Authority

ORS 498.351 and ORS 509.605, et al, require any person, municipal corporation or government agency placing an artificial obstruction across a stream to provide a fishway for anadromous, food and game fish species where these are present. Fish passage accommodations will be required on any stream, regardless of size, perennial or intermittent, if it is utilized by fish during any significant period of the year. In addition, ODFW may recommend fish passage accommodations at structures constructed in any stream that has a history or potential for fish production if applicable ODFW Basin Fish Management Plans call for the establishment or re-establishment of these populations.

A local Oregon Department of Fish and Wildlife (ODFW) representative should be contacted to determine fish presence and identify fish passage needs at proposed road-waterway crossing projects if such is in question. Project proponents should assume that accommodations for fish passage will be required at any road crossing regardless of stream size if no determination is requested.

Although it is the landowner's responsibility to install and maintain required fish passage structures, it is the policy of ODFW to provide assistance on request to the extent possible. Generally, proposed designs should be reviewed by ODFW prior to finalization of project plans.

Fishway Design: Philosophy, Theory and Practice

When designing fish passage facilities, the following biological variables should be considered:

X Species of fish present
X Life stages to be impacted
X Migration timing of affected species/Life stages

The local ODFW district biologist may be contacted for this information.

Fish passage design is normally based on the weakest species or
life stage present that requires upstream access and should accommodate the weakest individual within that group. Management objectives and other relevant factors may, however, direct deviation from this standard. For instance, passage needs of undesirable species (e.g., brook trout in bull trout habitat) may not be accommodated based on other over-riding management objectives. Also, if juveniles, generally the weakest life stage of a species, would use habitat above a culvert for an insignificant portion of the year, ODFW may conclude that only spawning fish (stronger adults) need to be accommodated and that the culvert need not be designed at the higher (juvenile) standard.

Conventions

As used in these discussions of standards, designs and criteria, the "entrance" and "exit" of a culvert or fishway is from the fish's perspective as it moves upstream. Thus, the "entrance" refers to the downstream portion of the structure while the "exit" is the upstream end. "Inlet" and "outlet" refer to water entering and leaving a culvert or fishway.

Hydrologic Considerations and Calculations

It is not considered necessary or practical to design culverts to pass fish at flood stage or continually. Fish generally move after flood peaks pass. Acceptable hydraulic design of culverts includes selection of appropriate design flow from which the flow characteristics can be derived by hydraulic analysis. The low flow depth design should be based on the 2-year, 7-consecutive-day low flow discharge or the 95% exceedence flow for the migration period of the fish species of concern. The high flow design discharge should be the flow that is not exceeded more than 10% ($Q_{10\%}$) of the time during the months of adult migration. That flow can be approximated by

$$Q_{10\%} = 0.18 \times (Q_2) + 36$$

for cases where the 2-year flood event (Q_2; in cfs) is greater than 44 cfs. For cases where Q_2 is less than 44 cfs, the design flow can be approximated as equaling Q_2.

Criteria for Upstream Movement of Adult Fish

Adult anadromous fish generally expend approximately 80% of their stored energy reserve during normal upstream migration to suitable spawning areas. Undue exertion or delay at stream-road crossings due to unsuccessful passage attempts at inadequate (blocking) structures can lead to reduced spawning success and pre-spawning mortality.
Where fish passage is required by ODFW (in general, wherever fish are present), the following guidelines shall be utilized for preliminary design. Design flows for culvert passage are calculated based on monthly periods when fish migrate.

Maximum Water Velocities

<table>
<thead>
<tr>
<th>Culvert Length (ft)</th>
<th>Salmon & Steelhead</th>
<th>Adult Trout (>6")</th>
<th>Juvenile salmonids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 60'</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>60 to 100'</td>
<td>5.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>100 to 200'</td>
<td>4.0</td>
<td>3.0</td>
<td>see note below</td>
</tr>
<tr>
<td>200 to 300'</td>
<td>3.0</td>
<td>2.0</td>
<td>see note below</td>
</tr>
<tr>
<td>over 300'</td>
<td>2.0</td>
<td>1.0</td>
<td>see note below</td>
</tr>
</tbody>
</table>

Note: For juvenile fish, only designs incorporating streambed simulation solutions will be considered for culverts over 100' in length. Streambed simulation refers to the situation where substrate and flow conditions in the crossing structure mimic the natural streambed above and below the structure.

Table 1 presents the hydraulic criteria for the design of culverts for passage of salmonids. Satisfaction of these criteria is essential to the adequacy of a culvert installation to meet fish migration needs. These criteria are based on several references.

In a natural stream channel, the average water velocities indicated in Table 1 are often exceeded. The diversity of natural channel beds and formations, however, provides paths of access with suitable depths, velocities and resting opportunities with only brief exposure to excessive conditions. Velocity requirements noted above may be exceeded within structures with natural beds upon approval by the ODFW Fish Passage Coordinator, Portland.

Minimum Depth at Low Flow Discharge

For non-embedded culverts, minimum water depth during expected fish passage periods shall be:
X Twelve (12) inches for adult steelhead and chinook salmon;
X Ten (10) inches for salmon other than chinook, sea-run cutthroat trout and other trout over 20 inches in length; and
X Eight (8) inches for trout under 20 inches, kokanee and migrating juvenile salmon and steelhead.

For embedded (stream simulation) culvert designs, minimum depth at low flow discharge during expected fish passage periods must meet or exceed conditions found in the adjacent natural channel.

Entrance Jump; Maximum Vertical Height

A backwatered or partially submerged culvert entrance is preferred but the following maximum jumps are allowable where justified:

X One (1) foot for salmon and steelhead adults
X Six (6) inches for trout and kokanee adults and salmon and steelhead juveniles.

The above are also the maximum jump heights when a series of jumps and pools are required.

In cases where entrance jumps are planned, a jump pool of at least 1.5 times the jump height or a minimum 2 feet deep must be provided.

When planning for any jump into a culvert, project designers must show why the culvert could not be designed with no jump.

Criteria for Upstream Migration of Juvenile Salmonids

Upstream juvenile migration occurs in response to instream habitat conditions, predation and population pressures. Juvenile migration and redistribution is a means for increased survival and optimizing production. An obstruction to juvenile migration can limit production both upstream and downstream from the barrier.

Juvenile salmonids, by virtue of their small size, are less capable swimmers when compared to adults. Therefore, maximum water velocity, jump and swimming distance criteria are necessarily lower than those for adults.

Preferred Road-Stream Crossing Structures

Where fish passage facilities are required by ODFW, the following
structure types shall be considered for use in the displayed order of preference:

1. Bridge (with no approach embankment into the main channel)
2. Streambed simulation strategies using a Bottomless Arch or embedded culvert designs
3. Streambed simulation strategies using embedded round metal or concrete box culvert designs
4. Non-embedded culvert; placed at less than 0.5% slope
5. Baffled culvert (various designs); placed at 0.5% to 12% slope or a structure with a fishway.

Again, streambed simulation refers to the situation where substrate and flow conditions in the crossing structure mimic the natural streambed for fish passage flows.

The landowner or agency must justify their proposed structure type if a more preferred structure type is not selected.

General Considerations

At any given flow, slope is an important factor affecting water velocity in culverts. Culvert size also affects velocities, especially when a structure is considerably undersized and a head (pooling above culvert) is developed.

Gradients (slope) for non-embedded, non-baffled culverts shall not exceed 0.5% unless a tailwater situation exists to backwater the culvert to a suitable depth for its length. Properly baffled or weir'd culverts are appropriate for steeper gradients depending on design. Structures with fishways (i.e., fish ladders or culverts with weir-type baffles) generally will be required where culvert gradients exceed 5% and streambed simulation is not employed.

Corrugated metal culverts are generally preferred over smooth-surfaced culverts. Deep corrugations are preferred over shallow corrugations.

Bottomless arches and all styles of embedded culverts shall be placed at or near the same gradient as the natural streambed and shall be at least as wide as the active stream channel (i.e., no lateral encroachment on the active stream channel). All embedded culverts (round or arch) must be embedded one foot deep or at least 20% of its height, whichever is more.

When deciding between bottomless arch and embedded culvert designs, the primary consideration is foundation substrate. If considerable bedrock is present, an open bottom arch is generally the appropriate choice; embedding a culvert would require
extensive excavation. Where deep unconsolidated gravel and cobble is present, failure (undermining) of a bottomless arch foundation is a major concern.

Hydraulic controls may be required to (1) improve culvert entrance and exit conditions (e.g. using a beveled inlet configuration; providing resting pools at culvert entrance and exit), (2) concentrate low flows, (3) prevent erosion of stream bed and banks, or (4) allow passage of bedload material. The need for, and design of, these project features should be developed in consultation with ODFW.

If water-crossing structures are placed in spawning areas, they must incorporate mitigation measures, as necessary, to achieve no-net-loss of spawning area.

Trash racks are discouraged at culvert inlets. But if necessary, these should be installed only above the high passage flow water level.

For culverts over 200 feet in length, illumination may be required. Contact the ODFW Fish Passage Coordinator, Portland, for a case-specific determination.

Water Crossing Structures

Bridges

Properly installed bridges pose the least impact on crossed water courses and are, therefore, generally preferred by ODFW. Bridges are appropriate at any stream gradient. It is understood that bridging costs can be relatively high and that project costs is a valid consideration when evaluating road-stream crossing alternatives.

Culverts

Where fish are present and passage is a concern, culverts shall be designed and constructed to provide adequate fish passage (as per criteria stated herein) for those species and life stages determined to be present. High water velocity, shallow water depth within the culvert, excessive vertical drop at the culvert outlet and debris blockages are the most frequent causes of fish passage problems at culverts. Therefore, culverts must be designed and constructed to avoid these defects.

Culverts may be approved for placement in small streams without extensive hydraulic analysis if placed on a flat gradient (0.5% or less) and achieve minimum depth requirements. Where culvert installation is not feasible at a flat gradient, the culvert design shall consider design criteria outlined earlier.

Construction Considerations and Conditions
Culverts and associated fill should be designed using standard engineering design practices to maintain structural integrity to the 100-year flow.

Disturbance of the bed and banks should be limited to that necessary to place the culvert, embankment protection and any required channel modification associated with the installation. All disturbed areas should be protected from erosion within seven (7) calendar days of completion of the project using vegetation or other means. The banks should be revegetated within one year with native or other approved woody plant species. Live stakes should be planted at a maximum interval of three feet (on center) and maintained as necessary to ensure 80% survival.

Approved structures should be constructed in the dry whenever possible. Where significant live flow exists, isolation of the construction site from stream flow is required by techniques such as:
< the installation of a bypass channel, a flume or culvert
< the installation of a sheetpile or sandbag wall
< the use of a water-filled cofferdam
< by pumping the stream flow around the site

Exception may be granted if siltation or turbidity is reduced to acceptable levels by means approved by ODFW.

Any fish stranded in the construction area or diversion reach shall be safely moved to the flowing stream. A local ODFW representative should be contacted to determine if the fish need to be moved.

Any wastewater from project activities and dewatering shall be routed to an area outside the ordinary high water line to allow settling of fine sediments and other contaminants prior to being discharged back into the subject stream.

If in-water excavation is anticipated, timing of same shall conform to Oregon Guidelines for Timing of In-Water Work to Protect Fish and Wildlife Resources unless an exception is approved by ODFW.