ACKNOWLEDGEMENTS

The following individuals were contributors in the preparation of this manual.

Oregon Department of Transportation

Kent Belleque, P.E.
Alexander Bettinardi, P.E.
Rod Cathcart
Don Crownover, P.E.
Brian Dunn, P.E.
Simon Eng, P.E.
Christina Fera-Thomas
Meghan Hamilton
Mark Johnson, P.E.
Chi Mai, P.E.
Christina McDaniel-Wilson
Joseph Meek III, P.E.
Nancy Murphy
Thanh Nguyen, P.E.
Douglas Norval, P.E.
Robert Nova
Gary Obery, P.E.
Peter Schuytema, P.E.
Dorothy Upton, P.E.

DKS Associates, Inc.

John Bosket, P.E.
Carl Springer, P.E.
Bob Schulte

CH2M Hill

Craig Grandstrom, P.E.

Copyright © 2006 by the Oregon Department of Transportation. Permission is given to quote and reproduce parts of this document if credit is given to the source. This project was funded in part by the Federal Highway Administration, U.S. Department of Transportation.

The contents of this report reflect the views of the Oregon Department of Transportation, Transportation Planning Analysis Unit, which is responsible for the facts and accuracy of the information presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration.
This manual is provided to you by the Oregon Department of Transportation (ODOT) "as is" without warranty of any kind. ODOT makes no warranties, either express or implied, including, but not limited to the implied warranties of merchantability, fitness for a particular purpose, and noninfringement. The entire risk as to the quality and performance of this information is with you. You are advised to test use of the information thoroughly before you rely on it. The author and ODOT disclaim all liability for direct, indirect or consequential damages, arising out of your use of the manual.
Table of Contents

1 INTRODUCTION – SEE APM VERSION 2 PREFACE AND CHAPTER 1 1-1

2 MANAGING ANALYSIS PROJECTS – SEE APM VERSION 2 CHAPTER 2.................. 2-1

3 TRANSPORTATION SYSTEM INVENTORY - SEE APM VERSION 2 CHAPTER 3........... 3-1

4 DEVELOPING DESIGN HOUR VOLUMES - SEE APM VERSION 2 CHAPTERS 5 AND 6 4-1

5 ASSESSING PERFORMANCE.. 5-1

5.1 PURPOSE – SEE APM VERSION 2 CHAPTER 4.. 5-1

5.2 CRASH ANALYSIS - SEE APM VERSION 2 CHAPTER 4.. 5-1

5.3 PEAK HOUR FACTORS – SEE APM VERSION 2 CHAPTER 5 5-1

5.4 ACCESS MANAGEMENT - SEE APM VERSION 2 CHAPTER 5 5-1

5.5 SIGHT DISTANCE- SEE APM VERSION 2 CHAPTER 4.. 5-1

5.6 MULTI-MODAL ANALYSIS - SEE APM VERSION 2 CHAPTER 14 5-1

5.7 OTHER ANALYSIS ISSUES/PROCEDURES – SEE APM VERSION 2 PREFACE 5-1

6 SEGMENT ANALYSIS– SEE APM VERSION 2 CHAPTER 11.................................... 6-1

7 INTERSECTION ANALYSIS – SEE APM VERSION 2 CHAPTERS 12 AND 13............. 7-1

8 TRAFFIC SIMULATION MODELS.. 8-1

8.1 PURPOSE.. 8-1

8.2 TRAFFIC SIMULATION MODELING – GENERAL CALIBRATION INSTRUCTIONS... 8-1

8.3 SIMTraffic.. 8-4

8.3.1 OVERVIEW ... 8-4

8.3.2 SIMULATION CALIBRATION .. 8-4

8.3.3 SIMULATION PREPARATION .. 8-5

8.3.4 SIMULATION SETTINGS WINDOW .. 8-6

8.3.5 SIMTraffic PARAMETER FILE ... 8-9

8.3.6 SIMULATION EXECUTION .. 8-12

8.3.7 SIMULATION OUTPUTS .. 8-13
8.4 VISSIM - OVERVIEW

8.5 PARAMICS - OVERVIEW

8.6 CORSIM - OVERVIEW

9 DETERMINING NEEDS – SEE APM VERSION 2 CHAPTER 9

10 ANALYZING ALTERNATIVES – SEE APM VERSION 2 CHAPTER 10

11 AIR AND NOISE TRAFFIC DATA

11.1 PURPOSE

11.2 INPUT FOR NOISE ANALYSIS

11.2.1 COMMON DATA NEEDS

11.2.2 CALCULATIONS

11.2.3 PROCESS

11.3 INPUT FOR AIR QUALITY ANALYSIS

11.4 EISBASE

11.4.1 OUTPUT AND FINAL PRODUCT

12 TRAFFIC ANALYSIS REPORTS

12.1 PURPOSE

12.2 BACKGROUND

12.2.1 TECHNICAL WRITING TIPS

12.2.2 DIAGRAMS AND ILLUSTRATIONS

12.2.3 TABLES

12.3 TECHNICAL MEMORANDUM

12.3.1 PURPOSE

12.3.2 PRODUCTS

12.3.3 DISTRIBUTION

12.4 TRAFFIC NARRATIVE REPORT

12.4.1 PURPOSE

12.4.2 PRODUCT

12.4.3 DISTRIBUTION
Table of Exhibits

Exhibit 8-1 Simulation Construction and Application Flow Chart .. 8-3
Exhibit 8-2 Example Vehicles Exited from Performance Report .. 8-5
Exhibit 8-3 Default Lane Alignment .. 8-7
Exhibit 8-4 Headway Factors ... 8-8
Exhibit 8-5 SimTraffic Default Vehicle Parameters ... 8-10
Exhibit 8-6 SimTraffic Default Driver Parameters ... 8-11
Exhibit 8-7 ODOT Green React Times .. 8-11
Exhibit 8-8 ODOT Intervals Defaults .. 8-12
Exhibit 8-9 Sample Queuing and Blocking Report ... 8-15
Exhibit 8-10 Sample Queuing Diagram .. 8-16
Exhibit 8-11 Sample Performance Report .. 8-17
Exhibit 8-12 Sample Arterial report ... 8-17
Exhibit 8-13 Animated Vehicle and Signal Tracking .. 8-18
Exhibit 8-14 Example Queue Length Static Report ... 8-1
Exhibit 11-1 Sample Link Diagram – Jackson School Road Interchange 11-2
Exhibit 11-2 TruckSum Input .. 11-7
Exhibit 11-3 TruckSum Output ... 11-8
Exhibit 11-4 EISBase Input Screen (Replacement pending.) .. 11-14
Exhibit 11-5 Traffic Analysis Output for Noise Analysis (Replacement pending.) 11-16
Table of Examples

Example 11-1 ... 11-15
1 INTRODUCTION – SEE APM VERSION 2 PREFACE AND CHAPTER 1
2 MANAGING ANALYSIS PROJECTS – SEE APM VERSION 2
CHAPTER 2
3 TRANSPORTATION SYSTEM INVENTORY - SEE APM VERSION 2 CHAPTER 3
4 DEVELOPING DESIGN HOUR VOLUMES - SEE APM VERSION 2 CHAPTERS 5 AND 6
5 ASSESSING PERFORMANCE

5.1 Purpose – SEE APM VERSION 2 CHAPTER 4
5.2 Crash Analysis - SEE APM VERSION 2 CHAPTER 4
5.3 Peak Hour Factors – SEE APM VERSION 2 CHAPTER 5
5.4 Access Management- SEE APM VERSION 2 CHAPTER 4
5.5 Sight Distance- SEE APM VERSION 2 CHAPTER 4
5.6 Multi-Modal Analysis - SEE APM VERSION 2 CHAPTER 14
5.7 Other Analysis Issues/Procedures – SEE APM VERSION 2 PREFACE
6 SEGMENT ANALYSIS—SEE APM VERSION 2 CHAPTER 11
7 INTERSECTION ANALYSIS – SEE APM VERSION 2 CHAPTERS 12 AND 13
8 TRAFFIC SIMULATION MODELS

8.1 Purpose
Traffic simulation models are complex tools that can provide valuable information on the performance and potential improvement of transportation systems. Traffic simulation models are in a constant state of improvement and accordingly this chapter attempts to be adaptive with the changes in the industry. This chapter currently presents instruction on calibration of microsimulation models created in Trafficware’s SimTraffic and a brief overview of the other simulation models and parameters used in ODOT projects. Topics covered include:

- Traffic Simulation Modeling – General Calibration Instructions
- SimTraffic – Overview and Calibration Instructions
- VISSIM – Overview
- Paramics - Overview
- CORSIM – Overview

8.2 Traffic Simulation Modeling – General Calibration Instructions
Traffic simulation models are computer programs that simulate traffic movements over a user-defined transportation network and present the results via animation and reports. The degree of user control over the simulation and the types of facilities that can be modeled will vary depending on the program being used. These should not be confused with urban travel demand models (Chapter 6), which use current and projected land use and transportation network data to estimate current and future travel demand and traffic patterns.

Traffic simulation models (meso or microscopic) are complex tools that generally require more labor than programs that perform capacity analysis at a macro level. Because of this, they are generally only used when the use of other types of analysis tools will not be adequate for a given project. Simulation models offer a greater degree of flexibility than most programs designed specifically for capacity analysis and can be used for a wide range of analysis needs such as examining the interactions between different modes of transportation, modeling the operations of HOV lanes or bus priority systems and evaluating operations through measures of effectiveness not offered by most other types of analysis programs. Simulation models are also very useful for presentations, especially for those given to audiences lacking technical knowledge of traffic analysis, because it provides a visual basis for evaluating operations that most people can easily relate to and understand.

Simulation models are commonly used by ODOT to analyze corridors or networks under congested conditions, where upstream or downstream operations have a significant influence on actual intersection operations (e.g., intersection blockage from queue spillback). It should be noted that simulation models use different methodologies for estimating queue lengths than other procedures described in this manual. These methodologies are typically based on observations of queues experienced during simulation, which are influenced by parameters such as driver characteristics, lane changing behavior and various traffic flow interactions. Capturing the impact of up and downstream operations on vehicle queues can make these models very effective at estimating queue lengths, but underscores the importance of good model calibration. General
guidelines for the application of simulation models have been published by the Federal Highway Administration, which can be found at the FHWA website under traffic analysis tools.

Depending on the specific program used, there may be numerous parameters that can be manipulated by the user to create a system that most accurately represents the one being analyzed. Before any simulation model is used to represent existing or future conditions, the existing conditions model created must be calibrated by adjusting operational parameters until the model provides a reasonable representation of existing conditions measured in the field. Existing conditions need to be replicated; otherwise future conditions will not be correct. Existing conditions should include only data, operations and measures known to currently exist in the project study area. Vehicle counts should be kept as close as possible to the original volumes obtained from the field. If all counts are available from the same day, vehicle counts used during calibration should be un-factored and unbalanced counts (this day should be as close to the 30th highest hour as possible). If counts cannot all be collected on the same day (or year), every effort should be made to collect counts at primary locations on a day that is on or closely represents, the 30th highest hour. The remaining counts can then be factored and balanced to this primary count day. If all counts occur on scattered days and none of the counts occur on the 30th highest hour or on a representative day then short sample count should be conducted to factor the off-peak counts to the day the study area was visited. Use the seasonal factor methodology described in Chapter 5 to determine if the count is close enough to the 30th highest hour. If the primary counts for the study area occurred during a time that is less than 90% of the 30th highest hour for that area seasonal trend type, then a re-visit with a sample count is required for the calibration of the “existing” model.

These rules are established to help ensure that calibration volumes 1) are near the 30th highest hour and 2) represent conditions that have been witnessed in the field. The emphasis is placed on witnessed, as the analyst needs to visit the study area on or near the count day (30th highest hour) so that the visual check of the simulation (the first step in calibration) is based on conditions that occurred in the field during the count. The Field Inventory Worksheet shows all the measures from the field that should be input into the simulation and visually checked in the animation to help analysts in the data collection process. Chapter 3, Transportation System Inventory, shows an example completed worksheet for a simulation project. Note that the worksheet is intended to be printed multiple times for a given project area. The collection of worksheets can be placed in a three-ring binder providing a hard writing surface. Each copy of the worksheet can be used for each intersection or area of interest in the study and all copies can be neatly organized in a single project binder (see Chapter 3).

The site visit should occur as close as possible to the 30th highest hour. After the site a calibration scenario can be constructed. For the purpose of calibration, the peak hour volumes from the counts should be seasonally adjusted to the time period of the site visit. The calibration network should include all measurements taken and all operational behavior witnessed. Many of the behavioral issues should be collected on the worksheet provided above. For Synchro and SimTraffic inputs refer to Chapters 12 and 13. Some of these sections refer specifically to Synchro/SimTraffic, but the list provided should include most of the measures that would have to be checked or adjusted in any software platform. Note that most microsimulations go into greater detail than SimTraffic, so there will likely be more measures to check and adjust. Also note that illegal behavior such as speeding, improperly using medians or shoulders as turn bays
and improper lane changing distances should be accounted for in during calibration, but should
not be continued to be assumed in the future build scenarios. All non-calibration alternative
analysis should assume that all drivers follow the rules of the road.

Once the “existing” inputs and behavior is coded into the simulation software, the analyst should
run an animation to visually check the reasonability of the microsimulation. Any gross error like
queues or blockages being much greater or much less than the field observations should be
addressed by re-checking inputs. Further refinement may include measuring and adjusting
saturation flow rates, driver reaction time and travel speed. A good place to start is by comparing
simulated vehicle queues to those visually observed in the field. For some corridors, comparing
simulated travel times or average speeds to actual observed conditions may be appropriate.

Good calibration is not only critical for accurate analysis, but will establish credibility during
presentations with technical advisory committees or public groups that have prior knowledge of
existing problem areas. Exhibit 8-1 illustrates how the calibration process fits into the complete
analysis. The calibration, existing and site visit hour refer to the same hour. In other words, the
“calibration” data is collected in the study area in the “site visit” hour to represent “existing”
conditions. For further information on calibration in general, consult the FHWA Analysis
Toolbox. Section 8.3 has the detailed procedures on calibrating a SimTraffic model using
SimTraffic for ODOT projects.

Exhibit 8-1 Simulation Construction and Application Flow Chart

![Exhibit 8-1 Simulation Construction and Application Flow Chart](image)
8.3 SimTraffic

8.3.1 Overview

SimTraffic performs microsimulation and animation of vehicle traffic, modeling travel through signalized and unsignalized intersections and arterial networks, as well as freeway sections, with cars, trucks, pedestrians and buses. SimTraffic includes the vehicle and driver performance characteristics developed by the Federal Highway Administration for use in traffic modeling. They were developed for CORSIM and Trafficware used them as they were published. Most of the input is entered through the Synchro program, but some parameters, such as the driver and vehicle characteristics, are modified through SimTraffic specifically.

SimTraffic can be used for all ODOT plans, projects and traffic impact studies. SimTraffic is primarily used by ODOT for the analysis of signal systems and vehicle queue estimation, especially in congested areas and locations where queue spillback may be a problem. For the estimation of signalized vehicle queues, SimTraffic is generally preferred in Regions 2 through 5 where v/c ratios exceed 0.70 and in Region 1 where v/c ratios exceed 0.90, but should always be used where v/c ratios exceed 0.90. SimTraffic should typically be used for the analysis of all coordinated signal systems. For isolated intersections, Synchro and SimTraffic should provide similar results. SimTraffic results will differ from Synchro most when the v/c ratio exceeds 0.90, when there are closely spaced intersections and other conditions that are not ideal. Overcapacity queues and metering conditions are identified in Synchro’s Timing Window with a “#” or “m” symbol.

8.3.2 Simulation Calibration

As much as possible, operational field data should be obtained for the major facilities in the study area as close as possible to the design hour (see Appendix H). Beyond the field data listed in Chapter 3, additional field measures may be needed to achieve calibration of the microsimulation. If needed, saturation flow studies should be performed at the major intersections. Floating car travel time runs may need to be performed to ensure that observed and simulated travel times (and related speeds) are close. Free-flow link speeds using road-tube counters or speed guns (RADAR, LIDAR, etc) may need to be collected and used in place of posted speed limits during calibration.

At the very least, the existing conditions network needs to be visually calibrated to the field conditions and the “vehicles exited” measure from SimTraffic should be reviewed. If everything is close, then the SimTraffic simulation should duplicate conditions seen in the field. Congested and free-flow areas in the field should be congested and free-flowing in the simulation.

If there is more congestion in the simulation than in the field, then one or more parameters may be off. For example, saturation flows and resulting headway factors may be too low, counts may be balanced too high, peak hour factors may be too low, link and turning speeds may be low, storage bays and taper lengths may be too short and intersection paths and lane change distances may be incorrect. If congestion is too low then the reverse of these may be a cause.

To help determine the cause of inconsistencies with known conditions, any number of measures
of effectiveness (MOE) may be reviewed, however as a minimum measure, “vehicles exited” needs to be checked to ensure that the model is calibrated.

“Vehicles Exited” represents the number of vehicles that make it through an intersection over a given period of time. This should equal the volume coded in the network for the “existing hour”. The calibration target for each intersection in the network is a tolerance of 1% over the analysis period based on the difference between the simulation and the input field-counted exiting (existing) hour volumes. However, at a minimum, the tolerances for any movement over 100 vph should be within 5% of the coded volume. Movements with less than 100 vph should be checked to make sure that the vehicles exiting is reasonable. These limits are required to achieve calibration for the calibration volume set (not required for the 30th highest hour or build year network). Exhibit 8-2 shows an excerpt from the Performance report showing the Vehicle Exited rates and calibration percentages. Note that all movements over 100 vph are under the 5% maximum tolerance and the entire intersection is under the 1% intersection tolerance.

Exhibit 8-2 Example Vehicles Exited from Performance Report

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>WBT</th>
<th>WBR</th>
<th>SBL</th>
<th>SBR</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Stops</td>
<td>38</td>
<td>363</td>
<td>704</td>
<td>25</td>
<td>288</td>
<td>14</td>
<td>1432</td>
</tr>
<tr>
<td>Avg Speed (mph)</td>
<td>12</td>
<td>26</td>
<td>16</td>
<td>23</td>
<td>9</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Vehicles Entered</td>
<td>39</td>
<td>1181</td>
<td>1198</td>
<td>476</td>
<td>317</td>
<td>19</td>
<td>3210</td>
</tr>
<tr>
<td>Vehicles Exited</td>
<td>36</td>
<td>1184</td>
<td>1200</td>
<td>476</td>
<td>320</td>
<td>19</td>
<td>3218</td>
</tr>
<tr>
<td>Hourly Exit Rate</td>
<td>39</td>
<td>1154</td>
<td>1200</td>
<td>476</td>
<td>320</td>
<td>19</td>
<td>3218</td>
</tr>
<tr>
<td>Input Volume</td>
<td>38</td>
<td>1189</td>
<td>1187</td>
<td>489</td>
<td>311</td>
<td>17</td>
<td>3211</td>
</tr>
<tr>
<td>% of Volume</td>
<td>103</td>
<td>100</td>
<td>101</td>
<td>57</td>
<td>103</td>
<td>112</td>
<td>100</td>
</tr>
</tbody>
</table>

Although calibration (fine-tuning) may take some time, it is necessary because if the existing conditions is not duplicating observed conditions, then the future conditions or build alternative performance will not be predicted very well. This is critical if any animated output is to be shown at public meetings. In achieving accurate calibration it is important that the SimTraffic parameter file is setup properly.

8.3.3 Simulation Preparation

In addition to setting up the SimTraffic parameter file, there are a number of Synchro settings that must be updated for simulations to work properly in SimTraffic. More signal timing detail must be added in the Phasing Window. These phasing details, settings and defaults are shown in Chapters 12 and 13. Project data needs to be entered into the Simulation Settings Window and the Detector Window. The Detector Window is covered under the Synchro sections in Chapter 13 because detector data is necessary if actuated signal functions are to be used in Synchro. The important Simulation Settings Window and the SimTraffic parameter data are included in Section 8.3.3 and 8.3.4, respectively. Earlier versions of SimTraffic only need to create the SimTraffic parameter file.
8.3.4 Simulation Settings Window

The following data is only used by SimTraffic and needs to be included for a proper simulation. This data allows for geometric refinement and operational behavior of the simulation. The data required by SimTraffic should be a part of the field collection/observation process and is included the Field Inventory Worksheet.

- **Storage Length (ft)** – The Storage Length is the length of a turning bay from the stop bar to the beginning of the taper. Storage Length is the area that can store vehicles and does not include tapers. If the Left or Right Turn lane goes all the way back to the previous intersection, enter "0". Storage Length data is used for analyzing potential blocking problems. Storage length is typically field measured or estimated from aerial photographs. If measurements are unknown or if the facility is new, the initial storage lengths of 100’ for urban and 150’ for rural can be used. SimTraffic outputs will be used to refine these lengths for build alternatives.

- **Taper Length (ft)** – The Taper Length is the remaining length of the turning bay from the end of the storage length to where the outer edge of the turning bay meets the outer edge of the adjacent lane. This value is field-measured or estimated from aerial photographs. For state highways, the taper lengths can be obtained from the Highway Design Manual Figures 8-8 for right turn lanes and 8-9 for left turn lanes. This allows turning bays to store several more vehicles and allows a truer and a more consistent (with design) representation.

- **Lane Alignment** – The Lane alignment controls the vehicle paths in SimTraffic. When links are constructed, Synchro shows either a “Left” or “Right” alignment as default. This may not be correct especially if multilane approaches, skewed intersections, short links, free-flow ramp connections and merge/diverge/weaving sections make up a particular intersection.

 Other choices are “L-NA” and “R-NA” which will force the vehicle path either left or right. To check the lane alignment, the Intersection Paths box must be checked under the Map Settings window. The default color or zoom level will likely need to be changed to clearly see the paths.

Exhibit 8-3 shows that Synchro defaults to single-lane turn lanes turning into a multilane leg with paths going to either departing lane. Unless lines are marked on the pavement guiding vehicles into different lanes Oregon vehicular code states that vehicles need to turn into the nearest lane. In most of these cases the Lane Alignment needs to be changed to “L-NA” or “R-NA” depending on the turn type.
Exhibit 8-3 Default Lane Alignment

For the existing calibrated network, the legal setting may not need to be followed if the majority of field-observed vehicles turn into both lanes (although itself an improper lane choice). Design alternatives should be always be coded legally.

Note that the northbound dual left turn lane shown in Exhibit 8-3 has the correct paths. The southbound left still needs to be changed to limit traffic to the inside through lane. In cases of acceleration lanes, merging traffic should be forced right using “R-NA” and through traffic forced left using “L-NA.” This will keep through vehicles out of the acceleration lane.

- **Enter Blocked Intersection** – This setting controls whether mainline or side-street traffic can enter a blocked intersection. In earlier versions of SimTraffic, vehicles did not block intersections. Default is “No” for intersections and “Yes” for bend nodes and ramp junctions. This factor is best obtained through field observation.

Along many busy roadways, minor intersections and driveways are frequently blocked by through traffic, so in this case the setting should be “Yes” for the through traffic. If “Do Not Block Intersection” signs exist, then the setting should remain “No” unless the signs are generally ignored. If there are intersections or accesses that are frequently blocked and through vehicles let side street vehicles out, then the side street movements can be set to “1 veh” which will allow one vehicle to enter. Use of the “2 veh” setting has a tendency to cause the simulation to clog up.

- **Link Offset (ft)** – The Link Offset is used to set the roadway left or right of the natural centerline. This is typically used in creating “dogleg” or offset intersections without
creating a second node.

- **Crosswalk Width (ft)** - this is the width of the crosswalk on an approach. This setting controls the placement of the stop bar which controls detector placement and link length. ODOT default crosswalk width is 12 feet (outside edge to outside edge) unless the adjoining sidewalk is wider. Local intersections should be measured.

- **Headway Factor** - The saturation flow rate in SimTraffic for intersection approaches is adjusted through the Headway Factor. The saturated flow rate calculated in Synchro is not used in SimTraffic; however, the corresponding headway factor is automatically calculated. In simulation calibration, the headway factor can be adjusted to help fine-tune (calibrate) the SimTraffic simulation. Exhibit 8-4 shows the equivalent headway factor for a given saturated flow rate. Earlier versions of Synchro/SimTraffic need to have the headway factor manually calculated in the Lane Window.

Exhibit 8-4 Headway Factors

<table>
<thead>
<tr>
<th>Headway Factor</th>
<th>Saturated Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1650 vphpl</td>
</tr>
<tr>
<td>1.1</td>
<td>1750 vphpl</td>
</tr>
<tr>
<td>1.0</td>
<td>1850 vphpl</td>
</tr>
<tr>
<td>0.9</td>
<td>2050 vphpl</td>
</tr>
<tr>
<td>0.8</td>
<td>2250 vphpl</td>
</tr>
</tbody>
</table>

- **Turning Speed (mph)** – This is the turning speed used by SimTraffic by movement. Higher speeds will increase the capacity of the SimTraffic simulation. Synchro default is 15 mph for left turns and 9 mph for right turns. The 9 mph right turn speed is too slow unless used for turning onto residential local streets or in a downtown central business district location.

 ODOT default is 15 mph for left and right turns. Non-standard turns at skewed intersections, channelized turns and interchanges should have different values and can be estimated by recording speeds while driving through the subject intersections or using a speed gun to capture turning vehicle speeds. Turning speeds are also needed for merge/diverge sections at interchanges or bend nodes.

- **Lane Change Distances** - Changes to these calculated values can help calibrate the vehicle lane-changing operation. Changes may be necessary if vehicles are having difficulty completing lane changes ahead of intersections or off-ramps or if vehicles are artificially clogging up at lane drops after an intersection or a two-lane ramp merging into a single lane. High heavy vehicle percentages combined with a higher amount of long vehicles and/or a congested network increases the chances that modifications will be required. Closely spaced intersections will have short lane change distances while interchanges will have longer lane change distances as many drivers move into the desired lane considerably ahead of an off-ramp. The analyst will need to experiment with these values, either longer or shorter until the traffic is flowing consistent to the observed conditions or flowing smoothly for future conditions. Modifying ramp geometry so that the ramps enter the mainline as turns rather than as a straight-through movement makes for smoother operation and less need to modify these distances.
There are two different types of lane change distances: mandatory and positioning. The Mandatory Distance is the distance measured from the stop bar at which a lane change must occur. The Positioning distance is the distance measured back from the Mandatory Distance where a vehicle first attempts a lane change. The Mandatory and Position Distance 2’s are extra distance added if a second lane change is necessary. All of these distances can extend around corners. Adding to the challenge of changing these variables, is that the driver types in SimTraffic have a range of a 50% (aggressive) to a 200% (passive) multiplier to the set distances.

8.3.5 SimTraffic Parameter File

The SimTraffic parameter file controls the simulation operation and the defaults must be changed to reflect the proper impacts of queuing, travel time, etc. The parameter file has three major sections: Vehicles, Drivers and Intervals. The TPAU Analysis Tools webpage has a default SimTraffic template file with all of the basic parameters set up. The following shows the variables that need to be changed. All other settings are left unchanged.

The Vehicles tab controls the type and physical vehicle characteristics.

- **Vehicle Occurrence (%)** - SimTraffic uses the Synchro heavy vehicle percentage to simulate the total number of heavy vehicles relative to all vehicles. When the simulation calls for a heavy vehicle, the vehicle type is represented by this factor which represents the percentage breakout of the global truck fleet. Likewise, when a car is called for, this factor will split the car types among the global car fleet percentages.
 - Earlier versions of SimTraffic defaulted to having the total vehicle percentages sum up to 100%.
 - SimTraffic 7 defaults total up to 100% for the car fleet and 100% for the truck (includes buses) fleet as shown in Exhibit 8-5.
 - Change the Vehicle Occurrence (%) for the different vehicle classes to match the composite average of your classification counts. If classification counts are unavailable, state highway vehicle classification segment data (available at https://highway.odot.state.or.us/cf/highwayreports/traffic_parms.cfm) can be used substituted. Average between multiple counts at the project boundaries and on different significant facilities both state and local. Note that while the heavy vehicle percentages per approach may vary largely, the heavy vehicle mix does not vary as much. The total truck fleet should total up to 100% and the total car fleet should total up to 100%.

 - Car1 represents the larger passenger vehicles in the fleet (i.e. SUV’s, large pickups);
 - Car2 represents smaller passenger vehicles in the fleet;
 - TruckSU represents single unit trucks (i.e. delivery vans, dump trucks);
 - SemiTrk1 represents single tractor-trailer combinations;
 - SemiTrk2 represents shorter single tractor-trailer combinations;
 - Truck DB represents trucks with two trailers; Note: SemiTrk2 and Truck DB can be customized to fit other truck types like triple trailers.
 - Bus represents buses in the fleet;
 - Carpool1 & Carpool2 represents vehicles with the same characteristics as Car1 and 2 but with higher occupancies. Zero out the default Carpool1 and
Carpool2 vehicles. These will have no effect on the simulation unless vehicle occupancy is used as an evaluation measure.

Exhibit 8-5 SimTraffic Default Vehicle Parameters

- **Vehicle Length (ft)** – This parameter directly affects queuing distances. Leaving the length unchanged will result in the queues being underestimated. Change the vehicle length in the following vehicle types:
 - Car1 = 20 ft;
 - Car2 = 16 ft;
 - TruckSU = 30 ft;
 - SemiTrk1 = 75 ft.

The Drivers tab (Exhibit 8-6) controls the behavior characteristics for the 10 different driver types that make up the simulation from the passive to the aggressive. For example, Driver Type 1 has 15% lower link speeds and will take 200% more distance when making a lane change while Driver Type 10 will travel 15% faster than the link speed and have lane change distances 50% of the coded values. All of the factors in the Drivers tab remain the same with exception of the Green React (s) setting. This setting reflects the time from when the signal turns green to the time that the vehicle begins to move. This value can be captured in the field and used as a calibration parameter. TPAU research indicates that Oregon values are substantially different than the defaults in SimTraffic. Change the Green React times to match Exhibit 8-7.

These percentages should reflect the relative differences between vehicle classes in the manual counts.
Exhibit 8-6 SimTraffic Default Driver Parameters

The Intervals tab controls the actual operation and data recording of the simulation. Exhibit 8-8 shows the ODOT interval defaults.

- **Seeding “0” Interval** – The Seeding Interval fills the network before any statistics are recorded. This value must be long enough for vehicles to travel the length of the network. ODOT default is 10 minutes or the time to travel the longest trip on the network, whichever is longer.

- **Recording Intervals** – Simulation statistics are recorded in these intervals. The ODOT default uses at least two intervals, one 15-minute in length to represent the peak 15-minute period and one 45-minute interval to fill out the hour simulation period. However, you can have more intervals if you would like. For future analysis networks, the 15-minute interval is preferably placed as the first recording interval because it most represents the peaking in the output reports, regardless of where it occurs in the actual peak hour. However, for the calibration network, the 15-minute peak period should be coded to represent the actual peak 15-minute period as it occurred during the counts. The names of the recording intervals can be anything as they have no impact on the results.

- **Duration (min)** – Change to 10 minutes (time to cross the network if longer) for the seeding interval, 15 minutes for the first recording interval and 45 minutes for the second recording interval (or, if this is being applied to the calibration work, a distribution representing the peak as it occurred in the counts).

The Intervals tab controls the actual operation and data recording of the simulation. Exhibit 8-8 shows the ODOT interval defaults.

- **Seeding “0” Interval** – The Seeding Interval fills the network before any statistics are recorded. This value must be long enough for vehicles to travel the length of the network. ODOT default is 10 minutes or the time to travel the longest trip on the network, whichever is longer.

- **Recording Intervals** – Simulation statistics are recorded in these intervals. The ODOT default uses at least two intervals, one 15-minute in length to represent the peak 15-minute period and one 45-minute interval to fill out the hour simulation period. However, you can have more intervals if you would like. For future analysis networks, the 15-minute interval is preferably placed as the first recording interval because it most represents the peaking in the output reports, regardless of where it occurs in the actual peak hour. However, for the calibration network, the 15-minute peak period should be coded to represent the actual peak 15-minute period as it occurred during the counts. The names of the recording intervals can be anything as they have no impact on the results.

- **Duration (min)** – Change to 10 minutes (time to cross the network if longer) for the seeding interval, 15 minutes for the first recording interval and 45 minutes for the second recording interval (or, if this is being applied to the calibration work, a distribution representing the peak as it occurred in the counts).
• **Start Time (hhmm)** – After Duration is specified, change the start time to reflect the hour being simulated.

• **Record Statistics** – Set to “Yes” for all recording intervals.

• **Growth Factor Adjust** – Set to “Yes” for all intervals.

• **PHF Adjust & AntiPHF Adjust** – The combination of these two settings creates a spike in the simulated hour. The PHF Adjust should be set to “Yes” during the seeding and the peak 15-minute intervals and the AntiPHF Adjust set to “No.”. The AntiPHF Adjust should be set to “Yes” and the PHF Adjust set to “No” for all other recording intervals.

• **Percentile Adjust** – Set to “No” for all intervals. Use of this setting will overestimate the queuing in the simulation.

• **Random Number Seed** – SimTraffic uses nine different simulation scenarios (1 through 9). If it is desired to produce duplicate results, select a non-zero setting. ODOT default is to set it to ‘0’ which will produce random arrival rates with each run.

Exhibit 8-8 ODOT Intervals Defaults

<table>
<thead>
<tr>
<th>SimTraffic Parameters</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Time (hhmm)</td>
<td>04:50 P</td>
<td>05:00 P</td>
<td>05:15 P</td>
</tr>
<tr>
<td>Duration (min)</td>
<td>10</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>Record Statistics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Growth Factor Adjust</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PHF Adjust</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AntiPHF Adjust</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Percentile Adjust</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Percentile Adjust (kile)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Timing Plan ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Start Time (hhmm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Number Seed</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.6 Simulation Execution

Once all Synchro and SimTraffic settings are completed, the simulation is ready to be executed. Upon starting the simulation, the “Errors and Warnings” window will appear. This shows anything that is outside of the value ranges what SimTraffic expects to find. Errors are split into fatal and non-fatal errors. Fatal errors will not allow the simulation to run and must be corrected. Fatal errors usually are related to lanes and lane groups where no lanes exist on a link.

Non-fatal errors still allow a simulation to be run, but these need to be reviewed and corrected if possible for best results. Some examples of non-fatal errors that need to be corrected are:

• “Detector too close to stop bar”;

• Minimum green /total split/pedestrian timing errors;
• Reference phase not in use errors;
• Storage lane and length errors.

Some examples of non-fatal errors that can be left alone as these are “how it is” are:
• “Angle between approaches less than 25 degrees.” Small angles will lengthen out an intersection area and may cause unpredictable operation.
• Any error referencing vehicle extensions or minimum gaps exceeding 111% of travel time between detectors. Errors such as these indicate that actuated signal operation will be not as efficient.
• “Volume-delay operation not recommended with long detection zone.” SimTraffic has issues generally with ODOT’s default phasing variables.

ODOT standard is to average together at least five (5) random acceptably working (no system gridlock) runs. If you have a congested or a large network, it is advisable to have 7-10 runs to allow for “blown” runs which are caused by system gridlock so there are at least five good runs averaged together at the end. The system gridlock is typically caused by the improper actions of simulated vehicles that end up getting stuck. If every run or a majority of runs have gridlock, then the analyst should further refine the simulation settings, especially the headway factors, blocked intersection and lane change distance parameters.

It can take 20-40 minutes a run (depending on network size, congestion level and computer speed). Make sure you have adequate available storage. Each simulation file can be in excess of 1 GB. If you run out of space during a multiple recording session, SimTraffic will continue to run, but the simulations will stop being recorded.

Once the runs are completed, check each simulation run by selecting each number in the drop-down run number box to make sure it is free of any system gridlock errors and that the simulation reflects what is expected. If there are bad runs, make note of the run number, so it may be skipped in the report process.

8.3.7 Simulation Outputs

SimTraffic outputs are used for queue analysis, determination of storage lane lengths, travel times and other evaluation criteria. Many times in the evaluation of alternatives the typical v/c and LOS measures may have very small differences. It is common practice today to use additional MOE’s to describe an operation of an alternative. These MOE’s can include travel time, stopped delay, average speed and queue blocking. These are very useful in alternative comparisons because lower travel times, delays and stops coupled with higher average speeds, will indicate a more operationally efficient alternative.

Make sure before selecting any report to print or preview that a number is showing in the run number box. Otherwise, a message appears from SimTraffic saying that it needs to record the simulation again.

To preview a report, select the desired report(s) and make sure that the Multiple Runs box is checked. Select the desired .hst files (skipping any bad runs). Reports are generally broken down into sections by intersection and interval. The Summary of All Intervals section of the report is
where information is pulled from for analysis. Check to make sure that content, headers and footers are correct before printing.

- **Simulation Summary Report** – Used to check whether that the runs look to have similar characteristics. Entering and exiting vehicles, total delay and total stops should be relatively consistent between runs. This is a second check of the run adequacy (the first is visual inspection). This report also gives system total MOE’s which can be used in alternative comparisons.

 Queuing and Blocking Report - The Queuing and Blocking report generates the 95th percentile queues which are used to design turn bay storage as well as document operation of the study area.

- Exhibit 8-9 shows a typical report.

 This report shows three different queues: maximum, average and 95th. The reported maximum queue is the highest queue calculated every two minutes. The average queue (50th percentile) is the average of the calculated two-minute queues. The 95th Queue is the 95th percentile of the reported maximum queue over the simulated period. With the Random Number Seed set to zero, the queues in this report will be different from those in another set of simulation runs. When reporting out the estimated queue lengths, round up to the next 25 feet.
Exhibit 8-9 Sample Queuing and Blocking Report

The Upstream Block Time and the Storage Block Time are of particular interest in helping describe the overall impact of queuing. While the 95th percentile queues may show how long a queue is, the block time shows for how long of the simulated hour the queue will block intersections or storage bays.

Even if queue spillback into adjacent intersections is not occurring, storage bays may be overflowing, causing local problems such as the blockage of adjacent lanes. A queue blockage or spillback condition is considered a problem when the duration exceeds five (5) percent of the peak hour. Spillback may also be a sign of cycle failure as there may not have been enough green time available to serve all waiting vehicles. Signals do not recover instantly, so one spillback cycle could affect the operation of the next two or three cycles which can be a significant portion of hourly cycles.

- **Upstream Blk (Block) Time (%)** - This is an estimated percentage of the peak hour in which the queue from the subject node blocks an upstream node. This is especially useful when analyzing a complex Synchro network, to determine the extent of queuing on a system when reporting out results. It can also be used to determine if an alternative or option will provide the best progression.

- **Storage Blk (Block) Time (%)** - This reports an estimated percentage of the peak hour
in which the length of the through or turning queues exceeds the storage length. For build analysis, if your storage block time is significant (>5%), then it is recommended to enter a longer bay length, rerun the simulation and continue this until you get a percentage less than 5%. Keep in mind that storage bays should adhere to the practical limit of 300 – 350 feet (most storage bays are 100 to 150 feet), so some alternatives and their simulations will still have significant storage block time.

Queues can be reported directly from the subject approach if the queue length is less than the link length. If a queue is longer than the link length, then the total actual queue length will be the link length(s) that are completely filled up plus the last queue length that does not exceed the link length. The analyst will need to trace the queue back from the intersection in question, so you will likely pass though multiple intersections and bend nodes to obtain the actual queue length. However, this queue is made up of contributions from other intersections that the subject queue spills back into which can make it hard to tell and report where exactly the queue originates. Queues are best reported graphically by identifying the queues under spillback conditions separately from the ones that do not exceed the link length.

Exhibit 8-10 shows a sample 95th percentile queuing diagram. To minimize reporting issues, link curvature should be used where possible to eliminate any unnecessary bend nodes.

The combination of the upstream and storage block times can also be used to report out the impacts of queuing at a higher level instead of reporting out the 95th percentile queues for intersection approaches.

Exhibit 8-10 Sample Queuing Diagram
• **Performance Report** - The Performance report (Exhibit 8-11) gives the MOE comparisons for each intersection by approach, movement or run; for each approach by run; or a total for the entire network. MOE’s are summed over the entire hour (i.e., hours of delay). During calibration, “vehicles exited” needs to be used to ensure calibration, see Section 8.3.1 for more instruction.

Exhibit 8-11 Sample Performance Report

<table>
<thead>
<tr>
<th>SimTraffic Performance Report</th>
<th>27/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Redwood Ave & US 199 Performance by movement Entire Run</td>
<td></td>
</tr>
<tr>
<td>Movement</td>
<td>WRT</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Total Delay (hr)</td>
<td>28</td>
</tr>
<tr>
<td>Delay/veh (s)</td>
<td>86</td>
</tr>
<tr>
<td>Total Pace</td>
<td>86</td>
</tr>
<tr>
<td>Travel Dist (mi)</td>
<td>147.4</td>
</tr>
<tr>
<td>Travel Time (hr)</td>
<td>8.2</td>
</tr>
<tr>
<td>Avg Speed (mph)</td>
<td>34</td>
</tr>
<tr>
<td>Fuel Use (g)</td>
<td>34</td>
</tr>
<tr>
<td>HC Emissions (g)</td>
<td>256</td>
</tr>
<tr>
<td>CO Emissions (g)</td>
<td>842</td>
</tr>
<tr>
<td>NOx Emissions (g)</td>
<td>707</td>
</tr>
<tr>
<td>Vehicles Entered</td>
<td>117</td>
</tr>
<tr>
<td>Vehicles Exited</td>
<td>117</td>
</tr>
<tr>
<td>Hourly Ext Rate</td>
<td>117</td>
</tr>
<tr>
<td>Input Volume</td>
<td>1420</td>
</tr>
<tr>
<td>% of Volume</td>
<td>63</td>
</tr>
<tr>
<td>Denied Entry Before</td>
<td>0</td>
</tr>
<tr>
<td>Denied Entry After</td>
<td>0</td>
</tr>
</tbody>
</table>

• **Arterial Report** – The Arterial Report (Exhibit 8-12) is another version of the Performance report but reports out travel time, delay and speed along a roadway section on a per vehicle basis. This roadway must have at least two nodes for this report to be available for it and the roadway has to have the same road name without any special characters (i.e. dashes) along all of the reported sections. The presence of a mixture of one-way and two-way sections along an arterial corridor may require segmenting and the individual results summed.

Exhibit 8-12 Sample Arterial report

<table>
<thead>
<tr>
<th>Arterial Level of Service: EB US 199, Entire Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Street</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Allen Creek Rd</td>
</tr>
<tr>
<td>Redwood Ave</td>
</tr>
<tr>
<td>US 199</td>
</tr>
<tr>
<td>Fairgrounds Rd</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Animated Tracking

In the SimTraffic simulation, clicking on a vehicle will bring up a box (Exhibit 8-13) showing speed, acceleration, distance to next turn, etc. this will allow the analyst to track vehicles as they travel through the network. Clicking on the vehicle again will remove the tracking box. In addition, signalized intersections can be clicked on showing the signalized operation in action as
it goes through the phases. Both of these can be useful in debugging a simulation. It is recommended that the simulation speed be set to real time or slower for best viewing.

Exhibit 8-13 Animated Vehicle and Signal Tracking

![Animated Vehicle and Signal Tracking](image)

Static Graphics

Other reports include the “Static Graphics” reports (Exhibit 8-14). Select the Graphics tab and you will get a box showing reports such as total delay, percent time blocked queues, etc. These reports are based on the same information that the previous comprehensive reports use, but display the information in graphical form, rather than a table of numbers. These report out just the run number selected rather than an average of runs of the regular reports. These can be use to quickly visualize the issues for the analyst or for others.
8.4 **Vissim - Overview**

Vissim is a simulation program that can model multi-modal traffic flows including cars, trucks, buses, heavy rail and light rail transit (LRT) as well as model traffic management systems (ramp meters, toll roads, and special lanes) and transit priority systems. Vissim can also model trip assignment, over fixed routes or dynamically, where vehicles change routes in response to specified events and can animate traffic movements in 3-D. Vissim is a program that can stand alone, but is data intensive to create files for use on its own. Alternatively, the files can be created in Visum (a travel demand program) that can then import the files into Vissim for analysis. See APM version 2 Appendix 8B for guidance on creating networks using PTV Vision Suite software (Visum, Vissim, and Vistro). Because most ODOT region offices do not perform travel demand modeling, it is important to note issues both with and without Visum.

Other advantages of Vissim include the rail-roadway interface, which requires Vissim Level 3 or 4 in order to model the effect of rail crossing blockages on queues and roadway operations. Another advantage is that Vissim has the capability of “dynamic traffic assignment” (DTA), which will reroute a vehicle on the network in case of a crossing blockage or an overcapacity situation. Note that this strength of the software comes at the price of larger study areas to allow for correct dynamic assignment and to address effects occurring potentially outside of the focus of the study area. DTA will likely require more data, measures and resources to properly calibrate (see APM version 2 Chapter 8 for more information).
APM version 2 Addendum 15A is a link to the ODOT Vissim Protocol which governs documentation and creation of all Vissim models created for ODOT plans and projects.

Vissim has the capability of performing analysis directly on Visum traffic volume assignments and includes a post-processing function. The results of this type of analysis may be acceptable for certain applications, such as sketch planning and alternative screening. However, for most types of analysis, DHVs are required. The function in Vissim does not create DHVs, therefore the post-processing procedures outlined in APM version 2 Chapter 6 are still necessary.

Most ODOT region offices do not currently own the Vissim software (outside of Region 1). The ODOT Synchro defaults should be implemented in the Vissim model to the extent possible. Most region offices outside of Region 1 are unlikely to have the knowledge base to use Visum.

8.5 Paramics - Overview

Paramics and VISSIM share a lot of the same benefits in functionality and issues with complexity and time to achieve calibration. Paramics, like VISSIM, is a simulation program that can model multi-modal traffic flows including cars, trucks, buses, heavy rail and light rail transit (LRT) as well as model traffic management systems (ramp meters, toll roads and special lanes) and transit priority systems. Paramics can also model trip assignment, over fixed routes or dynamically, where vehicles change routes in response to specified events and can animate traffic movements in 3-D. Paramics is a program that can stand alone, but is data intensive to create files for use on its own. Paramics does offer some importing functionality to bring networks in from other software, but it does not have a direct link to VISUM. However, all of Paramics’ inputs are text files, making it easy to customize automations (macros, scripts, etc.) to take networks from other platforms and format the data into the text files Paramics requires. This creates many opportunities to bring networks from any software quickly into Paramics.

Arguably the biggest strength of any dynamic assignment software (like Paramics and VISSIM) is the “dynamic traffic assignment” (DTA) option, which will reroute a vehicle on the network in case of a rail crossing blockage or an overcapacity situation. Note that this strength of the software comes at the price of larger study areas to allow for correct dynamic assignment and to address effects occurring potentially outside of the focus of the study area. DTA will likely require more data, measures and resources to properly calibrate.

Paramics has disadvantages similar to VISSIM since it does not produce signal coordination timing and can be very data intensive and time consuming to construct and calibrate a scenario, especially from scratch.

Some issues to consider when using Paramics for analysis are (based on ODOT’s assessment of version 5.2):

- The flexibility of Paramics means the analyst is required, in most cases, to write their own reports. Paramics does have a set of limited standardized reports. This would require exporting the queuing data to Excel or comparable software; creating functions to calculate the maximum queues for each time period, calculating averages and standard deviations and then calculating the 95th percentile queue on each approach for each run.
- Paramics does not do signal coordination/progression, so the network must be
constructed in Synchro (or similar software) to develop the timing and progression, which can then be incorporated into Paramics.

- Paramics should not be used in a TIS process as there are too many parameters to change and is likely out of the capable review range of most Region analysts.
- To date, none of the ODOT offices own the Paramics software. Paramics submittals by consultants should include the Paramics model translated into Synchro files to enable effective ODOT review. The ODOT Synchro defaults should be implemented in the Paramics model to the extent possible.

Currently, Paramics is not practical enough for most ODOT applications. Model development is data intensive, requires detailed knowledge on many input parameters and has limited standardized output reports. The use of Paramics input text file format can speed up some of the work but requires a custom import/export process which can be very time consuming to develop.

8.6 CORSIM - Overview

CORSIM is a microscopic traffic simulation program, applicable to surface streets, freeways and integrated networks with a complete selection of control devices, i.e., stop/yield sign, traffic signals and ramp metering. CORSIM simulates traffic and traffic control systems using commonly accepted vehicle and driver behavior models and combines two traffic simulation models: NETSIM for surface streets and FRESIM for freeways. CORSIM allows for user control of trip assignment through the ability to set vehicle-type specific turn percentages and set predefined vehicles routes.
9 DETERMINING NEEDS – SEE APM VERSION 2 CHAPTER 9
10 ANALYZING ALTERNATIVES – SEE APM VERSION 2
CHAPTER 10
11 AIR AND NOISE TRAFFIC DATA

11.1 Purpose
Federal regulation requires, in some cases, that an air and noise study be completed to determine what impact, if any, will result from a proposed highway improvement and what measures will be taken to lessen these impacts. This chapter presents the general outline for the needs and processing of common data requested for the Air and Noise Analysis section of the Environmental Impact Statement (EIS) or Environmental Assessment (EA). Topics covered include:

- Input for Noise Analysis
- Input for Air Quality Analysis
- EISBase

11.2 Input for Noise Analysis
ODOT is responsible for ensuring that state transportation projects are developed within the Federal Highway Administration’s noise policies and procedures. To conduct the noise analysis necessary for measuring compliance, the ODOT Geo-Environmental Section, or noise consultant, requires specific data from the project traffic analyst. This request is typically made through the Noise, Air and Energy Traffic Requirements Check List, which is filled out by the noise consultant or Geo-Environmental Section staff and delivered to the project traffic analyst. While this list identifies many different types of possible data needs, the collection and processing of the most common data requested is discussed below. This process should only be done on the No-Build and Selected Alternatives because of the time required to complete the work. Typically it will take a month for the no-build and a bit less for each build alternative.

11.2.1 Common Data Needs

The traffic data requested will often be required for a no-build condition under the existing year, the year of opening and the future design year (typically 20 years from opening) as well as for build conditions for each alternative being considered under the year of opening and the future design year.

At the beginning of the project, 16-hour manual full federal (13 vehicle classes) classification turn movement counts need to be ordered at all signalized intersections in addition to all intersections with substantial traffic volumes or heavy vehicle movements. Shorter duration counts can be used at minor intersections between the classification count locations. These counts are also used to develop the traffic volumes for the project. See Chapter 4. The factors that are created from count data are based on the peak hour, the average hour, the average daily traffic, and the peak truck hour, which cannot be calculated from a peak period count. There will need to be enough classification counts so passenger car, medium and heavy vehicle movements can be calculated at the shorter duration count locations. Be sure to request an electronic version of all count data in spreadsheet format to aid in data processing.
The first step in the noise data process should be the creation of link diagrams depicting the study area roadway segments that will be included in the analysis for all no-build and build scenarios considered. These diagrams are not only useful for graphically relating the data provided to its location, but help in identifying links created, modified, or removed with each alternative. Each link should be given a unique number for identification purposes. It should be noted that the link number can be directional. Directional link numbers should be provided for freeways, expressways, interchanges, one-way streets, couplets, divided highways and facilities with separate roadbeds. Where possible, try to keep consistent numbering between the no-build and build link diagrams. This will mean adding extra links that have zero data into the no-build network that will accommodate the build Alternative. The more consistent the diagrams are, the easier it will be for the traffic analyst to troubleshoot and the noise analyst to follow. There is nothing wrong with having links with no data in the scenarios as long as they are labeled as not existing yet or not existing anymore. A set of sample link diagrams is provided in Exhibit 11-1.

Exhibit 11-1 Sample Link Diagram – Jackson School Road Interchange

The second step is recording the specific link characteristics, which include street name, length (in miles), posted speed and LOS C volume. Link length is the center-to-center intersection spacing. Links on the edge of the network should have a length of 0.25 mile. Speeds recorded for this analysis should be either the posted speed limit or the operating speed (highest overall speed at which a driver can travel on a given highway under favorable weather conditions and under prevailing traffic conditions, without at any time
exceeding the safe speed as determined by the design speed on a section-by-section basis) where it is determined to be consistently higher than the posted speed limit. Directional interim LOS C volumes for each link can be assumed to be as follows:

- For freeway segments, obtain from the latest version of the HCM. For example, in the HCM 2000 the LOS C volume for a basic freeway segment with a free-flow speed of 60 mph would be 1560 pcphpl. The LOS C volume is calculated using the HCM delay methodologies, via an iterative process based on the project volumes, to identify the volume where the LOS C threshold occurs (at the top end of LOS C, adjacent to LOS D). Use the following defaults only for links at the end of the network.
 - For freeway ramps, assume 1000 pcphpl. The analyst should consider effects of ramp metering on freeway ramp LOS C volumes, where applicable.
 - For urban arterials, assume 600 pcphpl.
 - For suburban arterials, assume 700 pcphpl.
 - For rural highways, assume 800 pcphpl.

In noise analysis, the LOS C volume is assumed to represent the maximum volume that can be sustained at free-flow speed. Because vehicle speeds typically affect noise levels more than vehicle volumes, this condition is often the most critical. In areas where peak period congestion is minimal or only occurs for a short time, allowing for continuously high speeds, the peak hour or peak truck hour may be critical. However, in areas where congestion is present for extended periods, lowering vehicle speeds, the LOS C volume may have a greater impact.

11.2.2 Calculations

When the count data ordered becomes available it will be necessary to regroup the 13 vehicle classes into the medium, heavy and all vehicles categories for the noise analysis. Noise sources associated with transportation projects can include passenger vehicles, medium trucks, heavy trucks and buses. Each of these vehicles produces noise, however, the source and magnitude of the noise can vary greatly depending on vehicle type. For example, while the noise from passenger vehicles occurs mainly from the tire-roadway interface and is, therefore, located at ground level, the noise from heavy trucks is produced by a combination of noise from tires, engine and exhaust resulting in a noise source that is approximately 8-feet above the ground. The following list provides information on the types of transportation noise sources that will be part of a typical roadway project, and describes the type of noise each produces.

- **Passenger Vehicles**: Noise emitted from 0 to 2 feet above roadway, primarily from tire-roadway interface. This category includes normal passenger vehicles, small and regular pickup trucks, small to mid-size sport utility vehicles and mini- and full-size passenger vans.

- **Medium Trucks**: Noise emitted from 2- to 5 feet above roadway, combined noise from tire-roadway interface and engine exhaust noise. This category includes delivery vans (e.g., UPS and Federal Express trucks) large sport utility vehicles
with knobby tires, large diesel engine trucks, some tow-trucks, city transit and school buses with under vehicle exhaust, moving vans (U-Haul type trucks), small to medium recreational motor homes, and other larger trucks with the exhaust located under the vehicle. The federal vehicle classifications covered are: 2-axle other with trailer, 2-axle 6-tire single unit and buses. For practical application, include all trucks with 2 axles and 6 tires if insufficient information is available to provide for a more detailed analysis.

- **Heavy Trucks**: Noise emitted from 6- to 8-feet above the roadway surface, combined noise sources includes tire-roadway interface, engine noise and exhaust stack noise. This category includes all long-haul tractor-trailers (semi-trucks), large tow-trucks, dump trucks, cement mixers, large transit buses, motor homes with exhaust located at top of vehicle, and other vehicles with the exhaust located above the vehicle (typical exhaust height of 12- to 15-feet). The federal vehicle classifications covered are: 3-axle and greater single units and all combinations. For practical application, include all trucks with 3 or more axles.

NOTE: In reporting information on trucks the following criteria should be used:

- Truck tractor units traveling without a trailer will be considered single-unit trucks.
- A truck tractor unit pulling other such units in a “saddle mount” configuration will be considered one single-unit truck and will be defined only by the axles on the pulling unit.
- Vehicles are defined by the number of axles in contact with the road. Therefore, “floating” axles are counted only when in the down position.
- The term “trailer” includes both semi- and full trailers.

The following are the federal classifications.

- **Motorcycles (Optional)**: All two- or three-wheeled motorized vehicles. Typical vehicles in this category have saddle type seats and are steered by handlebars rather than steering wheels. This category includes motorcycles, motor scooters, mopeds, motor-powered bicycles and three-wheel motorcycles. This vehicle type may be reported at the option of the State.
- **Passenger Cars**: All sedans, coupes and station wagons manufactured primarily for the purpose of carrying passengers and including those passenger cars pulling recreational or other light trailers.
- **Other Two-Axle, Four-Tire Single Unit Vehicles**: All two-axle, four-tire vehicles, other than passenger cars. Included in this classification are pickups, vans and other vehicles such as campers, motor homes, ambulances, hearses, carryalls and minibuses. Other two-axle, four-tire single-unit vehicles pulling recreational or other light trailers are included in this classification. Because automatic vehicle classifiers have difficulty distinguishing class 3 from class 2, these two classes may be combined into class 2.
- **Buses (Optional)**: All vehicles manufactured as traditional passenger-carrying buses with two axles and six tires or three or more axles. This category includes only traditional buses (including school buses) functioning as passenger-carrying vehicles. Modified buses should be considered to be a truck and should be appropriately classified.
• **Two-Axle, Six-Tire, Single-Unit Trucks**: All vehicles on a single frame including trucks, camping and recreational vehicles, motor homes, etc., with two axles and dual rear wheels.

• **Three-Axle Single-Unit Trucks**: All vehicles on a single frame including trucks camping and recreational vehicles, motor homes, etc., with three axles.

• **Four or More Axle Single-Unit Trucks**: All trucks on a single frame with four or more axles.

• **Four or Fewer Axle Single-Trailer Trucks**: All vehicles with four or fewer axles consisting of two units, one of which is a tractor or straight truck power unit.

• **Five-Axle Single-Trailer Trucks**: All five-axle vehicles consisting of two units, one of which is a tractor or straight truck power unit.

• **Six or More Axle Single-Trailer Trucks**: All vehicles with six or more axles consisting of two units, one of which is a tractor or straight truck power unit.

• **Five or Fewer Axle Multi-Trailer Trucks**: All vehicles with five or fewer axles consisting of three or more units, one of which is a tractor or straight truck power unit.

• **Six-Axle Multi-Trailer Trucks**: All six-axle vehicles consisting of three or more units, one of which is a tractor or straight truck power unit.

• **Seven or More Axle Multi-Trailer Trucks**: All vehicles with seven or more axles consisting of three or more units, one of which is a tractor or straight truck power unit.

There may be times when data related to buses and motorcycles is requested to be provided separately. Separate motorcycle data is rarely needed in Oregon, but specific data related to bus volumes may be appropriate where the link could be experiencing higher than average bus traffic due to influence by a nearby school, bus barn, or tourist attraction.

The count data can be regrouped by hand or by spreadsheet, however the process can be long and cumbersome. An easy way to process ODOT-counted 12-hour or greater counts is to request the count in electronic form in “TruckSum” format from the Transportation Systems Monitoring Unit. A copy of the spreadsheet is available on the TPAU website. This format organizes the count into the three basic subgroups of medium, heavy and all vehicles for the macro-based TruckSum Excel spreadsheet. See Exhibit 11-2 and Exhibit 11-3, which calculates the initial truck factors. Note: The Exhibit margins were cut off due to a software issue.

The TruckSum spreadsheet calculates for each intersection leg the peak hour volume, the average daily traffic, the average daily truck volume, the average 8-hour volume and the peak truck hour volume. The spreadsheet also calculates the necessary truck factors explained later in this section. The analyst either types the summarized count values into the spreadsheet or copies and pastes the TruckSum-formatted count data into the spreadsheet. Use Paste – Special Values only, to avoid corrupting the output. The analyst also enters the length of the manual count (12 hours minimum), count date and location. Pressing the “Calculate” button on the spreadsheet will generate the factors and the rest of the data (page two of the output). It is best to print out the spreadsheet in landscape.
format double sided. Note: A side benefit of this spreadsheet, if used early in the project, is that it can be used to help determine the overall peak hour of the study area as well as determining directional factors, K-factors (percent of daily traffic in the peak hour) and truck percentages for each leg.
Exhibit 11-2 TruckSum Input

<table>
<thead>
<tr>
<th>Time Type</th>
<th>N - E</th>
<th>N - S</th>
<th>N - W</th>
<th>E - N</th>
<th>E - S</th>
<th>E - W</th>
<th>S - N</th>
<th>S - E</th>
<th>B - W</th>
<th>W - N</th>
<th>E - W</th>
<th>W - S</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to 7 M</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>23</td>
<td>6</td>
<td>29</td>
<td>72</td>
<td>212</td>
<td>7</td>
<td>42</td>
<td>2</td>
<td>13</td>
<td>458</td>
<td>1</td>
<td>813</td>
</tr>
<tr>
<td>7 to 8 M</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>26</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>80</td>
<td>25</td>
<td>35</td>
<td>48</td>
<td>28</td>
<td>565</td>
<td>13</td>
<td>54</td>
<td>11</td>
<td>34</td>
<td>745</td>
<td>5</td>
</tr>
<tr>
<td>8 to 9 M</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>25</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>102</td>
<td>12</td>
<td>46</td>
<td>59</td>
<td>33</td>
<td>512</td>
<td>16</td>
<td>46</td>
<td>11</td>
<td>55</td>
<td>705</td>
<td>6</td>
</tr>
<tr>
<td>9 to 10 M</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>26</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>83</td>
<td>11</td>
<td>46</td>
<td>79</td>
<td>30</td>
<td>595</td>
<td>16</td>
<td>56</td>
<td>6</td>
<td>44</td>
<td>665</td>
<td>6</td>
</tr>
<tr>
<td>10 to 11 M</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>86</td>
<td>15</td>
<td>47</td>
<td>83</td>
<td>43</td>
<td>562</td>
<td>10</td>
<td>61</td>
<td>4</td>
<td>45</td>
<td>607</td>
<td>3</td>
</tr>
<tr>
<td>11 to 12 M</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>103</td>
<td>16</td>
<td>46</td>
<td>75</td>
<td>66</td>
<td>737</td>
<td>17</td>
<td>68</td>
<td>9</td>
<td>73</td>
<td>762</td>
<td>6</td>
</tr>
<tr>
<td>12 to 1 M</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>88</td>
<td>20</td>
<td>49</td>
<td>74</td>
<td>54</td>
<td>694</td>
<td>20</td>
<td>48</td>
<td>9</td>
<td>49</td>
<td>693</td>
<td>3</td>
</tr>
<tr>
<td>2 to 3 M</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>26</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>25</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>120</td>
<td>18</td>
<td>53</td>
<td>80</td>
<td>58</td>
<td>793</td>
<td>13</td>
<td>61</td>
<td>8</td>
<td>50</td>
<td>821</td>
<td>9</td>
</tr>
<tr>
<td>3 to 4 M</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>115</td>
<td>17</td>
<td>56</td>
<td>71</td>
<td>65</td>
<td>682</td>
<td>19</td>
<td>61</td>
<td>7</td>
<td>42</td>
<td>662</td>
<td>6</td>
</tr>
<tr>
<td>4 to 5 M</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>13</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>103</td>
<td>24</td>
<td>69</td>
<td>90</td>
<td>67</td>
<td>932</td>
<td>12</td>
<td>73</td>
<td>12</td>
<td>36</td>
<td>717</td>
<td>8</td>
</tr>
<tr>
<td>5 to 6 M</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>56</td>
<td>18</td>
<td>46</td>
<td>42</td>
<td>76</td>
<td>958</td>
<td>42</td>
<td>48</td>
<td>2</td>
<td>22</td>
<td>548</td>
<td>1</td>
</tr>
<tr>
<td>6 to 7 M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>30</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>51</td>
<td>713</td>
<td>8</td>
<td>37</td>
<td>7</td>
<td>19</td>
<td>504</td>
<td>3</td>
</tr>
<tr>
<td>7 to 8 M</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>31</td>
<td>502</td>
<td>2</td>
<td>25</td>
<td>10</td>
<td>14</td>
<td>316</td>
<td>3</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>373</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td>5</td>
<td>195</td>
<td>2</td>
</tr>
<tr>
<td>8 to 9 M</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>373</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td>5</td>
<td>195</td>
<td>2</td>
</tr>
<tr>
<td>9 to 10 M</td>
<td>0</td>
</tr>
<tr>
<td>Heavy Truck</td>
<td>0</td>
</tr>
<tr>
<td>All Vehicles</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>373</td>
<td>6</td>
<td>31</td>
<td>7</td>
<td>5</td>
<td>195</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL	54	16	48	52	27	262	13	37	14	38	221	5	764
TOTAL Heavy Truck	48	2	15	41	34	298	3	23	3	24	171	5	803
TOTAL All Vehicles	1197	244	598	969	738	977	201	765	123	526	937	70	24415
Exhibit 11-3 TruckSum Output

Summary of Manual Count
- **Count Date:** Oct 12, 04
- **Location:** US189 at Dowel

<table>
<thead>
<tr>
<th>Time</th>
<th>PM Volumes (1 hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 5</td>
<td>4217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>North Leg</th>
<th>East Leg</th>
<th>South Leg</th>
<th>West Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>551</td>
<td>114</td>
<td>430</td>
<td>92</td>
</tr>
</tbody>
</table>

Highest 8 Hour Volume from 10 to 6 PM

<table>
<thead>
<tr>
<th>Type</th>
<th>North Leg</th>
<th>East Leg</th>
<th>South Leg</th>
<th>West Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>506</td>
<td>146</td>
<td>417</td>
<td>77</td>
</tr>
<tr>
<td>Heavy</td>
<td>497</td>
<td>81</td>
<td>472</td>
<td>41</td>
</tr>
<tr>
<td>All Ven</td>
<td>15190</td>
<td>2402</td>
<td>14042</td>
<td>1376</td>
</tr>
</tbody>
</table>

All Vehicle ADT Factor

<table>
<thead>
<tr>
<th>Direction</th>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Leg</td>
<td>138</td>
<td>0.073</td>
</tr>
<tr>
<td>East Leg</td>
<td>893</td>
<td>0.067</td>
</tr>
<tr>
<td>South Leg</td>
<td>119</td>
<td>0.098</td>
</tr>
<tr>
<td>West Leg</td>
<td>1013</td>
<td>0.082</td>
</tr>
<tr>
<td>Total</td>
<td>2002</td>
<td>0.075</td>
</tr>
</tbody>
</table>

All Vehicle PHV

<table>
<thead>
<tr>
<th>Direction</th>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Leg</td>
<td>196</td>
<td>0.064</td>
</tr>
<tr>
<td>East Leg</td>
<td>1109</td>
<td>0.083</td>
</tr>
<tr>
<td>South Leg</td>
<td>97</td>
<td>0.076</td>
</tr>
<tr>
<td>West Leg</td>
<td>761</td>
<td>0.065</td>
</tr>
<tr>
<td>Total</td>
<td>216</td>
<td>0.086</td>
</tr>
</tbody>
</table>

Truck ADT by Leg

- *All factors apply to ADT volumes.

NORTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>218</td>
</tr>
<tr>
<td>Heavy</td>
<td>103</td>
</tr>
<tr>
<td>Total</td>
<td>344</td>
</tr>
</tbody>
</table>

EAST LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>633</td>
</tr>
<tr>
<td>Heavy</td>
<td>765</td>
</tr>
<tr>
<td>Total</td>
<td>1398</td>
</tr>
</tbody>
</table>

SOUTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>104</td>
</tr>
<tr>
<td>Heavy</td>
<td>73</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
</tr>
</tbody>
</table>

SOUTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>573</td>
</tr>
<tr>
<td>Heavy</td>
<td>642</td>
</tr>
<tr>
<td>Total</td>
<td>1774</td>
</tr>
</tbody>
</table>

PHV Trucks only

- *All factors apply to PHV for Trucks.

NORTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>21</td>
</tr>
<tr>
<td>Heavy</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

EAST LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>63</td>
</tr>
<tr>
<td>Heavy</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

SOUTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>17</td>
</tr>
<tr>
<td>Heavy</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

SOUTH LEG

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>45</td>
</tr>
<tr>
<td>Heavy</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
</tr>
</tbody>
</table>

Peak 8 Hour Avg.

- **Average Hour Factor ALL VEHICLES**
- **Average Hour Factor TRUCKS**

Peak Hour ADT Hourly Volume

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>300</td>
</tr>
<tr>
<td>All Trucks</td>
<td>29</td>
</tr>
<tr>
<td>All Veh</td>
<td>1570</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>1755</td>
</tr>
<tr>
<td>All Trucks</td>
<td>111</td>
</tr>
<tr>
<td>All Trucks</td>
<td>1570</td>
</tr>
</tbody>
</table>

Peak Hour ADT Hourly Volume by Leg

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>334</td>
</tr>
<tr>
<td>Heavy</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>1933</td>
</tr>
<tr>
<td>Heavy</td>
<td>67</td>
</tr>
</tbody>
</table>

If the All Vehicles factors are greater than 1.00, then use the corrected values shown. Apply the values as noted.

If the All Vehicles factors are greater than 1.00, then use the corrected values shown. Apply the values as noted.

*Factors apply to Peak Hour Volumes **Factors apply to Peak Truck Hour Volumes**

Peak Truck Hour Factor ALL VEHICLES

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>1734</td>
</tr>
<tr>
<td>Heavy</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>124</td>
</tr>
<tr>
<td>Heavy</td>
<td>17</td>
</tr>
</tbody>
</table>

Peak Truck Hour Factor MEDIUM

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>61</td>
</tr>
<tr>
<td>Heavy</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>70</td>
</tr>
<tr>
<td>Heavy</td>
<td>70</td>
</tr>
</tbody>
</table>

Peak Truck Hour Factor HEAVY

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>59</td>
</tr>
<tr>
<td>Heavy</td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Veh</td>
<td>13</td>
</tr>
<tr>
<td>Heavy</td>
<td>13</td>
</tr>
</tbody>
</table>

Analyst: Dorothy J. Lipton
Average daily traffic (ADT) volumes and peak hour volumes (PHV) maintain the same meaning in noise analysis as they do in other types of analysis described in this manual. They are simply the total number of all vehicle types experienced on a link over a 24-hour period and the highest hourly total of all vehicle types experienced during that 24-hour period, respectively. Both of these must be documented for each link studied during all years and analysis scenarios requested.

The “Truck Factor” represents the percent trucks in the average daily traffic volume, calculated as shown below.

\[
\text{Truck Factor} = \frac{(24\text{-hour volume of all trucks})}{(24\text{-hour volume of all vehicles})}
\]

The “Peak Hour Factor” for noise analysis, refers to the percent trucks in the peak hour of traffic for all vehicle types. This factor is usually needed for both medium and heavy vehicles separately and is calculated as shown below.

\[
\text{Peak Hour Factor, Medium Trucks} = \frac{(\text{medium trucks in peak hour of all vehicles})}{(\text{all vehicles in peak hour of all vehicles})}
\]

\[
\text{Peak Hour Factor, Heavy Trucks} = \frac{(\text{heavy trucks in peak hour of all vehicles})}{(\text{all vehicles in peak hour of all vehicles})}
\]

Peak Truck Hour Factors refer to the percent of a specified vehicle type in the peak hour of all truck traffic. Most times the peak truck hour is different from the peak hour. These factors are typically calculated for all vehicle, medium truck and heavy truck classes, but the calculations for all vehicles is different than those for the truck classes. As an example, the peak truck hour factors for various classes are shown below.

\[
\text{Peak Truck Hour Factor, All Vehicles} = \frac{(\text{all vehicles in all truck peak hour})}{(\text{all vehicles in peak hour of all vehicles})}
\]

\[
\text{Peak Truck Hour Factor, Medium Trucks} = \frac{(\text{medium trucks in all truck peak hour})}{(\text{all vehicles in all truck peak hour})}
\]

\[
\text{Peak Truck Hour Factor, Heavy Trucks} = \frac{(\text{heavy trucks in all truck peak hour})}{(\text{all vehicles in all truck peak hour})}
\]

Another type of factor that may be requested, though not often used, is the “Average Hour Factor.” This represents the percent of a specified vehicle type in an average 8-hour period and is commonly requested for the all vehicle types and all truck classes.

When bus or motorcycle traffic is requested separately, provide percentages of these vehicle types in the all vehicle peak hour and truck peak hour. For example, if providing bus data, the following calculations would be used:

\[
\% \text{ Buses in All Vehicle Peak Hour} = \frac{(\text{buses in peak hour of all vehicles})}{(\text{all vehicles in peak hour of all vehicles})}
\]

\[
\% \text{ Buses in Truck Peak Hour} = \frac{(\text{buses in all truck peak hour})}{(\text{all vehicles in all truck peak hour})}
\]
Note that while updated ADT and PHV values for each analysis year must be provided, only one set of TruckSum factors must be calculated for each alternative. It is generally assumed that while traffic volumes will increase over time, the proportion of vehicle types in the total volume will remain approximately the same.

The factors in the TruckSum spreadsheet are for the indicated peak hour. Choose the peak hour that covers the most of the intersections. If the peak hour is different than the chosen hour, then the factors will need to be recalculated using the volumes for that hour. If buses are to be split out separately, then they will have to be done manually by splitting them from the medium trucks. The factors shown in boxes on the right side of the spreadsheet are described below with the related equations.

Project wide peak hour adjustment using TruckSum

Often, different intersections on a project will have different peak hours. The peak hour calculated by TruckSum is the peak hour for each individual intersection. For those intersections where the peak hour is different from the system peak hour, the analyst can modify TruckSum to report the system peak hour, using the following procedure.

TruckSum factors are calculated using the VLOOKUP function in the EXCEL spreadsheet. To calculate factors for a system peak instead of the intersection peak, the peak hour needs to be changed in the spreadsheet. Over-ride the VLOOKUP function by manually typing in the system peak hour in the peak hour cell. The spreadsheet will no longer choose the peak hour from the table and instead will use the selected hour.
Step 1. Unprotect the worksheet as shown below.

Step 2. Change the peak hour to the system peak hour as shown on the following figure.
Step 3. Observe revised peak hour volumes as shown on the following figures.
11.2.3 Process

The following procedure is suggested. Draw the no-build link diagram on a large blank piece of paper (11”x17”) and put left, through and right arrows at each intersection approach. Take this master sheet and make about 10 copies. Starting with the “peak hour factor medium truck,” write the factor value on each link at the midpoint. Average the factors between adjacent intersections. Multiply this factor times the peak hour volumes for each intersection approach (including the turning movements) for the entire study network. This will generate an initial set of medium truck peak hour volumes. Check and balance the medium trucks over the network. Once the network is balanced, re-compute the final medium truck factor for each link. These steps are necessary to help avoid errors (such as the average hour volume is greater than the peak hour volume) that may come up when the EISBase database program is used to enter all the data. These errors are very hard to track down unless there is this documentation on the factor development. Repeat for the heavy truck peak hour factor.

The average hour for all vehicles factor and the peak truck hour all vehicles factor modify the peak hour volumes. Create the average hour and peak truck hour volumes and the related factors using the above procedure. Use the average hour or peak truck hour volumes to distribute, balance and compute the factors for the average hour truck factor and the medium and heavy peak truck hour factors.

The link ADT should be computed by dividing the directional peak hour volumes by the directional K-factor (these are the factors listed in the “All Vehicle PHV” section of the TruckSum spreadsheet) for each intersection leg. Average the K-factors between adjacent intersections. Sum the directional average daily traffic to get the link average daily traffic. If the directional ADT is desired, multiply the total ADT by the directional split (calculated from the “All Vehicle ADT Factor” section). Average the directional factors between adjacent intersections as well. The average daily traffic should be consistent across the links.

11.3 Input for Air Quality Analysis

Note: This is an interim section, to be expanded.

Similar to noise analysis, ODOT is responsible for ensuring that state transportation projects are developed within the Federal Highway Administration’s air quality policies and procedures. To conduct the air quality analysis necessary for measuring compliance, the ODOT Geo-Environmental Section, or air quality consultant, requires specific data from the project traffic analyst. This request is typically made through the Noise, Air and Energy Traffic Requirements Check List, which is filled out by the air quality consultant or Geo-Environmental Section staff and delivered to the project traffic analyst.

11.4 EISBase

The EISBase software program is used by ODOT to produce final link volumes and speeds for all analysis scenarios, given the previously described data and factors as input. This represents the finished data needed by the Geo-Environmental staff or noise consultant. Exhibit 11-4 provides an image of an EISBase input screen prior to data entry. As shown in the figure, all of the data required for entry into the input windows has been described in this chapter. No decimal points are required allowing data entry to
be sped up, however, data related to buses and motorcycles must be processed separately.

Exhibit 11-4 EISBase Input Screen (Replacement pending.)

While EISBase will calculate future link speeds, there may be times when manual adjustment is required. These instances will typically occur where a future plan shows the classification or use of a link to change in such a manner that the projected speed would no longer apply. Engineering judgment should be used to determine the appropriate link speed when altered manually.

It should be noted when using EISBase, any “All Vehicle Factors” under the “Peak Truck Hour Factor” category that are equal or greater to 1.000 (indicating that the peak truck hour volume and all vehicle peak hour volume are the same) must be input as 0.999 before saving the file. This adjustment is necessary due to a rounding error in the program.
In some cases special categories of vehicles are needed (additional refinement of vehicle types is desired). This is common for buses (such as where a transit mall is present) and passenger cars. For example, if buses are to be split out separately from the all vehicle category, compute all the factors as normal (i.e., heavy, medium and all vehicles) and generate a set of finalized and error-checked values before splitting the buses from the medium trucks. The analyst will have to return to the original manual count sheets to compute the number of buses. Split out the buses from the medium trucks on the factor sheets. Buses plus the remaining medium trucks should equal exactly (this is to avoid creating more errors) to the original medium trucks. The bus data should be inserted into the exported spreadsheet by adding buses peak hour and peak truck hour columns. Adjust the medium trucks downward to accommodate the buses. If passenger cars or motorcycles are desired, then the process is similar, but with the “All Vehicles” category.

After all data has been entered for the given scenarios, check the generated error report (click on “Print => Errors”). The error report checks for consistency between the different link factors and between the different scenarios. For example, the number of trucks in the peak truck hour, for a given link should be greater than the number of trucks in the peak or average hour or the future year ADT should be greater than the existing year ADT. One line is generated for each error. All errors, except for the “LOS C Volumes Exceeded by X%,” need to be fixed. Many times the error is caused by rounding either within the program or by the analyst and may only be one or two vehicles different. In all the fixable errors, the analyst will have to go back to the individual volume sheets and do any adjustments to the volumes and the resulting factors.

The TruckSum error check only checks for errors on the link itself for a given year. The analyst should check for errors on the system and between years. It is the reviewer’s responsibility to check for reasonability, e.g., the future year should be higher than intermediate years on all links. Also volumes should balance across links.

Example 11-1

Example pending.

11.4.1 Output and Final Product

When all of the data for the applicable analysis scenarios has been entered for each link, all errors have been fixed and the file has been saved, export the results from EISBase into a format that can be converted into a spreadsheet. Providing the analysis results in spreadsheet format facilitates the use of this information by the Geo-Environmental staff or noise consultant. This can be done by clicking the briefcase icon to export the data and selecting the “tab-separated text” as the desired format (.txt extension). This file can then be opened in Microsoft Excel and adjustments to rows and columns, in addition to any manual data adjustments as described above, can be made, as needed. An example of the finished output that is ready for submittal is shown in Exhibit 11-5. It may be beneficial to ask the requesting noise analyst for preferences in data arrangement to facilitate their intended use (e.g., volumes in rows, vehicle class in columns).
The final submittal from the traffic analyst should include:

- Cover letter explaining contents of enclosures.
- Link diagrams.
- Spreadsheets containing traffic analysis output.
- The error report should be printed for the file only.

Exhibit 11-5 Traffic Analysis Output for Noise Analysis (Replacement pending.)

<table>
<thead>
<tr>
<th>SECT</th>
<th>DIST</th>
<th>YEAR</th>
<th>VOL</th>
<th>AUTO</th>
<th>MTR</th>
<th>HTR</th>
<th>SP</th>
<th>PEAK TRUCK HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 28 WB west of JCR</td>
<td>1</td>
<td>0.25</td>
<td>2009</td>
<td>1170</td>
<td>1099</td>
<td>39</td>
<td>62</td>
<td>55</td>
</tr>
<tr>
<td>WB On-Ramp</td>
<td>2</td>
<td>0.40</td>
<td>2009</td>
<td>570</td>
<td>338</td>
<td>12</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>US 28 WB between ramps</td>
<td>3</td>
<td>0.87</td>
<td>2009</td>
<td>800</td>
<td>717</td>
<td>30</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>WB On-Ramp</td>
<td>4</td>
<td>0.45</td>
<td>2009</td>
<td>40</td>
<td>36</td>
<td>1</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>US 28 WB west of JCR</td>
<td>5</td>
<td>0.25</td>
<td>2009</td>
<td>540</td>
<td>754</td>
<td>31</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>US 28 EB west of JCR</td>
<td>6</td>
<td>0.25</td>
<td>2009</td>
<td>1760</td>
<td>1670</td>
<td>39</td>
<td>51</td>
<td>55</td>
</tr>
<tr>
<td>EB Off-Ramp</td>
<td>7</td>
<td>0.45</td>
<td>2009</td>
<td>90</td>
<td>85</td>
<td>2</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>US 28 EB between ramps</td>
<td>8</td>
<td>0.87</td>
<td>2009</td>
<td>1670</td>
<td>1585</td>
<td>37</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>EB On-Ramp</td>
<td>9</td>
<td>0.46</td>
<td>2009</td>
<td>510</td>
<td>486</td>
<td>11</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>US 28 EB east of JCR</td>
<td>10</td>
<td>0.25</td>
<td>2009</td>
<td>2190</td>
<td>2097</td>
<td>48</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>JCR NB south of US 28</td>
<td>11</td>
<td>0.5</td>
<td>2009</td>
<td>420</td>
<td>415</td>
<td>3</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>JCR NB overpass</td>
<td>12</td>
<td>0.21</td>
<td>2009</td>
<td>80</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>JCR NB north of US 20</td>
<td>13</td>
<td>0.55</td>
<td>2009</td>
<td>150</td>
<td>148</td>
<td>1</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>JCR SB south of US 28</td>
<td>14</td>
<td>0.30</td>
<td>2009</td>
<td>410</td>
<td>197</td>
<td>12</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>JCR SB overpass</td>
<td>15</td>
<td>0.21</td>
<td>2009</td>
<td>450</td>
<td>442</td>
<td>6</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>JCR SB south of US 20</td>
<td>16</td>
<td>0.5</td>
<td>2009</td>
<td>360</td>
<td>383</td>
<td>5</td>
<td>2</td>
<td>55</td>
</tr>
</tbody>
</table>

ABBREVIATION:

- SECT = SECTION NUMBER
- SP = SPEED OF VEHICLE
- VOL = TOTAL VOLUME
- AUTO = AUTOMOBILE VOLUME
- MTR = MEDIUM TRUCK VOLUME
- HTR = HEAVY TRUCK VOLUME
- ANALYST: ANN L. LIST
- CHECKED BY: E. N. GINEER
12 TRAFFIC ANALYSIS REPORTS

12.1 Purpose
Traffic analysis reports are a comprehensive explanation of the final recommendations and the decision making process for a project. This chapter presents an overview of the elements that document the assumptions, methods, findings and recommendations of a traffic analyses. Topics covered include:
- Background
- Technical Memorandum
- Traffic Narrative Report

12.2 Background
This chapter presents an overview of the elements that document the assumptions, methods, findings and recommendations of a traffic analyses. In many cases the narrative and associated diagrams are developed incrementally during the study process in the form of Technical Memorandums, and then circulated for review and discussion at key milestone points during the project review. Any revisions to the Technical Memorandums or new directions in the study analysis are carried forward and then compiled into a full Traffic Narrative at the end stages of the study. The Final Traffic Narrative serves as the legacy document for the study, and should be comprehensive enough to explain and support the final recommendations and decision-making process that led up to it.

12.2.1 Technical Writing Tips
Presentation of technical information in a clear, concise and readily understandable way can be challenging in many regards. This section is not intended to fully answer those challenges, but to highlight several important tips that help to make a technical document achieve these goals. The narrative author is encouraged to avail themselves of training materials or mentors that could help them become proficient technical writers. A few basic tips to suggest in preparing any report include the following:
- **Target Audience**: The intended audience for the report will help to determine the appropriate level of assumed technical knowledge about the subject at hand, and their assumed understanding of the review, adoption and implementation processes for a particular project. In general, the majority of traffic reports will be developed for the review and implementation by staff within, or contracted by, ODOT. In general, these team members have minimal background in the technical traffic issues, but significant experience with the overall process involved. To this end, the technical aspects and outcomes of the project should be clearly explained with a minimum of technical detail necessary to support and explain the narrative. This is very important because writing at the wrong level can generate unintended questions. More extensive technical calculations, findings and other reference materials should be attached to the document as appendices.
In most cases a document could be circulated to the general public, the press, or other outside agency. In these cases, many of these more fundamental assumptions and process steps should be clearly detailed in the narrative. Presentations to the CAC groups generally handled like any general public group, with the focus on overall process, criteria, outcomes, recommendations and next steps, with a bare minimum of technical content.

- **Tone and Style:** It is recommended that the narrative, in all cases, remain objective, impartial and impersonal so that the findings and recommendations are untainted by any biases. It should be recognized that any internal ODOT document might be released for public review outside of the designated committee groups. This could occur by informal sharing in the interest of coordination or, more formally, through a legal search warrant. All report narrative documents should be treated as if the general public and press will review them, even though many only circulate to the immediate committee members. No matter the purpose or scope of the report, it is vital to maintain a clear and objective style without introducing biases into a traffic report. To be clear that any recommendations are those of the author, not necessarily of ODOT, it is preferred to use the phrase, “It is recommended that . . .”

- **Readability and Document Structure:** The following sections of this chapter have suggestions about the narrative general layout of the document, but these should be tailored, as appropriate, to address individual study scopes and objectives. One of the keys for rapidly understanding materials is to divide the document into a logical, easy-to-follow flow of narratives, summary tables and illustrations that are grouped according to key topics. In a report, for example, they would be grouped by chapter, or by sub-topic in a lengthier chapter. This basic structure provides a convenient framework for presenting and referencing a wide range of materials.

- **A Word About Acronyms:** A comprehensive list of acronyms used in transportation evaluations are assembled in the Glossary of this manual for reference purposes. However, care should be taken when developing the report narrative to limit the use of acronyms, except for the most common ones, that appear repeatedly throughout a particular document. The most common examples might include: ODOT, v/c ratio, OHP and HDM. Excessive use of acronyms can quickly degrade the readability of the narrative, even when the reader understands their meaning. It is standard practice to introduce any acronym in the narrative when it is first used by defining it. In longer reports, it is also useful to attach a short list of all the acronyms used in the report as a quick reference guide.

12.2.2 Diagrams and Illustrations

Technical diagrams can be a powerful resource for quickly explaining report assumptions, findings and recommendations. One measure of a high quality report would allow a reader to scan through the study tables and figures, and then be able to glean the general conclusions without reading any of the narrative. For the purposes of traffic study reports, the technical diagrams include the following list of typical illustrations:
- Study area map.
- Local street and highway system.
- Traffic volumes on links or turning movements at intersections or junctions.
- Trip patterns or trip distribution routes.
- Lane diagrams of existing or proposed intersection approaches.
- Existing or proposed circulation routes within the study area.
- Existing and proposed street or ramp centerline alignments.
- Alternative street improvement scenarios.
- Preferred street improvement scenario.
- Land use and zoning maps.

The best report graphics clearly label key reference streets, maintain a reasonable minimum 8-point font size, and avoid trying to illustrate many layers of new information at one time. A good rule-of-thumb is to limit the number of new layers to three or less for any diagram. Examples of different information layers would be streets, peak hour volumes and functional street class. Complex diagrams can be developed in stages, explaining each new set of layers. In general, street project alternatives should be illustrated on separate diagrams.

All documents need to be legible and usable in black and white.

12.2.3 Tables

Summary tables should be included for ease in making comparisons among scenarios and alternatives. Failing conditions should be denoted with white text on a black background. The preferred software to build tables is MS Word as opposed to MS Excel, due to formatting issues, although MS Excel may be acceptable for appendices.

12.3 Technical Memorandum

12.3.1 Purpose

A technical memorandum (TM) typically addresses one major stage of the project evaluation process, and presents the analysis, findings and any potential next steps for that stage. Subsequent technical study stages build on the information presented in the previous memorandums, and allow for an incremental process to assess, refine and build consensus on the preferred project. These technical memorandums are also described in Chapter 2.

12.3.2 Products

The focus of a technical memorandum can vary widely, but, in general, they include the following technical materials, in a typical 3-stage study development process.

TM #1 - Existing/No-Build System Analysis: This memo presents the key system inventory features and performance deficiencies that will shape development of study alternatives. The memo should include statements on the project purpose and need, study
area background, and existing and future volume development. Discussed results should include the crash analysis and possible countermeasures, preliminary signal warrants, access or spacing issues, the volume-to-capacity ratios and LOS, if appropriate, and the 95th percentile queues.

TM #2 - Preliminary Alternatives Screening: This memo presents the screening criteria, the initial roster of project alternatives and the scoring of how well the preliminary alternative matched up with the screening criteria. Screening criteria are more general indicators of performance. This could include performance analyses, or these could be deferred until the next stage. Screening performance results typically include Level of Service results, volume-to-capacity ratio results and model-based results (travel times, speeds, v/c ratios, relative comparisons). Remember to keep track of the reasons why alternatives were dropped (will be needed for the narrative).

TM #3 - Future Alternatives Analysis: This memo presents the detailed evaluations of all alternatives that progressed through the screening process. These alternatives have full performance assessments and any other related evaluations (preliminary environmental, compliance with standards, etc.) as defined in the study criteria. Detailed performance results typically include Level of Service results, volume-to-capacity ratio results, 95th percentile queues, storage lengths required and simulation results.

For consultants doing ODOT analysis work, all input and output sheets shall be included with all technical memos and narratives.

12.3.3 Distribution

The technical memorandums should be distributed to the PT and the CAC for review and comment. The Region Traffic Manager should be added to the distribution list where he/she is not a member of the PT.

12.4 Traffic Narrative Report

12.4.1 Purpose

The majority of the traffic study analysis will be completed by the point that the Draft Traffic Narrative Report is developed. The purpose of this report is to present the final solution selected from the study alternatives.

12.4.2 Product

The Draft Traffic Narrative Report should present the full study process and outcomes, include the interim Technical Memorandums and any feedback from work team committees or other ODOT units that reviewed and commented on this effort. The major step to be completed with the Draft Traffic Narrative Report is to provide conclusions on the function of alternatives from a traffic analysis standpoint.
The project team selection process for a preferred alternative overall uses the analytical evaluation outcomes, relative scoring evaluations to isolate one alternative, or a hybrid of several alternatives that best meet the study objectives. This is necessarily a collaborative process with established Project Management Team members and affected ODOT technical units.

The report itself should be developed consistent with the following standard outline. Example Narratives have been provided in the APM Appendices.

Sample Outline

- **Cover Sheet**
 - Agency/Company Title, Division, Unit, City, State (in header, footer or along bound edge)
 - “Project Title Traffic Analysis” (to clarify that this is just the traffic analysis)
 - City (if applicable) and County
 - Highway Name, Number and Route Number
 - Milepoint Range
 - Month and Year report published

- **Title Page**
 - “Project Title Traffic Analysis” (to clarify that this is just the traffic analysis)
 - Highway Name, Number and Route Number
 - Milepoint Range
 - Full Mailing Address
 - Prepared by and reviewed by (including stamp by preparing PE or reviewing PE if preparer is not registered; requires signature of non-registered preparer)

- **Table of Contents, List of Figures, List of Tables, List of Appendices**

- **Executive Summary**: Summary of report including purpose, need, scope of alternatives, re-statement of conclusions and alternative recommendation.

- **Background Information**: Overview of study area including vicinity and study area maps, affected facilities and jurisdictions, past project or planning decisions that could influence outcomes, general problem statement and objectives for the study.

- **Existing Conditions**: Inventory and analysis of base year facility and operating conditions.

- **Future Year Forecasts and Needs (No-Build)**: Horizon year traffic forecasts and performance assessment on the existing street system with no project improvements. Agreed upon baseline projects should be included. See Chapter 9 for more details.

- **Preliminary Alternatives Screening**: Screening criteria, concept alternatives to address outstanding needs and preliminary screening of alternatives with highlight of those set aside from further evaluation.

- **Alternative Results**: Discussion of performance results for each analyzed alternative for the build, interim and design years.

- **Alternative Summary**: The alternatives are compared and contrasted against
each other, including a summary table, according to appropriate performance measures.

- **Conclusions**: The analyst should be careful to make conclusions based on the traffic analysis, rather than recommendations on a preferred alternative, as the best alternative from a pure traffic standpoint may not be the best overall. The analyst should coordinate with the PT Leader if it is desired to also report the recommendation by the project team as to the overall preferred alternative.

- **Further Areas of Study**: Optional

- **Appendices**
 - Crash History: Detailed crash analysis and listing of crashes in study area.
 - Record of Calibration: The calibration record will vary in detail level and length by project, but the record should address the following items:
 - A table or list citing all changes that were made to the inputs or model modules to achieve calibration, beyond the standard changes that would occur after collecting field inventory (standard list found in Section 3.2). This list or table should include
 - the issue that was occurring before the change was made,
 - the goal of the change, and
 - some record how the change improved the calibration.
 - For each Measure of Effectiveness (MOE) of the calibration, include a table that shows the before and after results for each MOE. Before results should be with all standard inputs, but no changes beyond the standard adjustments. After results should recorded after all changes to achieve calibration were included in the model. Minimally, the APM requires that the MOE – “Vehicles Exited” be used to assess the calibration of microsimulations (for SimTraffic, for other software use a comparable measure that sums vehicles making individual movements).
 - The record should indicate that every movement met the calibration standards described in section 8.3 for “Vehicles Exited” (8.3 is specific to SimTraffic, but simulations in any software should meet this criteria).
 - Traffic Development: Count locations, explanation of base and future volume development, includes land use and zoning maps.
 - Existing Year Volumes: Volume diagrams for the existing (base) year.
 - Build Year Volumes: Volume diagrams for the build year.
 - Future No-Build Volumes: Volume diagrams for the future No-Build year.
 - Alternatives Considered but Dismissed: Short description of each dismissed alternative including why it was dropped.
 - Build Alternative Volumes: Volume diagrams for each alternative. Each build and design year for each alternative will be a separate appendix.
 - Analysis Methodologies: Boilerplate text on analysis methods used.
 - EIS Traffic Data: For No-Build and Build alternatives, including link diagrams.
The volume diagrams in the report should include the Preferred Alternative, and any other alternatives that were evaluated for the purposes of the environmental review process.

Technical appendices, including all data, and all software input and output files and reports should be burned to CD or DVD, and retained in the ODOT file. For consultants doing ODOT analysis work, all input and output sheets shall be included with all technical memos and narratives.

A draft of the narrative needs to be sent to Region Traffic, TEOS, the project leader, the Roadway designer, Environmental and any others who may be affected, for review and comment.

12.4.3 Distribution

Upon incorporation of comments received on the draft, the Traffic Narrative Report should be signed and stamped, and should be distributed to the following in addition to the draft reviewers:

- Project Teams
 - Project Development Team
 - Citizen Advisory Committee
- ODOT Region/District Groups
 - Traffic Operations
 - Region Traffic
 - Roadway
 - Environmental
 - Geo-Hydro
 - Bridge