William Lee Woods, PE
Senior Standards Engineer

This is the January 2024 release of the 2024 Oregon Standard Drawings.

For ODOT Projects, the details in the standard drawings will be effective on the June 1, 2024 bid opening where these drawings are called for in the project plans.

These drawings are for use with projects using the 2024 Oregon Standard Specifications.

The drawing "effective date" is located below the title block on each Standard Drawing. The bid opening date of a project should be in the effective date window of the drawings. This will ensure the correct drawings are being used on the projects.

Electronic PDF files with the effective date for each drawing are on the web at:
http://www.oregon.gov/ODOT/Engineering/Pages/Standards.aspx
Each standard drawing has a corresponding Standard Drawing Reports that contains useful information for the designer as well as updates that occur on the drawing. The link to the report is the title of the specific drawing on the webpage.

The following Standard Drawings were updated for the January 2024 release:

Drawing Number	Comment
RD100	
RD101	
RD322	
RD324	
RD420	
RD438	
RD442	
RD443	
RD444	
RD451	
RD471	
RD501	
RD502	

Drawing Number	Comment
RD702	
RD780	
RD781	
RD782	
RD900	
RD901	
BR115	
BR165	
BR200	
BR207	
BR208	
BR226	
BR275	New Drawing
BR500	
BR705	
BR709	
BR820	
TM223	Title Change
TM226	New Drawing
TM302	
TM303	
TM450	
TM460	
TM462	
TM470	
TM472	
TM485	
TM601	
TM630	
TM650	
TM652	
TM655	
TM670	
TM680	
TM842	

DRAWING NUMBER	$\begin{aligned} & \hline \hline \text { REVISION } \\ & \text { DATE } \end{aligned}$	DRAWING NUMBER	$\begin{gathered} \hline \text { REVISION } \\ \text { DATE } \end{gathered}$	DRAWING NUMBER	$\begin{gathered} \hline \text { REVISION } \\ \text { DATE } \end{gathered}$

RD100	$1 / 2024$
RD101	$1 / 2024$
RD110	
RD115	
RD120	
RD130	
RD140	
RD150	
RD160	
RD170	
RD250	
RD254	
RD255	
RD258	
RD262	
RD266	
RD270	
RD274	
RD278	
RD282	
RD286	
RD300	
RD302	
RD304	
RD306	
RD308	
RD310	
RD312	
RD316	
RD317	
RD318	
RD319	
RD320	
RD321	
RD322	$1 / 2024$
RD324	$1 / 2024$
RD325	
RD326	
RD327	
RD328	
RD330	
RD332	
RD334	
RD335	
RD336	
RD333 340	

RD344	
RD345	
RD346	
RD348	
RD350	
RD352	
RD354	
RD356	
RD358	
RD360	
RD362	
RD363	
RD364	
RD365	
RD366	
RD367	
RD368	
RD370	
RD371	
RD372	
RD373	
RD374	
RD376	
RD378	
RD380	
RD382	
RD384	
RD386	
RD388	
RD390	
RD391	
RD393	
RD398	
RD399	
RD400	
RD401	
RD402	
RD419	
RD403	
RD404	
RD405	
RD406	
RD407	
RD408	
RD409	

RD420	$1 / 2024$
RD421	
RD435	
RD436	
RD437	
RD438	$1 / 2024$
RD440	
RD442	$1 / 2024$
RD443	$1 / 2024$
RD444	$1 / 2024$
RD445	
RD450	
RD451	$1 / 2024$
RD470	
RD471	$1 / 2024$
RD472	
RD473	
RD474	
RD481	
RD482	
RD500	
RD501	$1 / 2024$
RD502	$1 / 2024$
RD503	
RD505	
RD510	
RD515	
RD516	
RD520	
RD526	
RD530	
RD535	
RD536	
RD545	
RD546	
RD550	
RD560	
RD570	
RD575	
RD576	
RD580	
RD581	
RD590	
RD595	
RD596	
RD602	
RD610	
RD701	

DRAWING NUMBER	$\begin{aligned} & \hline \hline \text { REVISION } \\ & \text { DATE } \end{aligned}$	DRAWING NUMBER	$\begin{gathered} \hline \text { REVISION } \\ \text { DATE } \end{gathered}$	DRAWING NUMBER	$\begin{gathered} \hline \text { REVISION } \\ \text { DATE } \end{gathered}$

RD702	$1 / 2024$
RD705	
RD706	
RD707	
RD710	
RD711	
RD715	
RD720	
RD721	
RD722	
RD725	
RD730	
RD735	
RD740	
RD745	
RD750	
RD770	
RD771	
RD780	$1 / 2024$
RD781	$1 / 2024$
RD782	$1 / 2024$
RD810	
RD815	
RD820	
RD825	
RD830	
RD832	
RD835	
RD840	
RD845	
RD900	$1 / 2024$
RD901	$1 / 2024$
RD902	
RD904	
RD905	
RD906	
RD908	
RD909	
RD910	
RD912	
RD913	
RD916	
RD920	
RD922	
RD930	
RD932	
$R D 938$	
RD940	

RD952	
RD960	
RD1000	
RD1005	
RD1006	
RD1010	
RD1015	
RD1030	
RD1031	
RD1032	
RD1033	
RD1040	
RD1045	
RD1050	
RD1055	
RD1060	
RD1065	
RD1070	
RD1140	
BR115	$1 / 2024$
BR133	
BR135	
BR136	
BR139	
BR140	
BR141	
BR145	
BR157	
BR165	$1 / 2024$
BR175	
BR182	
BR190	
BR191	
BR195	
BR200	$1 / 2024$
BR203	
BR206	
BR207	$1 / 2024$
BR208	$1 / 2024$
BR209	
BR212	
BR214	
BR216	
BR220	
BR221	
BR2223	

BR230	
BR233	
BR236	
BR240	
BR241	
BR242	
BR245	
BR246	
BR250	
BR253	
BR256	
BR260	
BR263	
BR266	
BR270	
BR273	
BR275	$1 / 2024$
BR285	
BR286	
BR290	
BR291	
BR300	
BR310	
BR321	
BR325	
BR330	
BR335	
BR340	
BR350	
BR360	
BR365	
BR375	
BR400	
BR405	
BR410	
BR415	
BR420	
BR422	
BR706	
BR25	
BR430	
BR435	
BR440	
BR445	
BR500	
$1 / 2024$	

DRAWING NUMBER	REVISION DATE	DRAWING NUMBER	REVISION DATE	DRAWING NUMBER	REVISION DATE

BR707	
BR708	
BR709	$1 / 2024$
BR730	
BR740	
BR750	
BR751	
BR760	
BR800	
BR805	
BR820	$1 / 2024$
BR825	
BR830	
BR835	
BR840	
BR841	
BR970	
BR971	
BR972	
TM200	
TM201	
TM204	
TM206	
TM211	
TM212	
TM220	
TM221	
TM222	
TM223	$1 / 2024$
TM224	
TM225	
TM226	$1 / 2024$
TM230	
TM231	
TM232	
TM233	
TM240	
TM300	
TM301	
TM302	$1 / 2024$
TM303	$1 / 2024$
TM450	$1 / 2024$
TM452	
TM453	
TM454	
TM4567	
	$1 / 2024$

TM462	1/2024	TM621	
TM466		TM622	
TM467		TM623	
TM470	1/2024	TM624	
TM471		TM625	
TM472	1/2024	TM626	
TM482		TM627	
TM485	1/2024	TM628	
TM492		TM629	
TM493		TM630	1/2024
TM500		TM631	
TM501		TM635	
TM502		TM650	1/2024
TM503		TM651	
TM504		TM652	1/2024
TM505		TM653	
TM515		TM654	
TM516		TM655	1/2024
TM517		TM656	
TM520		TM657	
TM521		TM658	
TM530		TM670	1/2024
TM531		TM671	
TM539		TM672	
TM547		TM675	
TM551		TM676	
TM560		TM677	
TM561		TM678	
TM570		TM679	
TM571		TM680	1/2024
TM575		TM681	
TM576		TM687	
TM577		TM688	
TM600		TM689	
TM601	1/2024	TM690	
TM602		TM691	
TM606		TM693	
TM607		TM694	
TM608		TM695	
TM609		TM696	
TM610		TM697	
TM611		TM698	
TM612		TM800	
TM614		TM810	
TM615		TM820	
TM616		TM821	
TM617		TM822	
TM618		TM830	
TM619		TM831	
TM620		TM832	

DRAWING NUMBER	REVISION	DRAWING	REVISION	DRAWING	REVISION

TM833	
TM840	
TM841	
TM842	$1 / 2024$
TM843	
TM844	
TM845	
TM850	
TM851	
TM852	
TM853	
TM854	
TM855	
TM860	
TM861	
TM862	
TM870	
TM871	
TM880	

- A -

Access and Ventilation

Hardware for Concrete Box Girders BR135, BR136
Air Release/Air Vacuum Assembly,
Water System RD266, RD270
Anchors, Pipe Slope
RD330, RD332
Approaches

- B -

Barricades (Types I, II, \& III) TM820

Barrier, Concrete, Median

35" cast-in-place
RD590

Barrier, Concrete, Standard (32" Height)

Around Median Obstacle	RD535, RD536
At Bridge Expansion Joints	RR263
Buried in Backslope	RD526
Cast-In-Place	RD505
Median Barrier Anchoring	RD515
Precast	RD500, RD501, RD502
Scuppers (Precast)	RD595, RD596
Securing Barrier To Roadway	RD516
Temporary Inst. and Maintenance	RD503, RD515, RD516,
	RD530
Terminals	RD510
Transition To Bridge Rail	RD520

Transition To Guardrail
RD530, RD580 Barrier, Concrete, Tall (42" Height)

Around Median Obstacle
Precast
Securing Barrier To Roadway
Transition to Bridge Rail
Transition To Standard Barrier
Transition To Guardrail
Barrier, Metal Median
Bollards
Bike Lane

Curb	RD702
Crossing	RD1140

Box Culvert, Concrete
Cast-in-place BR820, BR825,
Double Box Culverts BR840, BR841
Extensions
Wingwalls BR800

Boxes

Trapezoidal Box Reinforcement
BR133
Bridge End Panel BR165
Bridge Concrete Parapet

$32^{\prime \prime}$ Vertical	BR221
$42^{\prime \prime}$ Vertical	BR222
With Steel Post	BR214

Bridge Preservation
Concrete Repair

General Cathodic Protection	BR520
Reinforcement Continuity	BR525
Reinforcing Bar Repair	BR505
Rivet Replacement	BR550

Bridge Rail

2-Tube Curb Mount	BR206, BR207
2-Tube Side Mount	BR226, BR230
3-Tube Curb Mount	BR208, BR209
Combination	BR223
Concrete Post and Beam	BR212
Flush Mount Combination	BR220
Pedestrian	
Pedestrian On Sidewalk Mount	BR246
\quad	
Parapet	BR250
Rail Buttress	
\quad 42 Inch	
Sidewalk Mount Combination	BR275
Sidewalk Mount Parapet with	
\quad Chain Link Fence	BR253
Thrie Beam	BR233
Thrie Beam Retrofit	BR273
Trailing End Connection	
\quad To Guardrail	BR236
Transition From Guardrail	BR270, BR275
Transition To Guardrail	BR203
Transition To Guardrail,	
$\quad 3^{\prime \prime}$ 6" Height	BR291
Type F	BR200
Type F 3'-6" Height	BR290
Type F with Chain Link	BR260
Type F with Pedestrian Rail	BR256
Type F with Rectangular Tube	BR285, BR286

Cathodic Protection, General	BR520
Cattle Guard	
Painted	RD110
Steel Tube	BR175
Cattle Pass	RD110
Check Dams	RD1005, RD1006
Concrete Pavement	
Plain Dowelled	RD600
Reinforced	RD600
Concrete Repair, Bridge	BR500
Concrete Truck Wash Out	RD1070
Construction Entrances	RD1000
Coupling Bands for Corrugated Metal Pipe	RD325, RD326, RD327
Cross Slopes, Roadway Superelevations	RD140
Crosswalk Closure	TM240
Curb Inlets	RD366
Curbs, Various Types	RD700, RD170
Drainage	RD701
Bike Lane	RD702
Curb Ramp	
Blended Transition	RD940
Combination	RD930, RD932, RD936, RD938
Components	RD900
Corner Identification	RD901
Detectable Warning Surface	RD902, RD904, RD905 RD906, RD908
Detectable Guide Strip	RD909
End of Walk	RD950, RD952
Parallel	RD920, RD922

Perpendicular	RD910, RD912, RD913,	Non-Sidewalk Separated Sidewalk	$\begin{aligned} & \text { RD715 } \\ & \text { RD725, RD740 } \end{aligned}$
Unique	RD960		
Cutbanks, Rounding	RD150		
Crossing			
Bike Lane	RD1140		
		End Pieces, Guardrail	RD415, RD417
-D-		Energy Dissipater	RD1045, RD1050
		Erosion Control	
		Check Dams	RD1005, RD1006
Delineators		Concrete Truck Wash Out	RD1070
Installation		Construction Entrances	RD1000
Freeways	TM575	Energy Dissipater	RD1045, RD1050
Non-Freeway	TM576	Inlet Protection	RD1010, RD1015
Special Applications	TM577	Matting	RD1055
Layout And Posts Types	TM570	Scour Basin, Temporary	RD1050
Steel Post Details	TM571	Sediment Barrier	RD1030, RD1031, RD1032, RD1033
Detectable Warning Devices	RD902, RD904, RD905,	Sediment Fence	RD1040
	RD906, RD908,RD909	Sediment Trap	RD1065
		Slope Drains, Temporary	RD1045
Drainage Details		Tire Wash Facility	RD1060
Bore Casing	RD308	Expansion Joints, Bridge	
Concrete Encasement, Cradle, And Cap	RD306	Expansion Joints, Bridge	BR145
Locator Post	RD334		
Street Cut	RD302		
Trench Backfill	RD300	-F.	
Gutter Transition At Inlet	RD363		
Driveways		Feathering A.C. Over Existing Pavement	RD610
Curb Line Sidewalk	RD730, RD735		
	RD745, RD750		

Fences	
Barbed \& Woven Wire	
(Types 1, 1-5W And 2)	RD810
Chain Link	RD815
Gates	RD820
Pedestrian	RD780, RD781, RD782
Protective	BR240, BR241, BR242,
Snow, Metal	RD825
Wildlife	RD830, RD832, RD835, RD840, RD845
Field Marker, Storm Water Treatment	
Flag Board Mounting Details	TM204
Flashing Beacon (RRFB) Assemblies	TM493
-G-	
Gates, Fence	RD820, RD832
Gateway	RD810
Girders	
Precast Prestressed Boxes	BR425, BR430,
	BR435, BR440,
	BR445
Bulb-I	BR300
Bulb-T	BR310, BR360, BR365,
	BR375
BT90 And BT96	BR321
Temporary Diaphragm Beam	BR350
Type II	BR325
Type III	BR330
Type IV	BR335

Type V	BR340
Grade Crossing, Railroad	RD445
Grate	
Inlets	
Manhole	RD365, RD378
Guardrail	RD356
29" Rail Height	See Guardrail - 29" Rail
	Height
31" Rail Height	See Midwest Guardrail
	system
Anchors, Steel	
(Types 1 And 1 Mod.)	RD450
Bridges/Rails	(See Rails)
Installation At Railroad Crossing	RD445
Placement of Guardrail on Slopes	RD406
Posts, Wood Breakaway	RD451
Thrie Beam	RD409, RD410
Guardrail - 29" Rail Height	
Adjustment	RD400
Assembly Details	RD400
Blocks	
End Pieces, Types B And C	RD405
Guardrail and Transitions	RD400, RD481
Installation At Bridge Ends	RD530, RD570
Over Low-Fill Culverts	RD440
Parts	RD415
Posts	RD405


```
    Concrete Types G, & G-2M RD364
    Concrete Types CG
    RD366
    Curb Inlet Channel RD367
    Concrete Types M-E, M-O, And B RD368
    Ditch, Type D
    RD370
    Field or Area Drainage Basin RD374
    Frames and Grates RD365
    Pipe to Structure Connections RD339
    Slotted CMP Drain RD328
    Type 3 RD378
Inlet Protection
Islands
    Accessible Route RD710
    Accessible Route Channelized RD711
    Traffic
    RD705
    RD707
Joint Seal, Asphaltic Plug BR157
Also see Expansion Joints, Bridge
    -L-
Locator Post
RD334
```


Luminaire Poles

```
\(\begin{array}{ll}\text { Breakaway Location Guidelines } & \text { TM635 } \\ \text { Fixed and Slip Base Supports } & \text { TM629, TM630,TM631 }\end{array}\)
```

Mounting On Structures	BR970, BR971, BR972
Lifeline, Fall Arrest	BR190, BR191

-M-

Mail Box Support	RD100
Mail Box Installation	RD101

Manhole, Concrete

24" Manhole	RD343
Base, Cast-In-Place And Precast	RD344
Carry Through, Storm Sewer	RD354
Cover and Frame	RD356
Grate	RD356
Frame Adjustment	RD360
Inside Drop, Sanitary	RD350
Outside Drop	RD352
Pipe to Manhole Connections	RD345
Precast, Large	RD346
Precast, Pollution Control	RD340
Precast, Sanitary Sewer	RD338
Precast, Storm Sewer	RD335
Shallow	RD342
Slope Protector	RD358
Steps	RD336
With Inlet	RD348

Median Barrier, Metal

Barrier and Transitions

RD400, RD408, RD481, RD530, RD570

	RD580, RD581
Assembly Details	RD400, RD408
Blocks	RD403, RD404, RD405
Bridge Deck Expansion Joint	RD400, RD412
Parts	RD415, RD416, RD417
Posts	RD403, RD404, RD405

Median and Shoulder Barriers, Concrete

Anchoring	RD515
Cast-In-Place	RD505
Precast	RD500
Securing Barrier To Roadway	RD516
Terminals	RD510
Meter Assembly, Water System	RD278
Milepost Signing Details	TM221, TM222
Moment Slab on MSE Wall	BR760
Monument Box	RD115
Multi-Use Path	RD602

Midwest Guardrail System

Adjustment	RD401
Assembly Details	RD407, RD408
Blocks	RD403, RD404
Box Culvert	
Embedded Anchor Steel Post	RD472
Bolt-Thru Anchor Steel Post	RD473
Bridges/Rails	(See Rails)
Buried in Backslope	RD436, RD437
Curb And Omitted Post	RD474
End Pieces, Types B and C	RD417
Guardrail and Transitions	RD412, RD482
	RD580, RD581
Height Conversion	RD481
Over Low-Fill Culverts	
\quad Omitted Post	RD471
Parts	RD416, RD417

Posts	RD403, RD404
Terminals, Bridges	RD442
Terminals, Buried in Backslope	RD436, RD437
Terminals, Downstream Anchor	RD438
Terminals, Energy Absorbing	RD420, RD421
Terminals, Grading	RD419
Transition to Bridge Rail	BR270
Types	RD402
Metal Median Barrier	RD408
Thrie beam	RD409, RD410
W-beam	RD407, RD482
Typical Layouts	
At Bridge Ends	RD442
For Embankments	RD443
For Fixed Objects	RD444

-P-

Pavement

Asphalt Pavement Details	RD610, RD615
Multi-Layer Construction	RD615
Surface Edge Details	RD615

Pavement Markings

Alignment Layout
Durable Markings
Freeway Ramp
Intersection
High Performance Markings
Left Turn and Median
TM560, TM561
TM520, TM521
TM547, TM551
TM530
TM521

Railroad Crossing	TM505
Raised Marking Details	TM515, TM516
Recessed Marking Details	TM517
Standard Details Blocks	TM500, TM501, TM502,
	TM503, TM504, TM510
Turn Arrow	TM531

Pedestrian

Aluminum Fence RD780, RR781, RD782
Metal Handrail
RD770, RD771
Pipe
Backfill/Compaction Details RD300, RD304
Connection Details, Unlike Pipe
Corrugated Metal Coupling Bands
Culvert Embankment Protection
RD325, RD326, RD327
RD325, RD326, RD327
RD317
Culvert ID Marker
RD398
Miscellaneous Culvert Details RD319
Multiple Installations RD300
Paved End Slopes RD320
Paved End Slopes
With Removable Safety Bars RD321
Safety End Sections, Concrete Pipe RD324
Safety End Sections, Metal Pipe RD322
Skew Diagram RD316
Slope Anchors RD330, RD332
Sloped Ends, Concrete Pipe RD318
Sloped Ends, Metal Pipe RD316
Slotted Drain, Metal Pipe (CMP) RD328

Pipe Fill Height Tables

Concrete	RD386
Corrugated HDPE	RD390
Metal, Arch	RD382
Metal, Round	RD380

Metal, Spiral Rib	RD384
Polypropylene	RD393
Poly Vinyl Chloride (PVC)	RD388
Reinforced HDPE	RD391

Poles	
\quad Luminaire Fixed and	
Slip Base Supports	TM629, TM630,TM631
Traffic Signals	TM650, TM651, TM652
Portable Barricade	TM653,TM654
TM820	

-R-

Railroad At Grade Crossing	RD445
Ramp, Sidewalk	RD910, RD920, RD930,
	RD940, RD950, RD960
Reinforcement Continuity	BR525
Reinforcing Bar Repair	BR505
Rivet Replacement	BR550
Roadway Cross Slopes	
Superelevated Sections	RD140
Rounding Of Cutbanks	RD150
Root Barrier, Water Pipe	RD286
Roundabout Curb Placement	RD170

-S-	
Safety Edge	RD615
Sanitary Sewer	
Clean Out	RD362
Manhole	RD338
Piped Inside Drop Connection	RD350
Sampling Station, Water System	RD282
Sanitary Sewer,	
Service Connections	RD310
Scour Basin, Temporary	
Sediment Barrier	RD1050
	RD1030, RD1031,
Sediment Fence	RD1032, RD1033
Sediment Trap	RD1040
Sidewalk	RD1065
	RD720, RD721, RD722
Signs	
Aluminum Panel	
Attachment	TM675
Bracing Details	TM676
Directional Sign Layout	TM206
Exit	TM223, TM224, TM226
Flag Board Mounting Details	TM225
Installation Details	TM204
Mileposts	TM200, TM201
Mounts	TM221, TM222
Multi-Post Installations	TM677, TM678, TM679
Removable Legend	TM220
Mounting Details	
	TM230, TM231,
	TM232, TM233

Signs Con't

Route Makers	
Interstate Route Shields	TM211
Oregon Highways	TM212
U.S. Route Shields	TM211

Sign Supports

Breakaway Location Guidelines	TM635
Cantilever	TM621, TM622, TM623,
	TM624, TM625, TM626,
	TM627, TM628, TM690,
Multi-Post Breakaway	TM691,
Sign Bridge	TM600, TM601,
	TM614, TM615, TM616,
	TM617, TM618, TM619,
	TM620, TM693, TM694,
Square Tube	TM695, TM696, TM697
	TM681, TM687,
Temporary	TM688, TM689
Triangular Base Breakaway	TM822
Variable Message Sign	TM602, TM607, TM608,
	TM606, TM6010, TM611,
	TM609, TM610,
	TM612, TM621, TM622,
	TM623, TM624, TM625,
	TM626, TM627, TM628,
	TM690, TM691, TM693,
	TM694, TM695, TM696,
	TM697
Wood Post	TM670

Slope	
Drains, Temporary	RD1045
Paving	BR115
Pipe Anchors	RD330, RD332
Protector, Concrete Manhole	RD358
Rounding	RD150
Slotted Drains, Metal Pipe (CMP)	RD328
Snow Fence, Metal	RD825
Soundwalls	
Masonry (Pile Footing)	BR750, BR751
Masonry (Spread Footing)	BR730
Precast Concrete	BR740
Stairway, Concrete	RD120
Steps, Manhole Precast	RD336
Stop Lane, Truck And Bus	
At Railroad Crossing	RD445
Storm Water Treatment and	
Storage Facility Field Marker	RD399
Street Cut	RD302
Subsurface Drain	RD312
-T-	
Temporary Traffic Control	
2-Lane, 2-Way Roadways	TM850, TM854
Abrupt Edge	TM800
Barricades	TM820
Blasting Zones	TM871
Bridge Construction	TM870
Closure Details	TM840

Concrete Barrier	TM830
Freeway Sections	TM860, TM861, TM862
Impact Attenuator	TM831, TM832, TM833
Intersection Work Zones	TM841, TM842, TM843
Message Sign	TM800
Non-Freeway Multi-Lane Sections	TM851, TM852, TM853
Pedestrian Accessible Routing	TM844
Reflective Pavement Makers	TM810
Rumble Strips	TM830
Sign Supports	TM689, TM821
Speed Reduction (Moving Operations)	TM880
Tables, Flare Rate, Taper, Spacing	TM800
Temporary Sidewalk Ramps	TM845
Temporary Sign Support	TM822
Thrust Blocking, Water Systems	RD250
Tire Wash Facility	RD1060
Traffic	
Island	RD705
Separator, Concrete	RD706
Traffic Signals	
Color Code Chart	TM470
Controller Cabinet and Foundation	TM482
Fire Preemption Details	TM456
Junction Boxes	TM472
Maintenance Pad Details	RD160
Mast Arm Pole Details	TM450
Mounting Details	
Adjustable Signal Head	TM462
Spanwire	TM456
Pedestrian Signal	TM457, TM467

Pole Footing Details	
Mast Arm Pole	
Strain Pole	TM450
Pole Mounts	TM452
Ramp Meter Details	TM680
Rectangular Rapid Flashing Beacon TM492	
Service Cabinet	TM493
Spanwire Design	TM485
Strain Pole Details	TM456
Supports	TM452
	TM650, TM651, TM652, TM654, TM655,
	TM656,
Temporary	TM657, TM658
Trenching \& Conduit Installation	TM453, TM454, TM456
Vehicle Signal Details	TM471
Vehicle Signal Pedestal	TM457
Backfill	RD300
Trench	RD170
Truck Aprons on Roundabouts	RD445
Trucks and Bus Stop Lanes	BR182
At Railroad Crossing	RD902
Truck Scale Pit	
Truncated Dome	
Valve Box And Operator	
Extension Assembly	TM698
Valk-In Bridge	

-W-

Walls

Retaining, Concrete	BR705, BR706, BR707, BR708, BR709
Soundwall, Masonry	
Pile Footing	BR750, BR751
Spread Footing	BR730
Soundwall, Precast	BR740

Water Systems

Air Release Assembly, Manual RD266
Air Release/Air Vacuum
Valve Assembly \quad RD270
Hydrant Installation RD254
Main Dead-End Blowoff Assembly RD262
Root Barrier RD286
Thrust Blocking RD250
Valve Box And Operator Extension Assembly RD258
Water Meter Assembly RD278
Water Sampling Station RD282
Water Service Connection RD274
Wingwalls, Concrete Box Culverts BR800
Wind Pressure Map TM671
Wind Speed Map TM672

GENERAL NOTES FOR ALL DETAILS THIS SHEET:
For round pipes with diameters 24 inches or less use Type 1 connector. All arch pipes
equivalent round diameter, and round pipes over 24 inch diameter nd diameter, and round pipes over 24 inch diameter use Type 2
2. Toe plate extensions are to be the same minimum thin
shall be overall width less 6 inches by 8 inches high.
3. Cross drainage and safety bars shall be 3 inch diameter Schedule 40 galvanized stee/
4. Slotted holes for safety bar attachment shall be provided for all end sections.
5. Cross-sectional dimensions of attaching pipe may vary with different materials.
6. Open ends of pipes normally require a site specific design, and may require special treament (slope ends, culvert embankment protection, paved end slopes, safety end
sections, or other measures). See special details or Standard Drawings as called for on plans.
See Std. Dwg. RD317 for culvert embankment protection and riprap pads (when
required).

STEEL END SECTIONS FOR CIRCULAR PIPES							
PIPE DIAMETER (In)	METALTHICK (MIN.) (In/Gage)	DIMENSIONS (Inches)					
		A	H	w	OVERALL WIDTH	L	
						SLOPE 1:4	SLOPE 1:6
15	0.064/16	8	6	21	37	20	30
18	$0.064 / 16$	8	6	24	40	32	48
21	0.064/16	8	6	27	43	44	66
24	0.064/16	8	6	30	46	56	84
30	0.109/12	12	9	36	60	80	120
36	0.109/12	12	9	42	66	104	156
42	0.109/12	16	12	48	80	128	192
48	0.109/12	16	12	54	86	152	228
54	$0.109 / 12$	16	12	60	92	176	264
60	0.109/12	16	12	66	98	200	300

SAFETY BAR END TREATMENT

PARALLEL AND CROSS DRAINAGE SIDE ELEVATION

STEEL END SECTIONS FOR ARCH PIPES									
EQUIVALENT ROUND DIAMETER	SPAN	RISE	$\begin{array}{\|c\|} \hline \text { METAL } \\ \text { THICK } \\ \text { (MIN.) } \\ \text { (In/Gage) } \\ \hline \end{array}$	DIMENSIONS (Inches)					
				A	H	w	overall WIDTH	L	
								SLOPE 1:4	SLOPE 1:6
18	21	15	0.064/16	8	6	27	43	20	30
21	24	18	0.064/16	8	6	30	46	32	48
24	28	20	0.064/16	8	6	34	50	40	60
30	35	24	0.079/14	12	9	41	65	56	84
36	42	29	0.109/12	12	9	48	72	76	114
42	49	33	0.109/12	16	12	55	87	92	138
48	57	38	0.109/12	16	12	63	95	112	168
54**	64	43	0.109/12	16	12	70	102	132	198
60**	71	47	0.109/12	16	12	77	109	148	222
72**	83	57	0.109/12	16	12	89	121	188	282

$* * *$
$* * *$
Requires two cross
Seeral Irainage bars.

[^0]
(MAX-TENSION Shown)

General notes for all details on this sheet:

1. Use details shown as a general guide since manufacturer's details may vary. Install a guardrail terminal system that meets MASH requirements per Install a guardrail terminal system that meets MASH requirements per
manufacturer's recommendations. Ensure that guardrail terminal meets appropria test level for the project.
2. See appropriate guardrail standard drawing(s) for details not shown. See project plans for details not show
See Std. Dwg. RD701 for drainage c
$\mathrm{E}=2^{\prime}$ or as shown on project plans.
3. Guardrail Non-flared terminal shall be installed with a min. 1 foot offset ensuring that the end piece is entirely off normal shldr.
4. Cross slope to match adjacent roadway cross slope (preferred) If required, maximum grade break at normal edge of shoulder 8% 5. On two way two lane highways, both ends of guardrail runs shall be provided with
a crashworthy terminal flared or non-flared. Paving of widened shldr. to the face of a crashworthy terminal flared or non-flared. Paving of widened shldr. to the face of
posts on both ends of guardrail runs is required. See Std. Dwgs. RD443 and RD444.
5. Provide guardrail terminal from ODOT'S QPL. Install according to manufacturer's recommendations (post count varies). Provide shop drawings to Engineer.
Install a reflectorized object marker on head of every guard rail terminal with "W" 4 feet or less according to manufacturer's recommendations.
6. "W" distance is measured to face of guardrail at end post, exclusive of end piece. 9. Length of need post location varies by manufacturer.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS MIDWEST GUARDRAIL SYSTEM NON-FLARED ENERGY-ABSORBING TERMINAL 2024			
	DATE			
	${ }_{\text {BOALC }}$		SDR DATE 19-JAN-2024	RD420

Effective Date: June 1, 2024 - November 30, 2024

TRAILING END TWO-WAY TRAFFIC

One-way traffic
TRAILING END ONE-WAY TRAFFIC

General notes for all details on this sheet:

1. See appropriate guardrail standard drawing(s) for details not shown.
. Where a crashworthy terminal is not required, use a Downstream Anchor Terminal (DAT) See Std. Dwg. RD438.
2. For terminal type and details, see project plans and applicable drawings,
3. For additional details not shown on this plan, refer to Std. Dwg. RD407
4. Wood or steel post. Wood post shown
5. Guardrail Non-flared terminal shall be installed with a min. 1 foot offset ensuring that the end piece is entirely off normal shldr
6. On two way two lane highways, both ends of guardrail runs shall be provided with a crashworthy terminal flared or non-flared. Paving of widened shldr. to the face of
posts on both ends of guardrail runs is required. See Std. Dwgs. RD420, and RD44

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. See Std. Dwg. RD500 for details not shown. See Std. Dwg. RDtails (when being anchored). See Std. Dwgs. RD515 and details (when being anchored). See Std. Dwgs.
RD5 516 for concrete barrier that is maintained for use in temporary installations.
2. All reinforcement shall be full length as shown and shall be z inches clear of nearest face of concrete, unless othervise shown.
3. Narrow base shoulder barrier to be used only at locations with lar harrier as shown on plans.
4. Temporary concrete barrier to be precast concrete median
barrier with pin and loop assembly. See Std. Dwg. RD502.
5. Concrete grout for grouting over pins, pinning holes or grouting of scuppers shall be portland cement grout, weak in grouting of scuppers shall be portland cement
strength and of thick consistency, as directed.
6. All pins, bolts, dowels, loop bars, and connectors shall be hot-dip galvanized after fabrication.
The reinforcing steel details for the "Narrow Base Shoulder Barrier" are the same as those shown for the 24 inch wide barrier except for the
Barrier Stirrup" Detail
7. Connecting pin head designs vary among different manufacturers. Pin designs that are shaped differently than those shown in the detalls are acceptable, if the bearing surfa is within the minimum and maximum widths specified.

Bottom $1 / 2$ may be
beveled to facilita
placement
WELDED WASHER PIN

CONNECTING PIN ASSEMBLY DETAIL

NOTE: Washer shall be forged as integral part of pin or shall be welded as shown.

NARROW BASE SHOULDER BARRIER STIRRUP "S" \#4 Rebar)

ALTERNATE MEDIAN BARRIER STIRRUP "M" (\#4 Rebar)

REINFORCING STEEL BENDING DIAGRAM

Effective Date: June 1, 2024 - November 30, 2024

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. Bike Lane Curb details are based on applicable ODOT Standards.
2. Lower bike lane curb at all curb ramp pedestrian crossings.
3. Bike lane curb may continue across driveways or be lowered per curb ramps. See project plans.
4. On separated bike lanes (where bike lane is apart from road shoulder), gutter pan shall not end in bike lane.
5. On or along state highways, where curb and gutter is required at curb ramps, add concrete bike lane to bike lane curb at curb ramps and at inlets.
6. Omit preformed expansion joint filler at curb ramps and where landscaping is adjacent to curb.
7. Transition between curb styles to connect curbs of different exposures " E ". Transition length shall be 3 ' for each 1 " difference in "E" unless specified in project plans.
8. Check the gutter flow depth to assure that the design flood does not spread across more than 2 -feet of the bike lane and does not overtop the back of sidewalk at curb ramps. Place inlet in curb at low points and at upstream side of curb ramps or perform other approved design mitigation. Transition to standard curb on each side of inlet by lowering bike lane. See dwg. no. RD367
9. Dimensions adjacent to radii are measured to the point of intersection of curb surfaces.
10. See dwg. nos. RD720 and RD727 for monolithic curb and sidewalk details. See dwg, nos. RD900 series for curb ramp details. See dwg. no. RDIl40 for layout of separated bike lane crossings details.
BIKE LANE CURB WITH CONCRETE BIKE LANE ISOMETRIC VIEW

IEGEND:

Sidewalk or other traversable surface

亨亨 $\times \times \times \times$ Leve/ area (turning space/landing)
<< Running slope, 4.0\% maximum (Maximum 4.9\% finished surface slope)
$\hookleftarrow \quad$ Cross slope 1.5% maximum
(Maximum 2.0\% finished surface slope)

SECTION B-B

BIKE LANE CURB WITH CONCRETE BIKE LANE

(Where shown on plans)

SECTION A-A
BIKE LANE CURB
Where shown on plans)
(1) Control joints cut at 15^{\prime} intervals, minimum 2" depth
(2) Place a minimum of $6^{\prime \prime}$ approved granular base at 95\% MPD (3/4" Minus crushed granular)
GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. See Std. Dwgs. RD781 and RD782 for details not shown.

2. Structure varies, see project plans.
3. All concrete shall be commercial grade concrete.
4. See project plans for details not shown
5. 10 inch minimum required between threaded rod and outer edge of concrete footing.

WHEN PEDESTRIAN FENCE IS REQUIRED FOR WALKING SURFACES

POST BASE PLATE BOLT DOWN ANCHOR

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS ALUMINUM PEDESTRIAN FENCE (MASH, TL-2)			
	2024			
	(07-2020	1 New Deawnc reated		
	$01-2023$	SS. UPDATED CAD DRAMNS STANORROS		
	12-2023			
	${ }_{\text {coll }}^{\text {coil }}$		SDR DATE 19-AAN-2024	RD780

Effective Date: June 1, 2024 - November 30, 2024

CURB RAMP INDEX

STD．DWG．No．	STD．DWG．TITLE
RD900	Curb Ramp Components And Legend
RD901	Curb Ramp Legend And Corner Identification
RD902	Detectable Warning Surface Details
RD904	Detectable Warning Surface Placement For Curb Ramps
RD905	Detectable Warning Surface Placement For Directional Curbs
RD906	Detectable Warning Surface Placement For Accessible Route Island
RD908	Detectable Warning Surface Placement For Rail
RD909	Detectable Guide Strip Placement At Bike Ramps
RD910，RD912	Perpendicular Curb Ramp
RD913	Perpendicular Curb Ramp With Closure
RD916	Perpendicular Curb Ramp Single Ramp
RD920	Parallel Curb Ramp
RD922	Parallel Curb Ramp Single Ramp
RD930，RD932 \＆RD936	Combination Curb Ramp
RD938	Combination Curb Ramp Single Ramp
RD940	Blended Transition Curb Ramp Single Ramp
RD950 \＆RD952	End Of Walk Curb Ramp
RD960	Unique Curb Ramp

LEGEND：

Marmz Marked or intended crossing locationSidewalk or other traversable surface
豊曲曲 Detectable warning surface（DWS）

Level area（Turning space／landing）
© Cross slope 1.5% max． （Max．2．0\％finished surface slope）
（Normal sidewalk

《＜Running slope 4.0% max
（Max． 4.9% finished surface slope）
$\leftarrow \quad$ Running slope 7.5% max
（Max．8．3\％finished surface slope）
$\Leftarrow \quad$ Counter slope 4.0% max．ascending or descending Slope as required for drainage
$\triangleleft \quad$ Flare slope
$\left\lceil 74^{\prime} \times 44^{\prime}\right.$ clear space

RR1 Ramp Run Position
Ramp Run Position 1

INTERSECTION CONDITION TYPES

MB $=$ Midblock，less than or equal to roadway grade finished gutter flow slope．
SU $=$ Signalized or Uncontrolled，max． 5.0% finished gutter flow slope．
SU $=$ Signalized or Uncontrolled，max． 5.0% finished gutter
SY $=$ Stop or Yield，max．2．0\％finished gutter flow slope．

TYPICAL CURB RAMP SYSTEM COMPONENTS （PERPENDICULAR TYPE SHOWN）

The selection and use of this Standard Drawing，while designed in accordance with generally accepted engineering principles and practices，is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer．	All materials shall be in accordance with the current Oregon Standard Specifications．			
	OREGON STANDARD DRAWINGS			
	CURB RAMP COMPONENTS AND LEGEND			
	2024			
	DATE	$\frac{\text { REVVION DEECRRIPTION }}{}$		
	年年－2020	REVISED DEEALIS AND Notes		
	01－2022			
	11－2023	Revise legen		
	${ }_{\text {BoOk }}^{\text {calc }}$	N／A		RD900

Effective Date：June 1， 2024 －November 30， 2024

Linear Referencing Method (LRM) Number
Use ODOT FACS-STIP web based application, turn on layers Roadside > ADA Corners and ADA Ramps
This is a code to identify the intersection on a specific state highway.
There is a four part format for the code: Highway Number; Highway Suffix: Roadway ID, Mileage Type.

1) The Highway Number is a 3 digit number (not the route number) assigned to all state highways by ODO

Valid numbers are 001-493.
2) Highway Suffix is a letter format assigned to frontage roads and connections to identify the unique connection, for example $A A$ or $A B$ Use the Identify Features tool on the ODOT FACS-STIP web based application, Road Network layer > Hwy Network-Colored layer for visual reference. Select "Identify Features If the intersection is not located on a connection use 00 for the code.
3) Roadway and is a one letter code used to identry alignment. There are two possible letter codes, ${ }^{\text {I }}$ for increasing mile point direction dreasing mit point direction.
and east. Note $\mathrm{I}-5$ does not follow this rule. Generally "I" will be used.
When there is a separated highway there will be an "I" roadway and a "D" roadway
4) Mileage Type is used when there are multiple locations of the same mile point on a section of highway. Overlay lapping mileage is listed as " z " mileage.

Example \square
$228 \quad 00$

Suffix Type
Milepoint of an intersection is based on the mile point of the center of the intersection listed to the hundredth of a mile.
Corner Position is based on traveling in the increasing mile point direction, beginning with the first corner on the right and proceeding counter-clockwise around the intersection, numbering consecutive 1 through the end of corners. An "A" is added to the number for an island.
For example an island between corner positions 1 and 2 and is closer to corner 2 has a corner position number of 2 A (See corner position and for example an island between ramp position diagram).
curb
Curb Ramp Position is a number given to each curb ramp beginning with Corner Position 1. The first curb ramp encountered in the increasing mile point direction is number ramp 1. Then proceeds counter-clockwise around the corner, numbering in consecutive order.
Proceed following the pedestrian route and in Corner Position Number order (see corner position and curb ramp position diagram).

STANDARD ABBREVIATION FOR CURB RAMP DETAILS
LEGEND:
$\mathrm{FG}=$ Finish Grade (Elevation ft.) i.e. FG XXX.XX
TFC $=$ Top Face of Curb (Elevation ft.)
TBC $=$ Top Back of Curb (Elevation ft.)
BFC $=$ Bottom Face of Curb (Elevation ft.)
$\begin{aligned} \text { BFC } & =\text { Bottom Face of Curb (E) } \\ \text { gtr. } & =\text { Gutter (Elevation ft.) }\end{aligned}$
Gs = Gutter Slope (\%), i.e. X.X\%
Cs Counter Sine (in ge, i.e. X
RRN = Ramp Run Number, ie Ran
cl.sp. = Clear Space
$\begin{aligned} \text { d.sp. } & =\text { Clear Space } \\ \text { TS } & =\text { Turning Space }\end{aligned}$
XS $=$ Cross Slope
$\mathrm{xS}=$ Cross Slope
LA $=$ Level Area
DWS $=$ Detectable Warning Surface
PAR $=$ Pedestrian Access Route

CORNER POSITION AND CURB RAMP POSITION DIAGRAM
(See ODOT Exhibit A for additional ramp and ramp run numbering conventions.)

Effective Date: June 1, 2024 - November 30, 2024

PARTIAL TRANSVERSE PARTIAL ELEVATION: CASE 1 ELEVATION

PRECAST BLOCK ALTERNATIVE PLAN

$\overline{3}^{\prime}-0^{\prime \prime}$ Equal spackes block length (L)

I"deep scoring

Place against
undisturbed or
undisturbed or
compacted soil

Flare bottom curb
reinforcement

CAST-IN-PLACE ALTERNATE PLAN
eneral notes Provide all reinforcing steel according to ASTM Specification A706, or AASHTO M3

Provide all welded steel wire fabric according to AASHTO M55 (ASTM A185) or AASHTO M22
Provide all weldded steel wire fabric according to AASHTO M55 (ASTM A185) of
(ASTM A497). Place all fabric edge laps with ho less than one mesh in width. Place all bars and fabric as shown.
Construct all berm slabs with ${ }^{3}$ " de
Construct all berm slabs with 3 " deep cast-in-place unreinforced concrete.
Provide precast blocks or castin-place concrete panels for slop Provide precast blocks or cast-in-place cons
Use same size blocks at any bridge site.

Effective Date: June 1, 2024 - November 30, 2024

[^1]

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

GENERAL NOTES:

1. Cast-in-Place Semi-Cravity Standard Retaining Wall is designed in accordance with the AASHTO LRFD Bridge Design Specifications seventh edition (including 2016 interim revisions) and the ODOT Geootechnical Design Manual (GDM), 2016.
2. Cast-in-Place Semi-Gravity Standard Retaining Wall design is based on the following soil properties.

$$
\begin{aligned}
\text { Backfill \& Retained Soil: } & \begin{aligned}
\text { Soil angle of internal friction } & =34^{\circ} \\
& =0 \text { psf } \\
& \text { Soil Cohesion } \\
& \text { Soil weight }
\end{aligned} & =125 \mathrm{pcf}
\end{aligned} \quad \text { Foundation Soil: } \begin{array}{ll}
\text { Soil angle of internal friction } & =30^{\circ} \\
& \text { Soil cohesion }
\end{array}
$$

3. The internal stability and external stability design for overturning and sliding stability is addressed in the standard design. Overall stability, bearing resistance and settlement are addressed in site specific design.
4. Cast-in-Place Semi-Cravity Standard Retaining Wall is not designed for traffic barrier vehicular collision load or hydrostatic or seepage forces.
See Project Plans for drainage details.
5. Provide Class 4000 structural concrete.
6. Provide reinforcing steel according to ASTM Specification A706, or AASHTO M31 (ASTM A615) Crade 60. Use the following splice lengths unless shown otherwise:

Reinforcing Splice Length (Class B) Crade $60 \mathrm{f}^{\prime} \mathrm{C}=4.0 \mathrm{ksi}$									
Bar Size	\#3	\#4	\#5	\#6	\#7	\#8	\#9	\#10	\#11
Uncoated	$1^{\prime}-0^{\prime \prime}$	$1^{\prime}-4{ }^{\prime \prime}$	$1^{\prime}-8^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-6{ }^{\prime \prime}$	$3^{\prime \prime} 3^{\prime \prime}$	$4^{\prime}-7^{\prime \prime}$	5'-2"	$6^{\prime}-4^{\prime \prime}$

Increase all splice lengths 30% for horizontal or nearly horizontal bars so placed that more than 12" of fresh concrete is cast below the bar. Splice reinforcing stee/ at alternate bars, staggered at least one splice length or as far as possible, unless shown otherwise.
8. Place bars $2^{\prime \prime}$ clear of the nearest face of concrete unless shown otherwise.
9. If not shown, place expansion joints through wall stem at intervals not to exceed $90^{\prime}-0$ " and contraction joints through wall stem at joint reinforcement through the joint
10. Perform shear key excavation with care to provide key dimensions indicated. Remove loose material and pour concrete against disturbed foundation soil in the footing and key excavation.
11. Do not backfill wall until all trenching that may be necessary in front of wall is backfilled and compacted, and compacted toe fill is in place to top of subgrade.
12. For intermediate wall heights that are between the wall height values given in the wall data tables, use the tabular data for the next 2. For intermediate wall heights that are between the wall height values given in the wall data tables, use the tabular data for
higher wall height. For intermediate values of seismic lateral wall coefficient, kh, use tabular data for the next higher kh.
13. See Project Plans for required footing embedment.
4. See Project Plans for architectural treatment, if required. Increase concrete cover on reinforcement as required to provide architectural treatment.
Accompanied by drawings - BR706, BR707, BR708 and BR709

Bars-"d" extend 18"

 past back of wall.See $B R ~ 706-708$.

Effective Date: June 1, 2024 - November 30, 2024

WALL TOP DETAIL

TYPICAL SCORING

LONGITUDINAL JOINT VIEW

KEY DETAIL

ALTERNATE KEY DETAIL

NOTES:
Type-A
Type-A Compression Joint Seal.
. Install in accordance with manufacturer's recommendations from top of -
2. See drg. BRI39 for nominal size, joint and installation width.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon standard Specifications.			
	OREGON STANDARD DRAWINGS STANDARD RETAINING WALL CAST-IN-PLACE SEMI-GRAVITY JOINTS AND DETAILS			
	2024			
	Date	Note edit		
		Note edit		
	${ }^{\text {BCALC. }}$ NO. $64022,6406,6407$		SDR 19-AAN-202	BR709
			DATE-	

Effective Date: June 1, 2024 - November 30, 2024

SIZE		FILL	QUANTITY PER L.F.		dimensions						"A" BARS			"B" BARS								"C" BARS							"D" BARS			\#4 DIST. BARS		$\begin{aligned} & \text { \#4 } \\ & \text { LONG } \\ & \text { WALLS } \end{aligned}$	$\begin{gathered} \text { \#4 } \\ \text { LONG } \\ \text { BITOM } \\ \text { SLAB } \end{gathered}$	$\begin{gathered} \text { DESIGN } \\ \text { FACTORED } \\ \text { NET } \\ \text { BRNG. PRESS. } \end{gathered}$
SPAN	RISE		CONC.	STEEL	A	E	H	$\begin{aligned} & \hline T O P \\ & \text { SLAB } \end{aligned}$	$\underset{\substack{B O T \\ \hline \\ \hline}}{ }$	WALL	SIZE	SPC L	LENGTH	SIZE	SPC	LENGTH	$\frac{T O P}{}$	K	LENGTH	$\begin{aligned} & \text { SOTTOM } \\ & \hline 1 \end{aligned}$	K	SIZE	SPC	$\frac{\text { TOP }}{\text { LENGTH }}$	G	LENGTH	$T_{G}^{T O M}$		SIZE	SPC	LENGTH	TOP	BOTTOM			
FT	FT	FT	C.Y.	LBS.																																KSF
6	4	0-2	0.82	105	-6"	$6^{\prime}-0^{\prime \prime}$	$9^{\prime \prime}$	12"	12"	$9^{\prime \prime}$	\#5	$10^{\prime \prime}$	$7^{\prime \prime}$-2'	\#4	$10^{\prime \prime}$	$11^{\prime}-2^{\prime \prime}$	1'-9"	$1{ }^{\prime}-11^{\prime \prime}$	$18^{\prime}-10^{\prime \prime}$	5'-7"	1'-11"	\#4	$10^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$I^{\prime}-9^{\prime \prime}$	$18^{\prime \prime}-4^{\prime \prime}$	5'-7"	7'-2"	\#4	$10^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	8	10	16	10	3.50
6	4	2-10	0.68	97	$7^{\prime \prime} 6^{\prime \prime}$	5'-6"	$9^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	\#5	$10^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$10^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$1{ }^{\prime}-11^{\prime \prime}$	$17^{\prime}-7^{\prime \prime}$	5'-1"	1 1-11"	\#4	$10^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$17^{\prime \prime} 4^{\prime \prime}$	5'-1"	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$10^{\prime \prime}$	5'-9"	5	5	16	10	1.05
6	4	10-20	0.68	125	$7^{\prime \prime} 6^{\prime \prime}$	5'-6"	9"	$9{ }^{\prime \prime}$	$9^{\prime \prime}$	9"	\#6	$8^{\prime \prime}$	$7^{\prime \prime}$-2'	\#4	$8^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	1'-9	$1^{\prime}-11^{\prime \prime}$	$17^{\prime}-7^{\prime \prime}$	$5^{\prime}-1{ }^{\prime \prime}$	1'-11	\#4	$8^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$17^{\prime \prime} 4^{\prime \prime}$	$5^{\prime}-1{ }^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$8^{\prime \prime}$	5'-9"	5	5	16	10	1.20
6	4	20-30	0.75	198	$7^{\prime \prime} 6^{\prime \prime}$	5'-9"	9"	$9^{\prime \prime}$	12"	9"	\#6	$8^{\prime \prime}$	$7^{\prime \prime} 2^{\prime \prime}$	\#4	$8^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	1'-9"	$1^{\prime}-11^{\prime \prime}$	$18^{\prime \prime} 4^{\prime \prime}$	$5^{\prime}-4^{\prime \prime}$	$1^{\prime \prime-1 l^{\prime \prime}}$	\#7	$8^{\prime \prime}$	$15^{\prime}-0^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	$17^{\prime}-10^{\prime \prime}$	5'-4"	$7^{\prime \prime} 2^{\prime \prime}$	\#4	$8^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	5	5	16	10	1.83
6	4	30-40	1.00	224	$8^{\prime}-0^{\prime \prime}$	6'-3"	9"	12"	$15^{\prime \prime}$	12"	\#5	$8^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	\#5	$8^{\prime \prime}$	$12^{\prime}-7^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$20^{\prime}-0^{\prime \prime}$	5'-10'	$2^{\prime}-2^{\prime \prime}$	\#7	$8^{\prime \prime}$	$15^{\prime}-6^{\prime \prime}$	3 --11"	$19^{\prime}-4^{\prime \prime}$	5'-10'	$7^{\prime}-8^{\prime \prime}$	\#4	$8^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	6	6	20	12	2.51
6	6	0-2	0.93	130	-6"	8'-0"	9"	12"	12"	$9^{\prime \prime}$	\#5	$9^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	\#4	9"	11'-2"	1'-9"	$1^{\prime}-11^{\prime \prime}$	22'-10"	7'-7"	1 '-11"	\#4	9"	$10^{\prime \prime}-8^{\prime \prime}$	1'-9"	$22^{\prime \prime} 4^{\prime \prime}$	7'-7"	7'-2"	\#4	9"	8'-3"	9	9	24	10	3.13
6	6	2-10	0.79	118	$7^{\prime}-6^{\prime \prime}$	$7^{\prime \prime} 6^{\prime \prime}$	9"	$9^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	\#5	$9^{\prime \prime}$	$7^{\prime \prime} 2^{\prime \prime}$	\#4	$9^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	1'-9"	$1{ }^{\prime}-11^{\prime \prime}$	21'-7"	$7^{\prime}-1 "$	$1^{\prime}-1 l^{\prime \prime}$	\#4	$9^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$21^{\prime \prime} 4^{\prime \prime}$	7'-1"	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$9^{\prime \prime}$	7'-9"	5	5	20	10	0.98
6	6	10-20	0.79	139	$7^{\prime \prime} 6^{\prime \prime}$	$7^{\prime \prime} 6^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	$9^{\prime \prime}$	\#6	$8^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$8{ }^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	1'-9"	$1{ }^{\prime}-11^{\prime \prime}$	$21^{\prime} 7^{\prime \prime}$	$7^{\prime}-1 "$	$1^{\prime \prime-11 "}$	\#4	$8^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$21^{\prime \prime} 4^{\prime \prime}$	$7^{\prime}-1$ "	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$8^{\prime \prime}$	$7^{\prime \prime}-9^{\prime \prime}$	5	5	20	10	1.12
6	6	20-30	0.86	217	$7^{\prime}-6^{\prime \prime}$	7'-9"	9"	$9{ }^{\prime \prime}$	12"	$9^{\prime \prime}$	\#4	$6^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$6^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	1'-9"	$1^{\prime}-11^{\prime \prime}$	22'4"	$7^{\prime}-4^{\prime \prime}$	$1^{\prime}-1 l^{\prime \prime}$	\#6	$6^{\prime \prime}$	12'-5"	2'-7"	$21^{\prime}-10^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	\#4	$6^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$	5	5	24	10	1.76
6	6	30-40	1.00	274	$7^{\prime}-6^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	9"	$12^{\prime \prime}$	$15^{\prime \prime}$	$9^{\prime \prime}$	\#4	$6^{\prime \prime}$	$7^{\prime \prime} 2^{\prime \prime}$	\#4	$6^{\prime \prime}$	$11^{\prime \prime}-2^{\prime \prime}$	$1{ }^{\prime}-9^{\prime \prime}$	$1{ }^{\prime}-11^{\prime \prime}$	$23^{\prime \prime} 6^{\prime \prime}$	7'-10"	$1^{\prime-111}$	\#7	$6^{\prime \prime}$	$15^{\prime}-0^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	22'-10"	7'-10'\|	$7^{\prime \prime} 2^{\prime \prime}$	\#4	$6^{\prime \prime}$	$8^{\prime \prime}-6^{\prime \prime}$	5	5	24	12	2.41

TYPICAL SECTION
NONE

GENERAL NOTES

1. Box Culverts are designed in accordance with AASHTO LRFD Bridge Design Specifications - 6th edition, the ODOT Bridge Design and Drafting
Manual (BDDM), and the ODOT Geotechnical Design Manual (GDM, 2013).
2. Box culverts are designed for the following loads:

Live Load: HL-93 live load
Live Load Surcharge: 2 ft live load surcharg
Earth Load:

- 125 pcf moist unit weight vertical earth load

135 pcf saturated unit weight vertical earth load
Lateral earth pressure including compaction induced lateral
earth pressure using Peck and Mesri method per the GDM. earth pressure usilng Peck and Mest metho per the
assumes backfill peak soil friction angle of 34 degrees, compacted backfill unit weight of 125 pcf, and backfill compacted with hand-operated vibratory roller (combined
operational weight plus dynamic or centrifugal force not operational weight plus dynamic or centrifugal force not
greater than 5,000 lbs), operated with in a distance of 0.2 ft greater than 5,000 loll.
Water: 62.4 pcfic culvert modeled completely full and completely empty
Wearing Surface allowance: 25 psf
Design is applicable for soils with a subgrade modulus between $50 \mathrm{lb} / \mathrm{in}^{3}$. and $1000 \mathrm{lb} / \mathrm{in}$
4. Provide reinforcing steel according to ASTM Specification A706, or
AASHTO M31 (ASTM A615) Crade 60. Use the following splice Angths unless shown otherwise:

\section*{Reinforcing Splice Lengths (Class B) Crade 60 fc=3.3 ksi | Bar Size | $\# 3$ | $\# 4$ | $\# 5$ | $\# 6$ | $\# 7$ | $\# 8$ | $\# 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Uncoated | $I^{\prime}-0^{\prime \prime}$ | $I^{\prime}-4^{\prime \prime}$ | $I^{\prime}-8^{\prime \prime}$ | $2^{\prime}-0^{\prime \prime}$ | $2^{\prime}-9^{\prime \prime}$ | $3^{\prime}-7^{\prime \prime}$ | $4^{\prime}-6^{\prime \prime}$ |}

5. See Project Plans for additional corrosion protection measures, if required.
6. Place bars 2"clear of the nearest face of concrete unless shown hervis.

Splice bar "B" (top) with bar "B" (bottom) and bar "C" (top) with
bar "C" (bottom). Bars "A" and "C C " alternate with bar " B ".
Provide Class 3300 - $11 / 2$ or $3 / 4$ concrete for all cast-in-place box Provide Class
culvert concrete.
9. Do not place and compact backfill until top slab concrete has reached
0. See Standard Drawing BR800 for wingwall and apron details when required.

1. For box culvert with fill heights in more than one range, use the box culvert for the highest height except for box culverts with fill height

BAR "B"

LEGEND EXAMPLES FOR STREET NAME SIGNS

STACKED LEGEND FOR STREET NAME SIGN (GROUND-MOUNTED)

STACKED LEGEND FOR STREET NAME SIGN (MAST ARM MOUNTED)
Notes: If 12 "C font on mast arm mounted sign yields signs larger If 1 "c Con on mast arm mounted sign yields signs la
than 21 square feet, the $100^{\prime \prime}$ Alternate may be used. White border and legend on mast-arm signs are to be ASTM Type IX retroreflective sheeting. Borders shall be
fiush with edge of sign. Dividers, where used, shall be sa
width as border.
New
New Projects: Include mast-arm signs on Signing Plan
Existing Poles: Perform pole analysis prior to adding
or enlarging signs.
STREET NAME SIGN DETAILS

$E=$ BORDER WIDTH
$F=$ BORDER RADIUS
H = LETTER HEIGHT
$S=$ SPACE BETWEEN WORDS
X $=1 / 2$ OF REMAINING SPACE

* $=$ USE FOR TEXT INCLUDING LOWER-CASE $\mathrm{g}, \mathrm{j}, \mathrm{p}, \mathrm{q}$ and y
** = MINIMUM SIZE; CAN BE LARGER TO MATCH STANDARD HIGHWAY SIGN'S D3-1
** = SIGNS EXCEEDING THE MAXIMUM SIGN HEIGHT "Z" COLUMN OF THE MAST ARM STREET NAME SIGN MOUNT DETAIL ON TM679 WILL REQUIRE STRUCTURAL ANALYSIS OF THE MAST ARM AND POLE.

SPACING BETWEEN WORDS

X-Dimension should be approximately
the same dimension as the letter
Height (H). At a minimum the X-Dimension shall be no less than one-half the letter
height ($1 / 2 \mathrm{H}$)

Sign examples shown here are not drawn to scale but to illustrate the layout of the legend items.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.				
	OREGON STANDARD DRAWINGS				
	STREET NAME SIGN LAYOUT				
	2024				
	DATE				
	-				
		.			
	BCACC			$\left.\right\|_{\text {SDR }} ^{\text {SARE }}$ 19-JAN-2024	TM223

Effective Date: June 1, 2024 - November 30, 2024

DIRECTIONAL SIGN DETAILS

FRACTIONAL LAYOUT

\[

\]

SPACING BETWEEN WORDS

$\mathrm{H}=$ Letter Height

Y $\mathrm{S}=$ Space between words
X-Dimension should be approximately
the same dimension as the letter Height (H). At a minimum the X -Dimension shall be no less than one-half the letter height ($1 / 2 \mathrm{H}$)

Sign examples shown here are not drawn to scale, but to illustrate the layout of the legend items.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	CONVENTIONAL ROADS DIRECTIONAL SIGN LAYOUT			
	2024			
			ON DESCRIPTION	
	-01-2024	SEPARAEES MATERALL FROM TM T 23		
	01-2024	Eotite Content on tw sicns		
	${ }_{\text {BOOLC }} \mathrm{CAO}$	N/A	SDR - 19-JAN-2024	TM226

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

Effective Date: June 1, 2024 - November 30, 2024

DIN RAIL, TERMINAL BLOCKS, \& WIRING IN POLE RECESSED TERMINAL CABINET

			PEDESTRIAN PHASES	$\begin{aligned} & \text { VEHICLE } \\ & \text { PHASES } \end{aligned}$	SIGNAL HEAD TYPES			
7 CONDUCTOR CONTROL CABLE						4L, 5,	$\text { 1R, } 1 \mathrm{Y}, 2,$	10
$\begin{gathered} \hline \text { CONDUCTOR } \\ \text { NUMBER } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BASE } \\ & \text { COLOR } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FIRST } \\ \text { TRACER } \\ \hline \end{array}$	$\begin{aligned} & \text { des } \\ & \text { Pha } \end{aligned}$	Vehicle Phase			$\begin{aligned} & 3 L, 3 \mathrm{lCF}, \\ & 3, \mathrm{BN}, 4,9 \\ & 12, \mathrm{or} 12 \mathrm{M} \\ & \hline \end{aligned}$	
1	WHITE	-	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL	NEUTRAL
2	BLACK	-	WALK	YELLOW	YELLOW	YELLOW	YELLOW	YELLOW
3	RED	-	DONT WALK	RED	RED	RED	RED	RED 1
4	ORANGE	-	P.B. COMMON	SPARE	FLASHING YELLOW	TURN YELIOW	SPARE	RED 2
5	GREEN	-	PUSHBUTTON	GREEN	GREEN	GREEN	GREEN	SPARE
6	BLUE	-	SPARE	SPARE	SPARE	$\begin{aligned} & \hline \text { TURN } \\ & \text { GREEN } \end{aligned}$	SPARE	SPARE
7	WHITE	BLACK	SPARE	SPARE	SPARE	SPARE	SPARE	SPARE

COLOR CODE CHART CONTROL CABLE

WIRE \& CABLE IN POLES

General Notes

1. Install All Wire And Cable Between Terminal Blocks Without Splicing.
2. Mark Phase Number/Identification On All Cable In Junction Boxes, Terminal Cabinets Service Cabinets, And Controller Cabinets With Permanent Tags. Use Handheld Labeler
(radd IDXERT With XC-150-580-WT-BK Tags Or Approved Equal). Wiring For Overlaps
Shall shall Be Labeled (OLA,OLB,OLC,OLD).
3. Install No. 16 AWG TFFN Orange Base With Blue Tracertone Wire In All Conduits As A Locate
Wire. Leave Slack As Required In Ceneral Note 5 And Install A Wire Nut. Do Not Join Multiple Wire. Leave Slack As Required In Ceneral Note 5 And Install A Wire
Locate Wires Under A Common Wire Nut Unless Otherwise Shown.
4. Tape The Ends Of Unsued Conductors With Insulated Vinyl Plastic Tape.
5. Leave Slack In Each Wire And Cable As Follows
A.) ${ }^{2}$ Feet In Junction Boxes And Poles
B.) 6 Feet In The First Junction Box Nearest The Controller Cabinet 6 Feet In Controller Cabinet And Service Cabinet
6. Install Polyethylene Pull Line In All Conduits Noted On The Plans For
Future Use (No Wires/Cables In Conduit). Leave 6 Feet Of Slack Pull Line
7. At Existing Installations The Contractor Is Responsible For the Re-wiring And Re-numbering Cabinets, And Controller Cabinets.

Terminate All Wire(s) And Cabe(s) Entering Pedestal In The Type 2 Si
Terminal Block

Detail B

Pull All Wires And Cables
By Hand Only $\quad \begin{aligned} & \text { Temporarily Bundling Cables Or Wire (Tapes, Straps, Ties, } \\ & \text { Or Other Binding Material) Allowed Only At The Terminating } \\ & \text { End Points For Pulling Only }\end{aligned}$

WIRE \& CABLE IN RAMP METER PEDESTALS

Effective Date: June 1, 2024 - November 30, 2024

Post \& Stub	Hinge Data							Base Plate Data									Footing Data		Min. Footing Depth			Max. Footing Slope	
	$\begin{gathered} \text { Hinge } \\ k+1 \end{gathered}$	$\begin{gathered} \text { Slip } \\ \text { R+2 } \end{gathered}$	A	B	c	Hinge Bolts		$\begin{aligned} & \text { Base } \\ & \text { k+3 } \end{aligned}$	D	E	F	G	Bolt				$\begin{gathered} \text { Stub } \\ \text { Length } \end{gathered}$	$\begin{gathered} v \\ \text { bars } \end{gathered}$	$\begin{aligned} & 2^{\prime}-0 " \\ & \text { dia. } \end{aligned}$	$\begin{aligned} & \text { 3'-0" } \\ & \text { dia. } \end{aligned}$	$\begin{aligned} & 4^{4}-0 " \\ & \text { dia. } \end{aligned}$	$\begin{gathered} \text { Rise } \\ \text { per ft. } \\ \mathrm{Y}^{\prime \prime} \end{gathered}$	Grade
Mass/ft						Dia.	Length						dia.	$\begin{gathered} \text { "T1" } \\ \text { Torque } \end{gathered}$	$\begin{gathered} \text { "T2" } \\ \text { Torque } \\ \hline \end{gathered}$	Length							
W6 $\times 9$	3/8"	3/8"	4"	7/8"	$21 / 4$	3/4"	2 "	$1{ }^{1 \prime}$	41/4"	3/4"	81/2"	10"	5/8"	150 ft -lb.	50 ft -lb.	4/4"	2'-0"	\#4	4'-9"			12"	IV:1.00H
W6 $\times 12$	3/8"	3/8/1	$4{ }^{\prime \prime}$	7/81	21/4 ${ }^{1}$	$3 / 4 /$	$2{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	41/2"	3/4"	81/2"	10"	58_{8}	$150 \mathrm{ft.-lb}$.	$50 \mathrm{ft.-lb}$	44_{4}	2'-4	\#5	$5^{\prime}-6{ }^{\prime \prime}$			$111 / 4{ }^{\prime \prime}$	IV:1.07H
W6 $\times 15$	38/1	1/2"	$6^{\prime \prime}$	11_{4}	31/2"	$78{ }^{1 /}$	21/2"	$1{ }^{1 \prime}$	61/4"	$78^{\prime \prime}$	81/2"	101/4"	3/4"	$280 \mathrm{ft.-lb}$.	70 ft -lb.	41/2"	2'-8"	\#6	6'-6"			71/4"	IV:1.66H
W8 $\times 18$	1/2"	1/2"	51/4"	11/4"	23/4"	$78^{\prime \prime}$	21/2"	$13 /{ }^{\prime \prime}$	51/2"	7/8"	$113^{3 \prime \prime}$	1'-1/2/	3/4"	280 ft .-lb.	70 ft -lb.	$5{ }^{\prime \prime}$	$3^{\prime \prime}-0{ }^{\prime \prime}$	\#7	$8^{\prime}-0{ }^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$		81/2"	IV:1.41H
W8 $\times 21$	1/2"	5/8"	51/4"	$11 / 4$	$23 / 4$	$1{ }^{\prime \prime}$	23/4"	$13 / 8$	$6{ }^{\prime \prime}$	$1 "$	$113 / 4{ }^{\prime \prime}$	$1^{1-13 / 4}$	$7 / 8^{\prime \prime}$	$450 \mathrm{ft.lb}$.	80 ft -lb.	51/4"	$3^{\prime \prime-4 "}$	\#8	$8^{\prime}-9{ }^{\prime \prime}$	7'-0"		71/2"	lV V 1.60 H
W10 $\times 22$	1/2"	5/8"	53/4"	11/2"	23/4"	$1{ }^{1 /}$	$2^{3 / 4}{ }^{\prime \prime}$	$13 / 8{ }^{\prime \prime}$	6 "	$1{ }^{1 /}$	$1^{1}-1 / 2^{\prime \prime}$	1'-31/2	$78^{\prime \prime}$	450 ft f.lb.	80 ft -lb.	51/4"	3'-	\#8	10'-3"	7'-9"	6'-6"	71/2"	1V:1.60H
W10 $\times 26$	1/2"	5/8"	53/4"	11/2"	23/4	11/8"	3"	$1{ }^{3 / 8}$	$7{ }^{7}$	$11 / 8$	$1{ }^{1}-1 / 2$	1'-33/4	$1{ }^{\prime \prime}$	$680 \mathrm{ft.-lb}$.	90 ft -lb.	51/2"	$4^{\prime}-0^{\prime \prime}$	\#9	11-0"	8'-9"	7'-3"	$63 / 8^{\prime \prime}$	IV V 1.88 H
W12 26	1/2"	$58^{\prime \prime}$	6/2"	1/2"	31/2"	$11 / 8^{\prime \prime}$	3"	11/2"	$7{ }^{7}$	$1 \%^{\prime \prime}$	$1-3 / 2 / 2$	1'-53/4	1"	$680 \mathrm{ft} . \mathrm{lb}$.	$90 \mathrm{ft.-lb}$.	53/4"	4'-4"	\#10	12'-3"	9'-6"	$8^{\prime}-0{ }^{\prime \prime}$	$63 / 8^{\prime \prime}$	IV 1.888 H
W12 $\times 30$	1/2"	5/8"	61/2"	11/2"	31/2"	$11 / 4$	$3 "$	11/2"	$8{ }^{\prime \prime}$	$11 / 4$	$1-31 / 2$	1'-6"	11/8"	840 ft -lb.	100 ft .lb.	53/4"	4'-8"	\#11	13'-3"	10'-6"	8'-9"	53/8"	IV:2.23H
W14×30	1/2"	5/8"	$6^{3} / 4$	$11 / 21$	$3^{3 / 4}$	$11 / 4$	$3 "$	11/2"	$8^{\prime \prime}$	$11 / 4 "$	$1-51 / 2$	1'-8"	$11 / 8$	840 ft -lb.	100 ft .-lb.	$53 / 4 "$	5'-0"	\#11	13'-9"	$10^{\prime}-9{ }^{\prime \prime}$	9'-0"	51/2"	IV:2.18H

POST HINGE DETAILS
No Scale

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS MULTI-POST BREAKAWAY SIGN SUPPORTS DETAILS			
	2024			
	DATE			
	01-224			
	BOALC ${ }^{\text {Co. . . - } 1493}$		SDR DATE- 19-JAN-2024	TM601

Effective Date: June 1, 2024 - November 30, 2024
SLIP BASE BOLTING PROCEDURE (see 00962.46(j)(2)(b)

1. Erect pole on an anchor assembly using 3 flat washers and 2 rectangular washers per
bolt along with the keeper plate. Place 1 llat washer and the kepere plate between bolt along with the keeper plate. Place 1
the pole base plate and the anchor plate.
2. Adjust anchor rod leveling nuts as requite red to rake pole.
3. Tighten high strength bott st "T "T" " t-llbs torque.
4. Loosen each bolt and retighten to " $T 2$ " t t-lbs torque. DO NOT OVERTIGHTEN!
5. Burr bolt threads at junction with nut using a center punch.
NOTE:
htening of slip base bolts shall not be done without an inspector present.

PLAN - POLE SLIP PLATE - SLIP BASE POLE
 vert. footing bar. Top of conduit and top of anchor
rods must not project above the top of the lover slip platate to allow
pole slip plate free movement

ANCHOR PLATE ASSEMBLY - SLIP BASE POLE
No Scale

ANCHOR PLATE RECESS - SLIP BASE POLE

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS SLIP BASE LUMINAIRE SUPPORTS BASE PLATE \& FOOTING DETAILS 2024			
	${ }_{\text {Boak }}$	7481	${ }_{\text {SDR }}^{\text {SDRE 29-JAN-2024 }}$	TM630

Effective Date: June 1, 2024 - November 30, 2024

*- Load location is the
to the vertical post.

APPURTENANCE LOADS				
Type		$\begin{gathered} \text { Area } \\ \text { side } \\ \text { scif } \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \hline \begin{array}{l} \text { Botcom } \\ \text { (sq. fte } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { onct } \\ \text { olce } \end{gathered}$
$4 L$	12.4	6.61	3.64	145
2	8.67	6.61	1.95	85.0
4	11.0	8.49	1.95	97.0
5	13.3	10.36	1.95	142
51	7.50	2.38	1.72	71.0

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	TRAFFIC SIGNAL SUPPORT GENERAL DETAILS \& DESIGN CRITERIA			
			N DESCRPITITON	
	07-202	REPLACED HUB WITH RECESSED TERMINAL CABINET AND ADDED ACCOMPANIED BY DRAWING TM654		
	-202	位 ORIENTATION WAS BY SIGNAL DESIGNER		
	BCAC.	5301	${ }_{\text {SDR }}^{\text {SARE }}$ 19-JAN-2024	TM650

Effective Date: June 1, 2024 - November 30, 2024

STANDARD SICNAL ARM LOADS									DEFLECTIONS
Signal PoleType	$\begin{aligned} & \hline \text { Signal } \\ & \text { Arm } \\ & \text { Length } \end{aligned}$	Signa/s			Sign			$\begin{aligned} & \text { DSMax. } \\ & \text { for S2. } \end{aligned}$	$\begin{aligned} & \text { Estimated } \\ & \text { "defl" } \\ & \text { End of Arm } \end{aligned}$
		$\begin{aligned} & 4 L \\ & q t y . \end{aligned}$	$\underset{Q t y .}{2}$	$\begin{gathered} 5 \\ C t y . \end{gathered}$	$\begin{aligned} & s 1 \\ & Q t y . \end{aligned}$	$\begin{aligned} & s_{Q t y .} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { H} \\ & \text { Blarz. } \end{aligned}$		
SM6L	60', 65'	1	2	1	4	1	$58^{\prime}-0^{\prime \prime}$	21'-1"	$2^{\prime}-9{ }^{\prime \prime}$
SM7L	70, $75{ }^{\prime}$	1	2	1	4	1	68'-0"	21'-1"	$3^{\prime \prime} 99^{\prime \prime}$

*- Load location is the closest sign or signal of that type
to the vertical post.

1. Camera mounted on 6 ft arm placed at any
2. Camera mounted on 6 ft arm placed at any
location on signal arm.
3. Fire Pr-Emption may be placed at any location
along the mast arm.
4. Modifications to the loading shown require
along the mast arm.
5. Modififations to the loding shown require
nall sis to verifty the strucutural adequacy
6. Modifications to the loading show neeane
anallysis
of the porify the structural adequacy
7. Physical fit of the loading must be verified.

8. 60' and 70' mast arm lengths use the same
design as the longer 55'and 75' lengths
with the end 5 'removed.

9. Physical fit of the loading must be verified.

Effective Date: June 1, 2024 - November 30, 2024

General Notes.
Wood posts are available in the following commercial lengths: 12', 14,', 16', $18^{\prime}, 20{ }^{\prime}$
2. Material shall be Douglas Fir No. 1 and according to Section 02110.40 .
3. For horizontal and vertital clearances of permanent signs refer to TM200 and of
temporary signs refer to TMM22.
4. Wood post desion in
4. Wood post design in accordance with the Sth Edition 2009 AASHTO Standard
Specificiations for Structural Supports for Highway Signs, Luminaires, and Traffic
Silan Signals.
5. Use the 3 second gust wind speeds shown on TM67I for the site specific sign location.
6. Ceneral design parameters are $K z=0.87$, SIF (duration factor) $)=1.6, C \bar{c}($ sign $)=1.20$, 6. Ceneral desigh
and $C=1.14$.
7.
and
7. The sign widtt to sign height or sign height to sign width ratio shall not exceed 5 .0.
8. Permanent signing uses an $1 \mathrm{I}=0.71$ for a recurrence interval of 10 years.
9. Temporary signing uses an $I \mathrm{r}=0.45$ for a recurrence interval of 1.5 years.
10. Posts srotected by barrier or guardrail do not reauire field drilled holes.
11. $4^{\prime \prime} \times 4^{\prime \prime}$ posts should not be used in snow plow areas.

1. 4" 4 " ${ }^{\text {"posts should not be used in snow plow are }}$ 12. Field treat drilled holes according to 021 190.30 .

Post Embedment Installation:

postavat the hole at least 12 "larger in diameter than the diagonal dimension of the post. Maxinain at least 6
compaction equipment.
2. Align the post in the hole to a vertical position.
The space around the wood post shall be bion

The space around the wood post shall be backfilled to finished ground surface
Backfil with selected general backfill meeting the requirements of oo330. 13 . 5. Place in layers not greater than 6 inches
. Solidly ram and tamp the layers into the excavation area around the post.
7. Dampen during placement if too dry to compact properly.

SECTION A-A

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	WOOD POST SIGN SUPPORTS			
	2024			
	DATE			
	${ }^{01-2022}$			
	$1-2024$			
	${ }_{\text {BoOk }}^{\text {CAC }}$ NO	- 5850	$\left.\right\|_{\text {DDR }} ^{\text {SARE }}$ 19-JAN-2024	TM670

Effective Date: June 1, 2024 - November 30, 2024

BOLTED SIGN MOUNTING BRACKET VIEW

GENERAL NOTES:

1. High strength bolts shall conform to ASTM specification A325. A/I other bolts shall conform to ASTM specification A307.
2. Structural steel shall conform to ASTM A36.
3. Surfaces of holes drilled in poles shall be galvanized according
4. Surfaces of holes
to ASTM A780.
to ASTM A780.
5. Maximum sign size is 60 sq. ft. for this signal pole mount.
6. Any signal pole intended to support one of these mounts must first be analyzed to determine if the load-bearing capacity is sufficient to
support this extra load.
7. Structural It ubing shall conform to ASTM specification A500,
8. Crad
9. Cantilever sign to meet lateral clearance requirements and must be
10. Field check pole diameters at mounting heights and cut upper and
lower attachment plates to fit

PLATE WASHER DETAIL
No Scale

SPACER PLATE DETAIL
No Scale

Effective Date: June 1, 2024 - November 30, 2024

[^0]: Effective Date: June 1, 2024 - November 30, 2024

[^1]: Effective Date: June 1, 2024 - November 30, 2024

