FINDINGS
SUPPORTING AN EXEMPTION FROM COMPETITIVE BIDDING REQUIREMENTS
AND THE USE OF THE CONSTRUCTION MANAGER/GENERAL CONTRACTOR
(“CM/GC”) CONTRACTING METHOD

Before the Director of Transportation
of the State of Oregon

In the Matter of the Exemption Request by the
Oregon Department of Transportation for the
I-5 Rose Quarter Improvement Project,
on State Highway #1, Interstate 5
located in Multnomah County, OR

ORS 279C.335(1) requires, with certain exceptions, that all public improvement contracts
be based on competitive bidding and, under ORS 279C.375, be awarded to the responsible
bidder submitting the lowest responsive bid.

ORS 279C.335(2) permits the Director of the Oregon Department of Transportation to
grant, under certain conditions, exemptions to the Oregon Department of Transportation
(“ODOT”) from the requirement for competitive bidding by issuing an order stating
conditions and approving specified findings that comply with ORS 279C.330, ORS
279C.335(2)(a) and (b), ORS 279C.350, and OAR 731-007-0370.

ORS 279C.335(2) and (4) and ORS 279C.350 require findings to support the exemption.

ORS 279C.330(1) defines “findings” as used in ORS 279C.350, and ORS 279C.330(2)
defines “findings” as used in ORS 279C.335, and together with ORS 279C.335(2) identify
required findings, factors to be considered and specific information to be provided as part of
the agency justification for the exemption. OAR 731-007-0370 and OAR 137-049-0630 also
address the required findings.

ORS 279C.335(2) provides that “findings” as used in ORS 279C.335, “means the
justification for a conclusion that a contracting agency or state agency, in seeking an
exemption from competitive bidding requirements of ORS 279C.335(1), reaches based on
the considerations set forth in ORS 279C.335(2).” ORS 279C.350(1) provides that, with
respect to an exemption request for a specific public improvement contract described in
ORS 279A.050(3)(b), the Director of Transportation shall issue an order that sets forth
findings supporting the decision, and those findings are as described in ORS 279C.330(1).
Under ORS 279C.335(5) a public hearing must be held before the findings are finally adopted, allowing an opportunity for interested parties to comment on the draft findings.

The public hearing and this request for exemption were advertised in the *Daily Journal of Commerce* on January 23, 2019 and *Construction Market Data Group LLC (CMD)* on January 21, 2019. The request for exemption was posted on the ODOT Procurement Office web site at:

https://www.oregon.gov/ODOT/Business/Procurement/Pages/Bid_Award.aspx

The public hearing for review of these findings was held at (Insert time and select “a.m.” or “p.m.”), on (Insert date), at the Department of Transportation office located at (Insert address). There were (Insert # or no) comments from the public, either oral or written, during this hearing or during the time for comments.

ORS 279A.050(3)(b) provides ODOT with independent contracting authority for public improvement contracts relating to the operation, maintenance or construction of highways, bridges and other transportation facilities.

FINDINGS

A. BACKGROUND

1. **Project Description**: I-5 Rose Quarter Improvement Project, Multnomah County, OR

ODOT proposes to use the Construction Manager/General Contractor (“CM/GC”) selection process, and then enter into a CM/GC contract with the selected construction contractor. The project includes but is not limited to pre-construction and construction services, environmental and quality management, safety, contract administration and all necessary support services. The I-5 Rose Quarter Improvement Project (“the project” or “this project”) is located on Interstate 5, Portland, OR between milepost 303.2 and milepost 301.4.

The purpose of the I-5 Rose Quarter Improvement Project is to improve the safety and operations on I-5 between I-405 and I-84, of the Broadway/Weidler interchange, and on adjacent surface streets in the vicinity of the Broadway/Weidler interchange and to enhance multimodal facilities in the project area. In achieving the purpose, the project also will provide improved local connectivity and multimodal access in the vicinity of the Broadway/Weidler interchange and improve multimodal connections between neighborhoods located east and west of I-5. The project addresses the following primary public safety and mobility issues:

- **I-5 Safety**: I-5 between I-405 and I-84 has the highest crash rate on urban interstates in the State of Oregon. Crash data from 2011 to 2015 indicate that I-5 between I-84 and the merge point from the NE Broadway ramp on to I-5 had a crash rate (for all types of crashes) that was approximately 3.5 times higher than the statewide average in Oregon for comparable urban interstate facilities.
• **I-5 Operations:** The project area is at the crossroad of three regionally significant freight and commuter routes: I-5, I-84, and I-405. As a result, I-5 in the vicinity of the Broadway/Weidler interchange experiences some of the highest traffic volumes in the State of Oregon, carrying approximately 121,400 vehicles each day, and experiences 12 hours of congestion each day.

• **Broadway/Weidler Interchange Operations:** The complexity and congestion at the I-5 Broadway/Weidler interchange configuration is difficult to navigate for vehicles (including transit vehicles), bicyclists, and pedestrians. This impacts access to and from I-5 as well as to and from local streets. The high volumes of traffic on I-5 and Broadway/Weidler in this area contribute to congestion and safety issues (for all modes) at the interchange ramps, the Broadway and Weidler overcrossings of I-5, and on local streets in the vicinity of the interchange.

• **Travel Reliability on the Transportation Network:** Travel reliability on the transportation network decreases as congestion increases and safety issues expand. The most unreliable travel times tend to occur at the end of congested areas and on the shoulders of the peak periods. Due to these problems, reliability has decreased on I-5 between I-84 and I-405 for most of the day. Periods of congested conditions on I-5 in the Project Area have grown over time from morning and afternoon peak periods to longer periods throughout the day.

ODOT considers completing the I-5 Rose Quarter Improvement Project of highest priority. While the specific project work elements have been identified to address long term safety, operations and travel reliability, there are several key areas of the project where decisions remain to be made, including:

• How to accommodate access needs to and from several regional entertainment and recreation facilities (the Moda Center and the Veteran’s Memorial Coliseum, as well as the Oregon Convention Center) through the Broadway/Weidler Interchange during the relocation of the I-5 SB entrance ramp and the widening of the I-5 NB exit ramp while maintaining efficient stage construction phasing of the interchange improvements.

• How to accommodate uninterrupted safe access for the multimodal users, including automobiles, freight, people walking and biking, and Portland Streetcar and TriMet buses, during removal and replacement of the bridges that carry NE Weidler Street, N Williams Avenue, NE Broadway, and N Vancouver Avenue over I-5.

• How to stage the construction of the new Vancouver/Hancock and the Broadway/Weidler/Williams highway covers over I-5 at the crossroad of three regionally significant freight and commuter routes, I-5, I-84, and I-405, with some of the highest traffic volumes in the State of Oregon and which experiences 12 hours of congestion each day while maintaining mobility on I-5.

• How to accomplish access to construction work areas. What are the work zone and temporary work structures requirements for the widening of the I-5 bridges to the north and to the south of the Broadway/Weidler Interchange, the SB I-5 to
EB I-84 ramp, and the Morrison Bridge and SE Portland/Oregon Museum of Science and Industry exit ramp that require construction over the Eastside Esplanade (bike/ped path), over the mainline Union Pacific Railroad (UPRR) and within its right of way, and over and in the Willamette River.

- Preparing a robust well-validated Costs to Complete Report that accounts for risks, uncertainties, and unique project characteristics to meet legislative funding definition that establishes the project-funded bond program. The costs to complete is required by Oregon House Bill 2017 Section 27c(2) no later than February 1, 2020.

Construction in this highly congested urban setting introduces cost and schedule risks associated with complex construction staging of highway covers over highly travelled I-5, widening of several I-5 bridges to accommodate extending the auxiliary lanes and adding full shoulders, maintaining mobility on I-5, and accommodating access to regional entertainment and recreation facilities and multimodal users in the project area. Knowledge of the contractor’s approach to construction is necessary to allow coordination with and permitting approvals by stakeholders including federal and state agencies (environmental permits), City of Portland (public works permit), UPRR (amendment to the Construction and Maintenance Agreement), and utility providers, prior to construction start. Identifying and characterizing major risk events, including major uncertainties (such as specialty access, work zone requirements, and work window constraints) and conditions unique to the I-5 Rose Quarter Improvement Project through the lens of the contractor is critical to preparation of a robust Cost to Complete Report.

Use of the CM/GC alternative selection and contracting method will allow ODOT to select a CM/GC contractor on the basis of qualifications, experience and expertise (as opposed to selection based solely on low bid) that are necessary for addressing the complex and critical issues identified above. Among other benefits of CM/GC contracting, the method includes input from the contractor during the design process through collaboration with ODOT and the design team, to help optimize project design and reduce cost and schedule risks.

The key objective of the CM/GC selection method for this project is to select a construction contractor with necessary and relevant qualifications, expertise, and experience that will provide the best value to ODOT, given ODOT’s contractor selection criterial and requirements, to accomplish ODOT’s goals, which include but are not limited to:

- Enhance pedestrian and bicycle safety and mobility in the vicinity of the Broadway/Weidler interchange.

- Address congestion and improve safety for all modes on the transportation network connected to the Broadway/Weidler interchange and I-5 through adding and extending ramp-to-ramp auxiliary lanes, which provide for improved traffic merging and weaving, and reduces friction between vehicles and the likelihood of collisions.
• Support and integrate the land use and urban design elements of the N/NE Quadrant Plan (2012) related to I-5 and the Broadway/Weidler interchange.

• Improve freight time reliability through reduced congestion on the shoulders of the peak periods, which increases dependability in travel times and improves on-time freight delivery.

• Provide transportation facilities to support planned development in the Rose Quarter and Lloyd District.

• Improve connectivity across I-5 for all modes.

Improve operations on I-5 between I-405 and I-84.

Specific work items for each major project element are noted below. The individual project components listed below have been combined by ODOT into a single project.

I-5 Mainline Improvements:

The proposed I-5 mainline improvements include the construction of auxiliary lanes and full shoulders between I-84 to the south and I-405 to the north, in both the NB and SB directions as follows:

• Extending the existing SB auxiliary lane and adding full shoulders from N Greeley Avenue, between the Elliot School Viaduct (SB exit to NE Broadway) and the Morrison Bridge and SE Portland/Oregon Museum of Science and Industry exit ramp.

• Adding new NB auxiliary lane and full shoulders from the I-84 WB to I-5 NB entrance ramp to the N Greeley Avenue exit ramp.

• Adding new Broadway/Weidler/Williams highway cover from immediately south of NE Weidler Street to immediately north of NE Broadway to accommodate the Broadway/Weidler couplet.

• Adding new Vancouver/Hancock highway cover to the north and south of NE Vancouver Avenue and N Hancock Street.

Broadway/Weidler Interchange Improvements:

The proposed Broadway/Weidler Interchange improvements address connections between I-5, the interchange and the local street network, and include the following:

• Relocating the I-5 SB entrance ramp from N Wheeler Avenue to NE Weidler Street.
Multimodal Improvements to Local Streets:

The proposed multimodal improvements support and integrate the land use and urban design elements of the N/NE Quadrant Plan (2012) related to I-5 and the Broadway/Weidler interchange. The improvements include the following:

- Modifying N Williams Avenue between N Ramsay Way and NE Weidler Street to pedestrians, bicycles, local access and public transit (buses) use only.
- Revising N Williams Avenue between NE Weidler Street and NE Broadway to a two-way street (two NB lanes and two SB lanes) with an approximate 36-foot-wide median multi-use path for bicycles and pedestrians.
- Extending NE Hancock Street west, connecting it to N Dixon Street on the Vancouver/Hancock highway cover. Removing N Flint Street (and structure) between N Tillamook Street and NE Broadway.
- Adding new multi-use path connecting the new Hancock/Dixon crossing to the intersection of N Flint Street and NE Broadway.
- Adding new Clackamas Bicycle and Pedestrian Bridge crossing over I-5 to connect NE Clackamas Street near NE 2nd Avenue to the N Williams Avenue, N Ramsay Way/N Wheeler Avenue area.
- Adding new multi-use path (two-way cycle track) on N Williams Avenue between NE Hancock Street and NE Broadway.
- Adding bicycle lane on east side of N Vancouver Avenue between NE Hancock Street and NE Broadway.
- Upgrading existing bicycle facilities on NE Broadway, and NE Weidler Street within the project area with wider, separated bicycle lanes.

The current estimated project construction cost range for the contract with the CM/GC contractor (the Guaranteed Maximum Price ("GMP") under the CM/GC Contract) is approximately $410,000,000 to $433,000,000. It is anticipated the project will be funded with a combination of Federal Highway Administration (FHWA) and State of Oregon money.

The work will include but is not necessarily limited to pre-construction and construction services, environmental and quality management, safety, contract administration and all necessary support services.

The work will be done in accordance with approved ODOT geometric design standards, performance requirements, and specifications.
In its solicitation, ODOT may reserve the right to include additional related work within the general project vicinity.

ODOT proposes to use the CM/GC contracting method solicitation process for the project as a proposed alternative to the competitive (low) bid process. In accordance with the applicable statutes and administrative rules, ODOT will use a selection process utilizing a one-step Request for Proposals (RFP) competitive procurement as described in Section A.3 Procurement Process of this document.

The project will be procured using the CM/GC contracting method as described herein, for the reasons and considerations stated herein.

2. Agency Considerations: ODOT has been contracting for road improvement projects since 1914. To operate, maintain, and modernize approximately 8,000 miles of state highways throughout Oregon, ODOT contracts an average of 100 highway and bridge construction projects per year.

The Oregon Transportation Commission is mandated to “encompass economic efficiency” (ORS 184.618), and therefore ODOT strives to continually improve its procurement and project delivery approaches. One of the improvements that encompasses economic efficiency is appropriate use of the CM/GC contracting method.

ODOT performed an internal evaluation of the delivery goals and alternative contracting delivery mechanisms for the project. ODOT traditionally uses a low bid process, but has concluded that using that project delivery method entails unacceptable risk for this project, which includes delivery of the project in an untimely manner. For this project, ODOT reviewed and evaluated other available procurement options that could provide maximized benefit to the public. ODOT determined that an alternative contracting process that considers key elements for project success beyond price is most appropriate for this project, specifically the CM/GC contracting method.

ODOT determined that the upfront value engineering and constructability reviews pre-construction services provided by a CM/GC contractor during design development will allow ODOT to make informed cost-benefit tradeoffs for addressing the critical issues described in Section A.1.

The CM/GC process, as a proposed alternative to the competitive bid process, is becoming a more common approach for certain types of projects by public agencies both within and outside the State. The Federal Highway Administration (FHWA) made the CM/GC method operational on October 1, 2012 (in Section 1303 of its Moving Ahead for Progress in the 21st Century Act (MAP-21)), meaning justification to FHWA (when federal highway funding is involved) for use of the CM/GC method through a SEP-14 approval is no longer required.

Additionally, there is a growing recognition that, for certain projects, better delivery methods exist than competitive low bid. FHWA performed a national study that quantified costs, benefits, and risk associated with alternative contracting methods. The study included lessons learned associated with alternative contracting methods CM/GC and design–build. FHWA collected valid data from 291 completed highway projects. CM/GC projects accounted for 12 percent of the 291 projects in the study. The study findings are included in FHWA’s Alternative Contracting Method Performance in U.S.
The following summarizes FHWA’s findings concerning the CM/GC method:

- Use of the CM/GC method by states to deliver federally funded highway projects began after 2005 and by the end of 2014, the number of State DOTs using CM/GC grew to 17

- CM/GC projects had the highest level of complexity

- When compared to design-bid-build, the mean project duration for the CM/GC projects was 48 percent shorter

- Although the RFP process can be complex, it can take less time than developing full designs

- CM/GC projects had the lowest level of agency-directed change orders

FHWA found that projects that are twice as large are being built in half the time by using alternative contracting methods such as design-build and CM/GC. Having the CM/GC contractor on the team during design development allows the agency to fast-track the design and allows for the integration of the design and construction phases. In addition to gaining contractor input for design, there is no need to develop full designs for the entire project in advance of beginning construction as is required for competitive (low) bidding.

Potential benefits of the CM/GC method include but are not necessarily limited to saving project costs, lowering operational costs and/or project lifecycle costs, improving constructability, enhancing innovation, reducing risk, expediting project delivery by contracting with the CM/GC contractor early in the design process and negotiating price and schedule for construction before all design is complete, being able to begin construction on portions of the project before all design for the project is complete, and shortening construction schedules. The CM/GC selection and contracting process encompasses the Oregon legislature’s focus on economic efficiency and stimulation. This method also provides recognition of the value to the public in employing enhanced contracting methods that will accomplish the required work in the most effective manner.

For the CM/GC selection process ODOT procures professional services on a qualifications, experience and expertise basis from the selected CM/GC contractor early in the design phase to offer suggestions on innovations, cost and schedule savings, and constructability issues.

Upon completion of the design, or individual design packages, the CM/GC contractor and ODOT negotiate a price for the construction, and then the CM/GC contractor acts as a general contractor to complete construction. The contract can employ a guaranteed maximum price administered on a cost-reimbursable basis, with unit price and lump-sum items.
ODOT assigns weight to price (typically the fee for pre-construction services, and the CM/GC contractor’s “CM/GC Fee” covering overhead and profit, well as the proposal that contains specified non-price factors that are important to the success of the project. These factors include, but are not necessarily limited to, the proposer’s qualifications, experience, key personnel expertise, roles, responsibilities, goals, and project approach.

The CM/GC method will reduce the potential for work delays, reduce the possibility of large cost overruns, and will encourage innovation and avoid or minimize adverse impacts to the environment, local communities, and the traveling public.

By using the CM/GC and other alternative contracting methods (including design-build, A+B (price plus time), A+C (price plus qualifications) and A+C+D (price plus qualifications plus technical approach), ODOT has had and continues to have success selecting construction contractors with the necessary qualifications, experience, and approach to successfully deliver complex projects. ODOT believes that the CM/GC method is appropriate for the selection of the construction contractor for the project.

ODOT started using the CM/GC method in 2008. To date ODOT has completed two projects using the CM/GC method:

- I-5 Willamette River Bridge Replacement Project: This project replaced two (2) bridges on Interstate 5 (I-5) in Lane County, Oregon; the 1800-foot Willamette River Bridge, and the 100-foot Canoe Canal (a.k.a. “Patterson Slough”) Bridge. ODOT built detour bridges at both locations in 2004. ODOT decommissioned the existing Willamette River Bridge and both detour bridges and the decommissioned bridge were removed as part of this project. The use of CM/GC contracting resulted in the I-5 Willamette River Bridge project being opened for public use about 13 months earlier than it would have been anticipated under the design-bid-build contracting method. Input from the CM/GC contractor helped ODOT to control costs, schedule, and design, manage risks, and resolve and adjust outcomes as the project proceeded. The partnership and constant collaboration among the parties that is part of the CM/GC contracting approach significantly contributed to the success of the project. Final total cost of the project was $162,917,204.00, approximately $17M lower than originally estimated. This project completed on July 30, 2015.

- ODOT Headquarters Building Renovation Project: This project completely modernized all systems in the aging 1950 six-story building, while preserving its marble and bronze historic exterior. The renovation included seismic reinforcing walls to mitigate earthquake risks, new electrical and telecommunication systems, a new mechanical system, new sprinklers, and stairway improvements. Thanks to its sophisticated rain harvesting system, radiant ceiling panels, and photovoltaic rooftop solar panels the project achieved LEED Platinum certification (35 % better energy efficiency that current code requirements). The partnership and constant collaboration among the parties that is part of the CM/GC contracting approach significantly contributed to the success of the project. The original estimated construction cost for the project was $47,000,000, final GMP for the project was $37,813,710, $11,633.290 lower than the originally estimated cost. The contract was executed on November 19, 2009 and project completed in April 2012.
ODOT personnel, and ODOT’s legal counsel, the Oregon Department of Justice (DOJ), have gained the necessary experience, expertise, and knowledge in using alternative selection and alternative contracting methods to successfully deliver multiple projects varying in scope, size, and complexity, and within schedule and budget constraints.

For this project, ODOT’s project team will consist of ODOT personnel (possibly third party consultant personnel) and Oregon DOJ legal counsel that have experience, expertise, and knowledge necessary to develop the CM/GC method procurement documents and process and the CM/GC Contract. Upon this foundation, ODOT will select the contractor, negotiate (to the extent negotiations, if any, are permitted by ODOT) and award the contract, and administer the contract.

3. **Procurement Process**: This is a request to the Director of the Oregon Department of Transportation, on behalf of ODOT, for a contract-specific exemption from competitive bidding requirements. The exemption would allow ODOT to solicit proposals for the construction of the project described above using the alternative contracting CM/GC method, through a one-step Request for Proposal (“RFP”) procurement process. As required by ORS 279C.335(4)(c) and ORS 279C.337(1), ODOT will conduct the procurement for this project in accordance with the applicable model rules adopted by the Oregon Attorney General under ORS 279A.065(3).

An RFP will be issued (formally advertised) for the project and proposers must submit proposals by a date specified in the RFP. Each proposer will be required to submit a proposal that responds to evaluation criteria requirements and provides other required information and that includes required project specific price elements.

The proposal requirements for evaluation criteria and other required information may include the following items, and other items required by the RFP:

- Proposer and key personnel qualifications
- Pass/fail legal requirements and organizational structure
- Key personnel expertise, roles, responsibilities
- Major subcontractor experience, roles and responsibilities
- Proposer’s approach to the project scope of work and goals.

The proposal requirements for project specific price elements may include the following items, and other items required by the RFP:

- Proposer’s CM/GC fee percentage
- Proposal security
- Proposed pre-construction services key personnel, hours and hourly rates
- Maximum not to exceed amount for pre-construction phase services
Scoring members of ODOT’s evaluation and selection committee will independently review and score each proposer’s project proposal. The scoring members of the committee will consist of individuals from ODOT personnel and key stakeholders. ODOT’s third party consultant personnel and other personnel may act as observers, technical support, or facilitators during evaluation and scoring, but will be non-scoring members during the scoring process.

After completion of the initial scoring and ranking of each proposer, ODOT will establish the competitive range to set the number of proposers that will be invited to mandatory interviews. After the interviews, and revised scoring, if any, ODOT’s evaluation and selection committee will rank the proposers, and identify the highest-ranked proposer and make an award recommendation.

ODOT will attempt to negotiate a contract with the top-ranked proposer. Upon successful negotiation of the CM/GC Contract, ODOT will issue notice of intent to award and proceed with final award of the CM/GC contract. If negotiations are not successful, at ODOT’s discretion, negotiations will be conducted with the next highest-ranked proposer and so on, until ODOT has successfully negotiated a contract or determined that further contract negotiations would not be in the best interest of the State and that the RFP process must be terminated.

Development of the CM/GC contract will be coordinated with the Oregon DOJ.

B. FINDINGS REGARDING REQUIRED INFORMATION

ORS 279C.330(1) provides that as used in ORS 279C.350: “findings” means the justification for a contracting agency conclusion that includes, but is not limited to, information regarding: (1) Operational, budget and financial data; (2) Public benefits; (3) Value Engineering; (4) Specialized expertise required; (5) Public safety; (6) Market conditions; (7) Technical complexity; and (8) Funding sources.

ODOT finds that many of these criteria support the decision to use the CM/GC contracting method. This finding and request for exemption is supported by the following:

1. Operational, Budget, and Financial Data: The project is an Oregon House Bill 2017 (Keep Oregon Moving) project. ODOT and the Oregon Legislature consider completion of this project to be a high priority. The project budget is anticipated to be funded with a combination of current and anticipated State of Oregon and federal (FHWA) funding resources. The current estimated project construction cost range for the contract with the CM/GC contractor (the GMP under the CM/GC Contract) is approximately $410,000,000 to $433,000,000. ODOT anticipates that all funding and necessary approvals for the project will be obtained.

In ODOT’s view, when compared to the design-bid-build method the CM/GC method of contracting is the quickest method for getting this project completed, while ensuring that ODOT will not incur additional costs beyond those budgeted. The CM/GC method of contracting is a recognized method of minimizing construction costs and time while ensuring that critical scheduling requirements are met. As
outlined below, it is anticipated there will be cost savings to ODOT and the public by using the CM/GC method of contracting on this project.

The project will require as much knowledge as possible regarding the constructability and long-term cost/benefit analysis of innovative design. That knowledge is best obtained directly from the construction industry. Many decisions will have to be made during the design process that will require immediate feedback on constructability and pricing. Under the traditional design-bid-build process, there is a significant risk of a high number of change orders and schedule impacts for a project of this size and complexity. The CM/GC process will assist in providing a scope of work and constructible design that best meet the requirements of the project with significantly lower risk of cost overruns do to delay and redesign. Involving the CM/GC contractor during design will allow potential risks to be addressed early and provide the CM/GC contractor with a detailed knowledge of the project, which are expected to result in lower construction costs.

2. Public Benefits: The CM/GC method focuses on project components that are most valuable to ODOT through the ability to evaluate proposers based on their qualifications, expertise and experience and technical approaches for improving public safety, increasing both the rate of traffic flow and maintaining connectivity and mobility for all users along this portion of Interstate 5, and fast-tracking completion of design, which allows for starting construction of certain project elements before project design is 100% complete for the entire project. The CM/GC method provides the means for ODOT to meet the goals and schedule objectives of the project and HB 2017 (Keep Oregon Moving).

The fostering innovation, mitigating risks, optimizing control of costs and schedule advantages of CM/GC provide ODOT the means to meet the goals and objectives of HB 2017 (Keep Oregon Moving) and the 1999 Oregon Highway Plan for this project. Between May 1999 and May 2016 the Oregon Transportation Commission issued amendments to the highway plan.

Early completion of the project will also benefit the public by shortening the length of construction activities and thereby reducing traffic impacts, and by supporting regional and statewide economies.

3. Value Engineering: Value Engineering (VE) is encouraged on all projects by ODOT and FHWA, and has resulted in both initial savings as well as long-term savings for other ODOT projects. VE is the systematic application of recognized techniques by multi-disciplined teams that identifies the function of a product or service, proves a worth for that function, generates alternatives through creative thinking, and provides the needed functions at the lowest overall cost.

VE studies may be conducted during one or more of the project development stages and during construction. VE has proven to be an effective tool for product value improvement and design enhancement and assisting ODOT in obtaining its goal of providing cost-effective projects and procedures, and improved productivity and efficiency. VE can be used in all aspects of transportation such as design, traffic operations, construction, maintenance, specifications, standard drawings, and planning.
The unique process and relationship of the owner, construction contractor and the designer under the CM/GC process fosters a team approach to value engineering that features continuous constructability reviews. In essence, this method allows the value engineering process to happen all the way through the project, not just during the design process. Multiple options for high cost or impact items, such as construction methods, materials, environmental permitting and local design requirements are analyzed in real time to determine cost/benefit analysis.

Under the traditional design-bid-build method, VE occurs once during the design phase. With design-bid-build, any savings from cost reduction proposals suggested by the construction contractor are divided between ODOT and the contractor. Under the CM/GC method, savings from expanded VE efforts accrue to the State.

ODOT screens all complex projects based upon established criteria, to determine the need to do a formal VE study. Based on the results of ODOT's screening of this project a VE study will be performed, with the cooperation and assistance of outside consultants and the CM/GC contractor.

4. Specialized Expertise Required: Using the CM/GC selection method will allow ODOT to select a CM/GC contractor that has expertise in areas the method emphasizes, including but not limited to: management; coordinating with design development; pre-construction and construction phase services in a “fast-track” CM/GC contracting method; providing value engineering and constructability reviews; scheduling and estimating; assessing and mitigating risks; managing mobility and traffic safety concerns; safety; quality; public relations; competitively bidding and selecting subcontractors with wide participation; and managing subcontractors. In addition, specialized expertise is required to successfully address the public safety issues noted below.

This project will require specialized expertise for the following identified critical issues and technical complexities:

- Traffic management and staging during construction to minimize impacts to freight, commerce, and commuter traffic on I-5; to minimize impacts to multimodal users destined to and from regional entertainment and recreation facilities (the Moda Center and the Veteran's Memorial Coliseum, as well as the Oregon Convention Center) in the Rose Quarter area through the I-5 Broadway/Weidler Interchange, adjacent local arterials, transit (including Portland Streetcar), and bike /sidewalk network; and to maintain access to businesses, neighborhoods, and transit, including TriMet bus stops, Portland Streetcar, and the Rose Quarter Transit Center (MAX service).

- Construction under traffic of major infrastructure within, over and adjacent to a highly travelled section of I-5, carrying approximately 121,400 vehicles each day, the Broadway/Weidler Interchange and local arterials.

- Advanced and detailed planning of the sequence and limits of discrete construction activities, coupled with flexibility in coordinating real-time adjustments to the planned construction operations, to ensure responsivenes to unanticipated events and community needs in the Rose Quarter area.
Completing construction activities within established work zones with a high degree of schedule certainty, and in the shortest time possible, to avoid impacting freight and commerce in the I-5 corridor, multimodal users in the Rose Quarter area, and to minimize schedule and cost impacts to follow-on work by TriMet (Rose Quarter Transit Center - Catenary System reconstruction work) and Portland Streetcar (Track/System rebuild work on highway cover).

Dealing timely with utility relocations and minimizing disruption of service including utilities carried on the Broadway and Weidler structures. Avoiding disruption of the 264" combined water and sewer crossing under I-5 and associated pump station in the southern project area.

Reducing cost and schedule risks and incorporating value engineering cost and schedule savings are necessary for this project.

Preparing a well-validated Cost to Complete Report that includes direct contractor input to estimated construction production rates, equipment and labor, and that accounts for cost of project risks identified and quantified through risk assessment workshops.

Developing proactively and completing a reliable approach plan for accomplishing the necessary interrelated work elements to ensure schedule certainty.

ODOT and the public will benefit from ODOT acquiring a CM/GC contractor that has established experience and specialized expertise to manage and perform the work for this project. The CM/GC selection method allows the selection of a contractor with appropriate experience and specialized expertise necessary to provide VE and design input, together with construction approaches, to reduce schedule and costs and successfully complete this complex project. A low bid process does not provide an opportunity for ODOT to obtain the most qualified and experienced contractor with the specialized expertise needed for the project.

5. Public Safety: Safe traffic flow must be maintained while construction proceeds. It is crucial that all work be carefully coordinated to avoid unnecessary delay and safety risks to the traveling public, and to ensure efficiency in construction. A CM/GC contractor with a strong approach to the challenging project elements will minimize additional traffic impacts, as described in Section B.4. Specialized Expertise Required

The coordination between the owner, designer, and the contractor in the CM/GC method of contracting should assure coordination of work, resulting in shorter lane closure and detour times. It will also ensure full consideration for the safety of users of the bicycle and pedestrian paths and multimodal transportation facilities crossed by the project. In addition, CM/GC contracting of this project will ensure all is being done in a “fast-track” mode to minimize delays.
ODOT may include restrictions and incentives for limiting lane, road, and bridge closures to the CM/GC contractor to minimize the impact to the traveling public during peak traffic times.

6. **Market Conditions:** There are Oregon firms with CM/GC experience, and given the size of the project some Oregon firms may combine forces as a joint venture to propose, but ODOT also expects that out of state and national construction firms with CM/GC experience in projects of this magnitude in size and technical complexity may propose for this project, ensuring adequate competition. Using the design-bid-build method for a project of this size and complexity can result in a low-bid contractor that lacks the necessary qualifications, expertise and experience, which can be at a higher risk for performance, timeliness, safety and financial issues. The CM/GC selection method will allow ODOT to consider the proposers’ qualifications, expertise and experience necessary to successfully deliver this high-impact project.

The Oregon Governor and the Oregon Legislature have encouraged ODOT to contract projects quickly to improve employment. Economic studies have shown that highway construction projects nationally create between 30 and 40 jobs per million dollars spent.

The CM/GC approach to this project could leverage more direct jobs in Oregon at prevailing wage rates and increase the potential of local business opportunities for Minority Owned, Women Owned, and Service Disabled Veteran Owned Business, Disadvantaged Business Enterprises, and Emerging Small Business Enterprises. Furthermore, when compared to the design-bid-build method the use of the CM/GC contracting method on this project is expected to accelerate the start of construction by approximately one year. Such a jump-start would make those jobs available that much sooner.

7. **Technical Complexity:** Technical expertise will be required for environmental management, quality management, scheduling, estimating, traffic control, and pre-construction services, which include but are not necessarily limited to input on design development, value engineering, and constructability reviews to optimize cost, schedule, or performance of the project and construction services. However, the project will draw upon existing skills and capabilities available in the local and national construction communities which ODOT will be able to assess and engage using the CM/GC selection process. Specialized skills will be required of the CM/GC contractor to negotiate and price multiple options and schedule complex tasks. A high level of coordination between the owner, the designer and other ODOT consultants, and construction entities is required and facilitated by the CM/GC approach.

The ODOT project management team for this project will ascertain and utilize the lessons learned, processes, and guidance from other state agencies, and knowledgeable consultants who have demonstrated capacity for managing the CM/GC process.

To be successful in completing this project the CM/GC contractor must be qualified, experienced and capable to address the issues, goals, concerns and technical
complexities of the project as described in this document, including but not limited Section B.4.

8. **Funding Sources:** As stated earlier, it is anticipated this project will be funded with State of Oregon funds (including funds allocated or authorized by HB 2017 (Keep Oregon Moving)), and with federal (FHWA) funds.

C. **FINDINGS ADDRESSING COMPETITION**

ORS 279C.330(2) states that “findings” as used in ORS 279C.335 “means the justification for a conclusion that a contracting agency in seeking an exemption from the competitive bidding requirement of ORS 279C.335(1) reaches based on the considerations set forth in ORS 279C.335(2).” ORS 279C.335(2) also requires that a public agency make certain findings as a part of exempting public improvement contracts or classes of public improvement contracts from competitive bidding requirements.

ORS 279C.335(2)(a) requires an agency to find that: “The exemption is unlikely to encourage favoritism in awarding public improvement contracts or substantially diminish competition for public improvement contracts.

ODOT finds that selecting a contractor through an exempted selection process for the CM/GC alternative contracting method is unlikely to encourage favoritism in awarding public improvement contracts or substantially diminish competition for public improvement contracts. This finding is supported by the following:

ODOT anticipates that competition for this project is likely to be similar to that experienced for other large ODOT highway and bridge projects. ODOT has observed early indications of interest and intent to participate in the procurement process for this project, and ODOT processes for procurement of a contractor for alternative contracting methods have been developed with maintenance of competition in mind. As noted in Section B.6, ODOT expects proposals from Oregon construction firms and out of state and national construction firms.

1. The competition remains open to all qualifying proposers. The contracting community is aware of ODOT’s use of alternative contracting processes and success with contractors on past projects. During ODOT’s history of using alternative contracting methods, more than 150 firms have expressed interest in pursuing the alternative contracting projects. ODOT expects that with this experience, normal competition will prevail. Based on the level of contractor participation for previous alternative contracting projects, and the size and nature of this project, ODOT anticipates approximately six contractors are available for the project and three (3) to four (4) contractors will likely submit proposals in response to the RFP.

2. ODOT, through direct contacts and at scheduled ODOT/Associated General Contractors meetings has been communicating regularly with the construction contracting community about the use of the CM/GC contracting method and other non-traditional contracting methods.
3. The CM/GC evaluation and selection process ODOT intends to employ for this project is summarized in Section A.3. Procurement Process. The process is open and impartial, competition will be obtained, and proposers will be evaluated equally based on criteria that is reflective of the significant work elements for this type of project. Selection will be made on the basis of final scores derived from the evaluation process described in Section A. BACKGROUND (A.1 and A.2) and Section A.3 Procurement Process. This method expands the grounds of competition in the evaluation process beyond price alone to include other factors, including but not necessarily limited to the proposer’s qualifications, experience, key personnel expertise, roles, responsibilities, major subcontractors, and goals, and project approach.

4. Pursuant to ORS 279C.360, the CM/GC solicitation (RFP) will be formally advertised in the Daily Journal of Commerce and Construction Market Data Group LLC (CMD) and posted on the Oregon Procurement Information Network (ORPIN) web site at:

 https://orpin.oregon.gov

5. The procurement process is anticipated to include the following, which supplements (and in some cases repeats) what is provided in Section A.3 Procurement Process:

 (a) A mandatory pre-proposal meeting, open to all interested parties, will be held at least one week after the release of the RFP and will offer the opportunity for potential proposers to informally ask questions and request clarifications. Only those attending this mandatory meeting will be allowed to submit proposals.

 (b) The proposal evaluation process may include the following steps, or additional steps as required by the RFP:

 (1) Proposals will be evaluated by ODOT’s evaluation and selection committee for completeness and compliance with the requirements listed in the RFP.

 (2) Proposals considered complete and responsive will be evaluated under the criteria set forth in the RFP.

 (3) Scoring members of the evaluation and selection committee will independently score the proposals.

 (4) A group of up to four of the highest scoring proposers will be short-listed through a competitive range selection process.

 (5) Only those proposers in the competitive range will receive an invitation to interview as the next phase of the evaluation and award process.

If determined to be necessary or appropriate, adjustments may be made in the details of the procurement process.
D. FINDINGS REGARDING SUBSTANTIAL COST SAVINGS AND OTHER SUBSTANTIAL BENEFITS

ORS 279C.335(2) also requires that a public agency make certain findings as part of exempting public improvement contracts or classes of public improvement contracts from competitive bidding.

ORS 279C.335(2)(b) requires an agency to find that: Awarding a public improvement contract under the exemption will likely result in substantial cost savings and other substantial benefits to the contracting agency or, if the contract is for a public improvement described in ORS 279A.050(3)(b) [such as this project], to the contracting agency or to the public. This finding therefore considers whether cost savings accrue directly to ODOT as the contracting agency or indirectly to the general public (particularly for highway users). ODOT finds that on this project, substantial cost savings and other substantial benefits will likely accrue to ODOT and the general public.

This finding is supported by the following:

1. **Direct Cost Savings**: The current estimated project construction cost range for the contract with the CM/GC contractor (the GMP under the CM/GC Contract) is approximately $410,000,000 to $433,000,000. ODOT is assuming a 3% annual inflation rate for costs. ODOT could save a significant amount of money by avoiding inflation for each month design and construction can be accelerated. For example, when compared to the design-bid-build method, if ODOT estimates that the project duration may be shortened by one (1) year that could result in a savings of approximately $12,000,000 to $13,000,000 for that year in annual inflation.

 Acceleration of project completion can also reduce ODOT’s costs for some outside consultants working on the project. Reducing the construction completion time by a year, for example, may save approximately $6,500,000 to $7,200,000 in consultant fees. Less time required for completion can also provide internal benefits for ODOT, for example, ODOT will be able to redirect personnel to other projects and initiatives that much sooner.

 The CM/GC contracting method involves the CM/GC construction contractor in the design phase, allowing for: 1) ongoing VE and constructability reviews; 2) quick cost comparisons between various design options; 3) ability to identify and mitigate potential construction risks early; and 4) a substantial amount of time for the CM/GC contractor to become very familiar with all aspects of the project prior to developing the GMP, as opposed to the typical four (4) weeks bidders have under competitive (low) bid to formulate a price for all construction. These factors should result in lower risk factors in the GMP and a lower construction cost than under competitive (low) bid contracting. In general, the CM/GC method provides ODOT great confidence in completion of complex work, and fast-tracking completion of projects can be reasonably anticipated using the CM/GC method. Through the CM/GC method, ODOT will select the CM/GC contractor who is most capable of handling the project, including specialized work identified for this project.

2. **Indirect Cost Savings**: Indirect savings are real and recognizable by the public and for this project. By selecting a CM/GC contractor that can realistically meet ODOT’s expectations for the contractor’s key personnel expertise, roles,
responsibilities, major subcontractors, goals, project approach, and project completion time, the state and the CM/GC contractor can jointly save the traveling public significant inconvenience due to traffic delays, detours and slower posted speeds.

The CM/GC contracting method involves the CM/GC construction contractor in the design phase, allowing: ongoing VE and constructability review; quick cost comparisons between various design options; the ability to identify and mitigate potential construction risks early; and a substantial amount of time for the CM/GC contractor to become very familiar with all aspects of the project prior to developing the GMP, as opposed to the typical four (4) weeks bidders have to decide on a under competitive (low) bid under design-bid-build. These factors should result in lower risk factors in the GMP and a lower construction cost than under competitive (low) bid contracting method.

In Section D.1 ODOT identifies several factors and benefits of the CM/GC method, ODOT uses these factors to judge impacts of project construction on road users. Interstate 5 in the project area experiences some of the highest traffic volumes in the State of Oregon, carrying approximately 121,400 vehicles each day, and experiences 12 hours of congestion each day. ODOT estimates that it can avoid an estimated road user cost of approximately $0.4 million to $1.6 million per month for each month the original contract completion time is shorter due to use of the CM/GC method, and for each month beyond the original contract completion date that is avoided. In addition, the potential exists for the CM/GC contractor to complete the work early, thereby saving the traveling public more in road user costs.

E. ADDITIONAL CONSIDERATIONS UNDER ORS279C.335(2)(b)

In approving a finding under ORS 279C.335(2)(b), the Director of the Oregon Department of Transportation must consider the type, cost, and amount of the contract (see Sections A, B and D above) and the following factors to the extent applicable to this particular public improvement contract:

1. How many persons are available to propose. Based on the level of outreach by ODOT to the construction industry and response, ODOT anticipates approximately six (6) contractors are available for the project and three (3) to four (4) contractors will likely submit proposals in response to the RFP. See Section C.1.

2. The construction budget and the projected operating costs for the completed public improvement. The project is anticipated to be funded with a combination of State of Oregon and federal (FHWA) funding resources. The current estimated construction cost range for the project (the GMP under the CM/GC Contract) is approximately $410,000,000 to $433,000,000. See Section B.1.

3. Public benefits that may result from granting the exemption. The CM/GC method provides ODOT the ability to evaluate proposers based on their qualifications, expertise, experience and technical approaches for improving public safety, increasing both the rate of traffic flow, and maintaining connectivity and mobility for all road users, and for meeting the goals and objectives of HB 2017 (Keep Oregon Moving) and the 1999 Oregon Highway Plan. The CM/GC
method also promotes fast-tracking for project completion, among other benefits discussed in this document. See Sections A.2, B.2, B.3, B.5 and Section D.

4. Whether value engineering techniques may decrease the cost of the public improvement. One of the benefits of the CM/GC method is that value engineering is an ongoing process throughout the project, with the CM/GC contractor engaging early in the design process to maximize the cost benefits of the value engineering process. See Section B.3.

5. The cost and availability of specialized expertise that is necessary for the public improvement. The CM/GC method allows ODOT to select a CM/GC contractor from a pool of qualified contractors that has expertise in the CM/GC method and coordinating with design development, pre-construction and construction phase services and minimizing risks for the project. Special expertise and the pool of competition are discussed above in this document, including the benefit of using the CM/GC selection method to select a CM/GC contractor that has a team with the necessary qualifications, expertise and experience needed for the project. See Sections B.4, C.1 and D.

6. Any likely increases in public safety. The early and ongoing coordination between the owner, designer, and the contractor in the CM/GC method of contracting promotes coordination of work, resulting in a preferred construction approach option for each type and location of proposed work that reflects project goals and stakeholders feedback, and provides full consideration of uninterrupted safe access for multimodal users throughout the Project area. See Section B.5.

7. Whether granting the exemption may reduce risks to the state agency or public that are related to the public improvement. Potential benefits of the CM/GC method include saving project costs, lowering operational costs and/or project lifecycle costs, improving constructability, enhancing innovation, reducing risk, expediting project delivery by contracting with the CM/GC contractor early in the design process, negotiating price and schedule for construction before all design is complete, and shortening construction schedules (which means shorter duration impacts on the traveling public). This method also provides recognition of the value to the public in employing enhanced contracting methods that will accomplish the required work in the most effective manner.

The CM/GC method emphasizes innovation in management and coordination, providing scheduling and estimating, assessing risk, managing mobility, public relations, safety and quality needs and providing a complete project that is sensitive to wide public participation by all in contracting opportunities. See Sections A.2, B.1, B.2, B.4, B.5 and D.2.

8. Whether granting the exemption will affect the sources of funding for the public improvement. The project is a HB 2017 (Keep Oregon Moving) project and is of high importance to the Legislature and ODOT. Reducing project risks, accomplishing cost and schedule certainty, achieving design quality, accruing value engineering cost and schedule savings to ODOT, and preparing a robust Cost to Complete Report are strong project objectives and the CM/GC method will facilitate accomplishing them. See Section B.1.
9. Whether granting the exemption will better enable the contracting agency to control the impact that market conditions may have on cost or time necessary to complete the public improvement. Market conditions are discussed above, as are the potential cost savings benefits of using the CM/GC method for this project. See Sections B.6 and D.

10. Whether granting the exemption will better enable the contracting agency to address the size and technical complexity of the public improvement. As is typical of alternative contracting methods, the most qualified construction contractor is sought, rather than just simply contracting with the lowest bidder. Through the CM/GC procurement process, ODOT will select a CM/GC contractor with the specialized qualifications, expertise, skills, experience and understanding that is required to successfully address the project construction, safety and risks issues, technical complexities and completion timeframes. See Sections A.2, B.4. and B.7.

11. Whether the public improvement involves new construction or renovates or remodels an existing structure. The I-5 Rose Quarter Improvement Project extends auxiliary lanes and adds full shoulders on I-5 between I-84 to the south and I-405 to the north, adds two new highway covers, upgrades the Broadway/Weidler Interchange, and provides multimodal improvements to local streets. See Section A.1.

12. Whether the public improvement will be occupied or unoccupied during construction. The project area covers the section of I-5 between I-84 and I-405, which is a heavily traveled corridor carrying approximately 121,400 vehicles each day and experiences the highest crash rate in the State of Oregon. It also includes the Broadway/Weidler Interchange that accommodates access needs to and from several regional entertainment and recreation facilities (the Moda Center and the Veteran's Memorial Coliseum, as well as the Oregon Convention Center) and east-west multimodal users. The CM/GC method will ensure all project work is being done efficiently while maintaining uninterrupted traffic operations and providing safe access for multimodal users in the project area. See Section B.5.

13. Whether the public improvement will require a single phase of construction work or multiple phases of construction work to address specific project conditions. The construction of the I-5 Rose Quarter Improvement Project requires phased construction staging to maintain mobility on I-5, accommodate access needs to and from several regional entertainment and recreation facilities at the Broadway/Weidler Interchange, and provide uninterrupted safe access for multimodal users in the Project area. The CM/GC method will ensure the contractor participates in constructability reviews and develops a Construction Approach, Means and Methods Report describing the contractor’s approved construction approach to work activities. See Section A.1.

14. Whether the contracting agency has, or has retained under contract, and will use contracting agency personnel, consultants and legal counsel that have necessary expertise and substantial experience in alternative contracting methods to assist in developing the alternative contracting method that the contracting agency will use to award the public improvement contract and to
help negotiate, administer and enforce the terms of the public improvement contract. For this project, ODOT’s project team will consist of ODOT personnel, third party consultant personnel, and Oregon DOJ legal counsel that have experience, expertise, and knowledge necessary to develop the CM/GC method procurement documents and process and the CM/GC Contract. See Section A.2.

F. Post-Project Evaluation Process

This project will be evaluated through a post-construction evaluation report in accordance with the requirements of ORS 279C.355, including analysis of project cost and savings. In addition to the matters to be evaluated under ORS 279C.355(2), the use of the CM/GC method for this project may be evaluated based upon the accomplishment of ODOT objectives for the project.

The final FFE post-construction evaluation report will be made available for public inspection.

CONCLUSIONS

Findings have been developed in compliance with ORS 279C.330, 279C.335(2) and 279C.335(4) and 279C.350, applying the criteria required by ORS 279C.330 and 279C.335(2), and the additional considerations under ORS 279C.335(2)(b). (ODOT will also perform the post-project evaluation required by ORS 279C.355.) Based upon these findings and the following conclusions, ODOT has determined that an exemption from competitive bidding requirements is justified for the described public improvement contract:

1. Following the described selection process, an exemption is unlikely to encourage favoritism in the awarding of public improvement contracts or substantially diminish competition for public improvement contracts; and

2. Award of a public improvement contract pursuant to the exemption will likely result in substantial cost savings and other substantial benefits to ODOT and the public.
ORDER OF DIRECTOR

An exemption from public competitive bidding requirements is hereby granted to the Oregon Department of Transportation to enter into the described public improvement contract using the Construction Manager/General Contractor (“CM/GC”) contracting method as described in the preceding findings. This order is subject to the following conditions:

1. To the extent feasible, and consistent with this exemption, this procurement will follow the applicable provisions of ORS Chapters 279A, 279C and 291. And, as required by ORS 279C.335(4)(c) and ORS 279C.335(1), this procurement will be conducted in accordance with the DOJ Model Rules applicable to procurement of CM/GC services (OAR Chapter 137, Division 49).

2. ODOT, in concert with the Oregon DOJ, shall establish and follow standards for evaluating proposals under this procurement and for making a contract award.

3. ODOT shall work with the Oregon DOJ to develop suitable contract language for the CM/GC contract, and shall incorporate into the contract such additional terms that ODOT and the Oregon DOJ may determine to be necessary for compliance with Oregon law and other applicable law or otherwise appropriate for the protection of the State.

THE PRECEDING FINDINGS AND CONCLUSIONS AND CONSIDERATION OF OTHER FACTORS SUBMITTED IN SUPPORT OF THIS REQUEST ARE HEREBY INCORPORATED, APPROVED AND ADOPTED.

Matt Garrett, Director of Oregon Department of Transportation Date

Marie Wright, Operations Manager, ODOT Procurement Office Date

REVIEWED BY THE DEPARTMENT OF JUSTICE

Rob Gebhardt, Sr. Assistant Attorney General Date