Cryptococcosis

1. DISEASE REPORTING

1.1 Purpose of Reporting and Surveillance

1. To define the burden and to monitor trends in cryptococcal infection in Oregon.
2. To determine the proportions of cryptococcal disease caused by Cryptococcus neoformans and C. gattii.
3. To identify risk factors for C. neoformans and C. gattii infections.
4. To discern differences in outcomes of C. neoformans and C. gattii infections.

1.2 Laboratory and Physician Reporting Requirements

1. Health care providers, health care facilities and clinical laboratories are required to report cryptococcal infections to the local public health department within one local public health authority working day.
2. Licensed laboratories are required to submit cryptococcal isolates to the Oregon State Public Health Laboratory (OSPHL).

1.3 Local Health Department Reporting and Follow-Up Responsibilities

1. Report all confirmed and presumptive cases to the Oregon Health Authority, by fax (971-673-1100) or by entry of data into Orpheus, within one working day of the initial physician or laboratory report.
2. Begin follow-up investigation within one working day. When possible, request medical records. Review and complete the relevant fields in Orpheus.

2. THE DISEASE AND ITS EPIDEMIOLOGY

2.1 Etiologic Agent

Cryptococcus spp. are environmental fungi. C. gattii was previously known as a fungus that was found in tropical or subtropical climates, but an environmental reservoir has recently been recognized in the Pacific Northwest. Animal and human cases appeared in an outbreak on Vancouver Island, British Columbia (BC), Canada, starting in 1999. The fungus has subsequently been found in environmental samples on Vancouver Island, mainland BC, Washington State, and Oregon. C. gattii has caused illness among people as well as in domestic and wild animals, including dogs, cats, ferrets, horses, llamas, sheep, goats and porpoises. Cryptococcus spp. are saprophytic, encapsulated yeasts. They are Gram-positive and have a spheroid or ovoid shape. There are many species of Cryptococcus, but C. neoformans (varieties neoformans and grubii) and C. gattii are the primary human pathogens of this genus.

2.2 Description of Illness

Cryptococcal infection is thought to begin with inhalation of spores and infection of the lungs with resultant pneumonia; but it can disseminate to infect the central nervous system, presenting as meningitis. Untreated meningitis ends fatally in weeks to months. Reported symptoms depend upon the presentation, but may include headache, stiff neck, severe, prolonged cough (lasting weeks to months), shortness of breath, fever, chills, night sweats, and loss of appetite. Lung, brain, or muscle cryptococcomas (large mass lesions or nodules) may develop. The skin may show acneiform lesions, ulcers or subcutaneous tumor-like masses. Infection of the kidneys, prostate, and bone may also occur. The infection may become chronic,
Cryptococcus

requiring long-term or life-long treatment. Occasionally, the causal agent may act as an endobronchial saprophyte in patients with other lung diseases. Asymptomatic infections may occur, with cryptococcomas identified on imaging studies done for other purposes.

Diagnosis of cryptococcal meningitis is aided by the evidence of encapsulated budding forms on microscopic examination of cerebral spinal fluid (CSF) mixed with India ink. Cryptococcal antigen (CrAg) tests in serum and CSF are helpful in establishing a preliminary diagnosis. Confirmation is via culture or histopathology.

Unfortunately, standard methods of diagnosis in clinical laboratories do not differentiate between Cryptococcus gattii and C. neoformans. Isolation of the organism in culture is needed for speciation. Cryptococcal isolates can be plated on chromogenic differential medium called Canavanine-Glycine-Bromothymol blue (CGB) agar, on which C. gattii will trigger a blue color reaction as it grows, whereas C. neoformans will not grow on CGB agar so that the medium remains yellow. False positive or false negative results may occur occasionally.

Genotyping of the organism, which has been done at CDC, can provide useful information about genetic relatedness and may help to link cryptococcal cases to the Pacific Northwest or other geographic locations.

2.3 Reservoirs

C. gattii is an environmental fungus that has been isolated from native trees, soil, air, and water in the Pacific Northwest. In Australia, C. gattii can be found in certain species of eucalyptus trees. C. neoformans has been consistently isolated from pigeon droppings.

Cryptococcus gattii in Oregon

C. gattii infection was first diagnosed in Oregon in late 2004, and since then a number of human and animal cases have been reported. Since the exposure period can be long, determining exposure location may be difficult. Environmental sampling has also confirmed the presence of the fungus in Oregon.

2.4 Sources and Routes of Transmission

Presumably by inhalation of spores from the environment. Cryptococcus is not transmissible from person to person or from animal to person.

2.5 Incubation Period

Two to 13 months. Pulmonary disease may precede brain infection by months or years.

2.6 Period of Communicability

Cryptococcal disease is not transmitted person to person or from animal to person.

2.7 Treatment

Typically, either amphotericin B plus 5-flucytosine or fluconazole alone is recommended. See specific antifungal treatment guidance published by the Infectious Diseases Society of America (2010): www.idsociety.org/uploadedFiles/IDSA/Guidelines-Patient_Care/PDF_Library/Cryptococcal.pdf

3. CASE DEFINITIONS, DIAGNOSIS, AND LABORATORY SERVICES

3.1 Confirmed Case Definition

An individual from whom Cryptococcus sp. is isolated or identified on histopathology.

3.2 Presumptive Case Definition

An individual with either clinical meningitis or pulmonary infection, and in whom cryptococcal antigen is detected in serum or cerebrospinal fluid.

3.3 Suspect Case Definition

A patient with a positive cryptococcal antigen.

3.4 Services Available at the Center for Public Health Laboratory

The Oregon State Public Health Laboratory (OSPHL) can subculture isolates of Cryptococcus for the purpose of speciation. Isolates should be sent at ambient temperature on slants or on Petri plates tightly sealed with paraffin wrap. Paraffin blocks are not accepted.
Note that OSPHL requires all clinical specimens have two patient identifiers — a name and a second identifier (e.g., date of birth) — both on the specimen label and on the submission form. Due to laboratory accreditation standards, specimens will be rejected for testing if not properly identified. Also include specimen source and collection date.
Serology, cryptococcal antigen testing and histopathologic examination are not available through OSPHL.

4. ROUTINE CASE INVESTIGATION

Patient interview and the medical record should provide most of the information needed for the disease investigation. Complete the fields in Orpheus regarding patient demographics, clinical information, laboratory data, risk factor information, and travel history. Ensure that any cryptococcal isolate is forwarded to OSPHL for speciation.

4.1. Identify Source of Infection

Obtain history of any travel out of state during the putative incubation period. Note any “smoking gun” exposures — e.g., heavy exposure to sawdust or mulch.

4.2. Identify Other Potentially Exposed Persons

Not applicable.

4.1. Environmental Evaluation

Generally not done. Consult ACDP regarding utility of environmental testing if a particular exposure is suspected based on history.

5. CONTROLLING FURTHER SPREAD

5.1 Infection Control Recommendations

None.

5.2 Isolation and Work or Day Care Restrictions

There is no need for patient isolation or restrictions on work or day care.

5.3 Followup of Cases

No follow-up needed.

5.4 Protection of Contacts

None; the infection is not spread person-to-person.

5.5 Environmental Measures

In general, none.

6. MANAGING SPECIAL SITUATIONS

Notify ACDP of any apparent clusters of cases.

UPDATE LOG

June 2013. Reviewed (DeBess and Cieslak)
December 2012. Created (DeBess)