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EXECUTIVE SUMMARY

Ashland’s water supply is provided primarily by surface water inflows to Reeder Reservoir from
the east and west forks of Ashland Creek. The Ashland Creek watershed accumulates
significant snowpack in winter, and historical streamflows typically peak in May/June for the
East fork and April/May for the West fork in response to melting snow. Global climate model
simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report
(IPCC AR4) project warmer temperatures and changes in the seasonality of precipitation for the
Pacific Northwest region of North America. Because snowpack is sensitive to these kinds of
changes, losses of snowpack and resultant streamflow timing shifts (more flow in winter, less in
summer) are common impacts to water supply that have been shown in many previous studies
throughout the region.

In this study we apply a fine-scale hydrologic model implemented over Ashland Creek to
simulate the effects of projected changes in temperature and precipitation from the IPCC AR4
on snowpack and streamflow. Ten realizations of 2040s climate (each associated with a Global
Climate Model) for the Alb emissions scenario are used as input to the hydrologic model and
are compared to a historical baseline simulation from 1920-2000.

Summary of Results

Figure ES.1 shows projected annual average temperature and precipitation for the ten climate
change scenarios used in the study and historical conditions. Temperatures are about

2°C +/-0.5°C (3.6° F +/- 0.9° F) warmer than historical conditions on average. Annual
precipitation shows a small systematic change of a few percent with a range from about
650mm (90% of historical) to 880mm (122% of historical). Scenarios are generally wetter in
winter and drier in summer, however.
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Figure ES .1 Downscaled Annual Precipitation and Temperature Projections for Ten Different Climate Change

Scenarios for the 2040s Compared to Historical Data

These changes in temperature and precipitation result in substantial changes in snowpack and
streamflow in the East Fork hydrologic simulations (Figures ES.2 and ES.3), including earlier and

reduced peak snow water equivalent, increases in Oct-March streamflow and decreases in

April-September streamflow. Extreme low flows also become markedly more severe due to

lower soil moisture in late summer and corresponding reductions in base flow in the

simulations (Figure ES.4). Changes in the West Fork (not shown) are similar.
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Figure ES.2 East Fork mean Snow Water Equivalent for the historical period (1920 to 2000) and A1b climate

change scenarios for the 2040s
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Figure ES.3 East Fork Average Monthly Streamflow for the historical period (1920 to 2000) and A1b climate

change scenarios for the 2040s.
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Figure ES.4 Quantiles for extreme low streamflow for the historical period (1920 to 2000) and A1b climate
change scenarios for the 2040s

Changes in streamflow for the combined east and west forks for historical and 2040s climate
change conditions are shown in Figure ES.5. Average annual changes in streamflow are
negligible in the simulations (less than 1 percent), but cool season flows are increased and
warm season flows reduced. On average April-September flow is reduced by about 13 percent
for the projected 2040s conditions in comparison with historical conditions. May-September
flow is reduced by about 26 percent in comparison with historical conditions.
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Figure ES.5 Combined Monthly Streamflow of the West and East Forks for the historical period (1920 to 2000)
and A1b climate change scenarios for the 2040s

Conclusions

The hydrologic simulations show that projected temperature and precipitation changes in the
Pacific Northwest for the 2040s associated with the Alb scenario will result in substantial
reductions in spring snowpack, May-September streamflow, and extreme low flows in Ashland
Creek.

Although there is considerable uncertainty in these projections because of differences in the
global climate model simulations, all scenarios show reductions in average April 1 snow water
equivalent in both east and west forks, and nine out of ten scenarios of combined flow show
reductions in May through September streamflow. Likewise, extreme low flows in every future
simulation year are lower than their historical counterparts. Thus there is little question of the
general nature of these fundamental changes in watershed processes, uncertainty in the
absolute value of the changes notwithstanding.

It is important to note that changes in the future will also vary from decade to decade due to
natural variability of precipitation and temperature. In relatively cool and wet decades water
supply impacts may be reduced from the averages shown above, whereas in relatively warm

and dry decades water supply impacts may be larger than shown.



TECHNICAL REPORT
INTRODUCTION

Ashland Creek is located in Jackson County, Oregon, United States, near Interstate 5 and the
California border, and located in the south end of the Rogue Valley. The West Fork basin has an
area of 10.5 mi® and the East Fork has an area of 8.14 mi’. Both branches of the Ashland creek
drain to the Reeder Reservoir. In this study we implemented the Distributed Hydrological
Vegetation Model over the East and West branches of the river with the objective of simulating

the effects of climate change on streamflow in these basins.

Figure 1 East and West Fork of Ashland Creek, near Ashland, OR. Flow is to the North (top of Map) into Reeder
Reservoir.

Hydrologic Model

The Distributed Hydrologic Surface Vegetation Model (DHSVM) (Wigmosta et al. 1994) which
explicitly represents the effects of topography and vegetation on water fluxes through the
landscape has been implemented over the Ashland Creek watershed near Ashland, Oregon
(Figure 1). DHSVM is typically applied at high spatial resolutions on the order of 50 meters for
watersheds up to 100,000 km? and at sub-daily timescales for multi-year simulations. This



distributed hydrologic model has been applied predominantly to mountainous watersheds in
the Pacific Northwest in the United States.

DHSVM, as with any distributed hydrologic model, requires extensive information about the
simulated basin. The first type of information is static data and can be divided in three main
categories: elevation, vegetation cover and soils. The second type is dynamic, or time series,
information which includes meteorological data that can be obtained from weather stations or
derived from others models. In the basins modeled, observing stations do not have sufficiently
long records or do not exist in a spatially relevant location. Therefore, gridded products provide
the spatial coverage that observing stations may lack

DHSVM consists of computational grid cells centered on Digital Elevation Model (DEM)
elevation nodes, which explicitly represent the effects of topography in the basin. DEM data are
used to define absorbed shortwave radiation, precipitation, air temperature, and down-slope
water movement. In DHSVM each cell may exchange surface and subsurface water with its
neighbors resulting in a three-dimensional redistribution across the basin. This water is routed
across the basin using the defined stream channel network.

In this study, we implemented DHSVM v2.4. Some modifications to the code in comparison
with previous versions include the addition of a deep groundwater layer, expansion of surface
and subsurface flow paths from 4 to 8 directions, allowance of the re-infiltration of water from
the stream channel network back into the soil layer, the division of surface flows resulting from
runoff from impervious surfaces by the fraction of impervious area, and the calculation of water
temperature within the channel network.
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Figure 2 Schematic diagram of the Distributed Hydrology Vegetation Model (DHSVM)

Figure 3 Digitized stream networks used in the hydrological model implementation. Flow is roughly from South
to North (top to bottom in the figure). (Note Reeder Reservoir in the lower center portion of the figure.)
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Figure 4 Digital elevation model used in the hydrologic model implementation
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Figure 5 Soil depth model used in the hydrologic model implementation
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Figure 6 Land cover classes used in the hydrologic model implementation.
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Climate Change Scenarios

The climate change scenarios evaluated using DHSVM were downscaled from Global Climate
Models (GCM) models to 1/16 degree resolution following methods described by Hamlet et al.
(2010). The downscaled data were monthly averages for maximum temperature, minimum
temperature and total monthly precipitation. The GCM data is bias corrected using the
historical gridded meteorological data series using quantile mapping techniques described by
Wood et al. (2002). In this process the historical dataset is aggregated to monthly time step and
the coarser GCM spatial resolution and the GCM data is bias corrected to produce a new
dataset that closely matches the statistics of observations. These data are then spatially
downscaled and temporally disaggregated using the Hybrid Delta downscaling method
described by Hamlet et al. (2010) (Figure 7). The end product combines the realistic time series
and spatial variability of storms from the historical dataset with the bias-adjusted future climate
change signals for temperature and precipitation from the GCM scenarios.  The resulting daily
downscaled temperature and precipitation scenarios were downloaded from the Columbia
Basin Climate Change Scenarios Project website [http://www.hydro.washington.edu/2860/] for
the ten GCMs included in the study for the Alb emissions scenario (Table 1) (see also Mote and
Salathé 2010), and were post-processed to produce 3-hourly forcings for DHSVM using
methods described by Carrasco and Hamlet (2010).

Table 1 List of Global Climate Models (GCMs) used in the study

Global Climate Models** Period Of Analysis
UKMO-HadCM3 2030-2059
CNRM-CM3 2030-2059
ECHAMS5/MPI-OM 2030-2059
ECHO-G 2030-2059
PCM 2030-2059
CGCM3.1(T47) 2030-2059
CCSM3 2030-2059
IPSL-CM4 2030-2059
MIROC3.2(medres) 2030-2059
UKMO-HadGEM1 2030-2059

**Global Climate Model scenarios are described by Mote and Salathé (2010)
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Figure 7 Overview of the downscaling process

Table 1 Average Monthly Temperature in Celsius Degrees for Historic data and GCM simulations

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadecm | Hadgm | ipslcmé4 miroc 3.2 pcm 1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
October 6.2 8.0 7.8 7.9 8.2 8.4 8.7 8.3 8.4 8.3 7.9
November 0.8 2.5 1.7 2.2 2.8 2.0 2.5 2.2 2.5 2.7 2.4
December -1.2 -0.3 0.0 -0.2 0.2 -0.2 0.2 0.3 0.8 0.8 0.3
January -2.7 -1.4 -0.9 -2.0 -2.4 -1.4 -2.2 -0.2 -0.8 -0.6 -0.9
February -1.6 0.4 0.3 -1.1 -1.0 0.0 -0.9 0.3 0.3 0.4 -0.8
March -0.6 1.2 1.5 0.0 -0.4 0.9 0.6 1.6 1.0 1.4 0.3
April 1.6 2.7 2.0 2.4 2.8 3.1 3.0 2.9 3.5 3.0 3.2
May 5.6 7.9 6.4 6.5 7.0 6.6 7.4 8.0 7.4 7.8 6.9
June 9.0 12.0 10.6 11.2 11.3 10.8 12.3 12.7 11.7 11.4 10.7
July 14.1 17.9 16.8 16.6 16.0 16.4 19.7 18.0 16.7 16.6 16.0
August 13.8 17.6 16.9 16.4 15.8 16.3 17.6 17.4 16.9 16.5 15.8
September 11.2 13.4 13.3 13.2 13.5 13.7 14.8 15.2 13.9 14.0 13.6
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Table 2 Monthly precipitation in mm for historical data and ten 2040 GCM scenarios

Historic ccsm3 cgecm3 Cnrm echo 5 echog Hadem | Hadgm | ipslcmé4 miroc 3.2 pcm 1
GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
October 46.2 44.2 46.8 40.0 49.2 44.6 41.7 45.9 48.4 57.6 52.5
November 95.5 97.7 102.5 116.8 94.7 101.5 102.0 92.2 108.2 136.5 88.9
December 123.2 126.0 126.1 129.2 135.4 92.6 118.7 112.9 181.7 157.0 112.7
January 114.2 74.9 141.9 122.8 127.9 113.7 116.1 106.1 157.8 117.0 102.0
February 89.8 72.5 99.9 97.6 76.2 95.3 90.2 73.4 126.7 80.8 91.8
March 81.5 86.6 90.6 78.9 95.6 95.3 77.6 78.3 107.9 85.0 90.4
April 53.6 64.9 70.1 62.5 51.5 49.6 53.2 54.5 59.1 48.5 56.0
May 45.0 35.2 40.4 40.5 41.6 48.0 34.0 37.4 41.8 33.4 43.7
June 26.4 18.8 21.3 17.5 15.8 21.4 15.1 15.0 17.6 34.7 23.5
July 8.3 2.1 5.5 4.4 4.8 4.6 5.8 10.9 6.0 7.7 6.1
August 11.8 3.2 15.5 8.4 22.1 6.7 7.0 14.3 9.5 12.0 7.5
September 21.5 22.6 18.4 17.9 19.7 16.1 19.2 19.0 21.7 13.4 17.3
25
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Figure 8 Average monthly temperature for historical data and ten 2040 GCM scenarios
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Figure 9 Average precipitation for historical data and ten 2040 GCM scenarios
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Figure 10 Average monthly meteorological data from 1916 to 2006
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Figure 12 Average Meteorological data from 2030 to 2059 for GCM echam5_A1B
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Figure 14 Average Meteorological data from 2030 to 2059 for GCM pcm1_A1B
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Figure 21 Downscaled annual precipitation and temperature projections for ten different climate change
scenarios for the 2040s compared to historical data.

USGS STREAMFLOW DATA STATIONS

West Fork Ashland Creek near Ashland, OR

Location. Lat 42° 08'55", long 122° 42'55" near line between NW 1/4 SW 1/4 sec.28,T.39S.,R.1
E., Jackson County, Hydrologic Unit 17100308, in Rogue River National Forest, on left bank 0.3
mi upstream from city diversion, 2.5 mi south of Ashland, and at mile 0.4.

Drainage Area. 10.5 miz, at diversion dam 0.3 mi downstream.

Period of Record. September 1924 to January 1933, water years 1954-60, 1963, annual
maximum; December 1974 to September 1982, Oct. 2002 to current year. Monthly discharge
only for some periods published in WSP 1318.

Gage. Water-stage recorder and crest-stage gage. Datum of gage is 2,961.75 ft above NGVD of
1929. Sept. 10, 1924, to Jan. 31, 1933, water-stage recorder at site about 0.2 mi upstream at
different datum. Oct. 14, 1953 to Sept. 30, 1963, crest-stage gage at diversion dam 0.3 mi

21



downstream at different datum. Oct. 1, 2002 to Aug. 29, 2005, water-stage recorder at same

site at datum 1.00 ft higher.

Remarks. No regulation or diversion above station.

Extremes for Period of Record. Maximum discharge, 330 ft*/s Dec. 2, 1962, gage height,15.51

ft, site and datum then in use, from rating curve defined by computation of peak flow over

dam; minimum, 0.8 ft*/s Sept. 7, 2005

Calculated stats for period: 1975, 1 to 1978 ,12

Obs Sim Sim/Obs

Avg Flow 8.8 8.7 0.98

Std Dev 6.6 7.2 1.08

Correlation Coefficient =0.831

RMSE =4.047

RMSE/Obs Mean =0.459

MSE/Obs Var =0.372

Nash-Sutcliff Eff. =0.680

Monthly Stats:

Mon ObsAvg SimAvg Bias RMSE ObsStDev SimStDev

1 9.69 8.45 -1.24 2.21 5.75 4.32
2 8.14 7.83 -0.31 3.25 3.94 2.91
3 10.66 8.70 -1.96 5.63 6.08 4.02
4 11.25 8.90 -2.34 4.82 491 4.03
5 16.45 18.84 2.39 7.93 11.28 11.98
6 16.42 19.79 3.37 7.44 13.27 17.09
7 6.86 6.47 -0.39 1.13 3.90 4.35
8 4.81 3.72 -1.09 1.61 4.39 5.45
9 4.60 3.59 -1.01 1.09 4.56 5.45
10 3.55 3.85 0.30 0.64 5.43 491
11 5.41 5.82 0.41 0.77 3.59 3.07
12 8.06 8.01 -0.05 1.41 4.17 2.84
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mouth_west net monthly mean inflow (CFS): USGS, ashwest_cal159 Sim Flow
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Figure 22 Hydrograph for the Calibration Period January 1974 to December 1978, Validation Period January 1979
to December 1982

Calculated statistic for validation period for period: 1979, 1 to 1980, 12

Obs Sim Sim/Obs
Avg Flow 9.3 8.3 0.90
Std Dev 7.2 6.2 0.86
Correlation Coefficient =0.899
RMSE =3.330
RMSE/Obs Mean =0.360
MSE/QObs Var =0.211
Nash-Sutcliff Eff. =0.715
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Monthly Stats:

Mon ObsAvg SimAvg Bias RMSE ObsStDev SimStDev
1 4.66 8.29 3.62 3.62 4.59 0.01
2 5.56 7.09 1.54 1.54 3.69 1.20
3 14.17 9.04 5.12 5.12 4.92 0.75
4 15.29 12.36 -2.93 2.93 6.04 4.07
5 28.81 25.92 -2.88 2.88 19.56 17.63
6 13.79 7.18 -6.61 6.61 4.54 1.11
7 4.97 3.37 -1.61 1.61 4.27 4.92
8 3.38 1.70 -1.68 1.68 5.87 6.59
9 2.65 1.85 -0.79 0.79 6.60 6.44
10 4.64 4.31 0.33 0.33 4.61 3.98
11 6.60 6.97 0.37 0.37 2.65 1.32
12 6.47 11.42 4.95 4.95 2.78 3.13

East Fork Ashland Creek Near Ashland, OR

Location. Lat 42° 09'10", long 122° 42'30", in NW 1/4, NW 1/4 sec.28,T.39 S., R.1 E., Jackson
County, Hydrologic Unit 17100308, in Rogue River National Forest, on left bank 0.1 mi upstream
from city diversion dam, 2.5 mi south of Ashland, and at mile 0.2.

Drainage Area. 8.14 mi’, at diversion dam 0.1 mi downstream.

Period Of Record. September 1924 to January 1933, water years 1954-60, 1963, annual
maximum; December 1974 to September 1982, Oct. 2002 to current year.

Gage. Water-stage recorder and crest-stage gage. Datum of gage is 2,903.70 ft above NGVD of
1929. Sept. 10, 1924 to Jan. 31, 1933, water-stage recorder at site about 200 ft downstream at
different datum. Oct. 19, 1953 to Sept. 30, 1963, crest-stage gage at diversion dam 0.1 mi
downstream at different datum.

Extremes For Period Of Record. Maximum discharge, 335 ft3/s Dec. 2, 1962, gage height, 5.42
ft, site and datum then in use, from rating curve defined by computation of peak flow over
dam; minimum discharge, 0.47 ft¥/s Mar. 14, 1977, result of freeze up.

Extremes Outside Period Of Record. Flood of Jan. 15, 1974, is the highest since at least 1925.
Discharge, 5,630 ft*/s by slope-area measurement of peak flow, gage height, 10.2 ft from flood
marks. Peak believed to be affected by release from debris dams breaking upstream.
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mouth_east net monthly mean inflow (CFS): USGS, asheast_cal42 Sim Flow
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Figure 23 Hydrograph for the Calibration Period January 1974 to December 1978, Validation Period January 1979
to December 1982

Calculated stats for period: 1975, 1 to 1978 ,12

Obs Sim Sim/Obs
Avg Flow 9.2 9.6 1.04
Std Dev 8.7 7.9 0.91
Correlation Coefficient =0.854
RMSE =4.574
RMSE/Obs Mean =0.498
MSE/Obs Var =0.277
Nash-Sutcliff Eff. =0.667
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Monthly Stats:

Mon ObsAvg SimAvg Bias RMSE ObsStDev SimStDev
1 8.27 7.83 -0.44 1.66 4.75 3.82
2 7.56 7.08 -0.48 2.60 4.27 3.08
3 10.09 8.65 -1.45 4.23 6.18 4.05
4 9.92 9.54 -0.38 3.66 5.19 3.78
5 17.57 18.85 1.28 8.80 12.79 10.80
6 21.92 24.21 2.29 10.56 21.88 20.95
7 9.16 9.66 0.50 1.37 4.94 6.13
8 4.88 491 0.04 2.45 4.65 5.63
9 4.08 4.56 0.48 1.10 5.35 5.52
10 3.19 4.79 1.59 1.67 6.05 4.89
11 4.86 6.64 1.79 1.84 4.49 3.10
12 8.78 8.29 -0.49 2.49 5.31 3.14
Calculated statistic for validation period for period: 1979, 1 to 1980, 12
Obs Sim Sim/Obs
Avg Flow 10.5 10.3 0.97
Std Dev 6.9 7.1 1.03
Correlation Coefficient =0.887
RMSE =3.352
RMSE/Obs Mean =0.318
MSE/Obs Var =0.237
Nash-Sutcliff Eff. =0.778
Monthly Stats:
Mon ObsAvg SimAvg Bias RMSE ObsStDev SimStDev
1 13.40 10.93 -2.47 4.99 7.57 2.75
2 10.86 9.38 -1.48 2.26 4.52 2.93
3 12.97 9.84 -3.13 3.29 2.51 0.56
4 14.06 14.75 0.69 2.75 3.83 4.63
5 24.44 27.80 3.36 3.45 14.55 17.89
6 18.25 14.80 -3.46 5.69 7.92 7.78
7 9.07 6.82 -2.24 2.29 3.03 4.63
8 4.54 2.37 -2.18 2.27 6.07 7.90
9 3.37 2.45 -0.92 0.92 7.18 7.81
10 3.68 4.70 1.02 1.02 6.91 5.63
11 4.27 7.30 3.03 3.12 6.43 3.04
12 7.60 12.03 4.42 4.49 2.95 2.03
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Figure 24 East Fork Mean Snow Water Equivalent for the historical period 1920 to 2000 and climate change
scenarios for the 2040s
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Figure 25 East Fork mean Snow Water Equivalent for the historical period 1920 to 2000 and climate change
scenarios for the 2040s



Table 3 Mean Monthly Snow Water Equivalent for the period historic period 1920 to 2000
and climate change scenarios from 2030 to 2059

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadecm | Hadgm | ipslcmé4 miroc 3.2 pcm 1
GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
October 0.6 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
November 8.6 3.3 4.2 2.8 4.0 2.7 2.0 2.5 3.8 3.9 4.3
December 69.1 443 55.6 58.8 38.2 49.1 44.1 42.7 48.7 63.9 40.2
January 167.4 131.2 139.8 149.0 121.2 108.8 117.5 109.7 155.5 153.0 105.0
February 289.1 198.4 267.4 270.7 249.9 213.8 228.3 190.8 297.6 249.3 192.2
March 383.0 256.9 353.8 367.3 325.0 298.9 3134 249.0 412.5 314.3 278.4
April 412.2 230.0 320.5 377.9 356.9 288.1 306.0 208.8 402.2 281.9 283.5
May 339.1 145.6 247.0 278.4 241.3 166.8 192.9 121.7 261.9 177.2 167.8
June 162.1 18.0 81.3 92.1 57.0 32.7 39.4 14.3 69.5 31.3 35.5
July 33.5 0.1 6.3 5.1 2.7 1.1 1.2 0.1 3.7 1.1 1.2
August 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
September 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4 Snow Statistics for the period historic period 1920 to 2000 and climate change
scenarios from 2030 to 2059, Julian Day of 10% accumulation (JD 10% SWE) , Julian Day of
maximum accumulation (JD MAX SWE), Julian Day of 90% melting of the accumulated snow
(JD 90% MELT SWE), Maximum Snow Water Equivalent (MAX SWE) , Days Between 10% of

accumulation to 90
% of melting (DAYS 10% - 90%)

Historic | ccsm3 | cgcm3 Cnrm echo5 | echog | Hadem | Hadgm | ipslcm4 | miroc3.2 | pcm1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM

JD 10% SWE 57.0 57.4 57.6 58.8 64.1 56.7 61.1 59.3 62.9 54.3 62.5
JD MAX SWE 180.4 165.3 166.6 176.5 177.2 168.4 169.5 159.2 169.7 162.4 171.0
JD 90% MELT SWE 258.6 228.9 246.5 246.9 241.6 237.4 234.9 226.3 242.8 234.6 235.7
MAX SWE 443.8 284.9 379.8 411.6 378.1 329.6 343.6 271.4 447.2 337.7 316.7
DAYS 10% - 90% 201.6 171.5 189.0 188.1 177.4 180.7 173.7 167.0 180.0 180.3 173.2
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Figure 26 East Fork monthly evapotranspiration for the historical period 1920 to 2000 and climate change
scenarios for the 2040s
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Figure 27 East Fork monthly evapotranspiration for the historical period 1920 to 2000 and climate change
scenarios for the 2040s



Table 5 Accumulated Monthly Evapotranspiration for the period historic period 1920 to 2000
and climate change scenarios from 2030 to 2059

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadem | Hadgm | ipslcmé4 miroc 3.2 pcm 1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM

October 22.4 243 25.0 24.9 25.8 25.6 253 24.6 263 25.6 24.9
November 9.8 11.7 10.9 11.6 12.3 11.3 11.7 11.3 12.0 12.7 11.7
December 7.2 7.9 8.2 8.1 8.5 7.6 8.3 8.3 9.5 9.2 8.4
January 6.8 6.8 8.2 7.3 7.1 7.5 7.1 8.4 8.5 8.2 7.7
T 8.5 9.7 10.2 9.1 8.8 10.0 9.3 9.7 10.6 10.2 9.3
March 17.6 224 23.1 19.0 18.5 216 203 233 222 23.1 20.2
April 29.1 34.7 32.6 33.0 333 35.3 35.4 35.9 38.1 36.0 36.5
May 56.2 71.1 63.0 62.9 66.2 65.1 68.6 72.2 71.5 71.8 66.9
June 81.3 90.4 90.8 94.3 92.9 89.2 93.4 89.9 98.5 94.9 89.0
July 97.8 80.4 98.9 96.9 89.9 88.2 88.8 81.7 98.2 92.1 88.1
August 67.9 47.1 66.4 62.1 61.9 55.4 52.6 54.1 63.7 59.2 55.3
September | 44.0 36.4 43.7 41.0 45.2 38.1 39.7 40.7 44.2 395 39.4
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Figure 28 East Fork average monthly streamflow for the historical period 1920 to 2000 and climate change

scenarios for the 2040s
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Figure 29 East Fork average monthly streamflow for the historical period 1920 to 2000 and climate change
scenarios for the 2040s

Table 6 Average monthly streamflow (units cfs) for the historical period 1920 to 2000 and climate change
scenarios for the 2040s

Historic ccsm3 cgecm3 Cnrm echo 5 echog Hadem | Hadgm | ipslcmé4 miroc 3.2 pcm 1
GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
5.13 3.11 4.15 3.56 4.29 3.38 3.06 3.08 4.22 3.97 3.79
October
8.33 7.03 8.04 8.37 8.61 7.33 7.33 6.63 9.07 10.12 7.42
November
10.27 10.14 11.38 11.35 12.8 9.27 10.73 9.93 16.83 16.19 10.89
December
8.93 8.93 11.97 10.22 10.91 9.47 10.12 10.86 15.15 14.4 10.62
January
7.95 9.03 11.35 9.41 9.29 9.48 9.23 9.99 13.91 12.5 9.64
February
9.71 14.29 17.1 11.56 11.67 14.16 12.37 15.23 19.5 17.75 13.08
March
April 14.36 19.86 21.75 18.96 19.22 21.15 19.59 19.66 29.82 22.79 20.66
May 26.32 24.67 31.68 31.11 31.93 27.98 27.07 22.31 41.75 29.42 26.66
June 27.07 10.11 21.34 21.96 17.48 14.02 13.38 8.64 21.77 15.46 13.91
July 9.95 2.33 4.85 4.57 3.86 3.34 2.81 2.39 4.41 3.47 3.39
3.47 1.18 2.17 1.91 2.41 1.63 1.43 1.41 1.94 1.83 1.69
August
3.07 1.5 2.04 1.92 2.16 1.67 1.52 1.45 2 1.7 1.71
September
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Figure 30 East Fork quantiles for extreme flood for the historical period 1920 to 2000 and climate change
scenarios for the 2040s
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Figure 31 East Fork quantiles for extreme flood for the historical period 1920 to 2000 and climate change
scenarios for the 2040s
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Figure 32 East Fork quantiles for extreme 7-day low streamflow for the historical period 1920 to 2000 and
climate change scenarios for the 2040s
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Figure 33 East Fork quantiles for extreme 7-day low streamflow for the historical period 1920 to 2000 and
climate change scenarios for the 2040s
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Figure 34 East Fork simulated monthly average streamflow (units cfs). (Black line represents
observed values).
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Figure 35 West Fork mean Snow Water Equivalent for the historical period 1920 to 2000 and climate change

scenarios for the 2040s
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Figure 36 West Fork mean Snow Water Equivalent for the historical period 1920 to 2000 and climate change

scenarios for the 2040s
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Table 7 West Fork mean Monthly Snow Water Equivalent for the historical period 1920 to 2000 and climate
change scenarios for the 2040s

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadecm | Hadgm | ipslcmé4 miroc 3.2 pcm 1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM

October 0.4 0.10 0.08 0.07 0.10 0.05 0.04 0.04 0.08 0.06 0.07

November 6.1 2.49 3.30 2.39 2.86 2.25 1.65 1.92 2.83 3.07 3.09
December 47.8 29.62 38.11 40.26 25.42 33.76 29.86 29.09 32.57 43.31 27.20
January 119.2 91.35 96.82 103.99 82.99 74.51 80.23 75.24 107.05 105.14 71.48
February 210.8 139.96 190.78 194.37 179.55 150.79 162.23 133.15 210.94 175.01 133.92
March 289.8 183.39 258.67 273.15 241.58 217.54 230.17 176.67 303.72 224.65 201.63
April 316.1 170.08 239.97 286.33 271.70 216.08 229.57 154.03 303.85 207.71 211.18
May 258.5 108.93 186.65 208.60 180.59 125.53 142.91 91.64 194.70 130.99 124.51
June 101.0 10.24 51.09 53.81 31.77 19.78 21.88 7.92 41.35 18.49 20.82

July 16.3 0.03 2.54 1.83 1.03 0.42 0.42 0.05 1.47 0.35 0.39

August 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

September 0.0 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01

Table 8 West Fork Snow Statistics for the historical period 1920 to 2000 and climate change scenarios for the
2040s, Julian Day of 10% accumulation (JD 10% SWE) , Julian Day of maximum accumulation (JD MAX SWE),
Julian Day of 90% melting of the accumulated snow (JD 90% MELT SWE), Maximum Snow Water Equivalent

(MAX SWE) , Days Between 10% of accumulation and 90% of melting (DAYS 10% - 90%).

Historic | ccsm3 | cgcm3 Cnrm echo5 | echog | Hadem | Hadgm | ipslcm4 | miroc3.2 | pcm1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM

JD 10% SWE 58.2 58.3 58.8 60.3 65.7 58.2 62.8 59.3 63.9 54.9 63.4
JD MAX SWE 181.7 165.9 167.4 178.2 178.4 170.1 172.2 159.4 171.4 163.4 173.9
1D 90% MELT SWE 254.6 229.5 245.6 244.7 239.9 237.3 234.4 227.4 241.7 234.6 235.2
MAX SWE 343.2 209.3 282.3 312.0 287.4 244.5 256.1 196.4 335.8 245.3 234.3
DAYS 10% - 90% 196.4 171.2 186.8 184.4 174.2 179.1 171.7 168.1 177.8 179.7 171.8
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Figure 37 West Fork Monthly Evapotranspiration for the historical period 1920 to 2000 and climate change
scenarios for the 2040s

100

@mmHistoric

—ccsm3

——cgcm3

=cnrm

CFS

—echo5

——echog

——hadcm

——hadgm

ipsl cm4

0 ——miroc3.2

& & pcm1

Figure 38 West Fork Monthly Evapotranspiration for the historical period 1920 to 2000 and climate change
scenarios for the 2040s



Table 9 West Fork Accumulated Monthly Evapotranspiration for the historical period 1920 to 2000 and climate
change scenarios for the 2040s

Historic ccsm3 cgecm3 Cnrm echo 5 echog Hadecm | Hadgm | ipslcmé4 miroc 3.2 pcm 1

GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM

October 21.1 22.4 23.3 23.0 23.9 23.5 23.2 22.8 24.5 24.0 22.9
November 9.3 11.3 10.6 11.2 11.9 11.0 11.4 10.9 11.6 12.3 11.3
December 7.4 8.2 8.5 8.3 8.8 7.8 8.5 8.5 9.8 9.5 8.7
January 6.7 6.8 8.2 7.3 7.1 7.5 7.1 8.4 8.4 8.1 7.7
February 8.3 9.6 10.0 8.8 8.5 9.8 9.1 9.5 10.5 10.0 9.2
March 16.6 21.3 22.0 17.9 17.5 20.5 19.1 22.0 21.0 22.0 19.1
April 27.3 32.9 30.9 31.3 31.5 33.6 33.5 33.7 36.5 34.2 34.8
May 56.3 69.9 62.6 62.6 65.9 64.3 67.7 70.9 71.7 71.0 66.1
June 77.7 84.9 86.9 89.6 87.5 84.2 87.5 84.2 94.3 90.0 84.4
July 91.5 73.5 93.3 90.2 83.3 82.1 81.3 74.4 93.4 85.8 81.9
August 60.9 41.3 60.9 55.9 55.7 49.4 46.1 47.4 58.8 53.0 49.4
September 39.5 32.5 39.3 36.7 40.4 33.8 35.2 35.2 40.1 34.5 35.0
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Figure 39 West Fork Average Monthly Streamflow for the historical period 1920 to 2000 and climate change
scenarios for the 2040s
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Figure 40 West Fork Average Monthly for the historical period 1920 to 2000 and climate change scenarios for the

2040s

Table 10 West Fork Average Monthly Streamflow for the historical period 1920 to 2000 and climate change
scenarios for the 2040s

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadem | Hadgm | ipslcmé4 miroc 3.2 pcm 1
GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
October 4.2 2.34 3.23 2.77 3.31 2.58 2.32 2.3 3.28 2.99 2.89
November 7.5 5.69 6.89 7.06 7.23 6.06 5.97 5.35 7.74 8.48 6.15
December 10.43 9.74 11.23 11.31 12.44 8.92 10.32 9.37 16.62 16.12 10.38
January 9.83 9.66 13.24 11.39 12.1 10.22 11.02 11.51 17.17 16.19 11.47
February 8.96 10.29 13.35 10.93 10.74 10.91 10.63 11.37 16.65 14.8 11.15
March 9.81 13.89 17.13 11.95 12.05 14.17 12.56 14.75 19.94 17.88 13.38
April 13.73 17.93 20.58 17.99 18.19 19.25 18.09 17.6 27.67 20.98 18.83
May 25.16 20.44 27.75 27.65 27.66 23.34 22.82 18.37 36.87 24.4 22.25
June 22.11 8.46 17.19 16.94 13.81 11.63 10.58 7.22 18.03 12.76 11.32
July 7.33 2.09 3.94 3.69 3.27 2.93 241 2.09 3.76 3.02 2.94
August 2.78 1 1.81 1.61 1.95 1.38 1.19 1.15 1.67 1.53 1.43
September 2.49 1.16 1.62 1.53 1.7 1.33 1.19 1.12 1.6 1.35 1.36
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Extreme Values — West Fork
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Figure 41 West Fork quantiles for extreme daily flood for the historical period 1920 to 2000 and climate change

scenarios for the 2040s
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Figure 42 West Fork quantiles for extreme daily flood for the historical period 1920 to 2000 and climate change

scenarios for the 2040s
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Figure 43 West Fork quantiles for extreme 7-day low streamflow for the historical period 1920 to 2000 and
climate change scenarios for the 2040s
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Figure 44 West Fork quantiles for extreme 7-day low streamflow for the historical period 1920 to 2000 and
climate change scenarios for the 2040s
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Figure 45 West Fork simulated monthly average streamflow (units cfs). (Black line represents observed values.)

42



East and West Forks — Combined Streamflows
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Figure 46 Combined monthly streamflow of the West and East Branches for the historical period 1920 to 2000

and climate change scenarios for the 2040s
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Figure 47 Combined monthly streamflow of the West and East Branches for the historical period 1920 to 2000

and climate change scenarios for the 2040s
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Table 11 Combined Monthly Streamflow in cfs of the West and East Branches for the historical period 1920 to
2000 and climate change scenarios for the 2040s

Historic ccsm3 cgcm3 Cnrm echo 5 echog Hadecm | Hadgm | ipslcmé4 miroc 3.2 pcm 1
GCM GCM GCM GCM GCM GCM GCM GCM GCM GCM
9.3 5.5 7.4 6.3 7.6 6.0 5.4 5.4 7.5 7.0 6.7
October
15.8 12.7 14.9 15.4 15.8 13.4 13.3 12.0 16.8 18.6 13.6
November
20.7 19.9 22.6 22.7 25.2 18.2 21.1 19.3 33.5 323 21.3
December
18.8 18.6 25.2 21.6 23.0 19.7 21.1 22.4 32.3 30.6 22.1
January
16.9 19.3 24.7 20.3 20.0 20.4 19.9 21.4 30.6 27.3 20.8
February
19.5 28.2 34.2 23.5 23.7 28.3 24.9 30.0 39.4 35.6 26.5
March
April 28.1 37.8 42.3 37.0 37.4 40.4 37.7 37.3 57.5 43.8 39.5
May 51.5 45.1 59.4 58.8 59.6 51.3 49.9 40.7 78.6 53.8 48.9
June 49.2 18.6 38.5 38.9 31.3 25.7 24.0 15.9 39.8 28.2 25.2
17.3 4.4 8.8 8.3 7.1 6.3 5.2 4.5 8.2 6.5 6.3
July
6.3 2.2 4.0 3.5 4.4 3.0 2.6 2.6 3.6 3.4 3.1
August
5.6 2.7 3.7 3.5 3.9 3.0 2.7 2.6 3.6 3.1 3.1
September
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