Welcome and thanks for being here today. I’m _____ with the state Drinking Water Program and we are here today to learn more about slow sand filtration. In order to help improve this training, I encourage you to speak up when you have questions or concerns or if something conflicts with what you have come to understand or experienced in the past. That is the best way to identify areas we need to perhaps do some more work on in order to make this training more relevant. Most of all, I hope that today you will learn something new about the operation of your own slow sand filters. I’d like to get an idea of who is here today and I think it always helps for others to know who you are to so let’s start in the front row with introductions.

Aerial photo of Astoria, OR (a 5 MGD) was taken by Frank Wolf in 2010.
We’ll begin with a bit of history on the use of slow sand filters, and a brief introduction to the technology, including some discussion on pathogen removal mechanisms and expected performance. We’ll get into some of the critical variables that should be taken into account when designing or upgrading filters, which can have a big impact on operation and maintenance as well as recommended goals and practices. We’ll touch on regulatory requirements and finish up with where you can find more resources. I’ve tried to summarize key concepts in tables with a blue heading so you can quickly refer to them in the future. So, let’s get started.
This is the basic design of a slow sand filter, although there are many variations, they all have the same basic elements....raw water influent, filter bay or cell, sand, underdrain, and flow control mechanisms.
Records show that an experimental slow sand filter was first designed and built by John Gibb in 1804 for his textile bleachery in Paisley, Scotland (surplus treated water was sold to the public at a halfpenny per gallon (~1 US cent/gallon in 1800).
In 1828, the artist William Heath published a scathing caricature reflecting the public's distaste for the water being supplied from the River Thames by London companies.
In 1829, James Simpson (pictured) constructed a slow sand filtration system for the Chelsea Water Company in London, England. This was the first use of slow sand filtration for the express use of producing drinking water and became a model for future designs. The benefits of the slow sand filtration system prompted the passage of the Metropolis Water Act in 1852, requiring all water derived from the River Thames within 5 miles of St Paul’s Cathedral to be filtered.
John Snow, who was the first to connect a cholera outbreak in London in 1854 with a contaminated pubic well on Broad street in London, also recognized the value of filtration.
Today, slow sand filters are used throughout the world. Many new advances in their operation and reference manuals have originated from other countries. Slow sand filters are recognized by the World Health Organization, Oxfam, United Nations, and the US Environmental Protection Agency as being superior technology for the treatment of surface water sources. According to the World Health Organization, "Under suitable circumstances, slow sand filtration may be not only the cheapest and simplest but also the most efficient method of water treatment."
The first recorded installation in the U.S. was in Poughkeepsie (pronounced: paˈkipsi), NY in 1872. Chlorine was added in 1909.
Other installations soon followed, like the Washington D.C. McMillan Water Filtration Plant placed into service in 1905. The piles are located under roof hatches that allowed sand to be added.
This photograph shows the main collectors and laterals for a similar installation in Pittsburgh, PA.
Between 1900 and 1911, Philadelphia, PA constructed 5 slow sand plants like the one shown above. This photo shows a filter scraping in progress.
Reduction in Typhoid fever due to filtration (1909) and disinfection (1914) in Philadelphia, showing declining death rates from 1860 to 1936. Source: http://www.phillyh2o.org/filtration.htm
Similar reductions in Typhoid fever were experienced in other communities that had installed filtration as documented in this USGS Water Supply Paper in 1913. The table shows deaths from typhoid fever per 100,000 population prior to and after filtration. Death rates from typhoid fever for the cities shown dropped an average of 73% once filtration was installed. The 3 cities that installed slow sand (Albany NY, Lawrence MA, and Pittsburgh PA) experienced an average drop in the death rate of 78%.
With the advent of new technologies like cartridge, rapid rate filtration, and membranes, use in the United States generally dropped off in spite of a “revival” of them in the early 1990's as evidenced by the Slow Sand Filtration Workshop entitled “Timeless Technology for Modern Applications” sponsored by the University of New Hampshire in 1991. However, since the first recorded installation in Poughkeepsie, NY in 1872, slow sand filtration is still a viable choice today.
In 1995, EPA included a chapter on slow sand filtration in their water treatment manual on filtration, which provided a description of slow sand filtration, with some recommended design and operational guidelines.
One reason they have survived the advances of other technologies is that they are relatively inexpensive by comparison. In 2010 a report generated by EPA was published that provided 57 models to assign costs to more than 83 types of infrastructure needs, from replacing broken valves to building new treatment plants. These models were based on an infrastructure needs survey that EPA and the States conduct in 2007 as well as other data sources. The survey, called the “Drinking Water Infrastructure Needs Survey and Assessment” is used to estimate the 20-year capital investment needs of public water systems that are eligible to receive Drinking Water State Revolving Fund assistance. This slide shows the construction project costs for constructing slow sand, diatomaceous earth and cartridge/bag filtration plants as compared to membrane and conventional and direct filtration plants on a cost per MGD plant capacity. The graphs show that constructing a 1 MGD slow sand plant is about $100,000 less as compared to a conventional or membrane filtration plant. The 2007 survey data shows that the cost to construct a slow sand plant is about $1 Million/MGD. Fun Fact: in 1913, the cost of constructing a slow sand filter was about $24,000/MGD.

They are also relatively simple to operate and maintain with little operator time needing to be spent each day. This translates into considerable savings over the roughly 7-10-year life of a filter and by life, I mean the life of the filter media, which usually after about 7-10 years of scraping, needs replenishing.
So what makes them so good? As you can see, removal mechanisms are not based on simple straining. This diagram demonstrates that if simple straining was the only removal mechanism, the grain diameter of the filter sand would have to be much smaller than that normally recommended. Straining does, however, prevent the penetration of larger particles into the sand bed and helps to promote the formation of the schmutzdecke layer by providing a substrate for microbial growth. (Campos, 2002)
This diagram shows how inertial and centrifugal forces cause the particles to move out of the flow line and deposit in crevices between grains.
Flow splitting increases the chance that particles will collide with sand grains.

Flow splitting increases with smaller sand grain size.
Particles are carried by stream flows to sand grains and are either intercepted, settle out, or collide through diffusive forces (Brownian motion of molecules carry larger particles towards the sand grain). The probability of these collisions is due to transport is expressed as the probability coefficient, η.

Unless attachment occurs, there is no particle removal. Whether particles remain attached once they come into contact with sand grains depends upon the coating of the sand grain due to biofilm development and coagulation of the particles due to extracellular enzymes (i.e., “natural coagulants”). The fraction of particle that attach, relative to the number of collisions, is by definition the coefficient α (“alpha”) – Yao, et al 1971. With newly sanded filters, coliform removals are near zero ($\alpha \sim 0$). After the filter matures, removals range from 99 – 99.99% ($\alpha \sim 1$).
Biota within the sand bed includes bacteria, protozoa, rotifers, copepods, roundworms, flatworms & Oligochaetes, which vary with depth. Removal mechanisms are dependent upon this biota in the sand bed and in the Schmutzdecke.

For example, although sometimes seen as a nuisance, the presence of midge flies can improve performance by keeping head loss in check through their burrowing and the adsorption of detritus and DOC onto their dwelling tubes.
The 1974 World Health Organization identified 4 major removal mechanisms as summarized in this table. Sedimentation occurs in the headwaters above the filter media, due to the long detention times (around 15 hours as opposed to 15 minutes in a rapid rate filter). The Schmutzdecke, a German word which roughly translates to “dirt blanket”, is a biological mat that forms as a result of the accumulation of settled particles and the growth of micro-organisms, which break down organic matter and oxidizes nitrogen compounds to form nitrate (NO₃). Removal of some color is also achieved, although raw waters should generally have color less than 5 color units. As the schmutzdecke builds up, headloss increases. Cleaning is needed at the point were design filtration rates are not able to be maintained. 12-16 inches into the sand bed, biochemical processes predominate converting amino acids to ammonia, nitrites, and nitrates (nitrification). Finally, adsorptive forces work to a depth of 16-24 inches to further remove particles. Knowing how the removal mechanism works in slow sand filters highlights the importance of not letting the sand bed get depleted beyond around 24 inches. Any less than that, and you begin to erode your removal mechanisms.
Effectiveness of the filters depends on the health of the filter biota, which rely on a wetted environment with adequate food and oxygen to remain viable.

FACTORS AFFECTING REMOVAL

Schmutzdecke biological removal mechanisms

Effectiveness relies on:

1. **Wet sand** (to keep microbes alive)
2. **Adequate food** (organic mater supplied by continuous inflow of raw water)
3. **High enough oxygen content** (above 3 mg/l in the filter effluent) in order for metabolism of biodegradable compounds and avoid anearobic decomposition, which can release hydrogen sulfide, ammonia, and other taste and odor causing compounds.

Oxygen levels can be maintained by:
- Continuous raw water influent
- Aeration
Under proper operation and favorable raw water conditions, slow sand filters can perform very well with 2-4 log removals of Giardia and viruses and more than 4-log removal of cryptosporidium. Although there can be some removal of TTHM precursors ranging from 20 – 30%, some systems may still have issues with disinfection by-products, depending upon the raw water quality. Slow sand filters also have the ability to remove up to 3 mg/L of ammonia from source water, which is used as a source of nitrogen for organisms in and on top of the filter media.
Table 7.7 of the World Health Organization’s 2011 fourth edition of the document titled “Guidelines for Drinking-Water Quality” provides a summary of treatment processes that are commonly used individually or in combination to achieve microbial reductions. The minimum and maximum removals are indicated as \log_{10} reduction values and may occur under failing and optimal treatment conditions, respectively. The World Health Organization recognizes that slow sand filtration systems for larger communities can achieve 0.25 – 4 log virus, 2 to 6 log bacteria, and 0.3 to more than 5-log protozoa removal efficiencies. Within these microbial groups, differences in treatment process efficiencies are smaller among the specific species, types, or strains of microbes. Such differences do occur, however, and the table presents conservative estimates of microbial reductions based on the more resistant or persistent pathogenic members of that microbial group.
Even with the best design, there are a number of variables that can have a big impact on performance. Raw water characteristics like turbidity, color, and colloidal content for example. Other critical variables include sand size and uniformity, flow control and management of air binding, headloss development, sand bed depth, filtration rate and flow variability. Allowing sufficient time to mature once a filter has been newly sanded (usually 4 – 6 weeks) and allowing the filter to ripen once cleaned (24 – 48 hours) are very critical to optimal performance.
Iron and manganese should both be less than 1 mg/l in the source water. Filters remove iron and manganese by precipitation at the sand surface. This can enhance organics removal, but too much iron and manganese precipitate can clog the filters. Slow sand filters have been specifically designed and installed to remove iron and manganese at levels higher than 1 mg/l, with removals as high as > 67% (Collins, M.R., 1998).
The removal of natural organic matter (NOM) is related to filter biomass and in that NOM removal increases with increasing biomass concentrations in the filter. Ammonia is also removed as a result of algae synthesis in the production of new cellular material and in breaking down organic matter to forms more assimilable to bacteria and protozoans (Assimilable Organic Carbon or “AOC”). SSF can remove between 14 and 40% of AOC (mean = 26%) Lambert and Graham (1995)
Bacterial growth is related to DOC and phosphorus concentrations. Bacterial growth is influenced strongly by the organic carbon exudates produced by algae and the availability of this substrate is one factor that can limit bacterial growth in water environments. The net accumulation of bacteria in porous media is controlled by growth, deposition, decay, and detachment. Growth is proportional to the rate of substrate utilization - if there is no substrate they can attach to, growth is limited (another reason why a small effective size is critical. Note, that the smaller the effective size, the higher the headloss and the lower the filtration rate).
Heterotrophic bacteria levels do not increase when AOC is less than 10 micrograms of carbon/liter (river levels typically have 123 ug C/L, Camper et al, 2000 - study of 64 surface water plants) and AOC is typically 10% of TOC (LeChevallier et al. 1991). Coliform bacteria growth is limited by AOC of 50 ug C/L (LeChevallier et al., 1991).
Protozoa derive their nutrition by grazing on algae, bacteria, in some cases smaller protozoa and by ingesting particulate organic matter (Di Toro et al., 1975, Tebbutt, 1998). Grazing rate is also increased with increasing temperature (up to a point). The growth rate depends on the amount of food which is ingested and assimilated (algae make nutrients more assimilable). Dissolved oxygen is critical for the survival of protozoa since most are obligate aerobes. Assimilation efficiencies are higher for algae (lower for blue-green algae) than for detritus and bacteria.
In general, the minimum temperature for microbial growth is in the range of 10 - 15 °C and the optimum is 24 - 40 °C with the maximum value in the range of 35 - 45 °C. Beyond the max and min limits, growth ceases.

Temperature regimes are very different in large lakes. In temperate regions, for example, as air temperatures increase, the icy layer formed on the surface of the lake breaks up, leaving the water at approximately 4 °C. This is the temperature at which water has the highest density. As the season progresses, the warmer air temperatures heat the surface waters, making them less dense. The deeper waters remain cool and dense due to reduced light penetration. As the summer begins, two distinct layers become established, with such a large temperature difference between them that they remain stratified. The lowest zone in the lake is the coldest and is called the hyolimnion. The upper warm zone is called the epilimnion. Between these zones is a band of rapid temperature change called the thermocline. During the colder fall season, heat is lost at the surface and the epilimnion cools. When the temperatures of the two zones are close enough, the waters begin to mix again to create a uniform temperature, an event termed lake turnover. In the winter, inverse stratification occurs as water near the surface cools freezes, while warmer, but denser water remains near the bottom. A thermocline is established, and the cycle repeats (Brown 1987, Brönmark and Hansson 2005).
Open filters should not be used where temperatures can drop below freezing.
Dissolved oxygen is needed for maintaining a healthy schmutzdecke and avoiding reducing conditions, which can cause dissolution of metals and taste and odor issues.
Algae has been receiving more attention with increased harmful algal blooms being the most significant public health threat, but it serves a purpose in slow sand filtration under most normal circumstances. Algae is made up of many different species and under desirable conditions, aids in the rapid build-up of cell material in the schmutzdecke. This photo is of a slow sand filter for the City of Cannon Beach on the Oregon coast – the filter is off-line much of the year due to the availability of other groundwater sources. The photo on the right is from Lyons Mehama in 2013, which does experience algae blooms in the summer.
In the presence of sunlight, algae absorb carbon dioxide, nitrates, phosphates, and other nutrients from the influent water to form new cellular material and oxygen. The oxygen dissolves in the water and reacts with organic compounds, rendering these, in turn more assimilable by bacteria and other microorganisms. In the absence of sunlight, as in the case of covered filters, algae are chemosynthetic and consume oxygen causing a decrease in dissolved oxygen.
Algae also increases the oxygen content, keeping aerobic conditions in the filter bed. If dissolved oxygen of the filtered water drops below 3 mg/l, this may signify anaerobic conditions in the filter bed, which could lead to the formation of hydrogen sulfide, ammonia, dissolved iron and manganese, and other taste and odor causing compounds (WHO, pp 32-33).
Under abnormal conditions, such as during an algal bloom, the increased algal growth results in a drop in carbon dioxide, which can cause bicarbonates to dissociate to insoluble carbonates and carbon dioxide. The lowering of the bicarbonate content will cause a decrease in the temporary hardness and will cause the insoluble carbonate to precipitate out, clogging the filter. Reaction is as follows:

\[\text{Ca(HCO}_3\text{)}_2 \rightarrow \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \]

4. Algae decrease carbon dioxide. If too much carbon dioxide is decreased (e.g. during algal blooms), this may cause bicarbonates to dissociate to insoluble carbonates and carbon dioxide. The lowering of the bicarbonate content will cause a decrease in the temporary hardness and will cause the insoluble carbonate to precipitate out, clogging the filter. Reaction is as follows:

\[\text{Ca(HCO}_3\text{)}_2 \rightarrow \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \]
The type of algae present can be just as important as the amount. Filamentous algae results in the buildup of a tightly woven mat, strong enough in some cases that it can be rolled up. If the headwater above the filter bed is too shallow or is very clear, sunlight reaching the mat layer (dependent upon the clarity of headwater), oxygen bubbles can form within and under the mat, increasing its buoyancy, reducing the filter resistance and increasing the filtration rate.

When filamentous algae predominate, a zoogal mat is formed that contains tightly woven filaments giving the mat high tensile strength (high enough that the Schmutzdecke mat can be rolled up in some cases). When sunlight is strong and able to reach the mat layer (dependent upon the clarity of headwater), oxygen bubbles can form within and under the mat, increasing its buoyancy, reducing the filter resistance and increasing the filtration rate.

When diatomaceous algae predominate, the filter resistance and clogging increases due to their hard inorganic shells. Diatoms generally increase in number in late winter, often with 2-3 additional blooms occurring during the spring.

Although algae does play a beneficial role, as previously discussed, diatomaceous algae can cause the filters to clog. Floating algae does not necessarily cause clogging, but can result in poor filter effluent quality. The table shown was adapted from Table 10.2 of the 5th Edition of the Water Treatment Plant design manual from AWWA/ASCE, published in 2012.
This figure shows filter clogging species (Palmer, C.M., *Algae and Water Pollution: An illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water*. Plate VIII. US EPA. EPA-600/9-77-036. December 1977.)
So what are harmful algal blooms?....
This photograph shows how extensive algae blooms can be. Blooms in Lake Erie have been attributed to, among other things, practices that have increased dissolved reactive phosphorous or DRP, that promotes algae growth.
In 2011, the bloom in Lake Erie was composed almost entirely of toxic blue-green Microcystis algae. Microcystin, a liver toxin produced by the algae, peaked at about 224 times the World Health Organization guideline of 1 µg/l.
Algal blooms can be just about anywhere.
Recreational advisories in Oregon due to harmful algae blooms occur every year.

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>County</th>
<th>Dominant Species/Toxin</th>
<th>Cell Count (cells/ml) / Level (ppb)</th>
<th>Start Date</th>
<th>End Date</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willow Creek Reservoir</td>
<td>Morrow</td>
<td>Anabaena flos-aquae</td>
<td>3,551,625</td>
<td>6/18/2013</td>
<td>8/13/2013</td>
<td>56</td>
</tr>
<tr>
<td>Lost Creek Lake</td>
<td>Jackson</td>
<td>Anabaena flos-aquae</td>
<td>1,275,333</td>
<td>6/20/2013</td>
<td>7/05/2013</td>
<td>15</td>
</tr>
<tr>
<td>Dexter Reservoir</td>
<td>Lane</td>
<td>Anabaena flos-aquae</td>
<td>2,228,000</td>
<td>7/03/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorena Reservoir</td>
<td>Lane</td>
<td>Anabaena flos-aquae</td>
<td>556,000</td>
<td>7/25/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devils Lake</td>
<td>Lincoln</td>
<td>Microcystis</td>
<td>Unknown</td>
<td>8/01/2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Lake</td>
<td>Multnomah</td>
<td>Visible Scum</td>
<td>Unknown</td>
<td>8/06/2013</td>
<td>8/09/2013</td>
<td>3</td>
</tr>
<tr>
<td>Fern Ridge Reservoir</td>
<td>Lane</td>
<td>Visible Scum</td>
<td>Unknown</td>
<td>8/15/2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: http://healthoregon.org/hab/
These are just some of the 10 advisories in Oregon issued in 2014 due to harmful algae blooms.

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>County</th>
<th>Dominant Species/Toxin</th>
<th>Cell Count (cells/ml) / Level (ppb)</th>
<th>Start Date</th>
<th>End Date</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost Cr Lake</td>
<td>Jackson</td>
<td>Anabaena flos-aquae</td>
<td>3,222,251</td>
<td>6/3/14</td>
<td>6/26/14</td>
<td>22</td>
</tr>
<tr>
<td>Odell Lake</td>
<td>Klamath</td>
<td>Microcystin</td>
<td>675 ppb</td>
<td>7/21/14</td>
<td>8/8/14</td>
<td>18</td>
</tr>
<tr>
<td>Devils Lake</td>
<td>Lincoln</td>
<td>Microcystin</td>
<td>>25 ppb</td>
<td>8/2/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welterville Pond</td>
<td>Lane</td>
<td>Microcystis</td>
<td>53,000</td>
<td>8/5/14</td>
<td>10/2/14</td>
<td>58</td>
</tr>
<tr>
<td>Tenmile Lakes</td>
<td>Coos</td>
<td>Microcystin</td>
<td>107 ppb</td>
<td>9/15/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willamette River</td>
<td>Multnomah</td>
<td>Microcystis</td>
<td>2,250,000</td>
<td>9/16/14</td>
<td>10/2/14</td>
<td>15</td>
</tr>
<tr>
<td>Wickup Res</td>
<td>Deschutes</td>
<td>Microcystin</td>
<td>20.6 ppb</td>
<td>9/30/14</td>
<td>11/10/14</td>
<td>52</td>
</tr>
<tr>
<td>Cullaby Lake</td>
<td>Clatsop</td>
<td>Cylindrospermopsis & Microcystin</td>
<td>12 ppb & 16 ppb</td>
<td>9/22/14</td>
<td>10/3/14</td>
<td>39</td>
</tr>
</tbody>
</table>

Source: http://healthoregon.org/hab/
Although algae does play a beneficial role, as previously discussed, harmful algal blooms consisting of Cyanobacteria or blue-green algae that may produce toxins pose a risk to humans and animal health.
HARMFUL ALGAE - COMMON GENERA

Cyanobacteria
Common in Oregon

[Images of various cyanobacteria species]
Although algae does play a beneficial role, as previously discussed, harmful algal blooms consisting of Cyanobacteria or blue-green algae that may produce toxins pose a risk to humans and animal health.
This table shows some of the toxins that can be produced by Cyanobacteria.

<table>
<thead>
<tr>
<th>Type of Algae</th>
<th>Toxin Produced</th>
<th>Type of Toxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anabaena</td>
<td>Anatoxin, Saxitoxin</td>
<td>Neurotoxin</td>
</tr>
<tr>
<td></td>
<td>Microcystin</td>
<td>Hepatotoxin</td>
</tr>
<tr>
<td>Planktothrix</td>
<td>Anatoxin</td>
<td>Neurotoxin</td>
</tr>
<tr>
<td>(Oscillatoria)</td>
<td>Microcystin</td>
<td>Hepatotoxin</td>
</tr>
<tr>
<td>Cylindropermopsis</td>
<td>Cylindropermopsin</td>
<td>Hepatotoxin</td>
</tr>
<tr>
<td>Gloeotrichia</td>
<td>Microcystin</td>
<td>Hepatotoxin</td>
</tr>
<tr>
<td>Microcystis</td>
<td>Microcystin</td>
<td>Hepatotoxin</td>
</tr>
</tbody>
</table>
This more comprehensive table is provided for future reference. Should these species be detected in high enough concentrations, toxin testing should be done (guidelines are described in subsequent slides). Highlighted are some of the more common species of cyanobacteria.
Cyanobacterial accumulation at Binder Lake, IA, dominated by the blue green algae *Microcystis sp.* with a dead fish. Total microcystin concentrations were 40 µg/L measured by enzyme-linked immunosorbent assay. Date 6-29-06. photographer Dr. Jennifer L Graham.
You may notice a green, red or brown film on your favorite boating or swimming area in the summer. This coloring could mean that the water is affected by harmful algal blooms. Harmful algal blooms are an accumulation of tiny organisms known as algae and can release harmful toxins into the environment. Location: Mozingo Lake, MO, USA
This is another photograph showing a bloom in Lake Dora, Florida.
This bloom of Aphanizominon flos-aquae (AFA) that occurred in 2008 in the Upper Klamath Lake is not considered a harmful algal bloom, however, the microcystis that sometimes accompanies AFA later in the summer can produce toxins.
This bloom of Aphanizominon flos-aquae (AFA) that occurred in 2008 in the Upper Klamath Lake is not considered a harmful algal bloom, however, the microcystis that sometimes accompanies AFA later in the summer can produce toxins.
This is a 3x magnification of algae colonies from the Upper Klamath Lake bloom. (A) is Aphanizomenon flos-aquae, which does not produce toxins. (B) is Microcystis and (C) is Gloeotrichia, both of which can produce the hepatotoxin microcystin.
A USGS stream gage station at the Oswego Diversion Dam located in the Tualatin River at river mile 3.4, shows the relationship between total chlorophyll in µg/l (red line) and blue-green algae cell concentrations in cells/ml (blue line) for period of roughly 3 and ½ years. This data presented was collected with a YSI model 6131 probe [http://www.ysi.com/media/pdfs/E35-6131-6132-Blue-Green-Algae-Sensors.pdf]. The on-line measurements are validated with grab samples analyzed in a laboratory. USGS continuous monitors are operated according to strict protocols (see USGS Techniques & Methods 1-D3 at [http://pubs.usgs.gov/tm/2006/tm1D3/]).
This shows a 7-day moving average of both total chlorophyll in µg/l (red line) and blue-green algae in cells/ml (blue line) for an event spanning about 4 months in 2010.
Nutrient management (through watershed controls) and proper mixing/stratification in source waters is your best defense against uncontrolled algae blooms.
Phosphate control is the most effective means of algae control in eutrophic lakes.

The reduction of phosphorus loading is the most effective means of reducing phytoplankton biomass in eutrophic lakes, even if Nitrogen is initially limiting. (Lewis and Wurtsbaugh, 2008, Schindler et al, 2008).
Non-chemical methods include barley straw, raking, and stocking sources with sterilized Triploid Grass Carp.
In extreme cases or in cases of limited ability to manage the watershed, algaecides may help control algae growth before a bloom occurs (be sure to follow manufacturer instructions for safe application. Treatment may be needed to limit not only the toxins resulting from a bloom, but taste and odor issues that can accompany such blooms.
Slow sand filtration is on par with membranes in terms of cell removal. One evaluation demonstrated 99% removal of algal cells by slow sand filtration (Mouchet and Bonnelye, 1998). The use of roughing filters followed by slow sand filters showed that M. aeruginosa and some Planktothrix cells could be removed by physical means and biological processes (Sherman et al., 1995). Removal of toxins is also likely significant due to the biochemical processes at work in a mature filter. Some studies of slow sand filtration reported over 80% removal of toxins from Microcystis, 30-65% removal of toxins from Planktothrix and approximately 70% removal of anatoxin-a (Keijola et al., 1988).
Information about monitoring and responding to blooms can be found in the *Best Management Practices for Harmful Algae Blooms for Drinking Water Providers* available on our website.

IN THE EVENT OF AN ALGAE BLOOM

In the event of a bloom...

- Do not add algaecide
 (lysed cells can release 50-95% of the toxins)
- Do not use oxidants like chlorine prior to filtration
 (lyses cells)
- Use alternate source if possible
- Use PAC/GAC if available
- Monitor cells
- Monitor toxins
Toxin testing should be done if Microcystis reaches a concentration of 2,000 cells/ml or the total concentration of potentially toxin producing species exceeds 15,000 cells/ml. Financial assistance may be available through the State if toxin testing is warranted.
Toxin testing should be done if Microcystis reaches a concentration of 2,000 cells/ml or the total concentration of potentially toxin producing species exceeds 15,000 cells/ml. Financial assistance may be available through the State if toxin testing is warranted.
Toxin testing should begin in the densest part of the bloom, moving to the intake and then the finished water as toxins are detected in each.
The Oregon Health Authority (OHA) has established acute toxicity level guidelines for finished water. Utilities are encouraged to communicate risks to their customers, should these levels be exceeded. Drinking water guideline values are designed to be protective of very young children from birth to 5 years of age. All guideline values are designed to protect against acute or short-term exposure effects. Much less is known about the health effects of chronic or long-term exposure to lower concentrations. OHA has not been able to develop specific guideline values that account for health effects from chronic exposure.

TOXIN LIMITS

Acute Toxicity Limits in Finished Water:

Toxins should not exceed those levels listed in the table below. If they do, consult with the State.

| Oregon Health Authority Drinking Water Acute Toxicity Guidelines for Algal Toxins |
|---|------------------|------------------|------------------|------------------|
| Toxin => | Anatoxin-a | Cylindrospermopsin | Total Microcystin | Total Saxitoxin |
| <6 Years of Age | 0.7 µg/l | 0.7 µg/l | 0.3 µg/l | 0.3 µg/l |
| 6 Years and Older | 3 µg/l | 3 µg/l | 1.6 µg/l | 1.6 µg/l |

Utilities should be prepared to communicate the risks to customers should finished water toxin results exceed these levels.
Why an age-specific guideline?

- Bottle-fed infants consume large amounts of drinking water compared to their body weight (when formula is prepared using tap water).
- Exposure to children < 12 months is 5x higher than for adults > 21 years of age, on a body-weight basis.
- At 6 years and older, exposure on a body weight basis is similar to that of an adult.
How was an age-specific guideline developed?

- **10 day HA for bottle-fed infants**

\[
\text{HA}_{10d} = \frac{50 \, \mu g/Kg/d}{1000 \times 0.15L/kg/d} = 0.3 \, \mu g/L
\]

- **10 day HA for adult**

\[
\text{HA}_{10d} = \frac{(50 \, \mu g/Kg/d) \times (80 \, Kg)}{1000 \times 2.5L/d} = 1.6 \, \mu g/L
\]

Oregon Health Authority Drinking Water Acute Toxicity Guidelines for Algal Toxins

<table>
<thead>
<tr>
<th>Toxin -></th>
<th>Anatoxin-a</th>
<th>Cylindrospermosp</th>
<th>Total Microtoxin</th>
<th>saxitoxins</th>
</tr>
</thead>
<tbody>
<tr>
<td><50% of Age</td>
<td>0.7 \mu g/L</td>
<td>0.7 \mu g/L</td>
<td>0.7 \mu g/L</td>
<td>0.3 \mu g/L</td>
</tr>
<tr>
<td>6 yrs and Older</td>
<td>3 \mu g/L</td>
<td>3 \mu g/L</td>
<td>3 \mu g/L</td>
<td>1.6 \mu g/L</td>
</tr>
</tbody>
</table>

- LOAEL = Lowest Observed Effect Level
- UF = Uncertainty Factor
- BW = Body Weight
- DW = Drinking Water Intake
- 10 day HA = 10-day exposure duration
A “Do Not Drink” advisory, perhaps in concert with a recreational advisory, should be issued if finished water toxins exceed the allowable limits. The advisory can be lifted when toxin levels drop below the limits.
A “Do Not Drink” advisory, perhaps in concert with a recreational advisory, should be issued if finished water toxins exceed the allowable limits. The advisory can be lifted when toxin levels drop below the limits.
In summary, if there are visual signs of a bloom, sample the raw water at the intake to the treatment plant weekly. Also take a sample of finished water (post filtration and disinfection) at the same time as the raw water sampling. Send both samples to the lab. Have the lab analyze the raw water for toxins first and, if toxins are detected in the raw water sample, also have the finished water analyzed. If finished water toxins exceed 0.7 µg/l for either Anatoxin-a or Cylindrospermopsis or 0.3 µg/l for either Microcystins or Saxitoxins contact your State regulator for guidance on notifying customers of the risks. Optimize treatment barriers (alternate source, GAC, PAC, etc.) as needed. Be sure to notify the State and any downstream water systems, as they may also be impacted.
Apply the same steps if the bloom is occurring in your filter, treating it as you would a water body. This shows a filter for the City of Joseph, OR (August 2013).
If algal blooms are a common occurrence, putting together a “HABS readiness kit” will enable you to respond quickly, predictably, and consistently during a bloom event.
Shown are some links to on-line resources, which includes information specific to public water suppliers, including best practices and a HAB response flow chart.
Filter influent water quality should be within the ranges shown with source water turbidity less than 10 NTU and low in fine colloids, which are typically in the sub-micron range and can pass through a filter. Although colloids passing through do not necessarily indicate poor microbial removal, it can interfere with disinfection and may lead to higher head loss and higher effluent turbidity. Roughing filters can provide up to 50-90% of turbidity removal (Wegelin et al., 1998).
APPLIED WATER CHARACTERISTICS
RECOMMENDED FOR SLOW SAND FILTRATION

<table>
<thead>
<tr>
<th>Recommended Applied Water Quality (following any pre-treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Color</td>
</tr>
<tr>
<td>Coliform Bacteria</td>
</tr>
</tbody>
</table>

Color should be less than 5 color units and coliform less than 800 colony forming units (CFU) or Most Probable Number (MPN) per 100 ml of sample. Depending upon the source of the color, higher levels may be effectively applied.
Dissolved oxygen is needed for maintaining a healthy schmutzdecke and avoiding reducing conditions, which can cause dissolution of metals and taste and odor issues. Total and dissolved organics should be relatively low to prevent DBP formation in the distribution system (elevated DBP levels will signify if TOC is too high).

Note: Recommendations for raw water dissolved organic carbon (DOC) concentrations range from < 2.5 – 3.0 mg/l in order to minimize the formation of disinfection byproducts (DBP) in the finished water. DOC removal in slow sand filters is < 15-25% (Collins, M.R. 1989). About 90% of TOC is DOC (USEPA, Microbial and Disinfection Byproduct Rules Simultaneous Compliance Guidance Manual. 1999). Total Organic Carbon (TOC) removal is variable and may range from 10 – 25% (Collins et. al, 1989; Fox et al, 1994).
Slow sand filters remove iron and manganese by precipitation at the sand surface. This can enhance organics removal, but too much iron and manganese precipitate can clog the filters. The Secondary Standard for iron is 0.3 mg/l and the Secondary Standard for manganese is 0.05 mg/l. Iron and Manganese removal can be > 67% (Collins, M.R. 1998).

<table>
<thead>
<tr>
<th>Iron & Manganese</th>
<th>Each < 1 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow sand filters remove iron and manganese by precipitation at the sand surface. This can enhance organics removal, but too much iron and manganese precipitate can clog the filters. The Secondary Standard for iron is 0.3 mg/l and the Secondary Standard for manganese is 0.05 mg/l. Iron and Manganese removal can be > 67% (Collins, M.R. 1998).</td>
<td></td>
</tr>
</tbody>
</table>
Certain types of filamentous algae are beneficial for filtration by enhancing biological activity by providing greater surface area for particle removal, but in general, the presence of algae reduces filter run length. Filter clogging species (such as diatoms) are detrimental to filtration and the presence of floating species may shorten filter run length due to the associated poorer-quality raw water. Microscopic identification and enumeration is recommended to determine algae species and concentration.
In summary, raw water quality should be within the ranges shown with source water turbidity less than 10 NTU and absent of fine colloids. True color should be less than 5 platinum color units and coliform less than 800 colony forming units (or MPN) per 100 ml of sample. Dissolved oxygen should be above 6 mg/l (DO ≥ 3 mg/l in filter effluent) to promote a healthy biota and organics should be relatively low to prevent DBP formation in the distribution system. For aesthetic and filter clogging reasons, iron and manganese should be less than 1 mg/l. Algae may or may not be a good thing depending upon the species, but generally they cause shorter filter runs.

Applied Water Characteristics Recommended for Slow Sand Filtration

<table>
<thead>
<tr>
<th>Summary</th>
<th>Recommended Applied Water Quality (following any pre-treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>< 10 NTU (colloidal clays absent)</td>
</tr>
<tr>
<td>True Color</td>
<td>< 5 platinum color units</td>
</tr>
<tr>
<td>Coliform Bacteria</td>
<td>< 800 CFU or MPN/100 ml</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td>> 6 mg/l (DO ≥ 3 mg/l in filter effluent)</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>≤ 3.0 mg/l (< 2.5 – 3.0 mg/l DOC) (low TOC/DOC to prevent DBP issues)</td>
</tr>
<tr>
<td>Iron & Manganese</td>
<td>Each < 1 mg/l</td>
</tr>
<tr>
<td>Algae</td>
<td>< 200,000 cells/L (depends upon type)</td>
</tr>
</tbody>
</table>
Any questions? After the break we'll get into the design aspects of slow sand filtration.