Out Investigations

Scientists and engineers plan and carry out investigations in the field or laboratory, working collaboratively as well as individually. Their investigations are systematic and require clarifying what counts as data and identifying variables or parameters.

Analyzing and Interpreting Data

Scientific investigations produce data that must be analyzed in order to derive meaning. Because data patterns and trends are not always obvious, scientists use a range of tools—including tabulation, graphical interpretation, visualization, and statistical analysis—to identify the significant features and patterns in the data. Scientists identify sources of error in the investigations and calculate the degree of certainty in the results.

Using Mathematics and Computational Thinking

In both science and engineering, mathematics and computation are fundamental tools for representing physical variables and their relationships. They are used for a range of tasks such as constructing

simulations; solving equations exactly or approximately; and recognizing, expressing, and applying quantitative relationships.

Constructing Explanations and Designing Solutions

The end-products of science are explanations and the end-products of engineering are solutions. The goal of science is the construction of theories that provide explanatory accounts of the world. A theory becomes accepted when it has multiple lines of empirical evidence and greater explanatory power of phenomena than previous theories.

Engaging in Argument from Evidence

Argumentation is the process by which evidence-based conclusions and solutions are reached. In science and engineering, reasoning and argument based on evidence are essential to identifying the best explanation for a natural phenomenon or the best solution to a design problem.

Obtaining, Evaluating, and Communicating Information

Scientists and engineers must be able to communicate clearly and persuasively the ideas and methods they generate. Critiquing and communicating ideas individually and in groups is a critical professional activity.

Dimension 2: Crosscutting Concepts

Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. They include: Patterns, similarity, and diversity; Cause and effect; Scale, proportion and quantity; Systems and system models; Energy and matter; Structure and function; Stability and change.

<u>A Framework for K-12 Science Education</u> emphasizes that these concepts need to be made explicit for students because they provide an organizational schema for interrelating knowledge from various science fields into a coherent and scientifically-based view of the world.

Patterns

Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.

Cause and Effect: Mechanism and Explanation

Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.

Scale, Proportion, and Quantity

In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system's structure or performance.

Systems and System Models

Defining the system under study—specifying its boundaries and making explicit a model of that system provides tools for understanding and testing ideas that are applicable throughout science and engineering.

Energy and Matter: Flows, Cycles, and Conservation

Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems' possibilities and limitations.

Structure and Function

The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.

* Stability and Change

For natural and built systems alike, conditions of stability and factors that control rates of change are critical elements to consider and understand.

Dimension 3: Disciplinary Core Ideas

Disciplinary core ideas have the power to focus K–12 science curriculum, instruction, and assessments on the most important aspects of science. To be considered core, the ideas should meet at least two of the following criteria and ideally all four:

- Have **broad importance** across multiple sciences or engineering disciplines or be a **key organizing concept** of a single discipline;
- Provide a **key tool** for understanding or investigating more complex ideas and solving problems;
- Relate to the **interests and life experiences of students** or be connected to **societal or personal concerns** that require scientific or technological knowledge;
- Be **teachable** and **learnable** over multiple grades at increasing levels of depth and sophistication.

Disciplinary ideas are grouped in four main core ideas (domains) and their subtopics: the <u>earth and space</u> <u>sciences</u>; <u>engineering</u>, <u>technology and applications of science</u>; the <u>life sciences</u>; and the <u>physical sciences</u>.

Earth & Space Science

- ESS1 Earth's Place in the Universe
- ESS2 Earth's Systems
- ESS3 Earth and Human Activity

Engineering, Technology, and the Application of Science

- ETS1 Engineering Design
- ETS2 Links Among Engineering, Technology, Science, and Society

Life Science

- o LS1 From Molecules to Organisms: Structures and Processes
- o LS2 Ecosystems: Interactions, Energy, and Dynamics
- LS3 Heredity: Inheritance and Variation of Traits
- LS4 Biological Evolution: Unity and Diversity

Physical Science

- PS1 Matter and Its Interactions
- o PS2 Motion and Stability: Forces and Interactions
- o PS3 Energy
- o PS4 Waves and Their Applications in Technologies for Information Transfer

Integration of K-12 Climate Change Education^

The adopted 2022 Oregon Science Standards include the foundational understanding of weather, climate, and human impacts on natural resources in Kindergarten through Grade 5. The standards also specifically identify global climate change and human impact on earth's system as a disciplinary core idea in <u>middle school</u> and <u>high school</u>.

With the adoption of the 2022 Oregon Science Standards, there are continual opportunities to elevate climate change education across grade levels and between disciplinary core ideas. This will provide learning progressions for students to make sense of the complex nature of climate change and learn the skills to develop and deploy solutions. A caret or up arrow (^) was added to those K-12 science standards that have proximal connections to climate change and human impact on earth's system. These standards were identified by utilizing a <u>research analysis</u> conducted by MADE CLEAR through a National Science Foundation Grant that could further support climate change education. For more information on climate change education and supporting resources, please visit the <u>STEM Teaching Tools – Climate Learning</u> website.

^ This performance expectation references <u>a proximal connection to climate change</u> and the disciplinary core ideas: Earth's Systems and Earth and Human Activity.

Integration of Engineering Design*

The NGSS represents a commitment to integrate engineering design into the structure of science education by raising engineering design to the same level as scientific inquiry when teaching science disciplines at all levels, from kindergarten to twelfth grade. It affirms the value of teaching engineering ideas, particularly engineering design, to young students.

The inclusion of engineering design within the fabric of the NGSS has profound opportunities for all students to acquire engineering design practices and concepts alongside the practices and concepts of science. The core idea of engineering design includes three component ideas:

- **Defining** and delimiting engineering problems involves stating the problem to be solved as clearly as possible in terms of criteria for success and constraints or limits.
- **Designing solutions** to engineering problems begins with generating a number of different possible solutions, then evaluating potential solutions to see which ones best meet the criteria and constraints of the problem.
- **Optimizing** the design solution involves a process in which solutions are systematically tested and refined and the final design is improved by trading off less important features for those that are more important.

It is important to point out that these component ideas do not always follow in order, any more than do the "steps" of scientific inquiry. At any stage, a problem solver can redefine the problem or generate new solutions to replace an idea that is just not working out. An asterisk (*) was added to those K-12 science standards that have engineering design embedded within either the science and engineering practices or as a disciplinary core idea. For more information on engineering design and supporting resources, please visit <u>Appendix I – Engineering Design in the NGSS</u>.

* This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea.

Flexibility in Middle School Science Sequencing

The Oregon State Board of Education adopted the recommendation in June 2022 to prioritize flexibility for districts to organize the middle school science standards to meet their localized needs. This provides opportunities to shift or sequence the middle school standards to create:

- Alignment and instructional support to 6th grade Outdoor School
- Opportunities to utilize national and statewide openly licensed instructional materials
- Increased flexibility for transdisciplinary (e.g. STEM, social science, health) units that are project-based and/or place-based learning experiences.

For example, districts engaging in Outdoor School may choose to build a coherent integrated course sequence that shifts 7th grade life science standards focusing on ecosystems to 6th grade, while moving a subset of 6th grade science standards to 7th grade.

<u>There may be circumstances where no changes to the current middle school science sequence are necessary</u>. Whatever the localized needs are, it is important to remember that students build knowledge and skills over time. Intentionality should be used in sequencing middle school science standards to develop a logical and coherent order within integrated courses that allow students to make connections across science disciplines and practices. The implementation of ambitious teaching practices in science identified the need for students to be engaged in high-quality science instruction that is <u>phenomena-driven</u> with integrated science content, and builds knowledge across <u>coherent storyline</u> course sequences in middle school remains best practice.

Middle School Earth & Space Science Standards

Grade 6 Earth & Space Science

6.ESS2 Earth's Systems

- 6.ESS2.4 Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
- 6.ESS2.5 Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. ^ [Clarification Statement: Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.]
- 6.ESS2.6 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. ^ [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

6.ESS3 Earth and Human Activity

- 6.ESS3.3 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.*^ [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
- 6.ESS3.5[†] Ask clarifying questions based on evidence about the factors that have caused climate change over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

†The language in this performance expectation has change from its original NGSS form. View original language <u>here</u>.

Grade 7 Earth & Space Science

7.ESS2 Earth's Systems

- 7.ESS2.1 Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
- 7.ESS2.2 Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]
- 7.ESS2.3 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]

7.ESS3 Earth and Human Activity

- 7.ESS3.1 Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]
- 7.ESS3.2 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. ^ [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).]

Grade 8 Earth & Space Science

- 8.ESS1 Earth's Place in the Universe
- 8.ESS1.1 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. [Clarification Statement: Examples of models can be physical, graphical, or conceptual.]
- 8.ESS1.2 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as their school or state).] [Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]
- 8.ESS1.3 Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, spacebased telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]
- 8.ESS1.4 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.]

8.ESS3 Earth and Human Activity

8.ESS3.4 Construct an argument supported by evidence for how increases in human population and percapita consumption of natural resources impact Earth's systems. A [Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.]

^{*}This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea.

[^]This performance expectation references <u>a proximal connection to climate change</u> and the disciplinary core ideas: Earth's Systems and Earth and Human Activity.

Middle School Engineering, Technology, and the Application of Science

Grade 6-8 Engineering, Technology, and the Application of Science

MS.ETS1 Engineering Design

- MS.ETS1.1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. ^
- MS.ETS1.2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
- MS.ETS1.3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
- MS.ETS1.4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Middle School Life Science Standards

Grade 6 Life Science

6.LS1 From Molecules to Organisms: Structures and Processes

- 6.LS1.1 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. [Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells.]
- 6.LS1.2 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. [Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.]
- 6.LS1.3[†] Construct an explanation supported by evidence for how the body is composed of interacting systems consisting of cells, tissues, and organs working together to maintain homeostasis. [Clarification Statement: Emphasis should be on the function and interactions of the major body systems (e.g. circulatory, respiratory, nervous, musculoskeletal).] [Assessment Boundary: Assessment is focused on the interactions between systems not on the functions of individual systems.]
- 6.LS1.4 Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Emphasis is on both animals and plants (behaviors and structures). Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds; and, creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen and hard shells on nuts that squirrels bury.]
- 6.LS1.5 Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. ^ [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
- 6.LS1.8 Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.]

⁺The language in this performance expectation has change from its original NGSS form. View original language <u>here</u>.

6.LS3 Heredity: Inheritance and Variation of Traits

6.LS3.2 Develop and use models to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

Grade 7 Life Science

7.LS1 From Molecules to Organisms: Structures and Processes

- 7.LS1.6 Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. ^ [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]
- 7.LS1.7 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]

7.LS2 Ecosystems: Interactions, Energy, and Dynamics

- 7.LS2.1 Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. ^ [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
- 7.LS2.2 Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. ^ [Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.]
- 7.LS2.3 Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]
- 7.LS2.4 Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. ^ [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
- 7.LS2.5 Evaluate competing design solutions for maintaining biodiversity and ecosystem services.*^ [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion.Examples of design solution constraints could include scientific, economic, and social considerations.]

Grade 8 Life Science

8.LS3 Heredity: Inheritance and Variation of Traits

8.LS3.1 Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]

8.LS4 Biological Evolution: Unity and Diversity

- 8.LS4.1 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
- 8.LS4.2 Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
- 8.LS4.3 Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
- 8.LS4.4 Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]
- 8.LS4.5 Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]
- 8.LS4.6 Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.][Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]

^{*}This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea. ^This performance expectation references <u>a proximal connection to climate change</u> and the disciplinary core ideas: Earth's Systems and Earth and Human Activity.

Middle School Physical Science Standards

Grade 6 Physical Science

6.PS3 Energy

- 6.PS3.3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
- 6.PS3.4 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. A [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

6.PS3.5 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]

Grade 7 Physical Science

7.PS1 Matter and Its Interactions

- 7.PS1.1 Develop models to describe the atomic composition of simple molecules and extended structures. ^ [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.]
- 7.PS1.2 Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment Boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.]
- 7.PS1.3 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. ^ [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.]
- 7.PS1.4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. ^ [Clarification Statement:

Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawings and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.]

- 7.PS1.5 Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. [Clarification Statement: Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms that represent atoms.] [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.]
- 7.PS1.6 Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]

Grade 8 Physical Science

- 8.PS2 Motion and Stability: Forces and Interactions
- 8.PS2.1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.][Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]
- 8.PS2.2 Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. [Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.]
- 8.PS2.3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]
- 8.PS2.4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. [Clarification Statement: Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton's Law of Gravitation or Kepler's Laws.]

8.PS2.5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. [Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.] [Assessment Boundary: Assessment is limited to electric and magnetic fields, and is limited to qualitative evidence for the existence of fields.]

8.PS3 Energy

- 8.PS3.1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]
- 8.PS3.2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

8.PS4 Waves and Their Applications in Technologies for Information Transfer

- 8.PS4.1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]
- 8.PS4.2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]
- 8.PS4.3 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]

^{*}This performance expectation integrates traditional science content with engineering through a practice or disciplinary core idea.

^AThis performance expectation references <u>a proximal connection to climate change</u> and the disciplinary core ideas: Earth's Systems and Earth and Human Activity.