Deaths Resulting From Hypocalcemia After Administration of Edetate Disodium: 2003-2005
Mary Jean Brown, Teresa Willis, Bennet Omalu and Richard Leiker
Pediatrics 2006;118:534-536
DOI: 10.1542/peds.2006-0858

This information is current as of August 7, 2006

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/118/2/e534
Deaths Resulting From Hypocalcemia After Administration of Edetate Disodium: 2003-2005

Mary Jean Brown, ScD, RN\(^a\), Teresa Williss, Bennet Omalu, MD, MPH\(^c\), Richard Leiker, MS\(^d\)

\(^a\)Lead Poisoning Prevention Branch, Division of Emergency and Environmental Health Services, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia; \(^b\)Blood Lead Surveillance Group, Texas Department of State Health Services, Austin, Texas; \(^c\)Allegheny County Medical Examiner’s Office, Pittsburgh, Pennsylvania; \(^d\)Lead Poisoning Prevention Program, Oregon State Public Health, Portland, Oregon

The authors have indicated they have no financial relationships relevant to this article to disclose.

ABSTRACT

From 2003 to 2005, deaths of 3 individuals as a result of cardiac arrest caused by hypocalcemia during chelation therapy were reported to the Centers for Disease Control and Prevention. Two were children, both of whom were treated with edetate disodium. At the time of this writing, the adult case was still under investigation. No previous cases of death resulting from hypocalcemia during chelation have been reported. From our experience and review of the literature, we suggest that health care providers who are unfamiliar with chelation consult an expert before undertaking treatment and that hospital formularies evaluate whether stocking edetate disodium is necessary, given the risk for hypocalcemia and the availability of less toxic alternatives.

CHELATION THERAPY, used in the treatment of lead poisoning, enhances urinary and/or biliary excretion of toxic and essential metals including lead, thus decreasing total body burden.\(^1\) Over the past 30 years, environmental and dietary exposures to lead have greatly diminished, resulting in a dramatic decrease in population blood lead levels (BLLs) and a corresponding decrease in the number of patients requiring chelation therapy for lead poisoning.\(^2\) Several chelating agents are available, including edetate disodium calcium (CaNa\(_2\)EDTA), the only intravenous (IV) chelating agent used in lead poisoning, dimercaprol (British anti-Lewisite), D-penicillamine, and \(\text{meso-}2,3\)-dimercaptopropanesulfate (sucimer).\(^3\) Chelating agents, especially those intended for use in children, should be effective in reducing lead and other toxic metals from the body without producing significant adverse effects on levels of critical serum electrolytes such as calcium. Hospital formularies usually stock multiple chelating agents. One such agent, edetate disodium (Na\(_2\)EDTA), also administered IV, can be used for the emergency chelation of calcium, but its use has become infrequent because of concerns regarding nephrotoxicity and the availability of less toxic alternatives.\(^4\)

Deaths associated with lead poisoning are rare, and childhood deaths caused by cardiac arrest associated with chelation therapy have not been documented previously.\(^5,6\) Here we report our experience with 3 deaths resulting from hypocalcemia during chelation therapy.

CASE REPORTS

In 2005, the Texas Department of State Health Services Childhood Lead Poisoning Prevention Program reported a case of chelation-associated hypocalcemia to the Centers for Disease Control and Prevention (CDC). The CDC made inquiries to state and local lead-surveillance programs for reports of chelation-related fatalities and subsequently identified additional cases in Pennsylvania and Oregon.

CASE 1. In February 2005, a 2-year-old girl tested for blood lead during routine health surveillance had a capillary BLL of 47 \(\mu\)g/dL. A venous BLL of 48 \(\mu\)g/dL obtained 12 days later confirmed the elevated BLL. The child also was iron deficient. A complete blood count and iron study conducted concurrently revealed low serum iron levels and borderline anemia. On February 28, 2005, she...
was admitted to a local medical center for chelation therapy to reduce her BLL.

The patient’s blood electrolyte levels at admission were within normal limits. Initial medication orders included IV Na$_2$EDTA and oral succimer. The medication order subsequently was corrected by the pediatric resident to IV CaNa$_2$EDTA. At 4:00 PM on the day of admission, the patient received 300 mg of CaNa$_2$EDTA in 100 mL of normal saline at 25 mL/hour IV. At 4:35 PM, she was administered 200 mg of oral succimer. Her vital signs remained normal throughout the night. At 4:00 AM the following morning, 300 mg of Na$_2$EDTA instead of IV CaNa$_2$EDTA was administered IV. One hour later, the patient’s serum calcium had decreased to 5.2 mg/dL (reference value for pediatric patients: 8.5–10.5 mg/dL). At 7:05 AM, the child’s mother noticed that she was limp and not breathing. Cardiac compression and O$_2$ via ambu bag did not restore a normal cardiac rhythm, and the child had no palpable pulse or audible heartbeat. Repeat laboratory values drawn at 7:55 AM showed that her serum calcium level was <5.0 mg/dL despite repeated doses of calcium chloride. All attempts at resuscitation failed, and the girl was pronounced dead at 8:12 AM.

An autopsy revealed no results of toxicologic significance. A postmortem radiologic bone survey showed “lead lines,” growth arrest and recovery in long bones as evidence of coronary artery disease, intracranial disease, other heavy metal poisoning in children because it induces hypocalcemia, which can lead to tetany and death. Moreover, the reported doses of CaNa$_2$EDTA and succimer in the Texas case were appropriate and well within established safety limits.

Medical center records and coroner reports indicate that Na$_2$EDTA was administered in at least 2 of the cases. Na$_2$EDTA is often part of a standard hospital formulary; however, it should never be used for treating lead or other heavy metal poisoning in children because it induces hypocalcemia, which can lead to tetany and death. Furthermore, Na$_2$EDTA contains a boxed warn-
ing stating: “The use of this drug in any particular patient is recommended only when the severity of the clinical condition justifies the aggressive measures associated with this type of therapy.” According to the package insert, Na$_2$EDTA is “indicated in selected patients for the emergency treatment of hypercalcemia and for the control of ventricular arrhythmias associated with digitalis toxicity.”

Chelation therapy with CaNa$_2$EDTA, British anti-Lewisite, penicillamine, or succimer has been the mainstay of medical management for children with BLLs ≥45 μg/dL and for adults with symptomatic lead poisoning. The effectiveness of chelation therapy to improve renal or nervous system symptoms of chronic mercury toxicity has not been established. Nonetheless, some health care practitioners have used chelation therapy for treatment of autism in the belief that mercury or other heavy metals are producing the symptoms. Other practitioners have recommended chelation therapy for treatment of coronary artery disease, hoping to eliminate calcified atherosclerotic plaques that can lead to coronary artery occlusions and myocardial infarctions. These off-label uses of chelation therapy are not supported by widely accepted scientific evidence. The Institute of Medicine found no scientific evidence that chelation is an effective therapy for autism spectrum disorder. Because little consistent data exist on the use of chelation therapy to treat coronary artery disease, a clinical trial to assess the safety and effectiveness of chelation therapy is being conducted by the National Institutes of Health.

CONCLUSIONS
Health care providers and pharmacists should ensure that Na$_2$EDTA is never administered to children during chelation therapy. The CDC recommends that hospital pharmacies evaluate the need to keep Na$_2$EDTA on their formularies. Case reports of cardiac arrest or symptoms of hypocalcemia during chelation therapy should be reported to the CDC Lead Poisoning Prevention Branch (770-488-3300) or to MedWatch (www.fda.gov/medwatch), the Food and Drug Administration’s adverse-event reporting system.

ACKNOWLEDGMENTS
We thank Drs Melvin Kohn and Michael Shannon for thoughtful review and comments on the manuscript.

REFERENCES
8. Lesar TS, Briceland L, Stein DS. Factors related to errors in medication prescribing. *JAMA*. 1997;277:312–317
Deaths Resulting From Hypocalcemia After Administration of Edetate Disodium: 2003-2005
Mary Jean Brown, Teresa Willis, Bennet Omalu and Richard Leiker
Pediatrics 2006;118;534-536
DOI: 10.1542/peds.2006-0858

This information is current as of August 7, 2006

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high-resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 9 articles, 2 of which you can access for free at:</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/cgi/content/full/118/2/e534#BIBL</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Therapeutics & Toxicology</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/cgi/collection/therapeutics_and_toxicology</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/misc/Permissions.shtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://www.pediatrics.org/misc/reprints.shtml</td>
</tr>
</tbody>
</table>

American Academy of Pediatrics
DEDICATED TO THE HEALTH OF ALL CHILDREN™