PROJECT-LEVEL
TRANSPORTATION MANAGEMENT PLAN

I-5: Interstate Bridge – Hassalo St.
Pacific Highway, M.P. 302.00 – M.P. 307.97
Multnomah County
Key #17516

I-5 Northbound at Interstate Bridge
I-5 Southbound at Hassalo Street Undercrossing

Oregon Department of Transportation
Region 1 Traffic Unit
123 NW Flanders Street
Portland, Oregon 97209

Prepared by: Reviewed by:
Thanh Tran Simon Eng, P.E.
Region 1 Traffic Analyst Region 1 Traffic Analysis Team Leader

June 20, 2017
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1. PROJECT AREA BOUNDARIES</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2. PROPOSED IMPROVEMENTS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3. TMP GOALS</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PROJECT AREA CHARACTERISTICS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.1. ROADWAY CHARACTERISTICS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2. TRAFFIC DATA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.3. LOCATION OF OTHER CONSTRUCTION PROJECTS</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.4. PROJECT STAKEHOLDERS</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>FACTORS IMPACTING CONSTRUCTION STAGING</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.1. PROJECT SCHEDULE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.2. POTENTIAL IMPACTS TO TRAFFIC FLOW</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.3. EXISTING VEHICLE RESTRICTIONS</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.4. ENVIRONMENTAL ISSUES</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3.5. SEASONAL RESTRICTIONS</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3.6. CONSTRUCTION NOISE REGULATIONS</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>POTENTIAL MOBILITY ISSUES</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.1. TRAFFIC MOBILITY DURING CONSTRUCTION</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.2. CONSIDERATION OF OVERSIZED VEHICLES</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.3. INPUT FROM THE PUBLID AND STAKEHOLDERS</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.4. AGENCY COORDINATION</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.5. HOLIDAYS AND SPECIAL EVENTS</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>PROPOSED CONSTRUCTION TRAFFIC CONTROL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5.1. RECONSTRUCT ADA RAMPS</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5.2. STRUCTURAL WORK AND MAINLINE I-5 (GRIND AND INLAY)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5.3. OTHER WORK</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>LANE CLOSURE RESTRICTIONS</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>TRAFFIC MANAGEMENT AND OPERATION STRATEGIES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>7.1. PUBLIC INFORMATION AND OUTREACH STRATEGIES</td>
<td>14</td>
</tr>
</tbody>
</table>
7.2. MOTORIST INFORMATION/ITS STRATEGIES .. 14
7.3. CONSTRUCTION STRATEGIES ... 14
7.4. INCIDENT/EMERGENCY MANAGEMENT STRATEGIES 15
7.5. DEMAND MANAGEMENT ... 16
7.6. ALTERNATE ROUTE STRATEGIES .. 16

8 INCIDENT MANAGEMENT PLAN .. 16
 8.1. EMERGENCY COMMUNICATION PLAN ... 16
 8.2. CONTINGENCY PLAN .. 17

9 MOBILITY COMMUNICATION PLAN ... 17

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1: EXISTING I-205 TRAFFIC VOLUMES</td>
<td>4</td>
</tr>
<tr>
<td>TABLE 2: PROJECT STAKEHOLDERS</td>
<td>5</td>
</tr>
<tr>
<td>TABLE 3: CONSTRUCTION TIME AND MINIMUM USABLE ROADWAY WIDTH</td>
<td>9</td>
</tr>
<tr>
<td>TABLE 4: COMMUNICATION RESPONSIBILITES</td>
<td>17</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: Vicinity Map</td>
<td>1</td>
</tr>
</tbody>
</table>

APPENDICES

A Emergency Communication Plan
B Contingency Plan Guidelines
C Decision Tree
1 INTRODUCTION

The primary purpose of this project is to resurface the Pacific Highway (I-5) mainline and ramps as well as upgrading ADA ramps in the section between Interstate Bridge and Hassalo Street. This Project-Level Traffic Management Plan (TMP) aims to address traffic impacts and operation strategies to be implemented during project construction and provide details behind the development of Traffic Control Plans (TCP) and other measures that will be put in place for construction to minimize disruptions to travelers and freight without compromising public or worker safety and the quality of the work being performed. The TMP should be considered a living document subject to additions and modifications throughout project development as well as during construction of the project.

1.1 Project Area Boundaries

The project is on I-5 between Interstate Bridge and Hassalo Street in the City of Portland. This section of I-5 runs just east of the Willamette River in the southern limit and crosses the Columbia River at the northern limit. A vicinity map is shown in Figure 1.

Figure 1: Vicinity Map
1.2 Proposed Improvements

The main components of the project are listed below but not limited to the following:

- Paving I-5 mainline and selected ramps
- Upgrade ADA ramps
- Replace/install tall concrete median barrier in selected locations
- Asphalt and reinforced concrete pavement repair and subgrade stabilization in some areas
- Structural work on the Elliott School Viaduct including replace/install asphaltic plug joints, tall concrete median barrier and pavement overlay
- Replace/install traffic signal loops, ramp meter loops and ATR loops
- Relocation of mainline ramp meter loops at selected locations
- Reconfigure/restripe Victory Blvd/Whitaker Road to include bike lanes
- Replace/install signs and striping
- Replace/install guardrails
- Adjust inlets

1.3 TMP Goals

The primary purpose of the TMP is to address the construction-related traffic impacts of this project in a cost-effective and timely manner with minimal interference to the traveling public. Goals of this Project-Level TMP include the following:

- Describe the project construction footprint
- Aid in creating a project development team and decision-making environment that looks at all available options to limit and mitigate anticipated construction impacts
- Communicate what elements will be included in the project to mitigate for any anticipated disruptions to travelers and freight without compromising public or worker safety

To accomplish these goals, the Project-Level TMP incorporates the following elements:

- Project area characteristics
- Factors impacting construction staging
- Potential mobility issues
- Proposed construction staging
- Lane closure restrictions
- Traffic management and operation strategies
- Incident management plan
- Public information and communication plan

2 Project Area Characteristics

The following section includes a summary of existing transportation facilities within the project area relevant to this TMP, including roadway characteristics, traffic data, other projects in the area and stakeholders.
2.1 Roadway Characteristics

According to the 1999 Oregon Highway Plan, this section of I-5 is an Interstate Freeway, a State Freight route, a federally designated Truck route, and a Reduction Review Route on the National Highway System.

I-5 corridor within the project limits is a north-south freeway separated by concrete median barrier and is primarily a six-lane facility with intermittent auxiliary lanes between major interchanges. There is a High Occupancy Vehicle (HOV) lane in the northbound direction that begins at Going Street and ends at Marine Drive. It serves buses and 2-person car pools only with operational hours of restriction between 3-6 pm, Monday through Friday.

In the vicinity of the project area, I-5 runs along the west side of the Willamette River and crosses the river to the east side at Marquam Bridge and continues to head north crossing the Columbia River at Interstate Bridge. Two main facilities that provide parallel north-south routes with direct connections to I-5 are: Stadium Freeway (I-405) is on the west side with direct connections to I-5 at the Fremont and Marquam Bridges. I-405 also connects to the Lower Columbia River Highway (US30) at the west end of the Fremont Bridge. Pacific Highway East (OR99E, MLK Jr. Blvd.) is on the east side and connects to I-5 at Marine Drive Interchange. There are also three other major highways with east-west connections to I-5: Columbia River Highway (I-84) located just south of Hassalo Street, Northeast Portland Highway (US30 Bypass, NE Lombard Street) approximately in the middle half portion of the project, and Lewis & Clark Highway (SR14) is just north of the Interstate Bridge in Vancouver, Washington. The following major junctions along the project section of I-5 are listed below from north to south:

- Lewis and Clark Highway (SR14)
- Jantzen Beach/Hayden Island Drive
- Pacific Highway East (OR99E)
- Victory Blvd
- Denver Avenue (OR99W)
- Columbia Blvd
- Lombard Street
- Rosa Parks Way
- Going/Killingsworth Street
- Stadium Freeway (I-405)
- Broadway/Weidler Street
- Columbia River Highway (I-84)

2.2 Traffic Data

The annual average daily traffic (AADT) volumes on I-5 in the project area are shown in Table 1. The 2015 AADT ranges from 93,800 to 149,200 vehicles, with trucks accounting for 9 to 13 percent of the traffic on I-5.
Table 1: Existing I-5 Traffic Volumes

<table>
<thead>
<tr>
<th>Milepoint</th>
<th>2015 AADT</th>
<th>Location</th>
<th>Trucks %</th>
</tr>
</thead>
<tbody>
<tr>
<td>301.99</td>
<td>122,600</td>
<td>Overcrossing, NE Holladay Street</td>
<td>13%</td>
</tr>
<tr>
<td>302.70</td>
<td>124,700</td>
<td>0.40 mile south of Stadium Freeway Interchange (I-405)</td>
<td>13%</td>
</tr>
<tr>
<td>303.68</td>
<td>149,200</td>
<td>0.30 mile south of N. Going Street Interchange</td>
<td>13%</td>
</tr>
<tr>
<td>304.23</td>
<td>123,200</td>
<td>0.20 mile south of N. Killingsworth Street Overcrossing</td>
<td>13%</td>
</tr>
<tr>
<td>304.66</td>
<td>134,000</td>
<td>Minnesota Automatic Traffic Recorder, Sta. 26-019, 0.03 mile south of N. Ainsworth Street Undercrossing</td>
<td>13%</td>
</tr>
<tr>
<td>305.14</td>
<td>128,800</td>
<td>0.03 mile south of Northeast Portland Highway Interchange (US30 Bypass)</td>
<td>13%</td>
</tr>
<tr>
<td>305.64</td>
<td>110,300</td>
<td>0.02 mile north of Northeast Portland Highway Interchange (US30 Bypass)</td>
<td>9%</td>
</tr>
<tr>
<td>306.36</td>
<td>95,800</td>
<td>0.50 mile south of Overcrossing Pacific Highway West (OR99W)</td>
<td>9%</td>
</tr>
<tr>
<td>307.08</td>
<td>93,800</td>
<td>0.38 mile south of Pacific Highway East (OR99E)</td>
<td>9%</td>
</tr>
<tr>
<td>307.66</td>
<td>132,900</td>
<td>0.20 mile north of Pacific Highway East (OR99E)</td>
<td>10.5%</td>
</tr>
<tr>
<td>307.97</td>
<td>132,399</td>
<td>Interstate Bridge Automatic Traffic Recorder, Sta. 26-004, 0.41 mile south of Oregon-Washington State Line</td>
<td>9%</td>
</tr>
</tbody>
</table>

The 2015 AADT and truck percentage for other roadways near I-5 are also provided below.

- SR14: 67,000 vehicles (5-8% trucks)
- I-84: 155,700 vehicles (4.5% trucks)
- I-405: 80,200-128,700 vehicles (6-8% trucks)
- OR99E between Marine Drive and US30 Bypass: 17,300 vehicles (13% trucks)
- US30 Bypass: 16,600 – 24,000 vehicles (10% trucks)

2.3 Location of Other Construction Projects

To minimize construction impacts for traffic traversing the project area on I-5 and surrounding roadways, this project will be coordinated with other projects planned in the project area to avoid cumulative delay and/or conflicting road or detour routes. These projects are listed below.

- 2016 Interstate Sign Replacement, K19201
- I-5: I-84 Banfield Interchange Bridge Ramps, K19531
- I-5: Bridge Deck Rehab, K18564 (Contract#14975)
- I-5: N. Tigard Interchange – E. Portland Fwy. Interchange, K18836
- Burnside St: Willamette River Br Paint & Rehab, K18383 (Contract# 14965)
- I-5: Morrison Interchange Ramps Deck Seal, K18573
- I-405: Fremont Bridge Approach Ramps, K19533

There may be other planned projects in the City of Vancouver, Washington which currently have not been identified at the time of this TMP.

2.4 Project Stakeholders

During project construction, there may be times when it becomes necessary to contact stakeholders in the project area regarding new developments such as schedule changes, traffic control changes, or major incidents. Primary stakeholders include major road authorities, emergency facility service providers, hospital medical facility providers, government contacts, local shopping centers, and local utilities.

Local emergency service providers will be notified of the expected various I-5 directional weekend closures or ramp closures at night to ensure emergency services are able to reach all locations in the project area during construction. The contractor should meet with the emergency service providers prior to the beginning of construction to confirm expectations for emergency services and to coordinate communications. A list of project stakeholders is provided in Table 2.

<table>
<thead>
<tr>
<th>Agency/Organization</th>
<th>Name</th>
<th>Title</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Representatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon Department of Transportation (ODOT)</td>
<td>Kyle Crate</td>
<td>Project Leader</td>
<td>503-731-4851</td>
</tr>
<tr>
<td></td>
<td>Rich Watanabe</td>
<td>Area Manager</td>
<td>503-731-8528</td>
</tr>
<tr>
<td></td>
<td>Dee Hilalgo</td>
<td>Community Affairs</td>
<td>503-731-8237</td>
</tr>
<tr>
<td></td>
<td>Christy Jordan</td>
<td>MCTD Freight Mobility Coordinator</td>
<td>503-378-6192</td>
</tr>
<tr>
<td></td>
<td>Tony Coleman</td>
<td>Region 1 Mobility Liaison</td>
<td>503-731-8480</td>
</tr>
<tr>
<td>City of Portland</td>
<td>Dylan Rivera</td>
<td>Public Information</td>
<td>503-823-5185</td>
</tr>
<tr>
<td></td>
<td>Nelson Chi</td>
<td>Signal and Lighting Engineer</td>
<td>503-823-2604</td>
</tr>
<tr>
<td>Clark County</td>
<td>--</td>
<td>Public Information</td>
<td>503-783-3800</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>City Engineer</td>
<td>503-783-3815</td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Mike Pullen</td>
<td>Public Information</td>
<td>503-209-4111</td>
</tr>
<tr>
<td>TriMet</td>
<td>--</td>
<td>Public Relations</td>
<td>503-962-4910</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Emergency Dispatch</td>
<td>Emergency Only</td>
<td>--</td>
<td>911</td>
</tr>
<tr>
<td>Oregon Emergency Management</td>
<td>Non-Emergency</td>
<td>--</td>
<td>503-378-2911</td>
</tr>
<tr>
<td>Multnomah County Office of Emergency Management</td>
<td>--</td>
<td>--</td>
<td>503-988-6700</td>
</tr>
<tr>
<td>Oregon State Police</td>
<td>Andy McCool</td>
<td>Lieutenant</td>
<td>503-731-3020</td>
</tr>
<tr>
<td>Multnomah County Sheriff</td>
<td>Michael Reese</td>
<td>Sheriff</td>
<td>503-988-4300</td>
</tr>
<tr>
<td>Portland Police Bureau</td>
<td>--</td>
<td>--</td>
<td>503-823-0000</td>
</tr>
<tr>
<td>Portland Fire and Rescue</td>
<td>--</td>
<td>--</td>
<td>503-823-3700</td>
</tr>
<tr>
<td>Hospitals/Medical Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providence Medical Center</td>
<td>--</td>
<td>--</td>
<td>503-215-1111</td>
</tr>
<tr>
<td>Kaiser Interstate Medical Ctr.</td>
<td>--</td>
<td>--</td>
<td>503-285-9321</td>
</tr>
<tr>
<td>Utility Owners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon Utility Notification Center</td>
<td>--</td>
<td>--</td>
<td>800-332-2344</td>
</tr>
</tbody>
</table>

See Section 00150 of the Special Provisions for project-specific utility contacts.

<table>
<thead>
<tr>
<th>Other</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Trucking Association</td>
<td>Debra Dunn</td>
<td>President</td>
<td>503-513-0005</td>
</tr>
<tr>
<td>AAA Oregon</td>
<td>--</td>
<td>--</td>
<td>503-222-6767</td>
</tr>
</tbody>
</table>

3 Factors Impacting Construction Staging

This section includes an overview of the factors that impact construction staging: project schedule, proposed improvements and impacts to traffic flow, alternate routes, existing vehicle restrictions, environmental issues, seasonal restrictions, and construction noise regulations.

3.1 Project Schedule

The current scheduled bid date for this project is January 2018 and construction will be starting in the spring of 2018 running through the summer of 2019. In general, for work activities associated with concrete barrier, drainage, Elliott School Viaduct, and mainline I-5 paving will be completed by the end of September 2018; ADA ramps will be completed by the end of May 2019; and ramp paving/striping and other work will be completed by the end of August 2019.
3.2 Potential Impacts to Traffic Flow

The following is a list of anticipated traffic flow impacts associated with the project’s major work elements. Specific mitigation measures are recommended for the elements that require more than nighttime lane or ramp closures.

- **Structural work on the Elliot School Viaduct and mainline I-5 paving work between I-405 (Fremont Bridge) and I-84 Jct.** – Work activities along this section can be accomplished with directional full closure of I-5 and associated ramps during the weekend starting at 11 p.m. on Friday night and ending at 5 a.m. on Monday morning for a maximum of x? weekend for each direction. I-405 will be used as a detour route. This closure must occur at the same time as the closure of the “I-5: I-84 Banfield Interchange Bridge Ramps” project. Please see Traffic Control Detour Plans for details.

- **Median Barrier Replacement** – Nighttime lane and shoulder closures as needed.

- **Ramp Meter Loop Replacement** – Nighttime lane or ramp closures as needed.

- **Signal Loop Replacement** – Nighttime lane or ramp closures as needed.

- **ADA Ramp Upgrades** – Work can be done during the day or night and maintaining ADA compliant pedestrian routes will be critical during construction. Most of the locations are within ODOT’s right-of-way and can be rerouted behind the sidewalk or detour to the nearest intersection within acceptable detour distance of 1,000 feet. Temporary Pedestrian Access Route (TPAR) will be provided as part of the project and pedestrians will be accommodated at all times. Please see Traffic Control Plans for details.

- **Paving and Striping** – Work will require closure of one or two travel lanes during permissible nighttime lane closures. Work also will require nighttime closures of one or two ramps at a time. Nighttime lane or ramp closures will have minimal traffic impact as the traffic volume is low at night.

- **Signing** – Work will be at night with closure of one or two lanes for overhead sign replacement. Some location may require short-term ramp closures as well.

- **Other Improvements in Shoulder Areas** - This includes the remaining work that will take place on the shoulders such as permanent signing, barrier or guardrail, and drainage. This work can be completed with minimal impact to traffic flow using shoulder closures. Some locations may require short-term lane or ramp closures as well.

3.3 Existing Vehicle Restrictions

ODOT Motor Carrier Transportation (MCTD) does not have existing weight, height, or width restrictions for vehicles within the project limits at this point. When construction starts, the project team needs to obtain most current information from MCTD.

3.4 Environmental Issues

There is no known environmental issue identified for this project at this time.
3.5 Seasonal Restrictions

Seasonal restrictions that may impact construction staging include warm weather construction requirements. Some construction activities such as paving or pavement marking installation require relatively dry and warmer conditions. These activities typically occur during the summer months when traffic volumes are at their highest levels, requiring off-peak or nighttime work.

3.6 Construction Noise Regulations

A construction noise variance will be required for this project during nighttime work and will be obtained from the City of Portland. The applicable noise regulations for the City of Portland permits a liberal construction noise standard (85 dBA at a 50-foot distance) from 7 a.m. to 6 p.m. Monday through Saturday but only permits minimal noise outside of these hours. For specific noise control, please refer to section 00290 of the Special Provisions.

4 Potential Mobility Issues

This section includes a discussion of traffic mobility issues during construction, consideration of oversized vehicles, input from the public and stakeholders, agency coordination, and holidays and special events.

4.1 Traffic Mobility During Construction

For the construction phase, several types of closures will be utilized ranging from shoulder, single or two lane closures, to full ramp closures. The full ramp closures will occur during nighttime hours, and detour routes will be provided for travelers to enter or exit the freeway. To minimize impacts to traffic and freight mobility, construction activities requiring closures on I-5 will be scheduled during nighttime hours, as described in Section 6. Since I-5 is a designated freight routes and part of the National Highway System, the temporary traffic control and associated lane restrictions will be required to accommodate oversized vehicles during daylight hours (one half hour before sunrise to one half hour after sunset). Emergency vehicle access must also be provided at all times.

4.2 Consideration of Oversized Vehicles

Over-dimensional vehicles can be anticipated between the following sunrise and sunset periods:

- January: between 7:00 a.m. and 5:30 p.m.
- February: between 6:30 a.m. and 6:00 p.m.
- March: between 7:00 a.m. and 8:00 p.m.
- April: between 6:00 a.m. and 8:30 p.m.
- May: between 5:30 a.m. and 9:00 p.m.
- June: between 5:00 a.m. and 9:30 p.m.
- July: between 5:00 a.m. and 9:30 p.m.
- August: between 5:30 a.m. and 9:00 p.m.
- September: between 6:00 a.m. and 8:00 p.m.
- October: between 7:00 a.m. and 7:00 p.m.
November: between 6:30 a.m. and 5:30 p.m.
December: between 7:00 a.m. and 5:00 p.m.

During times of anticipated over-dimensional vehicles presence, it is expected to maintain a minimum useable roadway width on I-5, as shown in Table 3:

<table>
<thead>
<tr>
<th>Construction Time</th>
<th>Single Lane (feet)</th>
<th>Two Lanes (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>Nighttime</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>

MCTD requirements for notification of freight restrictions on state highways are as follows:

- **No advance notification required**: Minimum available horizontal clear distance is 22 feet for I-5.
- **Vertical clearance restrictions**: 35-day notification required for vertical clearance restrictions less than 14 feet-10 inches. Any change from existing clearance, including lane shifts under a structure, will require 14-day notification.
- **Ramp closures**: 14-day notification required if a ramp is closed for any period of time.
- **Daylight width restrictions – Single lane**: Width restrictions resulting in a single lane of traffic during daylight hours require 35-day notification for a horizontal clear distance of less than 19 feet for I-5. Width restrictions between 19 and 22 feet require 14-day notification.
- **Nighttime width restrictions – Single lane**: Width restrictions resulting in a single lane of traffic during nighttime hours require 35-day notification for a horizontal clear distance of less than 15 feet for I-5 and I-5. Width restrictions between 15 and 22 feet require 14-day notification.
- **Daylight and nighttime width restrictions – Two lanes**: 35-day notification required if minimum available horizontal clear distance is less than 32 feet for two lanes of one-way traffic or for two opposing lanes of head-to-head traffic.

The minimum available useable roadway is measured across the roadway between positive barriers, which can be any obstruction such as drums, concrete barrier, or guardrail. When a project restricts the width, length, height, or weight of vehicles through a work zone or detours trucks around the work zone, the contractor must notify MCTD, the Region Mobility Coordinator and the engineer, in writing, using Form #734-2357, at least 35 days in advance. The notification should include the reduced lane width or lowest dimension of vertical clearance for each stage, the anticipated duration and date of the restrictions, the approximate milepost location, and direction of travel affected. As soon as the restriction is lifted, notification must be sent to the same individuals on a revised copy of the original Form #734-2357 so this information can be relayed to all affected parties.
4.3 Input from the Public and Stakeholders

Keeping the public informed early and often and providing opportunities to give feedback are central to the public involvement efforts for this project. ODOT Community Involvement plans to hold up to two project open houses, including one online open house to inform the community about the project, construction activities, and expected impacts. Additional targeted engagement activities will be performed, as needed, to inform local businesses, neighborhood groups and associations, and local agencies and organizations about the project and potential impacts. A project website will also be developed to provide project information and updates to project stakeholders and highway users.

Project team members will continue to coordinate with the public and project stakeholders throughout the design and construction process.

4.4 Agency Coordination

Local agencies and other departments within ODOT should be contacted before project construction to coordinate any issues that may not have been known at the time this document was completed. Communication protocols are described in Section 8, and other known construction projects in the area are described in Section 2.3.

4.5 Holidays and Special Events

Traffic within the area can be impacted by holidays and local special events. Nighttime lane or ramp closures will not be allowed during holidays or special event days. The major holidays are included in the ODOT standard specifications. Local special events that may create an increased burden on the project area include:

- Shamrock Run – March 18, 2018 and March 17, 2019
- Starlight Parade – June 2, 2018 and June 1, 2019
- Rose Festival Grand Floral Parade – June 9, 2018 and June 8, 2019
- Providence Bridge Pedal – August 12, 2018 and August 11, 2019
- Race for the Cure – September 16, 2018 and September 15, 2019
- Portland Marathon – October 14, 2018 and October 13, 2019

These special events will be listed in the project special provisions.

5 Proposed Construction Traffic Control

There is no construction staging requires for this project. Short-term lane or ramp closures will be allowed only during nighttime hours and will utilize standard drawings as well as the Manual on Uniform Traffic Control Devices (MUTCD) for compliance. Directional full closures of mainline I-5 between I-405 (Fremont Bridge) and I-84 Interchange will be allowed on the weekend during structural work on the Elliott School Viaduct and mainline paving within this section. Allowable hours for each type of closure are shown in Section 6.

The Guiding Principle Decision Tree form used in the development of the traffic control plans is provided in Attachment C. The decision tree form helps identify separation options available for the work zone and captures impacts to safety, mobility, delay, driver and
bicycle/pedestrian convenience, and other impacts when assessing traffic control options. The
general sequence for the proposed construction stages are provided in the following
subsections.

5.1 Reconstruct ADA Ramps

Temporary pedestrian access route (TPAR) or pedestrian detour routes will be provided as
part of the project. All ADA ramps work will be completed prior to any ramp paving work.

5.2 Elliott School Viaduct and Mainline I-5 (Grind and Inlay)

- Between I-405 (Fremont Bridge) and I-84 Interchange – Structural work on the Elliott
 School Viaduct and mainline I-5 paving will be accomplished during the weekend closure
 for each direction. One direction will be closed at a time starting on Friday night through
 Monday morning.

- Between I-405 (Fremont Bridge) and Interstate Bridge - Grind and inlay work will be
 accomplished using short-term nighttime closures of one or two lanes. Ramp work,
 including paving and detector loop replacement for existing ramp meters, will require
 short-term nighttime closures of each ramp.

Traffic Control Detour Plans will be provided as part of the project for directional weekend
closure as well as ramp closures.

5.3 Other Work

Permanent pavement markings for all locations will be completed using short-term nighttime
 closures of one or two lanes, or full nighttime ramp closures, following completion of final
paving.

Some construction activities have little impact to traffic and will be completed as other stages
are completed and the work area is clear for these permanent features. These activities
include permanent signing installation, delineator installation, barrier or guardrail installation
and drainage.

6 Lane Closure Restrictions

This section provides the general lane restrictions for the project. The lane restrictions in the
Project Special Provisions will take precedence over these lane restrictions provided in this
TMP and will be implemented during construction of the project.

Pacific Highway (I-5) Northbound and Southbound

a) Between I-84 Interchange and I-405 (Freemont Bridge) Interchange

Single lane closures or closures of the auxiliary lane and the adjacent through lane are
allowed:
- Nightly, Sunday night through Friday morning between 10:00 p.m. and 5:00 a.m.
- Friday night through Saturday morning between 11:00 p.m. and 7:00 a.m.
• Saturday night through Sunday morning between 11:00 p.m. and 8:00 a.m.

In addition, directional weekend closures on I-5 in the northbound or southbound direction are allowed for structural work on the Eliot School Viaduct and paving mainline I-5. This work will be allowed between the hours of 11:00 p.m. Friday through 5:00 a.m. Monday for a maximum of (X)? weekend for each direction.

b) Between I-405 (Freemont Bridge) Interchange and Interstate Bridge

Single lane closures are allowed:
• Nightly, Sunday night through Friday morning between 8:00 p.m. and 5:30 a.m.
• Friday night through Saturday morning between 9:00 p.m. and 8:00 a.m.
• Saturday night through Sunday morning between 9:00 p.m. and 9:00 a.m.

For two-lane closure or closure of the auxiliary lane and the adjacent through lane are allowed:
• Nightly, Sunday night through Friday morning between 10:00 p.m. and 5:00 a.m.
• Friday night through Saturday morning between 11:00 p.m. and 7:00 a.m.
• Saturday night through Sunday morning between 11:00 p.m. and 8:00 a.m.

I-5 Northbound and Southbound Entrance and Exit Ramps

a) Closure of a lane on the ramp or ramp closures are allowed:
 1) Jantzen Beach/Hayden Island Drive
 2) Marine Drive/MLK Jr. Blvd (OR99E)
 3) Denver Avenue (OR99W)
 4) Victory Blvd/Interstate Avenue/Denver Avenue
 5) Lombard Street (US30 Bypass)
 6) Rosa Parks Way
 7) Alberta Street
 8) Going Street/Missouri Avenue/Killingsworth Street

• Nightly, Sunday night through Friday morning between 10:00 p.m. and 5:00 a.m.
• Friday night through Saturday morning between 10:00 p.m. and 7:00 a.m.
• Saturday night through Sunday morning between 10:00 p.m. and 8:00 a.m.

b) Closure of a lane on the ramp or ramp closures are allowed:
 1) I-405 Interchange
 2) Weidler Street Northbound Exit Ramp
 3) Wheeler Avenue Southbound Entrance Ramp
 4) I-84 Interchange

• Nightly, Sunday night through Friday morning between 10:00 p.m. and 5:00 a.m.
• Friday night through Saturday morning between 11:00 p.m. and 7:00 a.m.
• Saturday night through Sunday morning between 11:00 p.m. and 8:00 a.m.
No more than one exit ramp and one entrance ramp in the same direction are allowed to be closed at the same time. Alternately, no ramp closures shall occur in both directions at the same time.

Do not close the ramp until all materials and equipment are on hand or guaranteed to be delivered so that the work can be done in an efficient manner with a minimum period of ramp closure.

The ramp closure will not be allowed until the area and the detour route are signed according to the TCP and the requirements of Section 00225.

Marine Drive/MLK Jr. Blvd (OR99E), Union Court/Marine Way, Victory Blvd/Whitaker Road, Expo Road, Lombard Street (US30 Bypass), Rosa Parks Way, Minnesota Avenue and Weidler Street

Closures of a lane or more lanes are allowed:
- Nightly, Sunday night through Friday morning between 8:00 p.m. and 5:30 a.m.
- Friday night through Saturday morning between 8:00 p.m. and 8:00 a.m.
- Saturday night through Sunday morning between 8:00 p.m. and 9:00 a.m.

For work requiring flagger-control at intersections:

With signal shutdown and all lanes reduced to one lane on each approach with flagging operation are allowed:
- Nightly, Sunday night through Friday morning between 9:00 p.m. and 5:00 a.m.
- Friday night through Saturday morning between 9:00 p.m. and 7:00 a.m.
- Saturday night through Sunday morning between 9:00 p.m. and 8:00 a.m.

Holidays and Special Events

Restricted work times for this project will be included in the special provisions, section 00220.40(e-2), and will include the special events identified in Section 4.5.

- **Holidays**: Do not close any traffic lanes between noon on the day preceding legal holidays or holiday weekends and midnight on legal holidays or the last day of holiday weekends, except for Thanksgiving, when no lanes may be closed between noon on Wednesday and midnight on the following Sunday.
- **Special Events**: Do not close any traffic lanes between midnight on the day preceding and midnight on the final day of special events.

7 Traffic Management and Operation Strategies

To help meet the performance goals for congestion management and promote work zone safety, a range of traffic management strategies were considered for implementation. An array of common traffic management strategies is available for consideration on this project.
The strategies selected are described below. Any strategies that are cost-prohibitive at the project level may require funding from other sources if implementation is desired.

7.1 Public Information and Outreach Strategies

Public information and outreach is beneficial for maintaining public support for projects, as well as for encouraging changes in travel behavior during construction. Making the public aware of the potential delays incurred while traveling through the project area or detour routes may encourage motorists to use alternate routes or plan trips to avoid peak construction activity times, which will help to manage congestion within the project area.

7.2 Motorist Information/ITS Strategies

Providing motorists with real-time information helps notify drivers of upcoming work zones and may alleviate congestion and delay. Existing Intelligent Transportation Systems (ITS) and other strategies may be used to provide traveler information in the following ways:

- **Variable message sign (VMS):** Variable message signs are electronic signs that can display changing messages. There are a number of VMS located in the Portland metro area, including the I-5 corridor within the project area. VMS should be used to warn drivers of any incidences or traffic delay within the construction area so that they can choose to detour to an alternate route if needed.

- **Portable changeable message signs (PCMS):** PCMS is a portable electronic sign that can display changeable messages. They are useful when informing drivers of upcoming construction periods and warning drivers of construction activities as needed.

- **Ground mounted signs:** Typically installed at the endpoints of work zones informing motorists of road construction and the possibility of delay. Ground mounted signage would also be needed to alert motorists of the availability of Highway Advisory Radio information if/when provided.

- **511 (Highway Advisory Telephone):** Inclusion of this project on ODOT’s statewide 511 highway advisory telephone system will help provide travelers with up-to-date information about construction activities and potential delays.

- **TripCheck (ODOT’s ITS Website):** TripCheck allows motorists to retrieve real time information and weather conditions via the Internet. In addition to the Internet, motorists may also call 511 to receive this same information. ODOT now also shares this information with Waze so users of the popular application receive notifications when approaching construction zones.

7.3 Construction Strategies

Useful construction strategies as they pertain to this project are described below.

- **Ramp metering:** Existing ramp meters will be utilized during construction to regulate the flow of traffic entering I-5 during construction.

- **Off-peak/off-seasonal/night/weekend work:** As much as possible, temporary lane or ramp closures should be undertaken during the off-peak or night time to avoid excessive
congestion. Closures should adhere to the applicable restriction specifications.

- **Temporary striping:** When required, temporary striping on the travel lanes will be provided to direct and control traffic in areas where lane shifts are necessary.

- **Planned lane or ramp closures:** Temporary lane or ramp closures, when required, will be limited to the off-peak and night time hours.

- **Project phasing:** Maintaining the existing travel lane configuration in each direction during construction will create less delay for motorists. Although phasing requires a longer construction period, it minimizes impacts to traffic.

- **Temporary traffic screens:** Traffic screens help prevent driver distractions in work zones, which can help to keep traffic moving and enhance safety. Screens may be mounted on the top of permanent or temporary traffic barriers to block headlights or to discourage gawking.

- **Extended weekend closures:** Weekend closures are advantageous because of greatly reduced disruption of AM and PM peak commuters.

- **Coordination with adjacent construction:** The coordination of this project with other projects in the area, as discussed in Section 2.3, will help to avoid unnecessarily compounding traveler delay.

- **Full-time traffic control supervisor (TCS):** Having a full-time TCS on-site allows one person to be dedicated to traffic control and not be distracted by other construction activities. Benefits include the ability to make quick decisions and to implement contingency plans as needed.

7.4 Incident/Emergency Management Strategies

The possibility of a minor incident increases within construction zones. Given that minor incidents can potentially evolve into a major event, an incident management plan is a helpful tool to detect and remove incidents from the highway and restore traffic capacity as quickly and safely as possible. The following incident and emergency management strategies could be implemented for this project:

- **Traffic surveillances stations/closed caption television (CCTV):** ODOT has positioned continuous traffic monitoring surveillance cameras at key locations along all major highways in the Portland metropolitan region that can be accessed via ODOT’s website. Furthermore, monitoring loops embedded in roadway pavement provides continuous data that is kept by Portland State University Center for transportation studies.

- **Cell phones:** Mobile cellular telephones should be available at all times to quickly report incidents and emergencies within the project area.

- **Full-time TCS:** A more rapid response time to incidents is possible when a full-time TCS is on site to make the necessary quick decisions and implement contingency plans as warranted.

- **VMS:** VMS are electronic signs that can display changing message. There are a number of VMS located within and in advance of the project site. VMS should be used to warn
drivers of any incidences or traffic delays within the construction area so that they can choose to detour to an alternate route if needed.

7.5 Demand Management

Demand management strategies include the following:

- **Temporary lanes or shoulder use:** When required, temporary use of roadway shoulders as travel lanes will be limited to locations determined during design to have adequate pavement strength to carry traffic.

7.6 Alternate Route Strategies

Alternative routes for motorists should be identified whenever a ramp or full roadway closure is anticipated during construction. This project will use I-405 as a detour route for directional weekend closure of I-5 between I-405 (Fremont Bridge) and I-84 Interchange for each direction. For ramp closures, traffic will be detoured using ODOT’s facilities as much as possible such as directing drivers to the nearest interchange to turn around and get back to the desire destination. There are some locations that would require traffic be detoured to the local systems. Traffic Control Detour Plans will be provided as part of this project.

8 Incident Management Plan

Incident management is a planned and coordinated program that detects and removes incidents from the highway and restores traffic capacity as safely and quickly as possible. ODOT Region 1 has an incident management program in operation that is operated from the Region 1 Traffic Management and Operations Center (TMOC). Any incidents that impact traffic flow during construction should be coordinated with the TMOC. The Emergency Communication Plan and Contingency Plan are two important tools for incident management, described in the following sections.

8.1 Emergency Communications Plan

The Emergency Communication Plan describes how communications will occur and lists important contact information for responding to an incident. Important elements include:

- Goals and objectives of the plan
- Key contacts and their contact information
- Emergency and essential services contacts
- Definitions of emergencies and the appropriate response and communications for each type of emergency
- Roles and responsibilities of the stakeholders who execute the plan

Maintaining an updated list of emergency contacts for use in the event of an incident shall be the responsibility of the contractor. A template has been included in Attachment E to help guide the contractor in developing an Emergency Communication Plan.
8.2 Contingency Plan

As a part of an Incident Management Plan, the Contingency Plan includes both traffic and contractor contingency plans. The traffic Contingency Plan addresses specific actions that will be taken to restore or minimize effects on traffic when the congestion or delay exceeds original estimates due to unforeseen events such as work-zone accidents, higher than predicted traffic demand, or delayed lane closures. The contractor Contingency Plan addresses activities under the contractor’s control in the work zone. A guideline has been included in Attachment F to help guide the contractor (once under contract) in developing a Contingency Plan.

9 Mobility Communication Plan

The Mobility Communication Plan provides communication strategies for informing affected road users, the general public and various project stakeholders about the project and changing work zone conditions. For this project, media releases must be coordinated with and reviewed by ODOT Region 1 staff. ODOT MCTD will handle communications with the freight industry. It is recommended that all other communications not described above be disseminated by ODOT Region 1 staff. Table 4 summarizes contractor and ODOT communication responsibilities.

Table 4: Communication Responsibilities

<table>
<thead>
<tr>
<th>Responsible Party</th>
<th>Communication Target</th>
</tr>
</thead>
</table>
| Contractor | ODOT Region 1, TMOC, MCTD, and District 2B
| | Multnomah County |
| | City of Portland |
| | Media |
| | General Public/Road Users |
| | Police/Fire |
| | Emergency Medical Services |
| | Schools |
| | Other Stakeholders |
| ODOT MCTD | Freight Industry |
Appendix A

Emergency Communication Plan
Emergency Communication Plan Template

Advance communication prevents community problems
Communication is the cornerstone of a successful project. Much advance work has been done on this project to inform the public of impacts they can expect during construction, and to listen to community concerns so ODOT can minimize adverse impacts as much as possible. It is important that we keep our commitments and provide advance warning to the community when impacts are expected. This is a daily commitment shared by the project office, contractor and staff from both community and public affairs. In addition, there will be times when an emergency or crisis demands a quick communications response. This plan addresses such unexpected occurrences.

A prompt and accurate response
Prompt dissemination of information ensures that people are informed of what is happening and how they might change their plans to mitigate the event's affect on them. It is also vital because if the Oregon Department of Transportation does not tell its story right away, someone else – a motorist, a witness, someone who potentially has fewer facts – will tell the story for us.

Accurate information – even when it is not good news – lends credibility to ODOT and its desire to keep the public informed. It goes hand-in-hand with timely communications in allowing the public to make decisions based on the facts available.

Coordination with other agencies before releasing information is critical. All agencies involved in an emergency – local, state, federal, and private sector partners – should communicate the same messages. Conflicting messages damage the credibility of all participating agencies. The public may not take appropriate action to protect themselves or others if they receive conflicting information.

The importance of a communications plan
A plan ensures that all pertinent information – names, phone numbers, key messages, action plan outline, time line, media strategies, etc. – are in the possession of designated emergency/crisis responders so that response can be prompt, accurate and coordinated.

This emergency communication plan is designed to provide a basic outline for how to respond to some of the emergencies or crises that may occur during the project. It gives clear and systematic directions for establishing a chain of command, prioritizing audiences, developing messages, and delivering them in an organized fashion to a variety of audiences: employees, the media, the public. It is vital that responses be coordinated so that ODOT, its contractors, subcontractors and jurisdictional partners speak with "one voice" throughout all stages of the crisis and the public does not receive conflicting messages.

Who is the audience?
During an emergency, ODOT has two primary audiences. The first group is the people who need to act to help respond to the emergency: police, fire, medical, and HAZMAT.
The second group needs information in order to protect/prepare themselves. Included in this group are local businesses, residents, motorists and the media.

Types/definitions of emergencies/crises
As stated before, an emergency is anything that has the potential to harm life, property or the environment. Erosion of the public's confidence in ODOT on this project is also considered a crisis. The OTIA bridge projects have the potential for all four. Emergencies can take many different forms and each requires a different level of response. This plan will address some of the many kinds of emergencies/crises that may occur on this project. Please remember, all emergencies/incidents, big or small require a prompt, accurate and coordinated response.

- **Release of contaminants into the air/water**
The accidental release of contaminants into the air/water (regardless of fault) would be considered an emergency. It has the potential to harm life (human and animal) by contaminating the environment.

- **Unanticipated traffic or pedestrian delays or detours**
Despite everyone’s best efforts to communicate construction impacts on traffic, there will be times when lanes or ramps are closed longer than expected. Every effort must be made to avoid these situations. The traffic control plans and contract provisions for lane and ramp closures are included to prevent major traffic disruptions. In the event of an unanticipated traffic delay, it is essential that the project staff work with the contractor to reopen lanes or ramps as soon as possible. Liquidated damages may be applied against the contractor for these incidents, but ODOT needs to maintain safe traffic flow on our roadways. When these incidents occur, the public affairs and community affairs staff need to be involved early in the incident to help coordinate the flow of information through the news media and other information distribution channels.

- **Vehicle accident/incident (non-injury)**
Much of Oregon’s highway and bridge construction takes place "under traffic." This means construction crews share roadway space with thousands of motorists every day. Work-zone wrecks (regardless of fault) would be considered an emergency.

An incident/accident would be defined as any occurrence involving damage to private property or vehicles. This also includes any unplanned incident that delays traffic for 20 minutes or more. Please use good judgment and call if there is any doubt. A minor incident can attract the attention of the public or media.

- **Serious vehicle accident/incident (injury/death)**
Accidents/incidents resulting in injury/death of motorists, passengers, and construction workers would be classified as extremely serious. If such a situation occurs, prompt notification is critical.

- **All pedestrian/bicycle incidents**
Pedestrian facilities are defined as either formal sidewalks or informal pathways that appear to be used frequently. Incidents occurring on pedestrian facilities, bicycle lanes or the adjacent roadway (regardless of fault) would be considered an emergency that needs to be
reported to the appropriate project authorities, including public and community affairs staff. Closures of pedestrian facilities must be clearly thought through, discussed with public and community affairs and with pedestrian facility authorities. All discussions of closures must include alternate/detour route considerations.

Citizen Reports of Incidents
Depending on when an incident occurs, the District Office may be made aware of it before the inspector or construction office. This is especially true on weekends and outside of regular work hours. While the chances of a serious incident at the site drop dramatically during non-work hours, there is still the potential. Frequently, citizens report relatively simple issues like barrels or signs that have been knocked over or steel plates that have started to move. These issues are not the responsibility of the Maintenance offices and must be dealt with immediately. Once again, a prompt response is crucial.

Roles and Responsibilities
The reporting structure and roles/responsibilities are keys to a successful emergency communication effort. The following briefly outlines those roles/responsibilities when an incident occurs:

ODOT's on-the-scene inspector notifies ODOT's Project Coordinator ________________, who notifies Project Manager ________________ and Assistant Project Manager ________________, who notifies Public Affairs Manager ________________ and Traffic Manager ________________. Until further notified, the on-scene inspector will be the main, on-site representative, and will be considered the communication link to key ODOT personnel only. This individual will not talk to the media or general public, or discuss the situation with anyone other than key contractor personnel.

Project Manager ________________ or his designee notifies Area Manager ________________, and Region Manager ________________, Region Manager ________________, will notify ODOT District ___ Manager ________________, and Maintenance/Operations Manager ________________. Public Affairs Manager ________________, will notify Community Affairs Manager _________________. These individuals, including Public Affairs Manager ________________ and Traffic Manager ________________ will determine lead roles/spokesperson(s). These individuals will also determine the course of action/response to the emergency, identify key messages and further define roles and responsibilities.

If deemed necessary, Public Affairs Manager ________________ will identify/coordinate a second on-the-scene ODOT representative. He will notify key multi-jurisdictional communication team members as necessary/needed. He will also act as spokesperson and will coordinate any off-site or on-the-scene information/command center, if necessary. Community Affairs Manager ________________ will be responsible for notifying businesses, the general public and residents who may be impacted by the incident, and will coordinate any special needs with the incident command staff.
Once a course of action has been determined, Area Manager _____________________ or his
designee will alert the appropriate agencies:

- State and local police/fire/rescue
- Oregon Department of Fish & Wildlife
- Oregon Department of Environmental Quality
- Federal Environmental Protection Agency

The contractor and sub-contractors are employees of ODOT. They will participate in the
emergency response as determined necessary by ODOT or by contractual obligation.
Contract employees will not talk to the media/general public, or discuss the situation with
anyone other than with key ODOT personnel.

Information Sources
Recorded ODOT highway construction information is available 24 hours a day by dialing
503-223-0066.

The project hot line number 503-_____ - ______ is available 24 hours a day for crisis
calls.
Appendix B

Contingency Plan Guidelines
Contingency Plan Guidelines

Explanation
A Contingency Plan includes both traffic and contractor contingency plans. The traffic contingency plan addresses specific actions that will be taken to restore or minimize effects on traffic when the congestion or delay exceeds original estimates due to unforeseen events such as work-zone accidents, higher than predicted traffic demand, or delayed lane closures. The Contractor’s contingency plan addresses activities under the contractor’s control in the work zone.

Documentation
Prior to construction, the Contractor is required to provide the following documentation to be kept on hand at each construction site.

1. Communications, Roles and Responsibilities – A plan for lines of communication, individual roles and responsibilities shall be developed by the Contractor. The contractor shall designate an individual (such as the Traffic Control Supervisor) as a point of contact within their organization. The Contractor’s plan should clearly state lines of communication and authority within their organization as well as reference those outlined in the Emergency Communications Plan or Mobility Communications Plan as applicable.

2. Contractor’s Contingency Plan – The Contractor shall develop a contingency plan for each construction site based on site specific conditions.

3. Contingency Plan Trigger Points - The following conditions or events will require a Contingency Plan to be implemented (documentation of these trigger points shall be included in the Contractor’s Contingency Plan):

 Weather Conditions: __
 Traffic Conditions (e.g. high traffic demand level): __________________
 Other Events (e.g. accidents): ___________________________________

4. Coordination Strategy – The Contractor shall develop a coordination strategy. Any contracting personnel recognizing a condition that would warrant implementing a Contingency Plan shall notify the Traffic Control Supervisor or other individual that has been designated as a “Point of Contact” for the contracting organization. The contracting organization’s representative shall conduct coordination efforts as outlined in the Coordination Strategy. The Coordination Strategy shall include any special agreements between individuals or agencies. Individuals to be involved in the Coordination Strategy should be included on the Project Contact Information List.

5. Project Contact Information – The Contractor shall develop and maintain a contact list of key project personnel (e.g. Traffic Control Supervisor, Resident Engineer, Maintenance Supervisor, Permit Inspector, State Patrol, and other ODOT Contingency Plan Guidelines 2
representatives). Contact information for individuals on the Emergency Communications Plan and Mobility Communications Plan should also be included. See attached sample forms.

6. Traffic Contingency Plan – The Contractor shall develop a contingency plan to restore minimum operating capacity of the roadway.

7. Required Resources – The Contractor shall provide a list of available stand-by equipment required for implementation of Contingency Plans. This list should include location of equipment and quantities if appropriate. Examples of items that may be included on the list are: portable changeable message signs, concrete barrier relocation equipment, etc. In addition, include the availability of local ODOT personnel for callout (normally requiring a Cooperative Agreement).
Project Contact Information

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sheet ____ of ____
Appendix C
Decision Tree
Work Zone Decision Tree

Evaluate Separation Opportunities, WZ Concepts, WZ Devices

Project Name (Section)

Pacific Highway (I-5)

Highway

Phase:
- **☐** 1 – Scoping
- **☐** 2 – Project Initiation to DAP
- **☒** 3 – DAP to Final PS&E
- **☐** 4 – Construction
- **N/A**

Prepared by:
Laurie Line
June 20, 2017

Opportunities to Evaluate

<table>
<thead>
<tr>
<th>Opportunities to Evaluate</th>
<th>Phase</th>
<th>Possible / Viable</th>
<th>Impacts</th>
<th>Stakeholders & Input</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road closure (full closure, directional closure)</td>
<td>1</td>
<td>n/a</td>
<td>1) Bridge Work and Paving on I-5 between Hassalo and I-405 (Fremont Bridge) will be done during the weekend closure with one direction closed at a time. I-405 will be used as a detour route. Ramps will be closed and detour routes will be provided. 2) Work within the section between I-405 (Fremont Bridge) and Interstate bridge will be done at night with lane or ramp closures. Full closure is not feasible since there is no viable detour available. 3) Loss of mobility along a major interstate highway and NHS, (Federally designated truck route), freight route.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public.</td>
<td>D: Full Closure only allowed in the section between Hassalo and I-405, and the rest of the section will be done at night with lane or ramp closures.</td>
</tr>
<tr>
<td>Crossover/on-site diversion</td>
<td>1</td>
<td>n/a</td>
<td>None.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Rigid barrier (concrete, steel, temporary guardrail)</td>
<td>1</td>
<td>n/a</td>
<td>Temporary barrier would need to be removed each night before opening lanes to traffic in the morning. Hard barriers may impact the quality of asphalt surface during</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public.</td>
<td>D: Temporary Barrier will be used prior to installation of new barrier.</td>
</tr>
<tr>
<td>Work at night</td>
<td>1</td>
<td>n/a</td>
<td>Most of the work will be completed during night time hours, except during weekend directional closures as allowed between I-405 and Hassalo.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>D: It is expected that most of the work will be at night.</td>
</tr>
<tr>
<td>Staged construction with temporary widening</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared by:
Laurie Line
June 20, 2017
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>No. Not needed to accomplish the work.</th>
<th>Not part of scope</th>
<th>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</th>
<th>D: Not necessary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard lane closures with channelizing devices</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes.</td>
<td>Soft barrier and other traffic control devices and signs will be used to delineate work space and lane/ramp closures.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>D: Will comply with standard drawing and MUTCD.</td>
</tr>
<tr>
<td>Law enforcement overtime</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Optional.</td>
<td>Increased costs.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>R: Not necessary</td>
</tr>
<tr>
<td>Smart Work Zone System/Work Zone ITS</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes. Workzone VMS, PCMS, Radar speed signs, etc. will be considered for this project.</td>
<td>Can provide timely information regarding roadway changes, detours to inform drivers.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>To be considered.</td>
</tr>
<tr>
<td>Accelerated contracting strategies</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No. Work will be done by ODOT</td>
<td>Not applicable.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Accelerated construction strategies</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No. Work will be done by ODOT</td>
<td>Not applicable.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Automated Flagger Assistance Devices (AFAD)</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No. Not needed for this type of project.</td>
<td>Not applicable.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Temporary Transverse Rumble Strips (TTRS)</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No. Not within the project scope.</td>
<td>Not applicable.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Radar speed trailers</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No.</td>
<td>Increased cost.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Construction Speed Zone Reductions</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes. Optional.</td>
<td>Increased roadway safety, but reduced capacity</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>To be considered.</td>
</tr>
<tr>
<td>Increased lateral buffer space</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>No, The project is within a constrained corridor and cannot increase clear zone space.</td>
<td>More clear space would allow additional room for work zone safety.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>D: Adequate workzone space available</td>
</tr>
<tr>
<td>Public information campaigns</td>
<td>1</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Yes. Project public involvement will be provided to inform public and businesses that there will be several closures along the I-5 corridor.</td>
<td>Will keep the public and businesses informed of the project impacts to travel and will provide recommended detours and closure notifications.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public</td>
<td>D: Ongoing community involvement.</td>
</tr>
<tr>
<td>Other:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Pedestrian Access Route (TPAR)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes: Where pedestrians cannot be routed to the next intersection to cross the street. Alternate pedestrian routes will be set up within the intersection corner under construction. Where needed temporary ADA ramps will be installed</td>
<td>Pedestrian will be detoured fa within a reasonable distance. The temporary pedestrian route is required to be ADA compliant.</td>
<td>ODOT, City of Portland, Freight Haul Route (Motor Carrier) and Public.</td>
<td>D: TPAR will be included as part of the project.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

734-5042d (11-7-2016) https://www.oregon.gov/ODOT/Construction/Pages/Forms.aspx 3 of 3