Occupational Health Indicators:

A Guide for Tracking Occupational Health Conditions and Their Determinants

Last updated August 2006

Council of State and Territorial Epidemiologists

In Collaboration with the National Institute for Occupational Safety and Health
Centers for Disease Control and Prevention
Authors’ Note

This document is intended to provide guidance to states for generating Occupational Health Indicators for the years 2003 – 2006. In some instances, these “how-to” guides will be applicable for generating data prior to 2003. If you are trying to generate Occupational Health Indicator data prior to 2003 and are experiencing difficulty, please contact LaKesha Robinson at CSTE for technical assistance: lrobinson@cste.org
# Table of Contents

Introduction ........................................................................................................................................... 4

Demographics

**PROFILE: EMPLOYMENT DEMOGRAPHICS** ......................................................................................... 10

**HOW-TO GUIDE: EMPLOYMENT DEMOGRAPHICS** ................................................................................. 11

**INDICATOR #1: NON-FATAL WORK RELATED INJURIES AND ILLNESSES REPORTED BY EMPLOYERS** .................................................................................................................................................. 18

**HOW-TO GUIDE – INDICATOR #1:** ......................................................................................................... 20

**INDICATOR #2: WORK-RELATED HOSPITALIZATION** ................................................................................. 24

**HOW-TO GUIDE – INDICATOR #2:** ......................................................................................................... 25

**INDICATOR #3: FATAL WORK-RELATED INJURIES** ..................................................................................... 26

**HOW-TO GUIDE – INDICATOR #3:** ......................................................................................................... 27

**INDICATOR #4: WORK-RELATED AMPUTATIONS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS** .................................................................................................................................................. 29

**HOW-TO GUIDE – INDICATOR #4:** ......................................................................................................... 30

**INDICATOR #5: STATE WORKERS COMPENSATION CLAIMS FOR AMPUTATIONS WITH LOST WORK-TIME** .................................................................................................................................................. 32

**HOW-TO GUIDE – INDICATOR #5:** ......................................................................................................... 33

**TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES** ................................................................. 35

**INDICATOR #6: HOSPITALIZATION FOR WORK-RELATED BURNS** .............................................................. 35

**HOW-TO GUIDE – INDICATOR #6:** ......................................................................................................... 36

**INDICATOR #7: WORK-RELATED MUSCULOSKELETAL DISORDERS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS** .................................................................................................................................................. 37

**HOW-TO GUIDE – INDICATOR #7:** ......................................................................................................... 39

**INDICATOR #8: CARPAL TUNNEL SYNDROME CASES FILED WITH THE STATE WORKERS’ COMPENSATION SYSTEM** ................................................................................................................................. 42

**HOW-TO GUIDE – INDICATOR #8:** ......................................................................................................... 43

**INDICATOR #9: HOSPITALIZATION FROM OR WITH PNEUMOCONIOSIS** ...................................................... 45

**HOW-TO GUIDE – INDICATOR #9:** ......................................................................................................... 46

**INDICATOR #10: MORTALITY FROM OR WITH PNEUMOCONIOSIS** ............................................................. 50

**HOW-TO GUIDE – INDICATOR #10:** ......................................................................................................... 51

**INDICATOR #11: ACUTE WORK-RELATED PESTICIDE-ASSOCIATED ILLNESS AND INJURY REPORTED TO POISON CONTROL CENTERS** ......................................................................................................................... 55

**HOW-TO GUIDE – INDICATOR #11:** ......................................................................................................... 56

**INDICATOR #12: INCIDENCE OF MALIGNANT MESOTHELIOMA** ................................................................. 60

**HOW-TO GUIDE – INDICATOR #12:** ......................................................................................................... 61

**INDICATOR #13: ELEVATED BLOOD LEAD LEVELS AMONG ADULTS** ............................................................ 63

**HOW-TO GUIDE – INDICATOR #13:** ......................................................................................................... 64

**INDICATOR #14: PERCENTAGE OF WORKERS EMPLOYED IN INDUSTRIES AT HIGH RISK FOR OCCUPATIONAL MORBIDITY** ......................................................................................................................... 66

**HOW-TO GUIDE – INDICATOR #14:** ......................................................................................................... 68
In 1998, the Council of State and Territorial Epidemiologists (CSTE), in association with the National Institute for Occupational Safety and Health (NIOSH), convened the NIOSH-States Occupational Health Surveillance Work Group to make recommendations to NIOSH concerning State-based surveillance activities for the coming decade. The Work Group members (see Appendix) agreed that the surveillance planning process should be outcome driven; e.g., begin with the identification of occupational injuries, illnesses and hazards to be placed under surveillance. The Work Group also identified a number of surveillance issues that cut across specific conditions and made several recommendations to NIOSH for the implementation of comprehensive State-based occupational health surveillance systems (CSTE 2001). A draft of the Work Group report contributed to the NIOSH Surveillance Strategic Plan (NIOSH 2001).

The Work Group report described draft “profiles” for priority conditions to be placed under surveillance as part of State-based surveillance systems. Since the publication of the Work Group report, public health surveillance “indicators” have been developed in several areas, including chronic disease, injury control and environmental health (CSTE 1999, STIPDA 1999, CDC 2001, CSTE 2002). These indicators are a construct of public health surveillance that define a specific measure of health or risk status (i.e., the occurrence of a health event or of factors associated with that event) among a specified population. Surveillance indicators allow a state to compare its health or risk status with that of other states and evaluate trends over time within the state, and guide priorities for prevention and intervention efforts. **Occupational health indicators** can provide information about a population’s health status with respect to workplace injuries and illnesses or to factors that can influence health. These indicators can either be measures of health (work-related disease or injury) or factors associated with health, such as workplace exposures, hazards or interventions.

This document describes the recommended set of indicators for occupational health surveillance as defined by the Work Group in 2001 through 2004. The occupational health indicators that have been developed represent the consensus view of state and NIOSH representatives, and are intended as advisory to the states. The indicators represent a core set of data that, if collected at the state level, would assist in the development of programs to prevent workplace injuries and illnesses. The indicators are a subset of the larger number of conditions that were recommended for surveillance in 2001. The indicators are intended to be used in conjunction with other guidelines for the state-based surveillance of occupational injuries and illnesses (NIOSH 1995, CSTE 2001), and to be used as a complement to overall state and national goals to improve the health of the population (CDC 2000).

**Background**

State health agencies, which are vested with the legal authority to require disease reporting and collect other health data, play a central role in public health surveillance. Whereas public health surveillance was once focused primarily on infectious diseases, it has expanded in recent years to include surveillance of a wide range of health outcomes and their determinants, including
chronic diseases, injuries and health behaviors (Halperin 1998). National statistics on occupational injuries and illnesses have been collected largely outside of the public health infrastructure and rely almost entirely on data reported by employers. State health agencies that have access to a wide variety of public health data systems have an important role in the surveillance of occupational diseases, injuries and hazards. State health agencies are in a unique position to:

- Provide critically needed data on occupational diseases. State health agencies can augment and complement employer-based systems to fill the information gap using a variety of existing health data sources (e.g., death certificates, hospital discharge data, physician reports).

- Generate information necessary to evaluate the conventional occupational injury data sources. Both the annual Survey of Occupational Injuries and Illnesses and the Occupational Safety and Health Administration (OSHA) Data Initiative are based on employer reports of occupational injuries and illnesses. There has been longstanding concern about the accuracy of records maintained by employers (NRC 1987). State surveillance systems – derived from multiple data sources – can be used to supplement the Bureau of Labor Statistics (BLS) data sources to better understand the true economic and human burden of occupational diseases and injury.

- Link surveillance findings with intervention efforts at the State and local levels. State agencies are in a critical position to work with employers, labor unions, health and safety professionals, and community-based organizations to develop and disseminate feasible and effective interventions that can prevent targeted workplace illnesses, injuries and fatalities.

- Integrate occupational health into mainstream public health. Building surveillance programs at the state level that are actively linked to intervention efforts provides an opportunity to integrate occupational health into mainstream public health. Collaborations with partners outside the occupational health infrastructure such as school-based programs or community health clinics may yield benefits in disseminating prevention strategies to reduce the incidence of occupational injuries and illnesses.

In a nationwide surveillance system, all states should have core capacity to conduct a minimum level of surveillance of occupational injuries and illnesses (CSTE 1995). At a minimum, this capacity should include personnel and resources to conduct surveillance of basic occupational indicators using existing data systems, and the ability to develop working relationships with federal, state and local partners in both the public and private sectors. States and their partners may also conduct more in-depth surveillance, follow-up and intervention for specific, targeted diseases, injuries and hazards.

**Methods for indicator development**

From 2001 through 2003, the Work Group members developed an approach for indicator selection, and then subsequently drafted and finalized the set of occupational health indicators. The following criteria were considered in selecting the indicators:
• **Availability of easily obtainable state-wide data.** The access to existing data that would be available in all states was considered to be a critical element in the development of the indicator set. The Work Group recognized that some states might have access to other sources of data for occupational health surveillance, and that additional indicators may be developed, as these data will allow. However, this document sets out a “core” or minimum set of occupational health indicators that relies on data that should be available to most states.

• **Public health importance of the occupational health effect or exposure to be measured.** This criterion was used in identifying health effect and exposure indicators. Factors considered in determining public health importance included the magnitude or extent of the effect or exposure, severity of the health effect, economic impact, emergent status of the condition, and degree of public concern.

• **Potential for workplace intervention activities.** The indicator should inform program and policy development at the state level to protect worker safety and health.

The Work Group reviewed a number of sources to guide the selection of the final indicator set. This included CSTE recommendations for the surveillance of occupational injuries and illnesses, surveillance case definitions from the published literature, and indicators developed in other public health domains (CSTE 1999, STIPDA 1999, CDC 2001, CSTE 2002).

A total of 19 indicators were selected by Work Group consensus:

- 12 **Health effect** indicators (measures of injury or illness that indicate adverse effects from exposure to known or suspected occupational hazards),
- 1 **Exposure** indicator (measures of markers in human tissue or fluid that identify the presence of a potentially harmful substance resulting from exposure in the workplace),
- 3 **Hazard** indicators (measures of potential for worker exposure to health and safety hazards in the workplace),
- 2 **Intervention** indicators (measures of intervention activities or intervention capacity to reduce workplace health and safety hazards), and
- 1 **Socioeconomic impact** indicator (measure of the economic impact of work-related injuries and illnesses).

In addition, the Work Group determined that a profile of the employment demographics within a state should be developed.

The Work Group recognizes there may be other occupational health indicators that are important to individual states or local areas depending on state and local needs. In addition, the Work Group acknowledges significant limitations in the design of these indicators, both intrinsic to the nature of the indicators as well as to the data sources upon which they rely. While the indicators should be implemented in all states, some states will not have all of the data resources available to them.
The indicator pilot project and development of "how to" guides

The Work Group recognized the need to pilot the indicators to assess the feasibility of widespread implementation and to develop specific guidance on how to compute the proposed measures. In summer 2002, the five states with NIOSH Cooperative Agreements to conduct “Core Occupational Health Surveillance” (California, Massachusetts, Michigan, New York, and Washington) agreed to both pilot-test the indicators and to create user-friendly “how-to” guides so that other states could calculate the indicators. This pilot project met one of the established goals of the NIOSH Core Surveillance program: “to develop models for other states that can be used to establish a comprehensive, nationwide system of state-based occupational injury and illness surveillance.”

An implementation plan was agreed upon, and the states worked on the indicators independently, communicating primarily through conference calls and e-mail. All five pilot states did each indicator; however, individual states took the lead on the various indicators, becoming the primary authors of the "how-to" guides for their respective indicators. These guides and the indicator data were shared among the states. Monthly conference calls were held to discuss data issues including, for example, clarification of numerators and denominators, and inconsistencies in the data sources between the states.

Based upon the results of the pilot, the Core States and Work Group worked together to redefine the indicators and finalize the "how-to" documents. For example, Indicator 8 (“Carpal Tunnel Syndrome Cases Filed with the State Workers’ Compensation System”) was modified from the original indicator of “Musculoskeletal Disorders Filed with the State Workers’ Compensation System” because of difficulties in defining and obtaining information on all musculoskeletal disorders. Because of differences among states with regards to their data systems, particularly Workers’ Compensation data, more general “how-to” guides were developed for indicators 5 and 8 (“Amputations and Carpal Tunnel Syndrome Cases Filed with the State Workers’ Compensation System”).

Subsequent to the initial pilot testing by the 5 “core” states, 8 additional states (Connecticut, Maine, Nebraska, New Jersey, New Mexico, North Carolina, Oregon and Wisconsin) have pilot tested the “how to guides”. Feedback from these 8 additional states were incorporated into the development of the final “how to” guides.

This document is the final “how-to” guides that have been developed by the Core states for all of the 19 indicators and the employment demographics. While these guides may need to be reworked in the future based upon the changes in the content and accessibility of various data sets, they provide easy directions to states wishing to implement these indicators. Additional indicators may also be added in the future. The Core states and the Work Group are also developing a separate data document that will present the indicator data from the pilot states.

These indicators and the "how-to" guides are meant to assist states in building a capacity for occupational health surveillance. Results from the pilot project have shown that the process of generating the indicators is as useful as the data itself. All states will not be able to complete all indicators, nor will the indicators alone provide all of the information necessary for a state occupational health program. However, the process of generating the indicators will help raise awareness and build capacity for using available data, and also open dialogues among occupational health partners within the state. The indicator data itself will be most useful when
multiple years of data have been compiled and potential problems with rate instability can be minimized and trends across multiple years can be observed within each state. Comparing data across states for certain indicators may be difficult due to different limitations inherent in the data system used for that indicator. These limitations are discussed in the individual section for each indicator. The design and implementation of any public health surveillance system should be evaluated according to established criteria (MMWR 2001). Several factors should be considered in the design and evaluation of any occupational health surveillance system:

- Underreporting by employees and health care providers of occupational injuries and illnesses;
- Inadequate health care provider recognition of occupational injuries and illnesses;
- Failure by employers and/or health care providers to report cases according to applicable state laws;
- Difficulties in attributing diseases with long latency from time of exposure to disease manifestation and/or from multifactorial causes (e.g., silicosis, lung cancer);
- Possible exclusion of at-risk populations from surveillance (e.g., self-employed, military);
- Variations in coding the causes of injury, illness or death; and
- Differences in underlying populations at risk (“denominators”).

The Work Group remains committed to ensuring the ongoing viability of this project and assisting all 50 States to address the important public health issue of work-related injury and illness.

---

**Council of State and Territorial Epidemiologists**

The Council of State and Territorial Epidemiologists enhances the ability of state and other health agencies to detect, prevent, and control diseases and risks of public health significance. CSTE does this by developing and building effective relationships among state and other health agencies. As a professional organization, CSTE represents public health epidemiologists working in state and territorial health agencies. CSTE has nearly 500 members with surveillance and epidemiologic expertise in a broad range of areas including chronic disease, communicable disease, immunization, environmental health, occupational health, and injuries. The organization frequently provides technical advice and assistance to federal agencies, including the Centers for Disease Control and Prevention (CDC), on matters of state-based epidemiology. CSTE is an affiliate organization of the Association of State and Territorial Health Officials (ASTHO), the professional organization of chief public health executives in each state and territory.
**Topic:** DEMOGRAPHICS  

**PROFILE: EMPLOYMENT DEMOGRAPHICS**

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>Employed persons.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numerator:</strong></td>
<td>Employed persons 16 years or older by specific demographic characteristics</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Employed population 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>

**Measures of Frequency:**

1. Percentage of civilian workforce unemployed.  
2. Percentage of civilian employment self-employed.  
3. Percentage of civilian employment employed part-time.  
4. Percentage of civilian employment by number of hours worked (<40, 40, 41+).  
5. Percentage of civilian employment by sex.  
6. Percentage of civilian employment by age group (16-17, 18-64, 65+ years of age).  
7. Percentage of civilian employment by race (White, Black, Other).  
8. Percentage of civilian employment by Hispanic origin.  
9. Percentage of civilian employment by industry.  
10. Percentage of civilian employment by occupation.  

**Time Period:** Calendar year

**Significance and Background:** There are an estimated 133 million civil, non-institutional workers in the United States of which 46% are female, 16% are of a racial minority, and 10% are of Hispanic origin. In addition, 17% of these are part-time workers. The makeup of the workforce differs between States and may be important in understanding the occupational health status between and within a state.

**Rationale:** Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Research has shown relationships between demographic characteristics of workers and the risk of occupational injury or illness. Understanding the basic characteristics of a State’s workforce will help State health departments assess possible occupational health risks for their State.

**Limitations of Indicator:** These indicators are not direct measures of occupational risk for a State’s workforce or for individual workers.

**Data Resources:**

- BLS Geographic Profiles of Employment and Unemployment (denominator, except age).  

**Limitations of Data Resources:** The Geographic Profiles data are based on the Current Population Survey (CPS), which is a monthly probability sample of households across the United States. Geographic Profiles excludes workers less than 16 years of age, active-duty members of the military, and inmates in institutions. These data may underestimate the percentage of certain racial or ethnic worker populations that do not have permanent residences, or are migratory in nature. Additional information is available at [http://www.bls.gov/opub/gp/laugp.htm](http://www.bls.gov/opub/gp/laugp.htm).

**HP2010 Objectives:** None  

**CSTE Positions:** None

**Other Available Data:** Data are available to report cross tabulations of many of these demographic indicators, including tabulations by major industry or occupation divisions on the Geographic Profiles website. Information on age distributions by age, educational, unionization, and income are available from the CPS micro-data, which States may be able to utilize ([http://ferret.bls.census.gov/cgi-bin/ferret](http://ferret.bls.census.gov/cgi-bin/ferret)).

**Recommendations:** States could report the available cross tabulations of demographic indicators provided within the Geographic Profiles reports.
Note: As of March 2006, the full Geographic Profile of Employment and Unemployment for 2003 and more recent years was not available on the internet. The full report is required to calculate the following employment demographics: P2, P3, P4, P9, P10. If the report is unavailable when you try to generate these components, you will need to request the relevant tables from BLS. Ask them for employment figures for your state for self-employed, part-time jobs, number of hours worked, employment by industry, and employment by occupation. You can e-mail them at: gpinfo@bls.gov.

**P1. Percentage of civilian workforce unemployed**

To obtain the percentage:
- Scroll down to “TABLES CREATED BY BLS.”
- Select year of interest.
- Within the pdf document, find your state.
- Within the Total row, find the value under Unemployment Rate.

**P2. Percentage of civilian employment self-employed**

a) To obtain the number of self-employed workers:
- Locate the Geographic Profile of Employment and Unemployment table listing state employment levels by class of worker.
- The heading in the first column “Population group and State” should be “TOTAL.”
- Find the row corresponding to your state.
- Add the data in the column titled “Agricultural industries Self-employed” and the data in the column titled “Nonagricultural industries Self-employed”. Multiply the result by 1,000.

b) To obtain the total employed civilians 16 years or older:
- Go to “Geographic Profile of Employment and Unemployment” as described in P1.
- Find your state.
- Within the Total row, find Employment Number.
- Multiply the listed number by 1,000.

c) To calculate the percentage:
- Divide the number of self-employed persons (P2a) by the number of employed persons (P2b).
- Multiply the result by 100 to get the “Percentage of civilian employment self-employed”.

**P3. Percentage of civilian employment in part-time jobs**

a) To obtain the number of workers in part-time jobs:
- Locate the Geographic Profile of Employment and Unemployment table listing state employment levels by full- and part-time status.
- The heading in the first column “Population group and State” should be “TOTAL.”
Find the row corresponding to your state.
Find the column headed “Total” under “Part-time workers.” Multiply the listed number by 1,000.

b) To obtain the total employed civilians 16 years or older:
- Use P2b.

c) To calculate the percentage:
- Divide the number of part-time workers (P3a) by the total number employed (P3b).
- Multiply the result by 100 to get the “Percentage of civilian employment in part-time jobs”.

**P4. Percentage of civilian employment by number of hours worked**

a) To obtain the number of employed persons by hours worked:
- Locate the Geographic Profile of Employment and Unemployment table listing state employment levels by hours of work.
- The heading in the first column “Population group and State” should be “TOTAL.”
- Find the row corresponding to your state.

i) 0 to 39 hours worked:
- 0 hours worked. These are individuals who worked 0 hours during the week of the survey (e.g., due to vacation, sick leave). To obtain the number of employees working 0 hours, multiply the number listed under “Total at work” by 1,000, then subtract this from the total employed civilians 16 years or older (P2b).
- 1-14 hours worked. Multiply the number listed in the column “1 to 14 hours” by 1,000.
- 15-29 hours worked. Multiply the number listed in the column “15 to 29 hours” by 1,000.
- 30-34 hours worked. Multiply the number listed in the column “30 to 34 hours” by 1,000.
- 35-39 hours worked. Multiply the number listed in the column “35 to 39 hours” by 1,000.
- Sum the above together.

ii) 40 hours worked:
- Multiply the number listed in the column “40 hours” by 1,000.

iii) 41+ hours worked:
- 41-48 hours worked. Multiply the number listed in the column “41 to 48 hours” by 1,000.
- 49 hours and over worked. Multiply the number listed in the column “49 hours and over” by 1,000.
- Sum the above together.

b) To obtain the total employed civilians 16 years or older:
- Use P2b.
c) To calculate the percentages:
   • Divide each of the subcategories by P4b.
   • Multiply the result by 100 to get the “Percentage of civilian employment by number of hours worked”.

P5. Percentage of civilian employment by sex
a) To obtain the number of employed males and females:
   • Go to “Geographic Profile of Employment and Unemployment” as described in P1.
   • Find your state.
   • Under ‘Total’, the second row lists data for ‘Men’; the third row lists data for ‘Women’.
   • Find Employment Number. For each sex, multiply the listed number by 1,000.

b) To obtain the total employed civilians 16 years or older:
   • Use P2b.

c) To calculate the percentages:
   • Males. Divide the number of males employed (P5a) by the total number employed (P5b). Multiply the result by 100.
   • Females. Divide the number of females employed (P5a) by the total number employed (P5b). Multiply the result by 100.

P6. Percentage of civilian employment by age group (16-17, 18-64, 65+ years of age)
a) To obtain the number of employed persons by age group:
   • Go to [http://ferret.bls.census.gov/cgi-bin/ferret](http://ferret.bls.census.gov/cgi-bin/ferret) to download the install file for the latest application version of DataFerrett.
   • Once the download is complete, double click on the file and follow the on screen instructions to install DataFerrett to your machine. (For tutorials and other information for this new version of DataFerrett go here: [http://dataferrett.census.gov](http://dataferrett.census.gov))
   • Open the Ferrett application from the desktop icon.
   • Register as user by placing your e-mail address into the box and press OK.
   • Click on Step1: Select Dataset and Variable at the top of the page.
   • Within Select Dataset to Search, click on the + sign for Current Population Survey. Then click on the + sign for Basic.
   • Select the months of interest. Multiple months can be highlighted by clicking and simultaneously using the control key. (Alternatively: a range of months can quickly be selected by clicking on one month (e.g., January 2003), then clicking on another month (e.g., December 2003) while holding down the Shift key. All the months within the range should then be highlighted.)
   • Select View Variables.
   • Select the following datasets from CPS: “Labor Force Variables”, “Geography Variables”, and “Demographic Variables” and then select Search Variables at the bottom of that box.
   • On the next screen all of the available variables for the selected tables will be displayed. Select the following variables and value ranges:
     • Demographic Variable = PRTAGE “Demographics-age top coded at 90 years old.” Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next
pop-up screen. Make the age range 16 to 90. Click on OK. Click on ‘OK’ again to confirm and to add the variable to your data shopping basket.

- Geography Variable = GESTCEN “Geography census state code” Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next pop-up screen. Click “Deselect all values”, Check your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

- Labor Force Variable = PEMLR “Labor force – employment status” Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next pop-up screen. Click “Deselect all values” and then check ”Employed – At Work” and “Employed – Absent” then click OK. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

- Click on “Step2 DataBasket/Download/Make a Table”.
- Select ”Make a Table” from the table icon. You will see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the shopping basket.
- Using your mouse, pull the variable titled PRTAGE from the right side to the top left corner of the empty spreadsheet and click on ”GO Get Data” on the toolbar.
- In a few seconds the table will be populated with a total employment number for all of the single years of age between 16 and 90.
- The selections for the query are provided in simple SAS code on the right side of the screen. Verify that you have selected your state, ages between 16 and 90, “PEMLR=1” and “PEMLR=2” and the correct months of interest.
- Highlight the cells containing data in the spreadsheet. Select Copy from the Edit dropdown menu. Paste the copied cells into an Excel file.

  i) 16 to 17 year olds
  - In Excel, sum the average annual number of employed persons corresponding to 16-17 year olds.

  ii) 18 to 64 year olds
  - Follow the process above (i) for ages 18-64. (Note that if you simply highlight the values associated with the 18-64 group, Excel should illustrate the sum at the bottom of the screen.)

  iii) 65+ year olds
  - Follow the process above (i) for ages 65 to 90 (equivalent to 65 and older). (Again, summation can be done by Excel by simply highlighting the appropriate values.)

b) To obtain the total employed civilians 16 years or older:
- Sum the average annual number of employed for each of the three age groups.

c) To calculate the percentage:
- 16 to 17 year olds. Divide the number of 16 to 17 year olds by the total employment (P6b). Multiply the result by 100.
- 18 to 64 year olds. Divide the number of 18 to 64 year olds by the total employment (P6b). Multiply the result by 100.
- 65+ year olds. Divide the number of 65+ year olds by the total employment (P6b). Multiply the result by 100.
P7. Percentage of civilian employment by race
a) To obtain the number of employed by race:
   - Go to “Geographic Profile of Employment and Unemployment” as described in P1.
   - Find your state.
     i) White.
        - Find Employment Number listed for row titled “White.” Multiply the number by 1,000.
     ii) Black.
        - Find Employment Number listed for row titled “Black” (or in some years “Black or African American”). Multiply the number by 1,000.
     iii) Other.
        - Sum the number of Whites (P7ai) and the number of Blacks (P7aii). Subtract this number from the “Total employed civilians 16 years or older” (P2b).

b) To obtain the total employed civilians 16 years or older:
   - Use P2b.

c) To calculate the percentage:
   - White. Divide the number of Whites employed (P7ai) by the total number employed (P7b). Multiply the result by 100.
   - Black. Divide the number of Blacks employed (P7aii) by the total number employed (P7b). Multiply the result by 100.
   - Other. Divide the number of Other races employed (P7aiii) by the total number employed (P7b). Multiply the result by 100.

P8. Percentage of civilian employment by Hispanic origin
a) To obtain the number of Hispanic origin employed:
   - Go to “Geographic Profile of Employment and Unemployment” as described in P1.
   - Find your state.
   - Find Employment Number listed for row titled “Hispanic or Latino ethnicity” (or in some years, “Hispanic origin”).
   - Multiply the number by 1,000.

b) To obtain the total employed civilians 16 years or older:
   - Use P2b.

c) To calculate the percentage:
   - Divide the number of Hispanic origin employed (P8a) by the total employment (P8b). Multiply the result by 100.

P9. Percentage of civilian employment by industry
- Locate the Geographic Profile of Employment and Unemployment table listing state employment levels by industry.
- The heading in the first column “Population group and State” should be “TOTAL.”
• Find the row corresponding to your state.
• Find the percent of the total employed in the various industries.

Prior to 2003, these categories were:
• Construction
• Manufacturing – Durable goods
• Manufacturing – Non-durable goods
• Transportation/communications/public utilities
• Trade
• Finance/insurance/real estate
• Services
• Government
• Agriculture.

Starting in 2003, the categories are:
• Mining
• Construction
• Manufacturing – Durable goods
• Manufacturing – Nondurable goods
• Wholesale and retail trade
• Transportation and utilities
• Information
• Financial activities
• Professional and business services
• Education and health services
• Leisure and hospitality
• Other services
• Public administration
• Agriculture and related.

P10. **Percentage of civilian employment by occupation**
• Locate the Geographic Profile of Employment and Unemployment table listing state employment levels by occupation.
• The heading in the first column “Population group and State” should be “TOTAL.”
• Find the row corresponding to your state.
• Find the percent of the total employed in the various occupations.

Prior to 2003, these categories were:
• Executive/administrative/managerial
• Professional specialty
• Technicians and related support
• Sales
• Administrative support including clerical
• Service
• Precision production/craft/repair
• Machine operators/assemblers/inspectors
• Transportation/material moving
• Handlers/equipment cleaners/helpers/laborers
• Farming/forestry/fishing.

Starting in 2003, the categories are:
• Management, business and financial operations
• Professional and related occupations
• Service
• Sales and related occupations
• Office and administrative support
• Farming, fishing, and forestry
• Construction and extraction
• Installation, maintenance, and repair
• Production
• Transportation and material moving.
**Topic:** OCCUPATIONAL INJURIES AND ILLNESSES COMBINED

**Indicator #1: Non-Fatal Work Related Injuries and Illnesses Reported by Employers**

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons in the private sector</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numerator:</strong></td>
<td>Estimated cases of work-related injuries and illnesses</td>
</tr>
<tr>
<td></td>
<td>Estimated cases of injuries and illnesses involving days away from work</td>
</tr>
<tr>
<td></td>
<td>Estimated cases of injuries and illnesses involving more than 10 days away from work</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Estimated total full-time equivalents (FTEs) worked for the same calendar year</td>
</tr>
<tr>
<td><strong>Measures of Frequency:</strong></td>
<td>Estimated annual total number of work-related injuries and illnesses (numerator)</td>
</tr>
<tr>
<td></td>
<td>Estimated annual total work-related injury and illness incidence rate per 100,000 FTEs</td>
</tr>
<tr>
<td></td>
<td>Estimated annual total number of cases involving days away from work (numerator)</td>
</tr>
<tr>
<td></td>
<td>Estimated annual total incidence rate for cases involving days away from work per 100,000 FTEs</td>
</tr>
<tr>
<td></td>
<td>Estimated annual total number of cases involving more than 10 days away from work (numerator)</td>
</tr>
<tr>
<td><strong>Time Period:</strong></td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

**Significance and Background:** In 1999, the U.S. Bureau of Labor Statistics (BLS) reported an estimated total of 5.7 million injury and illness cases within the private sector workforce, an estimated incidence rate of 6.3 cases per 100 full-time-equivalent workers. This included a total of 1.7 million injury and illness cases (1.9 cases per 100 FTE workers) requiring recuperation away from work beyond the day of the incident.

**Rationale:** Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.

**Limitations of Indicator:** Employers are required to record events that result in death, loss of consciousness, days away from work, restricted work, or medical treatment beyond first aid. They are only required to report the detailed case characteristics (e.g., nature, body part, event) when the injury or illness results in at least one day away from work. Employers do not always record all relevant events. Also, employers are often unaware of work-related conditions for which employees have obtained medical care from their personal health care providers, and conditions that have long latencies and are diagnosed long after an employee leaves their employment. With respect to injuries/illnesses involving days away from work, employers vary in their use of restricted work activity to reduce lost workdays among their employees with work-related conditions, thereby avoiding cases with days away from work.

**Data Resources:** Annual BLS Survey of Occupational Injuries and Illnesses (SOII)

**Limitations of Data Resources:** The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details).

**HP2010 Objectives:** None

**CSTE Positions:** None

**Other Available Data:** Industry, occupation, age, gender, race/ethnicity, nature of injury, body part, type of event and source of injury, length of service. Public sector should be looked at, if available. (Details are available only for injuries/illnesses involving days away from work.)
| Recommendations: | SOII has many data elements that can be used to better define patterns of work-related injuries and illnesses in the state. These include, for example, industry-specific counts and rates, and, for cases involving days away from work, counts (not rates) of illnesses and injuries by occupation, length of service, age, gender, race/ethnicity and sources of injury. |
HOW-TO GUIDE – INDICATOR #1:

NON-FATAL WORK RELATED INJURIES AND ILLNESSES REPORTED BY EMPLOYERS

Two methods to obtain the data are offered - both methods will yield the same numbers. The first method uses the Bureau of Labor Statistics (BLS) website to access the data. The second method uses a CD-ROM, provided by BLS, to access the data. Because the BLS CD-ROM is needed for some of the other indicators, states may elect to use the CD-ROM for this indicator as well. The CD-ROMs can be obtained annually from state SOII programs or BLS regional offices. State contact information is provided at http://www.bls.gov/iif/home.htm

1.1 Estimated Annual Total Number of Work-Related Injuries and Illnesses

Method 1:
- Go to the BLS web site: http://www.bls.gov/iif/home.htm#tables.
- Scroll down to “Regional Resources” on the right hand side of the page.
- Select your state and click ‘Go’.
- Select “Case counts” under SOII for the specific year needed.
- From resulting Table 7, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases’
- Multiply this cell’s value by 1,000 to get the ‘Estimated annual total number of work-related injuries and illnesses’.

Method 2:
- Use OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and install the profile program onto your computer following the instructions enclosed with the CD-ROM. Queries for specific states will necessitate the use of Disk 1 or Disk 2 depending upon region.
- Make sure the CD-ROM is inserted in the appropriate drive and double-click on your desktop shortcut ‘OSH_Profiles NAICS’. Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
- Click on ‘Click here!!!’. Click on ‘CDs’ button and select the drive for your CD-ROM (in most cases, it’s the D:\ drive). Then click ‘OK’. Click ‘OK’ again.
- Select ‘Annual Survey Summary Tables’ from ‘Publication Type’ column.
- Select State and Year.
- Click on ‘Create Profiles/Tables’.
- Select Table 7 – ‘Counts of injuries and illnesses by industry’. Click ‘OK’.
- Once automated data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
- From resulting table, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases’.
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total number of work-related injuries and illnesses’ for your state.
- Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.
1.2 Estimated Annual Total Work-Related Injury and Illness Incidence Rate per 100,000 FTEs

Method 1:
- Go to the BLS web site: http://www.bls.gov/iif/home.htm#tables.
- Scroll down to “Regional Resources” on the right hand side of the page.
- Select your state and click ‘Go’.
- Select ‘Incidence Rates’ under SOII for the specific year data is needed.
- From resulting Table 6, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases.’ (rate is provided per 100 FTEs).
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total work-related injury and illness incidence rate per 100,000 FTEs’.

Method 2:
- Use OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and double-click on your desktop shortcut ‘OSH_Profiles NAICS’.
  Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
- Click on ‘Click here!!!’ Click on ‘CDs’ button and select the drive for your CD-ROM (in most cases, it’s the D:\ drive). Then click ‘OK’. Click ‘OK’ again.
- Select ‘Annual Survey Summary Tables’ from ‘Publication Type’ column.
- Select State and Year.
- Click on ‘Create Profiles/Tables’.
- Select Table 6 - ‘Incidence rate of injuries and illnesses by industry’. Click ‘OK’.
- Once automated data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
- From resulting table, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases’ (rate is provided per 100 FTEs).
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total work-related injury and illness incidence rate per 100,000 FTEs’.
- Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

1.3 Estimated Annual Total Number of Cases Involving Days Away from Work

Method 1:
- Go to the BLS web site: http://www.bls.gov/iif/home.htm#tables.
- Scroll down to “Regional Resources” on the right hand side of the page.
- Select your state and click ‘Go’.
- Select ‘Case counts’ under SOII for the specific year needed.
- From resulting Table 7, read across ‘Private Industry’ row and down major column ‘Cases with days away from work, job transfer, or restriction.’ Identify sub-column ‘Cases with days away from work.’
Multiply the value of this cell by 1,000 to get the ‘Estimated annual total number of cases involving days away from work’.

Method 2:
- Use OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and double-click on your desktop shortcut ‘OSH_Profiles NAICS’.
  - Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
  - Click on ‘Click here!!!’ Click on ‘CDs’ button and select the drive for your CD-ROM. Then click ‘OK’. Click ‘OK’ again.
- Select ‘Annual Survey Summary Tables’ from ‘Publication Type’ column.
  - Select State and Year.
  - Click on ‘Create Profiles/Tables’.
- Select Table 7 - ‘Counts of injuries and illnesses by industry’. Click ‘OK’
- Once automated data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
- From resulting table, read across ‘Private Industry’ row and down major column ‘Cases with days away from work, job transfer, or restriction.’ Identify sub-column ‘Cases with days away from work.’
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total number of cases involving days away from work’.
- Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

1.4 Estimated Annual Total Incidence Rate for Cases Involving Days Away from Work per 100,000 FTEs

Method 1:
- Go to the BLS web site: [http://www.bls.gov/iif/home.htm#tables](http://www.bls.gov/iif/home.htm#tables).
- Scroll down to “Regional Resources” on the right hand side of the page
- Select your state and click ‘Go’.
- Select ‘Incidence Rates’ under SOII for the specific year needed.
- From resulting Table 6, read across ‘Private Industry’ row and down major column ‘Cases with days away from work, job transfer, or restriction.’ Identify sub-column ‘Cases with days away from work’ (rate is provided per 100 FTEs).
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total incidence rate for cases involving days away from work per 100,000 FTEs’.

Method 2:
- Use OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and double-click on your desktop shortcut ‘OSH_Profiles NAICS’.
  - Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
  - Click on ‘Click here!!!’ Click on ‘CDs’ button and select the drive for your CD-ROM. Then click ‘OK’. Click ‘OK’ again.
- Select ‘Annual Survey Summary Tables’ from ‘Publication Type’ column.
- Select State and Year.
• Click on ‘Create Profiles/Tables’.
• Select Table 6 - ‘Incidence rate of injuries and illnesses by industry’. Click ‘OK’
• Once automated data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
• From resulting table, read across ‘Private Industry’ row and down major column ‘Cases with days away from work, job transfer, or restriction.’ Identify sub-column ‘Cases with days away from work’ (rate is provided per 100 FTEs).
• Multiply the value of this cell by 1,000 to get the ‘Estimated annual total incidence rate for cases involving days away from work per 100,000 FTEs’.
• Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

1.5 Estimated Annual Total Number of Cases Involving more than 10 Days Away from Work

• Use OSH Profile CD-ROM (CD-ROM is available from BLS).
• Insert the CD-ROM and double-click on your desktop shortcut ‘OSH_Profiles NAICS’.
• Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
• Click on ‘Click here!!!’ Click on ‘CDs’ button and select the drive for your CD-ROM. Then click ‘OK’. Click ‘OK’ again.
• Select ‘Case and Demo Numbers (Table1)’ from ‘Profile Type’ column.
• Select State and Year.
• Select ‘NAICS’ from ‘Characteristic Type’
• Select ‘Private Industry’ from ‘Ownership’
• Select ‘000000 Total’ from ‘Characteristic Code’ (includes all industries).
• Click on ‘Create Profiles/Tables’.
• Once automatic data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
• On page 2 in the resulting table, under ‘Number of days away from work’, highlight the following three cells under the Private Industry column: ‘11 to 20 days’, 21 to 30 days, and 30+ days.
• On the right side of your screen (at the bottom), Excel will have summed the counts in these cells, ‘Sum = xx,xxx’.
• Write down this sum, which is the ‘Estimated annual total number of cases involving more than 10 days away from work’.
• Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

Data Tips: Regional BLS offices can provide revised/updated counts and rates for any year. Numbers and rates may not be available from the CD-ROM or web-site if the estimate does not meet the publishable criteria of BLS. This is particularly true for small states and rare conditions.
<table>
<thead>
<tr>
<th>Topic:</th>
<th>OCCUPATIONAL INJURIES AND ILLNESSES COMBINED</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Indicator #2:</strong> Work-Related Hospitalization</td>
<td></td>
</tr>
<tr>
<td>Demographic Group:</td>
<td>Employed persons</td>
</tr>
<tr>
<td>Numerator:</td>
<td>Hospital discharges with primary payor coded as workers’ compensation</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Annual number of hospitalizations for persons age 16 years or older (numerator)</td>
</tr>
<tr>
<td></td>
<td>Annual crude rate of hospitalization per 100,000 employed persons age 16 years or older</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
<tr>
<td>Significance and Background:</td>
<td>In 1999, there were 5.7 million work-related injuries and illnesses reported in private industry of which 1.7 million required lost work time beyond the day of the incident. Workers’ compensation costs in the United States total more than $100 billion dollars per year.</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Individuals hospitalized with work-related injuries and illnesses have some of the most serious and costly work-related adverse health outcomes. Tracking of these significant adverse health effects should be undertaken to document the burden of occupational injuries and illnesses, to design, target, and evaluate the impact of prevention efforts over time, and to identify previously recognized settings in which workers may continue to be at high risk.</td>
</tr>
<tr>
<td>Limitations of Indicator:</td>
<td>Hospital discharge records are only available for non-federal, acute care hospitals. Individuals hospitalized for work-related injuries and illnesses represent less than 10 percent of all workers who receive workers’ compensation. The majority of individuals with work-related illnesses and many others with injuries do not file for workers’ compensation. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. Attribution of payor in hospital discharge may not be accurate. Data between states may not be comparable due to differences in states’ workers’ compensation programs.</td>
</tr>
<tr>
<td>Data Resources:</td>
<td>Hospital discharge data (numerator)</td>
</tr>
<tr>
<td></td>
<td>BLS Current Population Survey Data (denominator)</td>
</tr>
<tr>
<td>Limitations of Data Resources:</td>
<td>Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients, to correctly diagnose work-related conditions, and/or to list the condition as a discharge diagnosis. Residents of one state may be hospitalized in another state and not be reflected in his/her state's hospitalization data. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on race/ethnicity is not collected in some states and is incomplete and/or of questionable validity in others.</td>
</tr>
<tr>
<td>HP2010 Objectives:</td>
<td>None</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Age, gender, race/ethnicity, diagnosis, residence zip code</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>Age, gender, race/ethnicity, zip code specific counts and rates can be used to better define the pattern of work-related hospitalizations. Proportion of all hospitalizations in the state can be examined.</td>
</tr>
</tbody>
</table>
## HOW-TO GUIDE – INDICATOR #2:

### WORK-RELATED HOSPITALIZATIONS

2.1 **Annual number of hospitalizations for persons age 16 years or older**

Obtain from the State Health Department the number of cases meeting the following criteria from the hospital discharge file:

- Primary payor = Workers’ Compensation.
- Limit age to those 16 years and older.
- Select for state of residence= ‘your state’.
- Exclude:
  - age unknown
  - out-of-state residents and unknown residence
  - out-of-state hospitalizations.
- Use undeduplicated data (no exclusions for deaths, readmissions).
- Use discharge during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield the ‘**Annual number of hospitalizations for persons age 16 years or older**’.

2.2 **Annual crude rate of hospitalization per 100,000 employed persons age 16 years or older**

a) To obtain the denominator for the rate:

- Go to [http://www.bls.gov/gps/#tables](http://www.bls.gov/gps/#tables) to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons
- Page down to heading "TABLES CREATED BY BLS:"
- Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age:" Note: Data from 1997 through 2002 can be found at [http://www.bls.gov/opub/gp/laugp.htm](http://www.bls.gov/opub/gp/laugp.htm)
- Choose the Annual Averages for year of interest
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4\(^{th}\) data column – ‘Employment Number’. This is the ‘**Number of Employed persons age 16 years or older**' (in thousands). Multiply by 1000.

b) To calculate the rate:

- Divide the numerator (2.1) by the denominator (2.2a).
- Multiply this result by 100,000 to get the ‘**Annual crude rate of hospitalization per 100,000 employed persons age 16 years or older**’.
<table>
<thead>
<tr>
<th>Topic:</th>
<th>ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #3:</strong></td>
<td><strong>FATAL WORK-RELATED INJURIES</strong></td>
</tr>
<tr>
<td><strong>Demographic Group:</strong></td>
<td>Employed persons</td>
</tr>
<tr>
<td><strong>Numerator:</strong></td>
<td>All fatal work-related injuries reported to the Census of Fatal Occupational Injuries (CFOI)</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>
| **Measures of Frequency:** | Annual number of fatal work-related injuries (numerator)  
Annual crude fatality rate per 100,000 employed persons age 16 years or older |
| **Time Period:** | Calendar year |
| **Significance and Background:** | Each year, nearly 6,000 cases of work-related fatalities are reported to the Census of Fatal Occupational Injuries (CFOI) Program administered by the Bureau of Labor Statistics (BLS). On an average day, 16 workers die as a result of injuries sustained at work. |
| **Rationale:** | Multiple factors and risks contribute to work-related fatalities, including workplace/proc design, work organization, worker characteristics, economics and other social factors. Surveillance of work-related fatalities can identify new hazards and case clusters, leading to the development of new interventions and development of new or revised regulations to protect workers. |
| **Limitations of Indicator:** | Fatalities of people younger than 16 may be included in the numerator but are not included in the denominator, since employment statistics are only available for those 16 years of age and older. Because the numbers of deaths among those less than 16 in any one state are small, these numbers are not broken out in the BLS tables and often do not meet the BLS publication criteria. Also CFOI reports data on work-related fatalities by the state in which the fatal incident occurred, which is not necessarily the state of death or the state of residence. The denominator data used for calculating rates is based on state of residence, thus rates may overestimate risk for a state if the fatal incidents involved victims who were out of state residents. Likewise, rates may be underestimated if fatal incidents occurred in other states. Deaths in the military are included in the counts but not the rates. |
| **Data Resources:** | Census of Fatal Occupational Injuries (numerator)  
BLS Current Population Survey Data (denominator) |
| **Limitations of Data Resources:** | CFOI program states are not permitted to release occupation or industry specific data when data are sparse. Such sparse data is categorized under ‘others’. The CFOI program, although it has a data element for ICD codes, publishes findings according to the OIIC classification system rather than ICD. Therefore, data from CFOI may not be comparable to causes of death documented on death certificates. |
| **HP2010 Objectives:** | 20-1 and 20-5 |
| **CSTE Positions:** | None |
| **Other Available Data** | Industry and occupation, age, gender, race/ethnicity, nature, source of injury and event |
HOW-TO GUIDE - INDICATOR #3:

WORK-RELATED FATAL INJURIES

Two methods to obtain the data are offered - both methods will yield the same numbers. The first method uses the Bureau of Labor Statistics (BLS) website to access the data, and is recommended. The second alternate method uses a CD-ROM, provided by BLS, to access the data. The CD-ROMs can be obtained annually from state CFOI programs or BLS regional offices. State contact information is provided at http://www.bls.gov/iif/oshstate.htm

3.1 Annual number of work-related traumatic fatalities

Method 1:
- Go to the BLS web site: http://www.bls.gov/iif/home.htm#tables.
- Scroll down to “Regional Resources” on the right hand side of the page.
- Select your state and click ‘Go’.
- Under CFOI, select ‘Profile of Occupational Fatalities’ file for the appropriate year.
- From resulting table (table 1), read across ‘Total’ row and down ‘Total’ column. This is the ‘Annual number of work-related fatal injuries’. A \(^{(p)}\) notation next to the number denotes a preliminary count, subject to change at a later date.

Method 2:
- Use the CFOI Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and install the profile program onto your computer following the instructions enclosed with the CFOI Profiles CD-ROM.
- Make sure the CD-ROM is inserted and double-click on your desktop shortcut ‘CFOI_Profiles NAICS’. Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Census of Fatal Occupational Injuries’ with a blue background.
- Click on ‘Click here!!!’. Click on ‘CDs’ button and select the drive for your CD-ROM (in most cases, it’s the D:\ drive). Then click ‘OK’. Again click ‘OK’. You will see a pull-down menu and with the title ‘CFOI Profiles and Tables’.
- Select ‘CFOI Numbers Profile (Table 1)’.
- Select state and year.
- From ‘Characteristic type’, select ‘NAICS’.
- From ‘Characteristic code’, select ‘T Total’.
- Click on ‘Create Profiles/Tables’.
- Once automated data processing is complete, click ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
- From resulting table, read across the 1\(^{st}\) row ‘Total’ and down the 2\(^{nd}\) column ‘All industries’. This is the ‘Annual number of work-related fatal injuries’ for your state.
- Click on the ‘X’ sign on the top of the right hand side of the blank spreadsheet. Click ‘NO’ to saving changes.

3.2 Annual crude fatality rate per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:

Page down to heading "TABLES CREATED BY BLS:"

Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age." **Note:** Data from 1997 through 2002 can be found at [http://www.bls.gov/opub/gp/laugp.htm](http://www.bls.gov/opub/gp/laugp.htm).

Choose the Annual Averages for year of interest.

Scroll down to find your state.

Read the ‘Total’ row for your state and the 4th data column – ‘Employment Number’. This is the ‘**Number of Employed persons age 16 years or older**' (in thousands). Multiply by 1000.

**b) To calculate the rate:**

- Divide the ‘Annual number of work-related fatal injuries’ from 3.1 by the ‘Number of employed persons 16 years of age or older’ from 3.2a.
- Multiply the result by 100,000 to get the ‘**Annual crude fatality rate per 100,000 employed persons age 16 years and older**’.

**NOTE:** Because of data limitations, fatalities among persons less than 16 years of age may be included in the numerator (3.1) but are excluded from the denominator.

**Data Tips:** CFOI publishes preliminary data approximately nine months after the close of the calendar year. A year later, CFOI publishes final, updated counts. The indicator should be based on the final counts. Data for previous years are not available on BLS web site. State CFOI programs and regional BLS offices can provide revised/updated count and fatality rates for any year. Numbers may not be available from the CD-ROM or the web-site if the estimate does not meet the publishable criteria of BLS. This is particularly true for small states.
**Topic:** ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

**INDICATOR #4: WORK-RELATED AMPUTATIONS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS**

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons in the private sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Estimated cases of work-related amputation with days away from work (OIIC nature code 031)</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated total full-time equivalents (FTEs) worked for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Estimated annual number of work-related amputation cases with days away from work (numerator)</td>
</tr>
<tr>
<td></td>
<td>Estimated annual incidence rate of work-related amputation cases with days away from work per 100,000 FTEs</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
<tr>
<td>Significance and Background:</td>
<td>Each year, it is estimated that between 16,000 and 21,000 workers will experience a work-related amputation. About 90% of work-related amputations are to the fingers. Results of one study indicated that 22% of all employees who experienced finger amputations had to give up their original employment. These injuries may greatly affect a worker’s job skills and reduce earnings.</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Work-related amputations are a preventable serious injury, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.</td>
</tr>
<tr>
<td>Limitations of Indicator:</td>
<td>Employers are required to record events that result in death, loss of consciousness, days away from work, restricted work, or medical treatment beyond first aid. They are only required to report the detailed nature of injury when the injury results in at least one day away from work. Employers do not always record all relevant events. Employers vary in their use of restricted work activity to reduce lost workdays among their employees with work-related conditions, thereby avoiding cases with days away from work.</td>
</tr>
<tr>
<td>Data Resources:</td>
<td>Annual Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses (SOII)</td>
</tr>
<tr>
<td>Limitations of Data Resources:</td>
<td>The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII.</td>
</tr>
<tr>
<td>HP2010 Objectives:</td>
<td>20-2</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Industry, occupation, age, gender, race/ethnicity, body part, type of event and source of injury. (Details are available only for injuries/illnesses involving days away from work.)</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>SOII has many data elements that can be used to better define patterns of work-related amputations in the state. These may include, for example, industry-specific counts and rates of injuries, and for cases involving days away from work, counts (not rates) by occupation, length of service, age, gender, race/ethnicity and sources of injury.</td>
</tr>
</tbody>
</table>
**HOW-TO GUIDE – INDICATOR #4:**

**WORK-RELATED AMPUTATIONS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS**

Data for this indicator are available on CD-ROMs provided by the Bureau of Labor Statistics (BLS). These CD-ROMs can be obtained annually from state SOII programs or BLS regional offices. State contact information is provided at [http://www.bls.gov/iif/oshstate.htm](http://www.bls.gov/iif/oshstate.htm)

4.1 **Estimated Annual Number of Work-Related Amputations Involving Days Away from Work**

- Use OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and install program onto your computer following the instructions enclosed with the CD-ROM. Queries for specific states will necessitate use of Disk 1 or Disk 2 depending upon region.
- Click on ‘Click here!!!’. Click on ‘CDs’ button and select the drive for your CD-ROM (in most cases, it’s the D:\ drive). Then click ‘OK’. Again click ‘OK’.
- From the ‘Profile Type’ column, select ‘Case and Demo Numbers (Table 1)’.
- Select State and Year.
- From ‘Characteristic Type’, select ‘Nature’.
- From ‘Characteristic Code’, select nature code ‘031 Amputations’.
- Click on ‘Create Profiles/Tables’.
- When tables are completed, click on ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
- Read across 1st row ‘Total’ and down 3rd column ‘Amputations (Code 031)’ from resulting table. Multiply this cell’s value by 100 to get the ‘Estimated annual number of work-related amputations involving days away from work’.
- Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

4.2 **Estimated Annual Incidence Rate of Amputations Involving Days Away from Work per 100,000 FTEs**

- Use the OSH Profile CD-ROM (CD-ROM is available from BLS).
- Insert the CD-ROM and double-click on your desktop shortcut ‘OSH_Profiles NAICS’.
- Click on ‘Enable Macros’. You will see a spreadsheet that says ‘Bureau of Labor Statistics Survey of Occupational Injuries and Illnesses Profiles System’ with a blue background.
- Click on ‘Click here!!!’. Click on ‘CDs’ button and select the drive for your CD-ROM. Then click ‘OK’. Again click ‘OK’.
- From the ‘Profile Type’ column, select ‘Case and Demo Incidence Rates (Table 2)’.
- Select State and Year.
- From ‘Characteristic Type’, select ‘Nature’.
- From ‘Characteristic Code’, select nature code ‘031 Amputations’.
- Click on ‘Create Profiles/Tables’.
- When tables are completed, click on ‘Close’, then click ‘Yes’ to exit system, and then ‘OK’.
• Read across 1\textsuperscript{st} row ‘Total’ and down 3\textsuperscript{rd} column ‘Amputations (Code 031)’ from resulting table. Multiply the value of this cell by 10 to get the ‘Estimated annual incidence rate of work-related amputations involving days away from work per 100,000 FTEs’.
• Click on the ‘X’ sign on the top of the right hand side of the spreadsheet to close it. Click ‘NO’ to saving changes.

\textbf{Data Tips:} Numbers and rates are not available on the CD-ROM when the estimates are not reliable and do not meet BLS publication criteria. BLS does not publish rates less than 0.05. Rates under 0.05 are not considered publishable in the case and demographics system.
**Topic:** ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES  
**Indicator #5:** STATE WORKERS COMPENSATION CLAIMS FOR AMPUTATIONS WITH LOST WORK-TIME

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Workers covered by State workers’ compensation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Amputation cases filed with State workers’ compensation system</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated number of workers covered by State workers’ compensation system for the same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Annual number of amputations filed with State Workers’ Compensation (numerator)  
                      | Annual incidence rate of amputations filed with State Workers’ Compensation per 100,000 workers covered by State workers’ compensation system |
| Time Period:      | Calendar year |
| Significance and Background: | It is estimated that between 16,000 and 21,000 workers each year experience a work-related amputation. About 90% of work-related amputations involve the fingers. Results of one study indicated that 22% of all employees who experienced finger amputations had to give up their original employment. These injuries may greatly affect a worker’s job skills and reduce earnings. |
| Rationale:        | Work-related amputations are preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers. |
| Limitations of Indicator: | Differences in the availability of data (i.e., for lost time cases only versus all medical benefits cases) and eligibility criteria between states indicate that data for this condition should be used to evaluate trends within a state but not to make state-to-state comparisons. |
| Data Resources:   | Workers’ compensation system (numerator)  
                      National Academy of Social Insurance (NASI) estimate of workers covered by workers' compensation (denominator) |
| Limitations of Data Resources: | Workers’ compensation data is not complete, as the majority of individuals with work-related illnesses and many with work-related injuries do not file for workers’ compensation. Workers’ compensation claims may be denied. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers may not be covered by state workers’ compensation systems. |
| HP2010 Objectives: | 20-2 |
| CSTE Positions:   | None |
| Other Available Data: | Age, gender, occupation and industry, type of event and source of injury |
| Recommendations:  | Age, gender, occupation, and industry-specific counts and rates can be used to better define the pattern of occupational injuries/illnesses. Frequency distributions by events and source of injury can highlight important causes. |
**STATE WORKERS COMPENSATION CLAIMS FOR AMPUTATIONS WITH LOST WORK-TIME**

**5.1 Annual number of amputations filed with State Workers’ Compensation**

Variability in the coding systems used by State workers’ compensation (WC) systems precludes a universal method for identifying amputation injuries. Data variables within State workers’ compensation data systems may be incomplete and are often not subject to quality control. Collaboration with the workers’ compensation database manager is essential for completion. **NOTE:** This is administrative data that changes over time. Therefore, this data should be collected at the same time each year. The following are tips for constructing the database for analysis:

- Identify cases by date of injury.
  - If date of injury is not available, use the date the claim was filed.
  - If a trend analysis is to be performed for state data, claim filing date is more appropriate to use than claim date of injury
- Include only accepted cases which result in lost workdays or ‘time loss.’
- Identify coding system used for State workers’ compensation amputation cases.
  Common coding systems encountered by the pilot states include:
  - Occupational Injury and Illness Classification System (OIICS) – Nature of Injury Code = 031 ‘Amputation’;
  - International Association of Industrial Accident Boards and Commissions Electronic Data Interchange Nature of Injury Code = 237028 ‘Amputation’.
- Exclude claims that involve the following body parts/regions unlikely to be associated with an amputation: eye, back, chest, abdomen, and body systems (e.g., respiratory system).
- Include claimants of all ages and those with age unknown.
- Include out of state residents.
- Recognize and document state workers’ compensation laws that may affect state-to-state comparisons
  - Number of lost workdays for claim to be considered a ‘time loss’ claim
  - Statute of limitations for work-related injury claim filing
  - Criteria for acceptance of a work-related injury WC claim
  - Reporting of a workers’ compensation claim to state workers’ compensation system
  - Medical care delivery for work-related injury, e.g., physician choice by employee
  - Industries/occupations excluded from mandatory workers’ compensation coverage
  - Inclusion or exclusion of claims from self-insured employers in WC data
  - Exclusions by employer size (e.g., compulsory workers' compensation insurance coverage for employers of 4 or more workers)
- This should yield the ‘Annual number of amputations filed with State Workers’ Compensation’.
5.2 Annual incidence rate of amputations filed with State Workers’ Compensation per 100,000 workers covered by State Workers’ Compensation system

a) To obtain the denominator for the rate:
   • Go to http://www.nasi.org.
   • Click on menu ‘Publications’.
   • Click on 'Reports'.
   • Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, <<YEAR>>"
   • Click on 'Download' (must have Adobe Acrobat).
   • Go to Table 4 "Number of Workers Covered by Workers’ Compensation and Total Covered Wages, by State, <<YEARS>>".
   • Identify state and read column for ‘Covered Workers (in thousands)’ for year of interest. Multiply number by 1,000.

b) To calculate the rate
   • Divide the numerator (5.1) by the denominator (5.2a).
   • Multiply the result by 100,000 to get the ‘Annual incidence rate of amputations filed with State Workers’ Compensation per 100,000 workers covered by State Workers’ Compensation system’.
## Topic: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

### INDICATOR #6: HOSPITALIZATION FOR WORK-RELATED BURNS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numerator:</strong></td>
<td>Hospital discharges with primary diagnosis of burn injury (ICD-9-CM code 940 – 949) and with primary payor coded as workers’ compensation</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Employed population 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>

**Measures of Frequency:**
- Annual number of work-related burn hospitalizations for persons age 16 years and older (numerator)
- Annual rate of work-related burn hospitalizations per 100,000 employed persons age 16 years or older

**Time Period:** Calendar year

**Significance and Background:** NIOSH has estimated that there are 150,000 work-related burns treated in emergency rooms each year in the U.S. An estimated 30-40 percent of burns are work-related, with a peak incidence among younger workers, and with males affected more frequently than females. According to data from the New England Regional Burn Program, 55 percent of all burns among adults are work-related.

**Rationale:** Work-related burns are some of the most devastating injuries affecting workers. Although hospitalized burns are unusual events, they are painful, disabling, and expensive to treat. Many result in significant disfigurement. In addition, burns are the most common cause of work-related hospitalization for young workers.

**Limitations of Indicator:** Individuals hospitalized for work-related injuries and illnesses represent less than 10 percent of all workers who receive workers’ compensation. The majority of individuals with work-related illnesses and many others with injuries do not file for workers’ compensation. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. Attribution of payor in hospital discharge may not be accurate. Data between states may not be comparable due to differences in states’ workers’ compensation programs.

**Data Resources:**
- Hospital discharge data (numerator)

**Limitations of Data Resources:** Work-related burn injuries are experienced by employed individuals less than 16 years old, but corresponding denominator data is not readily available. Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients. Residents of one state may be hospitalized in another state and not be reflected in his/her state's hospitalization data. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on race/ethnicity is not collected in some states and is incomplete and/or of questionable validity in others. Hospital discharge records are only available for non-federal, acute care hospitals.

**HP2010 Objectives:** 20-2

**CSTE Positions:** None

**Other Available Data:** Age, gender, race/ethnicity, and residence zip code

**Recommendations:** Age, gender, race/ethnicity, and zip code specific counts and rates can be used to better define the pattern of burns. Can also look at proportion of all burn hospitalizations in the state.
6.1 Annual number of hospitalizations for work-related burns for persons age 16 years and over
Obtain from State Health Department the following information from the hospital discharge file:

- Use principle diagnosis from 940 through 949 (ICD-9-CM).
- Use only primary payor = Workers’ Compensation.
- Limit age to those 16 years and older.
- Select for state of residence = 'your state'.
- Exclude:
  - age unknown
  - out-of-state residents and unknown residence
  - out-of-state hospitalizations.
- Use undeduplicated data (no exclusions for deaths, readmissions).
- Use discharge during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield the ‘Annual number of hospitalizations for work-related burns’.

6.2 Annual rate of hospitalization per 100,000 employed persons age 16 years or older
a) To obtain the denominator for the rate:

- Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons
- Page down to heading "TABLES CREATED BY BLS;"
- Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age:" Note: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm
- Choose the Annual Averages for year of interest
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4th data column – ‘Employment Number’. This is the ‘Number of Employed persons age 16 years or older' (in thousands). Multiply by 1000.

b) To calculate the rate:

- Divide the numerator (6.1) by the denominator (6.2a).
- Multiply this result by 100,000 to get the ‘Annual crude rate of work-related burn hospitalizations per 100,000 employed persons age 16 years or older’.
### Topic: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

#### INDICATOR # 7: WORK-RELATED MUSCULOSKELETAL DISORDERS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numerator:</strong></td>
<td></td>
</tr>
<tr>
<td>1. Estimated cases of all musculoskeletal disorders (MSDs) involving days away from work</td>
<td></td>
</tr>
<tr>
<td>2. Estimated cases of MSDs of the upper extremities, neck, and shoulder involving days away from work</td>
<td></td>
</tr>
<tr>
<td>3. Estimated cases of carpal tunnel syndrome involving days away from work</td>
<td></td>
</tr>
<tr>
<td>4. Estimated cases of MSDs of the back involving days away from work</td>
<td></td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Estimated full-time equivalents (FTEs) worked for the same calendar year</td>
</tr>
<tr>
<td><strong>Measures of Frequency:</strong></td>
<td></td>
</tr>
<tr>
<td>Estimated annual number of incident cases</td>
<td></td>
</tr>
<tr>
<td>Estimated annual incidence rate per 100,000 full-time-equivalents</td>
<td></td>
</tr>
<tr>
<td><strong>Time Period:</strong></td>
<td>Calendar year</td>
</tr>
<tr>
<td><strong>Significance and Background:</strong></td>
<td>The 1999 Annual BLS Survey identified 582,340 cases of musculoskeletal disorders that resulted in days away from work. Over half of these cases involved the back. Estimates of the costs of back injuries alone are $50-100 billion per year. About 4% (27,832) of these injuries were carpal tunnel syndrome, 2% (11,945) involved the neck, 10% (56,834) involved the shoulder, and 15% (87,956) involved the upper extremities.</td>
</tr>
<tr>
<td><strong>Rationale:</strong></td>
<td>Work-related musculoskeletal disorders are preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.</td>
</tr>
<tr>
<td><strong>Limitations of Indicator:</strong></td>
<td>Employers are required to record events that result in death, loss of consciousness, days away from work, restricted work, or medical treatment beyond first aid. They are only required to report the detailed case characteristics (e.g., nature, body part, event) when the injury or illness results in at least one day away from work. Employers do not always record all relevant events. Also, employers are often unaware of work-related conditions for which employees have obtained medical care from their personal health care providers, and conditions that have long latencies and are diagnosed long after an employee leaves their employment. Regarding injuries/illnesses involving days away from work, employers vary in their use of restricted work activity to reduce lost workdays among their employees with work-related conditions, thereby avoiding cases with days away from work.</td>
</tr>
<tr>
<td><strong>Data Resources:</strong></td>
<td>Annual Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses (SOII)</td>
</tr>
<tr>
<td><strong>Limitations of Data Resources:</strong></td>
<td>The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII.</td>
</tr>
<tr>
<td><strong>HP2010 Objectives:</strong></td>
<td>20-3</td>
</tr>
<tr>
<td><strong>CSTE Positions:</strong></td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Age, gender, race/ethnicity, occupation, industry, type of event, and source of injury (Details are available only for injuries/illnesses involving days away from work.)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>SOII has many data elements that can be used to better define patterns of work-related MSDs in the state. These may include industry specific counts and rates, and counts (not rates) by age, gender, race/ethnicity, and occupation, source of injury/illness.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #7:

WORK-RELATED MUSCULOSKELETAL DISORDERS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS

NOTE: The definition of musculoskeletal disorders involving days away from work used by BLS has changed over time. The earlier definition included all cases of overexertion and repetitive motion (OIIC event codes 220-239). The definition used here, which restricts to certain body parts but adds another event code, is the most recent. Indicator values are developed using the revised OSHA definition of Musculoskeletal Disorders.

7.1 Estimated Annual Number of All Musculoskeletal Disorders Involving Days Away from Work

Definition of musculoskeletal disorders using the revised OSHA definition:
All injuries and illnesses involving days away from work with:

- OIIC nature codes:
  021 (sprains, strains, tears) or
  0972 (back pain, hurt back) or
  0973 (soreness, pain, hurt, except the back) or
  1241 (carpal tunnel syndrome) or
  153 (hernia) or
  17* (musculoskeletal system and connective tissue diseases and disorders)

- OIIC event codes:
  211 (bending, climbing, crawling, reaching, twisting) or
  22 (overexertion) or
  23 (repetitive motion)

*All nature codes that begin with 17

Go to BLS website: [http://www.bls.gov/iif/home.htm](http://www.bls.gov/iif/home.htm)
Scroll down the page to the following phrase: "You can download an electronic version of any article or table from the BLS FTP site."
Click on "BLS FTP site" which will bring you to [ftp://ftp.bls.gov/pub/special.requests/ocwc/osh/](ftp://ftp.bls.gov/pub/special.requests/ocwc/osh/)
This page contains a few annual data sets for each State (2000, 2001, 2002, 2003). The dataset naming conventions are:
- xxyear_nature.pdf
- xxyear_pob.pdf
where "xx" is the State abbreviation. The two tables detail MSDs by nature or part of body.
Click on the ‘nature’ table for your state and year.
Read across the first row (“Total”) under the column ‘Number’ to obtain the ‘Annual number of all musculoskeletal disorders involving days away from work’.

7.2 Estimated Annual Incidence Rate of All Musculoskeletal Disorders Involving Days Away from Work per 100,000 FTE
Follow directions for 7.1.

From the nature table, read across the first row – ‘Total’ under the column - ‘Incidence rate’.

Multiply by 10 to obtain the “Estimated annual incidence rate of all musculoskeletal disorders involving days away from work per 100,000 FTE”.

7.3 Estimated Annual Number of Musculoskeletal Disorders of the Neck, Shoulder, and Upper Extremities Involving Days Away from Work

Follow directions for 7.1.

Open the ‘part of body’ table for your state and year.

Sum the numbers in the following three rows: ‘1 - Neck, including throat,’ ‘21 – Shoulder, including clavicle, scapula’ and ‘3 – Upper extremities’, under the column - ‘Number’ to obtain the ‘Estimated annual number of musculoskeletal disorders of the neck, shoulder and upper extremities involving days away from work’.

7.4 Estimated Annual Incidence Rate of Musculoskeletal Disorders of Neck, Shoulder, and Upper Extremities Involving Days Away from Work per 100,000 FTE

Follow directions for 7.3.

Sum the numbers in the following three rows: ‘1 - Neck, including throat,’ ‘21 - Shoulder including clavicle, scapula’ and ‘3 - Upper extremities’ under the column - ‘Number’ to obtain the ‘Annual incidence rate of musculoskeletal disorders of the neck, shoulder and upper extremities involving days away from work per 100,000 FTE’.

7.5 Estimated Annual Number of Carpal Tunnel Syndrome Cases Involving Days Away from Work

Follow directions for 7.1.

From the ‘nature’ table, read across the row, ‘1241 - Carpal tunnel syndrome’, under the column - ‘Number’ to obtain the ‘Estimated annual number of carpal tunnel syndrome cases involving days away from work’.

7.6 Estimated Annual Incidence Rate of Carpal Tunnel Syndrome Cases Involving Days Away from Work per 100,000 FTE

Follow directions for 7.5.

Read across the row, ‘1241 - Carpal tunnel syndrome’, under the column - ‘Incidence rate.’

Multiply the number by 10 to get the ‘Estimated annual incidence rate of carpal tunnel syndrome cases involving days away from work per 100,000 FTE’.
7.7 *Estimated Annual Number of Musculoskeletal Disorders of the Back Involving Days Away from Work*

- Follow directions for 7.3.
- From the ‘part of body’ table, read across the row, ’23 Back, including spine, spinal cord’, under the column - ‘Number’ to obtain the ‘*Estimated annual number of musculoskeletal disorders of the back involving days away from work*’.

7.8 *Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Back Involving Days Away from Work per 100,000 FTE*

- Follow directions for 7.7.
- From the ‘part of body’ table, read across the row ’23 Back, including spine, spinal cord’ under the column - ‘Incidence rate.’
- Multiply the number by 10 to get the ‘*Estimated annual incidence rate of musculoskeletal disorders of the back involving days away from work per 100,000 FTE*’
<table>
<thead>
<tr>
<th>Topic:</th>
<th>ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Indicator #8:</strong></td>
<td>CARPAL TUNNEL SYNDROME CASES FILED WITH THE STATE WORKERS’ COMPENSATION SYSTEM</td>
</tr>
<tr>
<td><strong>Demographic Group:</strong></td>
<td>Workers covered by State Workers’ Compensation</td>
</tr>
<tr>
<td><strong>Numerator:</strong></td>
<td>Carpal tunnel syndrome cases filed with State Workers’ Compensation system involving days away from work</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Estimated number of workers covered by State workers’ compensation system for the same calendar year</td>
</tr>
</tbody>
</table>
| **Measures of Frequency:** | Annual number of carpal tunnel syndrome cases filed with State Workers’ Compensation involving days away from work (numerator)  
Annual incidence rate of carpal tunnel syndrome cases filed with State Workers’ Compensation per 100,000 workers covered by State Workers’ Compensation system |
| **Time Period:**    | Calendar year |
| **Significance and Background:** | The 2000 Annual BLS Survey identified 27,697 cases of carpal tunnel syndrome that resulted in days away from work. The median number of days away from work was 27. The BLS estimated annual case incidence rate for carpal tunnel syndrome is 3.0 per 10,000 FTE. Estimates from State workers’ compensation systems suggest the BLS annual survey underestimates the incidence rate of carpal tunnel syndrome. |
| **Rationale:**      | Carpal tunnel syndrome is preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking carpal tunnel syndrome can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers. |
| **Limitations of Indicator:** | Differences in the availability of data (i.e., for lost time cases only versus medical benefits cases) and eligibility criteria between states indicate that data for this condition should be used to evaluate trends within a state but not to make state-to-state comparisons. |
| **Data Resources:** | Workers’ compensation system (numerator)  
National Academy of Social Insurance (NASI) estimate of workers covered by workers' compensation (denominator) |
| **Limitations of Data Resources:** | Workers’ compensation data is not complete, as the majority of individuals with work-related illnesses and many with work-related injuries do not file for workers’ compensation. Workers’ compensation claims may be denied. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. (The length of days away from work that is required before a case will be recorded in the workers' compensation system will vary by state) |
| **HP2010 Objectives:** | 20-3 |
| **CSTE Positions:** | None |
| **Other Available Data:** | Age, gender, occupation and industry, type of event and source of injury |
| **Recommendations:** | Age, gender, occupation, and industry-specific counts and rates can be used to better define the pattern of occupational injuries/illnesses. Frequency distributions by events and source of injury can highlight important causes. |
HOW-TO GUIDE – INDICATOR #8:

CARPAL TUNNEL SYNDROME FILED WITH STATE WORKERS’ COMPENSATION SYSTEM

8.1 Annual number of carpal tunnel syndrome cases filed with State Workers’ Compensation

Variability in the coding systems used by State workers’ compensation systems precludes a universal method for identifying Carpal Tunnel Syndrome cases. Data variables within State workers’ compensation data systems may be incomplete and are often not subject to quality control. Collaboration with the workers’ compensation database manager is essential for completion. **NOTE:** This is administrative data that changes over time. Therefore, this data should be collected at the same time each year to allow for valid trend analysis within the State. The following are tips for constructing the database for analysis:

- Identify cases by date of injury.
  - If date of injury is not available, use date claim was filed.
  - If a trend analysis is to be performed for state data, claim filing date is more appropriate to use than claim date of injury.
- Include only accepted cases which result in lost workdays or ‘time loss.’
- Coding Systems used for State workers’ compensation carpal tunnel syndrome cases:
  - Occupational Injury and Illness Classification System (OIICS) – Nature of Injury Code = 1241 ‘Carpal Tunnel Syndrome’;
  - International Classification of Diseases – 9th Revision Clinical Modification – ICD-9-CM Codes = 354.0 ‘Carpal tunnel syndrome’ and/or ICD-9-CPT code = 64721 ‘Neuroplasty; median nerve at carpal tunnel’;
  - International Association of Industrial Accident Boards and Commissions Electronic Data Interchange Nature of Injury Code = 2370762 combined with all upper extremity body part codes (236768-236778) and ‘multiple body parts’ code (236804)
- Include claimants of all ages and those with age unknown.
- Include out of state residents.
- Recognize and document state workers’ compensation laws that may affect state-to-state comparisons
  - Number of lost workdays for claim to be considered a ‘time loss’ claim
  - Statute of limitations for work-related disease claim filing
  - Criteria for acceptance of a work-related disease WC claim
  - Medical care delivery for a work-related disease, e.g., physician choice by worker
  - Industries poorly represented in state's workers' compensation data e.g. agriculture
  - Inclusion or exclusion of claims from self-insured employers in WC database
  - Industries/occupations excluded from mandatory workers compensation coverage
  - Exclusions of mandatory workers’ compensation insurance by employer size (e.g. compulsory workers' compensation insurance coverage for employers of 4 or more workers)
• This will yield the ‘Estimated annual number of carpal tunnel syndrome cases filed with State Workers’ Compensation’.

8.2 Annual incidence rate per 100,000 workers covered by State workers’ compensation system
a) To obtain the denominator for the rate:
• Click on menu 'Publications'.
• Click on 'Reports'.
• Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, "<<YEAR>>."  
• Click on 'Download' (must have Adobe Acrobat).
• Go to Table titled "Number of Workers Covered by Workers' Compensation and Total Covered Wages, by State, "<<YEARS>>".
• Identify state and read column for ‘Covered Workers (in thousands)’ for year of interest. Multiply by 1,000.

b) To calculate the rate:
• Divide the numerator (8.1) by the denominator (8.2a)
• Multiply the result by 100,000 to get the ‘Annual incidence rate of carpal tunnel syndrome cases filed with State Workers’ Compensation per 100,000 workers covered by State Workers’ Compensation system’.
**Topic:** OCCUPATIONAL ILLNESSES

**INDICATOR #9: HOSPITALIZATION FROM OR WITH PNEUMOCONIOSIS**

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Resident persons age 15 years or older</th>
</tr>
</thead>
</table>
| **Numerator:**    | 1. Hospital discharges with a primary or contributing diagnosis of total pneumoconiosis  
                    2. Hospital discharges with a primary or contributing diagnosis of coal workers’ pneumoconiosis  
                    3. Hospital discharges with a primary or contributing diagnosis of “asbestosis”  
                    4. Hospital discharges with a primary or contributing diagnosis of “silicosis”  
                    5. Hospital discharges with a primary or contributing diagnosis of other and unspecified pneumoconiosis |
| **Denominator:**  | Midyear resident population age 15 years or older for the same calendar year |
| **Measures of Frequency:** | Annual number of hospitalizations for persons age 15 years or older (numerator)  
                                   Annual rate of hospitalization per million residents  
                                   Annual, age-standardized, rate of hospitalization (standardized by the direct method to the Year 2000 U.S. standard population) |
| **Time Period:** | Calendar year |
| **Significance and Background:** | Nearly all pneumoconioses are attributable to occupational exposures, and millions of workers are at risk. Common types include asbestosis, coal workers’ pneumoconiosis, and silicosis. Complications of various pneumoconioses and other conditions associated with exposure to the same dusts that cause pneumoconiosis include: respiratory infections (including tuberculosis); chronic bronchitis; emphysema; lung cancer; pleuritis; progressive systemic sclerosis; renal disease; and respiratory failure. |
| **Rationale:** | Pneumoconiosis frequency varies geographically being largely determined by local industrial activities and migration of affected individuals. Control of occupational dust exposure is the single most effective means of preventing pneumoconiosis. Tracking of pneumoconiosis is essential for measuring progress towards elimination of the disease, as well as for targeting prevention and disease management programs. |
| **Limitations of Indicator:** | Because the pneumoconioses are typically diseases of long latency, current incidence is not necessarily indicative of current exposures, and it may be many years before reductions in occupational exposures affect the number of hospitalizations. |
| **Data Resources:** | Hospital discharge data (numerator)  
                        State population estimates from the U.S. Bureau of the Census (denominator)  
                        Year 2000 U.S. Standard population (for age-standardization) |
| **Limitations of Data Resources:** | The number of diagnoses listed on discharge summaries may vary by regional practice patterns and by the persons completing the summaries. Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients, to diagnose pneumoconiosis, and/or to list pneumoconiosis as a discharge diagnosis. Residents of one state may be hospitalized in another state and not be reflected in his/her state's hospitalization data. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. |
| **HP2010 Objectives:** | 20-4 |
| **CSTE Positions:** | 1996-Env-02; 1999-Env-04 |
| **Other Available Data:** | Age, gender, race/ethnicity, residence zip code, payor code |
| **Recommendations:** | Age, gender, race/ethnicity, and zip code-specific counts and rates can be used to better define the pattern of hospitalizations. Information on the payor can be used to provide insight on utilization of workers compensation benefits. |
9.1 Hospital discharges with a primary or contributing diagnosis of ICD-9-CM code 500-505 (“total pneumoconiosis”)

9.1.1 Annual number of hospital discharges

Obtain from the State Health Department the number of cases meeting the following criteria from the hospital discharge file:

- Any diagnosis between 500 and 505 (ICD-9-CM).
- Limit age to those 15 years and older.
- Select for state of residence='your state'.
- Exclude:
  - age unknown
  - out-of-state residents
  - unknown state of residence
  - out-of-state hospitalizations
- Use unduplicated data (no exclusions for deaths, readmissions).
- Use discharge during calendar year, not fiscal year.
- For each of these categories, obtain the number of hospitalizations for each of the following age groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and over.

This will yield the ‘Annual number of total pneumoconiosis hospitalizations for persons age 15 years of age and older’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.1.2 Annual rate of hospitalization per million residents

a) To obtain the denominator for the rate:

- Page down to the bullet for “State estimates by demographic characteristics – age, sex, race and Hispanic Origin”.
- Look for sub-bullet for “State Single Year of Age and Sex Population Estimates: … RESIDENT”.
- Click on CSV file.
- Identify column for population estimate (popestimate) for the year of interest.
- Locate under name (Column E) = 'your state' and under sex (Column F) = 0 (both sexes).
- Sum all age groups for ages (Column G) 15 and above.

b) To calculate the crude hospitalization rate:

- Divide the sum of all age groups (numerator 9.1.1.) by the denominator (9.1.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual rate of total pneumoconiosis hospitalizations per million residents’.
9.1.3 Annual, age-standardized, rate of hospitalization per million residents
- Use the US 2000 Standard population (provided in column E in table below) found at: http://www.cdc.gov/nchs/datawh/nchsdefs/ageadjustment.htm#aarates.
- Use below table for all pneumoconioses. A spreadsheet works well for these calculations.
- In Column C (2000 State Pop), enter state’s 2000 census population (10.1.2), by age groups.
- In Column B (# Hospitalizations), enter number of hospitalizations obtained in 10.1.1, by age groups for all pneumoconioses.
- Column D = Column B / Column C
  \[ \text{(Hospitalizations/Pop)} = (\# \text{ Hospitalizations}) / (2000 \text{ State Pop}) \]
- Column F = Column D * Column E
  \[ (\# \text{ Expected Hospitalizations}) = (\text{Hospitalizations/Pop}) * (\text{US 2000 Standard Pop}) \]
- The ‘Annual age-adjusted total pneumoconiosis hospitalization rate per million residents’ = \[\left( \frac{F_{10}}{E_{10}} \right) \times 1,000,000\]
  (The sum (\(\Sigma\)) of all expected total pneumoconiosis hospitalizations) / (the sum of US 2000 Standard Pop) multiplied by 1,000,000

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Column B</th>
<th>Column C</th>
<th>Column D</th>
<th>Column E</th>
<th>Column F</th>
</tr>
</thead>
<tbody>
<tr>
<td># Hospitalizations</td>
<td>2000 State Pop</td>
<td>Hospitalizations/Pop</td>
<td>US 2000 Std Pop</td>
<td># Expected Hospitalizations</td>
<td></td>
</tr>
<tr>
<td>2 15-24</td>
<td>B2/C2</td>
<td>38,077,000</td>
<td>D2*E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 25-34</td>
<td>B3/C3</td>
<td>37,233,000</td>
<td>D3*E3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 35-44</td>
<td>B4/C4</td>
<td>44,659,000</td>
<td>D4*E4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 45-54</td>
<td>B5/C5</td>
<td>37,030,000</td>
<td>D5*E5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 55-64</td>
<td>B6/C6</td>
<td>23,961,000</td>
<td>D6*E6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 65-74</td>
<td>B7/C7</td>
<td>18,136,000</td>
<td>D7*E7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 75-84</td>
<td>B8/C8</td>
<td>12,315,000</td>
<td>D8*E8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 85+</td>
<td>B9/C9</td>
<td>4,259,000</td>
<td>D9*E9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Total</td>
<td></td>
<td>215,670,000</td>
<td>(\Sigma(F2:F9))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2 Hospital discharges with a primary or contributing diagnosis of ICD-9 code 500 (‘Coal Workers’ Pneumoconiosis)

9.2.1 Annual number of coal workers’ pneumoconiosis hospital discharges
Follow directions for 9.1.1 using any diagnosis = ‘500’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.2.2 Annual rate of coal workers’ pneumoconiosis hospitalizations per million residents
a) To obtain the denominator for the rate:
Follow directions for 9.1.2a.
b) To calculate the crude hospitalization rate:
   • Divide the sum of all ages (numerator 9.2.1) by the denominator (9.2.2a).
   • Multiply this result by 1,000,000 to yield the ‘Annual rate of coal workers’ pneumoconiosis hospitalizations per million residents’.

9.2.3 Annual, age-standardized, rate of hospitalization per million residents
Follow directions for 9.1.3 using hospitalizations from 9.2.1.

9.3 Hospital discharges with a primary or contributing diagnosis of ICD-9 code 501 (“Asbestosis”)
9.3.1 Annual number of asbestosis hospital discharges
Follow directions for 9.1.1 using any diagnosis = ‘501’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.3.2 Annual rate of asbestosis hospitalizations per million residents
a) To obtain the denominator for the rate:
   • Follow directions for 9.1.2a.

b) To calculate the crude hospitalization rate:
   • Divide the sum of all ages (numerator 9.3.1) by the denominator (9.3.2a).
   • Multiply this result by 1,000,000 to yield the ‘Annual rate of asbestosis hospitalizations per million residents’.

9.3.3 Annual, age-standardized, rate of asbestosis hospitalizations per million residents
Follow directions for 9.1.3 using hospitalizations from 9.3.1.

9.4 Hospital discharges with a primary or contributing diagnosis of ICD-9 code 502 (“Silicosis”)
9.4.1 Annual number of silicosis hospital discharges
Follow directions for 9.1.1 using any diagnosis = ‘502’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.4.2 Annual rate of silicosis hospitalizations per million residents
a) To obtain the denominator for the rate:
   • Follow directions for 9.1.2a.

b) To calculate the crude hospitalization rate:
   • Divide the sum of all ages (numerator 9.4.1) by the denominator (9.4.2a).
   • Multiply this result by 1,000,000 to yield the ‘Annual rate of silicosis hospitalizations per million residents’.
9.4.3 Annual, age-standardized, rate of silicosis hospitalizations per million residents
Follow directions for 9.1.3 using hospitalizations from 9.4.1.

9.5 Hospital discharges with a primary or contributing diagnosis of ICD-9 code
503, 504 or 505 (“Other and Unspecified Pneumoconiosis”)
9.5.1 Annual number of other and unspecified pneumoconiosis hospital discharges
Follow directions for 9.1.1 using any diagnosis = ‘503’, ‘504’ or ‘505’.

9.5.2 Annual rate of other and unspecified pneumoconiosis hospitalizations per
million residents
a) To obtain the denominator for the rate:
   • Follow directions for 9.1.2a.

b) To calculate the crude hospitalization rate:
   • Divide the sum of all ages (numerator 9.5.1) by the denominator (9.5.2a).
   • Multiply this result by 1,000,000 to yield the ‘Annual rate of other and unspecified
     pneumoconiosis hospitalizations per million residents’.

9.5.3 Annual, age-standardized, rate of other and unspecified hospitalizations per
million residents
Follow directions for 9.1.3 using hospitalizations from 9.5.1.

NOTE: The sum of 9.2.1, 9.3.1, 9.4.1 and 9.5.1 may be more than 9.1.1 because cases could be
hospitalized with more than one type of pneumoconiosis.
<table>
<thead>
<tr>
<th>Topic: OCCUPATIONAL ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #10: MORTALITY FROM OR WITH PNEUMOCONIOSIS</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Resident persons age 15 years or older</th>
</tr>
</thead>
</table>
| **Numerator:** | 1. Deaths with ICD-10 code of J60-J66 (ICD-9 code 500-505) as the underlying or contributing cause of death (“total pneumoconiosis”)
2. Deaths with ICD-10 code of J60 (ICD-9 code 500) as the underlying or contributing cause of death (“coal workers’ pneumoconiosis”)
3. Deaths with ICD-10 code of J61 (ICD-9 code 501) as the underlying or contributing cause of death (“asbestosis”)
4. Deaths with ICD-10 code of J62 (ICD-9 code 502) as the underlying or contributing cause of death (“silicosis”)
5. Deaths with ICD-10 code in the range J63 – J66 (ICD-9 code range 503 – 505) (“other and unspecified pneumoconiosis”) |
| **Denominator:** | Midyear resident population age 15 years or older for the same calendar year |
| **Measures of Frequency:** | Annual number of deaths (numerator) 
Annual death rate (deaths per million residents) 
Annual age-standardized death rate (standardized by the direct method to the Year 2000 U.S. Standard population) (deaths per million residents) |
| **Time Period:** | Calendar year |
| **Significance and Background:** | Nearly all pneumoconioses are attributable to occupational exposure, and millions of workers are at risk. Common types include asbestosis, coal workers' pneumoconiosis, and silicosis. Pneumoconiosis is more commonly listed as a contributing cause of death than as the underlying cause of death. Consequently, this indicator monitors all listed causes of death on the death certificate. |
| **Rationale:** | Pneumoconiosis frequency varies geographically being largely determined by local industrial activities and migration of affected individuals. Control of occupational dust exposure is the single most effective means of preventing pneumoconiosis. Tracking of pneumoconiosis is essential for tracking progress towards elimination of the disease, as well as for targeting prevention and disease management programs. |
| **Limitations of Indicator:** | Because pneumoconioses are typically chronic diseases with a long latency (pre-clinical period), current incidence is not necessarily indicative of current exposures, and it may be several years before reductions in exposures affect mortality. In addition, people may not die in the state in which they were exposed. |
| **Data Resources:** | Death certificate records from vital statistics agency (numerator) 
State population estimates from the U.S. Bureau of the Census (denominator) 
Year 2000 U.S. Standard Population (for age-standardization) |
| **Limitations of Data Resources:** | Causes of death listed on the death certificate and coding of those causes may be inaccurate. The number of contributing cases of death listed on the death certificate may vary by person completing the death certificate and geographic region. Death certificates identify only a small percentage of the individuals who develop pneumoconiosis. Data on race/ethnicity is not collected in some states and is incomplete and/or of questionable validity in others. The state of residence upon death may not be the state of exposure. |
| **HP2010 Objectives:** | 20-4 |
| **CSTE Positions:** | 1996-Env-02; 1999-Env-04 |
| **Other Available Data:** | Age, gender, race/ethnicity, county of residence, usual occupation and industry |
| **Recommendations:** | Age, gender, race/ethnicity, and county-specific counts and rates can be used to better define the pattern of pneumoconiosis mortality. Because usual occupation and usual industry information is not necessarily indicative of the setting in which the causative exposure occurred, industry- and occupation-specific measures should be interpreted and reported with caution. |
HOW-TO GUIDE – INDICATOR #10:
MORTALITY FROM OR WITH PNEUMOCONIOSIS

10.1 Deaths with ICD-10 code of J60-J66 as the underlying or contributing cause of
death (“Total Pneumoconiosis”)

10.1.1 Annual number of total pneumoconiosis deaths
Obtain from State Health Department’s Office of Vital Records the following information:
- Number of deaths with ICD-10 code of J60 – J66.8 as the underlying or contributing
cause of death. Make sure that you emphasize that you want these counts based on
contributing causes of death in addition to underlying cause. Obtaining counts
based on underlying cause only will result in a significant undercount of cases.
- Limit age to those 15 years and older.
- Select for state of residence='your state’.
- Exclude:
  - age unknown
  - out-of-state residents or unknown residence
  - out-of-state deaths
- Obtain the number of deaths for each of the following age groups: 15-24, 25-34, 35-44,
  45-54, 55-64, 65-74, 75-84, 85 and over.
- This will yield the ‘Annual number of total pneumoconiosis deaths’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or
may violate confidentiality requirements. Rates should not be calculated.

10.1.2 Annual total pneumoconiosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
- Go to Population Estimates databases for the U.S. Census:
- Page down to the bullet for “State estimates by demographic characteristics – age, sex,
race and Hispanic Origin”.
- Look for sub-bullet for “State Single Year of Age and Sex Population Estimates: …
RESIDENT”.
- Click on CSV file.
- Identify column for population estimate (popestimate) for the year of interest.
- Locate under name (Column E) = your state and under sex (Column F) = 0 (both sexes).
- Sum all age groups for ages (Column G) 15 and above.

b) To calculate the crude annual death rate:
- Divide the number of deaths for those aged 15 and older (numerator 10.1.1) by the
population aged 15 and older for that year (10.1.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual total pneumoconiosis death rate
(deaths per million residents)’.

10.1.3 Annual age-standardized total pneumoconiosis death rate (deaths per million
residents)
- Use the US 2000 Standard population (provided in column E in table below) found at:
Use table below to perform the calculations. A spreadsheet such as Excel works well for these calculations.

- In Column C (State Population), enter the state’s census population (10.1.2) by age group for the relevant year (e.g., population estimates for 2003 if generating death rates for 2003).
- In Column B (# Deaths), enter number of deaths obtained in 10.1.1 by age group for all pneumoconioses.
- Column D = Column B / Column C (Deaths/Pop) = (# Deaths) / (State Population)
- Column F = Column D * Column E (# Expected Deaths) = (Deaths/Pop) * (US 2000 Standard Pop)
- **Age-standardized total pneumoconiosis death rate** = \( \frac{(F10 / E10) \times 1,000,000}{\sum (F2:F9)} \)
  (The sum (\( \Sigma \)) of all expected deaths) / (the US 2000 Standard Population ages 15 and older) multiplied by 1,000,000

![Table](image)

10.2 Deaths with an underlying or contributing cause of death with ICD-10 code J60 (“Coal Workers’ Pneumoconiosis”)

10.2.1 Annual number of coal workers’ pneumoconiosis deaths

Follow directions for 10.1.1 using any cause of death = ‘J60’.

**NOTE:** If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

10.2.2 Annual coal workers’ pneumoconiosis death rate (deaths per million residents)

a) To obtain the denominator for the rate:
Follow directions for 10.1.2a.

b) To calculate the crude annual death rate:
- Divide the number of deaths for those aged 15 and older (numerator 10.2.1) by the population aged 15 and older for that year (10.2.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual coal workers’ pneumoconiosis death rate (deaths per million residents)’.

10.2.3 Annual, age-standardized, coal workers’ pneumoconiosis death rate (deaths per million residents)
Follow directions for 10.1.3 using deaths from 10.2.1.

10.3 Deaths with an underlying or contributing diagnosis of ICD-10 code J61 (“Asbestosis”)

10.3.1 Annual number of asbestosis deaths
Follow directions for 10.1.1 using any cause of death = ‘J61’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

10.3.2 Annual asbestosis death rate (deaths per million residents)
   a) To obtain the denominator for the rate:
      Follow directions for 10.1.2a.

   b) To calculate the crude annual death rate:
      • Divide the number of deaths for those aged 15 and older (numerator 10.3.1) by the population aged 15 and older for that year (10.3.2a).
      • Multiply this result by 1,000,000 to yield the ‘Annual asbestosis death rate (deaths per million residents)’.

10.3.3 Annual, age-standardized, asbestosis death rate (deaths per million residents)
Follow directions for 10.1.3 using deaths from 10.3.1.

10.4 Deaths with an underlying or contributing diagnosis of ICD-10 code J62 (“Silicosis”)

10.4.1 Annual number of silicosis deaths
Follow directions for 10.1.1 using any cause of death = ‘J62.0’ – ‘J62.8’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

10.4.2 Annual silicosis death rate (deaths per million residents)
   a) To obtain the denominator for the rate:
      Follow directions for 10.1.2a.

   b) To calculate the crude annual death rate:
      • Divide the number of deaths for those aged 15 and older (numerator 10.4.1) by the population aged 15 and older for that year (10.4.2a).
      • Multiply this result by 1,000,000 to yield the ‘Annual silicosis death rate (deaths per million residents)’.

10.4.3 Annual, age-standardized death rate (deaths per million residents)
Follow directions for 10.1.3 using deaths from 10.4.1.

10.5 Deaths with an underlying or contributing diagnosis of ICD-10 code J63, J64, J65, J66 (“Other and Unspecified Pneumoconiosis”)

10.5.1 Annual number of other and unspecified pneumoconiosis deaths
NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

10.5.2 Annual other and unspecified pneumoconiosis death rate (deaths per million residents)

a) To obtain the denominator for the rate:
Follow directions for 10.1.2a.

b) To calculate the crude annual death rate:
• Divide the number of deaths for those aged 15 and older (numerator 10.5.1) by the population aged 15 and older for that year (10.5.2a).
• Multiply this result by 1,000,000 to yield the ‘Annual other and unspecified pneumoconiosis death rate (deaths per million residents)’.

10.5.3 Annual, age-standardized other and unspecified pneumoconiosis death rate (deaths per million residents)
Follow directions for 10.1.3 using deaths from 10.5.1.

NOTE: The sum of 10.2.1, 10.3.1, 10.4.1 and 10.5.1 may be greater than 10.1.1 because cases could have more than one type of pneumoconiosis listed on the death certificate.
<table>
<thead>
<tr>
<th>Topic:</th>
<th>OCCUPATIONAL ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #11:</strong></td>
<td>ACUTE WORK-RELATED PESTICIDE-ASSOCIATED ILLNESS AND INJURY REPORTED TO POISON CONTROL CENTERS</td>
</tr>
<tr>
<td>Demographic Group:</td>
<td>Employed persons</td>
</tr>
<tr>
<td>Numerator:</td>
<td>Reported cases of work-related pesticide poisoning</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years and older for the same calendar year</td>
</tr>
<tr>
<td><strong>Measures of Frequency:</strong></td>
<td>Annual number of reported cases of work-related pesticide poisoning (numerator)</td>
</tr>
<tr>
<td></td>
<td>Annual incidence rate of reported cases of work-related pesticide poisoning per 100,000 employed persons age 16 years or older</td>
</tr>
<tr>
<td><strong>Time Period:</strong></td>
<td>Calendar year</td>
</tr>
<tr>
<td><strong>Significance and Background:</strong></td>
<td>Pesticides are among the few chemicals produced that are specifically designed to kill and cause harm. In the US, approximately one billion pounds of pesticide active ingredient are used annually, and over 20,000 pesticide products are being marketed. The EPA estimates 20,000 - 40,000 work-related pesticide poisonings per year.</td>
</tr>
<tr>
<td><strong>Rationale:</strong></td>
<td>Workers who handle pesticides are at increased risk for exposure. Poison Control Centers (PCCs) are important sources of reports of acute poisonings and chemical exposures. These data can be useful to target prevention. The type of data collected is comparable across states due to the uniformity in case handling by PCCs.</td>
</tr>
<tr>
<td><strong>Limitations of Indicator:</strong></td>
<td>PCCs capture only a small proportion of acute occupational pesticide-related illness cases, an estimated 10%. PCCs do not systematically collect information on industry and occupation; however, cases associated with occupational exposures can be identified.</td>
</tr>
<tr>
<td><strong>Data Resources:</strong></td>
<td>Poison Control Center data (numerator)</td>
</tr>
<tr>
<td></td>
<td>BLS Current Population Survey Data (denominator)</td>
</tr>
<tr>
<td><strong>Limitations of Data Resources:</strong></td>
<td>Not all states have poison control centers. State health agencies may have to enter into an agreement with their state-based PCC to obtain local data, or may obtain less timely PCC data from the Toxic Exposure Surveillance System, which is administered by the American Association of Poison Control Centers.</td>
</tr>
<tr>
<td><strong>HP2010 Objectives:</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>CSTE Positions:</strong></td>
<td>1996-Env-16; 1999-Env-3</td>
</tr>
<tr>
<td><strong>Other Available Data:</strong></td>
<td>Age, gender, pesticide active ingredient, signs/symptoms arising from the pesticide exposures, illness severity, and whether hospitalization/ICU treatment was provided.</td>
</tr>
<tr>
<td><strong>Recommendations:</strong></td>
<td>Age, gender, pesticide chemical class, and severity-specific counts and rates can be used to better define the pattern of acute occupational pesticide-related illness. Industry and occupation should be analyzed where available.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #11:

ACUTE WORK-RELATED PESTICIDE ASSOCIATED ILLNESS AND INJURY REPORTED TO POISON CONTROL CENTERS

11.1 Annual number of reported work-related pesticide poisoning cases

- Please contact Jackie McClain (jmcclain@cste.org) at CSTE to obtain ‘Annual number of reported work-related pesticide poisoning cases’.

NOTE: These data are derived from the American Association of Poison Control Centers (AAPCC) using the case definition listed below. There may be a discrepancy between the number of incident cases provided by NIOSH/AAPCC and the number of cases derived from your local PCC using the alternate method below.

- States are encouraged to contact your local Poison Control Center (PCC) to share this data obtained through AAPCC and describe plans to disseminate it. Contact information can be obtained from AAPCC http://www.aapcc.org/director2.htm. Some states have more than one PCC.

11.2 Annual incidence rate of reported work-related pesticide poisoning cases per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:

- Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons
- Page down to heading "TABLES CREATED BY BLS:"
- Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age:" Note: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm
- Choose the Annual Averages for year of interest
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4th data column – ‘Employment Number’. This is the ‘Number of Employed persons age 16 years or older’ (in thousands). Multiply by 1000.

b) To calculate the rate:

- Divide the numerator (11.1) by the denominator (11.2a).
- Multiply this result by 100,000 to get the ‘Annual incidence rate of reported work-related pesticide poisonings per 100,000 employed persons age 16 years or older’

NOTE: If you use the rate provided by NIOSH, you must divide by 10 to get the rate per 100,000 employed persons.
The criteria utilized by NIOSH/AAPCC for identify work-related pesticide poisonings are provided below.

**Case definition:** The criteria utilized by NIOSH/AAPCC to identify work-related pesticide poisonings are provided below.

1. Reason for the call (\textit{ExpReason}) = 3 (occupational) \textbf{OR} Exposure Site (\textit{ExpSite}) = 3 (workplace)

2. Medical outcome (\textit{MedicalOutcome}) =
   \begin{itemize}
   \item 201=minor effect
   \item 202=moderate effect
   \item 203=重大 effect
   \item 204=death
   \item 206=not followed, minimal clinical effects possible
   \item 207=unable to follow, judged as a potentially toxic exposure
   \end{itemize}

3. **Exclude** cases where Exposure Site (\textit{ExpSite}) = 3 (workplace) AND (\textit{ExpReason}) = 9 (suspected suicide), 11 (intentional abuse), 12 (intentional action but specific intention unknown), 14 (malicious), or 18 (unknown reason).

4. Exposure to an agent included in one of the pesticide generic categories (Note: Only include cases exposed to one product, i.e., (\textit{NoOfSubs}) = 1.):

   **Disinfectants**
   - 0201008 disinfectant industrial cleaner
   - 0201055 bromine water/shock treatment
   - 0201056 chlorine water/shock treatment
   - 0042281 hypochlorite disinfectant: hypochlorite, non-bleach product
   - 0040280 phenol disinfectant: phenol (eg, lysol)
   - 0039282 pine oil disinfectant
   - 0077286 other/unknown disinfectant

   **Fungicides (non-medicinal)**
   - 0243566 carbamate fungicide
   - 0201033 copper compound fungicide
   - 0077564 mercurial fungicide
   - 0077565 \textit{non-mercurial (inactive) fungicide}
   - 0253000 phthalimide fungicide
   - 0254371 wood preservative
   - 0077566 \textit{other/unknown (inactive) non-medicinal fungicide}
   - 0201034 other non-medicinal fungicide
   - 0201035 unknown non-medicinal fungicide
### Fumigants
- 0201036 aluminum phosphide fumigant
- 0201037 metam sodium (fumigant, fungicide, or herbicide)
- 0201038 methyl bromide (fumigant, fungicide, or herbicide)
- 0201039 sulfuryl fluoride fumigant
- 0201040 other fumigant
- 0201041 unknown fumigant

### Herbicides (includes algicides, defoliants, dessicants, plant growth regulators)
- 0201054 algicide
- 0254370 anti-algae paint: anti-algae
- 0243561 carbamate herbicide
- 0017000 2,4-D or 2,4,5-T (inactive)
- 0201042 chlorophenoxy herbicide
- 0049562 diquat
- 0201043 glyphosate
- 0049000 paraquat
- 0049561 paraquat/diquat combination
- 0077121 plant hormone
- 0213000 triazine herbicide
- 0215000 urea herbicide
- 0077561 other herbicide
- 0077567 unknown herbicide

### Insecticides (includes insect growth regulators, molluscicides, nematicides)
- 0004562 arsenic pesticide
- 0062562 borate/boric acid pesticide
- 0070000 carbamate only (alone)
- 0070560 carbamate with other insecticide
- 0050000 chlorinated hydrocarbon only (alone)
- 0050560 chlorinated hydrocarbon with other insecticide
- 0201044 insect growth regulator
- 0172000 metaldehyde (molluscicide)
- 0208562 nicotine (excluding tobacco products)
- 0038000 organophosphate
- 0038560 organophosphate/carbamate combined
- 0038561 organophosphate/chlorinated hydrocarbon (inactive)
- 0038562 organophosphate/other insecticide
- 0038563 organophosphate/carbamate/chlorinated hydrocarbon (inactive)
- 0176000 piperonyl butoxide only (inactive)
- 0144000 piperonyl butoxide/pyrethrin (inactive) (without carbamate or o.p.)
- 0144001 pyrethrins only (inactive)
- 0201045 pyrethrin
- 0201046 pyrethroid
- 0145000 rotenone
- 0077568 veterinary insecticide (inactive) (for pets-flea collars, etc.)
0077562 other insecticide
0077569 unknown insecticide

Repellents
0201047 bird, dog, deer or other mammal repellent
0201048 insect repellent with deet
0201049 insect repellent without deet
0218000 insect repellent: unknown (inactive)
0033000 naphthalene moth repellent
0050430 paradichlorobenzene moth repellent
0077431 other mothball or moth repellent
0077430 unknown mothball or moth repellent

Rodenticides
0174000 antu
0048563 anticoagulant: warfarin-type anticoagulant rodenticide
0048564 anticoagulant: long-acting, superwarfarin anticoagulant rodenticide
0244577 barium carbonate barium carbonate containing rodenticides
0201050 bromethalin
0201051 cholecalciferol rodenticide
0012563 cyanide rodenticide (excluding industrial or misc. Chemical)
0162000 monofluoroacetate 1080/monofluoroacetate/smfa
0043000 strychnine rodenticide
0197000 vacor/pnu
0201052 zinc phosphide
0217000 thallium
0077563 other rodenticide
0077577 unknown rodenticide
<table>
<thead>
<tr>
<th>Topic:</th>
<th>OCCUPATIONAL ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #12: INCIDENCE OF MALIGNANT MESOTHELIOMA</strong></td>
<td></td>
</tr>
<tr>
<td>Demographic Group:</td>
<td>Resident persons age 15 years or older</td>
</tr>
<tr>
<td>Numerator:</td>
<td>Incident cases with mesothelioma</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Midyear resident population age 15 years or older for the same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Annual number of incident mesothelioma cases (numerator)  
Annual mesothelioma incidence rate (cases per million residents)  
Annual, age-standardized, mesothelioma incidence rate (standardized by the direct method to the Year 2000 U.S. Standard population) (cases per million residents) |
| Time Period: | Calendar year |
| Significance and Background: | Approximately 2,500 deaths with malignant mesothelioma occur each year in the United States. The only well established risk factor for malignant mesothelioma is exposure to asbestos and related fibers. It has been estimated that as much as 90 percent of cases are caused by exposure to asbestos. |
| Rationale: | Malignant mesothelioma, while relatively rare, is a fatal cancer largely attributable to workplace exposure to asbestos. Tracking of malignant mesothelioma should be undertaken to document the burden of occupational disease, to design, target, and evaluate the impact of prevention efforts over time, and to identify previously unrecognized settings in which workers may continue to be at risk of asbestos exposure. |
| Limitations of Indicator: | Not all cases of malignant mesothelioma are caused by occupational exposures. Because cancer is a disease of long latency, current incidence is not indicative of current exposures and it may be many years before reductions in occupational exposures affect incidence. State of residence of the decedent may not have been the state of exposure. |
| Data Resources: | State-wide Cancer Registry data (numerator)  
State population estimates from the U.S. Bureau of the Census (denominator)  
Year 2000 US Standard population (for age-standardization) |
| Limitations of Data Resources: | Data from some existing statewide central cancer registries do not yet meet standards for data completeness and quality. Until complete cancer registry data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. |
| HP2010 Objectives: | None |
| CSTE Positions: | None |
| Other Available Data: | Age, gender, race/ethnicity, county of residence, usual occupation and industry |
| Recommendations: | Age, gender, race/ethnicity, county counts and rates can be used to better define patterns of malignant mesothelioma. Because usual occupation and usual industry information is not necessarily indicative of the setting in which the causative exposure occurred, industry- and occupation-specific measures should be interpreted and reported with caution. |
HOW-TO GUIDE – INDICATOR #12:

INCIDENCE OF MALIGNANT MESOTHELIOMA

12.1 Annual number of incident mesothelioma cases
Obtain from the State Cancer Registry the number of incident cases meeting the following criteria:
- ICD-O histology code of 9050-9053.
- Limit age to those 15 years and older
- Select for state of residence = ‘your state’
- Exclude:
  - age unknown
  - out-of-state residents and unknown residence
- Obtain the number of cases for each of the following age groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and over.
- This will yield the ‘Annual number of incident mesothelioma cases’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

12.2 Annual mesothelioma incidence rate (cases per million residents)
a) To obtain the denominator for the rate:
- Go to: http://www.census.gov/popest/states/asrh/SC-EST2003-02.html
- Find your state.
- Click on the Excel version of the population file.
- Identify the column containing population data for the year of interest.
- Sum all age groups for ages 15 and above or subtract 0-14 from total.

b) To calculate the annual incidence rate:
- Divide the number of cases for those aged 15 and older (numerator 12.1) by the population aged 15 and older for that year (12.2a).
- Multiply this result by 1,000,000 to obtain the ‘Annual mesothelioma incidence rate (cases per million residents)’.

12.3 Annual, age-standardized mesothelioma incidence rate (cases per million residents)
- Use the US 2000 Standard population (provided in column E in table below) found at: http://www.cdc.gov/nchs/datawh/nchsdefs/ageadjustment.htm#aarates.
- Use table below to calculate the age-standardized incidence rate. A spreadsheet such as Excel works well for these calculations.
- In Column C (State Population), enter the state’s census population (12.2a) by age group for the relevant year (e.g., population estimates for 2003 if generating rates for 2003).
- In Column B (# Mesothelioma Cases), enter the number of mesothelioma cases, obtained in 12.1, by age group.
- Column D = Column B / Column C
(Mesotheliomas/Pop) = (# Mesotheliomas) / (State Population)

- Column F = Column D * Column E
  (# Expected Mesotheliomas) = (Mesotheliomas/Pop) * (US 2000 Standard Pop)

- **Age-standardized incidence rate for mesothelioma = (F10 / E10) * 1,000,000**
  (The sum (Σ) of all expected mesotheliomas) / (the US 2000 Standard Population ages 15 and older) multiplied by 1,000,000

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Column B</th>
<th>Column C</th>
<th>Column D</th>
<th>Column E</th>
<th>Column F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State Resident Mesothelioma Cases, ages 15 and older, [year]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Mesothelioma Cases</td>
<td>[year] State Population</td>
<td>Mesothelioma Cases/Pop</td>
<td>US 2000 Std Pop</td>
<td># Expected Mesothelioma Cases</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15-24</td>
<td>B2/C2</td>
<td>38,077,000</td>
<td>D2*E2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25-34</td>
<td>B3/C3</td>
<td>37,233,000</td>
<td>D3*E3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35-44</td>
<td>B4/C4</td>
<td>44,659,000</td>
<td>D4*E4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45-54</td>
<td>B5/C5</td>
<td>37,030,000</td>
<td>D5*E5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55-64</td>
<td>B6/C6</td>
<td>23,961,000</td>
<td>D6*E6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65-74</td>
<td>B7/C7</td>
<td>18,136,000</td>
<td>D7*E7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>75-84</td>
<td>B8/C8</td>
<td>12,315,000</td>
<td>D8*E8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>85+</td>
<td>B9/C9</td>
<td>4,259,000</td>
<td>D9*E9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Total</td>
<td></td>
<td>215,670,000</td>
<td>Σ(F2:F9)</td>
<td></td>
</tr>
</tbody>
</table>
### OCCUPATIONAL EXPOSURES

#### INDICATOR #13: ELEVATED BLOOD LEAD LEVELS AMONG ADULTS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed persons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numerators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All reported state residents age 16 years or older, with a blood lead level of ≥ 25 µg/dL</td>
</tr>
<tr>
<td>2. All reported state residents age 16 years or older, with a blood lead level of ≥ 40 µg/dL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Denominator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employed population age 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measures of Frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual number of residents with elevated blood lead levels (numerator)</td>
</tr>
<tr>
<td>Annual prevalence rate per 100,000 employed persons age 16 years or older</td>
</tr>
<tr>
<td>Annual number of incident cases of residents with elevated blood lead levels</td>
</tr>
<tr>
<td>Annual incidence rate per 100,000 employed persons age 16 years or older</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significance and Background:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 2001, reporting systems operating in 23 states enumerated nearly 10,000 adults with blood lead levels (BLLs) greater than or equal to 25 µg/dL. About 20 percent had levels greater than or equal to 40 µg/dL. Lead adversely affects multiple organ systems and can cause permanent damage. Effects include anemia, nervous system dysfunction, kidney problems, hypertension, decreased fertility, and miscarriages. Children are more sensitive than adults to the effects of lead and about 24,000 U.S. children with BLLs of 10 µg/dL or greater are estimated to be exposed from lead unintentionally brought home by a parent from the workplace. Pediatric effects include neurologic damage, learning disabilities, and behavior problems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rationale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among adults, lead poisoning is a persistent, mainly occupational, health problem that continues to be an important public health problem. The single best diagnostic test for exposure is the BLL. Federal Occupational Safety and Health Administration (OSHA) regulations to protect workers from lead-associated health effects include requirements for monitoring BLLs among employees who meet certain exposure criteria.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations of Indicator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLLs are a good indicator of recent exposure over the 3 to 5 weeks preceding the test, but are not a valid indicator of body burden of lead resulting from long-term exposure. Therefore, an elevated body burden of lead may not be detected in an individual if the lead test is done more than several weeks after the most recent lead exposure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Resources:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports of elevated BLLs from laboratories (numerator)</td>
</tr>
<tr>
<td>BLS Current Population Survey Data (denominator)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations of Data Resources:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some states do not require laboratories to report elevated BLLs. Even with a reporting requirement, data from laboratories are frequently incomplete. Many workers with significant occupational lead exposure are not appropriately tested. An individual’s lead exposure and BLL testing may be done in the same or in different states (which may not be the individual’s state of residence). Approximately 10-15% of elevated BLLs among adults can be caused by non-occupational exposures. Not all states may be able to distinguish occupationally exposed individuals from non-occupationally exposed individuals. Not all states may be able to determine both state of employment/exposure and state of residence of their reported cases.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HP2010 Objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSTE Positions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-Env-9; 1995-Env-14; 1999-Env-02; 2000-Occ-01; 2001-Occ-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Available Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, gender, industry, occupation, individual BLL, and all lead test reports (i.e., not just those exceeding the specified criteria)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many states have data elements that can be used to better define the pattern of elevated blood lead levels. Report numbers and rates for occupational cases only, rather than including both occupationally and non-occupationally exposed persons in the numerator. Include occupationally exposed cases working in your state (e.g., employer is based in your state, or, if able to determine, worksite is in your state), regardless of their state of residence. Age, gender, and race/ethnicity specific counts and rates can be used to better define the pattern of elevated BLLs. Industry and occupation information can be used to provide additional insight. Individual BLLs can help identify particularly egregious exposures. Obtaining reports on all BLLs can provide insight about the overall frequency of BLL testing. Follow-up of selected cases and/or clusters can help identify where/how individuals with high BLLs were exposed.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #13:  
ELEVATED BLOOD LEAD LEVELS AMONG ADULTS

13.1 Persons age 16 years or older with a blood lead level of ≥ 25 µg/dL

13.1.1 Annual number of residents with elevated blood lead levels (≥25 µg/dL)

- Contact state Adult Blood Lead Epidemiology Surveillance (ABLES) program: www.cdc.gov/niosh/ables.html
- Request data according to the following criteria for the calendar year:
  - Blood lead level (BLL) ≥ 25 µg/dL
  - Age 16 years and older
  - Earliest date of either draw date, date laboratory received sample, or date laboratory analyzed sample
  - If a person is reported more than once during the time period, count that person one time only, at his/her highest BLL
  - Include all cases, both occupationally and non-occupationally exposed
  - Include all residents of state and unknown residence
  - Exclude out-of-state residents
- This will yield the ‘Annual number of residents with blood lead levels ≥ 25 µg/dL’.

13.1.2 Annual prevalence rate per 100,000 employed persons

a) To obtain the denominator for the rate:
- Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons
- Page down to heading "TABLES CREATED BY BLS:"
- Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age:" Note: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm
- Choose the Annual Averages for year of interest
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4th data column – ‘Employment Number’. This is the ‘Number of Employed persons age 16 years or older’ (in thousands). Multiply by 1000.

b) To calculate the rate:
- Divide the numerator (13.1.1) by the denominator (13.1.2a).
- Multiply this result by 100,000 to get the ‘Annual prevalence rate per 100,000 employed persons age 16 years or older’.

13.1.3 Annual number of incident cases

Use the ABLES definition of an incident case: Case with a BLL of ≥ 25 µg/dL reported in the calendar year, but was not reported in the immediately preceding year with a BLL of ≥ 25 µg/dL (may appear in earlier years with a BLL of 25 µg/dL or greater).

13.1.4 Annual incidence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
Follow directions for 13.1.2.

b) To calculate the rate:
- Divide the numerator (13.1.3) by the denominator (13.1.2a)
- Multiply this result by 100,000 to get the ‘Annual incidence rate per 100,000 employed persons age 16 years or older’.

13.2 Persons age 16 years or older with a blood lead level of $\geq 40$ µg/dL

13.2.1 Annual number of residents with blood lead levels $\geq 40$ µg/dL
Follow data request from 13.1.1 for BLL $\geq 40$ µg/dL

13.2.2 Annual prevalence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
Follow directions for 13.1.2.

b) To calculate the rate:
- Divide the numerator (13.2.1) by the denominator (13.2.2a)
- Multiply this result by 100,000 to get the ‘Annual prevalence rate per 100,000 employed persons age 16 years or older’.

13.2.3 Annual number of incident cases
Use the ABLES definition of an incident case: Case with a BLL of $\geq 40$ µg/dL reported in the calendar year, but was not reported in the immediately preceding year with a BLL of $\geq 40$ µg/dL (may appear in earlier years with a BLL of 40 µg/dL or greater).

13.2.4 Annual incidence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
Follow directions for 13.1.2.

b) To calculate the rate:
- Divide the numerator (13.2.3) by the denominator (13.1.2a).
- Multiply this result by 100,000 to get the ‘Annual incidence rate per 100,000 employed persons age 16 years or older’.
<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Employed workers, 16 years of age and older, in high-risk industries for occupational morbidity</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Number of employed persons in high morbidity risk NAICS industries  
Percentage of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries.  
*The NAICS industries selected need to be reviewed every 5 years to update possible changes in the high-risk industries. |
| Time Period:      | Calendar year |
| Significance and Background: | In 2003, the U.S. Bureau of Labor Statistics (BLS) reported an estimated total of 4.4 million injury and illness cases within the private sector workforce, an estimated incidence rate of 5.0 cases per 100 full-time-equivalent workers. There are industries that have significantly higher injury and illness rates than this national average. Thirty-seven industries have occupational injury and illness rates of 10 cases per 100 full-time workers or higher. These industries accounted for 7.6 million workers in the U.S. (6.7% of the private sector non-farm wage and salary employment), but 17% of the OSHA reportable injuries and illnesses in 2003. |
| Rationale:        | Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Concentrating on high-risk industries for non-fatal injuries and illnesses helps prioritize limited resources. |
| Limitations of Indicator: | It is possible that some new employers are not counted in the County Business Patterns mid-March survey. In addition, differences in regional industrial practices may cause the ranking of high-risk industries within a specific State to differ from those identified from national data. |
| Data Resources:   | Bureau of the Census County Business Patterns (CBP) (numerator and denominator) |
| Limitations of Data Resources: | The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII. The CBP is based on mid-March payrolls of all employers in the United States, but does not cover farms, public |
administration, or the self-employed. Exact employment counts for a particular NAICS may not be provided within a State because of confidentiality issues.

<table>
<thead>
<tr>
<th>HP2010 Objectives:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>None</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>States could additionally identify their own State-specific high-risk industries and associated employment patterns.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #14:
PERCENTAGE OF WORKERS EMPLOYED IN INDUSTRIES AT HIGH RISK FOR OCCUPATIONAL MORBIDITY

PERCENTAGE OF WORKERS EMPLOYED IN INDUSTRIES AT HIGH RISK FOR OCCUPATIONAL MORBIDITY

14.1 Number of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries

NAICS codes and industry titles for high morbidity risk industries:

The following are the high risk morbidity industries based on Bureau of Labor Statistics “total reportable cases incidence rates” for private sector workers for the year 2003. So that states may collect trend data for this indicator, this list will be used through 2008. CSTE will review and update this list every 5 years thereafter.

Table 1. NAICS codes and industry titles for high morbidity risk industries.

<table>
<thead>
<tr>
<th>NAICS Industry Code</th>
<th>NAICS Industry Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23813</td>
<td>Framing Contractors</td>
</tr>
<tr>
<td>31131</td>
<td>Sugar Manufacturing</td>
</tr>
<tr>
<td>311511</td>
<td>Fluid Milk Manufacturing</td>
</tr>
<tr>
<td>311512</td>
<td>Creamery Butter Manufacturing</td>
</tr>
<tr>
<td>31161</td>
<td>Animal Slaughtering and Processing</td>
</tr>
<tr>
<td>311821</td>
<td>Cookie and Cracker Manufacturing</td>
</tr>
<tr>
<td>312</td>
<td>Beverage and Tobacco Product Manufacturing</td>
</tr>
<tr>
<td>316211</td>
<td>Rubber and Plastic Footwear Manufacturing</td>
</tr>
<tr>
<td>321</td>
<td>Wood Products Manufacturing</td>
</tr>
<tr>
<td>322299</td>
<td>All Other Converted Paper Product Manufacturing</td>
</tr>
<tr>
<td>327213</td>
<td>Glass Container Manufacturing</td>
</tr>
<tr>
<td>32731</td>
<td>Concrete Block and Brick Manufacturing</td>
</tr>
<tr>
<td>32739</td>
<td>Other Concrete Product Manufacturing</td>
</tr>
<tr>
<td>3312</td>
<td>Steel Product Manufacturing From Purchased Steel</td>
</tr>
<tr>
<td>332211</td>
<td>Cutlery and Flatware Manufacturing</td>
</tr>
<tr>
<td>3315</td>
<td>Foundries</td>
</tr>
<tr>
<td>33231</td>
<td>Plate Work and Fabricated Structural Product Manufacturing</td>
</tr>
<tr>
<td>332323</td>
<td>Ornamental and Architectural Metal Work Manufacturing</td>
</tr>
<tr>
<td>33261</td>
<td>Spring and Wire Manufacturing</td>
</tr>
<tr>
<td>332919</td>
<td>Other Metal Value and Pipe Fitting Manufacturing</td>
</tr>
<tr>
<td>332998</td>
<td>Enameled Iron and Metal Sanitary Ware Manufacturing</td>
</tr>
<tr>
<td>332999</td>
<td>All Other Miscellaneous Fabricated Metal Product Man.</td>
</tr>
<tr>
<td>333312</td>
<td>Commercial Laundry, Dry Cleaning, and Pressing Machine Man.</td>
</tr>
<tr>
<td>333412</td>
<td>Industrial and Commercial Fan and Blower Manufacturing</td>
</tr>
</tbody>
</table>
• Go to [http://censtats.census.gov/cbpnaic/cbpnaic.shtml](http://censtats.census.gov/cbpnaic/cbpnaic.shtml)
• Select your state from the drop-down window in the County Business Patterns section and click on ‘Go’.
• On the 2003 County Business Patterns (NAICS) page, verify state by clicking on ‘submit’.
• To choose a different year, select year from pull-down menu and click on ‘Go’.
• To get data on the industry code of interest, click on ‘Detail’ and read the 3rd column “Number of Employees for week including March 12”. If the number given is a range, use the midpoint of the range.
• Add the numbers of employees from each industry (using midpoints where necessary). This is the ‘Number of workers employed in high-risk industries’.

**NOTE:** If you cannot find a NAICS code in the County Business Patterns, you can assume the estimated number of employed persons is zero.

### 14.2 Percentage of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries

a) To obtain the denominator for the percentage:
• Go to [http://censtats.census.gov/cbpnaic/cbpnaic.shtml](http://censtats.census.gov/cbpnaic/cbpnaic.shtml)
• Select your state from the drop-down window in the County Business Patterns section and click on ‘Go’.
• On the 2003 County Business Patterns (NAICS) page, verify state by clicking on ‘submit’.
• To choose a different year, select year from pull-down menu and click on ‘Go’.
• To get data on the total employed population, read the top row and the 3rd column “Number of Employees for week including March 12”.

b) To calculate the percentage:
• Divide the number of workers employed in high-risk industries (14.1) by the number of employed persons (14.2a).
• Multiply this result by 100 to get the ‘Percentage of employed persons in high morbidity risk industries’.
<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Employed persons age 16 years or older, in high risk private sector occupations at high risk for occupational morbidity</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older, in all private sector industries for the same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Average number of employed persons in high morbidity risk 2000 Bureau of the Census Occupations  
Percentage of employed persons in high morbidity risk 2000 Bureau of the Census Occupations  
*The selected occupational codes need to be reviewed every 5 years to update possible changes in the high risk occupations. |
| Time Period:     | Calendar year |
| Significance and Background: | In 2003, the Bureau of Labor Statistics (BLS) reported an estimated 1.3 million injuries and illnesses that resulted in “days away from work”, and a rate of 1.3 “days away from work” cases per 100 workers. The risk of these injuries and illnesses are significantly higher in certain occupations. Eighty two occupations had “days away from work” injury and illness rates higher than 2.6 cases per 100 workers in 2003. These occupations accounted for approximately 12.6 million workers in the U.S. (12.2 % of the private sector employment), but 41.3% of OSHA “days away from work” cases in 2003. |
| Rationale:       | Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Concentrating on high-risk occupations for non-fatal injuries and illnesses helps prioritize limited resources. |
| Limitations of Indicator: | Differences in regional industrial practices may cause the ranking of high-risk occupations within a specific State or industry to differ from those identified from national data. |
| Limitations of Data Resources: | The BLS annual Survey of Occupational Injuries and Illnesses (SOII) is based on injury and illness data maintained by employers and is subject to sampling error, a function of BLS using a probability sample and not a census of all employers. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. The CPS can be used to estimate the private sector employment in the United States, excluding the self-employed, but may not match perfectly those workers covered in the SOII. |
| HP2010 Objectives: | None |
| CSTE Positions:  | None |
| Other Available Data: | The BLS SOII and the CPS provide occupation data for some States. |
| Recommendations: | States could additionally identify their own State-specific high-risk occupations and assess associated employment patterns. |
HOW-TO GUIDE – INDICATOR #15:

PERCENTAGE OF WORKERS EMPLOYED IN OCCUPATIONS AT HIGH RISK FOR OCCUPATIONAL MORBIDITY

15.1 Number of Employed Persons in High Morbidity Risk 2000 Bureau of Census Occupations

The following are the high risk morbidity occupations based on Bureau of Labor Statistics “days away from work” cases and employment estimates for private sector workers for the year 2003. So that states may collect trend data for this indicator, this list will be used through 2008. CSTE will review and update this list every 5 years thereafter.

Table 1. List of high risk occupations for occupational morbidity, 2003.

<table>
<thead>
<tr>
<th>Census Occupation Code</th>
<th>Census Occupation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700</td>
<td>Actors</td>
</tr>
<tr>
<td>3400</td>
<td>Emergency medical technicians and paramedics</td>
</tr>
<tr>
<td>3600</td>
<td>Nursing, psychiatric, and home health aides</td>
</tr>
<tr>
<td>3700</td>
<td>1st line supervisors/managers of correctional officers</td>
</tr>
<tr>
<td>3740</td>
<td>Fire fighters</td>
</tr>
<tr>
<td>3750</td>
<td>Fire inspectors</td>
</tr>
<tr>
<td>4050</td>
<td>Combined food prep. and serving workers, including fast food</td>
</tr>
<tr>
<td>4120</td>
<td>Food servers, non-restaurant</td>
</tr>
<tr>
<td>4160</td>
<td>Food preparation and serving related workers, all others</td>
</tr>
<tr>
<td>4240</td>
<td>Pest control workers</td>
</tr>
<tr>
<td>4550</td>
<td>Transportation attendants</td>
</tr>
<tr>
<td>5410</td>
<td>Reservation and transportation ticket agents and travel clerks</td>
</tr>
<tr>
<td>5500</td>
<td>Cargo and freight agents</td>
</tr>
<tr>
<td>6020</td>
<td>Animal breeders</td>
</tr>
<tr>
<td>6130</td>
<td>Logging workers</td>
</tr>
<tr>
<td>6230</td>
<td>Carpenters</td>
</tr>
<tr>
<td>6260</td>
<td>Construction laborers</td>
</tr>
<tr>
<td>6300</td>
<td>Paving, surfacing, and tamping equipment operators</td>
</tr>
<tr>
<td>6310</td>
<td>Pile driver operators</td>
</tr>
<tr>
<td>6360</td>
<td>Glaziers</td>
</tr>
<tr>
<td>6400</td>
<td>Insulation workers</td>
</tr>
<tr>
<td>6500</td>
<td>Reinforcing iron and rebar workers</td>
</tr>
<tr>
<td>6520</td>
<td>Sheet metal workers</td>
</tr>
<tr>
<td>6530</td>
<td>Structural iron and steel workers</td>
</tr>
<tr>
<td>6600</td>
<td>Helpers, construction trades</td>
</tr>
<tr>
<td>6750</td>
<td>Septic tank services and sewer pipe cleaners</td>
</tr>
<tr>
<td>6760</td>
<td>Miscellaneous construction and related workers</td>
</tr>
<tr>
<td>6800</td>
<td>Derrick, drill, and service unit operators, oil, gas, and mining</td>
</tr>
<tr>
<td>6820</td>
<td>Earth drillers, except oil and gas</td>
</tr>
<tr>
<td>6910</td>
<td>Roof bolters, mining</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------------------------------</td>
</tr>
<tr>
<td>6920</td>
<td>Roustabouts, oil and gas</td>
</tr>
<tr>
<td>6930</td>
<td>Helpers, extractive workers</td>
</tr>
<tr>
<td>6940</td>
<td>Other extractive workers</td>
</tr>
<tr>
<td>7050</td>
<td>Electrical and electronics installers/repairers,</td>
</tr>
<tr>
<td></td>
<td>transportation equipment</td>
</tr>
<tr>
<td>7100</td>
<td>Electrical and electronics installers/repairers,</td>
</tr>
<tr>
<td></td>
<td>industrial and utility</td>
</tr>
<tr>
<td>7140</td>
<td>Aircraft mechanics and service technicians</td>
</tr>
<tr>
<td>7220</td>
<td>Heavy vehicle and mobile equipment service technicians</td>
</tr>
<tr>
<td></td>
<td>and mechanics</td>
</tr>
<tr>
<td>7260</td>
<td>Misc. vehicle and mobile equipment mechanics, installers,</td>
</tr>
<tr>
<td></td>
<td>and repairers</td>
</tr>
<tr>
<td>7310</td>
<td>Heating, air conditioning, and refriger. Mechanics,</td>
</tr>
<tr>
<td></td>
<td>installers, and repairers</td>
</tr>
<tr>
<td>7320</td>
<td>Home appliance repairers</td>
</tr>
<tr>
<td>7340</td>
<td>Maintenance and repair workers, general</td>
</tr>
<tr>
<td>7350</td>
<td>Maintenance workers, machinery</td>
</tr>
<tr>
<td>7420</td>
<td>Telecommunications line installers and repairers</td>
</tr>
<tr>
<td>7560</td>
<td>Riggers</td>
</tr>
<tr>
<td>7600</td>
<td>Signal and track switch repairers</td>
</tr>
<tr>
<td>7610</td>
<td>Helpers of installation, maintenance, and repair workers</td>
</tr>
<tr>
<td>7710</td>
<td>Aircraft structure, surfaces, rigging, and system</td>
</tr>
<tr>
<td></td>
<td>assemblers</td>
</tr>
<tr>
<td>7730</td>
<td>Engine and other machine assemblers</td>
</tr>
<tr>
<td>7830</td>
<td>Food/tobacco roasting, baking, and drying machine operators,</td>
</tr>
<tr>
<td></td>
<td>tenders</td>
</tr>
<tr>
<td>7850</td>
<td>Food cooking machine operators, tenders</td>
</tr>
<tr>
<td>7920</td>
<td>Extruding/drawing machine setters, operators, tenders-</td>
</tr>
<tr>
<td></td>
<td>metal and plastic</td>
</tr>
<tr>
<td>7940</td>
<td>Rolling machine setters, operators, tenders-metal and</td>
</tr>
<tr>
<td></td>
<td>plastic</td>
</tr>
<tr>
<td>8010</td>
<td>Lathe and turning machine tool setters, operators,</td>
</tr>
<tr>
<td></td>
<td>tenders</td>
</tr>
<tr>
<td>8020</td>
<td>Milling and planing machine setters, operators,</td>
</tr>
<tr>
<td></td>
<td>tenders-metal and plastic</td>
</tr>
<tr>
<td>8040</td>
<td>Metal furnace and kiln operators, tenders</td>
</tr>
<tr>
<td>8100</td>
<td>Molders and molding machine setters, operators,</td>
</tr>
<tr>
<td></td>
<td>tenders-metal and plastic</td>
</tr>
<tr>
<td>8120</td>
<td>Multiple machine tool setters, operators, tenders-metal</td>
</tr>
<tr>
<td></td>
<td>and plastic</td>
</tr>
<tr>
<td>8160</td>
<td>Layout workers-metal and plastic</td>
</tr>
<tr>
<td>8230</td>
<td>Bookbinders and bindery workers</td>
</tr>
<tr>
<td>8430</td>
<td>Extruding and forming machine setters, operators,</td>
</tr>
<tr>
<td></td>
<td>tenders-synthetic and glass fibers</td>
</tr>
<tr>
<td>8530</td>
<td>Sawing machine setters, operators, tenders-wood</td>
</tr>
<tr>
<td>8540</td>
<td>Woodworking machine setters, operators, except sawing</td>
</tr>
<tr>
<td>8650</td>
<td>Crushing, grinding, polishing, mixing, and blending</td>
</tr>
<tr>
<td></td>
<td>workers</td>
</tr>
<tr>
<td>8710</td>
<td>Cutting workers</td>
</tr>
<tr>
<td>8720</td>
<td>Extruding, forming, pressing, and compacting machine</td>
</tr>
<tr>
<td></td>
<td>setters, operators, tenders</td>
</tr>
<tr>
<td>8900</td>
<td>Cooling and freezing equipment operators, tenders</td>
</tr>
<tr>
<td>8920</td>
<td>Molders, shapers, and casters, except metal and plastic</td>
</tr>
<tr>
<td>8940</td>
<td>Tire builders</td>
</tr>
<tr>
<td>8950</td>
<td>Helpers for production workers</td>
</tr>
<tr>
<td>8960</td>
<td>Production workers, all other</td>
</tr>
<tr>
<td>9110</td>
<td>Ambulance drivers &amp; attendants except EMT</td>
</tr>
<tr>
<td>9130</td>
<td>Driver/sales workers and truck drivers</td>
</tr>
<tr>
<td>9230</td>
<td>Railroad brake, signal, and switch operators</td>
</tr>
<tr>
<td>9240</td>
<td>railroad conductors and yardmasters</td>
</tr>
<tr>
<td>9300</td>
<td>Sailors and marine oilers</td>
</tr>
<tr>
<td>9330</td>
<td>Ship engineers</td>
</tr>
<tr>
<td>9420</td>
<td>Other transportation workers</td>
</tr>
<tr>
<td>9500</td>
<td>Conveyor operators, tenders</td>
</tr>
</tbody>
</table>
9620 Laborers and freight, stock, and material movers-hand
9630 Machine feeders and offbearers
9720 Refuse and recyclable material collectors
9730 shuttle car operators
9750 Material moving workers, all other

• Go to http://www.thedataweb.org/datasets.html to download the install file for the latest application version of DataFerrett.
• Once the download is complete, double click on the file and follow the on screen instructions to install DataFerrett to your machine. (For tutorials and other information for this new version of DataFerrett please go here: http://dataferrett.census.gov)
• Open the Ferrett application from the desktop icon.
• Register as user by placing your e-mail address into the box and press continue.
• Click “Step 1: Select Data Sheet & Variable” from the upper left of the screen and then select the Microdata check box which will display available datasets; select the “Current Population Survey (CPS)– Basic” – then select one month from the year of interest by double-clicking on the month and year. Then choose “View Variables” from the pop-up box.
• From the next screen select the following datasets from CPS: “Labor Force Variables”, “Geography Variables”, “Demographic Variables”, and “Industry and Occupation Variables”, and then click “Search Variables”.
• On the next screen all of the available variables for the selected tables will be displayed. Using the mouse, click on “Name” to sort the variables alphabetically and then select the following variables and value ranges:
  “Demographic – age.............PRTAGE” – double click to browse/select variables and values. Check the “SELECT BOX” on next pop-up screen to define value range from 16-90, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  “Geography-Census State Code………GESTCEN” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’, then select your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  “Indus.&Occ.- (main job) occupation code……..PTIO1OCD” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select the occupation codes of interest. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  “Labor Force-employment status............PEMLR ” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select ‘EMPLOYED AT WORK’ and ‘EMPLOYED ABSENT’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
• Click on the second tab on the home page for ‘STEP 2: Data Basket/Download/Make A Table’.
• Select ‘MAKE A TABLE’ from the table icon – you will see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the shopping basket.
• Using your mouse, pull the variable titled Indus & Occ (PTIO1OCD) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar.
In a few seconds the table will be populated with a total employment number for all of the occupation groups and employment counts for each occupation category.

- Verify all the selections requested for the query. This is provided in simple SAS code on the bottom left side of your screen. Verify that you have selected your state, all the proper occupation codes, and “PEMLR=1” and “PEMLR=2” are selected.
- Select the area of the table to be copied and use the copy function from the ”Edit” menu to copy the table and paste (CNTL V) into an Excel spreadsheet.
- Return to the Home Page and click “Step 1: Select Data Sheet & Variable” from the upper left of the screen – now select a new month from the year of interest.
- Jump to STEP 2 (previously selected variables are still in the “data shopping basket”) and select the ‘MAKE TABLE’ tab.
- Using your mouse, pull the variable titled Indus & Occ (PTIO1OCD) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar. Paste the new result in the next column of the Excel spreadsheet.
- Repeat the process for all remaining months for the year of interest.
- After all 12 months are obtained and in the Excel spreadsheet, sum the 12 months and divide by 12. This will yield the ‘Average number of employed persons in high morbidity risk occupations’. The advantage to this approach is the ability to see how various employment levels vary by season.
- Alternatively, select all twelve months initially using the Control key while clicking on each month. DataFerrett will do the averaging for you. This will also yield the ‘Average number of employed persons in high morbidity risk occupations’.

15.2 Percentage Of Employed Persons In High Morbidity Risk 2000 Bureau Of Census Occupations

a) To obtain the number of employed persons by age group:

NOTE: This data is the same as average of the total identified in P6.

- Follow the directions in 15.1, except only choose “Demographic Variables”, “Labor Force Variables”, and “Geography Variables” after choosing the month and year of interest and then select “Search Variables”.
- On the next screen all of the available variables for the selected tables will be displayed. Using the mouse, click on “Name” to sort the variables alphabetically and then select the following variables and value ranges:
  - “Demographic – age............PRTAGE” – double click to browse/select variables and values. Check the “SELECT BOX” on next pop-up screen to define value range from 16-90, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  - “Geography-Census State Code.........GESTCEN” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’, then select your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  - “Labor Force-employment status........PEMLR” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select ‘EMPLOYED AT WORK’ and ‘EMPLOYED ABSENT’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
• Click on the second tab on the home page for ‘STEP 2: Data Basket/Download/Make A Table’.
• Select ‘MAKE A TABLE’ from the table icon – you will see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the shopping basket.
• Using your mouse, pull the variable titled Labor Force Variables (PEMLR) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar. Paste the data into an excel spreadsheet.
• Repeat the process for all 12 months.
• After all 12 months are obtained and in the Excel spreadsheet, sum the 12 months and divide by 12. This will yield the ‘Average annual number of employed persons’. The advantage to this approach is the ability to see how various employment levels vary by season.
• Alternatively, select all twelve months initially using the Control key while clicking on each month. DataFerrett will do the averaging for you. This will also yield the ‘Average annual number of employed persons’.

b) To calculate the percentage:
• Divide the number of workers employed in high-risk occupations (15.1) by the number of employed persons (15.2a).

Multiply this result by 100 to get the ‘Percentage of workers employed in occupations at high risk for occupational morbidity.’
INDICATOR #16: PERCENTAGE OF WORKERS EMPLOYED IN INDUSTRIES AND OCCUPATIONS AT HIGH RISK FOR OCCUPATIONAL MORTALITY

Demographic Group: Employed persons

Numerator: Employed persons age 16 years or older, in private sector industries and occupations at high risk for occupational mortality

Denominator: Employed persons age 16 years or older, in all private industries for the same calendar year

Measures of Frequency:
- Average number of employed persons in high mortality risk 2000 Bureau of the Census Industries
- Percentage of employed persons in high mortality risk 2000 Bureau of the Census Industries
- Average number of employed persons in high mortality risk 2000 Bureau of the Census Occupations
- Percentage of employed persons in high mortality risk 2000 Bureau of the Census Occupations

*The selected industrial and occupational codes need to be reviewed every 5 years to update possible changes in the high risk industries.

Time Period: Calendar year

Significance and Background:
Each year, over 6,000 cases of work-related fatalities are reported to the Census of Fatal Occupational injuries (CFOI) Program administered by the Bureau of Labor Statistics (BLS). On an average day, 16 workers die as a result of injuries sustained at work. The risks for these occupational fatalities are significantly higher in certain industries and occupations. Thirty one industries have fatality rates of 9.5 deaths per 100,000 workers or higher, and employed approximately 18 million workers (15% of the private sector employment), but account for 61% of the occupational fatalities in 2003. There are also 57 occupations that have fatality rates of 9.5 deaths per 100,000 workers or higher. These occupations account for approximately 13 million workers in the U.S. (11% of the private sector employment), but 60% of the occupational fatalities in 2003.

Rationale:
Multiple factors and risks contribute to work-related fatalities, including workplace and process design, work organization, worker characteristics, economics and other social factors. Surveillance of work-related fatalities can identify new hazards and case clusters, leading to the development of new interventions and development of new or revised regulations to protect workers. Concentrating on high-risk occupations and industries for fatalities helps prioritize limited resources.

Limitations of Indicator:
Differences in regional industrial practices may cause the ranking of high-risk occupations and industries within a specific State to differ from those identified from national data.

Data Resources: BLS Current Population Survey (CPS) (numerator and denominator)

Limitations of Data Resources:
The CFOI program counts suicides at work as work-related fatalities, even when the cause of death may not be due to factors at work. CFOI does not count military deaths. To be consistent with Indicators #14 and #15, this indicator has been limited to private sector workers. Although, unlike Indicators #14 and #15, the self-employed are included.

HP2010 Objectives: None

CSTE Positions: None

Other Available: The BLS CFOI and the CPS provide industry and occupation data for most
<table>
<thead>
<tr>
<th><strong>Data:</strong></th>
<th>States.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recommendations:</strong></td>
<td>States could report their own specific high-risk industries and occupations and associated employment patterns.</td>
</tr>
</tbody>
</table>
16.1 Average Number of Employed Persons in High Mortality Risk Industries

The following are the high mortality risk industries based on Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI) and employment estimates for private sector workers for the year 2003. So that states may collect trend data for this indicator, this list will be used through 2008. CSTE will review and update this list every 5 years thereafter.

Table 1. List of high risk private sector industries for occupational mortality.

<table>
<thead>
<tr>
<th>Industry Code</th>
<th>2000 Census Industry Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0170</td>
<td>Crop Production</td>
</tr>
<tr>
<td>0180</td>
<td>Animal Production</td>
</tr>
<tr>
<td>0270</td>
<td>Logging</td>
</tr>
<tr>
<td>0280</td>
<td>Fishing, Hunting, Trapping</td>
</tr>
<tr>
<td>0290</td>
<td>Support Activities for Agriculture and Forestry</td>
</tr>
<tr>
<td>0370</td>
<td>Oil and Gas Extraction</td>
</tr>
<tr>
<td>0380</td>
<td>Coal Mining</td>
</tr>
<tr>
<td>0470</td>
<td>Nonmetallic Mineral Mining and Quarrying</td>
</tr>
<tr>
<td>0490</td>
<td>Support Activities for Mining</td>
</tr>
<tr>
<td>0770</td>
<td>Construction</td>
</tr>
<tr>
<td>2570</td>
<td>Cement, Concrete, Lime, and Gypsum Product Mfg.</td>
</tr>
<tr>
<td>2590</td>
<td>Miscellaneous Nonmetallic Mineral Product Mfg.</td>
</tr>
<tr>
<td>2770</td>
<td>Foundries</td>
</tr>
<tr>
<td>3770</td>
<td>Sawmills and Wood Preservation</td>
</tr>
<tr>
<td>3780</td>
<td>Veneer, Plywood, and Engineered Wood Product Mfg.</td>
</tr>
<tr>
<td>4280</td>
<td>Recyclable Material Wholesalers</td>
</tr>
<tr>
<td>4480</td>
<td>Farm Product Raw Materials Wholesalers</td>
</tr>
<tr>
<td>4490</td>
<td>Petroleum and Petroleum Product Wholesalers</td>
</tr>
<tr>
<td>4680</td>
<td>Other Motor Vehicle Dealers</td>
</tr>
<tr>
<td>5680</td>
<td>Fuel Dealers</td>
</tr>
<tr>
<td>6090</td>
<td>Water Transportation</td>
</tr>
<tr>
<td>6170</td>
<td>Truck Transportation</td>
</tr>
<tr>
<td>6190</td>
<td>Taxi and Limousine Service</td>
</tr>
<tr>
<td>6280</td>
<td>Scenic and Sightseeing Transportation</td>
</tr>
<tr>
<td>6290</td>
<td>Services Incidental to Transportation</td>
</tr>
<tr>
<td>7190</td>
<td>Commercial, Industrial, and Other Intangible Assets Rental and Leasing</td>
</tr>
<tr>
<td>7770</td>
<td>Landscaping Services</td>
</tr>
<tr>
<td>7790</td>
<td>Waste Management and Remediation Services</td>
</tr>
<tr>
<td>8670</td>
<td>Recreational Vehicle Parks and Camps, and Rooming and Boarding Houses</td>
</tr>
<tr>
<td>8690</td>
<td>Drinking Places, Alcoholic Beverages</td>
</tr>
</tbody>
</table>
• Go to [http://www.thedataweb.org/datasets.html](http://www.thedataweb.org/datasets.html) to download the install file for the latest application version of DataFerrett.

• Once the download is complete, double click on the file and follow the on screen instructions to install DataFerrett to your machine. (For tutorials and other information for this new version of DataFerrett please go here: [http://dataferrett.census.gov](http://dataferrett.census.gov))

• Open the Ferrett application from the desktop icon.

• Register as user by placing your e-mail address into the box and press continue.

• Click “Step 1: Select Data Sheet & Variable” from the upper left of the screen and then select the Microdata check box which will display available datasets; select the “Current Population Survey (CPS)– Basic” – then select one month from the year of interest by double-clicking on the month and year. Then choose “View Variables” from the pop-up box.

• From the next screen select the following datasets from CPS: “Labor Force Variables”, “Geography Variables”, “Demographic Variables”, and “Industry and Occupation Variables”, and then click “Search Variables”.

• On the next screen all of the available variables for the selected tables will be displayed. Using the mouse, click on “Name” to sort the variables alphabetically and then select the following variables and value ranges:

  • “Demographic – age.............PRTAGE” – double click to browse/select variables and values. Check the “SELECT BOX” on next pop-up screen to define value range from 16-90, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

  • “Geography-Census State Code………GESTCEN” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’, then select your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

  • “Indus.&Occ.-(main job) industry code……..PEIO1ICD” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on the next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select the occupation codes of interest. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

  • “Labor Force-employment status............PEMLR” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select ‘EMPLOYED AT WORK’ and ‘EMPLOYED ABSENT’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.

• Click on the second tab on the home page for ‘STEP 2: Data Basket/Download/Make A Table’.

• Select ‘MAKE A TABLE’ from the table icon – you will see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the shopping basket.

• Using your mouse, pull the variable titled Indus & Oce (PEIO1ICD) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar.

• In a few seconds the table will be populated with a total employment number for all of the occupation groups and employment counts for each occupation category.

• Verify all the selections requested for the query. This is provided in simple SAS code on the bottom left side of your screen. Verify that you have selected your state, all the proper industry codes, and “PEMLR=1” and “PEMLR=2” are selected.
• Select the area of the table to be copied and use the copy function from the "Edit" menu to copy the table and paste (CNTL V) into an Excel spreadsheet.
• Return to the Home Page and click “Step 1: Select Data Sheet & Variable” from the upper left of the screen – now select a new month from the year of interest.
• Jump to STEP 2 (previously selected variables are still in the “data shopping basket”) and select the ‘MAKE TABLE’ tab.
• Using your mouse, pull the variable titled Indus & Occ (PEIO1ICD) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar. Paste the new result in the next column of the Excel spreadsheet.
• Repeat the process for all remaining months for the year of interest.
• After all 12 months are obtained and in the Excel spreadsheet, sum the 12 months and divide by 12. This will yield the ‘Average number of employed persons in high mortality risk industries’. The advantage to this approach is the ability to see how various employment levels vary by season.
• Alternatively, select all twelve months initially using the Control key while clicking on each month. DataFerrett will do the averaging for you. This will also yield the ‘Average number of employed persons in high mortality risk industries’.

16.2 Percentage of Employed Persons in High Mortality Risk Industries

a) To obtain the number of employed persons by age group:
NOTE: This data is the same as average of the total identified in P6.

• Follow the directions in 16.1, except only choose “Demographic Variables”, “Labor Force Variables”, and “Geography Variables” after choosing the month and year of interest and then select “Search Variables”.
• On the next screen all of the available variables for the selected tables will be displayed. Using the mouse, click on “Name” to sort the variables alphabetically and then select the following variables and value ranges:
  • “Demographic – age............PRTAGE” – double click to browse/select variables and values. Check the “SELECT BOX” on next pop-up screen to define value range from 16-90, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  • “Geography-Census State Code........GESTCEN” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’, then select your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
  • “Labor Force-employment status........PEMLR ” – double click to browse/select variables and values. Check the ‘SELECT BOX’ on next pop-up screen, click ‘DESELECT ALL VARIABLES’ and then select ‘EMPLOYED AT WORK’ and ‘EMPLOYED ABSENT’. Click on ‘OK’ to confirm and to add the variable to your data shopping basket.
• Click on the second tab on the home page for ‘STEP 2: Data Basket/Download/Make A Table’.
• Select ‘MAKE A TABLE’ from the table icon – you will see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the shopping basket.
• Using your mouse, pull the variable titled Labor Force Variables (PEMLR) from the right side to the top left corner of the empty spreadsheet and click on ‘Go Get Data’ on the toolbar. Paste the data into an excel spreadsheet.
• Repeat the process for all 12 months.
• After all 12 months are obtained and in the Excel spreadsheet, sum the 12 months and divide by 12. This will yield the ‘Average annual number of employed persons’. The advantage to this approach is the ability to see how various employment levels vary by season.
• Alternatively, select all twelve months initially using the Control key while clicking on each month. DataFerrett will do the averaging for you. This will also yield the ‘Average annual number of employed persons’.

b) To calculate the percentage:
• Divide the number of workers employed in high-risk industries (16.1) by the number of employed persons (16.2a).

Multiply this result by 100 to get the ‘Percentage of workers employed in industries at high risk for occupational mortality.’

16.3 Number of Employed Persons in High Mortality Risk Occupations

The following are the high mortality risk occupations based on Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI) and employment estimates for private sector workers for the year 2003.

Table 3. List of high risk private sector occupations for occupational mortality.

<table>
<thead>
<tr>
<th>2000 Census Occupation Codes</th>
<th>2000 Census Occupation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0200</td>
<td>Farm, Ranch, and Other Agricultural Mangers</td>
</tr>
<tr>
<td>0210</td>
<td>Farmers and Ranchers</td>
</tr>
<tr>
<td>1520</td>
<td>Petroleum Engineers</td>
</tr>
<tr>
<td>3740</td>
<td>Fire Fighters</td>
</tr>
<tr>
<td>3920</td>
<td>Security Guards and Gaming Surveillance Officers</td>
</tr>
<tr>
<td>3940</td>
<td>Crossing Guards</td>
</tr>
<tr>
<td>4210</td>
<td>First-line Supervisors/Managers of Housekeeping and Janitorial Workers</td>
</tr>
<tr>
<td>4250</td>
<td>Grounds Maintenance Workers</td>
</tr>
<tr>
<td>4340</td>
<td>Animal Trainers</td>
</tr>
<tr>
<td>6000</td>
<td>First-line Supervisors/Managers of Farming, Fishing, and Forestry Workers</td>
</tr>
<tr>
<td>6050</td>
<td>Miscellaneous Agricultural Workers</td>
</tr>
<tr>
<td>6100</td>
<td>Fishers and Related Fishing Workers</td>
</tr>
<tr>
<td>6130</td>
<td>Logging Workers</td>
</tr>
<tr>
<td>6200</td>
<td>First-line Supervisors/Managers of Construction Traders and Extraction Workers</td>
</tr>
<tr>
<td>6210</td>
<td>Boilermakers</td>
</tr>
<tr>
<td>6250</td>
<td>Cement Masons, Concrete Finishers, and Terrazzo Workers</td>
</tr>
<tr>
<td>6260</td>
<td>Construction Laborers</td>
</tr>
<tr>
<td>6300</td>
<td>Paving, Surfacing, and Tamping Equipment Operators</td>
</tr>
<tr>
<td>6320</td>
<td>Operation Engineers and Other Construction Equip. Ops.</td>
</tr>
<tr>
<td>Occupation Code</td>
<td>Occupation Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>6350</td>
<td>Electricians</td>
</tr>
<tr>
<td>6460</td>
<td>Plasterers and Stucco Masons</td>
</tr>
<tr>
<td>6510</td>
<td>Roofers</td>
</tr>
<tr>
<td>6530</td>
<td>Structural Iron and Steel Workers</td>
</tr>
<tr>
<td>6600</td>
<td>Helpers, Construction Trades</td>
</tr>
<tr>
<td>6720</td>
<td>Hazardous Materials Removal Workers</td>
</tr>
<tr>
<td>6760</td>
<td>Miscellaneous Construction and Related Workers</td>
</tr>
<tr>
<td>6800</td>
<td>Derrick, Rotary Drill, and Service Unit Operators, Oil, Gas, and Mining</td>
</tr>
<tr>
<td>6820</td>
<td>Earth Drillers, Except Oil and Gas</td>
</tr>
<tr>
<td>6830</td>
<td>Explosives Workers, Ordnance Handling Experts, and Blasters</td>
</tr>
<tr>
<td>6840</td>
<td>Mining Machine Operators</td>
</tr>
<tr>
<td>6910</td>
<td>Roof Bolters, Mining</td>
</tr>
<tr>
<td>6920</td>
<td>Roustabouts, Oil and Gas</td>
</tr>
<tr>
<td>6930</td>
<td>Helpers, Extraction Workers</td>
</tr>
<tr>
<td>6940</td>
<td>Other Extraction Workers</td>
</tr>
<tr>
<td>7000</td>
<td>First-line Supervisors/Managers of Mechanics, Installers, and Repairers</td>
</tr>
<tr>
<td>7220</td>
<td>Heavy Vehicle and Mobile Equipment Service Technicians and Mechanics</td>
</tr>
<tr>
<td>7260</td>
<td>Miscellaneous Vehicle and Mobile Equipment Mechanics, Installers, and Repairers</td>
</tr>
<tr>
<td>7340</td>
<td>Maintenance and Repair Workers, General</td>
</tr>
<tr>
<td>7350</td>
<td>Maintenance Workers, Machinery</td>
</tr>
<tr>
<td>7410</td>
<td>Electronic Power-line Installers and Repairers</td>
</tr>
<tr>
<td>7420</td>
<td>Telecommunications Line Installers and Repairers</td>
</tr>
<tr>
<td>7520</td>
<td>Commercial Drivers</td>
</tr>
<tr>
<td>7610</td>
<td>Helpers--Installation, Maintenance, and Repair Workers</td>
</tr>
<tr>
<td>8620</td>
<td>Water and Liquid Waste Treatment Plant and System Operators</td>
</tr>
<tr>
<td>9030</td>
<td>Aircraft Pilots and Flight Engineers</td>
</tr>
<tr>
<td>9130</td>
<td>Driver/Sales Workers and Truck Drivers</td>
</tr>
<tr>
<td>9150</td>
<td>Taxi Drivers and Chauffeurs</td>
</tr>
<tr>
<td>9230</td>
<td>Railroad Brake, Signal, and Switch Operators</td>
</tr>
<tr>
<td>9250</td>
<td>Railroad Conductors and Yardmasters</td>
</tr>
<tr>
<td>9300</td>
<td>Sailors and Marine Oilers</td>
</tr>
<tr>
<td>9310</td>
<td>Ship and Boat Captains and Operators</td>
</tr>
<tr>
<td>9510</td>
<td>Crane and Tower Operators</td>
</tr>
<tr>
<td>9520</td>
<td>Dredge, Excavating, and Loading Machine Operators</td>
</tr>
<tr>
<td>9650</td>
<td>Pumping Station Operators</td>
</tr>
<tr>
<td>9720</td>
<td>Refuse and Recyclable Material Collectors</td>
</tr>
<tr>
<td>9750</td>
<td>Material Moving Workers, All Other</td>
</tr>
</tbody>
</table>

- To obtain the total employment in high-risk occupations, follow directions for 16.1a using occupation codes (i.e., “Indus&Occ. – (mainjob) occupation code ....PT101OCD as identified above.

16.4 Percentage of Employed Persons in High Mortality Risk Occupations

a) **To obtain the denominator for the percentage:**
- Follow directions for 16.2a.

b) **To calculate the percentage:**
Divide the number of workers employed in high-risk occupations (16.3) by the number of employed persons (16.2a). Multiply this result by 100 to get the ‘Percentage of employed persons in occupations at high risk for occupational mortality.’
### INDICATOR #17: OCCUPATIONAL SAFETY AND HEALTH PROFESSIONALS

**Demographic Group:** Employed persons.

#### Numerator:
1. Number of board-certified occupational medicine physicians
2. Number of members of the American College of Occupational and Environmental Medicine (ACOEM)
3. Number of board-certified occupational health nurses
4. Number of members of the American Association of Occupational Health Nurses (AAOHN)
5. Number of board-certified industrial hygienists
6. Number of members of the American Industrial Hygiene Association (AIHA)
7. Number of board certified safety health professionals (BCSP)
8. Number of members of the American Society of Safety Engineers (ASSE)

#### Denominator:
Employed persons age 16 years or older for the same calendar year

#### Measures of Frequency:
1. Number of board-certified occupational medicine physicians.
2. Rate of board-certified occupational medicine physicians per 100,000 employees.
3. Number of members of ACOEM.
4. Rate of ACOEM membership per 100,000 employees.
5. Number of board-certified occupational health nurses.
6. Rate of board-certified occupational health nurses per 100,000 employees.
7. Number of members of AAOHN.
8. Rate of AAOHN membership per 100,000 employees.
9. Number of board-certified industrial hygienists.
10. Rate of board-certified industrial hygienists per 100,000 employees.
11. Number of members of AIHA.
12. Rate of AIHA membership per 100,000 employees.
13. Number of BCSP.
14. Rate of board certified safety health professionals per 100,000 employees.
15. Number of members of ASSE.
16. Rate of ASSE membership per 100,000 employees.

#### Time Period:
Calendar year.

#### Significance and Background:
Physicians with training and/or special interest in occupational medicine provide both primary, secondary and tertiary occupational health preventive services. In 1989, the American Medical Association recommended that there be one physician per 1,000 employees. Occupational health nurses provide a great deal of the onsite occupational health care. Industrial hygienists and safety professionals are typically the primary individuals responsible for evaluating workplaces and making recommendations to prevent occupational injuries and illnesses.

#### Rationale:
Work-related injuries and illnesses are preventable. It is important to determine if there are sufficient trained personnel to implement occupational health preventive services.

#### Limitations of Indicator:
Other important occupational health specialties such as fire prevention, health physicists, ergonomists are not included.

#### Data Resources:
- American Board of Preventive Medicine (ABPM) diplomates database ([www.abprevmed.org](http://www.abprevmed.org)). (#1,2)
- Annual roster of members of the ACOEM ([www.acoem.org](http://www.acoem.org)). (#3,4)
- American Board of Occupational Health Nurses Directory ([www.abohn.org](http://www.abohn.org)). (#5,6)
- Annual roster of members of the AAOHN member directory ([www.aaohn.org](http://www.aaohn.org)). (#7,8)
- American Board of Industrial Hygiene ([www.abih.org](http://www.abih.org)). (#9,10)
- AIHA member directory ([www.aiha.org](http://www.aiha.org)). (#11,12)
- BCSP member directory ([www.bcsp.org](http://www.bcsp.org)). (#13,14)
- ASSE member directory ([www.asse.org](http://www.asse.org)). (#15,16)

#### Limitations of Data Resources:
The numerator data resources include retired individuals and individuals who may devote the majority of their time to research and limited or no time to provision of actual preventive services. An individual may practice part-time or even full-time in the field of occupational health and not be...
board certified or a member of the organization representing occupational health professionals. The completeness and frequency of updating addresses varies by each organization. Members are often listed in a database by a preferred address, which may not be the address where they practice.

<table>
<thead>
<tr>
<th>HP2010 Objectives:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>None</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>States could contact the occupational health specialists in the State to confirm address and assess status and nature of activity.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #17:

OCCUPATIONAL SAFETY AND HEALTH PROFESSIONALS

To obtain the number of occupational safety and health professionals in each category:
Data for membership in board certified occupational health specialties and professional associations for your state can be acquired by calling Jackie McClain at CSTE at (770) 458-3811 ext. 2003 or by e-mail at jmcclain@cste.org.

NOTE: This is administrative data that changes over time. Therefore, this data is collected at the same time each year.

To obtain the denominator for the rate:
- Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons
- Page down to heading "TABLES CREATED BY BLS:"
- Find table for "Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age:" Note: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm
- Choose the Annual Averages for year of interest
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4th data column – ‘Employment Number’. This is the ‘Number of Employed persons age 16 years or older’ (in thousands). Multiply by 1000.

To calculate the rate:
- Divide the number of occupational safety and health professionals by the denominator.
- Multiply this result by 100,000 to get the ‘Rate of occupational health and safety professionals per 100,000 employed persons age 16 years or older’
<table>
<thead>
<tr>
<th>Topic: INTERVENTION RESOURCES FOR OCCUPATIONAL HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #18: OSHA ENFORCEMENT ACTIVITIES</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Numerator:</strong></td>
<td>Total number of OSHA inspections&lt;br&gt;Total number of employed persons covered by OSHA inspections</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Estimated number of establishments under OSHA jurisdiction&lt;br&gt;Estimated number of employees under OSHA jurisdiction for the same calendar year</td>
</tr>
<tr>
<td><strong>Measures of Frequency:</strong></td>
<td>Annual number of establishments inspected by OSHA&lt;br&gt;Estimated percentage of all establishments under OSHA jurisdiction inspected by OSHA&lt;br&gt;Annual number of employees whose work areas were inspected by OSHA&lt;br&gt;Estimated percentage of all employees under OSHA jurisdiction whose work areas were inspected</td>
</tr>
<tr>
<td><strong>Time Period:</strong></td>
<td>Calendar year</td>
</tr>
<tr>
<td><strong>Significance and Background:</strong></td>
<td>In 1970, Congress established the Occupational Safety and Health Administration (OSHA). The OSHA mission is to &quot;assure so far as possible every working man and woman in the nation safe and healthful working conditions&quot;. This mandate involves the application of a set of tools by OSHA (e.g., standards development, enforcement, compliance assistance). OSHA conducts both referral and non referral inspections on work-sites. Work-sites are selected into an emphasis program for non referred inspections, randomly and on the basis of industry incidence rates of injuries. Investigations are inspections that are triggered by three events: fatality, catastrophe, or referral (including outside health/safety agency or media). All of the above on-site activities are called inspections for the statistical databases. Comprehensive information about inspections is found in the OSHA Field Inspection Reference Manual CPL 2.103, available on the OSHA website (<a href="http://www.osha.gov/Firm_osha_toc/Firm_toc_by_sect.html">http://www.osha.gov/Firm_osha_toc/Firm_toc_by_sect.html</a>).</td>
</tr>
<tr>
<td><strong>Rationale:</strong></td>
<td>The measures of frequency for this indicator provide indications of the number and proportions of workers and worksites potentially benefiting directly from OSHA inspection activity.</td>
</tr>
<tr>
<td><strong>Limitations of Indicator:</strong></td>
<td>This indicator only measures enforcement activity and not other measures of OSHA activity such as education and compliance assistance. The number of inspections conducted by OSHA is used to approximate the number of establishments inspected by OSHA in this indicator. Because OSHA may conduct multiple inspections of the same establishment during the calendar year, the % of establishments inspected may be slightly overestimated. In addition, if OSHA conducts multiple inspections of the same worksite during the year, the number of workers covered by OSHA inspections may be over counted. In federal OSHA states and some OSHA state plan states, OSHA does not inspect farms with 10 or fewer employees. Agricultural establishments were excluded from the denominator in this indicator; in states that do inspect smaller farms, the indicators may be overestimated.</td>
</tr>
<tr>
<td><strong>Data Resources:</strong></td>
<td>OSHA annual reports of total inspections conducted and the number of workers covered by these inspections (numerators).&lt;br&gt;Bureau of Labor Statistics on Covered Employers and Wages (commonly referred to as the ES-202/CEW data <a href="http://www.bls.gov/cew/home.htm">http://www.bls.gov/cew/home.htm</a>) for the number of workers employed and establishments in the public and private sectors (denominators).</td>
</tr>
<tr>
<td><strong>Limitations of Data Resources:</strong></td>
<td>Employers participating in an OSHA Voluntary Protection Program (VPP) or the Safety and Health Achievement and Recognition Program (SHARP) are exempted from routine inspections. Excluding workers from these programs will reduce the numerator, resulting in an underestimate of the protective function. In CEW data individuals holding more than one job are counted multiple times.</td>
</tr>
<tr>
<td><strong>HP2010 Objectives:</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>CSTE Positions:</strong></td>
<td>None</td>
</tr>
</tbody>
</table>
| **Other Available Data:** | Other indicators can be generated from the VPP and SHARPS program, the local emphasis programs and the participants of the 21D consultation program. Other data that can be generated from the inspections include type of violations and penalties, the number of all workers at the
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Collaborate with State or regional OSHA Office to obtain more detailed information on the above.</th>
</tr>
</thead>
<tbody>
<tr>
<td>work-site inspected, union affiliation, inspection type, local or national emphasis initiatives, inspection and investigation reports by industrial classification and employer’s name.</td>
<td></td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #18

OSHA ENFORCEMENT ACTIVITIES IN THE PRIVATE SECTOR

18.1 Annual number of establishments inspected by OSHA in all OSHA-covered sectors

Data for annual number of establishments inspected by OSHA for years 2000-on for your state can be acquired by calling Jackie McClain at CSTE at (770) 458-3811 ext. 2003 or by e-mail at jmcclain@cste.org.

From the data provided, obtain the number for TOTAL INSPECTIONS.

NOTE: These data will need to be collected for future years for all states from OSHA at one point in time each year. The procedure for doing so is detailed below. Please skip to section 18.2 if you have already obtained the data from CSTE.

a) Contact your federal or regional OSHA office to obtain OSHA Inspection reports with criteria #5 and 9 (also called INSP-5 and INSP-9 (state-plan states only)), which contain summary data on OSHA inspections and number of employees covered by these inspections for the calendar year. Specify that you want the report for the all sectors over which OSHA has jurisdiction. Regional office contact information can be found on the OSHA web site at www.osha.gov by scrolling to the bottom of the page and clicking on “OSHA Offices,” then “Regional, Area Offices” and then selecting your region.

b) In your request, specify that you would like the following:
   - The total number of OSHA inspections of establishments conducted within your state for the calendar year.
   - The total number of employees covered by inspections in all covered sectors (i.e., private and federal only for federal states and all sectors for state-plan states).

c) On page 1 of the INSP-5 report, obtain the number for TOTAL INSPECTIONS. If your state has an INSP-9 report as well, add the total inspections from each report for a grand total. This will yield the “Annual number of establishments inspected by OSHA”.

d) On page 2 of the INSP-5/INSP-9 report under "Employee information," obtain the number for EMPLOYMENT COVERED. This will yield the “Annual number of employees whose work areas were inspected by OSHA”.

NOTE: OSHA sometimes conducts inspections that are limited to reviewing OSHA logs at the worksites. These are called "Records Inspections" and are included in the number of Total Inspections. Typically the number of records inspections will be small relative to total inspections, so including these as part of the total should not have any substantial effect on the estimates.

Useful state data on OSHA inspections is also available at http://www.osha.gov/oshstats/index.html. However the numbers of inspections for states may differ slightly from those included in the INSP-5 and INSP-9 reports, which are to be used in generating this indicator. The OSHA web site does not include information about number of employees covered.

89
18.2 Total Number of Establishments in the State

a) Do the following:
   - Go to the BLS web site http://www.bls.gov/cew/home.htm.
   - Access your state’s ES-202/QCEW statistics. Find the heading, “Get Detailed QCEW Statistics”, and under the sub-heading, “Create Customized Tables (one or multiple screens)”, click on “2001 forward (NAICS basis)”. [For 2000 and prior years, click on “1997-2000 (SIC based)”].
   - On the pop-up screen select your state for #1 and “Statewide” for #2.
   - Select “Total, all Industries” for #3 and “Total Covered” for Ownership under #4 (i.e., private, state, municipal, and federal).
   - For #5, select “All Establishment Sizes” and for #6, select “Number of Establishments.”
   - Then select “Get Data.”
   - From the resulting table, read across the appropriate “Year” row and down the “Annual” column.

b) This is the average number of establishments in the State

18.3 Estimated percentage of all establishments under OSHA jurisdiction and eligible for inspection that were inspected by OSHA

a) Obtain the total number of OSHA-covered establishments (i.e. the denominator for this percentage):
   - Repeat steps for 18.2a; however, for #4 “Ownership”, select all relevant sectors (i.e., federal and private for federal states; all options for state-plan states.) Thus, if you are a state plan state, you can just use the number obtained from 18.2b). Use the CTRL key to select more than one sector.
   - This is 18.3a) the average total number of OSHA-covered establishment in the State.

b) Exclude mines and farms from the denominator estimate in a):
   Adjust denominator for exclusion of mines in the numerator (since mines are not covered by OSHA):
   - Return to the QCEW pop-up screen of 18.3a; however, for #3, select only NAICS codes 212 ‘Mining, except oil and gas’ and 213 ‘Support activities for mining’. Use the CTRL key to select more than one code. The program may automatically adjust your selections for #4 and #5. Make sure that #6 still reads “Number of Establishments”. [For 2000 and prior years, select only SIC codes 10**, 12**, and 14** for #3.]
   - Then select “Get Data.”
   - From the resulting tables, obtain the number of mining establishments for the year of interest
   - Subtract this result from 18.3a to adjust your denominator for mines.
Adjust denominator for exclusion of farms in the numerator (since farms are covered but not eligible for inspection due to budgetary rider):

- Return to the QCEW pop-up screen; however, for #3, select only NAICS codes 111 ‘Crop Production’ and 112 ‘Animal Production’. Hold down the CTRL key to select more than one code. The program may automatically adjust your selections for #4 and #5. Make sure that #6 still reads “Number of Establishments”. [For 2000 and prior years, select only SIC 01** (Agricultural production crops) and SIC 02** (Agricultural Production livestock) for #3.]
- Then select “Get Data.”
- From resulting tables, obtain the number of farm establishments for the year of interest.
- Subtract this result from the mine-adjusted denominator (18.3b), “Average number of OSHA-covered establishments in the state (excluding mines and farms) under OSHA jurisdiction”.

**NOTE:** For states that know their OSHA inspects all farms including farms with less than 10 employees, don’t exclude agriculture from the denominator. Include this in a footnote when you submit your data.

c) To calculate the percentage:

- Divide the numerator (18.1) by the denominator adjusted for mines and farms (18.3b).
- Multiply by 100 to obtain the “Percentage of all OSHA-covered establishments eligible for inspection that were inspected by OSHA”.

### 18.4 Annual number of employees whose work areas were inspected by OSHA

Data for your state’s annual number of employees whose work areas were inspected by OSHA for years 2000-on can be acquired by calling Jackie McClain at CSTE at (770) 458-3811 ext. 2003 or by e-mail at jmcclain@cste.org.

From the data provided, obtain the number for EMPLOYMENT COVERED. This is the “annual number of employees whose work areas were inspected by OSHA”.

### 18.5 Estimated percentage of all employees under OSHA jurisdiction eligible for inspection whose work areas were inspected

a) Obtain the total number of OSHA-covered employees (i.e. the denominator for this percentage):

- Go to the BLS web site [http://www.bls.gov/cew/home.htm](http://www.bls.gov/cew/home.htm).
- Access your state’s ES-202/QCEW statistics. Find the heading, “Get Detailed QCEW Statistics”, and under the sub-heading, “Create Customized Tables (one or multiple screens)”, click on “2001 forward (NAICS basis)”. [For 2000 and prior years, click on “1997-2000 (SIC based)”.]
- On the pop-up screen select your state for #1 and “statewide for” #2.
- Select “Total, all Industries” for #3 and all relevant sectors for ownership under #4. (i.e. federal and private for federal OSHA states and; all options for state-plan states)
• For #5 select “All Establishment Sizes” and for #6, select “All Employees”
• Then select “Get Data.”
• From resulting table(s), read across the appropriate “Year” row and down the “Annual” column.

• This is 18.5a), the average number of OSHA-covered employees in the State.

b) Exclude miners and farm workers from the denominator in a):

Adjust denominator for exclusion of miners in the numerator:
• Return to the QCEW pop-up screen of 18.5a; however, select only NAICS codes 212 ‘Mining, except oil and gas’ and 213 ‘Support activities for mining’. Use the CTRL key to select more than one code. The program may automatically adjust your selections for #4 and #5. Make sure #6 still reads “All Employees”. [For 2000 and prior years, select only SIC codes 10**, 12**, and 14** for #3.
• Then select “Get Data.”
• From the resulting table, obtain the number of miners for the year of interest.
• Subtract this result from 18.5a to adjust your denominator for miners.

Adjust denominator for exclusion of farm workers in the numerator:
• Return to the QCEW pop-up screen; however, for #3, select only NAICS codes 111 ‘Crop Production’ and 112 ‘Animal Production’. Hold down the CTRL key to select more than one code. The program may automatically adjust your selections for #4 and #5. Make sure #6 still reads “All Employees”. [For 2000 and prior years, select only SIC 01** (Agricultural production crops) and SIC 02** (Agricultural Production livestock) for #3.
• Then select “Get Data.”
• From resulting table, obtain the number of farm workers for the year of interest.
• Subtract this result from the miners’-adjusted denominator (above) to get your final denominator (18.5b), “Average number of OSHA-covered employees in the state (excluding miners and farm workers)”

NOTE: For states that know their OSHA inspects all farms including farms with less than 10 employees, don’t exclude agricultural workers from the denominator. Include this in a footnote when you submit your data.

c) To calculate the percentage:
• Divide the numerator (18.4) by the denominator adjusted for miners and farmers (18.5b).
• Multiply by 100 to obtain the “Percentage of all OSHA-covered employees eligible for inspection whose work areas were inspected by OSHA”.

92
<table>
<thead>
<tr>
<th>Topic:</th>
<th>SOCIOECONOMIC IMPACT OF OCCUPATIONAL INJURIES AND ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INDICATOR #19: WORKERS’ COMPENSATION AWARDS</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Demographic Group:</strong></td>
<td>Employed persons</td>
</tr>
<tr>
<td><strong>Numerator:</strong></td>
<td>Total amount of workers’ compensation benefits paid</td>
</tr>
<tr>
<td><strong>Denominator:</strong></td>
<td>Number of workers with workers’ compensation coverage for the same calendar year Total employed civilians 16 years and older</td>
</tr>
<tr>
<td><strong>Measures of Frequency:</strong></td>
<td>Total amount of workers’ compensation benefits paid Average amount of workers’ compensation benefits paid per covered worker</td>
</tr>
<tr>
<td><strong>Time Period:</strong></td>
<td>Calendar year</td>
</tr>
<tr>
<td><strong>Significance and Background:</strong></td>
<td>In 2000, $45.9 billion in workers’ compensation benefits were paid to workers with occupational injuries or illnesses. The benefits include payments for medical care and wage-replacement to workers or their surviving dependents. The number of workers covered by workers' compensation insurance has increased and while the frequency of claims has declined, the medical and wage-replacement costs per worker have increased, assuring continued economic impact of work-related injuries and illnesses on workers and employers.</td>
</tr>
<tr>
<td><strong>Rationale:</strong></td>
<td>Workers’ compensation awards are reviewed to establish whether the reported medical condition is work-related. Accepted awards represent known work-related injuries and illnesses, and often more severe cases. The total and average amounts of benefits paid estimate the burden of these events, which can help justify prevention programs and activities.</td>
</tr>
<tr>
<td><strong>Limitations of Indicator:</strong></td>
<td>This is a gross indicator of the burden of occupational injury and illness. It does not include human, noneconomic costs nor all the economic costs associated with occupational injuries and illnesses. These data are more appropriate for evaluating trends within a State rather than comparisons between States because of differences in wages and medical costs, the compensation determination, industry types and risks, and policies on permanent disability payments. Even within a State, changes in policies, wages and medical care expenses must be considered.</td>
</tr>
<tr>
<td><strong>Data Resources:</strong></td>
<td>National Academy of Social Insurance (<a href="http://www.nasi.org">www.nasi.org</a>).</td>
</tr>
<tr>
<td><strong>Limitations of Data Resources:</strong></td>
<td>Workers’ compensation data is not complete, as many individuals with work-related illnesses do not file for workers’ compensation. Self-employed individuals (e.g. farmers, independent contractors and small business owners), corporate executives, domestic and agricultural workers may be exempt from coverage. Additionally, federal employees, railroad, long shore and maritime workers are not covered by State workers’ compensation systems. Compensation award payments are frequently made over time, thus annual awards may not reflect the full cost of, injuries and illnesses for a given year.</td>
</tr>
<tr>
<td><strong>HP2010 Objectives:</strong></td>
<td>20-2</td>
</tr>
<tr>
<td><strong>CSTE Positions:</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Other Available Data:</strong></td>
<td>NASI tables with State-specific data have included:</td>
</tr>
<tr>
<td></td>
<td>Number of Workers Covered by Workers’ Compensation and Total Covered Wages</td>
</tr>
<tr>
<td></td>
<td>Workers’ Compensation Benefits by Type of Insurer and Medical Benefits</td>
</tr>
<tr>
<td><strong>Recommendations:</strong></td>
<td>NASI also provides the employers’ costs for workers’ compensation. State workers’ compensation system and state employment data may provide additional information about incidence and costs that would increase the usefulness of these data for prevention efforts. States may supply industry- and occupation-specific counts, costs and rates of accepted workers’ compensation claims. Age and gender can also be used to better define the burden of occupational injuries/illnesses. Many States report data collected for the subset of accepted time-loss claims—those involving days away from work—which are likely to have the highest costs to and affects upon workers and employers.</td>
</tr>
</tbody>
</table>
HOW-TO GUIDE – INDICATOR #19:

WORKERS’ COMPENSATION AWARDS

19.1 Total amount of workers’ compensation benefits paid
• Click on menu 'Publications'.
• Click on 'Reports'.
• Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, <<YEAR>>." 
• Click on 'Download' (must have Adobe Acrobat).
• Go to Table titled "Workers' Compensation Benefits by State, <<YEARS>> (in thousands)".
• Identify state and read ‘total’ column for appropriate year. Multiply by 1,000.

19.2 Average amount of workers’ compensation paid per covered worker
• Click on menu 'Publications'.
• Click on 'Reports'.
• Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, <<YEAR>>." 
• Click on 'Download' (must have Adobe Acrobat).
• Go to Table titled "Number of Workers Covered by Workers' Compensation and Total Covered Wages, by State, <<YEARS>>".
• Identify state and read column for ‘Covered Workers (in thousands)’ for year of interest. Multiply by 1,000.

b) To calculate the average amount of workers’ compensation benefits paid per covered worker:
• Divide the numerator (19.1) by the denominator (19.2) – expresses the result in dollars per covered worker.
APPENDIX A: WORK GROUP MEMBERS

NIOSH-CSTE OCCUPATIONAL HEALTH SURVEILLANCE WORK GROUP

OCCUPATIONAL HEALTH SURVEILLANCE INDICATORS

For Tracking Work-Related Health Effects

And Their Determinants

WAYNE BALL, Utah Department of Health
GEOFFREY CALVERT, National Institute for Occupational Safety and Health
ROBERT CASTELLAN, National Institute for Occupational Safety and Health
LETITIA DAVIS, Massachusetts Department of Health
ROBERT HARRISON, California Department of Health Services
MICHAEL HEUMANN, Oregon Department of Health Services
KIM LIM, Maine Department of Labor
JOHN MYERS, National Institute for Occupational Safety and Health
MATT LONDON, New York State Department of Health
LATOYA OSMANI, Council of State and Territorial Epidemiologists
DAVID PARKER, Minnesota Department of Health
KENNETH ROSENMAN, Michigan State University
ROBERT ROSCOE, National Institute for Occupational Safety and Health
DIANA SALZMAN, Texas Department of Health
JOHN SESTITO, National Institute for Occupational Safety and Health
CATHERINE THOMSEN, Oregon Department of Human Services
DAVID VALIANTE, New Jersey Department of Health and Senior Services
APPENDIX B: CORE STATE MEMBERS

CORE OCCUPATIONAL HEALTH SURVEILLANCE PILOT PROJECT

California Department of Health Services
BARBARA MATERNA
FLORENCE REINISCH

Massachusetts Department of Public Health
TSEGAYE BEKLE
LETITIA DAVIS
ROKHO KIM

Michigan Department of Community Health
THOMAS LARGO
MARTHA STANBURY

New York State Department of Health
ALICIA FLETCHER
KITTY GELBERG

Washington State Department of Labor and Industries
DAVE BONAUTO
CHRISTY CURWICK
## APPENDIX C: LOCATIONS OF INDICATOR DATA

<table>
<thead>
<tr>
<th>Location</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OSH_Profile CD-ROM</strong></td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>4.1</td>
</tr>
<tr>
<td>Table 2</td>
<td>4.2</td>
</tr>
<tr>
<td>Table 6</td>
<td>1.2, 1.4</td>
</tr>
<tr>
<td>Table 7</td>
<td>1.1, 1.3</td>
</tr>
<tr>
<td><strong>OSH_CFOI CD-ROM</strong></td>
<td>3.1</td>
</tr>
<tr>
<td><a href="http://www.bls.gov/iif/home.htm#tables">www.bls.gov/iif/home.htm#tables</a></td>
<td></td>
</tr>
<tr>
<td>SOII numbers</td>
<td>1.1, 1.3</td>
</tr>
<tr>
<td>SOII rates</td>
<td>1.2, 1.4</td>
</tr>
<tr>
<td>CFOI</td>
<td>3.1</td>
</tr>
<tr>
<td>ftp://ftp.bls.gov/pub/special.requests/ocwc/osh</td>
<td>7.x</td>
</tr>
<tr>
<td><strong>Current Population Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Table 13</td>
<td></td>
</tr>
<tr>
<td>Table 18</td>
<td>P3</td>
</tr>
<tr>
<td>Table 19</td>
<td>P2</td>
</tr>
<tr>
<td>quickfacts.census.gov</td>
<td>9.x.2, 10.x.2, 12.2</td>
</tr>
<tr>
<td><a href="http://www.nasi.org">www.nasi.org</a></td>
<td></td>
</tr>
<tr>
<td>Table 4</td>
<td>5.2, 8.2, 19.2</td>
</tr>
<tr>
<td>Table 10</td>
<td>19.1</td>
</tr>
<tr>
<td><strong>County Business Patterns</strong></td>
<td><a href="http://censtats.census.gov/cbpnaic/cbpnaic.shtml">http://censtats.census.gov/cbpnaic/cbpnaic.shtml</a></td>
</tr>
<tr>
<td>FERRET</td>
<td></td>
</tr>
<tr>
<td><a href="http://www.thedataweb.org/datasets.html">http://www.thedataweb.org/datasets.html</a></td>
<td>P6, 15.x, 16.x</td>
</tr>
<tr>
<td><a href="http://www.cste.org">www.cste.org</a></td>
<td>11.1</td>
</tr>
<tr>
<td><strong>ABLES</strong></td>
<td></td>
</tr>
<tr>
<td>Cancer Registry</td>
<td></td>
</tr>
<tr>
<td>Hospital Discharge Data</td>
<td></td>
</tr>
<tr>
<td>Vital Records</td>
<td></td>
</tr>
<tr>
<td>Workers' Compensation</td>
<td></td>
</tr>
<tr>
<td>CSTE</td>
<td></td>
</tr>
<tr>
<td><strong>OSHA INSP-5 and INSP-9 Reports</strong></td>
<td></td>
</tr>
<tr>
<td><a href="http://www.bls.gov/cew/home.htm">www.bls.gov/cew/home.htm</a></td>
<td>18.1, 18.2, 18.3, 18.4</td>
</tr>
<tr>
<td></td>
<td>18.2, 18.4, 18.5</td>
</tr>
</tbody>
</table>
REFERENCES


Council of State and Territorial Epidemiologists (CSTE). Revised Chronic Disease Indicators (CDI) to reflect expert and stakeholder recommendations. 2002.


