Case Studies

Prepared for:
Oregon Department of Transportation
Geo-environmental Section
4040 Fairview Industrial Drive
SE MS #6
Salem, OR 97302-1142

Prepared by:
Peak Science Communications
8923 W. Ardene Street
Suite A
Boise, ID 83709

June 2011
List of Acronyms

CE—Categorical Exclusion
CETAS—Collaborative Environmental and Transportation Agreement for Streamlining
EA—Environmental Assessment
EIS—Environmental Impact Statement
EPM—Environmental Project Manager
FHWA—Federal Highway Administration
FONSI—Finding of No Significant Impact
FTA—Federal Transit Administration
IAMP—Interchange Area Management Plan
NEPA—National Environmental Policy Act
ODOT—Oregon Department of Transportation
OTC—Oregon Transportation Commission
OTIA—Oregon Transportation Investment Act
PEL—Planning and Environmental Linkages
PMT—Project Management Team
REC—Region Environmental Coordinators
RTP—Regional Transportation Plan
STIP—State Transportation Improvement Program
TAC—Technical Advisory Committee
TSP—Transportation System Plan
Table of Contents

List of Acronyms ... i
Introduction ... 1
I-5 to 99W Connector Project ... 3
Springwater Interchange Project ... 5
I-205/Airport Way Project .. 7
Woodburn Interchange Project ... 8
Highway 138E Roseburg .. 13
US 97 Bend North Corridor Project .. 15
North Ontario Interchange Area Management Plan ... 17
Introduction

The PEL case studies have been commissioned to show a variety of ODOT projects that implemented linkage of the planning and environmental processes to varying degrees of success. The intent of conducting these case studies is to discover linking scenarios that have already occurred and to learn from the challenges and successes of the process as encountered in those projects. These concepts will be carried forward into the development of a comprehensive PEL guidance document for use throughout ODOT.
I-5 to 99W Connector Project

ODOT Region 1
Planning Document I-5 to 99W Connector Project Alternative Analysis Report
Environmental Document Categorical Exclusion
ODOT Planning Contact Tim Wilson, Planner
ODOT Environmental Contact Scott Richman, Environmental Consultant, David Evans and Associates

Project Overview

This project was initiated as a joint venture between ODOT, Washington County, and the City of Portland to address increasing congestion of the state highway system between I-5 and Highway 99W in southwest Portland.

The I-5 to 99W Connector project was to be conducted in two phases. Phase 1 was a corridor-level planning process for determining the type of project and the location. The I-5 to 99W Connector Project Alternative Analysis Report (Alternatives Analysis) was the product of Phase 1. The planning process resulted in the analysis of seven alternatives, which included high-level environmental considerations that could be advanced to the EIS.

Phase 2 of the project was to select and design a project based on the conclusions of Phase 1. However, a partnering agreement between all jurisdictions required unanimous agreement on a Preferred Alternative, which could not be achieved. The project changed direction to focus on local improvements instead. Because the project was no longer a state highway project and would not be using FHWA funds, the project no was longer subject to NEPA and an EIS was not written. Instead, a number of recommendations from the study were included in the Metro Transportation System Plan and funds designated for the project were allocated for local improvements.

Planning and Environmental Linkage Implementation

The Alternatives Analysis document was developed through the coordination of all State and Federal agencies that would normally be involved in the NEPA process to streamline the EIS process that would be required in Stage 2. The document was structured and developed with a level of detail similar to a Tier 1 EIS. The study features a chapter devoted to “Environmental Effects,” with a section describing the comparative evaluation of each alternative’s effects for each of the 12 environmental resources as required by NEPA.

The environmental information for the Alternatives Analysis came from a combination of Federal, State, and local agency information and data, including Regional Land Information System data provided by Metro. The schedule and budget for the environmental work was incorporated into the Scope of Work for this project. The environmental and land use process took approximately 18 months of the overall project timeline of just over 3 years and cost approximately $420,000 of the $3.3 million expended for the consultant team’s work. The PMT believes the PEL process would definitely have saved time and money during the NEPA phase had the project gone forward with an EIS.

Jeff Kaiser, former Major Projects Manager for ODOT and now with David Evans and Associates, outlined the PEL process for this project. His process was favorably received by the managers involved in the project and praised by FHWA officials. The planning process included
stakeholders from all NEPA-required agency and jurisdictional groups, including CETAS, to develop the project purpose and need, goals, and objectives; evaluation criteria; and range of alternatives. Although this level of involvement does not usually occur until the project-development phase, the stakeholders involved saw the opportunity for early involvement as a way to streamline the environmental process.

Although the project took a different direction—one that did not require an EIS—the environmental framework remains in place and is ready to use should this project be revived in the future.

Lessons Learned

The PEL implementation model for this project was considered to be very successful by those involved and resulted in a framework that future ODOT projects can use or a model that could be used when developing PEL guidance. In fact, the process is already being used in an informal manner by some ODOT project managers.

The planning and environmental staff involved in this project provided the following observations and recommendations:

- Linking the planning and environmental processes worked well.
- Working with many jurisdictions complicates the process.
- Requiring unanimous approval on the Preferred Alternative by all jurisdictions in order to advance the project was a mistake.
- The real difficulty in linking planning with the environmental process involves public involvement. In the NEPA process, clear boundaries help guide the public involvement process—some questions are simply not relevant because NEPA standards preclude them. No such boundaries exist during planning, so public involvement can become extensive and troublesome.
- The planning analysis is far less detailed than what is required for NEPA, but it serves as a good foundation for further NEPA work.
- The current Jobs in Transportation funding, which includes projects for which public buy-in has already been established, should serve as a good testing ground for full PEL implementation.
- Two major successes of PEL implementation occurred during this project:
 - The process framework established in this project can serve as a model for other ODOT projects.
 - The environmental planning approach may have filtered down to local projects.
Springwater Interchange Project

ODOT Region 1
Planning Document *US 26: Access to the Springwater Community Interchange Area Management Plan*
Environmental Document Environmental Assessment (not yet initiated)
ODOT Planning Contact Michael Ray, Senior Planner
ODOT Environmental Contact Kathy Majidi, City of Gresham Environmental Specialist

Project Overview

The purpose of this project was to address current and future safety concerns along U.S. 26 in the Springwater area. Improved access to the area and planning for future growth were also major concerns. In 2005, the City of Gresham developed their TSP for Springwater, which included a recommendation for a new interchange on U.S. 26 and improvements to the existing community street network.

The environmental planning process initially began in 2007, but because no funding for construction was available and environmental documents have a limited shelf life, it was decided an EIS would not be warranted at the time. Instead, project leadership chose to develop an IAMP with the intent to include environmental data in the plan to serve as a foundation for a future EA.

The OTC adopted the IAMP and the project is waiting for funding to begin the environmental process.

Planning and Environmental Linkage Implementation

ODOT and the City of Gresham worked with Parametrix to assemble interested environmental specialists and stakeholders, specifically from the Johnson Creek Watershed Council and Metro. Notice of public meetings and documentation was also sent to the FWHA for review. The intent of the PMT was to produce an IAMP that included enough environmental analysis to downgrade the project from an EIS to an EA.

From the beginning, the PMT wanted the IAMP to propose interchange alternatives for meeting the developmental needs of the community and to enhance the natural resources of the area instead of just trying to avoid them. The Preferred Alternative was adjusted to allow for the enhancement of riparian areas and wetlands within the stream corridors within Springwater, with the intent of improving the environment instead of just mitigating for damage.

The public involvement process was enhanced for this project, as well. IAMP guidelines call for a minimum of two public outreach efforts; however, the project team exceeded these guidelines in order to provide consistency with NEPA public involvement requirements. In addition to the OTC Hearing, the PMT held the following public involvement forums:

- Interested parties meeting
- Stakeholder meetings (5 meetings)
- Public open house
- Property owner meetings (2 meetings)
- City of Gresham Planning Commission meetings (2 meetings)
- City of Gresham City Council meetings (2 meetings)
- Individual one-on-one meetings with property owners as requested
The project met with some community opposition, mostly from individual property owners rather than from businesses. Putting the project into perspective from a long-range planning point of view helped alleviate many of the concerns of property owners.

Lessons Learned

The project team agreed that this process worked extremely well. They are actively seeking project funding so they can test the environmental foundation they have built by moving into an EA rather than an EIS. The planning and environmental staff involved in this project provided the following observations and recommendations:

- Reducing the NEPA class of action for the resultant project can be one outcome of PEL. In this case, it is believed that because of the IAMP’s attention to environmental issues, the future project is likely to be an EA instead of an EIS.
- The IAMP process took 4 years to complete, which is fairly typical for an IAMP in Region 1; adding the environmental analysis to the process was not thought to have extended the timeline.
- Adding environmental considerations up front in the planning process helped reduce surprises later by providing more accurate data.
- Bringing the environmental stakeholders into the planning process also assisted the environmental stakeholders with their long-range planning for the area. The process enabled all jurisdictions involved to align their internal planning, which will help keep them “out of each other’s way.” The results of this planning alignment will affect environmental projects for the next 10–20 years.
- For a shorter process, the regulatory environmental community must be involved before the nonregulatory environmental community. This involvement will help narrow alternatives to those that can legally be accomplished.
I-205/Airport Way Project

ODOT Region 1
Planning Document None developed by the Oregon Department of Transportation
Environmental Document Categorical Exclusion
ODOT Planning Contact Andy Johnson, Planner
ODOT Environmental Contact N/A

Project Overview

The Airport Way interchange at I-205 north is a vital and heavily used route in the regional highway system. The area was first viewed as a possible trouble spot for traffic congestion in the 1990s. By 2004, both eastbound and westbound traffic began experiencing long delays. ODOT and the Port of Portland initiated a project in 2005 to alleviate congestion and committed to making the needed changes by 2014.

The PMT began working with community stakeholders and jurisdictional agencies to look at the problem scope, identify potential impediments, and develop a set of alternatives to alleviate the problem. Environmental technical reports were incorporated into the planning process and alternatives were changed or dropped depending on the environmental impacts associated with each alternative.

The project is currently waiting for funding and has been downgraded to a CE, so no further NEPA process work is required.

Planning and Environmental Linkage Implementation

Environmental concerns were considered from the beginning of the planning process for this project. Key personnel were brought together to work on the alternatives to avoid environmental pitfalls from the beginning rather than trying to mitigate for them once the NEPA process began. Alternatives were evaluated according to environmental reports that were developed for each of the potential environmental impact areas that would be required by NEPA.

CETAS involvement was invited at the planning stage and a draft Purpose and Need statement was sent to and approved by the FWHA. Although the FWHA could not “officially triage” the planning process, they were willing to provide suggestions to help the planning process avoid environmental concerns from a NEPA perspective.

Project managers estimate that implementing PEL saved years in the project timeline, as well as money. The planning and environmental work took 20 months and cost approximately $1 million.

Because the environmental impacts were so well documented, the project planners were able to avoid them. The result was a reduced project scope to a CE, which does not require an EA or EIS. If the planning and NEPA work had not been integrated, a follow-on EA process would have likely taken 2.5–4 years to complete at a cost of approximately $1.5–2.0 million and may have repeated some of the planning process elements.

Lessons Learned

The planning staff involved in this project provided the following observations and
recommendations:

- The need, mode, and function need to be determined at the system’s planning level. The need, mode, and function can carry into the NEPA process.
- The ability for EPMs and RECs to communicate with planners needs to be improved. A NEPA-Planning glossary has been developed and will be continuously improved.
- Basic NEPA education is needed for planners working on projects likely to have a federal nexus, and basic planning education is needed for EPMs and RECs to understand how projects came about.
- The FHWA and EPM need to be involved from the beginning to ensure a smooth transition from the planning phase into the environmental phase.
- Environmental information used should be well documented, including the source and date of the information and how the information was used to inform the planning effort. At the refinement planning level, why any alternative was eliminated needs to be documented, including how the alternative did not meet the need and how resource agencies concurred with the decision to eliminate the alternative.
- The range of alternatives carried into NEPA can be limited, if the following are true:
 - The alternatives eliminated do not meet the purpose and need of the project (make sure this fact is well documented)
 - Resource agencies have an opportunity to participate and environmental considerations were applied during the screening process
 - The FHWA says you can
- For an EIS, the NEPA process must still consider a reasonable range of alternatives (all that meet the Purpose and Need of the project).
- When updating an RTP, a reconnaissance-level environmental analysis is mandatory and is also highly suggested for a TSP. This level of planning should answer the need, mode, and function of a proposed solution.
- Project-level environmental data and analysis are required to inform more detailed project refinement and may include field data collection and preliminary permitting discussions with regulatory agencies. The question should be asked, “Should we enter into the EA/EIS process, or is it better to answer the questions in a Refinement Plan?” If the refinement plan process is determined to be preferential, the plan should be coordinated with the administrating agency (FHWA or FTA) when applicable, and then CETAS. The answer likely depends on whether construction funds are available, the likelihood of a federal funding nexus, possible environmental impacts, and the level of previously completed planning studies among many other factors.
- While PEL is being stressed, this is an important piece of a larger process: linking our project delivery functions with our planning functions.
- Our partner agencies expect ODOT will provide quality control functions prior to asking those agencies to concur with a proposed action. For example, ODOT should not ask the FHWA or FTA to incorporate information from a planning effort into NEPA if the planning effort did not meet ODOT’s minimum expectations (for example, resource agency involvement and concurrence with alternatives dismissed).

Woodburn Interchange Project

ODOT Region
Project Overview

This project was initiated to address traffic congestion from substantial residential and commercial growth in the area of the Woodburn interchange between I-5 and Oregon 214. Development of an EA began in the early 1990s but was suspended for lack of funding. However, growth continued in the area and in 1996, the City of Woodburn completed their TSP that acknowledged the interchange needed improvement but did not specify the nature of the improvement. The TSP identified three possible courses of action and called upon ODOT Region 2 to develop a Refinement Plan to narrow the alternatives when funding became available.

The Refinement Plan proceeded in 1999 with extensive public involvement. City of Woodburn staff initially thought a new interchange built in a different location would be the best option. However, after examining the implications and effectiveness and the range of possible solutions that had been identified in the TSP, City of Woodburn staff and ODOT agreed that updating the existing interchange was the best course of action—a plan that had gained strong local support by that time. Based on this agreement, the project was able to move into the NEPA process in 2003 when ODOT programmed the funding needed to develop an EA.

After the Refinement Plan was completed in 2001, the City of Woodburn began updating its TSP with the intent to incorporate the Refinement Plan recommendations. ODOT began developing an IAMP and EA in early 2003, also based on the direction provided by the Refinement Plan and in coordination with the TSP update. The TSP update was completed in early 2006, and the IAMP was adopted by the OTC in August 2006. A formal NEPA process began, culminating in an EA that was completed in November 2006. A Preferred Alternative was recommended and selected for implementation on December 8, 2006, with the signing of the Revised EA and FONSI, which allowed the project to move forward with construction. The project is in the final design process and has accumulated 80% of the funding needed to begin construction.

Planning and Environmental Linkage Implementation

In this case, the environmental process was clearly expedited because of planning decisions made in several key areas. First, ODOT Region 2 has designated personnel who were able to integrate and facilitate both the planning and environmental processes. Specifically, the Planning Project Manager, Terry Cole, was also the project leader for the environmental documentation phase. Because of the importance of garnering public and stakeholder support through the planning phase, along with Cole’s intimate knowledge of stakeholder and public issues, Cole was the most appropriate choice to continue in the leadership role during the NEPA process.

According to Cole, the goal of the planning process, “is not to fully resolve all of the detailed NEPA issues, but to bring to light what you are likely to face and to answer the question, ‘Does (the proposed solution) solve the identified operational problem and is it doable—does it have any fatal flaws?’”
Secondly, the Refinement Plan public involvement supported NEPA public involvement, which was a key factor for a smooth EA process. The EA public involvement was also closely coordinated with the TSP and IAMP public involvement processes. ODOT already had strong local public support for the course of action advanced from the Refinement Plan, and the NEPA process was able to quickly validate that direction and simplify the subsequent analysis by efficiently reducing the range of alternatives that needed to be addressed at a NEPA level of detail. The timing of the NEPA process, which began shortly after the Refinement Plan was completed, was also a key factor for this project because agreements between the City of Woodburn and ODOT were still very fresh. This model helps the public to see one seamless process rather than two or more separate processes, which can appear repetitive and confusing.

Finally, completing a thorough Refinement Plan process with a robust public involvement element helped narrow the field of feasible solutions that could be moved forward into the NEPA process. If a potential solution was deemed infeasible because it did not solve the problem or had technical or environmental fatal flaws during the refinement planning process, that solution was not recommended for further study and was dismissed early in the NEPA process. Additionally, if a potential solution was known to be less favored by the public and stakeholders and offered no particular operational advantage over other potential solutions that did not have greater environmental or technical constraints, it was not recommended for further study. Again, these recommendations have to be validated when the NEPA process formally begins. This approach also alleviated the need to address ongoing questions about the project’s basic premise (i.e., is this the right course of action) because the public felt that they had already heard and addressed that issue and could now move on to detailed discussions about the feasible alternatives. Keeping the same working groups together from the planning phase through the NEPA phase was also critical to the success of the process.

Lessons Learned

The biggest lesson learned from this project was that good system planning—ODOT’s refinement plan and IAMP and the City of Woodburn’s TSP—can support the NEPA process. “Good” system planning, in this case, was exemplified by a strong local TSP process, a collaborative state and local refinement plan process, and an IAMP that was coordinated with and reflective of the other two efforts. All of these efforts had active public involvement processes, which assured that key agreements were reached before proceeding to subsequent levels of analysis.

The planning and environmental leads for this project provided the following observations and recommendations:

- Understanding that viewing the planning, NEPA, project development, and construction as a seamless process helps gain and keep local support.
- Viewing the local planning process as a true partnership between the community and ODOT makes the system planning and NEPA (project planning) processes smoother and more effective.
- Well-organized and thorough public and stakeholder involvement in the planning phase is paramount. Don’t invest in the NEPA process until you have local/public support for the recommended course of action. This support is also the key to gaining political and funding support.
Public comments should be thoroughly documented during the planning process. Property ownership can change during the life of the project, so documenting agreements with stakeholders and owners is important. Documenting the “willing lack of participation” is also a good idea. Documenting issues and concerns, along with infeasible solutions that were dismissed from further study in the planning process helps make the NEPA process much more efficient and effective.

Involving stakeholders in a ‘robust’ way during planning keeps surprises from popping up in the NEPA phase.

While early contact was made with key environmental and regulatory agencies to gain all of the information needed to avoid and minimize impacts to important and sensitive resources, early concurrence from these agencies was not sought because they are reluctant to commit to a solution until sufficient information is available. Agency concurrence is also not necessary at the system planning level because the key questions of whether a solution is operationally effective and not fatally flawed, technically or environmentally, can usually be answered without detailed NEPA-level environmental analysis and design work. Nonetheless, early coordination with key regulatory agencies is very important to ensure that all relevant considerations are made during the system planning analysis and evaluation.
Highway 138E Roseburg

Project overview

Highway 138 serves as an important link between the I-5 corridor and the city of Roseburg, leading to key destinations in central Oregon. Currently, the state corridor runs through downtown Roseburg, creating traffic congestion and unsafe access for local businesses and pedestrians. The City of Roseburg met with ODOT to develop solutions to these problems, which resulted in commissioning the *Highway 138 Corridor Solutions Study*, which, for planning purposes, was considered a Refinement Plan.

The study identified several current and future transportation problems on Highway 138 and developed a range of conceptual solutions. Based on traffic, land use, socioeconomic impacts, and population data analyses, the study determined that a Class 3 project would be required to provide a long-term traffic solution for the area.

Although an EA would likely have been the next step, funding issues necessitated limiting the scope of the project, which downgraded the NEPA classification to a CE. However, should the project be expanded in the future, the foundation laid through the environmental analyses that were completed during the planning process will probably save time and money as the project moves through the NEPA process.

Planning and Environmental Linkage Implementation

The *Highway 138 Corridor Solutions Study* was structured from the beginning with the goal of moving the planning process smoothly into the NEPA process. Core leadership from the environmental, planning, and project development areas collaborated during the planning process in an effort to cut costs and reduce timelines during the NEPA process. Early involvement of all parties was also meant to ensure leadership consistency throughout the life of the project. Transitioning from planning to environmental analysis to project development would be more efficient and contain fewer surprises because managers from all disciplines had worked on the project from the beginning.

The core leaders from each area worked together to develop the Purpose and Needs statement and the goals and objectives for the project. These goals were developed within a NEPA framework so that the initial planning document could also be used as the platform for further environmental studies required for the project. Considering environmental factors during planning served as a foundation that was meant to make the EA process faster and easier.

Because the project would likely require FHWA funds, FHWA was consulted early during the planning process as well. Help from their representative was solicited during planning document development to ensure all alternatives selected for further study would have considered FWHA requirements. The project leadership team also met with CETAS and representatives from State and federal regulatory agencies to discuss the project plan.
The initial planning document, *Highway 138 Corridor Solutions Study*, included baseline environmental and land use data with the intention of allowing an earlier initial screening of concepts. Those alternatives in which the environmental impacts were deemed too high and which didn’t satisfy the Purpose and Need statement were removed from consideration early in the process. The result was a project plan that narrowed the original wide range of alternatives to only three that would be put forward for further environmental analysis in the EA. Although the project did not move forward to an EA, the foundation has been laid for future work. And, because an EA has only a 5-year shelf life, using a more robust planning document, which is not subject to the same time constraint, works well in an economy that might require a longer waiting period before a project receives funding.

Lessons Learned

Although implementing PEL required additional funding during the planning process, considering environmental issues from the beginning was deemed a good investment in the future environmental work that would be required to take the project to completion.

The planning and environmental staff involved in this project provided the following observations and recommendations:

- Large, highway modernization projects benefit most from PEL (Class 1 or Class 3).
- PEL saves money by helping to answer the question of whether an EA or EIS should be conducted, without committing to starting an EA or EIS, which is a much more expensive process.
- Early coordination of Region Management through PEL saves money if the environmental impacts can be avoided and the project can be downgraded from an EA/EIS to a CE.
- The Region Planning and Environmental Managers must be involved early on. The most successful planning/NEPA studies will be those that the Technical Center Manager, Area Manager, and Region Managers all support, and believe that the outcome of the planning/NEPA study will be a project for construction in the near future.
- Prior to engaging the public or potential local government stakeholders, Region Management must decide if the project has funding, if it can be built, and if the project will be politically viable before entering the planning/NEPA process.
US 97 Bend North Corridor Project

Project Overview

The initial purpose of this project was to reduce congestion and improve safety on US 97 on the north end of Bend. At that time, a project was funded in the STIP to place an interchange at Cooley Road and US 97. However, this project was met with public opposition and t concerns that the project did not address all of the transportation needs for the area arose. In response, the OTC asked Region 4 personnel to develop a transportation refinement plan to ensure compatibility of this project with the long-range plan and to guide future transportation projects on this corridor, prior to funding further project development work on the US 97/Cooley Road Interchange.

A draft Refinement Plan was prepared that included public involvement and identified two Preferred Alternatives to solve the transportation problems on US 97 on the north end of Bend. Prior to final adoption of the Refinement Plan, Region 4 management recommended starting the NEPA process, building from the recommendations contained in the refinement planning process. The initial NEPA plan was to use the Refinement Plan and its recommended alternatives as a basis for establishing the alternative development phase of the NEPA process, and then moving quickly into the EA phase.

However, the FWHA would not support using an EA after reviewing the Refinement Plan, and required an EIS. In addition, because environmental factors had not been considered during the alternatives analysis of the Refinement Plan, the alternative development process utilized in the Refinement Plan could not be used for the EIS. Therefore, the PMT had to go back and start anew with the public involvement and alternative development stage, this time using sufficient environmental analysis to satisfy the NEPA requirements.

The project is currently awaiting funding and a Draft EIS is nearing completion.

Planning and Environmental Linkage Implementation

This project is a good example of how not linking the environmental processes with planning can become a problem. Although the Refinement Plan was never intended to be used as the foundation for an environmental document, it ended up being used that way. If the Refinement Plan had included adequate environmental analysis and public involvement, it might have been accepted by the FWHA, and the team would not have had to start over at the alternatives development phase.
Lessons Learned
The planning and environmental staff involved in this project provided the following observations and recommendations:

- Whether a project can proceed from a traditional planning document directly into an EIS is unclear. The environmental aspect almost certainly must be implemented from the beginning of the planning process if an EA or an EIS is the next step.
- The management team must be involved when developing the project plan. Key decision makers need to be more involved in implementing PEL early during the process.
- The EPM should be involved in writing the scope of work for any planning document if the project will begin the development process within the next 5 years and is anticipated to need an EA or EIS.
- The PMT would have liked the opportunity to strengthen the existing Refinement Plan, rather than having to start over; however, the formal FHWA review did not allow for this option.
- The FHWA will look at planning documents, but they are hesitant to become involved in the details.
- No significant environmental natural resource factors (e.g., wetlands, endangered species) were identified during the development of alternatives as potentially impacted by this project. Socioeconomic and political factors were the only primary concerns—as the plan necessitated relocating up to 90 businesses.
- The initial alternative development during the planning process started with 20+ alternatives; the PMT analyzed 15–19 to a fairly high level of detail and 2 alternatives were moved forward for the EIS.
- This project is an example of political factors getting in front of ODOT internal processes.
- When the project went through the public involvement process for the second time, ODOT received many complaints about repeating the process.
- Starting over with alternative development added an additional 2 ½ years to the project timeline and substantial expense.
- The EIS used concepts of the alternatives developed for the Refinement Plan but not verbatim alternatives.
- For the EIS, the original recommendation was to provide a broad Purpose and Need statement and to utilize goals and objectives to help narrow the reasonable range of alternatives. However, upon legal review, it was their recommendation that the only legally defensible way to significantly narrow alternatives prior to the Draft EIS was to have a narrowed Purposed and Need statement. The PMT had to go back and narrow/modify the Purpose and Need statement multiple times in the Draft EIS process, which delayed the process approximately 6 months to a year.
- It is unclear what should have been included in the Draft EIS planning process for the FHWA to allow the Refinement Plan to be used as a starting point for the NEPA alternative development process. The environmental analysis required at the NEPA level is much more rigorous than could ever be funded through a planning effort, but if the environmental work could be considered on a broader scale during planning and be deemed sufficient to identify the range of alternatives, it would be of value.
North Ontario Interchange Area Management Plan

ODOT Region 5
Planning Document North Ontario Interchange Area Management Plan
Environmental Document Categorical Exclusion
ODOT Planning Contact Teresa Penninger, Region Planning Manager
ODOT Environmental Contact Mark Hanson, Consulting Environmental Project Manager, CH2M Hill

Project Overview

This project was a freeway interchange modification involving the replacement of a structurally deficient overpass on I 84, near the city of Ontario. The project included the realignment of approaches and ramps, a realignment of state highway OR-201 where it intersected the project area, and a connection to and modification of the local street network.

During the project design phase, the OTIA added a major new funding contingency—an IAMP had to be completed and approved before construction could begin. In addition, a preliminary assessment by the FWHA categorized the project as a Class 3, which would require an EA. The EA was initiated during the planning process in an effort to quickly develop alternatives that would be ready for the NEPA process.

The development of the IAMP was put on hold for about 6 months while the EA was completed. During that time, the FWHA re-categorized the project as a CE, eliminating the requirement for an EA.

Planning and Environmental Linkage Implementation

Because of the timing of the IAMP and EA requirements, the project leadership team was forced to look at how they could integrate three processes within the same timeframe. No one on the team had experience with this type of integration, so the project team was brought together for a one-day planning session to see where the planning (IAMP), environmental (EA), and design processes overlapped for this project. The whiteboard from that strategy session was used as the basis for developing the project roadmap diagram, shown in Figure 1. A combined project timeline was also established, with milestones projected and dates attached for each of the processes involved.

Because of the shortened delivery schedule, the team decided to combine the public involvement sessions. The team determined that the public would likely prefer one set of meetings to attend instead of three. Fewer meetings also provided the community with a better understanding of the overall project and eliminated the confusion sometimes encountered by what the public sees as “repetitive” meetings.

Incorporating the EA into the IAMP process allowed the team to avoid impacts that would not have been approved during the NEPA phase. Interjecting NEPA standards into the IAMP helped narrow alternatives, as well as provide a baseline environmental report on which the EA could be built.

Although combining processes probably increased the planning costs, the leadership team believes that money was recouped during the environmental phase and the integration process probably saved money throughout the life of the project. In addition, combining the processes
eliminated an estimated 1.5 to-2.5 years in the project timeline, which made this planning model ideal for the shortened delivery time this project required.

Figure 1. Planning and Environmental Linkages Roadmap

Because PEL implementation worked so well on this project, the following Region 5 ODOT projects have used this process model, even though the process has been mostly “internalized,” and no formal documentation of the process has been developed:

- Barnhart Road Interchange/Airport Road Extension—Design work was done at the same time as the IAMP, which included environmental considerations.
- Umatilla IAMP—Developed a TAC memo identifying environmental constraints. The memo does not substitute for an EA, but it does point out possible environmental pitfalls early in the planning process.

Lessons Learned

The planning and environmental staff involved in this project provided the following observations and recommendations:

- The key to project success was getting the right people together early in the process to map out the overlap areas between the planning, environmental, and design processes.
- Although FWHA officials did give an early preliminary assessment, they did not take an active role in the NEPA process.
- Cost savings was realized by running the processes concurrently, especially by combining planning and NEPA public involvement.
- A consultant was hired to ensure that the combined public involvement ran smoothly. Although not a common practice in Region 5, outside help was warranted for this project.