Project Level Traffic Management Plan
FINAL DAP

I-105 Willamette River Connections & 1st to 7th Avenue Viaducts

Interstate 105 (I-105)
Lane County
Key #18577

Prepared For:
Oregon Department of Transportation
Region 2 Traffic Unit
455 Airport Road, Building B
Salem, Oregon 97301-5395
(503) 986-2600

OBEC Consulting Engineers
3990 Fairview Industrial Drive SE, Suite 200
Salem, OR 97302-1166
(503) 589-4100

Prepared By:
Kittelson & Associates, Inc.
610 SW Alder, Suite 700
Portland, OR 97205
(503) 228-5230

Project Manager: Charles Radosta, P.E.
Project Engineer: Charles Radosta, P.E.

Project No. 19740.0

May 2017
TABLE OF CONTENTS

1 Introduction ... 1
 1.1 Purpose and Background ... 1
 1.2 Report Description .. 1
 1.3 TMP Goals ... 1

2 Roadway Characteristics .. 23
 2.1 PROJECT AREA BOUNDARIES ... 23
 2.2 Transportation Facilities ... 23
 2.3 Daily traffic volume and truck percentage .. 23

3 Factors Impacting Construction Staging .. 24
 3.1 Proposed Improvements and impacts to Traffic Flow ... 35
 3.2 Existing restrictions ... 35
 3.3 Environmental restrictions .. 35
 3.4 Holiday, Event, and Seasonal Restrictions .. 35
 3.5 Construction Noise Regulations .. 35

4 Potential Mobility Issues ... 56
 4.1 Traffic mobility during construction ... 56
 4.2 Consideration of oversized vehicles ... 56

5 Construction Staging – Traffic control Narrative ... 67

6 Work Zone Lane Restrictions .. 8

7 Traffic Management and Operations Strategies ... 9
 7.1 Public Information and Outreach .. 10
 7.2 Motorist Information/ITS .. 10
 7.3 Construction Strategies .. 10
 7.4 Incident Management ... 11
 7.5 Demand Management .. 12
 7.6 Alternate Route Strategies .. 12

8 Incident Management Plan .. 13
 8.1 EMERGENCY COMMUNICATION PLAN ... 13
 8.2 Contingency Plan ... 13

9 Mobile Communication Plan ... 14
LIST OF FIGURES

Figure 1 Vicinity Map .. 23

LIST OF TABLES

Table 1 Traffic Management and Operation Strategies .. 9

APPENDICES

Appendix A Emergency Communication Plan
Appendix B Contingency Plan Guidelines
Appendix C Work Zone Decision Tree
Appendix D Traffic Analysis Technical Memorandum
1 INTRODUCTION

1.1 PURPOSE AND BACKGROUND

Seven bridges at the western terminus of I-105 in downtown Eugene, originally built in the late 1960s and early 1970s, need repairs and upgrades. All require rail retrofits to current crash standard rails, structural deck overlays, seismic retrofits, joint replacements, and bridge end panels.

During the DAP phase ODOT expanded the initial prospectus to merge the bridge repair project with an upcoming bridge removal project within the project limits.

1.2 REPORT DESCRIPTION

This report is the Project-Level Traffic Management Plan (TMP), which primarily focuses on construction staging, work zone lane restrictions, and traffic management and operation strategies.

1.3 TMP GOALS

The primary purpose of the TMP is to address the construction-related impacts of this project in a cost-effective and timely manner with minimal interference to the traveling public. Goals of this Project-Level TMP include the following:

- To describe the project construction footprint within the project limits.
- To aid in creating a project development team decision-making environment that looks at every option available to limit and mitigate for anticipated construction delay.
- To communicate what elements will be included in the project to mitigate for any anticipated disruptions to travelers and freight without compromising safety.

To accomplish these goals, the Project-Level TMP incorporates the following elements:

- Definition of project area boundaries
- Roadway characteristics
- Factors impacting construction staging
- Potential mobility issues
- Work zone lane restrictions
- Traffic management and operation strategies
- Incident management plan
- Mobility communication plan
- Work zone decision tree
2 ROADWAY CHARACTERISTICS

2.1 PROJECT AREA BOUNDARIES

The project is located on Interstate 105 (I-105) from M.P. 0.00 to M.P. 1.02. Figure 1 below contains a vicinity map.

Figure 1 Vicinity Map

2.2 TRANSPORTATION FACILITIES

The functional classifications I-105 is as follows:

- 1999 Oregon Highway Plan – Designates I-105 as a Bypass facility, an Interstate, a Reduction Review Route, and a Freight Route on the National Highway System (NHS).
- 2012 Highway Design Manual – Classifies I-105 as an NHS route and as an Urban Principal Arterial-Interstate.
- Eugene Draft 2035 Transportation System Plan (TSP) – Classifies I-105 as a Major Arterial.

2.3 DAILY TRAFFIC VOLUME AND TRUCK PERCENTAGE

The existing 2016 Average Annual Daily Traffic (AADT) volume on I-105 is approximately 66,900 vehicles between downtown Eugene and Delta Highway. Trucks account for approximately 4.4% of the traffic.

2.4 POSTED SPEED

The posted speed limit along I-105 is 55 MPH.
3 FACTORS IMPACTING CONSTRUCTION STAGING

ODOT intends to initiate construction in spring 2018 and terminate it in winter 2020. The following is an overview of the factors that have potential impacts on construction staging.

3.1 PROPOSED IMPROVEMENTS AND IMPACTS TO TRAFFIC FLOW

As described in Section 1.1, the proposed improvement will retrofit existing bridge rails to current crash standard rails, install structural deck overlays, seismically retrofit bridges, replace existing bridge joints, replace bridge end panels, replace existing median barrier with taller median barrier, and remove an existing bridge. Off-peak or nighttime lane or ramp closures will be allowed, as well as daytime lane and ramp closures with detours, as outlined under the project special provisions section 00220.40.

3.2 EXISTING RESTRICTIONS

Every effort will be made to minimize lane and ramp closures on I-105 during the high traffic volume daytime hours, limiting lane and ramp closures to night times to the greatest extent possible. The selected concepts reduce disruptions to the maximum extent possible.

3.3 ENVIRONMENTAL RESTRICTIONS

As documented in the DAP report, there is one waterway (Willamette River) and no wetlands within the project’s area of potential impact. The environmental documentation denotes a need for erosion control at the bridge removal site and outlines other traditional measures to treat sediment and erosion.

3.4 HOLIDAY, EVENT, AND SEASONAL RESTRICTIONS

Holidays and seasonal events may impact traffic. The major holidays are included as standard restrictions in the 2015 Oregon Standard Specifications for Construction Manual. Closures will be coordinated around the local and seasonal events that may create an increased burden on the project area.

3.5 CONSTRUCTION NOISE REGULATIONS

All construction activities must comply with the Oregon Revised Statute, Chapter 467 (ORS-467) and the Oregon Administrative Rules Chapter 340, Division 35 Department of Environmental Quality (OAR 340-035), in addition to any other local noise control ordinance or regulation. Construction noise levels for the proposed project improvements would result from normal construction activities.

Daytime construction noise is exempt from regulations contained in the City of Eugene Code. Therefore, under the City of Eugene Noise Disturbance ordinance, project construction could be
performed during the normal daytime hours of 7:00 a.m. to 7:00 p.m. This project will pursue a noise variance to allow night work on I-105.

In addition, the following construction noise mitigation measures are required to be included in all ODOT contract specifications:

- Do not perform construction within 1,000 feet of an occupied dwelling on Sundays, legal holidays, or between the hours of 10:00 p.m. and 6:00 a.m. on other days, without the approval of the ODOT construction project manager.
- Use equipment with sound control devices no less effective than those provided on the original equipment. Equipment with un-muffled exhausts is prohibited.
- Use equipment complying with pertinent equipment noise standards of the U.S. Environmental Protection Agency.
- Mitigate the noise from rock crushing or screening operations performed within 3,000 feet of all occupied dwellings by placing material stockpiles between the operation and the affected dwellings, or by other means approved by the ODOT construction project manager.
- Locate stationary construction equipment as far from nearby noise sensitive properties as feasible.
- Shut off idling equipment.
4 POTENTIAL MOBILITY ISSUES

4.1 TRAFFIC MOBILITY DURING CONSTRUCTION

- **Freight Traffic:** I-105 is a freight mobility corridor; therefore, the project area must maintain accessibility to I-105 for over-dimensional loads at all times. Special consideration will be necessary for freight accessibility through the project area.

- **Emergency Access:** Emergency vehicle access will be provided at all times.

- **Coordination with Adjacent Construction:** The schedules for adjacent construction projects will be coordinated to facilitate construction coordination between projects. The following are projects that may have traffic impact during construction of the project:
 - OR569 at Delta Interchange (Key #19490)

4.2 CONSIDERATION OF OVERSIZED VEHICLES

I-105 is part of the NHS and is a designated Freight Route and Truck Route. Therefore, it will be essential that I-105 be able to accommodate large trucks during construction. Annual permits of continuous movements are allowed for oversized vehicles up to 14 feet wide and with single trip permits for vehicles greater than 14 feet wide. This project will utilize soft barriers during paving operations and sufficient width will be provided to accommodate oversized vehicles.

- Available roadway width less than 19 feet or 28 feet for one-lane or two-lane roadways - requires 28-day advance notification to Motor Carrier Transportation Division (MCTD).

- Available roadway width is measured across the road from any fixed object to the face of a guard rail or barrier. The Contractor must notify MCTD, Region Mobility Coordinator and the Engineer, in writing using Form#734-2357. The notification should include the date of the lane restrictions, times they will be in effect, the approximate milepost location, and direction of traffic affected.
5 CONSTRUCTION STAGING – TRAFFIC CONTROL NARRATIVE

The proposed improvements will retrofit existing bridge rails to current crash standard rails, install structural deck overlays, seismically retrofit bridges, replace existing bridge joints, replace bridge end panels, and remove an existing bridge. The following summarizes the anticipated traffic control stages.

Stage 1 – Bridge 9572 Removal

 Phase 1 East Side Removal (Lane Closures) – Close one lane northbound and one lane southbound. Move traffic to the west side of structure 9572 and remove the east side. Concrete median barrier will need to be removed to allow shifting traffic west. Maintain 19′ feet between barriers.

 Phase 2 West Side Removal (Lane Closures, Width Reductions & Ramp Closure) – Close one lane northbound and one lane southbound. Move traffic to the east side of structure 9572 and remove the remaining structure on the west side. Maintain a minimum of 17.519 feet between barriers. Structure 8966R as well as the Valley River/Delta southbound to I-105 southbound ramp will need to be closed during this phase. Delta southbound traffic will be detoured east to the Coburg Road interchange and then south over the Ferry Street Bridge to downtown Eugene.

Stage 2 – Deck Strengthening and Bridge Rail Replacement

 Phase 1 Br. 8966, 9600L, 9600E & 9600 Northbound East Side (Width Reduction) – Place temporary concrete back in the median in its original location and shift northbound traffic toward the median. Use concrete barrier on the right shoulder to protect the work zone. Maintain a minimum of 15.6 feet between barriers on structure 9600. Maintain a minimum of 28 feet between barriers on structure 8966. Replace barrier rail on the east side from the north end of the project to the south end.

 Phase 2 Br. 9600L, 9600E & 9600 Northbound West Side (Width Reduction) – Shift traffic to the east and use concrete barrier on the left shoulder to protect the work zone. Maintain a minimum of 15.6 feet between barriers on structure 9600. Replace remaining barrier.

 Phase 3 Br. 8966, 8966R, 9600L, 9600W & 9600C Southbound West Side (Width Reduction) – Shift traffic to the east and use concrete barrier on the left shoulder to protect the work zone. Maintain a minimum of 16.1 feet between barriers on structure 9600C. Maintain a minimum of 16.3 feet between barriers on structure 8966R. Replace barrier rail on the west side from the north end of the project to the south end.

 Phase 4 Br. 8966R, 9600L, 9600W & 9600C Southbound East Side (Width Reduction) – Shift traffic west near the gore area for structure 9600C. Maintain a minimum of 16.1-feet between barriers on structure 9600C. Maintain a minimum of 16.3 feet between barriers on structure 8966R. Replace remaining barrier.
Stage 3 – Deck Overlays, Joint Replacement, and End Panels

Phase 1 Br. 8966 & 8966R Outside Lanes (Width Reduction) – Close single lanes northbound and southbound and close 8966R ramp. Shift traffic towards the median and use temporary concrete barrier to protect the work zone. Maintain a minimum of 14.4 feet between barriers northbound and southbound. Perform work on the outer part of the 8966 structure and all of the 8966R structure for up to three weeks in duration.

Phase 2 Br. 8966 & 8966R Inside Lanes (Width Reduction) – Close single lanes northbound and southbound. Shift traffic to the outsides of the bridge and perform deck overlays in the remaining center area of structure 8966. Maintain single 16-foot-wide lanes northbound and southbound.

Phase 3 Br. 9600L, 9600E, 9600W, 9600, & 9600C Outside Lanes (Lane & Ramp Closures) – Close the outside lanes on bridges 9600L, 9600E, & 9600W. Close the ramps for bridges 9600 & 9600C. Maintain 28-foot width for two lanes each direction into downtown. Replace all joints, construct end panels, and perform PPC overlays on the outsides of the structures and on the ramps.

Phase 4 Br. 9600L, 9600E, 9600W, 9600, & 9600C Inside Lanes (Lane & Ramp Closures) – Close the inside lanes on bridges 9600L, 9600E, & 9600W. Keep the 9600 bridge, 9600C bridge, and one 19-foot-wide lane northbound and southbound open. Replace all joints, construct end panels, and perform PPC overlays on the remaining portion of the structures closest to the median.

Stage 4 – Median Barrier Replacement

Phase 1 (Single Lane Nighttime Closures) – Close a single lane northbound or southbound at night and replace the temporary concrete median barrier with new tall concrete median barrier from the north project limits to where the median barrier terminates at the south end. Night time lane closures will utilize temporary barrels.
6 WORK ZONE LANE RESTRICTIONS

Please refer to the Project Special Provisions in section 00220 and the 2015 Oregon Standard Specifications for Construction Manual for details. Future project deliverables will include the specification language outlining the restrictions.
7 TRAFFIC MANAGEMENT AND OPERATIONS STRATEGIES

In order to minimize construction impacts on traffic flow in the project area and promote work zone safety, the traffic management and operation strategies shown in Table 1 should be considered to support the construction activities of the project. The strategies selected from the table are described below.

Table 1 Traffic Management and Operation Strategies

<table>
<thead>
<tr>
<th>X Public Information and Outreach</th>
<th>X Demand Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOV Lanes/Ramps</td>
</tr>
<tr>
<td>X Motorist Information/ITS</td>
<td>Park-and-Ride Lots</td>
</tr>
<tr>
<td></td>
<td>Parking Management/Pricing</td>
</tr>
<tr>
<td>X Dynamic Message Signs (DMS)</td>
<td>X Rideshare Incentives</td>
</tr>
<tr>
<td>X Variable Message Sign (VMS)</td>
<td>X Rideshare Marketing</td>
</tr>
<tr>
<td>X Portable Changeable Message Sign (PCMS)</td>
<td>X Transit Incentives</td>
</tr>
<tr>
<td>X Ground Mounted Signs</td>
<td></td>
</tr>
<tr>
<td>Commercial Traffic Radio</td>
<td>Transit Service Improvements</td>
</tr>
<tr>
<td>X Highway Advisory Telephone (ODOT Statewide S11)</td>
<td>Train or Light-Rail Incentives</td>
</tr>
<tr>
<td>X Planned Lane Closure Website</td>
<td>Variable Work Hours</td>
</tr>
<tr>
<td>X TripCheck – ODOT’s ITS Website</td>
<td>Telecommute</td>
</tr>
<tr>
<td></td>
<td>Shuttle Service Incentives</td>
</tr>
<tr>
<td>X Radar Speed Message Signs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X Temporary Lanes or Shoulder Use</td>
</tr>
<tr>
<td>X Construction Strategies</td>
<td>X Freeway to Freeway Connector Closures</td>
</tr>
<tr>
<td>Incentive/Disincentive Provisions</td>
<td></td>
</tr>
<tr>
<td>X Ramp Metering</td>
<td>X Alternate Route Strategies</td>
</tr>
<tr>
<td>Lane Rental</td>
<td></td>
</tr>
<tr>
<td>X Off Peak/Night/Weekend/Off Seasonal Work</td>
<td>Street Improvements</td>
</tr>
<tr>
<td>X Temporary Pavement (runaround)</td>
<td>Temporary Lanes or Shoulder Use</td>
</tr>
<tr>
<td>X Temporary Pavement (widening)</td>
<td>X Signal Timing Adjustments</td>
</tr>
<tr>
<td>X Temporary Stripping</td>
<td></td>
</tr>
<tr>
<td>X Planned Lane/Ramp Closures</td>
<td></td>
</tr>
<tr>
<td>X Project Phasing</td>
<td>Call Boxes</td>
</tr>
<tr>
<td>X Temporary Traffic Signals</td>
<td>Construction Zone Enhanced Enforcement Program</td>
</tr>
<tr>
<td>Total Facility Closure</td>
<td>X Traffic Management Operations Center (TMOC)</td>
</tr>
<tr>
<td>X Pilot Cars</td>
<td>Dedicated Service Patrol</td>
</tr>
<tr>
<td>X Temporary Traffic Screens</td>
<td>X Traffic Surveillances Stations/(CCTV)</td>
</tr>
<tr>
<td>X Truck Traffic/Permit Restrictions</td>
<td>Cell Phones</td>
</tr>
<tr>
<td>X Reversible Lanes</td>
<td>X Traffic Control Officers</td>
</tr>
<tr>
<td>X Extended Weekend Closures</td>
<td>X Full-Time Traffic Control Supervisor</td>
</tr>
<tr>
<td>X Reduced Speed Zones</td>
<td>Helicopter (Media)</td>
</tr>
<tr>
<td>X Coordination with Adjacent Construction</td>
<td>X Variable Message Sign (VMS)</td>
</tr>
<tr>
<td>X Rolling Slowdown Method (RSM)</td>
<td>X Towing Vehicles</td>
</tr>
<tr>
<td>X Full-Time Traffic Control Supervisor</td>
<td></td>
</tr>
<tr>
<td>Traffic Control Improvements</td>
<td></td>
</tr>
<tr>
<td>(X) Consideration for Project</td>
<td></td>
</tr>
</tbody>
</table>
7.1 PUBLIC INFORMATION AND OUTREACH

Public information and outreach is beneficial for maintaining public support for projects as well as encouraging changes in travel behavior during the project construction. Subsequently, keeping the public aware of delays as they occur may encourage motorists to use alternate routes or plan trips to avoid peak travel time. This in turn will help manage congestion throughout the project timeline. ODOT Region 2 Community Affairs Unit will be responsible for communicating the project’s goals and impacts to citizens and citizen groups, elected officials, the freight community, businesses, and the traveling public (motorists and bike/pedestrian groups).

7.2 MOTORIST INFORMATION/ITS

Providing motorists with real-time information helps to notify drivers of upcoming work zones and may alleviate congestion and delay. The information below identifies strategies that could be implemented in this project to provide motorist information and encourage traffic to utilize other regional routes.

- **Variable Message Sign (VMS):** Variable message signs are electronic signs that can display changing message. There are a number of variable message signs located in advance of the project site. VMS should be used to warn drivers of any incidences or traffic delay within the construction area so that they can choose to select an alternate route if needed.

- **Portable Changeable Message Signs (PCMS):** PCMS is a portable electronic sign that can display changeable messages. They are useful when informing drivers of upcoming construction periods and warning drivers of construction activities as needed.

- **Ground Mounted Signs:** Typically installed at the endpoints of work zones informing motorists of road construction and the possibility of delay. Ground-mounted signage would also be needed to alert motorists of the availability of Highway Advisory Radio information if/when provided.

- **511 (Highway Advisory Telephone):** Inclusion of this project on ODOT’s statewide 511 highway advisory telephone system will help provide travelers with up-to-date information about construction activities and potential delays.

- **Planned Lane Closure Website:** Information could be relayed either through a stand-alone website or as a link on the ODOT website or local television station and newspaper websites.

- **TripCheck (ODOT’s ITS Website):** TripCheck allows motorists to retrieve real time information and weather conditions via the Internet. In addition to the Internet, motorists may also call 511 to receive this same information.

7.3 CONSTRUCTION STRATEGIES

Useful construction strategies as they pertain to this project are described below.
- **Off-Peak/Off-Seasonal/Night/Weekend Work:** As much as possible, temporary lane closures should be undertaken during the off-peak or night time to avoid excessive congestion.
- **Temporary Striping:** When required, temporary striping on the travel lanes will be provided to direct and control traffic in areas where lane shifts are necessary.
- **Planned Lane or Ramp Closures:** Ramps #08966R, #09600, and #09600C will be closed for up to three weeks, and mainline traffic on I-105 will be restricted to one through lane in each direction along several sections of the project. Otherwise temporary lane or ramp closures, when required, will be limited to the off-peak and night time hours.
- **Project Phasing:** Maintaining the existing travel lane configuration in each direction during construction will create less delay for motorists. Although phasing requires a longer construction period, it does minimize out of direction travel.
- **Pilot Car:** Pilot cars may be used during lane closures to facilitate and control the traffic flow to minimize delay.
- **Coordination with Adjacent Construction:** The schedules for adjacent construction projects will be coordinated to facilitate construction coordination between projects. The following are projects that may have traffic impact during construction of the project:
 - OR569 at Delta Interchange (Key #19490)
- **Rolling Slowdown Method (RSM):** This method allows for slowing traffic and closing of all travel lanes in one or both directions for up to 20 minutes. RSM is performed by using one pilot car for each lane to be slowed. The pilot cars shall enter the roadway, form a moving blockade, and reduce traffic speeds to create a gap in traffic to accomplish the work without completely stopping traffic. One additional pilot car is used as a chase vehicle to follow the last free-flowing vehicle ahead of the blockade.
- **Full-Time Traffic Control Supervisor:** A more rapid response time to incidents is possible when a full-time traffic control officer and/or a supervisor are on site to make the necessary quick decisions and implement contingency plans as warranted.

7.4 INCIDENT MANAGEMENT

The possibility of a minor incident increases within construction zones. Given that minor incidents can potentially evolve into a major event, an incident management plan is a helpful tool to detect and remove incidents from the highway and restore traffic capacity as quickly and safely as possible. The following information identifies strategies that could be implemented in this project if required to mitigate incidents.

- **Traffic Management Operations Center:** Region 2 has an incident management program that is operated from the Traffic Management Operations Center (TMOC). Any incidents that impact traffic flow during construction should be coordinated with the TMOC.
- **Cell Phones:** Mobile cellular telephones should be available at all times to quickly report incidents and emergencies within the project area.

- **Traffic Control Officers/Full-Time Traffic Control Supervisor:** A more rapid response time to incidents is possible when a full-time traffic control officers and a supervisor are on site to make the necessary quick decisions and implement contingency plans as warranted.

- **Variable Message Sign (VMS):** Variable message signs are electronic signs that can display changing message. There are a number of variable message signs located in advance of the project site. VMS should be used to warn drivers of any incidences or traffic delay within the construction area so that they can choose to select an alternate route if needed.

- **Towing Vehicles:** Towing vehicles would arrive at the incident scene after an incident management team removes the disabled vehicle or other obstacle.

7.5 DEMAND MANAGEMENT

- **Temporary Lanes or Shoulder Use:** When required, temporary lane-use of roadway shoulders as travel lanes will be limited to the greatest extent possible in areas where lane shifts are necessary.

7.6 ALTERNATE ROUTE STRATEGIES

- **Ramp Closures:** Ramps will be closed for paving, however no more than one on-ramp and one exit-ramp are allowed to be closed at the same time. The Traffic Control Plan contains the detour route for each ramp closure.
8 INCIDENT MANAGEMENT PLAN

Incident management is a planned and coordinated program that detects and removes incidents from the highway and restores traffic capacity as safely and quickly as possible. The Contractor will have a responsibility to aid in managing incidents within the work area to minimize their impact on the overall mobility of I-105. The Emergency Communication Plan and Contingency Plan are two important tools for incident management that are described in the following sections.

8.1 EMERGENCY COMMUNICATION PLAN

The Emergency Communication Plan describes how communication will occur and lists important contact information for responding to an incident. Important elements include:

- Goals and objectives of the plan.
- Key contacts and their contact information.
- Emergency and essential services contacts.
- Definitions of emergencies and the appropriate response and communication for each type of emergency.
- Roles and responsibilities of the stakeholders who execute the plan.

Maintaining an updated list of emergency contacts for use in the event of an incident shall be the responsibility of the contractor. A template has been included in Appendix A to help guide the contractor in developing an Emergency Communication Plan.

8.2 CONTINGENCY PLAN

As a part of an Incident Management Plan, the Contingency Plan includes both traffic and contractor contingency plans. The traffic Contingency Plan addresses specific actions that will be taken to restore or minimize effects on traffic when the congestion or delay exceeds original estimates due to unforeseen events such as work-zone accidents, higher than predicted traffic demand, or delayed lane closures. The contractor Contingency Plan addresses activities under the contractor’s control in the work zone. A guideline has been included in Appendix B to help guide the contractor (once under contract) in developing a Contingency Plan.
9 MOBILE COMMUNICATION PLAN

The Construction office will follow the guidelines of this Project Level TMP, the Project Communication Plan, Mobility Considerations Project Checklist, and MCTD Restriction Notification Form#734-2357. The Contract Special Provisions will contain language requiring the contractor to provide all local emergency agencies advance notification of the project construction start up and lane closures. Notify MCTD and Region 2 Mobility Coordinator as required for lane closures and any unanticipated vertical or horizontal freight mobility restrictions.
Appendix A Emergency Communication Plan
EMERGENCY COMMUNICATION PLAN TEMPLATE

Advance communication prevents community problems

Communication is the cornerstone of a successful project. Much advance work has been done on this project to inform the public of impacts they can expect during construction, and to listen to community concerns so ODOT can minimize adverse impacts as much as possible. It is important that we keep our commitments and provide advance warning to the community when impacts are expected. This is a daily commitment shared by the project office, contractor and staff from both community and public affairs. In addition, there will be times when an emergency or crisis demands a quick communication response. This plan addresses such unexpected occurrences.

A prompt and accurate response

Prompt dissemination of information ensures that people are informed of what is happening and how they might change their plans to mitigate the event’s effect on them. It is also vital because if the Oregon Department of Transportation does not tell its story right away, someone else – a motorist, a witness, someone who potentially has fewer facts – will tell the story for us.

Accurate information – even when it is not good news – lends credibility to ODOT and its desire to keep the public informed. It goes hand-in-hand with timely communication in allowing the public to make decisions based on the facts available.

Coordination with other agencies before releasing information is critical. All agencies involved in an emergency – local, state, federal, and private sector partners – should communicate the same messages. Conflicting messages damage the credibility of all participating agencies. The public may not take appropriate action to protect themselves or others if they receive conflicting information.

The importance of a communication plan

A plan ensures that all pertinent information – names, phone numbers, key messages, action plan outline, time line, media strategies, etc. – are in the possession of designated emergency/crisis responders so that response can be prompt, accurate and coordinated.

This emergency communication plan is designed to provide a basic outline for how to respond to some of the emergencies or crises that may occur during the project. It gives clear and systematic directions for establishing a chain of command, prioritizing audiences, developing messages, and delivering them in an organized fashion to a variety of audiences: employees, the media, the public. It is vital that responses be coordinated so that ODOT, its contractors, subcontractors and jurisdictional partners speak with "one voice" throughout all stages of the crisis and the public does not receive conflicting messages.
Who is the audience?

During an emergency, ODOT has two primary audiences. The first group is the people who need to act to help respond to the emergency: police, fire, medical, and HAZMAT. The second group needs information in order to protect/prepare themselves. Included in this group are local businesses, residents, motorists and the media.

Types/definitions of emergencies/crises

As stated before, an emergency is anything that has the potential to harm life, property or the environment. Erosion of the public's confidence in ODOT on this project is also considered a crisis. The OTIA bridge projects have the potential for all four. Emergencies can take many different forms and each requires a different level of response. This plan will address some of the many kinds of emergencies/crises that may occur on this project. Please remember, all emergencies/incidents, big or small require a prompt, accurate and coordinated response.

- **Release of contaminates into the air/water**

 The accidental release of contaminates into the air/water (regardless of fault) would be considered an emergency. It has the potential to harm life (human and animal) by contaminating the environment.

- **Unanticipated traffic or pedestrian delays or detours**

 Despite everyone’s best efforts to communicate construction impacts on traffic, there will be times when lanes or ramps are closed longer than expected. Every effort must be made to avoid these situations. The traffic control plans and contract provisions for lane and ramp closures are included to prevent major traffic disruptions. In the event of an unanticipated traffic delay, it is essential that the project staff work with the contractor to reopen lanes or ramps as soon as possible. Liquidated damages may be applied against the contractor for these incidents, but ODOT needs to maintain safe traffic flow on our roadways. When these incidents occur, the public affairs and community affairs staff need to be involved early in the incident to help coordinate the flow of information through the news media and other information distribution channels.

- **Vehicle accident/incident (non-injury)**

 Much of Oregon’s highway and bridge construction takes place "under traffic." This means construction crews share roadway space with thousands of motorists every day. Work-zone wrecks (regardless of fault) would be considered an emergency.

 An incident/accident would be defined as any occurrence involving damage to private property or vehicles. This also includes any unplanned incident that delays traffic for 20 minutes or more. Please use good judgment and call if there is any doubt. A minor incident can attract the attention of the public or media.
- **Serious vehicle accident/incident (injury/death)**

 Accidents/incidents resulting in injury/death of motorists, passengers, and construction workers would be classified as extremely serious. If such a situation occurs, prompt notification is critical.

- **All pedestrian/bicycle incidents**

 Pedestrian facilities are defined as either formal sidewalks or informal pathways that appear to be used frequently. Incidents occurring on pedestrian facilities, bicycle lanes or the adjacent roadway (regardless of fault) would be considered an emergency that needs to be reported to the appropriate project authorities, including public and community affairs staff. Closures of pedestrian facilities must be clearly thought through, discussed with public and community affairs and with pedestrian facility authorities. All discussions of closures must include alternate/detour route considerations.

- **Citizen Reports of Incidents**

 Depending on when an incident occurs, the District Office may be made aware of it before the inspector or construction office. This is especially true on weekends and outside of regular work hours. While the chances of a serious incident at the site drop dramatically during non-work hours, there is still the potential. Frequently, citizens report relatively simple issues like barrels or signs that have been knocked over or steel plates that have started to move. These issues are not the responsibility of the Maintenance offices and must be dealt with immediately. Once again, a prompt response is crucial.

Roles and Responsibilities

The reporting structure and roles/responsibilities are keys to a successful emergency communication effort. The following briefly outlines those roles/responsibilities when an incident occurs:

ODOT’s on-the-scene inspector notifies ODOT’s Project Coordinator ________________, who notifies Project Manager _______________ and Assistant Project Manager ________________, who notifies Public Affairs Manager ________________ and Traffic Manager ________________. Until further notified, the on-scene inspector will be the main, on-site representative, and will be considered the communication link to key ODOT personnel only. This individual will not talk to the media or general public, or discuss the situation with anyone other than key contractor personnel.

Project Manager ________________ or his/her designee notifies Area Manager ________________ and Region Manager _________________. Region Manager ________________ will notify ODOT District ___ Manager ________________, and Maintenance/Operations Manager _________________. Public Affairs Manager ________________ will notify Community Affairs Manager ________________. These individuals, including Public Affairs Manager ________________ and Traffic Manager ________________.
_____________________ will determine lead roles/spokesperson(s). These individuals will also determine the course of action/response to the emergency, identify key messages and further define roles and responsibilities.

If deemed necessary, Public Affairs Manager ______________ will identify/coordinate a second on-the-scene ODOT representative. He will notify key multi-jurisdictional communication team members as necessary/needed. He will also act as spokesperson and will coordinate any off-site or on-the-scene information/command center, if necessary. Community Affairs Manager ______________ will be responsible for notifying businesses, the general public and residents who may be impacted by the incident, and will coordinate any special needs with the incident command staff.

Once a course of action has been determined, Area Manager ______________ or his/her designee will alert the appropriate agencies:

- State and local police/fire/rescue
- Oregon Department of Fish & Wildlife
- Oregon Department of Environmental Quality
- Federal Environmental Protection Agency

The contractor and sub-contractors are employees of ODOT. They will participate in the emergency response as determined necessary by ODOT or by contractual obligation. Contract employees will not talk to the media/general public, or discuss the situation with anyone other than with key ODOT personnel.

Information Sources

Recorded ODOT highway construction information is available 24 hours a day by dialing 503-223-0066.

The project hot line number 503-_______-________ is available 24 hours a day for crisis calls.
CONTINGENCY PLAN GUIDELINES

Explanation

A Contingency Plan includes both traffic and contractor contingency plans. The traffic contingency plan addresses specific actions that will be taken to restore or minimize effects on traffic when the congestion or delay exceeds original estimates due to unforeseen events such as work-zone accidents, higher than predicted traffic demand, or delayed lane closures. The Contractor’s contingency plan addresses activities under the contractor’s control in the work zone.

Documentation

Prior to construction, the Contractor is required to provide the following documentation to be kept on hand at each construction site.

1. Communication, Roles and Responsibilities – A plan for lines of communication, individual roles and responsibilities shall be developed by the Contractor. The contractor shall designate an individual (such as the Traffic Control Supervisor) as a point of contact within their organization. The Contractor’s plan should clearly state lines of communication and authority within their organization as well as reference those outlined in the Emergency Communication Plan or Mobility Communication Plan as applicable.

2. Contractor’s Contingency Plan – The Contractor shall develop a contingency plan for each construction site based on site specific conditions.

3. Contingency Plan Trigger Points - The following conditions or events will require a Contingency Plan to be implemented (documentation of these trigger points shall be included in the Contractor’s Contingency Plan):

 Weather Conditions: ________________________________

 Traffic Conditions (e.g. high traffic demand level): ________________

 Other Events (e.g. accidents): ________________________________

4. Coordination Strategy – The Contractor shall develop a coordination strategy. Any contracting personnel recognizing a condition that would warrant implementing a Contingency Plan shall notify the Traffic Control Supervisor or other individual that has been designated as a “Point of Contact” for the contracting organization. The contracting organization’s representative shall conduct coordination efforts as outlined in the Coordination Strategy. The Coordination Strategy shall include any special
agreements between individuals or agencies. Individuals to be involved in the Coordination Strategy should be included on the Project Contact Information List.

5. Project Contact Information – The Contractor shall develop and maintain a contact list of key project personnel (e.g. Traffic Control Supervisor, Resident Engineer, Maintenance Supervisor, Permit Inspector, State Patrol, and other ODOT representatives). Contact information for individuals on the Emergency Communication Plan and Mobility Communication Plan should also be included. See attached sample forms.

6. Traffic Contingency Plan – The Contractor shall develop a contingency plan to restore minimum operating capacity of the roadway.

7. Required Resources – The Contractor shall provide a list of available of stand-by equipment required for implementation of Contingency Plans. This list should include location of equipment and quantities if appropriate. Examples of items that may be included on the list are: portable changeable message signs, concrete barrier relocation equipment, etc. In addition, include the availability of local ODOT personnel for callout (normally requiring a Cooperative Agreement).
PROJECT CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
<th>Phone:</th>
<th>Cell Phone:</th>
<th>Pager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sheet ___ of ___
Appendix C Work Zone Decision Tree
Contingency Plan Guidelines

Work Zone Decision Tree

<table>
<thead>
<tr>
<th>Phase</th>
<th>Opportunities to Evaluate</th>
<th>Possible / Viable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Scoping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Project Initiation to DAP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 - DAP to Final RSE</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Impacts

<table>
<thead>
<tr>
<th>Road Closure</th>
<th>Possible / Viable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Daytime lane and ramp closures will create significant traffic issues in the area.</td>
</tr>
</tbody>
</table>

Stakeholders & Input

<table>
<thead>
<tr>
<th>Agency Project Manager</th>
<th>Project Leader / Project Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Goodrich / ODOT</td>
<td>Ken Koelll ODOT</td>
</tr>
</tbody>
</table>

Contingency Plan

- Contingency Guidelines
- Kittelson & Associates, Inc.

May 2017

I-105 Willamette River Connections & 1st to 7th Avenue Viaducts

Kittelson & Associates, Inc.
<table>
<thead>
<tr>
<th>Automated Traffic Control Equipment (ATCE)</th>
<th>Temporary Traffic Control Plans (TPS)</th>
<th>Radar Speed Cameras</th>
<th>Construction Speed Zone Reductions</th>
<th>Increased Lateral Buffer Space</th>
<th>Public Information Campaigns</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible to be explored</td>
<td>Not suitable</td>
<td>Not suitable</td>
<td>Most work is occurring on bridge structures with constrained access</td>
<td>Not suitable</td>
<td>Recommended</td>
<td></td>
</tr>
<tr>
<td>Requires further exploration</td>
<td>Not recommended</td>
<td></td>
</tr>
</tbody>
</table>

Contingency Plan Guidelines

I-105 Willamette River Connections & 1st to 7th Avenue Viaducts

May 2017

Kittelson & Associates, Inc.
Appendix D Traffic Analysis Technical Memorandum