INDEX TO CULVERT PERFORMANCE CHARTS

<table>
<thead>
<tr>
<th>Chart</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHART 1</td>
<td>HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 2</td>
<td>HEADWATER DEPTH FOR PREFABRICATED CONCRETE END SECTION INLET CONTROL</td>
</tr>
<tr>
<td>CHART 3</td>
<td>HEADWATER DEPTH FOR C.M. CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 4</td>
<td>HEADWATER DEPTH FOR SAFETY END SECTIONS WITH SAFETY BARS INLET CONTROL</td>
</tr>
<tr>
<td>CHART 5</td>
<td>HEADWATER DEPTH FOR PREFABRICATED METAL END SECTIONS INLET CONTROL</td>
</tr>
<tr>
<td>CHART 6</td>
<td>HEADWATER DEPTH FOR CIRCULAR PIPE CULVERTS WITH BEVELED RING INLET CONTROL</td>
</tr>
<tr>
<td>CHART 7</td>
<td>HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL IN OUTLET CONTROL (n = 0.012)</td>
</tr>
<tr>
<td>CHART 8</td>
<td>HEAD FOR STANDARD C.M. PIPE CULVERTS FLOWING FULL IN OUTLET CONTROL (n = 0.024)</td>
</tr>
<tr>
<td>CHART 9</td>
<td>HEAD FOR STRUCTURAL PLATE CORR. METAL PIPE CULVERTS FLOWING FULL IN OUTLET CONTROL (N = 0.0328) TO (0.0302)</td>
</tr>
<tr>
<td>CHART 10</td>
<td>HEADWATER DEPTH FOR BOX CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 11</td>
<td>HEADWATER DEPTH FOR RECTANGULAR BOX CULVERTS WITH INLET CONTROL FLARED WINGWALLS 18° TO 33.7° AND 45° WITH BEVELED EDGE AT TOP OF INLET</td>
</tr>
<tr>
<td>CHART 12</td>
<td>HEAD FOR CONCRETE BOX CULVERTS FLOWING FULL IN OUTLET CONTROL (n = 0.012)</td>
</tr>
<tr>
<td>CHART 13</td>
<td>HEADWATER DEPTH FOR C.M. PIPE-ARCH CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 14</td>
<td>HEADWATER DEPTH FOR STRUCTURAL PLATE PIPE-ARCH CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 15</td>
<td>HEADWATER DEPTH FOR STRUCTURAL PLATE PIPE-ARCH CULVERTS WITH INLET CONTROL</td>
</tr>
<tr>
<td>CHART 16</td>
<td>HEAD FOR STANDARD C.M. PIPE-ARCH CULVERTS FLOWING FULL IN OUTLET CONTROL (n = 0.024)</td>
</tr>
</tbody>
</table>
CHART 17 HEAD FOR STRUCTURAL PLATE CORRUGATED METAL PIPE ARCH CULVERTS 18 IN. CORNER RADIUS FLOWING FULL IN OUTLET CONTROL \(n = 0.0327 \) TO \(0.0306 \) ... 22

CHART 18 HEADWATER DEPTH FOR C.M. ARCH CULVERTS \(0.3 \leq \text{RISE} / \text{SPAN} < 0.4 \) WITH INLET CONTROL .. 23

CHART 19 HEADWATER DEPTH FOR C.M. ARCH CULVERTS \(0.4 \leq \text{RISE} / \text{SPAN} < 0.5 \) WITH INLET CONTROL .. 24

CHART 20 HEADWATER DEPTH FOR C.M. ARCH CULVERTS \(0.5 \leq \text{RISE} / \text{SPAN} \) WITH INLET CONTROL .. 25

CHART 21 HEAD FOR C.M. ARCH CULVERTS FLOWING FULL EARTH BOTTOM (\(n_b = 0.022 \) \(0.3 \leq \text{RISE} / \text{SPAN} < 0.4 \)) ... 26

CHART 22 HEAD FOR C.M. ARCH CULVERTS FLOWING FULL IN OUTLET CONTROL EARTH BOTTOM (\(n_b = 0.022 \) \(0.4 \leq \text{RISE} / \text{SPAN} < 0.5 \)) .. 27

CHART 23 HEAD FOR C.M. ARCH CULVERTS FLOWING FULL IN OUTLET CONTROL EARTH BOTTOM (\(n_b = 0.022 \) \(0.5 \leq \text{RISE} / \text{SPAN} \)) ... 28
These charts provide nomographs to determine inlet and outlet control headwater depths for common culvert shapes. Nomographs for additional culvert shapes are in FHWA Hydraulic Design Series No. 5 “Hydraulic Design of Highway Culverts.”

Note: The outlet control nomographs provide accurate estimates of headwater depths if there is full flow in the culvert barrel and a submerged outlet. The nomographs may slightly overestimate headwater depths if the barrel flows partially full.

INDEX TO CULVERT PERFORMANCE CHARTS

<table>
<thead>
<tr>
<th>Chart</th>
<th>Shape</th>
<th>Material</th>
<th>Control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Circular</td>
<td>Concrete</td>
<td>Inlet</td>
<td>Inlet projecting or in headwall</td>
</tr>
<tr>
<td>2</td>
<td>Circular</td>
<td>Concrete</td>
<td>Inlet</td>
<td>Prefabricated concrete end section</td>
</tr>
<tr>
<td>3</td>
<td>Circular</td>
<td>Metal</td>
<td>Inlet</td>
<td>Corrugated or structural plate pipe with inlet projecting, mitered, or in headwall. (Use Scale 2 for ODOT sloped end with or without slope paving.)</td>
</tr>
<tr>
<td>4</td>
<td>Circular</td>
<td>Metal</td>
<td>Inlet</td>
<td>Safety end section with bars (Use for concrete or metal barrel.)</td>
</tr>
<tr>
<td>5</td>
<td>Circular</td>
<td>Metal</td>
<td>Inlet</td>
<td>Prefabricated metal end section</td>
</tr>
<tr>
<td>6</td>
<td>Circular</td>
<td>Metal</td>
<td>Inlet</td>
<td>Reinforced concrete beveled ring around inlet</td>
</tr>
<tr>
<td>7</td>
<td>Circular</td>
<td>Concrete</td>
<td>Outlet</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Circular</td>
<td>Metal</td>
<td>Outlet</td>
<td>Corrugated metal pipe</td>
</tr>
</tbody>
</table>
INDEX TO CULVERT PERFORMANCE CHARTS, CONTD.

<table>
<thead>
<tr>
<th>Chart</th>
<th>Shape</th>
<th>Material</th>
<th>Control</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Circular</td>
<td>Metal</td>
<td>Outlet</td>
<td>Structural plate pipe</td>
</tr>
<tr>
<td>10</td>
<td>Box</td>
<td>Concrete</td>
<td>Inlet</td>
<td>Top edge square with wingwalls</td>
</tr>
<tr>
<td>11</td>
<td>Box</td>
<td>Concrete</td>
<td>Inlet</td>
<td>Top edge beveled with wingwalls (Use Scale 2 for box culvert shown on ODOT Standard Drawing BR 800.)</td>
</tr>
<tr>
<td>12</td>
<td>Box</td>
<td>Concrete</td>
<td>Outlet</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pipe-Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Corrugated pipe-arch with inlet projecting, mitered, or in headwall (Use Scale 2 for ODOT sloped end with or without slope paving.)</td>
</tr>
<tr>
<td>14</td>
<td>Pipe-Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Structural plate pipe-arch with inlet projecting, or in headwall with or without beveled edge and 18-inch corner radius</td>
</tr>
<tr>
<td>15</td>
<td>Pipe-Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Structural plate pipe-arch with inlet projecting, or in headwall with or without beveled edge and 31-inch corner radius</td>
</tr>
<tr>
<td>16</td>
<td>Pipe-Arch</td>
<td>Metal</td>
<td>Outlet</td>
<td>Corrugated metal</td>
</tr>
<tr>
<td>17</td>
<td>Pipe-Arch</td>
<td>Metal</td>
<td>Outlet</td>
<td>Structural plate with 18-inch corner radius</td>
</tr>
<tr>
<td>18</td>
<td>Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Structural plate arch with inlet projecting, mitered, or in headwall with $0.3 \leq \text{Rise/Span} < 0.4$</td>
</tr>
<tr>
<td>Chart</td>
<td>Shape</td>
<td>Material</td>
<td>Control</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>19</td>
<td>Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Structural plate arch with inlet projecting, mitered, or in headwall with $0.4 \leq \text{Rise/Span} < 0.5$</td>
</tr>
<tr>
<td>20</td>
<td>Arch</td>
<td>Metal</td>
<td>Inlet</td>
<td>Structural plate arch with inlet projecting, mitered, or in headwall with $0.5 \leq \text{Rise/Span}$</td>
</tr>
<tr>
<td>21</td>
<td>Arch</td>
<td>Metal</td>
<td>Outlet</td>
<td>Structural plate arch with earth bottom and $0.3 \leq \text{Rise/Span} < 0.4$</td>
</tr>
<tr>
<td>22</td>
<td>Arch</td>
<td>Metal</td>
<td>Outlet</td>
<td>Structural plate arch with earth bottom and $0.4 \leq \text{Rise/Span} < 0.5$</td>
</tr>
<tr>
<td>23</td>
<td>Arch</td>
<td>Metal</td>
<td>Outlet</td>
<td>Structural plate arch with earth bottom and $0.5 < \text{Rise/Span}$</td>
</tr>
</tbody>
</table>
CHART 1

HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL

Example:

D = 42 inches [3.5 feet]
Q = 120 cfs

HW
D

(1) 2.5 0.5
(2) 2.1 7.4
(3) 2.2 7.7

* D in feet

To use scale (2) or (3) project horizontally to scale (1), then use straight edge line through D and C scales, or reverse as illustrated.

ODOT Hydraulics Manual
April 2014
CHART 2
HEADWATER DEPTH FOR PREFABRICATED CONCRETE END SECTION IN INLET CONTROL

April 2014
ODOT Hydraulics Manual
CHART 3

HEADWATER DEPTH FOR C.M. CULVERTS WITH INLET CONTROL

EXAMPLE
\[\frac{H}{D} = \text{feet} \]

(1) \[\frac{H}{D} = 1.8 \]
(2) \[\frac{H}{D} = 2.1 \]
(3) \[\frac{H}{D} = 2.2 \]

* D in feet

ODOT Hydraulics Manual

April 2014
CHART 4

HEADWATER DEPTH FOR SAFETY END SECTIONS WITH SAFETY BARS IN INLET CONTROL

Example:
\[D = 48 \text{ in} \]
\[D = 36 \text{ ft} \]
\[H/W = 0.83 \]
\[H/W = 40° \]

Developed by ODOT from Kansas Department of Transportation
Report No. 1/C/13/435-0/0-8-4

April 2014

ODOT Hydraulics Manual
CHART 5
HEADWATER DEPTH FOR PREFABRICATED METAL END SECTIONS IN INLET CONTROL
CHART 6

HEADWATER DEPTH FOR CIRCULAR PIPE CULVERTS WITH BEVELED RING INLET CONTROL
CHART 7

HEAD FOR
CONCRETE PIPE CULVERTS
FLOWING FULL IN OUTLET CONTROL
n = 0.012
CHART 8

HEAD FOR STANDARD C.M. PIPE CULVERTS FLOWING FULL IN OUTLET CONTROL

\(n = 0.024 \)

For outlet crown not submerged, compute HW by methods described in the design procedures.
CHART 9

HEAD FOR STRUCTURAL PLATE CORR. METAL PIPE CULVERTS FLOWING FULL IN OUTLET CONTROL

N = 0.0328 TO 0.0302
CHART 10

HEADWATER DEPTH
FOR BOX CULVERTS
WITH INLET CONTROL

Example:

- $Q_{in} = 76$ cfs
- $Q_{dis} = 16$ cfs
- Initial HWD: 1.78

Scales:

- Scales (1), (2), (3) for different angles of wingwall flares:
 - (1): 90° to 75°
 - (2): 90° and 15°
 - (3): 0° extensions of side

To use scale (2) or (3), project vertically from (1) then use straight ruled line through (2) and (3) scales, or reverse as illustrated.
CHART 11
HEADWATER DEPTH FOR RECTANGULAR BOX CULVERTS WITH INLET CONTROL
FLARED WINGWALLS 18° TO 33.7° AND 45° WITH BEVELED EDGE AT TOP OF INLET
CHART 12

HEAD FOR CONCRETE BOX CULVERTS FLOWING FULL IN OUTLET CONTROL

n = 0.012
CHART 13

HEADWATER DEPTH FOR
C.M. PIPE-ARCH CULVERTS
WITH INLET CONTROL

EXAMPLE
Size: 36" x 24"
Q = 20 cfs

<table>
<thead>
<tr>
<th>HW/D</th>
<th>HW (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>2.0</td>
</tr>
<tr>
<td>1.15</td>
<td>2.1</td>
</tr>
<tr>
<td>1.22</td>
<td>2.3</td>
</tr>
</tbody>
</table>

* D in feet

HEADWATER DEPTH IN TERMS OF RISE (HW/D)

EXPLANATION:

1. Headwall
2. Mitered to conform to slope
3. Protruding

To use scale (2) or (3), project horizontally to scale (1), then use scale (1) to transfer D and Q scales, or reverse as illustrated.

* ADDITIONAL SIZES NOT DIMENSIONED ARE LISTED IN FABRICATORS' CATALOGS

ODOT Hydraulics Manual
April 2014
CHART 14

HEADWATER DEPTH FOR STRUCTURAL PLATE PIPE-ARCH CULVERTS WITH INLET CONTROL

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>TYPE OF INLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE 18.8" X 6.3"</td>
<td>0° HEADWALL: 33.7" X 0.10 D BEVEL</td>
</tr>
<tr>
<td>PROJECTING</td>
<td>NO BEVEL</td>
</tr>
</tbody>
</table>

| PROJECTING INLET | PROJECTING OR HEADWALL INLET |
| HEADWALL WITH OR WITHOUT EDGE BEVEL |

HEADWATER DEPTH IN TERMS OF ARCH RISE (ft)
CHART 15

HEADWATER DEPTH FOR STRUCTURAL PLATE PIPE-ARCH CULVERTS WITH INLET CONTROL
CHART 16

HEAD FOR
STANDARD C.M. PIPE-ARCH CULVERTS
FLOWING FULL IN OUTLET CONTROL
n = 0.024

For outlet crown not submerged, compute HW by methods described in the design procedure.
CHART 17

HEAD FOR
STRUCTURAL PLATE
CORRUGATED METAL
PIPE ARCH CULVERTS
18 IN. CORNER RADIUS
FLOWING FULL IN OUTLET CONTROL
n = 0.0327 TO 0.0306
CHART 18

HEADWATER DEPTH FOR C.M. ARCH CULVERTS 0.3 ≤ RISE / SPAN < 0.4 WITH INLET CONTROL

Example
A = 122.2 ft
Q = 1014 cfs

<table>
<thead>
<tr>
<th>Entrance Type</th>
<th>HW</th>
<th>HW</th>
<th>HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0.95</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>0.26</td>
<td>7.52</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>1.03</td>
<td>8.18</td>
<td></td>
</tr>
</tbody>
</table>

Entrance Conditions
(2) 90° headwall
(4) Millared to embankment
(5) Thin wall projecting corrugated metal.
CHART 19

HEADWATER DEPTH
FOR C.M. ARCH CULVERTS
0.4 ≤RISE / SPAN <0.5
WITH INLET CONTROL

Entrance Conditions
(2) 90° headwall
(4) Mitered to embankment
(5) Thin wall projecting corrugated metal.

[Diagram with tables and data points]

ODOT Hydraulics Manual
April 2014
CHART 20

HEADWATER DEPTH
FOR C.M. ARCH CULVERTS
0.5 ≤ RISE / SPAN
WITH INLET CONTROL

Entrance Conditions
(3) 90° headwall
(4) Filtered to embankment
(5) Thin wall projecting corrugated metal.

<table>
<thead>
<tr>
<th>Type</th>
<th>Discharge (Q) in cfs</th>
<th>Arch Area in Square Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.80</td>
<td>10,000</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>12,500</td>
</tr>
<tr>
<td>4</td>
<td>1.60</td>
<td>15,000</td>
</tr>
<tr>
<td>5</td>
<td>1.50</td>
<td>18,000</td>
</tr>
</tbody>
</table>

Example

Q = 1,260 cfs

Headwater Depth to Rise (HW / D):

0.4

Span
CHART 21

HEAD FOR C.M. ARCH CULVERTS
FLOWING FULL
EARTH BOTTOM (n_b = 0.022)
0.3 ≤ RISE / SPAN < 0.4

For culvert crown not submerged, compute HW by methods described in the design procedure.
CHART 22

HEAD FOR C.M. ARCH CULVERTS
FLOWING FULL IN OUTLET CONTROL
EARTH BOTTOM (n_b = 0.022)
0.4 ≤ RISE / SPAN < 0.5

For outlet crown not submerged, compute HW by methods described in the design procedures.
CHART 23

HEAD FOR C.M. ARCH CULVERTS
FLOWING FULL IN OUTLET CONTROL
EARTH BOTTOM \((n_s=0.022)\)
\(0.5 \leq \text{RISE} / \text{SPAN}\)

For outlet runon not submerged, compute HW by methods described in the design procedure.