State of Oregon West Nile Virus Summary Report

Acknowledgments

This report was prepared by:

Emilio DeBess, DVM, MPVM Brad Beauchamp, BA

Acute and Communicable Disease Prevention

800 N.E. Oregon St., Suite 772

Portland, OR 97232

Phone: 971-673-1111

Fax: 971-673-1100

This report is possible because of the input and hard work of all Oregon vector control districts and the Oregon State University Veterinary Diagnostic Laboratory.

For more information, contact Emilio.E.DeBess@oha.oregon.gov

Please cite this publication as follows:

Oregon Public Health Division. State of Oregon West Nile virus summary report 2020. Oregon Health Authority: Portland, Oregon 2023

Contents

>>	Acknowledgments ii	
>>	Executive summary iv	
>>	Introduction	
>>	WNV surveillance and related activities	
	>> Human surveillance	
	>> Veterinary surveillance	
	» Avian surveillance	
	>> Sentinel chicken surveillance	
	» Mosquito surveillance	
>>	Vector control districts in Oregon	
List	of tables	
Table	e 1. Confirmed WNV infections by species, Oregon, 2004–2020	. iv
Table	e 2. Trend data for Oregon residents who contracted WNV in Oregon, 2004–2020	3
Tabl	e 3. Positive equine WNV test results, Oregon, 2020	4
Table	e 4. Avian WNV test results by county, Oregon, 2020	5
Table	e 5. Avian WNV tests and trend of positive test results, Oregon, 2004–2020	5
Tabl	e 6. WNV-positive mosquito pools, Oregon, 2020	6
Table	e 7. Total female mosquitoes collected for surveillance purposes by Oregon VCDs, 2020	7
Table	e 8. Trend data, WNV-positive mosquito pools, Oregon, 2004–2020	8
List	of figures	
Figu	re 1. Number of positive WNV tests, Oregon, 2020	iv
	re 2. Map of Oregon with shaded counties reporting WNV, 2020	
Figu	re 3. Potential Oregon vectors of WNV based on laboratory vector	
com	petence studies	10
Figui	re 4. Oregon counties with participating vector control districts (VCDs) and their activities	1 1

Executive summary

2020 program highlights

Oregon's surveillance for West Nile virus (WNV) in 2020 identified the following:

- 1 human case
- 1 avian case
- 3 positive mosquito pools

Mosquito pools, 3

Avian, 1

■ Human ■ Avian ■ Mosquito pools

Figure 1. Number of positive WNV tests, Oregon, 2020

Table 1. Confirmed WNV infections by species, Oregon, 2004–2020

Group	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Human	5	8	73	27	16	12	0	0	12	16	8	1	3	7	2	9	1
Horse	32	46	35	16	0	5	0	2	2	6	3	6	6	5	2	9	0
Bird	23	15	25	52	2	16	0	0	2	2	7	11	12	1	1	0	1
Mosquito	0	11	22	28	16	262	4	3	71	89	58	59	51	92	57	87	3
Sentinel chickens*	0	15	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0

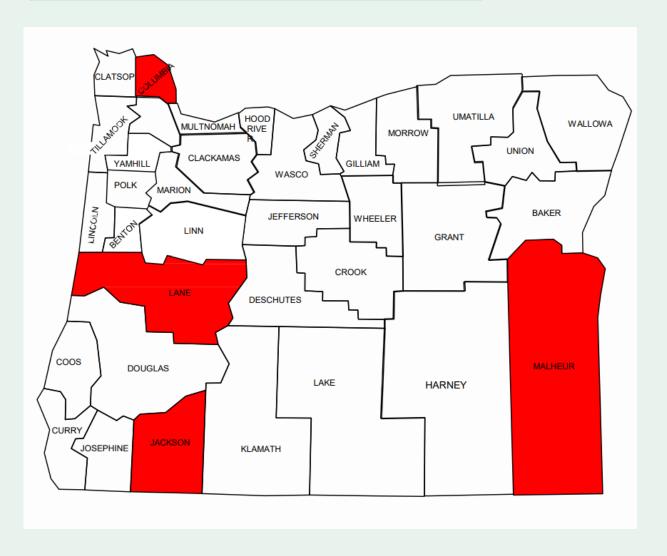
Source: Oregon State University Veterinary Diagnostic Laboratory and Oregon State Public Health Laboratory

^{*}Sentinel chicken surveillance ended in 2011

Introduction

Oregon launched a West Nile virus (WNV) surveillance program in 2001. The virus was first identified in humans, birds and horses in Oregon in 2004. Our peak year followed two years later when 73 human cases were reported.

The incidence of human WNV disease remained low in Oregon in 2020. One human case, one bird, and 3 mosquito pools tested positive for WNV in 2020.


Thirteen vector control districts (VCDs) collect, identify and test dead birds and mosquitoes (in pools of approximately 40 females of the same species) for purposes of WNV surveillance (Figure 4). Some VCDs conduct initial WNV tests for mosquito pools and dead birds using the Rapid Analyte Measurement Platform (RAMP). The Oregon State Public Health Laboratory (OSPHL) performs confirmatory testing of WNV for human specimens.

Oregon State University's (OSU's) Veterinary Diagnostic Laboratory performs WNV testing of mosquitoes, dead birds, horses and other mammals.

The following sections summarize Oregon WNV surveillance findings for humans, horses, birds and mosquitoes in 2020.

Figure 2. Map of Oregon with shaded counties reporting WNV, 2020

County	Mosquitoes	Birds	Horses	Human
Lane	0	1	0	0
Jackson	1	0	0	0
Malheur	2	0	0	0
Columbia	0	0	0	1
Total	3	1	0	1

See https://www.oregon.gov/oha/PH/DISEASESCONDITIONS/DISEASESAZ/ WESTNILEVIRUS/Pages/wnile.aspx for more information about West Nile virus.

WNV surveillance and related activities

Human surveillance

In 2020, one Oregon resident tested positive for WNV by Immunoglobulin M (IgM) antibody (Table 2). Illnesses related to neuroinvasive disease are usually characterized by the acute onset of fever with stiff neck, altered mental status, seizures, limb weakness, cerebrospinal fluid (CSF) pleocytosis or abnormal neuroimaging. Acute flaccid paralysis (AFP) may result from anterior myelitis, peripheral neuritis or post-infectious peripheral demyelinating neuropathy (i.e., Guillain-Barré syndrome). Less common neurological manifestations, such as cranial nerve palsies, also occur.

Table 2. Trend data for Oregon residents who contracted WNV in Oregon, 2004–2020

Year	All cases	Neuroinvasive	Deaths
2004	5	0	0
2005	8	1	0
2006	73	13	1
2007	27	7	1
2008	15	3	0
2009	8	0	0
2010	0	0	0
2011	0	0	0
2012	12	1	0
2013	16	8	0
2014	8	2	0
2015	1	0	0
2016	3	1	0
2017	7	4	1
2018	2	2	0
2019	9	6	0
2020	1	0	0
Total	195	48	3

Source: Oregon State Public Health Laboratory

Veterinary surveillance

WNV surveillance in Oregon's equine population resulted in zero positive tests in 2020. Table 3 summarizes the test results by county.

Table 3. Positive equine WNV test results, Oregon, 2020

County	Horses Tested for WNV	Horses with Positive WNV Test Results
Deschutes	1	0
Jackson	1	0
Tillamook	1	0
Total	3	0

Source: Oregon State University Veterinary Diagnostic Laboratory

Avian surveillance

WNV surveillance in Oregon's avian population resulted in one positive test result out of 24 birds tested by OSU's Veterinary Diagnostic Laboratory and the VCDs; the positive bird was recovered from Lane County. Of the 24 birds collected, 10 were of the family Corvidae (aka corvids), while the remaining 14 were American species other than corvid. Table 4 shows Oregon's avian species collection totals by county for 2020. Table 5 presents trend data for avian WNV testing and positive test results for Oregon counties for the years 2004–2020.

Table 4. Avian WNV test results by county, Oregon, 2020

County	Corvids tested	All other species tested	Total	Total Positive
Benton	2	4	6	0
Clackamas	1	4	5	0
Columbia	0	1	1	0
Lane	0	3	3	1
Multnomah	7	0	7	0
Umatilla	0	1	1	0
Washington	0	1	1	0
TOTAL	10	14	24	1

Source: Oregon State Public Health Laboratory

Table 5. Avian WNV tests and trend of positive test results, Oregon, 2004–2020

Year	Number tested	Number positive	% positive
2004	448	23	5.1%
2005	298	15	5.0%
2006	212	25	11.8%
2007	246	55	22.4%
2008	117	2	1.7%
2009	90	16	17.8%
2010	24	0	0.0%
2011	20	0	0.0%
2012	35	2	5.7%
2013	22	2	9.1%
2014	35	7	20.0%
2015	36	11	30.6%
2016	44	12	27.3%
2017	27	1	3.7%
2018	30	1	3.3%
2019	19	0	0.0%
2020	24	1	4.2%

Source: Oregon State Public Health Laboratory

Sentinel chicken surveillance

Sentinel chicken surveillance was discontinued in 2011.

Mosquito surveillance

In 2020, the VCDs conducted WNV surveillance in Oregon's mosquito population. Figure 4, page 11 shows the counties with participating VCDs and their activities. Statewide, 2,943 mosquito pools were sampled (see Table 7, page 7). The tested mosquitoes comprise 10 mosquito species. OSU conducted polymerase chain reaction (PCR) testing.

Table 6 below displays the number of Oregon mosquito pools by species that tested positive for WNV in 2020. Table 8 (page 8-9) displays Oregon mosquito species between 2004 and 2020 found positive for WNV. Figure 3 (page 10) indicates the efficiency of vector transmission for various mosquito species (information obtained from the Centers for Disease Control and Prevention).

Table 6. WNV-positive mosquito pools, Oregon, 2020

VCD	Mosquito species	Number of positive mosquito pools	Collection date
Jackson	Culex pipiens	2	8/18/2020
Malheur	Culex tarsalis	1	8/19/2020

Source: Oregon vector control districts

Table 7. Female mosquito pools collected by Oregon VCDs and tested for WNV at Oregon State University, 2020

County / VCD	Ac	des dors	dis night	omaculis des vexo	opheles Ar	reeborn co	punctipe Quilletid	nnis nd Pertur	dans Chilex pipie	ns to so	liseto inc	rnata Arrovided
Baker			1					6	265			272
Clackamas								12	1			13
Columbia					3	3		128	46			180
Deschutes				7				12	12	7		38
Jackson								195	113		2	310
Klamath	50	164	126	97		3		13	77	53	12	595
Lane			7					9	24			40
Linn			39		2			40	19			100
Malheur								2	8			10
Morrow						6		455	231		8	700
Multnomah				1	1			4	56			62
Umatilla							3	17	17			37
Union			205					22	139			366
Washington					17	6		26	171			220
Total:	50	164	378	105	23	18	3	941	1179	60	22	2,943

Source: Oregon vector control districts and Oregon State University

Table 8. Trend data, WNV-positive mosquito pools*, Oregon, 2004–2020

Year	Mosquito species	Number of positive pools			
2004	-	-			
	Culex tarsalis				
2005	Culex stigmatosoma	11			
	Culex pipiens				
2006	Culex tarsalis	22			
	Aedes vexans	8			
2007	Culex pipiens	2			
	Culex tarsalis	23			
	Aedes vexans	5			
2008	Culex pipiens	3			
	Culex tarsalis	8			
	Aedes vexans	1			
	Anopheles freeborni	1			
	Anopheles punctipennis	1			
2009	Coquillettidia perturbans	1			
	Culex pipiens	75			
	Culex tarsalis	131			
	Culex sp.	52			
	Culex pipiens	1			
2010	Culex tarsalis	2			
	Culex sp.	1			
2011	Culex sp.	3			
	Culex pipiens	53			
2012	Culex tarsalis	3			
	Culex sp.	15			
	Culex pipiens	14			
2013	Culex tarsalis	74			
	Anopheles freeborni	1			

	Aedes vexans	4
2016	Culex pipiens	13
	Culex tarsalis	41
	Culex pipiens	20
2015	Culex tarsalis	35
	Genus Culex	4
	Culex pipiens	21
2016	Culex tarsalis	28
	Genus Culex	2
	Culex pipiens	49
2017	Culex tarsalis	15
	Genus Culex	28
	Culex pipiens	13
2018	Culex tarsalis	37
	Genus Culex	7
2010	Culex pipiens	65
2019	Culex tarsalis	22
2020	Culex pipiens	2
2020	Culex tarsalis	1

Source: Oregon State University Veterinary Diagnostic Laboratory

^{*1} pool ≈ 40 mosquitoes

Figure 3. Potential Oregon vectors of WNV based on laboratory vector competence studies

Species	Association with	Host	A 15 da atrica	Flight	Vector	Field isolations	Potential as	
Species	other viruses ^a	preference	Activity time	range	competence for WNV ^b	of WNV	Enzootic vector ^d	Bridge vector"
Ae. aegypti		Mammals	Crepuscular/day	200 m	+++,3	+	0	+
Ae. albopictus	EEE	Opportunistic	Crepuscular/day	200 m	++++, 3, 6	+	+	++++
Ae. vexans	EEE, WEE, SLE	Mammals	Crepuscular/night	>25 km	++1, 5, 8	+++	0	++
Cq. perturbans	EEE	Opportunistic	Crepuscular/night	$5\mathrm{km}$	+, 4	+	+	+
Cs. melanura	EEE	Birds	Crepuscular/night	$9\mathrm{km}$	+, 8	++	++	0
Cs. inornata	WEE	Mammals	Crepuscular/night	$2\mathrm{km}$	+++,5	+	+	++
Cx. stigmatosoma	SLE	Birds	Night	1 km	+++,5	0	+++	+
Cx. erythrothorax	WEE	Opportunistic	Crepuscular/day	<2 km	++++,5	0	++	+++
Cx. nigripalpus	EEE, SLE	Opportunistic ^f	Crepuscular	5 km	++,4	+++	+++	++
Cx. pipiens	SLE	Birds	Crepuscular/night	$2\mathrm{km}$	+++, 1, 3, 5	++++	+ + + + +	++
Cx quinquefasciatus	SLE	Birds	Crepuscular/night	2 km	+++, 4, 5	0	++++	++
Cx. restuans	SLE	Birds	Crepuscular/night	$2\mathrm{km}$	++++,4	+++	+++++	++
Cx. salinarius	EEE, SLE	Opportunistic	Crepuscular/night	$10\mathrm{km}$	++++,4	+++	+++	++++
Cx. tarsalis	WEE, SLE	Opportunistic ^f	Crepuscular/night	>6 km	++++, 5, 7	++++	+ + + +	+++
Oc. atropalpus		Mammals	Day and night	$1~\mathrm{km}$	++++,3	+	+	++
Oc. canadensis	EEE	Mammals	Day	$2 \mathrm{km}$	++,8	+	0	++
Oc. cantator	EEE	Mammals	Day	>10 km	++,8	+	0	++
Oc. dorsalis	WEE	Mammals	Day and night	5 km	+++,5	+	0	++
Oc. japonicus	JE?	Mammals	Crepuscular/day	unk	++++, 2, 3	+++	+	+ + + +
Oc. melanimon	WEE	Mammals	Day and night	>10 km	+++,5	0	0	++
Oc. sierrensis		Mammals	Crepuscular/day	1 km	+, 5	0	0	+
Oc. sollicitans	EEE	Mammals	Crepuscular/night	>25 km	++, 1, 3	+	0	+
Oc. taeniorhynchus	EEE	Mammals	Day and night	>25 km	+, 1, 3	+	0	+
Oc. triseriatus		Mammals	Day	200 m	+++,8	++	0	+++
Ps. ferox	SLE	Mammals	Day	2 km	0, 8	+	0	0

Distribution and bionomics based on and generalized from information in Carpenter and LaCasse (1955), Darsie and Ward (1981), and Moore et al. (1993).

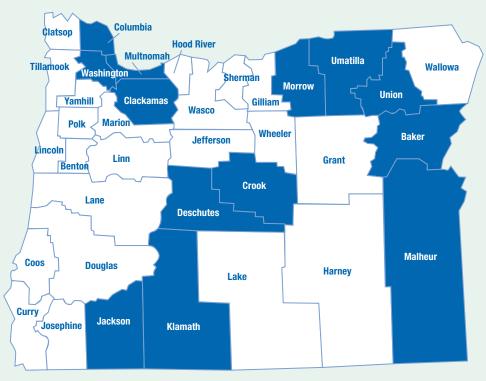
[&]quot;Known association with other viruses with a similar transmission cycle. EEE, eastern equine encephalomyelitis virus; JE; Japanese encephalitis virus; SLE; St. Louis encephalitis virus; WEE; western equine encephalomyelitis virus. Based on Karabatsos (1985).

^b Efficiency with which this species is able to transmit WNV in the laboratory. 0, incompetent; +, inefficient; ++++, extremely efficient vector. Based on 1 (Turell et al. 2000), 2 (Sardelis and Turell 2001), 3 (Turell et al. 2001), 4 (Sardelis et al. 2001), 5 (Goddard et al. 2002), 6 (Sardelis et al. 2002), 7 (Turell et al. 2003), or 8 (present study).

^c Relative number of WNV-positive pools detected. 0, none; +, few; ++++, many.

^d Potential for this species to be an enzootic or maintenance vector based on virus isolations from the field, vector competence, feeding behavior, etc. 0, little to no risk; +++++, this species may play a major role.

^e Potential for this species to be an epizootic or bridge vector based on virus isolations from the field, vector competence, feeding behavior, etc. 0, little to no risk; +++++, this species may play a major role.


Feeds primarily on avian hosts in spring and early summer and mixed between avian and mammalian hosts in late summer and fall.

^{*} Turell MJ, Dohm DJ, Sardelis MR, Oquinn ML, Andreadis DJ, Blow JA. An update on the potential of North American mosquitoes (*Diptera: Culicidae*) to transmit West Nile virus. J Med Entomol 2005; 42: 57–62. Used with permission.

Vector control districts in Oregon

Figure 4. Oregon counties with participating vector control districts (VCDs) and their activities

County	Mosquito collection	Bird collection
Baker	YES	YES
Clackamas	YES	YES
Columbia	YES	YES
Crook	YES	YES
Deschutes	YES	YES
Jackson	YES	YES
Klamath	YES	YES
Malheur	YES	YES
Morrow	YES	YES
Multnomah	YES	YES
Umatilla	YES	YES
Union	YES	YES
Washington	YES	YES

Source: Oregon Health Authority

PUBLIC HEALTH DIVISION

Acute and Communicable Disease

Prevention Program

Phone: 971-673-1111 Fax: 971-673-1100

You can get this document in other languages, large print, Braille or a format you prefer. Contact the Acute and Communicable Disease Prevention Program at 971-673-1111. We accept all relay calls, or you can dial 711.