LOW VOLUME HIGHWAY-RAIL
GRADE CROSSING TREATMENTS
FOR THE OREGON HIGH SPEED
RAIL CORRIDOR

Final Report

State Planning and Research
Project Number 5272

by
C. A. Bell, Director
K. M. Hunter-Zaworski

and
David D. Zaworski
Transportation Research Institute
Oregon State University

Prepared for

Oregon Department of Transportation
Research Unit
Salem Oregon 97310

and

Federal Highway Administration
Washington, D.C. 20560

April 1997
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Title/Subject</td>
<td>Low Volume Highway-Rail Grade Crossing Treatments for the Oregon High Speed Rail Corridor Final Report</td>
<td>5. Report Date</td>
<td>April 1997</td>
</tr>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Transportation Research Institute Oregon State University Corvallis, OR 97331-4390</td>
<td>10. Work Unit No.</td>
<td>(TRAIS)</td>
</tr>
<tr>
<td>12. Sponsoring Agency Name and Address</td>
<td>Oregon Department of Transportation Research Unit 2550 State Street Salem, OR 97310</td>
<td>11. Contract or Grant No.</td>
<td>98R-3272</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abstract</td>
<td>This study defines how to gather information and how to obtain the communication and response necessary for safety at highway-rail crossings. It examines technologies for low-cost, high-safety treatments for low volume (less than 200 ADT) highway crossings of higher speed (130–200 kph) or (80–125 mph) rail. A full crossing closure and consolidation process for the corridor is a necessary first step. Current train control and crossing safety systems are also examined. Intelligent Transportation System technologies are evaluated to determine applicability in information gathering, communicating, and control functions of grade crossing safety. This study also presents guidelines for low volume crossings of the higher speed rail line in Oregon. Finally, a preliminary cost/benefit analysis is presented. Above 200 kph (125 mph), a crossing closure or grade separation is required. In the range of 130–200 kph (80–125 mph), ITS technologies have the potential to enhance crossing safety at a much lower cost than grade separation. Advanced systems can provide train location and speed information needed for sophisticated crossing control. A traffic management center can receive train and crossing information, operate crossing systems, and grant clearance for trains or highway users through the crossing. Remote lock gates provide safety at private crossings. Increased traveler information and four quadrant warning gates increase motorist compliance at public crossings. At train speeds above 173 kph (110 mph), barrier gates protect rail movements. Video monitoring and detection systems provide reliable, but redundant information should a vehicle become trapped in a crossing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Key Words</td>
<td>HIGHWAY-RAIL GRADE CROSSING, HIGH SPEED RAIL CORRIDOR</td>
<td>18. Distribution Statement</td>
<td>Available through the Oregon Department of Transportation Research Unit</td>
</tr>
<tr>
<td>19. Security Classification (of this report)</td>
<td>Unclassified</td>
<td>20. Security Classification (of this page)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>21. No. of Pages</td>
<td>116</td>
<td>22. Price</td>
<td>Varies</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>WHEN YOU KNOW</td>
<td>MULTIPLY BY</td>
<td>TO FIND</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>km</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>0.000124</td>
<td>m²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.836</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.404</td>
<td>ha</td>
</tr>
<tr>
<td>m²</td>
<td>meters squared</td>
<td>10.764</td>
<td>ft²</td>
</tr>
<tr>
<td>km²</td>
<td>kilometers squared</td>
<td>0.386</td>
<td>m²</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>m³</td>
</tr>
<tr>
<td>m³</td>
<td>meters cubed</td>
<td>1.308</td>
<td>ft³</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>milliliters</td>
<td>0.001</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>0.264</td>
<td>gallons</td>
</tr>
<tr>
<td>m³</td>
<td>meters cubed</td>
<td>35.315</td>
<td>cubic ft</td>
</tr>
<tr>
<td>m³</td>
<td>meters cubed</td>
<td>1,308</td>
<td>cubic yards</td>
</tr>
<tr>
<td>MASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons (2000 lb)</td>
<td>0.307</td>
<td>Mg</td>
</tr>
<tr>
<td>TEMPERATURE (exact)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit temperature</td>
<td>5/9°C</td>
<td>°C</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius temperature</td>
<td>1.8 + 32°F</td>
<td>°F</td>
</tr>
</tbody>
</table>

SI (MODERN METRIC) CONVERSION FACTORS

* SI is the symbol for the International System of Measurement*
ACKNOWLEDGMENTS

We wish to thank the past and present members of the Technical Advisory Committee assigned to the project for their support and guidance throughout the project. They include the following:

Craig Reiley Oregon Public Utilities Commission
Dick Mather Oregon Public Utilities Commission
Cal Frobig FHWA
Bob Scieszinski FRA
Pat Fogarty Southern Pacific
Dave Nelson Oregon Seed Growers Association
Linda Apple ODOT HSR Unit
Eric Bonn ODOT Traffic Engineering Section
Matt Caswell ODOT Right-of-Way Section
Erik East ODOT HSR Unit
Marty Taylor ODOT Research Unit
Rick Munford ODOT Policy & Strategic Planning
Scott Nodes ODOT Research Unit
Robert Edgar ODOT
Dan Socnovake ODOT

This project has been funded with ODOT SP&R Funds and by the USDOT through TransNow. TransNow is the University Transportation Center, based at the University of Washington.

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation and the United State Department of Transportation in the interest of information exchange. The State of Oregon and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Oregon Department of Transportation or the United States Department of Transportation.

The State of Oregon and the United States Government do not endorse products of manufacturers. Trademarks or manufacturer’s names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification or regulation.
EXECUTIVE SUMMARY

Operating Higher Speed Rail (HSR) passenger service in the Willamette Valley corridor will require higher levels of protection for at-grade crossings. Intelligent transportation systems (ITS) provide essential elements for providing a higher level of protection where grade separation or crossing closure is not appropriate.

The Willamette Valley HSR corridor uses the existing Southern Pacific Railroad (SP) mainline track from Eugene to Portland. Current passenger speeds may not exceed 128 kph (80 mph). Higher speed trains will operate between 130 kph (80 mph) and 200 kph (125 mph) and will share the track with conventional freight operations. Operations above 200 kph require all crossings to be grade-separated.

The rail corridor is crossed by 16 at-grade public vehicle crossings with low volumes (less than 200 Average Daily Trips [ADT]). The corridor has 68 private vehicle crossings. The corridor also has several recognized pedestrian only crossings.

Current train control is largely based on fixed block systems. It is currently designed to eliminate train-train collisions. Fixed block control creates safe buffer zones around trains based on the space needed to safely stop a train. The buffers are always maintained at the expense of more efficient, reduced headway operations.

Active crossing elements—flashing lights, bells, and gates—are activated by track circuits completed by an approaching train. The minimum warning time is 20 seconds. This interval is based on the time needed for vehicles to clear out of the crossing. It is not related to the time required to stop a train, which is typically several times longer than 20 seconds.

ITS technologies provide continuous train position and velocity data—allowing minimum headway, moving block train control. The same information can be used for sophisticated control of active crossing systems. Their timing can be based on the time needed to stop a train if a vehicle is stuck in the crossing. ITS can also be used to detect the presence of vehicles in crossings to minimize the danger of vehicles becoming trapped and to provide timely warnings to train crews.
Different levels of treatment are appropriate for different crossings and different operating conditions. Five categories provide the framework for assigning five different treatments to crossings. The first two are for train speeds up to 175 kph (110 mph):

- Basic minimum for private crossings and very low volume public crossings (less than 20 ADT): Protect with normally closed, locked gates. Locks are remotely controlled and released only on request or when no train is dangerously close.

- Basic public low volume public crossings: Protect with four quadrant gates, fully blocking the road on each side of crossing. Gate activation based on the safe stopping of the train. Intrusion detection further prevents trapping vehicles in crossing. Variable message signs inform motorists of the time remaining for the crossing to reopen.

The remaining two treatment levels are for the same categories of crossings as the Basic treatments, but where trains will operate up to 290 kph (125 mph). At this speed, the added risk of derailment requires protecting the train from a runaway vehicle or motorists deliberately breaking through closed warning gates.

- Higher-speed basic private crossings and very low volume public crossings: Protect as for basic minimum except replace gates with crash-rated vehicle arresting barriers.

- Higher-speed public low volume public crossings: Protect with standard approach warning gates backed up by crash-rated vehicle arresting barriers across the full roadway. Barriers deploy only after the crossing is clear, based on automatic intrusion detection. Variable message signs inform motorists of the amount of time remaining for the crossing to reopen. Video images of the crossing should be sent to a Traffic Management Center (TMC) when the gates are closed, for human backup monitoring.

Crossing control for the basic and higher-speed categories is premised on avoiding conflicts of who has the authority to occupy the crossing. Vehicles may not use the crossing unless any approaching trains are still far enough away that they could stop before reaching the crossing. Approaching trains must stop before reaching a still occupied crossing. This will require longer vehicle delays than the current system.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii
DISCLAIMER ... iii
EXECUTIVE SUMMARY ... v

1.0 INTRODUCTION .. 1
 1.1 BACKGROUND ... 1
 1.2 PURPOSE ... 2
 1.3 SCOPE .. 2
 1.4 A FRAMEWORK FOR UNDERSTANDING—THREE TASKS 3

2.0 REGULATORY FRAMEWORK ... 5
 2.1 FRA REGULATIONS .. 5
 2.1.1 SPEED REGIMES .. 5
 2.1.2 HIGHWAY-RAIL CROSSING SIGNALS 7
 2.1.3 RADIO COMMUNICATIONS ... 7
 2.1.4 PETITIONS FOR RULEMAKING 7
 2.2 HIGHWAY REGULATIONS .. 5
 2.2.1 MUTCD ... 8
 2.2.2 ROADSIDE DESIGN GUIDE 9
 2.3 RAIL-HIGHWAY JOINT RECOMMENDATIONS 10
 2.4 OREGON REVISED STATUTES .. 11

3.0 RECOMMENDED FIRST OPTION - CROSSING CONSOLIDATION 13

4.0 CONVENTIONAL HIGHWAY-RAIL CROSSING PRACTICE 15
 4.1 HIGHWAY APPROACH .. 15
 4.1.1 PASSIVE WARNING SYSTEMS 16
 4.1.2 ACTIVE WARNING SYSTEMS 16
 4.2 RAILROAD APPROACH .. 16
 4.2.1 CROSSING STATUS .. 17
 4.2.2 TRAIN CONTROL ... 17

5.0 ITS TECHNOLOGIES ... 19
 5.1 INTRODUCTION .. 19
 5.2 TRAIN CONTROL .. 20
 5.2.1 MOVING BLOCKS ... 20
 5.2.2 POSITIVE TRAIN CONTROL/SEPARATION (PTC / PTS) .. 26
 5.2.3 TRAIN-TYPE TRANSPONDER—SWeden 21
 5.3 VEHICLE LOCATION AND DATA MAPPING 21
7.1.4 AUTOMATIC BARRIER—VIDEO MONITORING / HIGHER SPEED PUBLIC ... 60
7.2 OTHER TREATMENT SYSTEM ELEMENTS ... 61
7.2.1 STANDARD ELEMENTS ... 61
7.2.2 ADDITIONAL ELEMENTS ... 62

8.0 PRELIMINARY BENEFIT/COST INFORMATION .. 65
8.1 BENEFIT/COST RATIO LIMITATIONS .. 65
8.2 ACCIDENT FREQUENCY, SEVERITY, AND COSTS 65
8.3 BENEFIT, IN REDUCED CASUALTIES, OF REDUCED ACCIDENTS 67
8.4 COSTS AND ACCIDENT REDUCTION POTENTIAL OF TREATMENTS 67

9.0 PRELIMINARY SPECIFICATIONS ... 69

10.0 SURVEY OF PRIVATE CROSSINGS .. 71

11.0 CONCLUSIONS AND RECOMMENDATIONS .. 73

12.0 REFERENCES ... 75

APPENDICES

Appendix A: GLOSSARY OF TRANSPORTATION ACRONYMS
Appendix B: TREATMENT GUIDELINES, COMPONENTS, AND OPTIONS
Appendix C: PRIVATE AT-GRAGE CROSSINGS: EUGENE TO OREGON CITY

LIST OF TABLES

Table 2.1: HIGH SPEED RAIL OPERATING REQUIREMENTS 6
Table 2.2: DESIGNATED SECTION 1010 HIGH SPEED RAIL CORRIDORS AND SPEEDS 7
Table 2.3: ACTION PLAN RECOMMENDATIONS ... 11
Table 5.1: COUNT OF PRIVATE CROSSINGS BY LANDUSE TYPE 44
Table 6.2: PRIMARY CROSSING CATEGORIES ... 49
Table 7.1: PRIMARY CROSSING TREATMENT MATRX 52
Table 8.1: ACCIDENT REDUCTIONS REQUIRED FOR HIGHER SPEEDS 65
Table C.1: COLLECTED DATA ... C-4

ix
LIST OF FIGURES

Figure 5.1 REPEATING, UPDATING SEQUENCE ON VARIABLE MESSAGE SIGN 24
Figure 5.2 VMS USE AS PART OF TRAPPED VEHICLE RESPONSE 25
Figure 5.3 CAMERA COVERAGE FOR IN-CAB CROSSING VIDEO 27
Figure 5.4 DRAGNET CROSSING BARRIER ... 34
Figure 5.5 CONSTANT DECELERATION STOPPING DISTANCE CURVES 34
Figure 5.6 RIGID BARRIERS: A) BARRICADE; B) BOLLARD; C) CABLE-BEAM 36
Figure 6.1 DISTRIBUTION OF PRIVATE CROSSINGS BY LANDUSE TYPE 44
Figure 5.2 LOW VOLUME PUBLIC CROSSING COUNTS BY AADT 46
Figure 7.1 AUTOMATIC GATE UNLOCK REQUEST PROCEDURE 53
Figure 7.2 TYPICAL BRAKING DISTANCES FOR VARIOUS TRAIN TYPES 53
Figure B.1 FLOW CHART—REMOTE LOCK GATE (BASIC MINIMUM) B-3
Figure B.2 FLOW CHART—FOUR QUAD GATES (BASIC PUBLIC) B-5
Figure B.3 FLOW CHART—REMOTE LOCK BARRIER (HIGHER-SPEED BASIC) B-8
Figure B.4 FLOW CHART—AUTOMATIC BARRIER (HIGHER-SPEED PUBLIC) B-11
Figure C.1 HISTOGRAM OF DISTANCES BETWEEN ADJACENT CROSSINGS C-2
Figure C.2 MOVING AVERAGE OF INTERCROSSING SPACING OVER CORRIDOR ... C-3
Figure C.3 DATA COLLECTION FORM AND KEY C-6
1.0 INTRODUCTION

Highway-rail crossing safety is a fundamental concern for any effort to increase passenger rail speeds in the United States. Since the 1970's, 2.3 billion has been marked for crossing improvements in this country. Even so, 1990 estimates from the Federal Railroad Administration (FRA) indicate 626 fatalities and 1,837 injuries were caused by 4,892 collisions at highway-rail crossings (Texas, 1995). Even on low volume roads, crossbucks and stop signs alone cannot be relied on when rail speeds increase beyond the original crossing design speeds. Further, as trains reach higher speeds, the likelihood of a collision causing a derailment increases greatly. Highway-rail crossings must be adequate not only to warn motorists, but to protect rail travel as well.

1.1 BACKGROUND

Grade crossings for truly high-speed rail operations are technically simple; above 200 kph (125 mph) federal regulations require complete separation of all grade crossings. Below 130 kph (80 mph) the present systems works well or can be upgraded in straightforward ways. The intermediate range of operation, from 130 to 200 kph (80 to 125 mph), presents challenges and possibilities for grade crossing design. Medium and high volumes of highway traffic will still require grade separation wherever justified. Low volume crossings, however, cannot justify the high costs of grade separation. Certainly many if not most, such crossings will be closed and their traffic consolidated with other crossings with better safety design. However, in rural areas, practical alternate routes do not exist for many crossings. New approaches must be found to provide safe, economical low volume crossings.

Intelligent Transportation System (ITS) technologies are receiving extensive study and trials throughout the world. Much of this is directed at improving highway travel. Highway-rail crossings presently are protected by electromechanical systems whose basic operation has not changed in decades. The new communications and control technologies made possible by digital computers are incorporated in the various ITS technologies offering possibilities for greatly increasing highway-rail crossing safety.

In Oregon, the corridor from Eugene to Portland is designated for federal section 1010 high-speed rail development. Oregon has chosen to follow an incremental approach, initially raising speeds no higher than 200 kph (125 mph). The route from Eugene to Portland follows the Southern Pacific (SP) mainline with stops at Albany and Salem. Approximately 237 roads, driveways, and paths cross the rail line in this corridor. These are classified as follows:

1
• 49 grade-separated
• 188 at-grade
 • 118 public
 • 6 pedestrian only
 • 112 vehicle
 • 16 low volume (AADT < 200)
 • 96 higher volume (AADT > 200)
 • 70 Private
 • 2 pedestrian only
 • 68 vehicle (all assumed low-volume)

1.2 PURPOSE

Affordable treatments for many low volume grade crossings are an essential part of any plan for incremental high-speed rail development. This research lays the groundwork for developing low cost treatments for low-volume highway-rail grade crossings that will meet the safety requirements of high-speed rail corridors. Technologies being developed as part of the intelligent transportation systems are evaluated for their applicability to this problem. This background is applied to analyzing the crossings in the Section 1010 high-speed rail corridor located in Oregon’s Willamette Valley. Treatments appropriate to different classes of crossings are proposed.

1.3 SCOPE

This report is based on the review of a broad range of literature from government, research, and trade sources relating to grade crossing safety, train control, and intelligent transportation systems. It presents information on the current practice and on systems being developed in the United States and other countries. It offers a matrix of crossing categories and treatments, design guidelines, and suggestions for further research.

Grade separation is required for speeds above 200 kph (125 mph). Much of the literature pertaining to high speed rail operations above 200 kph (125 mph) is therefore outside the scope of this report. Pedestrian crossings present special problems; they too are largely outside the scope of this report.

Following this introductory chapter, the report presents the regulatory framework within which highway-rail crossing treatments must be considered in the United States. The report then presents issues and procedures relating to grade crossing closures and consolidation. Discussion of current, conventional crossing treatments precedes discussion of ITS technologies and their potential application to crossings. The crossings in Oregon are used as a specific set to aid in developing five categories of low volume crossings. These are matched to the crossing treatments. The elements of the treatments are then described. Two brief chapters describe the material given in appendices providing preliminary treatment specifications and results of a field
survey of private crossings. The report concludes with a preliminary cost/benefit analysis and recommendations for further study. A glossary of acronyms is also provided as an appendix.

1.4 A FRAMEWORK FOR UNDERSTANDING—THREE TASKS

Grade crossing safety depends on the success of three primary tasks: acquiring real-time information about the train; acquiring real-time information about the crossing; and creating correct responses to that information. This typology is closely akin to that of Lerner, Ratte, and Walker; they distinguish between accidents caused by failure to acquire necessary information and those caused by failure to appropriately process and apply information (Lerner et al, 1989). Historically, drivers on the road acquired information by looking and listening at the crossings. Train operators looked ahead, visually assessing the condition of the crossing. Correct responses were based on an expectation of good sense—drivers would not try to "beat the train" and operators would apply the brakes if the crossing was not clear. Increasing train speeds, increasing traffic volumes, the need for greater efficiency, and collisions or accidents have moved us towards more sophisticated systems of control at rail crossings.

Intelligent Transportation System (ITS) technologies hold great promise for improvements in all three of the fundamental tasks required. ITS systems will be essential for providing maximum safety for high-speed rail while continuing to improve the overall efficiency and dependability of rail transportation.

Throughout this report, used and proposed technologies and techniques are discussed as a means of acquiring and/or communicating information about train or crossing status or as a means of ensuring a correct response to the information provided. The project team hopes that readers will come to look at some technologies in new ways and new possibilities may emerge for increasing highway-rail crossing safety.
2.0 REGULATORY FRAMEWORK

Any consideration given to improving highway-rail crossings must take place within the framework of various regulations governing both rail and roadway construction and operation. Proposed systems must fit within existing regulations or be beneficial enough to warrant seeking a change in regulations. Requirements for railroad equipment and operating procedures vary from country to country, as do the speed ranges in which requirements come into effect. Highway design and control also varies significantly from nation to nation. United States regulations provide the primary framework for this report. It is also guided by a set of joint recommendations on grade-crossing safety put forward by agencies of the United States Department of Transportation (USDOT). Though not regulatory, these recommendations present a strong direction. Significant departure from this direction would demand justification almost equal to that required for changes to actual regulations.

2.1 FRA REGULATIONS

The Code of Federal Regulations (CFR) Title 49 Subtitle B Chapter II (parts 200–266) presents the FRA regulations. Of particular interest to the development and implementation of high-speed rail (HSR) in the United States are regulations that govern maximum train speeds, radio communications, grade crossing systems, and the petition process.

2.1.1 SPEED REGIMES

Throughout most of the United States, standard operating speeds for trains are up to 128 kph (80 mph). Above that speed, several distinct operating regimes recommendations have been recognized in the federal regulations (see Table 2.1).
Table 2.1: High Speed Rail Operating Requirements.

<table>
<thead>
<tr>
<th>Maximum Speed Passenger Service kph (mph)</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 (80)</td>
<td>Class 4 track. Block signals or manual block</td>
</tr>
<tr>
<td>145 (90)</td>
<td>Class 5 track. Automatic cab signal, train stop, or train control.</td>
</tr>
<tr>
<td>175 (110)</td>
<td>Class 6 track. Automatic cab signal, train stop, or train control.</td>
</tr>
<tr>
<td>200 (125)</td>
<td>Requires special approval from FRA.</td>
</tr>
<tr>
<td>Above 200 (125)</td>
<td>Requires special approval from FRA. All crossings grade separated.</td>
</tr>
</tbody>
</table>

Standards for maximum speed exist for various classes of track. These are given in 49 CFR §213.9 and include standards for track geometry, track structure, and inspection schedules. 49 CFR §213.9(c) indicates operating speeds over 175 kph (110 rph) require prior approval of the FRA. It continues:

Petitions for approval must be filed in the manner and contain the information required by § 211.11 of this chapter. Each petition must provide sufficient information concerning the performance characteristics of the track, signaling, grade crossing protection (emphasis added), trespasser control where appropriate, and equipment involved and also concerning maintenance and inspection practices and procedures to be followed, to establish that the proposed speed can be sustained in safety.

Maximum speeds are also governed by the type of train control in effect. 49 CFR, Title 49, Part 236 presents standards for signals and train control. Maximum speeds under various controls are given in 49 CFR § 236.0. Other sections detail structural, electrical, and operating characteristics of signals and control systems. Of particular interest for HSR applications is 49 CFR, Title 49, Subpart E: “Automatic Train Stop, Train Control and Cab Signal Systems.”

Terminology can become confusing. No standard usage has emerged to date. Harrison has suggested that 200 kph (125 mph) is the generally accepted minimum threshold to speak of high-speed rail (Harrison, 1995). However, HSR service on federally designated 10/10 corridors is generally being implemented in phases. Maximum speeds of 150–200 kph (90–125 mph) are typical goals (Harrison, 1995 and see Table 2.2). In this range, ITS technologies hold promise for allowing at-grade crossings to be maintained with high levels of safety and efficiency, avoiding the costly alternative of full grade separation required for higher speeds.
Table 2.2: Designated Section 1010 High Speed Rail Corridors and Speeds.

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Length</th>
<th>Proposed IHSR Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington, D.C. – Richmond –</td>
<td>770 (479)</td>
<td>Current maximum speed 130 kph; proposed max 150 kph</td>
</tr>
<tr>
<td>Raleigh – Charlotte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago – Detroit</td>
<td>449 (279)</td>
<td>Recommended phased program to reach running speeds of 200 kph</td>
</tr>
<tr>
<td>Chicago – Milwaukee (-Twin Cities)</td>
<td>700 (435)</td>
<td>Section 1010 proposal for Chicago–Milwaukee portion is to achieve 120 kph.</td>
</tr>
<tr>
<td>Tampa – Orlando – Miami</td>
<td>411 (255)</td>
<td>Franchise proposals failed; state still interested in rail</td>
</tr>
<tr>
<td>Eugene – Portland – Seattle –</td>
<td>760 (464)</td>
<td>Proposed incremental improvements: first phase up to 150 kph, second phase up to max speed of 200 kph</td>
</tr>
<tr>
<td>Vancouver, BC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 HIGHWAY-RAIL CROSSING SIGNALS

CFR, Title 49, Part 234 governs crossing signal system safety. Of particular interest are §§ 234.223 and 234.225 that specify the required timing for gate arms and warning devices. These state that:

- the minimum activation time for any warning system is 20 seconds before the crossing is occupied by rail traffic;
- each gate arm shall start its downward motion not less than three seconds after the lights begin flashing;
- each gate arm shall reach horizontal a minimum of five seconds before any train arrives at the crossing; and
- “At those crossings equipped with four quadrant gates, the timing requirements of this section apply to entrance gates only.”

2.1.3 RADIO COMMUNICATIONS

CFR, Title 49, Part 220 governs radio communications standards and procedures. It prescribes the minimum requirements for the use of voice communications by radio in railroad operations. Transmission of train orders by radio is specifically covered in § 220.61. The use of data radio is not yet included in the CFR, though “digital radio,” apparently referring to digital data radio from computer to computer, is referred to in Section 11 of the Rail Safety Enforcement and Review Act (Railroad Communication, 1994).
2.1.4 PETITIONS FOR RULEMAKING

Operation of any railroad segment above 175 kph (110 mph) requires prior approval from the FRA. Other nonstandard rail system components, crossing warnings, control and communications systems, may also require prior approval or waiver of certain regulations. The requirements for Rulemaking petitions and the procedures followed in responding to petitions are presented in CFR, Title 49, Part 211.

2.2 HIGHWAY REGULATIONS

In the United States, all highway signs, warning devices, and barriers are governed by the Manual on Uniform Traffic Control Devices (MUTCD) and the Roadside Design Guide. Though these are presented as recommendations only, court rulings have effectively given them the force of required regulations.

2.2.1 MUTCD

Part VIII of the Manual on Uniform Traffic Control Devices contains the standards for traffic control systems for highway-rail at grade crossings. The MUTCD also presents general standards for warning, regulatory, and guide signs for barricades and for hazard warning signals as well as other areas which may have application to the design of new systems for safe highway-rail crossings. MUTCD standards are constantly in a process of review and face potential revisions to incorporate new understandings and give guidance in new situations. States may adopt some modifications (exceptions) to the MUTCD. ODOT has adopted some exceptions to Part VIII of the manual.

2.2.1.1 Present Standards

Part VIII is entitled “Traffic Control Systems for Railroad-Highway Grade Crossings.” Section A covers general provisions, stressing the basic themes which govern all aspects of the MUTCD: design, placement, operation, maintenance, and uniformity. The MUTCD recommends closing crossings which do not serve a demonstrable need. Section B details signs and markings comprising the passive components of warning and control systems at the trail crossings. Section C covers the active aspects of crossing designs: signals and gates. Where highly variable train speeds are anticipated, constant warning time circuits for signal/gate triggering are encouraged.

The general standards for signs, Part II, will apply to any new signs that may be required for crossing treatments, including variable message signs for traveler information (cf. §2A-5). Barricades and channeling devices are the subject of section 6.C. In particular, §6C-8 describes the design of type III barricades, which §3F-1 specifies for use at a closure or termination of a roadway: in this case, the striping pattern substitutes red and
white for orange and white. Section 4E describes hazard beacons as well as signs and devices for other, non-rail intermittent right-of-way interrupting hazards, i.e. movable bridges.

2.2.1.2 New Standards for HSR and Low Volume Roads

MUTCD standards for high-speed rail grade crossings are currently under consideration. The National Committee on Uniform Traffic Control Devices discussed several HSR related issues at its January 1995 meeting. Areas discussed include timing sequences for four quadrant gates and absorbing barriers, advance warning signs, constant warning time equipment, vehicle intrusion detection, and crossing-to-train communications. The committee is also concerned that little attention has yet been given to pedestrians at high speed rail crossings (Koester, 1995).

Recommended revisions currently under consideration will specify three categories of low volume roads, with varying warning requirements at railroad crossings. Roads with volumes of less than 200 Annual Average Daily Traffic will be considered low volume. Category One is unimproved primitive roads—ungraded, undrained, dirt or gravel surfaces. Category Two roads are graded, drained, and have a stabilized surface. Category Three roads are paved. The recommendations suggest railroad crossbucks for all three categories. Railroad crossing advance warning signs would be used for all Category Three roads, but for Category One and Two only where the crossing is not visible an adequate distance in advance. ODOT does not agree with the Category One and Two optional language. These suggestions assume low volume roads will have passive controls, higher speed rail will require more.

2.2.2 ROADSIDE DESIGN GUIDE

The Roadside Design Guide from AASHTO states: “While it is a readily accepted fact that safety can best be served by keeping motorists on the road, the focus of this guide is on safety treatments that minimize the likelihood of serious injuries when a driver does run off the road.” (Roadside, 1989). The most fundamental concept from the Roadside Design Guide is the “clear zone.” The clear zone is a variable width region adjoining the traveled way (traffic lane and shoulder) that is to be kept clear of hazards. The clear zone width varies with design speed and topography. The Guide calls for hazardous obstacles within the clear zone to be removed or rendered non-hazardous by redesign or protective treatment.

Section 4.6.3 discusses potential roadside hazards from railroad warning devices. Warning device supports for signals or gates can cause an increase in the severity of injuries to vehicle occupants if struck at high speeds. “In these cases, consideration should be given to shielding the support with a crash cushion if the support is located in the clear zone” (Roadside, 1989). The Guide cautions designers against protecting the vehicle from the impact of hitting a warning device support in a manner that might redirect the vehicle into the path of a train.
Roadside Barriers are covered in Chapter 5 of the Guide. In this context, the roadside barriers considered are those designed for uses alongside a roadway, not across what would be the traveled way. Nonetheless, the basic warrant offered has broader applications: "If the consequences of a vehicle striking a fixed object hazard or running off the road are believed to be more serious than hitting a traffic barrier, then the barrier is considered warranted." (Roadside, 1989). When considering the possibility of a vehicle causing a train derailment, it may be appropriate to think of this as an extreme case of the "innocent bystander" problem, which is considered in section 5.2.3. Such cases typically involve protection of pedestrians or those in schoolyards or buildings adjacent to busy roads. Barriers may be warranted even if no actual hazard exists in the clear zone.

If impact-attenuating barriers are considered for protecting rail traffic with minimum damage to intruding vehicles, Chapter 8 of the Guide "Crash Barriers" should be consulted. Movable forms of both energy absorbing drum and dragnet systems have been proposed for rail-highway crossings. Chapter 8 gives considerable information about operational, fixed forms of such systems.

2.3 RAIL-HIGHWAY JOINT RECOMMENDATIONS

As train speeds go up, the need for control of crossings also increases, as does the difficulty and expense of achieving increased control. Table 2.3 shows the three ranges currently designated and the crossing treatments recommended in the Rail-Highway Crossing Safety Action Plan Support Proposals which represent the combined thinking of FHWA, FRA, FTA, and NHTSA. Reducing the number of crossings through consolidations and closings is one essential part of creating a safe and efficient high-speed rail corridor. The highest-speeds crossings which cannot be eliminated then must be grade separated. ITS applications come into play in the intermediate high-speed ranges. In the lower range, from 128 to 176 kph (80 to 110 mph), ITS technologies can help assure driver compliance and safety. In the higher range, from 177 to 200 kph (110 to125 mph), ITS will assure efficient and reliable protection for the trains.
Table 2.3: Action Plan Recommendations.

<table>
<thead>
<tr>
<th>Rail Speed kph (mph)</th>
<th>Public Crossings</th>
<th>Private Crossings</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 - 176 (80-110)</td>
<td>Eliminate all redundant or unnecessary crossings. Install the most sophisticated traffic control/warning devices compatible with the location, e.g., median barriers, special signing (possibly active advance warning), four quadrant gates. Automated devices should be equipped with constant warning time equipment.</td>
<td>Close, grade separate, and provide a secured barrier or automatic devices for private crossings. Device or barrier should extend across the entire highway on both sides of the track, should normally be closed and locked on request, if no train is approaching, for a period of time sufficient to cross the track(s).</td>
</tr>
<tr>
<td>177-200 (111-125)</td>
<td>Protect rail movement with full width barriers capable of absorbing impact of highway vehicle. Include a final safe vehicle detection capability between barriers. Notify approaching trains of warning device or barrier failure or of an intruding vehicle in sufficient time for the train to stop short of the crossing with out resorting to emergency brake application.</td>
<td>Protect rail movement with full width barrier or gate, normally closed and locked, capable of absorbing impact of a highway vehicle. Gate lock or control should be interlocked with train signal and control system and released by a railroad dispatcher. A fail safe vehicle detection or video system should monitor the area between the barriers. The crossing should be equipped with a direct link telephone to the railroad dispatcher.</td>
</tr>
<tr>
<td>Above 200 (125)</td>
<td>Close or grade separate all highway-rail crossings.</td>
<td>Close or grade separate all highway-rail crossings.</td>
</tr>
</tbody>
</table>

2.4 OREGON REVISED STATUTES

ORS 824.200 - 824.258 (West, 1995) present Oregon's statutory law regarding railroad crossings. The policy of the state is "to achieve uniform and coordinated regulation of railroad-highway crossings and to eliminate crossings at grade wherever possible (ORS 824.202)." Therefore, authority to control and regulate crossings is vested exclusively in the state. ORS 824.224 deals with private crossings. Those without automatic warning devices are required to have stop signs, unless placing a stop sign would create a greater hazard. After any required hearings, the state may "alter, relocate, or close any farm or private grade crossing on any line designated as a high speed rail system." For any takings this may involve, the Oregon Department of Transportation may use its power of eminent domain. Payments may be made from designated HSR funds. This statutory law is reflected in Oregon Administrative Rules Chapter 860, Division 42 which gives the state authority over private crossings on the HSR corridor.
3.0 RECOMMENDED FIRST OPTION - CROSSING CONSOLIDATION

The most direct safety improvements come from eliminating at-grade highway-railroad crossings. The Rail-Highway Crossing Safety Action Plan Support Proposals recommends consolidation/closure or grade separation for all crossings where trains will operate above 200 kph (125 mph) and where trains operate between 128 and 200 kph (80 and 125 mph) wherever possible. Consolidation of crossings allows a greater concentration of resources for upgrading the remaining crossings.
4.0 CONVENTIONAL HIGHWAY-RAIL CROSSING PRACTICE

Crossing conflicts, by definition, can occur only when a train enters or occupies an at-grade crossing. Given the presence of a train, the other half of a grade crossing conflict is the presence of a vehicle or pedestrian in or approaching the crossing. Preventing conflicts without eliminating the at-grade crossing requires knowledge of both the trains approaching the crossing and of the crossing itself: whether vehicles are present and if the crossing control equipment is functional.

Needed knowledge of train status includes the trains’ location, direction of travel, speed, and stopping distance. Traditional timetable/train order and manual block signal systems provide guidance to train operators and knowledge of where trains are supposed to be. Automatic block systems, including those that incorporate automatic controls, rely on track circuits to detect the presence of a train in a given section of the track and in the case of control systems, to relay information about train speeds.

Knowing the status of the crossing means knowing whether conflicting traffic is blocking the crossing. It also means knowing how dependable the crossing information is. As with trains, traditional methods have relied on warnings that make clear what the crossing status is supposed to be. When the lights are flashing and the gates are down, no other vehicles should be entering the crossing. However, this is not necessarily the actual reality. The problem of acquiring information about train and crossing status can further be understood from two separate angles: from the railroad side, train operators/systems must recognize the approach of the train to a potential conflict spot and determine if a conflict exists; from the highway side, drivers need to know of a potentially deadly hazard—the train—interrupting or about to interrupt the roadway.

4.1 HIGHWAY APPROACH

Motorist error is the primary cause of train-motor vehicle accidents (Rocox, 1988). The motorist must first be aware that a crossing is ahead. Then it is necessary to evaluate whether or not the crossing can be safely negotiated or whether it is necessary to stop for a present or oncoming train. Both vision and hearing are relied on to convey the required information. In passive systems, the driver must use his/her judgment to estimate the approach of a train in relation to the time needed to complete the crossing at the tracks. In active systems, the presumption is that judgment is not required: when the gate is down it is not safe or legal to proceed. Experience indicates that many motorists do not follow this presumption.
4.1.1 PASSIVE WARNING SYSTEMS

A passive warning device, typically the standard railroad crossbuck, alerts motorists to the presence of a highway-rail crossing. After being alerted to the upcoming crossing, awareness of an approaching train is based on motorists' vision and hearing. Sight distance is critical to the reasonably safe functioning of crossings equipped only by passive warnings. Sight is augmented by the "active" function of the train whistle or horns sounded by the train crew as they approach the crossing. Passive warnings are not adequate for HSR lines. Higher speeds require greater sight distances than many crossings provide. Even when sight distance is adequate, motorist judgment cannot be relied on to protect against the greater risks of higher speed collisions.

4.1.2 ACTIVE WARNING SYSTEMS

Active warning systems include flashing lights, bells, and automatic gates. Current standard active warning devices for grade crossings are based on track-circuit activation.

4.1.2.1 Standard Fixed Activation Points

In older systems where the location of the activation point is fixed, it is related to a train's maximum authorized speed (MAS) for that part of the line. In no case, may a warning less than 20 seconds be given before a train enters the intersection. Where gates are present, those controlling approaching traffic must be completely deployed (horizontal) not less than five seconds before a train enters the crossing.

4.1.2.2 Constant Warning Time

At most crossings in the United States, the crossing activation circuit cannot recognize varying train speeds therefore the crossing warning time may vary greatly from train to train. Systems that recognize train speed and provide a relatively constant warning time (CWT) are installed at about 6,000 crossings in the United States. The technology for current CWT was developed in the 1960s and uses a more complex, discriminating set of track circuits (Bowman et al., 1986). CWT has been found to be effective in reducing warning device violations by motorists (Halkias and Eck, 1983; Bowman, 1987).

4.2 RAILROAD APPROACH

Train crews must be aware of their approach to a crossing. They must be able to assess the status of the crossing: Is it clear? Can they proceed? Finally, they must be able to respond to a blocked or defective crossing in a way consistent with the train control standards under which they are operating.
4.2.1 CROSSING STATUS

Train crews must assess the status of a crossing visually as they approach. They must first be vigilant enough to know they are approaching a crossing. They then require adequate sight distance, which is a clear view of the crossing from a great enough distance that a full service brake (FSB), would stop the train before it entered the crossing. Poor weather, topography, vegetation, track and road alignment may limit vision. At night, pedestrians, bicyclists, and perhaps stopped cars may not present the side lighting needed to be seen from up the track. Even when the crossing and its approaches can be clearly seen, the train operator’s response must be based on the operator’s judgment of whether approaching vehicles will indeed stop, and the assumption that stopped vehicles will remain stopped until the train has passed.

4.2.2 TRAIN CONTROL

Traditionally, train operators have been aware of their position relative to crossings by knowledge of the line, by vision, and by whistle boards a ¼ mile in advance of a crossing. Traditional railroad signal and control systems have been designed to locate trains in relation to other trains and track control features (e.g. switches). These systems have not generally been tied to highway-railroad crossings. Nonetheless, a basic understanding of block systems will help in understanding how more advanced train control systems can be integrated with crossing control.

To prevent two trains from trying to occupy the same piece of track at the same time a highly undesirable circumstance—tracks are sectioned into blocks and trains must have authority to occupy any given block. Authorities have been conferred by timetables and train orders, but a simple statement of what train should be where and when cannot deal with delays, breakdowns, or other unforeseen circumstances.

An example may help clarify the central idea of track authority. One early system vested authority for a block in a single token. The train engineer would pick up the token at the start of the block and carry it to the other end. Only a train carrying that token could enter that block. Obviously, this only worked where trains always arrived from alternating directions.

4.2.2.1 Automatic Block Signals

Today, most passenger rail lines are equipped with automatic block signals (ABS) (Ulman and Berg, 1995). Any train present in a block, along with the switches and the rails themselves, creates an electrical circuit that controls the signals related to that block. If a train occupies a block, signals at the entrance to that block will be set to stop. Signals in the preceding block(s) will be set to caution. Other blocks will show a clear signal. The various block signals are called “aspects.” In a simple three-aspect ABS system, a train operator seeing a caution aspect must begin to stop and the block length must be sufficient to permit a safe stop from the maximum authorized speed (MAS). ABS
systems with more aspects provide levels of caution, effectively lowering the MAS for a block under an early caution aspect. This then allows shorter block lengths, more sophisticated train control, and closer headways.

4.2.2.2 Central Train Control

ABS, as described above, applies to tracks with an established direction of travel, as one would have with double tracks each signaled for travel in one direction. Bi-directional use of a single track requires a more complex traffic control system (TCS). For example a centralized traffic control (CTC) system can be implemented where all interlockings and control points are controlled from one location. Control is typically achieved through coded track circuits. Several distinct codes can be sent at one or more carrier frequencies through the track in a block. Areas without CTC are “dark” regions. CTC areas are visible to dispatchers at a resolution fixed by the block length. The dispatcher knows whether a train is in a given block. Without calling the train operator, the dispatcher can only infer which train is in a block and what its speed and direction are. Even in a system with several signal aspects, each block must be long enough for significant change (higher speed to lower; lower speed to stop). This greatly limits the precision of the dispatcher’s knowledge.

4.2.2.3 Cab Signals

At higher speeds, it becomes more difficult to accurately read wayside signal aspects from the engine cab. Above 128 kph (80 mph) train operations must compensate for this difficulty. Cab signals bring the aspect indications for the block into the cab with the train operator. In addition to continuously indicating the current aspect, a change to a more restrictive aspect is accompanied by an audible signal which continues until manually acknowledged.

4.2.2.4 Automatic Train Stop

Another approach to protecting higher speed operations is a system that will automatically apply the brakes if the operator fails to respond to a more restrictive condition coming into effect. As with cab signals, automatic train stop is tied to the automatic block system or central train control. Also as with cab signals, an audible warning sounds in the cab when a more restrictive condition is encountered. The train operator must respond to the restrictions or the ATS will apply the brakes.
5.0 ITS TECHNOLOGIES

5.1 INTRODUCTION

ITS technologies hold promise for improving information, communication, and control at highway-rail crossings. These may be combined to provide levels of safety unattainable with conventional approaches at a cost still far below that of a full grade separation. Various component systems, linked by digital communication channels, can greatly enhance the ability of train operators and motorists to succeed at the three tasks of crossing safety.

In the United States, it has been the responsibility of drivers to recognize and respond correctly to approaching trains. Passive signs combined with the sight and sound of approaching trains or the use of active warning devices are expected to create an appropriate response. On low volume roads and with trains operating in the range of 128 to 176 kph (80 to 110 mph) warning devices alone may still be an adequate crossing warning. For this to be the case, the warnings must be convincing. Along with basic education and enforcement, ITS can help provide consistent, reliable, and convincing information to assure the highest level of compliance.

ITS technologies offer options for far more powerful tracking and communication of the status of trains throughout a rail network. In particular, train tracking based on global positioning systems (GPS) offer the critical information required for safe grade crossing operation.

Direct vision has been the train operator's only tool for checking the status of each crossing as the train approaches. ITS technologies provide the ability to monitor the true conditions at crossings. Technologies as familiar as loop detectors and as new and rapidly developing as video detection and Doppler radar are being used or show promise for monitoring crossing status. Again, computer analysis, communications and control possibilities allow the acquisition of crossing status to fit into a complete system of safe crossing operations.

In principal, the correct response to a potential conflict is quite straightforward. If a train is approaching, vehicles in the crossing must clear it and no other vehicles may enter. If this fails to happen, the train must stop before entering the crossing. A slightly subtler but equally important issue is the handling of failed equipment and systems. If the condition of either the train or the crossing equipment is compromised, a set of actions must be initiated to assure continued safety at the crossing through the completion of repairs.

What is simple in principal is more difficult and/or expensive when the stakes are high and those responsible are human beings. In any grade crossing accident, the likelihood of death for the
highway or road user is very great. When considering high-speed passenger rail, the possibility of a collision leading to derailment and disaster is very real. Acceptable operation of high-speed rail requires complete compliance with safe practice by both train crews and motor vehicle drivers at all crossings. Timely and accurate information can improve the consistency and appropriateness of human responses. Dependable accurate information is also critical to the acceptance of positive controls which prevent human errors, e.g. automatic brake control for trains and fully closing crossing gates for road vehicles. Consistent enforcement of regulations can also create an expectation of compliance and apparently a stronger disincentive to violation than the thought of merely killing oneself and hundreds of others. ITS technologies combined with both traditional and newer crossing barrier designs can create effective controls to assure safe responses to potential conflicts at road-rail crossings. This chapter reviews many ITS technologies that could be used in the near term for increasing highway-rail crossing safety.

5.2 TRAIN CONTROL

The traditional approaches to knowing train status cannot provide precise information about location and speed, but never the less, have worked very well at providing safe and reasonably efficient train control and crossing warnings. However, as the range of - and actual speeds from train to train are increased, more detailed information is needed for operations that will be safe, efficient and acceptable to the public. In the United States and other countries, new train control and railroad management systems have been proposed and/or are being used. In some instances, these are directly tied to the grade crossings. In others, the technologies have been developed for train control, but can be extended to incorporate crossings into the train control system.

5.2.1 MOVING BLOCKS

A more constant and detailed knowledge of train location and speed is highly desirable for many aspects of railroad management and can provide opportunities for optimized control of grade crossings. With the ability to exchange detailed information afforded by digital technologies, the concept of a “moving block” becomes central. Rather than a fixed section of track, blocks are thought of as buffer zones that exist before and behind a train. The block moves with the train. For this to work, control systems must know the location and movement of the train. The relatively simple wayside-only systems used for ABS are replaced by on-board computers in two-way communication with wayside and/or central computers. Moving blocks provide the shortest possible safe headways. Systems to implement this concept exist and are seeing wider use throughout Europe and the United States.

5.2.2 POSITIVE TRAIN CONTROL/SEPARATION (PTC / PTS)

The Association of American Railroads (AAR) and the Railway Association of Canada (RAC) have adopted theoretical standards for advanced train control systems (ATCS). In many cases, newer technologies are overrunning ATCS before it is tried. A scaled down form of the most
safety critical systems, positive train control (PTC) or positive train separation (PTS), is finding a home on the most congested corridors.

Positive train separation is the narrower of these two terms. It refers, essentially, to a train-train collision avoidance capability. Positive train control is broader and includes the ability to enforce speed restrictions, both permanent and temporary. The ATCS approach to PTC would provide constant monitoring of train position, estimated braking distance, speed restrictions and track warrants. Minimum headways and maximum overall speeds are achieved through moving block signaling. A more conventional approach to PTC is being implemented in the Northeast Corridor (NEC). The track circuit is being upgraded to a two frequency, eight code system. This provides nine aspects for automatic cab signals and limited train stop capabilities. In the Pacific Northwest, both Burlington Northern (BNSF) and the Union Pacific Railroad (UP) have worked on a more advanced approach to PTC/PTS, using a GPS for precise, continuous train location and speed information. The UP is currently working toward a test installation of a GPS/PTS activated grade crossing system. They are particularly interested in the potential to provide sophisticated control without expensive extensions to track control circuit systems.

5.2.3 TRAIN-TYPE TRANSPONDER—SWEDEN

One of the simplest, yet most useful pieces of information needed is the ability to distinguish between slower freight and higher speed passenger trains. The Swedish State Railway uses an activation beacon which recognizes the distinct signal from a high-speed trainset onboard transponder, activates the crossing warnings, and gates early enough to clear the crossing. When a slower freight passes the beacon, the crossing gate activation is delayed appropriately to minimize disruption of normal traffic. The Swedish system also follows the activation beacon with a check beacon located at the minimum distance required for a full service brake to stop a high speed train before the crossing (High Speed, 1994). It is interesting to note that the Connecticut Department of Transportation’s proposal for a crossing following Swedish principles apparently does not include distinguishing train speeds. They feel four-quadrant gates will be sufficient to ensure compliance even from anxious motorists dealing with advance warning times of up to 150 seconds (Levine, R 1994).

5.3 VEHICLE LOCATION AND DATA MAPPING

5.3.1 GEOGRAPHIC INFORMATION SYSTEMS

A Geographic Information System (GIS) has been developed to better follow and understand rail-highway crossing safety data (Faghri, 1995). This system is intended for analysis of data collected over a period of time. GIS systems are also finding application in real-time situations in the dispatch of emergency vehicles. A GIS lends itself to integrating data relevant to grade crossing management as a dynamic and powerful tool. Train location on the line can be shown, with color coding for important information such as speed, class of train and current block authority. Intrusion detection devices can give a running count of traffic volume on the cross
street as well as flashing a blocked crossing condition. Over time significant data can be
gathered about driver behavior at particular crossings. Having all of this gathered in one GIS
may provide unprecedented power for understanding and managing crossings. Real-time vehicle
location data from GPS or other automatic vehicle location systems (AVL), along with traffic
data from loop detectors and/or video image processing/detection systems, are increasingly being
pulled together as layers on top of GIS maps showing streets, rail lines, construction and utilities.
Incorporating train status, especially at and near highway-rail crossings, could provide a valuable
tool for coordination and optimization of emergency response.

5.3.2 AUTOMATIC VEHICLE LOCATION

Automatic vehicle location systems are seeing increased use for transit and emergency vehicles.
The systems are parallel to those discussed for train control systems. Seeking common standards
may hold promise for crossing safety, especially for the safety of critical trips i.e., buses,
hazardous materials and emergency vehicles.

In some instances, transponders on vehicles are recognized by roadside or in-the-roadbed
beacons/detectors. These roadside stations report the vehicle location to a central control station,
which often feeds directly into a GIS representation of the area. The beacons may also report
their fixed location to an on-board computer as an aid for traveler navigation or schedule
compliance. This parallels the ATCS train location standard.

In other systems, vehicles locate themselves by means of a Global Positioning System (GPS).
Analysis of signals received from several satellites allows for the on-board calculation of vehicle
location. Again, the information can be used for vehicle navigation systems. Digital data radios
can be used to exchange vehicle location information with a central control center as needed.
This parallels the use of GPS by the UP.

5.4 TRAVELER INFORMATION AND WARNING

5.4.1 VEHICLE PROXIMITY ALERTING SYSTEM

It has been suggested that the Vehicle Proximity Alerting System (VPAS) being developed by
FHWA has the potential to interface with ATCS (Railroad Communications, 1994). Such a
system is particularly intended for vehicles carrying critical loads. This has appeal in light of
research indicating that the requirement for buses and hazardous material transporters to stop at
crossings with active warnings when the warnings are not activated significantly increases
accidents with trains (Bowman et al., 1986). The VPAS could be seen as an acceptable
alternative to the heightened visual and auditory checking which is supposed to occur when
critical load vehicles stop at all crossings.

22
5.4.2 TRAVELER INFORMATION SYSTEMS

Traveler Information Systems (TIS) are being developed and tested as a means of aiding navigation and giving real-time information, such as, directing traffic away from congested streets. Excessive delay can lead anxious motorists to non-compliance with highway-aided crossing warning devices. Motorists find any delay greater than 50 seconds “annoying and troublesome” (Jozek and Harrison, 1988). The industry standard has been based on the belief that “warning times in excess of 40 seconds would encourage an anxious motorist to drive around a downed gate” (Leete, 1994). It is our belief that a driver, uncertainty is a primary factor in increased non-compliance with longer delays. With ITS technologies, it is possible to give waiting motorists real-time updates on how long they will have to wait. A variable message sign can be tied into the system to count down the remaining time until the expected arrival of the train. With a GPS/PTC supplying basic data, information about train length would also be present in the system and the message could indicate the amount of time left until the crossing will open again. Figure 5.1 shows a sample of a repeating, updating sequence of messages on a variable message sign. A separate fixed sign could direct drivers to the nearest grade-separated crossings in either direction along the track. In case of a trapped vehicle, the variable message sign could be used to assure and caution other motorists (see Figure 5.2). In addition to the visual information through a variable message sign, the same information could be provided audibly through a leaky coaxial cable broadcast along the approaches to the crossing. A permanent sign would direct motorists to tune to the proper frequency for train information.
Figure 5.1 Repeating, Updating Sequence on Variable Message Sign.
5.5 INCIDENT DETECTION

Incident detection systems may simply note the presence or absence of a vehicle in the area they cover. They may be designed to sound alerts based on stopped vehicles. They may track a wide range of sophisticated traffic properties, noting not only stopped but slowed vehicles, as well as speed, distance and headways of approaching vehicles. Systems may be automatic, human monitored or automatic with information based on inferences from other systems. Incident detection has focused on detecting motor vehicles, but monitoring a train status as it approaches a crossing may also be an appropriate use of this technology.

5.5.1 MONITORED GATES

On the German Federal Railway, rail crossings are regulated by the Eisenbahn Bau-und Betriebsordnung (EOB, Railroad Construction and Operation Rules). Low volume, private crossing status is controlled by gates tied into the block signaling system. An open gate is presumed to indicate an occupied crossing and a closed gate to indicate that the crossing is clear (Bauer, 1995; EOB, 1992). The Action Plan recommends such a linking of normally closed gates into the signal system for private crossings of lines operating from 177 to 200 kph (110 to 125 mph), though it also calls for separate intrusion detection for extra protection.
5.5.2 CROSSING TELEPHONES

Telephones located at crossings provide direct communication with train dispatchers controlling the rail line. In the United Kingdom, there are 4,500 private crossings. Of these, 1,200 are controlled with telephones. At these private crossings, the motorist telephones the control signalman before and after crossing. The control signalman sets a restrictive aspect on the block with the crossing, then clears it after the second call. If the second call is forgotten, the train must proceed with caution and report the crossing status to the signaler. Some blocks in England are 12 km (20 mi) long—a crossing in use anywhere in this length restricts the use of the whole block (Hunter-Zaworski, 1995).

In the United States, the enormous growth in cellular telephone use may warrant placing of permanent signs at crossings indicating a number that can be dialed for operations concerning the crossing. An extension given with the number could automatically identify the crossing to the human or computer monitor receiving the call. Whether by cellular or conventional lines, calls might be used, as in Britain, for crossing clearance. Telephones also could be used to report problems or to retrieve train status or alternate route information.

5.5.3 VIDEO MONITORING

Direct human monitoring of crossing status by video can provide a redundant level of safety and a check on the correct functioning of automatic systems. Video monitoring can be by train operators in-cab as they approach a crossing, or in the central dispatch office, or in a separate location—created specifically to monitor crossing safety or as part of a larger transportation management center.

5.5.3.1 Video Monitoring and Manual Crossing Control

In the United Kingdom, the semi-manual operation of crossings is more common than fully automatic systems. Closed Circuit Television (CCTV) shows the signaler each crossing as needed. The screen for a given crossing remains blank until a train approaches. The train signal is restrictive until the signaler has manually lowered the barrier (US standard gate type) or swung the gate (older style gate that swings across tracks to open roadway). Half barriers or staggered operation of four quadrant gates allow motorists to escape. Once the signaler has determined that the crossing is clear, he or she changes the signal and the train can proceed at speeds up to 200 kph (125 mph). When the train clears the crossing, the gates open automatically.

5.5.3.2 In-cab Video

In-cab video monitoring of grade crossings has been demonstrated by Wireless Technologies, Inc. in cooperation with the New York State DOT at the Lincoln Avenue crossing on Conrail’s Chicago Line, Albany Division. Wireless Technologies is a Los Angeles based manufacturer of radio frequency (RF) video transmission systems. They installed Autoscope video detection equipment and a radio transmitter directed up the
line. Beginning slightly over four miles up the track, the on-board receiver they installed picked up the signal and displayed live video of the crossing in the cab of the train as it approached at speeds up to 160 kph (100 mph). Figure 5.3 shows a typical video sensor coverage for the system. The in-cab display also included a rectangular area superimposed over the crossing image which changed color to indicate that the Autoscope system had detected a vehicle present (Grade Crossing Safety, 1993).

Figure 5.3 Camera Coverage for In-Cab Crossing Video.

“On train closed-circuit television” is used to assure crossing safety of French and British trains with grade crossings at 200 kph (125 mph) (Rozek and Harrison, 1988).
Odetics, also a California company, has developed Fastrans to send compressed video over telephone lines. One available version transmits video over cellular telephone lines. This system is currently being used to monitor variable message signs in the San Fernando Valley (Purdom, N., 1995). Cellular phone lines have been used in other train-based systems, so it is reasonable to consider this as a possible alternative transmission mode for live video of crossings into the cab of approaching trains, as well as to dispatch or to another monitoring center.

5.5.4 AUTOMATIC DETECTION SYSTEMS

5.5.4.1 Inductive Loop

Swedish Railways use loop detectors in the crossing to check for the presence of vehicles during a gate-down sequence. Their four-quadrant gates are configured to close approaches but leave open exit lanes as long as vehicles are detected in the crossing. The loops also report crossing status to the wayside check beacon located at the safe stopping distance for approaching trains (High Speed, 1994). Loop detectors have also been used in Los Angeles to trigger cameras for crossing enforcement.

In the past, inductive loop detectors have had high failure rates/maintenance needs. The most common causes of failure were improper installation, inadequate sealants or wire failure (Bikowitz, 1985). Careful installation and maintenance can minimize problems, but previous problems and fixed ones such as the inflexible nature of loop installations, has propelled investigation of alternatives.

5.5.4.2 Video Image Processing

Another approach to vehicle detection is automatic video interpretation. In contrast to inductive loops, which detect the presence of a vehicle at a particular spot, video detection systems are Wide Area Detection Systems (WADS) capable of monitoring vehicle activity in multiple or extended areas from each camera angle. Flexibility is an important advantage of video detection systems. Different systems offer varied features and options such as stopped vehicle detection, remote or on-site control and redefinition of detection zones for each camera, and live video return over coaxial cable, fiber optic cable, conventional phone or cellular phone lines (Carson, 1995).

Autoscope is the trade name of the video-imaging package most widely used in the United States. The VIS feeds video images of the crossing from permanently mounted cameras to a computer. The computer software analyses the image and in real-time recognizes the presence of a vehicle in user-defined zones. Such a system is called “loop emulation.” In addition to its principal use in street/highway applications, the Autoscope system has been used in Los Angeles as an alternate trigger for photographing highway-rail crossing violations (Burtonewitz & Richards, 1993). It has also been included as part of a system that transmits live video of a crossing directly to the cab of an approaching train.

28
Beyond loop-emulation systems, video detection systems capable of tracking individual vehicles are being developed and installed. In Spain, the Estación de Visión Artificial (EVA)—artificial vision station is a WADS that detects and tracks vehicles over an extended area, as opposed to multiple defined detection zones. This is a far more complex problem. The added complexity yields benefits in a traffic management setting by generating richer data than loop emulation systems. The processing power required also makes video compression and transmission practical. Image quality necessarily trades off against the video refresh rate, the product of these two being a constant determined by the bandwidth of the particular transmission mode (Rodríguez and Marzán, 1995). The added information from such a tracking system is probably not critical to its potential use for monitoring crossing status. However, comparisons of video quality and transfer rates with other video detection systems might be a worthwhile task.

Comparisons of the reliability of detection over a range of lighting and weather conditions would also be helpful. New companies and expanded capabilities are entering the field, each making strong claims. A recent addition in the United States is PEAK Systems. Their software, like the EVA, tracks individual vehicles. Lane County in Oregon currently has one Autoscope controlled intersection but is installing a PEAK system at a second intersection. Their experience may be very helpful in developing comparisons.

5.5.4.3 Doppler Radar

Video detection systems offer greater flexibility and a wider area of coverage over traditional systems. However, they can be affected by changes in lighting and by heavy rain, snow, or fog. Doppler radar may offer a longer range and greatly reduced sensitivity to changing environmental factors. THOMPSON-CSF working with SAPRR (Société de Autoroute Paris-Rhin-Rhône) has done preliminary development and study of radar based traffic incident detection. The system could analyze both directions of traffic, detecting stopped or slowed vehicles in a range of 100 to 1000 meters. The reported precision with speed was a reading of ± 2 kph and a range of ± 15 m (Lion and Roussel, 1995). Though developed for motor vehicle detection, the characteristics of this system suggest it might be most useful in crossing safety as a system for monitoring approaching trains. Rather than constant activation, conventional track circuits could notify the radar system of a train approaching its detection zone. Speed and distance information from the radar could provide information for constant warning time crossing control. In addition, with acceptably conservative assumptions about braking efficiency, the radar could also be used to recognize the decision point for an approaching train—the point at which an occupied crossing would require a FSB command be sent to the train.
5.6 CONTROL AND ENFORCEMENT

5.6.1 EDUCATION AND ENFORCEMENT

Operation Lifesaver is a public education program first introduced in Idaho. It deals with the "3E's":

1. Educating the public on how to approach and cross grade crossings and what actions to take if things go wrong;

2. Engineering aspects of crossing signs and signals;

3. Encouraging the enforcement of existing laws. It is now an international program and according to the program officials, it has significantly helped in reducing grade crossing accidents.

In addition to public education, enforcement is an important part of creating a community sense that one always heeds crossing warnings. Operation Lifesaver includes education for law enforcement personnel on their important role in increasing crossing safety.

Enforcement is also enhanced by photographing, and subsequent ticketing of those who violate crossing warnings. Los Angeles has experimented with both loop and video detectors to trigger a photograph if a vehicle is detected at the crossing once the warning gates are down.

5.6.2 REDUNDANCY

If a vehicle is present in a crossing, an approaching train must stop before entering the crossing. Because neither automatic equipment nor human operators are completely reliable, redundancy is necessary. Appropriate combinations of human and automatic monitoring and control are needed for each crossing. For instance, a video image processing detection system might notify the ATCS of a crossing intrusion. This would trigger a warning to the train operator and, failing a response, would then lead to automatic braking. If the video image were also being fed to a human monitor, it would be possible to override the automatic systems if the detection proved a false alarm. The human monitor might be the train operator, with in-cab video, or the dispatcher, or in a special corridor-safety office created to work with the train operator and dispatcher in this role. Anecdotal information strongly suggests that train operators will find ways to disable automatic equipment if they do not have faith in it. Having an official channel to deal with faulty readings may help in the full acceptance of extending automatic control to crossing safety.
5.6.3 MEDIAN BARRIERS

Another approach to compliance is simply to make non-compliance physically harder. The two-quadrant gates, standard in the United States, leave a path open around them. Median barriers at highway-rail crossings separate the approach and exit lanes. Thus, if a standard half gate is used to close the approach lane, it is difficult to cross over into the exit lane to go around the gate. This approach discourages defeating warning gates while always leaving exit lanes unblocked. To be effective, the median barriers must extend well back from the crossing. To be safe, they must comply with sound design standards for islands and barriers in streets and highways. Islands, providing a standard curb-height barrier, are not safe at speeds above 55 kph (35 mph). Full barriers suitable for higher speed require appropriate shy distance in adjacent lanes, shock absorbing and/or deflecting end treatments, and appropriate signing.

5.6.4 FOUR QUAD GATES

Four quadrant gates fully block the approaches and exits from a crossing. Resistance to four quad gates has centered on the possibility of trapping a vehicle in a crossing. Koester describes the shift away from four quad gates in the United States (Koester, 1995). As late as the 1950s, four quadrant gates were common at crossings operated manually by gate tenders. To save costs, railroads began to automate these crossings. Broken exit gates were common and modifying the delay timing of exit gates was not fully satisfactory. Eventually, exit gates were removed uniformly. ITS detection systems can meet the trapped-motorist concern. In Sweden, loop detectors keep open the exit paths until a crossing is cleared and further notify an approaching train of an occupied crossing in time for a safe stop. British Rail guards against trapped vehicles with video surveillance of the crossings.

5.6.5 NORMALLY CLOSED GATES

At very low volume crossings, and especially private crossings, the best arrangement may be to keep crossings closed except when a vehicle requests and is granted authority to open the crossing gate. This is the approach taken by the Deutsche Bahn (German Railway). Though certainly more awkward than a normally open crossing, this arrangement can offer benefits which may appeal to private crossing owners, principally a gain in control over access to their property.

Consider how this might work. Let the request-for-crossing authority procedure include a changeable electronic access code (punched in by telephone or perhaps with an at-crossing keypad), in the manner of a home security unit. If automatic telephone technology is used for the communication link, the roadside unit could include a button to call the owner (home, shop—any number or no number might be programmed by the owner). A touch-tone could then allow the owner to remotely authorize a crossing request. Railroad personnel would, of course, always possess working keys to the crossing.
5.6.6 TRAFFIC CALMING

Intelligent transportation systems should be systems. Along with the electronics, the more fundamental realities such as crossing geometry need to support and augment crossing safety. Speed and inattention are factors in crossing accidents. Various roadway alignment and construction designs, collectively known under the heading of “traffic calming” designs, are being used to lower motorist speeds and heighten awareness at critical junctures. It is worth exploring the possibility of using such designs to improve highway-rail crossing safety.

The highway-rail crossing is already a mentally demanding situation for motorist perception and reaction. Any traffic calming design would have to achieve its purpose without adding to the perception reaction burden of the motorist. The goal would be to increase the time available for response to a crossing through the lowering of approach speeds.

Another possible use of knowledge gained in traffic calming would be the design of traffic flow diverters which would bring an overspeed vehicle into a safe, fixed barrier. Normal traffic would be slowed to turn away from the barrier and then proceed to the crossing. Again, constructing a system that is entirely clear to drivers is critical to the safety and success of such a plan.

5.6.7 CROSSING RELIABILITY MONITORING

Increasing the use of sophisticated crossing technologies creates greater dependence on the constant, reliable functioning of these systems. Automatic monitoring of the crossings’ health may be an essential element in maintaining that reliability. The following discussion is based on that of Bartoskewitz and Richards (Bartoskewitz & Richards, 1995).

Railroad maintenance forces must wisely use available labor and budget resources that are often spread thin. Currently damaged or defective crossing equipment may be reported by train crews or motorists. Dispatchers relay this information to the appropriate signal maintainer for action. The system is somewhat haphazard and may leave defective equipment undetected and unrepaired for significant lengths of time. To meet these problems, several railroads are investigating automatic crossing monitoring.

One proposal uses cellular telephone and computer calling technology to respond to malfunctions detected by sensors at the crossing. The unit might be programmed to notify appropriate authorities, both railroad dispatch and local police, as well as calling on the maintenance crews for service. A Canadian railroad is testing a system in which crossing monitors are linked to a central computer. The computer constantly polls the crossings to determine their operability. Any malfunctions are identified and reported.
5.6.8 VEHICLE ARRESTING BARRIERS

At train speeds above 175 kph (110mph), crossings must fully protect rail movements. The tasks required at lower speeds remain: driver warning and information, intrusion detection, and physically blocking the crossing. At these higher speeds, however, protecting the train is essential. Physically blocking the entrance to the crossing must be done with some form of barrier capable of stopping any vehicle likely to hit it. Such a barrier may be of an energy-absorbing design or of a rigid, non-forgiving type.

5.6.8.1 “Friendly” Barriers

Considerable effort is going into the design of impact attenuation barriers, which can be deployed at highway-rail crossings. In some cases, these are seen as acceptable alternatives where grade separation would be called for but landuse and geometrics make it impossible. In such higher volume applications, the likelihood of serious injuries to motorists may justify higher costs, at least up to those of a standard grade separation.

Some designs use a net that drops down or swings (see Figure 5.4). The net is tied to a visco-elastic shock absorbing system. Such a system may present its own geometric problems. A fixed dragnet system designed to stop a 2,045 kg (4500 lb.) passenger car impacting at 100 kph (60 mph) requires about 21.3 m (70 ft) of deflection to decelerate the car at no more than 2 g’s (Roadside, 1989). Figure 5.5 shows minimum stopping distance (deflection) as a function of impact speed for three idealized constant deceleration systems at 2, 4, and 6 g’s. In actual systems, deceleration is not constant. Deceleration curves for real systems are strongly dependent on vehicle mass and system geometry. Note: sudden application of four g’s can cause brain injury. The damage occurs when the brain itself hits the inside of the skull.
Figure 5.4 Dragnet Crossing Barrier.

Figure 5.5 Constant Deceleration Stopping Distance Curves.

In other proposed "friendly" systems, impact attenuation drums roll into place on low dollies. Another experimental system deploys an energy-absorbing wall up from the
roadway. All of these systems are designed to protect both the train and the motorist. The protection of wayward motorists, something not afforded by standard crossings today, must be balanced against initial and ongoing costs, deployment time, and turn-around redeployment time and cost following an incident.

5.6.8.2 Rigid Barriers

Using a rigid barrier system would more closely match current expectations for driver safety. Conventional warning signs, passive and active, would precede the barrier. Drivers failing to heed the warnings would hit the barrier with no more protection than they would have hitting a train if the barrier was not there. However, the train would be protected. Principal types of rigid barriers are high security barricade and high security bollard designs, each of which can withstand great impacts and continue normal functioning, and crash-rated beam barriers which offer less absolute security but some degree of forgiveness to the impacting motorist (see Figure 5.6).
Figure 5.6 Rigid Barriers: A) Barricade; B) Bollard; C) Cable-Beam.
Crash-rated beam barriers come in two basic forms: vertical lift arms and horizontal gates, which may be rolling, swing, or cantilever. The vertical arm design is much like a conventional warning gate, except that when closed the tip of the gate and its incorporated aircraft cable is locked into a far-side anchor post. This design is available for spans of up to 7.6 m (25 ft). The horizontal gate completely blocks an opening, to both vehicles and pedestrians. This design can span greater openings; for maximum width, two gates can be locked to each other.

Crash-rated beam barriers may be quite adequate for grade protection applications where high-speed approaches are unlikely. A typical rating would certify the barrier to stop a 2,700 kg (6,000 lb.) vehicle impacting at 55 kph (35 mph). This would be quite appropriate for many small town or village crossings and in country that is more open if the road geometry forced a speed reduction prior to reaching the crossing. They are widely used at movable bridge approaches. Anecdotal information also suggests their forgiveness. Correspondence from B&B Electromagnetic recounts:

Only a few years ago, the police radioed to a bridge equipped with our TB-7200 barriers to have the barrier closed to stop a vehicle involved in a high-speed chase. The vehicle was an old Cadillac. The driver deliberately attempted to crash through the barrier at a high rate of speed (reported to us as in excess of 60 or 70 mph). He was stopped without injury (Mobile Barrier, 1994).

5.6.8.3 Warning and Regulatory Considerations

Use of a rigid barrier would require the careful use of warning signs. Drivers must recognize a potentially deadly hazard even when a train is not in sight. In addition to railroad crossings, other instances where roads are intermittently interrupted by rigid hazards include movable bridges and ferry crossings. Typically, all of these protect drivers only with warning devices, not energy absorbing systems. Signs for these other instances may offer guidance for rail crossings protected by rigid barriers (cf. MUTCD, 1988). Approval for the use of rigid barriers at HSR crossings should be sought at the highest level possible either by enactment of legislation or by a decision from the appropriate state transportation commission.

5.6.8.4 Barriers as Elements of Crossing Systems

As any gate or barrier is being evaluated for use on high-speed rail corridors and in conjunction with ITS monitoring and control functions, several design parameters should be investigated.
• Does the gate/barrier fully close the roadway? At what maximum and minimum width?

• Will the barrier prevent an impacting vehicle from jumping over?

• What sophistication of control is possible (e.g. can escape segments be separately opened and closed or is it all or nothing deployment)?

• How quickly can the system go from undeployed to deployed and vice versa?

• Crash behavior. What is the arresting capacity? Is it energy absorbing? If so, with what level of deflection?

• Does the system include or lend itself to built-in status detectors able to report operability and any problems in operation? Can it avoid hitting a car during deployment?

5.6.9 TRANSPORTATION/GRADE-CROSSING CONTROL CENTER

Central dispatch centers in the United States may be monitoring and controlling hundreds or even thousands of miles of track. Adding responsibilities for highway-rail grade crossings may overburden the present system. Closed circuit television monitoring of grade crossings and human oversight of warning and protective devices maybe better if done at a local corridor specific level. Such a center might be based on the model of Traffic Management Centers now being used to control signal timing, variable message signs, emergency response, and other congestion reduction measures in large urban areas such as Portland, OR and Seattle, WA.

A grade crossing control center would serve as a meeting ground for control of the surface transportation modes. Both rail and highway traffic concerns would be focused on the intersection of these two modes at crossings. Control could be local enough to provide familiarity with the characteristics and peculiarities of individual crossings.

Such a center, operating as a redundant backup or as a primary control agent, would need means to perform all three of the fundamental tasks of grade crossing safety. Train status might reach the center through links to an ATCS system, or from Doppler radar looking up-track from each crossing. Crossing status could be monitored through CCTV with or without VIP automatic detection systems. The center could be given override control of four quadrant gates/barriers to allow the escape of trapped vehicles.

Stopping a train when a vehicle is stalled or stuck presents a more difficult set of options. If the center were acting as a backup and recognized a false alarm, a call to the dispatcher would be sufficient to set in motion the override of automatic train stop systems, allowing the train to proceed through the crossing. In case of an actual stopped vehicle in the crossing, time would not allow going through another link in the chain, the dispatcher. The simplest system would give the center a direct line to the train control system allowing them to place the most restrictive
aspect on the block containing the crossing. For HSR, such a change in aspect would trigger an audible warning tone and change the cab signals and/or engage the automatic train stop. An alternate approach would be to create a separate communication channel from the center to any train on the track approaching the crossing, to activate a separate in-cab warning system. The cab warning system could have its own tie-in to an ATS. This would have the potential disadvantage of cluttering the cab and presenting one more stimulus which train crews would have to learn to respond to. It might have the advantage of directness, and the rarity of use (as distinct from the standard acknowledgment-required tone). It also might reduce any tendency for the crew to become inattentively reflective in response, possibly failing to register the seriousness of the warning.
6.0 CROSSING CLASSIFICATIONS IN THE OREGON HIGH SPEED RAIL CORRIDOR

An understanding of the types of low volume crossings is the first step in designing appropriate treatments. Crossings in the Oregon HSR corridor range from dirt footpaths intersecting the rail line to grade-separated freeway crossings. Of the approximately 237 crossings, 49 are already grade-separated and the remaining 188 are at-grade. Of these 188, 118 are public—including 6 pedestrian crossings; seventy are private—including three pedestrian crossings. This report is concerned only with the low-volume crossings—those with annual average daily traffic (AADT) of 200 or fewer vehicles. Twenty-two public crossings are low-volume. All of the 70 private crossings are assumed to fall into this category.

Many intrinsic and extrinsic qualities can be used to classify the low volume crossings in the Oregon HSR corridor. Among these variables are crossing ownership, surrounding landuse, operational characteristics of crossings, and crossing user groups. Considering the effects on safety and economics offers a way to reduce the many variables down to a reasonable set of characteristics used to assign appropriate treatments to crossings.

6.1 OWNERSHIP/CONTROL

The Oregon Legislature extended Public Utility Commission (PUC) authority over all crossings on the HSR corridor, private as well as public (Senate Bill 713, 1993). This transportation function of the PUC has now been transferred to ODOT.

6.1.1 PUBLIC

Public crossings are generally designed to a higher standard than private crossings. At best, users can be expected to have no better than average general comprehension of grade crossing safety. Nor can they be expected to have knowledge of any specific crossing in particular. Higher type designs compensate for lack of control over who uses the crossings. Sixteen public low volume roads and six public pedestrian ways cross the Oregon HSR corridor at grade.
6.1.2 PRIVATE

Private crossings may exist by agreement, without agreement, or by deed right. Sixty-eight vehicle and two pedestrian private ways cross the Oregon HSR corridor. (The following discussion of private crossings is based on Hemmely, 1994).

6.1.2.1 Agreement

Agreement crossings exist where the railroad and a private party have entered a contract permitting the private landowner to establish a private crossing. These agreements are generally revocable by the railroad on 30 days notice. Presumably, the quality of the crossing and who would pay for improvements is a matter of negotiation between owners and the railroad once minimum safety standards are met. About 25 crossings in the corridor are agreement crossings.

6.1.2.2 Non-Agreement

As the name suggests, non-agreement crossing have been established by private landowners without permission from the railroad. In such instances, it is the right and duty of the railroad to defend its property rights against such open claims of competing rights. The Southern Pacific in the Willamette Valley has been reluctant to pursue closing these type of crossings. Approximately 36 non-agreement private crossings exist on the HSR corridor. In a third of these cases, the crossings have been in existence for more than ten years. This open use by adjacent landowners for ten or more years may well meet the requirements to establish a prescriptive easement. These landowners' rights of use could be removed only by agreement or condemnation with just compensation. Negotiations on improvements to any non-agreement crossing may need to start with authorizing the crossing by agreement or court action. Again, this is first an issue between private parties.

6.1.2.3 Perpetual Right

In four cases, property owners have deeded access to the railroad for its right-of-way with the stipulation that the owner can establish a crossing lasting into perpetuity as a property right. Here the property owners have the strongest hand in dealing with the railroad, but as with all private crossings, the issues are first between private parties. The state, through ODOT, should only step in with its power of condemnation as a last resort if needed to create a safe HSR corridor.

6.2 LAND-USE ACCESS

Public crossings may be categorized by their surroundings as urban, small town, or rural. Private crossings may have more particular and limited uses
6.2.1 PUBLIC

Urban, small town, and rural settings affect driver expectancy and behavior. The settings may
also create differing constraints on alternate access and emergency services. Many urban, small
town and rural effects are reflected in other factors, e.g. density of crossings and AADT.

6.2.2 PRIVATE

A rough breakdown of private crossing uses in the Oregon HSR corridor is given in Table 6.1.
Different uses make different demands. Agricultural crossings may be field access needed only
at a few times during the year, but the crossing may need to accommodate various types of
agricultural equipment. Residence and or farm driveways may have few or many daily trips
depending on the family and/or the farm operation. Businesses' crossings may serve primarily
employees, or they may be quasi-public crossings for a retail operation. Figure 6.1 shows how
these uses are distributed along the corridor.
Table 6.1: Count Of Private Crossings by Landuse Type.

<table>
<thead>
<tr>
<th>Crossing Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Crossing</td>
<td>26</td>
</tr>
<tr>
<td>Residence/Farm Drive</td>
<td>24</td>
</tr>
<tr>
<td>Industrial</td>
<td>12</td>
</tr>
<tr>
<td>RR Yard</td>
<td>1</td>
</tr>
<tr>
<td>Fire</td>
<td>1</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
</tr>
</tbody>
</table>

Figure 6.1 Distribution of Private Crossings by Landuse Type.
6.3 CROSSING GEOMETRY AND TRAFFIC

Crossing geometry and traffic, both train and highway, provide primary measures of crossing operation.

6.3.1 NUMBER OF TRACKS

Multiple tracks present a particular hazard when a stopped or slow moving train on a near track blocks motorists' view of another train on a farther track. Five of the sixteen low volume public road crossings have multiple tracks. All of the private crossings are over single tracks, though some may be near divisions to double track.

6.3.2 NUMBER OF TRAINS

The greater the number of trains, the greater the risk exposure. Some switch engine traffic increases the number of trains in the urban areas of the corridor, but the low volume crossings all have essentially the same number of trains. Currently 16 to 20 trains use the SP mainline between Eugene and Portland daily. Merger with the Union Pacific and a trend toward smaller freight trains might significantly increase this number in addition to any added passenger trains. At whatever level, the number of trains is likely to remain consistent from one crossing to another through the length of the corridor.

6.3.3 AADT

Highway traffic is the other direct risk exposure factor: more vehicles present more opportunities for accidents. AADT also is a direct factor in figuring the delay caused by crossings. Higher traffic volumes require higher levels of service—very low volumes may allow significantly greater levels of inconvenience at crossings. The 22 low volume, at-grade public crossings in the corridor include 16 roads and 6 pedestrian only crossings. Of the 16 road crossings, 3 may be classified as extremely low volume with AADTs of 20 or fewer vehicles. Figure 6.2 shows the distribution of AADTs for the low volume public crossings. Traffic volumes were not readily available for private crossings.
Figure 6.2 Low Volume Public Crossing Counts by AADT
6.3.4 CROSSING AND APPROACH GEOMETRY

Oblique angles increase difficulties in seeing and interpreting possible conflicts at crossings. High-speed trains may travel twice the speed of standard freight trains in the corridor, requiring much longer sight distances up and down the track to allow adequate visual warning of approaching trains. Clear lines of sight are important as vehicles approach a crossing with passive warning devices, but much less so with active devices. The approach of the highway to the crossing may affect the speed with which a negligent driver might drive through warning gates—this is important in deciding on the energy absorbing capacity of barriers where the train must be protected. Many of the crossings in the corridor occur where the railroad closely parallels Highway 99 leading to extreme vertical curves (humps) and little reservoir space between the tracks and the main highway.

6.3.5 CROSSING DENSITY

The number of crossings along a given length of track is of particular interest when looking for relatively painless opportunities for crossing consolidation. Higher crossing densities may offer alternate access or suggest building a frontage road.

6.3.6 TRAIN SPEED

Though we are looking at crossings for high-speed trains, some areas may be constrained without exceptionally high expenditures to straighten and otherwise improve the track. For example, the SP mainline is on a curve through the town of Jefferson, with a bridge at one end of the curve. Bringing trains up to the highest speeds here could be very costly.

6.4 USERS

Passenger automobiles can be assumed at all crossings except those for pedestrians only. Trucks, buses, and farm vehicles may present special problems such as requiring adequate widths between gate supports, acceptable vertical curvatures to prevent bottoming out, adequate refuge space between tracks and stop controlled intersections, and allowance for greater times to cross and clear the tracks. Where the crossing is to a field used for livestock, animals must not be allowed to stray onto the tracks.

Pedestrians and bicyclists present other questions. When must specific pedestrian treatments be employed along with vehicle related controls? Are bicyclists at a crossing likely to operate as vehicles, as pedestrians, or both? What is required by the Americans with Disabilities Act (ADA)? Can a wheelchair passable crossing still safely accommodate the dynamic envelope of a high-speed train’s wheels? These are important and largely unexplored issues, and beyond the scope of this project.
6.5 ACCIDENT HISTORY

Undesirable characteristics at a crossing, which result in an accident, are more likely to cause additional accidents—if nothing changes. The most significant change is an upgrading of a crossing from passive to active warning devices. More subtle, but also important changes may arise from changing land use in the area, changes to the highway network in the region of the crossing, or changes in railroad operations (e.g. scheduling, use of sidings). Five of the low volume public roads have recent accident history.

6.6 SELECTING CRITICAL DESIGN CATEGORIES

Each grade crossing must be treated individually, but a few broad categories shaped from all of these variables can provide a useful starting point. Some of the information needed to place crossings in one category or another is already available, more will need to be gathered. Safety and economic factors are the core of grade crossing cost benefit analysis and offer a useful filter for understanding grade crossing characteristics. First it should be noted that the different characteristics do not all represent independent variables; for example, AADT for field access may be vanishingly small, for towns perhaps in the hundreds.

Grade crossing accident prediction models (APM) weight different factors according to their effect on safety. The data these are based on in this country do not, of course, come from HSR operations. The maximum safety measure considered is the conventional two quadrant gate with flashing lights. The APM's do not dictate specific equipment. Despite these limitations, such models are a good way to gain understanding of which factors are most critical in the safety performance of crossings.

The Rail-Highway Crossing Resource Allocation Procedure is the FRA's preferred model for crossing safety analysis (Rail-Highway, 1986). The most important factors in this model are the level of crossing protection, AADT, the number of trains daily, and the number of tracks crossed. An additional factor uses the accident history of individual crossings to account for other potentially significant factors which are not part of the crossing database (e.g. proximity to a tavern). Oregon uses the Jaqua Formula for analysis of its public grade crossings.

6.7 RECOMMENDED DESIGN CATEGORIES

A limited set of primary design categories allows focus on the principal crossing protections needed for each category. These primary categories are given in Table 6.2. Within the different categories, individual factors such as the need to contain livestock may further shape the crossing treatment. This set of primary categories forms one axis of the treatment matrix presented in the following chapter.
<table>
<thead>
<tr>
<th>Category</th>
<th>Use</th>
<th>AADT</th>
<th>Train Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Minimum</td>
<td>Private</td>
<td>Less than</td>
<td>Up to 175 kph (110 mph)</td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td>200 (assuming)</td>
<td>Up to 175 kph (110 mph)</td>
</tr>
<tr>
<td>Basic Minimum</td>
<td>Private</td>
<td><= 200 (assuming)</td>
<td>Up to 175 kph (110 mph)</td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td><= 200 (assuming)</td>
<td>Up to 175 kph (110 mph)</td>
</tr>
<tr>
<td>Basic Public</td>
<td>Public</td>
<td><= 200 (assuming)</td>
<td>Up to 200 kph (125 mph)</td>
</tr>
<tr>
<td>Higher Speed-Basic</td>
<td>Private</td>
<td><= 200 (assuming)</td>
<td>Up to 200 kph (125 mph)</td>
</tr>
<tr>
<td></td>
<td>Public</td>
<td><= 200 (assuming)</td>
<td>Up to 200 kph (125 mph)</td>
</tr>
<tr>
<td>Higher Speed-Public</td>
<td>Public</td>
<td><= 200</td>
<td>Up to 200 kph (125 mph)</td>
</tr>
</tbody>
</table>

These categories reflect a combination of risk factors and level of service requirements. In most cases, these two qualities move up the scale together. Extremely low volume crossings present less risk, and greater inconvenience can be tolerated by the small number of users. Conversely, higher volumes increase risk and require greater attention to guidance and delays. The first three categories are for train speeds of up to 175 kph (110 mph). The last two categories are for speeds up to 200 kph (125 mph) and reflect the necessity of protecting trains from probable derailment in case of an accident.

6.7.1 BASIC MINIMUM

The basic minimum applies to all other private crossings and as a special case to the three extremely low volume public crossings in the corridor. Note that these other private crossings represent a very wide spread of characteristics—no one treatment will be the most appropriate for all of them. However, all can be placed under a required minimum standard. The private parties themselves will be the best judges of whether a greater personal investment for a higher type treatment, with a higher level of service, is justified for their own particular crossing.

6.7.2 BASIC PUBLIC

This category is for public roads where train speeds do not exceed 175 kph (110 mph). As a public facility, levels of service and very clear guidance to motorists become very important.

6.7.3 HIGHER SPEED-BASIC

This category recapitulates the Basic Minimum. In this case, the higher train speeds will also require treatments clearly focused on protection for the train.
6.7.4 HIGHER SPEED-PUBLIC

Again, this category recapitulates the Basic Public, but with the paramount need to protect the train. That need and the higher demands placed on public crossings make this category of crossings quite challenging.
7.0 RECOMMENDED CROSSING TREATMENTS

The following guidelines are largely in accord with and extend the recommendations of the FRA/FHWA Action Plan (see Table 2.3). The project team assumes that medium and high volume roads will be grade separated or treated in other ways beyond the province of this report. For all treatments, closure/consolidation or grade separation is the first recommendation where possible. Above 200 kph (125 mph) all crossings must be closed or grade-separated. The understanding of the types of low volume crossings provided in the previous chapter provides the starting point for assigning appropriate treatments to crossings.

The Action Plan states the need for new approaches to private crossings: "FRA has traditionally taken the position that private crossing matters should be settled by the private parties involved. However, from a safety perspective, this approach has proven inadequate" (Rail-Highway, 1994). The Oregon State Legislature recognized the need for change and gave the Public Utility Commission the same authority over private crossings on the high speed rail corridor as it exercised on all public crossings (Senate Bill 713, 1993). As a transportation function, this authority has now been shifted to ODOT.

The Action Plan also suggested a treatment: "The feasibility of placing gates with remotely activated control locks at private crossings will be investigated and possibly demonstrated." Such a system would require calling the dispatcher to unlock the gate. "The gate would be interlocked with the railroad's signal system" (Rail-Highway, 1994).

An important element for such private crossings is that the crossing is closed by default, and opened only on request when safety is assured. As discussed in Chapter Five, a Traffic Management Center would provide an alternative to burdening the train dispatchers with handling crossing requests.

Public crossings require a higher level of guidance, control, and convenience for users. Except in the case of extremely low volume crossings, (AADT < 20), public crossings should be open by default and closed only when necessary as trains approach. Safety for higher speed trains will require earlier advance gate closing.

7.1 PRIMARY CROSSING PROTECTION ELEMENTS

Table 7.1 presents a matrix of primary crossing protection elements and the five basic crossing categories presented in Chapter 6. The following section presents guidelines for these primary elements. Key system elements for more than one treatment level, e.g., use of a Traffic Management Center, are discussed where first encountered.
Table 7.1 Primary Crossing Treatment Matrix.

<table>
<thead>
<tr>
<th>Categories/Treatments</th>
<th>Speed < 175 kph</th>
<th>175 kph < spd < 200 kph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Special Minimum</td>
<td>Basic Minimum</td>
</tr>
<tr>
<td>Close Crossing</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Private Gate</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Remote Lock Gate</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>Foot Quad Gate</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Remote Lock Barrier</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Automatic Barrier</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Grade Separate</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

0 = Optional.
R = Required

The required treatments are intended as minimum standards. Crossings, which fit a lower risk and LOS category, may be given a treatment appropriate to a higher demand category. For example, a business owner served by a private crossing might wish to treat the crossing as though it were a public crossing—the greater expense being justified by the greater convenience. The minimum standards provide a baseline for negotiations over distributing the costs of improvements among the state, railroad, and private landowners.

7.1.1. REMOTE LOCK GATES—TMC CONTROL / BASIC MINIMUM

Remote lock gates are the type of control mentioned in the Action Plan. The gate is normally locked. The lock is controlled remotely by railroad dispatch or from a Traffic Management Center, by either telephone line or radio. The following treatment discussions assume a TMC, but the procedures and systems would be essentially the same if created as part of the railroad dispatch system.

At a remote lock gate, the user must call the TMC to receive clearance to cross. If adequate time is available, the TMC will unlock the gate. Gates could be automatically raised and lowered, but in most cases will be manually operated by the user. It may be desirable in some locations to provide telephones on either side of the crossing connecting directly to the TMC, but the pace of cellular telephone service availability and acceptance may make this unnecessary. Signs at each crossing will identify the crossing by number and give the number to dial for crossing clearance/gate lock release.

7.1.1.1 User-System Interface

The basic elements of a standard gate-opening request are shown in Figure 7.1. Normally the call will be handled automatically with a minimum of input from the crossing user. After dialing the TMC, the user punches in the number of the crossing and the four-digit security code created by the crossing owner. If adequate clear time is available, the gate is unlocked and the user notified to proceed. Otherwise, the computer will give an.

52
estimate of time until the crossing will be clear. Would-be users of the crossing will be able to hear a message recorded by the crossing owner. Staying on line will connect the user through to a human at the TMC.

Dial TMC Automatic Gate Clearance ph#

"At any time you may request gate release by entering the four-digit request code."

"Remember, you must close the gate immediately after crossing."

"This is a private crossing. To request permission to cross and to release the gate lock, you must enter the crossing owner’s four-digit request code."

"To hear a message from the crossing owner, press ‘one’ now."

"To speak with an operator, please stay on the line."

A message pre-recorded by gate owner is played, returns to top of message.

TMC gate system receives owner’s master code, other owner authorized request code, or emergency services master code.

At the TMC an alert light activates on situation board. "Checking for approaching trains, please wait. Remember, you will need to close the gate immediately after crossing." System checks train approaches to the crossing and responds accordingly:

"Next train expected in [number] minutes. You may open the gate and cross."

"You must wait, it will not be safe to cross for approximately [number] minutes. Please hold on or call again after train passes. [number] trains approaching; please hold on or call again after they pass."

Figure 7.1 Automatic Gate Unlock Request Procedure.

The owners will also be able to call a separate telephone number to make changes. They will be able to change the recorded messages available to users. They will be able to
change their master codes, which enable these changes, and to create new access codes to allow the use of the crossing. In this way, a farmer could give a working access code to someone who needs temporary access; after they are done, the farmer could then remove that code. Emergency service providers and the railroad will have permanent access codes.

7.1.1.2 TMC

The TMC will be responsible for crossing safety similar to the way air traffic control is responsible for safety at airports. Trains and road users both need to occupy the same space at a crossing. The TMC must assure that both are never in the same space at the same time. This will be achieved by monitoring the crossing with automatic systems. Train locations, velocities, and types will be constantly available from data links to GPS units on the locomotives. When a request for a gate opening is received, a computer will check for approaching trains, calculate their decision points with respect to the requested crossing, and determine if enough clear time is available to allow the gate to be unlocked.

A situation board or display will show the whole corridor with train movement shown in real-time. All crossings will be indicated as open, closed, or request-pending. Alerts will sound if an opened gate is not closed again within a reasonable time. A telephone icon or indicator will display next to the crossing when a user is on hold to speak with a human.

The TMC operators will have telephone numbers of crossing owners to call if a problem appears. For instance, if a gate is left open, a call to the farmhouse will often find someone who can contact the people working the particular field. The operators will also have a direct radio link to the locomotive cab. A gate not closed in a timely manner would cause the computer to send a caution to approaching trains—requiring them to slow before reaching the high speed decision point then proceed with caution at a speed based on clear sight distance to the particular crossing. The computer database will store and process the information needed for correct timings and caution approach speeds for each crossing.

7.1.1.3 Timing

Current active crossing timing is based on the time needed to clear out a crossing once the warning device is activated. A twenty second lead time is intended to let vehicles in or closely approaching the crossing have time to get out of or clear the crossing. The possibility of a stuck vehicle is small enough to simply accept that
risk. The timing is not based on train braking distances. A standard freight train traveling 100 kph (62 mph) will take more than four kilometers (2.5 miles) to stop—braking for minutes rather than seconds.

Figure 7.2 Typical Braking Distances for Various Train Types. (Typical braking distances, from which braking times are calculated assuming constant Deceleration. (Ullman and Bing, 1995).)

The greater risks of HSR, including the even greater difficulty of accurately judging train approach speeds, justify crossing timings based on train braking distances. These are primarily a function of the train type, its mass and design braking capabilities, train maintenance, the actual effectiveness of all the brakes, and the train speed. The much lower mass of higher speed passenger train sets allow them to brake in much shorter distances than freight trains at any given speed. At 130 kph (80 mph), a passenger train can stop in about 43 seconds with full service braking. At 175 kph (110 mph) about 65 seconds is needed and at 200 kph (125 mph) the braking time is about 76 seconds. Those are the times needed once the brakes are applied. Crossing clearance, communication, and reaction times must also be considered.
See below for a discussion of crossing clearout times for automatic gate systems. For a manually-operated remote-lock gate, clearout time includes leaving the vehicle, opening the first near-gate, opening the second-far gate, returning to the vehicle, driving through, leaving the vehicle, closing the first gate, and closing the second gate. Time trials with a prototype will be needed, but for the moment, an allowance of 120 seconds is reasonable.

Communication time includes the time needed for the TMC to recognize a problem and send appropriate instructions to the train cab. In the case of remote lock gates, this is a cushion on the clearout time. The question is, how much more than the 120 seconds do we want to allow before a failure to detect a closed second gate generates an instruction for a critically close train to stop. The reactions in this case are all automatic, no human interpretation or actions are immediately required. Ten seconds is an appropriate allowance. This cushion time might also be customized to account for crossing peculiarities. For instance, where trains have come out of slower sections and are accelerating, longer time would allow for the increased braking time required as the train speeds up.

The actual braking time, added to the clearout time, the communication/adjustment time, and the standard eight seconds in-cab reaction time creates the clear time needed to unlock the gates. For a train approaching at 175 kph (110 mph), this would total to about three and one quarter minutes. If all goes well, a critically close train would actually pass by in less time than this, as it would not be slowing to a stop. The TMC calculations for a gate release request are as follows:

1. Using signals from the GPS/PTC system, locate the trains nearest the crossing approaching from each direction. Get the train type and speed. The following steps apply to each train (a closer train in one direction may be slower, the farther train in the other direction may be the critical case.)

2. Calculate the actual braking distance required for a full service stop, based on train type, speed, and an assumed brake derating (Ullman and Bing used a 25 percent derating, which may be high). This distance out from the crossing is the train decision point at which full service braking must begin to stop the train before it enters the crossing.

3. Multiply the train speed by the clearout, communication/adjustment, and reaction time allowances to find the distance the train will travel during crossing use.

4. Add this travel distance to the train decision point distance. If the train is at or closer than this distance, deny the gate release request.

5. If all trains are a safe distance away, permit the crossing; unlock the gates.
6. Monitor train position and speed, updating the train decision point. If the train reaches the decision point and both gates are not closed, signal cab for full service braking.

7. If clearout and communication times have passed without both gates being closed, approaching trains not yet at a critical point may be instructed to slow down before reaching their current-speed decision point. Based on crossing specific sight distance data, the computer will instruct the train to slow to a speed at which the crossing can be clearly seen eight seconds back from where the train decision point for the slower speed is. Automatic train control would greatly aid this process.

8. When both gates are closed, the TMC signals the train to continue at normal speed.

7.1.2 FOUR QUAD GATES—INTRUSION DETECTION / BASIC PUBLIC

Basic Public crossings should be treated with four quadrant gates. These are simply conventional railroad crossing warning gates, but arranged to block access to the crossing completely. They are dimensioned, painted, and have descent rates as specified for crossing gates in the MUTCD. Four quad gates discourage impatient drivers from slipping around by crossing over into opposing lanes. Intrusion detectors prevent the trapping of vehicles in a crossing.

Timing of the gates will differ from conventional gates in two aspects. The activation of the crossing gates will be based on train braking as discussed above. The closing of the second set of gates, those blocking the exits from the crossing, will be delayed and can be prevented if a vehicle is still in the crossing.

7.1.2.1 Activation Timing

Activation timing of four quad gates is based on the same motivation as for remote lock gates. Clearance is given to occupy the crossing to road users or trains, but not both at the same time. To allow road users in the crossing when a train has passed the point at which it could stop before the crossing would violate this principle. Train decision points are calculated for four quad gates in the same way. The question of clearance and communication/adjustment times is, "How early must we activate the gates to assure that the crossing is clear before the train reaches the decision point plus reaction distance?"

The current standard for crossing clear out time is 20 seconds. This has been questioned and is no longer accurate. (MacDonald, 1995). The timing of crossings is based on a California standard established in 1927. Much larger trucks operate now and, even at crawl speeds, they may require more than 20 seconds to clear a crossing. Quad crossings need intrusion detectors (discussed below), notifying trains to brake if necessary. Basing activation on train braking time gives a much larger safety margin than conventional timing. However, it is also critical to the success of a passenger rail system allowing it to operate on time, and not experience unanticipated slowing because a crossing is not cleared out in the anticipated time. Given this need, extending the clearout time to 25
seconds is reasonable. 49 CFR §§ 234.223 and 234.225 set forth minimum times set by law.

Adjustment/communication time for quad gates may be zero. As a normally open crossing, public or quasi-public in nature, and fully automatic in operation, extra time need only be built in to account for individual crossing peculiarities. As stated above, changing train speeds approaching the crossing will continually change the actual train decision point—adjustment time may allow for that.

A train approaching at 175 kph (110 mph) with a full service brake stop distance of about 1.5 km (1 mi) would cover that distance in 30 seconds at speed. The gates in this case would need to come down: 30 seconds travel time from the decision point, plus 25 seconds clearout time, plus 8 seconds reaction time—a total of 63 seconds before the train arrives at the crossing. The actual passing of the train would only take a few seconds. This lead-time before the train arrives is much longer than current practice. Three things contribute to its acceptability:

1. This treatment is for low volume roads;
2. It is enforced. The closed exit gates prevent impatient motorists from driving around gates and through the crossing;
3. Motorists are informed. Variable message signs (discussed below) let them understand that the long delay is not a malfunction.

The gate activation point, then, is the distance to the computed train decision point, plus the travel distance of the clearout time, reaction time, and any adjustment/communication time. The control sequence is:

1. When a train passes its gate activation point for a particular crossing, the gate activation sequence begins. The status display in the TMC shows this and subsequent changes.
2. The train speed is monitored, and the train decision point continually updated. If the train reaches its reaction point—eight seconds travel from the current-speed decision point, and all gates are not closed, a full service brake instruction is sent.
3. When the all-gate-closed signal reaches the TMC, the train is instructed to resume normal operations.
4. When the TMC detects (from GPS system) that the train has passed the crossing, the gates all open at the same time.

58
7.1.2.2 Intrusion Detection

The main objection to four quad gates has been the fear of trapping vehicles in the crossing. Intrusion detection removes this problem. Gate activation starts with lowering the gates that block the approach lanes. In normal circumstances, the gates that block the crossing exit lanes begin to lower only after the approach gates are fully down. If a vehicle is detected still in the crossing, the approach gates remain down but the exit gate for the occupied lane does not descend until the vehicle is clear of the crossing. Detector status is relayed to the TMC responsible for the safety and control of the crossing.

Video image processing, inductive loop, infrared, or sonar detectors could be used for intrusion detection. Inductive loops must be designed to operate reliably in the electrically active area around the tracks. Infrared and sonar detection would not have this problem, but have not been tried for train crossing detection. None of these technologies give more information than the presence or absence of intrusion. Video image processing has been used for intrusion detection for photo enforcement (Baroskewitz and Richards, 1995). It also has the advantage of placing cameras at the crossing, which could be used for human monitoring of crossing status. Such monitoring is not required as part of this treatment for Basic Public crossings, but would be necessary if train speeds are to be further upgraded. Using video at this stage can be thought of as an incremental approach toward the second stage of higher speed rail.

The intrusion detection system presents a possibility for abuse. Drivers may go around the approach gate, thus keeping the exit gates up still longer. If such behavior is observed, adding a median barrier may be a necessary counter-measure.

7.1.3 REMOTE LOCK BARRIER—PROTECTING THE TRAIN / HIGHER SPEED BASIC

Higher Speed-Basic crossings operate in the same way as Basic Minimum crossings, with a definite focus on protecting the train from any collision. Barriers take the place of gates. The Action Plan identifies 175 kph (110 mph) as the speed above which a collision is likely to cause a derailment. We have not been able to locate any study upon which this is based. All of our treatments for HSR crossings are based on avoiding any collisions. The treatments described in the previous sections are based on excellent information and moderate enforcement. For speeds above 175 kph (110 mph), additional enforcement prevents accidental or willful recklessness from endangering the train at crossings.

A barrier, in this case, is just a type of gate designed to contain a crash of given energy within a known deflection. In other words, if a vehicle hits it, it will bend but not break. For most private crossings, a relatively simple cable-reinforced gate is adequate. The gate contains one or more lengths of aircraft arresting cable—the type of cable used to stop jets when they land on aircraft carriers. It is hung on a solid anchor and when closed, locks to another solid anchor. The arrangement is such that the ends of the cable are locked to the solid anchors on each side when the barrier is closed. Such gates do have some give when struck, but they cannot be considered
friendly. Barrier design needs to stop the vehicle, neither letting it cut under or jump over. The width of the barrier would depend on the needs of the particular crossing owner—some agricultural implements may require a 24 foot clear opening.

In some instances, a still more formidable barrier may be called for. See Section 5.6.8 above for descriptions of various barriers and Section 7.1.5 below for a decision criterion. Timing and operation are the same as for the remote lock gate.

7.1.4 AUTOMATIC BARRIER—VIDEO MONITORING / HIGHER SPEED PUBLIC

The highest treatment type for low volume roads combines barriers to protect train movement with an additional layer of checks against trapping vehicles. As with four quad gates, crossing status shows in the TMC. For these Higher Speed-Public crossings, a video image of the crossing also comes up at the TMC when the gate and barrier system is activated.

7.1.4.1 Barrier/Warning Gate Arrangement

At this level, with significant public-use volumes, barriers cannot be used as their own warning. The public is used to relatively flimsy gates at crossings, which they do drive through at times. Barriers themselves will need warning gates.

The distance out from the tracks depends on the type of barrier used. A highly rigid barrier, e.g. steel and concrete bollards, can stop a small truck with virtually no deflection. “Friendly” barriers, ones capable of decelerating a vehicle at only a few times the force of gravity, have much larger deflections, on the order of 20 m (66 ft). Crush-rated cable barriers as described above fall somewhere in between. The space available may be one important factor in choosing a barrier type. The other important question is “How much energy might hit the barrier?” How large a vehicle at what speed must be expected when planning adequate protection for the train? A useful approach would be to survey the traffic type and speed at each crossing. Estimates of vehicle mass would allow generating a set of energy levels on the approach to the crossing. The 80th percentile energy level could then be used to set the protection needed for the crossing.

Whatever type of barrier is selected, it will block the full width of the roadway. The warning gates before the barrier can be standard approach-lane only crossing gates. Signage must indicate the barrier as well as the tracks, which it is protecting.

7.1.4.2 Timing

Timing for the automatic barrier system is essentially the same as for four quad gates. The barriers fit into the pattern in the same place as the escape lane gates. At activation, the lights flash, the warning gates come down, and the intrusion detection system waits for the crossing to clear. Once clear, the barriers are deployed. This allows the all-gates-closed signal to be activated, which in turn allows the train to proceed through the crossing.
The gate activation point is the distance to the computed train decision point, plus the travel distance of the clearout time, reaction time, and any adjustment/communication time. Clearout time will likely be longer. The crossing is stretched out over a greater distance, and some barrier types may take longer to deploy than a simple gate lowering. It must be calculated as part of each crossing design. Again, variable message signs reduce public anxiety over the long crossing closure lead-time.

7.1.4.3 Video Monitoring

In addition to intrusion detection, the crossing is watched by human operators at the TMC. Activation of the gate/barrier system brings up the crossing video image on a monitor at the TMC. Intrusions, which prevent clearout in the allowed time, will add visual and audible alert signals to the display. The same automatic systems as for four quad gates signal full service braking to the train if needed. The TMC is able to advise the train crew and override any automatic systems if it is clear that a false detection is the problem. The TMC also has direct input to variable message signs and audible message systems at the crossing. The video signal from the crossing could also be sent directly to the cab of approaching locomotives.

7.2 OTHER TREATMENT SYSTEM ELEMENTS

Many support elements are required for information, guidance, and control at crossings. Some of these are conventional, well defined, and familiar. Others are newer and still evolving.

7.2.1 STANDARD ELEMENTS

Standard crossing elements are based on statutes and the MUTCD and are already incorporated in crossings serving normal freight and passenger trains.

7.2.1.1 Stop Sign

Oregon Revised Statutes 824.224 requires stop signs at all private railroad crossings, unless such a stop sign would itself create a greater safety hazard. Stop signs are still appropriate for Basic Minimum and Higher Speed-Basic treatments. A closed gate is a cause to stop. At crossings where Basic Public and Higher Speed-Public treatments are used, stop signs are not appropriate.
7.3.1.2 Advance Warning Sign

Advance warning signs are the traditional yellow round warning signs with a black X and two R's. An advance warning sign specifically for HSR crossings is currently under consideration by MUTCD. Advance warning signs are appropriate for all public crossings. Private crossings not visible from an adequate distance also require advance warning signs.

7.3.1.3 Pavement Markings

Standard pavement markings as set forth in the MUTCD are appropriate for all treatment categories wherever the approach is paved.

7.3.1.4 Flashing Lights

Flashing lights are required for Basic Public and Higher Speed-Public treatments. Their function and design are set forth in the MUTCD. Note that for Higher Speed-Public crossings, the flashing lights are part of the advance warning gate system. They are timed in respect to these gates and placed with them, not at the barrier itself.

7.2.2 ADDITIONAL ELEMENTS

High-speed rail is new to this country. These crossing treatments for HSR are also new. Information systems at the crossing are one critical part of educating motorists and helping them use the crossings easily, comfortably, and safely. Special circumstances may also call for particular design elements for control.

7.2.2.1 TMC Contact Signs

Every remaining at-grade crossing should be clearly identified with a unique crossing number. With this identifier, instructions and the number to call the TMC to report any problems should be included. At crossings requiring telephone clearance, instructions and the TMC automatic telephone system number should be posted.

7.2.2.2 Variable Message Sign

Variable message signs have proven useful in reducing anxiety about long waits. They are also used to direct traffic to alternate routes and to advise people in emergencies. All of these applications potentially come into play at HSR crossings. A default crossing alert is normally displayed. At activation, the sign can direct all to stay clear of the tracks and advise motorists of when the train will pass. The sign could rotate through a set of messages: when the train will arrive, "Train Cannot Stop Before Crossing!" and direction to the nearest grade-separated crossing. The VMS would always be available to the TMC personnel for other messages such as "Help is on the way."

62
7.2.2.3 Audible Message

At pedestrian crossings, an audible message could be given through speakers placed at the crossing approaches. In residential areas the cost associated with the possible added annoyance for neighbors, constantly hearing the same message must be considered. For motorists a leaky coaxial cable buried by the roadside could transmit a signal to our radios. The frequency would be indicated on informational signs at the crossing. The information would be essentially the same as that given by a variable message sign.

7.2.2.4 Gates/Barriers as Fence Elements

Particular fields may be fenced to contain livestock or sections of the HSR corridor may be fenced to reduce trespassing. Where the line is fenced, crossings must not present gaps in the protection. Cattle guards before the crossing may serve in some instances. Gates and barriers for private crossings are available in designs appropriate for containing livestock and/or excluding pedestrians. Public crossings, normally left open, present a different problem. One solution would be to use a gate/barrier that swings horizontally to block either the track or the road. This has been a standard crossing gate type in other countries. Normally the gate would cross the tracks from one fence-line to the other, parallel to the roadway. At activation, this part of the system would swing around, probably with the end rolling on a quarter circle track, to block the road and allow passage of the train. Barriers of this design are in use on the approaches to movable bridges.

7.2.2.5 Pedestrian Gates

Pedestrian treatments lie beyond the scope of this report. Pedestrians must be considered at is-town street railroad crossings as well as at specifically pedestrian crossings. The requirements of the ADA for railroad crossings are not clear. Creating an at-grade crossing that can safely accommodate wheelchair cross traffic and the dynamic envelope of higher speed train traffic may be difficult or impossible. Wheelchairs need narrow gaps by the rails, but train wheels’ flanges do not stay tight up against the rail under the severe dynamic loading of high-speed operation. Yet pedestrians, walking or in a wheelchair, regularly ignore over and underpasses provided for them. The perceived safety value of the grade separation doesn’t balance the perceived effort of going up and over. Short of grade separated pedestrian crossings, some form of warning gate blocking a sidewalk may be called for. In areas where the line is fully fenced, an equivalent fence gate may be needed. This area needs more research.

7.2.2.6 Secure Crossing Materials

Higher speed trains create strong aerodynamic forces. All ties, other lumber, and/or rubber mats used as crossing materials must be firmly secured to the roadbed. No loose gravel may be present above the level of the rails.
7.2.2.7 Crossing Operations for Freight Trains

Crossing will use the same standards, logic, and timing for all trains—HSR and freight trains. That is, crossing authorization will be based on the train stopping distance for the particular train of whatever type. This will lead to greater delays on the low volume roads so treated. The cost of the delay is more than offset by the benefit of consistency and building clear driver expectancy. In thinking about longer delays, it may be worth remembering that drivers routinely accept 90 second waits at complex signalized intersections.
8.0 PRELIMINARY BENEFIT/COST INFORMATION

A full benefit/cost ratio (BCR) analysis for any element of a transportation system is quite complex. At best, benefit/cost analyses can only make explicit the assumptions and values which would lead to particular decisions. An analysis of the multitude of scenarios, which flow from the implementation of the technologies suggested above, is beyond the scope of this report. The information presented in this section, therefore, is intended only to give a feeling for the scale and for the essential factors.

8.1 BENEFIT/COST RATIO LIMITATIONS

The core of a BCR analysis for crossing improvements contains terms for the capital and operations costs of improvements balanced against anticipated reductions in deaths, injuries, and property damage. Changes in delay, costs of disrupted operations, and social disruptions are also important, though difficult to measure or predict. BCRs often present difficulties including:

- Future costs and the future value of money must be guessed at;
- Loss of life and limb can be assigned a great range of values (at least an order of magnitude);
- The public response to low-probability high-risk events, such as train accidents, is different from the response to mere common lesser risks presenting equal total exposure.

A detailed BCR analysis for high-speed rail in Oregon faces additional difficulties:

- Models for crossing accident prediction incorporate terms for accident history. Such terms depend on conditions being stable through the accident history period and into the future. Such an assumption is unjustified for the Willamette Valley which is undergoing tremendous population growth;
- On the SP mainline being considered for higher speed operations, almost all public crossings already have gates and lights. Accidents are rare, and so very few data are available to assess severity;
- The data needed to use prediction formulas on private crossings has not been collected.

8.2 ACCIDENT FREQUENCY, SEVERITY, AND COSTS

Research done for VOLPE presents estimates of accidents and the potential reductions based on crossing improvements (Ullman & Bing, 1995). This analysis is based on data from mixed freight and passenger rail lines from the FRA Railroad Accident/Incident Reporting System (RAIRS) for the years 1986 to mid-1993. For a hypothetical 500 km (310 mile) corridor with 24 one-way trips/day on weekdays and 20 one-way trips/day on weekends and holidays, the VOLPE study projects 13.0 grade crossing collisions per year resulting in 5.0 injuries and 1.3 fatalities.
Ullman and Bing point to the lack of data available to ascertain the increased severity of accidents with increased train speed. As a very rough starting point, they suggest that severity can be thought of as proportional to the energy dissipated in an accident—roughly proportional to the square of the speed. Using this approach, they estimate reductions in the number of accidents that would be required at various speeds to maintain the same overall casualties (see Table 8.1).

<table>
<thead>
<tr>
<th>Speed, kph (mph)</th>
<th>Reduction in accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>145 (90)</td>
<td>25%</td>
</tr>
<tr>
<td>175 (110)</td>
<td>48%</td>
</tr>
<tr>
<td>200 (125)</td>
<td>60%</td>
</tr>
<tr>
<td>240 (150)</td>
<td>72%</td>
</tr>
</tbody>
</table>

Considering offsetting factors, they suggest "overall, a reduction in accident frequency of the order of 20–40% may be desirable for speeds of 175 kph, and 50–70% for speeds exceeding 200 kph." (Ullman & Bing, 1995). One difficulty with assigning increased severity in proportion to the square of the speed is that it may not adequately reflect the sharp increase in severity when train speeds are high enough to expect derailment following from a grade crossing collision.

The FRA has standard values that it applies to compare the benefits of avoiding casualties among different regulatory scenarios. "$20,000 is the value used by FRA to represent the amount society would be willing to pay to avoid an average injury to a railroad employee. FRA uses $2.6 million as the amount society is willing to pay to avoid a fatality to a railroad employee." (Railroad Communications, 1994). One way of thinking about these numbers is that every fatality prevented pays for the cost of a grade separation, if one uses these values for the BCR.

Cost figures based on casualties alone do not include property damage, loss of lading, wreck clearance, or environmental cleanup. In lower speed collisions involving the destruction of a motor vehicle with relatively minor damage to train equipment, lading, and operations, casualty costs likely would be most important and be limited to the occupants of the motor vehicle. At higher speeds, derailment becomes much more likely with a resulting sharp increase in casualty, property and incidental damages.
8.3 BENEFIT, IN REDUCED CASUALTIES, OF REDUCED ACCIDENTS

Taking the freight/passenger corridor accident figures from Ullman and Bing and the casualty costs used by the FRA, one can calculate a current acceptable accident cost per km per year of $6,960:

\[
[(5.0 \text{ injuries/yr} \times 20,000) + (1.3 \text{ fatalities/yr} \times 12,600)] / 500 \text{km} = 6,960 \text{$/km/yr}.
\]

(8.1)

Over a period of 20 years, this yields acceptable accident costs of just under $140,000 per km. This figure is based only on the costs of casualties from grade crossing accidents. Calculating acceptable costs per length of track is only one approach; an accident cost per passenger per kilometer could also be used.

To maintain a positive BCR, spending for crossing safety should be in proportion to the resulting reduction in accident severity. Using the figure above as a starting place, an accident reduction of 30% would have a benefit of or justify expending about $42,000 per km for 20 yr. improvements. An accident reduction of 50% would justify $70,000.

In a typical rural section of the Willamette Valley 1010 HSR corridor in Oregon where trains would be expected to run at their highest speeds, crossings average one per 1.5 km. Continuing with the numbers above, accident reductions of 50% would justify spending an average of $105,000 per crossing, again based only on costs of casualties and with the assumptions given above.

Detailed crossing information is available for the public on low-volume crossings located along the Oregon HSR corridor. Oregon’s accident prediction formula yields an average predicted accident rate of 0.20 per five years for these crossings. Assuming the ratio of injuries to fatalities and the costs to society given above, the average accident cost comes to about $275,000 if all accidents resulted in only one injury or fatality. Over 20 years, the 0.8 predicted accidents per crossing would represent $220,000 per crossing. An accident reduction of 50% would justify spending of $110,000 per crossing, well in line with the numbers above.

8.4 COSTS AND ACCIDENT REDUCTION POTENTIAL OF TREATMENTS

Costs for various crossing treatments are among the many economic considerations presented in the TRB Special Report on high speed surface transportation options (In Pursuit, 1991). The following figures are used:

- Full Grade Separation $1,903,200
- Crossing Elimination $ 52,000
- Four Quadrant Warning Gates $ 81,120

67
Beyond warning systems, vehicle-arresting barriers are needed to protect trains operating at higher speeds. Costs to block a two-lane road in both directions vary greatly:

- Manually operated crash-rated cable beam gates costs about $15,000 plus installation for two 25 foot gates;
- Automatic very heavy duty barricades run about $70–$100,000 plus installation;
- Dragnet “friendly” system are about $150,000 (Mobile Barrier, 1994).

These costs do not include the need for a conventional warning systems prior to the arresting barrier.

Stalled vehicle detectors are estimated to reduce accidents by 19 percent, while four quadrant gates would reduce accidents by 57 percent (Ullman and Bing, 1995).

Crossing elimination and grade separation are ways of virtually eliminating crossing accidents. Crossing elimination is inexpensive. Its benefits outweigh the cost associated with accident reduction. The same cannot be said for full grade separations. Additional grade separations along a corridor must be partially justified by eliminating delay costs of at-grade crossings.

Accident reductions attributable to traveler information systems, in-cab crossing video, vehicle arresting barriers, and combinations of these and other technologies can only be speculated on with present experience. Nonetheless, it appears likely that the costs and benefits of ITS technologies to improve crossing safety will be of the same order of magnitude.
9.0 PRELIMINARY SPECIFICATIONS

Appendix B "Treatment Guidelines, Components, and Options" provides detailed preliminary specifications for each of the four primary treatments:

- Remote Lock Gate (Basic Minimum)
- Four Quad Gate (Basic Public)
- Remote Lock Harrier (Higher-speed Basic)
- Automatic Barrier (Higher-speed Public)

The section for each of the treatments consists of two parts:

1. A list of components and subsystems required to install the treatment, and
2. A flow-chart showing the control logic governing crossing authorization for that treatment.

The list of components can be thought of as a checklist for an agency writing actual specifications. Each treatment is broken out into its subsystems and parts. These are listed with brief, functional descriptions. As an example: communications links are listed as needing to transmit particular information between particular subsystems, but the listing never goes down to the level of specifying radio frequencies, transmission rates, etc.

The flow charts graphically represent the logic presented in various sections of Chapter 7 as treatments were described. For normally closed gates, the flow charts begin with a call for a change in crossing authorization, i.e. authority to open the gate for crossing vehicles. For normally open (public crossing) gates, the flow charts begin in a monitoring loop, watching approaching trains. When a train reaches a gate activation point, the system registers that as a call for change in crossing authorization. The gates must close to change the authority allowing the train to proceed up to and through the crossing. In each case, the process ends with a return to the previous, default authorization. In some cases, a safety-monitoring loop is shown as a process operating parallel to part of the main sequence of the flow chart.

Following the separate sections for each treatment, a final section of Appendix B lists some alternative technologies for major subsystems of the treatments. Each option is briefly described and the pro's and con's are given.
10.0 SURVEY OF PRIVATE CROSSINGS

Appendix C "Private At-Grade Crossings: Eugene to Oregon City" presents summarized results of field inspections conducted by engineering undergraduate students. The primary survey goals were to establish what land uses are served by each crossing and to build a file of sketches that could suggest possibilities for alternate access and/or any special problems and opportunities associated with applying the recommended basic treatment.

The student data collectors met twice with members of the project team before going into the field. They were given an overview of HSR and grade crossing operations. They learned the use of the data collection form. Team members stressed safety and taking copious notes. The students worked in four groups of two and one group of three. They collected the data mostly on weekends, all during spring term 1996.

After returning from the field, the students entered their data as tab-delimited field files. These are the basis for the summary materials in the appendix. Not included in this report, but on file, are all the original notes and the sketches made of each crossing.
11.0 CONCLUSIONS AND RECOMMENDATIONS

Many jurisdictions favor an incremental approach to implementing high-speed rail. Dramatic improvements in highway-rail crossing safety are required to operate trains in the incremental speed range of 130–200 kph (80 – 125 mph), while maintaining current overall safety of operations. Current and emerging ITS technologies can provide these needed safety improvements. While this research has been driven by the needs of high-speed rail, crossing safety is already a major concern for conventional rail operations. The systems identified for improving HSR low-volume crossing safety have the potential for much wider applications.

The potential of some technologies may be almost immediately realized with presently available equipment. Other systems are in development or depend on large-scale capital improvements and coordination of the approach among railroads for greater effect. As examples: four quadrant gates with intrusion detection to keep open exit gates until all vehicles are clear exist in Sweden; video systems to monitor crossings are used in Britain; and combining video monitoring and video image processing intrusion detection for crossings is in the proving stage in this country. Coded track circuits currently can provide multiple levels of responses to conditions ahead on the track, including crossing status. Crossing control based on more sophisticated, GPS based train information and control is approaching prototype testing. Tying together train and crossing status with an in-vehicle GPS/GIS traveler information system will depend on such systems finding greater development and wider general use first.

Assignment to one of the four categories of low volume crossings provides a criterion for minimum primary crossing treatment assignment:

1. Basic and Higher Speed Minimum
 - Private crossings and very low volume public crossings.
 - Require remotely locked/unlocked gates, controlled through a TMC.
 - Gates are normally closed, and are opened only on request.
 - At higher train speeds, the gates must be crash-rated vehicle arresting barriers.

2. Basic and Higher Speed Public
 - Public crossings, except those with lowest volume
 - Require normally open four quad gates
 - At higher train speeds, the gates must be crash-rated vehicle arresting barriers.
In the Oregon HSR corridor, from Eugene to Portland, 92 low volume public and private crossings require treatment to meet the greater demands of high speed train operations. Eight of these are pedestrian only crossings; the other 84 are vehicle crossings which therefore pose a potential derailment threat to high-speed train sets. The cost to society of one fatality is approximately the cost of a simple grade separated crossing. Under current operations, projections for accidents on low volume public crossings are slightly less than one per 20 years. Information is not available to predict private crossing accidents.

Further research is now needed to gather data that are more complete on private crossings and to develop and conduct field tests and pilot programs for HSR-low volume road crossing improvements. Potential sites for field tests need to be identified. Beyond isolated field tests, the low frequency of crossing incidents and the importance of driver expectancy to behavior may justify more extensive, multi-crossing pilot programs along significant lengths of a corridor.

Parallel to this research, four other areas of research are needed. One specific area is maintenance. Low volume gravel-surfaced roads present particular concerns for the integrity and function of both the track and crossing safety devices. If the railway must be fully fenced off, crossing controls must also function as part of the fencing system. Intrusions by pedestrians, by livestock or pets, and by wildlife all present their own sets of problems. The whole question of ADA appropriate pedestrian treatments also needs to be studied. Finally, the study of the likely derailment behavior of high-speed train sets may give more precise guidance to the need for higher type treatments at grade crossings. Another area is the question of fencing's effect and potential to strongly influence gate and/or barrier design.
12.0 REFERENCES

Harrison, J. “High-Speed Ground Transportation is Coming to America—Slowly” (1995). Journal of Transportation Engineering, 121(2), 117123 ISSN 0733-947X

Hemutely, B. “Private Crossing Types” (1994). Oregon Department of Transportation internal information.

Hümmere, Klaus H. “Operation, Control and Signaling System for High-Speed Lines” (1991) TRB 1314, 114–121, TRB

75

MacDonald, Robert F. "Engineering and Environment Review of Highway-Railroad Grade Crossings Equipped with Automatic Warning Devices" (1995). Unpublished, included in private correspondence. Mr. MacDonald submitted this report to the California PUC as comment on updating crossing standards.

"Mobile Barrier Information" (1994). VNTSC (Volpe), Notebook collection of manufacturers' information, articles.

Poltorak, David A. and Bailey, John H. "Railroad Operation Using the Advanced Train Control System" (1991) TRR #1314, TRB, 96--101

Railroad Communications and Train Control: Report to Congress. (1994). FRA

Yumoto, N. "Traffic Control and Traveler Information Systems in Japan" TTI 95, 106--115
APPENDIX A

GLOSSARY OF TRANSPORTATION ACRONYMS
Glossary of Transportation Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Association of American Railroads</td>
</tr>
<tr>
<td>ABS</td>
<td>Automatic Block Signals</td>
</tr>
<tr>
<td>ACS</td>
<td>Automatic Cab Signals</td>
</tr>
<tr>
<td>AHS</td>
<td>Automated Horn System</td>
</tr>
<tr>
<td>ARES</td>
<td>Advanced Railroad Electronics System</td>
</tr>
<tr>
<td>ASC</td>
<td>Automatic Speed Control</td>
</tr>
<tr>
<td>ATC</td>
<td>Automatic Train Control</td>
</tr>
<tr>
<td>ATCS</td>
<td>Advanced Train Control System</td>
</tr>
<tr>
<td>ATS</td>
<td>Automatic Train Stop</td>
</tr>
<tr>
<td>AVL</td>
<td>Automatic Vehicle Location</td>
</tr>
<tr>
<td>CACS</td>
<td>Comprehensive Automobile Control System</td>
</tr>
<tr>
<td>CATC</td>
<td>Continuous Automatic Train Control</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed-Circuit Television</td>
</tr>
<tr>
<td>CTC</td>
<td>Centralized Traffic Control</td>
</tr>
<tr>
<td>CWT</td>
<td>Constant Warning Time</td>
</tr>
<tr>
<td>DB</td>
<td>Deutsche Bahn (German National Railway)</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EBO</td>
<td>Eisenbahn Bau- und Betriebsordnung (German Railroad regulations)</td>
</tr>
<tr>
<td>EVA</td>
<td>Estación de Visión Artificial (artificial vision station)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FRA</td>
<td>Federal Railroad Administration</td>
</tr>
<tr>
<td>FSB</td>
<td>Full Service Brake</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HSR</td>
<td>High Speed Rail</td>
</tr>
<tr>
<td>ICE</td>
<td>Intercity-Express</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation System</td>
</tr>
<tr>
<td>MAS</td>
<td>Maximum Authorized Speed</td>
</tr>
<tr>
<td>MDT</td>
<td>Mobile Data Terminal</td>
</tr>
<tr>
<td>MUTCD</td>
<td>Manual on Uniform Traffic Control Devices</td>
</tr>
<tr>
<td>NEC</td>
<td>Northeast Corridor</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway and Transportation Safety Administration</td>
</tr>
<tr>
<td>NUTCD</td>
<td>National Committee on Uniform Traffic Control Devices</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive Train Control</td>
</tr>
<tr>
<td>RTS</td>
<td>Positive Train Separation</td>
</tr>
<tr>
<td>RAC</td>
<td>Railway Association of Canada</td>
</tr>
<tr>
<td>RAIRS</td>
<td>Railroad Accident/Incident Reporting System</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SAPRR</td>
<td>Société de Autoroute Paris-Rhin-Rhône</td>
</tr>
<tr>
<td>TCS</td>
<td>Traffic Control System</td>
</tr>
<tr>
<td>TIS</td>
<td>Traveler Information System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>TMC</td>
<td>Traffic Management Center</td>
</tr>
<tr>
<td>USDOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>VIP</td>
<td>Video Image Processing</td>
</tr>
<tr>
<td>VNTSC</td>
<td>John A Volpe National Transportation Systems Center</td>
</tr>
<tr>
<td>VPAS</td>
<td>Vehicle Proximity Alerting System</td>
</tr>
<tr>
<td>WADS</td>
<td>Wide Area Detection Systems</td>
</tr>
</tbody>
</table>
APPENDIX B

TREATMENT GUIDELINES, COMPONENTS, AND OPTIONS
TREATMENT GUIDELINES, COMPONENTS, AND OPTIONS

B.1 REMOTE LOCK GATE (BASIC MINIMUM)

COMPONENTS

- Gates to block the travel way on both sides of the tracks.
- Anchor posts to which gate locks are closed.
- Lock mechanisms in two parts, one as part of the gate, other as part of the anchor:
 - Passive part—bar, eye, plate or other fixed feature that can be secured or be part of the active part of the lock.
 - Active part—movable bar, hook, plate or device that secures or releases the passive part.
- Drive mechanism: electric magnet, motor, or other service mechanism that moves the active part of the lock.
- Electrical service, either from commercial power lines or from RR electrical systems.
- Lock Control/Communications:
 - Receives and responds to remote commands to unlock the gate;
 - Automatically locks the gate when reclosed (may be direct mechanical system);
 - Recognizes and transmits gate status—open or closed.
- At crossing signage (combined or separate signs):
 - Stop signs (required, ORS 824.224)
 - Crossing ID
 - Instructions (“Private crossing. To unlock gate, or report a problem, call ____-____. In an emergency call 911.”)
- Other warnings as required by the MUTCD and circumstances (e.g., pavement markings).
- Train Control/Communication
 - Reports train location and velocity (and braking characteristics) of trains approaching a crossing.
 - Receives and responds to remote commands:
 - To apply full service brake (FSB)
 - To proceed at reduced speeds or
 - To resume normal speed operation
- Crossing Authorization Decision System
 - All or parts of logic located solely or redundantly at a TMC, at crossing, and/or on trains
 - Calculates safe stopping distance (SSD) decision point for trains approaching crossing (this includes reaction time).
 - Receives gate-unlock requests and sends unlock command if safe, based on:
 - Train SSD
 - Clearout and communication/adjustment times
- Commands FSB when train reaches decision point and gates not locked or closed.
- Calculates and commands braking to bring a train to a reduced speed for a safe visual approach if the gates are not locked or closed when the train has reached the decision point, when gate clearout and communications/adjustment times have elapsed.
- Commands trains to return to normal operations when gates are locked and closed.

* An alternate arrangement would eliminate the anchor post: the locking functions would all be in the single support-pivot for the gate, allowing it to lock in a closed position.
User requests Gate Unlock

Query GPS for location, velocity, and train type

Calculate required train distance for safe crossing

Is distance of train from crossing > required safe crossing distance?

no

Notify user wait for train to pass

yes

Notify user Unlock gates

User opens gates, crosses, closes gates

Gates relock automatically

Crossing completed

safety monitoring loop

Are gates unlocked?

no return

Update train info & calc.

Is train < than SSD from xing?

no

Has clearout time passed?

no

yes

Signal train brake to safe visual control approach

FSB Full Service Brake

Figure B.1 Flow Chart—Remote Lock Gate (Basic Minimum)
B.2 FOUR QUAD GATES (BASIC PUBLIC)

COMPONENTS

- Four standard RR crossing warning gates:
 - Two block approach lanes, as with conventional crossing protection
 - Two block lanes exiting the crossing
 - The opposing pairs of approach and exit gates are aligned to completely block vehicle access to the crossing when all four gates are closed.

- Intrusion Detection
 - Detects presence of motorcycles, tricycles, passenger cars, or larger vehicles in the crossing.
 - Distinguishes which exit gate serves the detected vehicle.

- Gate Control/Communication
 - Receives and responds to command to begin gate closing.
 - After closing approach gates, closes both exit gates only if no intrusion is detected.
 - Keeps open the exit gate serving any vehicle detected in crossing.
 - Transmits crossing status to an authorization system: all gates open, intrusion detected, or all gates closed.

- Standard crossbucks, flashing lights, pavement markings...according to MUTCD.

- Train Control/Communication (Same as Basic Minimum)
 - Reports train location and velocity (and braking characteristics) of trains approaching a crossing.
 - Receives and responds to remote commands:
 - To apply full service brake (FSB)
 - To proceed at reduced speed or
 - To resume normal speed operation

- Crossing Authorization Decision System
 - All or parts of logic located solely or redundantly at a TMC, at a crossing, and/or on a train.
 - Calculates gate activation points for approaching trains, based on:
 - Safe stopping distance (SSD) decision points for trains, including reaction time
 - Clearout and communication/adjustment times for the crossing
 - Sends gate close command when a train reaches the activation point.
 - Commands FSB when a train reaches the SSD decision point and all four gates not closed.
 - Commands train to return to normal operations when all four gates closed.
Figure B.2 Flow Chart—Four Quad Gates (Basic Public)
B.3 REMOTE LOCK BARRIER (HIGHER-SPEED BASIC) COMPONENTS

- Crash-rated barrier systems to block the travel way on both sides of the tracks
 - Barrier-type and rating should be based on type of vehicles expected, approach geometry, and any need to fence livestock or discourage trespassing.
- Lock mechanisms are in two parts, arranged appropriately for the barrier type employed.
 - Passive part—bar, eye, plate or other fixed feature that can be secured or be an active part of the lock.
 - Active part—movable bar, hook, plate or device that secures or releases the passive part.
- Drive mechanism: electric magnet, motor, or other service mechanism which moves the active part of lock.
- Electrical service, either from commercial power lines or from RR electrical system.
- Lock Control/Communications:
 - Receives and responds to remote command to unlock the barrier;
 - Automatically locks the barrier when reclosed (may be the direct mechanical system);
 - Recognizes and transmits barrier status—open or closed.
- At crossing signage (combined or separate signs):
 - Stop signs (required, ORS 824.224)
 - Crossing ID
 - Instructions ("Private crossing. To unlock barrier, or report a problem, call XXX-XXXX. In an emergency call 911.")
- Other warnings as required by the MUTCD and circumstances (e.g. pavement markings).
- Train Control/Communciation
 - Reports train location and velocity (and braking charachteristics) of trains approaching a crossing.
 - Receives and responds to remote commands:
 - To apply full service brake (FSB)
 - To proceed at reduced speed
 - To resume normal speed operation
- Crossing Authorization Decision System
 - All or parts of logic located solely or redundantly at a TMC, at crossing, and/or on a train.
 - Calculates safe stopping distance (SSD) decision points for trains approaching a crossing, including reaction time.
 - Receives barrier-unlock requests and sends the unlock command if it is safe, based on:
 - Train SSD
 - Clearout and communication/adjustment times
 - Commands FSB when train reaches the decision point and barriers are not locked or closed.
 - Calculates and commands braking to bring a train to a reduced and safe visual approach speed if the barriers are not locked or closed when the train has
reached the decision point, and barrier clearout and communications/adjustment times have elapsed.
- Commands the train to return to normal operations when the barriers are locked and closed.

• Two Variable Message Signs.
 - Facing either side of tracks.
 - Automatic default messages.
 - Updating train information when the gates are down.
 - Override of defaults by direct link from TMC.
Figure B.3 Flow Chart—Remote Lock Barrier (Higher-Speed Basic)
B.4 AUTOMATIC BARRIER (HIGHER-SPEED PUBLIC) COMPONENTS

- Two standard RR crossing warning gates:
 - Block approach lanes with conventional crossing protection, but in this case, with warning of barriers ahead.
- Crash-rated barrier systems to block travel way on both sides of the tracks
 - Barrier type and rating based on type of vehicles expected and approach geometry.
- Intrusion Detection
 - Detects presence of motorcycles, tricycles, passenger cars, or larger vehicles in the crossing.
 - Distinguishes which exit lane serves the detected vehicle.
- Gate Control/Communication
 - Receives and responds to commands to begin crossing closing.
 - After closing approach gates, closes barriers on both sides only if no intrusion is detected.
 - Keeps open the exit lane serving any vehicle detected in crossing.
 - Transmits crossing status to the authorization system: all gates open, intrusion detected, or all gates and barriers closed.
- Standard crosstbucks, flashing lights, pavement markings are according to MUTCD.
- Train Control/Communication (Same as Basic Minimum)
 - Reports train location and velocity (and braking characteristics) of trains approaching the crossing.
 - Receives and responds to remote commands:
 - To apply full service brake (FSB).
 - To proceed at reduced speed or
 - To resume normal speed operations.
- Crossing Authorization Decision System
 - All or parts of logic are located solely or redundantly at a TMC, at a crossing, and/or on the train.
 - Calculates gate activation points for approaching trains, based on:
 - Safe stopping distance (SSD) decision point for trains, including reaction time.
 - Clearout and communication/adjustment times for the crossing.
 - Sends gate close command when train reaches the activation point.
 - Commands FSB when the train reaches SSD decision point and all gates and barriers are not closed.
 - Commands train to return to normal operations when all gates and barriers are closed.
- Two Variable Message Signs
 - Facing either side of tracks.
 - Automatic default messages.
 - Updating train information when gates are down.
 - Override of defaults by direct link from TMC.

B - 9
- Video Monitoring System.
- Camera(s) mounted to show entire area inside gates without need to pan.
- Video signal available to TMC at anytime.
- Video signal automatically sent to TMC whenever gate is activated.
System in monitoring loop

Query GPS for location, velocity, and train type

Calculate required gate activation point

Is train at or past gate activation point?
 yes
 Close approach gates
 Query intrusion detection

Is crossing clear?
 yes
 Close exit gates
 Open gates when train passed
 Return to monitoring loop

Is train at or past SSD?
 yes
 FSB
 Full Service Brake
 no

Figure B.4 Flow Chart—Automatic Barrier (Higher-Speed Public)
B.5 SYSTEM COMPONENT OPTIONS

In many instances, different systems or components can provide substantially the same functions. The following subsections list some of these options with advantages and disadvantages.

TRAIN CONTROL/COMMUNICATIONS

This report has often presumed the implementation of GPS/PTC in the Willamette Valley. Its level of development and functionality make it a preferred option. Other systems could provide the train control and operation information needed for the crossing controls described in this report.

GPS/PTS

On-train GPS system constantly monitors train position and velocity. It then passes this information, along with train information through data radio link.

Advantages
- Continuously updates information
- No limitation to information from trains in particular places
- Standard emerging for freight, not just HSR
- Adoption of the GPS/PTC for all train operations may reduce congestion.

Disadvantages
- Still in testing
- Would need to be adopted by all railroads on the corridor

TRAIN TRANSPONDER/CRITICAL CHECKPOINTS (SWEDEN)

Transponders on the train communicate with trackside sensors placed at the critical decision points for crossing gate authorizations.

Advantages
- Technology already in use for crossing control
- Can be adopted piecemeal, independent of railroad adoption of a new train control standard.

Disadvantages
- Does not report actual speed, only distinguishes between HSR and freight
- Non-continuous fixed train detection/decision points
DOPPLER RADAR TRAIN DETECTION

Trackside Doppler radar placed to provide train position and velocity over a critical range as trains approach and pass decision points for crossing authorization.

Advantages
• Continuously updates information in the range covered.
• Can be adopted piecemeal, independent of the railroad adopting a new train control standard.

Disadvantages
• New application of the technology.
• Will require many new trackside installations.

INTRUSION DETECTION

Intrusion detection is required for Basic Public and Higher-Speed Public crossings. Before a train can be given authority to proceed through the crossing, all gates must be down and/or barriers in place without any vehicles trapped. Intrusion detection systems allow exit paths to remain open until the crossing is clear.

INDUCTIVE LOOP

In roadbeds, wires are placed to detect changes in electromagnetic fields when a vehicle is present over the wire loop.

Advantages
• Familiar technology.
• Technology already in use for crossing controls.

Disadvantages
• Discrete limited detection zones.
• Railroad is electrically active environment.
• Pone to mechanical failure (broken loop wires).

VIDEO LOOP EMULATION

Video image processing detects vehicles in designated “virtual loop” zones.

Advantages
• No wires in roadbed.
• Can provide video signal feed for human monitors.
Disadvantages
- Discrete, limited detection zones (though easily reprogrammed).
- Affects of weather (e.g. fog, snow) are unknown.

VIDEO VEHICLE TRACKING

Video image processing identifies individual vehicles and tracks them as they move through the crossing.

Advantages
- Vehicle position/velocity information provides the option for more sophisticated gate control logic.
- Vehicle-type identification.
- Can provide video signal feed for human monitors.

Disadvantages
- Never technology.
- Affects of weather (e.g. fog, snow) are unknown.

RADAR

Doppler radar used to monitor vehicles in crossings.

Advantages
- Not sensitive to weather.

Disadvantages
- May not have a fine enough resolution.

INFRARED, SONAR, AND PRESSURE PLATES

These three technologies are being tested and are seeing wider use for monitoring pedestrian presence and movement at and through intersections. If a single system could be adapted to provide both vehicle and pedestrian monitoring, this one may be particularly useful at some small town crossings.

HUMAN MONITOR

A human monitor, either physically present or using video images, observes crossings and provides confirmation that no one is trapped therefore allowing the exit gates to be closed.

Advantages
- The human eye/brain is unsurpassed for sophisticated visual detection.
- Humans can be flexible and intelligent in their responses to new situations.
Disadvantages

- Humans get tired.
- Labor is expensive, but monitoring multiple crossings might result in overloads if trains happened to be approaching several crossings at once.
APPENDIX C

PRIVATE AT-GRADE CROSSINGS: EUGENE TO OREGON CITY
PRIVATE AT-GRADE CROSSINGS:
EUGENE TO OREGON CITY

The following information is based on a field survey of private crossings conducted Spring Term 1996. All data were collected by engineering undergraduate students working in teams of two or three. Members of the project team instructed all student data collectors. However, no attempt has been made to verify the work of the students. Not all totals below will add up, often due to incomplete data.

The data set generated contains full or partial information for 68 crossings. Eleven of these are pedestrian crossings, the remaining 57 are private vehicle crossings. The pedestrian information may be considered in further research. The following tables and graphs only summarize information on private vehicle crossings.

Land Use
- Field access 23
- Residence 15
- Farm access 3
- Industrial 7
- Retail 2
- School access 1 (Chemawa)

Crossing Material
- Wood 36
- Paved 19

Condition of Crossing
- Good 36
- Poor 16

Is loose gravel present at the crossing?
- Yes 28
- No 24

Approach Surface
- Gravel 32
- Paved 12
- Dirt 7
Was the crossing square or skew?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Right angle</td>
<td>45</td>
</tr>
<tr>
<td>Skew</td>
<td>6</td>
</tr>
</tbody>
</table>

The students' estimates of sight distance only lifted up two crossings with two kilometers or more sight distance in both directions. These are, however, very tentative estimates based mostly on map work and many crossing do not have complete entries. The two crossings identified are both field access, near Turner and Gervais, at mile posts 707.4 and 731.1.

The distance separating crossings varied from 0.04 miles to 11.02 miles. Twenty-eight crossings are within one-third of a mile of another crossing. Another 11 are still less than one mile from another crossing.

![Histogram of Distances Between Adjacent Crossings](image)

Figure C.1 Histogram Of Distances Between Adjacent Crossings

C - 2
A moving average of distances between crossings (taken over six crossings) can be plotted against the crossing mileposts to show the trends of spacing. Sharp negative slopes indicate areas of denser crossings.

Figure C.2 Moving Average Of Intercrossing Spacing Over Corridor
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Type</th>
<th>Comments</th>
<th>Material</th>
<th>Conditions</th>
<th>Gradual</th>
<th>Approach</th>
<th>SD - North</th>
<th>SD - South</th>
<th># Roads</th>
<th>Angle</th>
<th>USGS Tag</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>649.15</td>
<td>SP Yard #1</td>
<td>FD</td>
<td>none-train yard</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>SK</td>
<td>30</td>
<td>NW Expressway</td>
</tr>
<tr>
<td>650.40</td>
<td>SP Yard #2</td>
<td>FD</td>
<td>none-train yard</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2</td>
<td>8E-2</td>
<td>1</td>
<td>SK</td>
<td>30</td>
<td>NW Expressway</td>
</tr>
<tr>
<td>652.00</td>
<td>SP Yard #3</td>
<td>FD</td>
<td>none-train yard</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2E-1</td>
<td>2</td>
<td>1</td>
<td>SK</td>
<td>30</td>
<td>NW Expressway</td>
</tr>
<tr>
<td>657.00</td>
<td>aggr.</td>
<td>FD</td>
<td>none</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2</td>
<td>2E-1</td>
<td>1</td>
<td>SK</td>
<td>30</td>
<td>NW Expressway</td>
</tr>
<tr>
<td>657.00</td>
<td>farmhouse</td>
<td>FD</td>
<td>hs home</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>3E-1</td>
<td>1</td>
<td>RT</td>
<td>0</td>
<td>block</td>
</tr>
<tr>
<td>659.10</td>
<td>AGRX. XING</td>
<td>FD</td>
<td>NONE</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2E-1</td>
<td>2</td>
<td>2</td>
<td>RT</td>
<td>18</td>
<td>9E6</td>
</tr>
<tr>
<td>659.35</td>
<td>farmhouse</td>
<td>FD</td>
<td>house, wood sprite</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>664.00</td>
<td>pred.</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>2E-1</td>
<td>1</td>
<td>RT</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>666.07</td>
<td>AGCR. XING</td>
<td>FD</td>
<td>house</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>2E-1</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>0</td>
<td>no parallel road</td>
</tr>
<tr>
<td>666.95</td>
<td>AGCR. XING</td>
<td>FD</td>
<td>NONE</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2E-1</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>667.25</td>
<td>sidewalk on D St.</td>
<td>FD</td>
<td>二手小路</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2E-1</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>E 1st st</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2E-1</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>2</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>300</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>barns/haunting</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>houses/industrial buildings</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>675.30</td>
<td>aggr. xing</td>
<td>FD</td>
<td>houses/industrial buildings</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>680.50</td>
<td>aggr. xing</td>
<td>FD</td>
<td>houses/industrial buildings</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>683.50</td>
<td>aggr. xing</td>
<td>FD</td>
<td>house</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>668.20</td>
<td>aggr. xing</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>RT</td>
<td>15</td>
<td>9E6</td>
</tr>
<tr>
<td>688.70</td>
<td>aggr. xing</td>
<td>FD</td>
<td>house</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>500</td>
<td>1</td>
<td>2</td>
<td>RT</td>
<td>42</td>
<td>College Park Drive</td>
</tr>
<tr>
<td>689.01</td>
<td>aggr. xing</td>
<td>FD</td>
<td>house</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>500</td>
<td>2</td>
<td>2</td>
<td>RT</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>691.30</td>
<td>pine street</td>
<td>FD</td>
<td>housing/residential</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>PV</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>SK</td>
<td>24</td>
<td>Salem Ave</td>
</tr>
<tr>
<td>662.10</td>
<td>phillip street</td>
<td>FD</td>
<td>housing/residential</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>PV</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>SK</td>
<td>24</td>
<td>Salem Ave</td>
</tr>
<tr>
<td>693.60</td>
<td>Wah Chang</td>
<td>FD</td>
<td>mill/forrest</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>PV</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>SK</td>
<td>24</td>
<td>Salem Ave</td>
</tr>
<tr>
<td>692.00</td>
<td>UNION PED</td>
<td>FD</td>
<td>10/10 houses</td>
<td>DT</td>
<td>PR</td>
<td>YES</td>
<td>PS</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>SK</td>
<td>25</td>
<td>3823</td>
</tr>
<tr>
<td>700.60</td>
<td>JERSEY PED</td>
<td>FD</td>
<td>4 RURAL HOUSES</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>PV</td>
<td>2</td>
<td>250</td>
<td>1</td>
<td>SK</td>
<td>25</td>
<td>3823</td>
</tr>
<tr>
<td>700.70</td>
<td>SALAMANDAR XING</td>
<td>FD</td>
<td>4 RURAL HOUSES</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>PV</td>
<td>3</td>
<td>350</td>
<td>1</td>
<td>SK</td>
<td>25</td>
<td>3823</td>
</tr>
<tr>
<td>701.00</td>
<td>JERSEY XING</td>
<td>FD</td>
<td>4 RURAL HOUSES</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>1800</td>
<td>3</td>
<td>SK</td>
<td>25</td>
<td>3823</td>
</tr>
<tr>
<td>701.00</td>
<td>JERSEY XING</td>
<td>FD</td>
<td>1 RURAL HOUSES</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>700</td>
<td>12</td>
<td>SK</td>
<td>15</td>
<td>3823</td>
</tr>
<tr>
<td>703.00</td>
<td>AGCR. XING</td>
<td>FD</td>
<td>2 RURAL HOUSES</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2</td>
<td>250</td>
<td>1</td>
<td>SK</td>
<td>15</td>
<td>3823</td>
</tr>
<tr>
<td>707.00</td>
<td>AGCR. XING</td>
<td>FD</td>
<td>none</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>2</td>
<td>2600</td>
<td>1</td>
<td>SK</td>
<td>15</td>
<td>3823</td>
</tr>
<tr>
<td>714.20</td>
<td>MILL ACCESS</td>
<td>FD</td>
<td>MILL, HIST. SOCIETY</td>
<td>PV</td>
<td>PR</td>
<td>YES</td>
<td>PV</td>
<td>8</td>
<td>800</td>
<td>1</td>
<td>SK</td>
<td>75</td>
<td>12TH St</td>
</tr>
<tr>
<td>725.50</td>
<td>CHEMAWA</td>
<td>SCRL</td>
<td>none/any</td>
<td>DT</td>
<td>PR</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>1500</td>
<td>1</td>
<td>SK</td>
<td>75</td>
<td>INDIAN SCHOOL RD</td>
</tr>
<tr>
<td>725.50</td>
<td>CHEMAWA</td>
<td>SCRL</td>
<td>none/any</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>800</td>
<td>1</td>
<td>SK</td>
<td>75</td>
<td>HWY 99E</td>
</tr>
<tr>
<td>725.50</td>
<td>CHEMAWA</td>
<td>SCRL</td>
<td>none/any</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>2000</td>
<td>1</td>
<td>SK</td>
<td>75</td>
<td>HWY 99E</td>
</tr>
<tr>
<td>725.50</td>
<td>CHEMAWA</td>
<td>SCRL</td>
<td>none/any</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>CR</td>
<td>1</td>
<td>1300</td>
<td>1</td>
<td>SK</td>
<td>75</td>
<td>HWY 99E</td>
</tr>
<tr>
<td>(cont)</td>
<td></td>
</tr>
<tr>
<td>Id</td>
<td>Type</td>
<td>Comments</td>
<td>Material</td>
<td>Condition</td>
<td>Source</td>
<td>Appraisal</td>
<td>SD: North</td>
<td>SD: South</td>
<td>Date sold</td>
<td>Notes</td>
<td>User notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>731.70</td>
<td>AGR. SING</td>
<td>FARMHOUSE</td>
<td>WD</td>
<td>PR</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>1 RT</td>
<td>190</td>
<td>WY 99E</td>
<td>Front St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>733.50</td>
<td>FD</td>
<td>fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RT</td>
<td>Front St</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>733.70</td>
<td>FD</td>
<td>farm house</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>734.80</td>
<td>FD</td>
<td>farm house</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>1 SK</td>
<td>99E</td>
<td></td>
<td>Front St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>735.80</td>
<td>FD</td>
<td>farm house</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>1 RT</td>
<td>Front St</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>736.50</td>
<td>FD</td>
<td>field only</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>1 RT</td>
<td>Front St</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>736.90</td>
<td>FD</td>
<td>Xmas tree lot</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>1 RT</td>
<td>Front St</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>737.20</td>
<td>FD</td>
<td>home</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>PV 500</td>
<td>500 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>738.30</td>
<td>FD</td>
<td>home</td>
<td>PV</td>
<td>GD</td>
<td>NO</td>
<td>PV 500</td>
<td>500 1</td>
<td>2 SK</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>739.50</td>
<td>FD</td>
<td>home</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>740.80</td>
<td>FD</td>
<td>home</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741.90</td>
<td>FD</td>
<td>home</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>GR 1300</td>
<td>1000 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>742.30</td>
<td>FD</td>
<td>field</td>
<td>PV</td>
<td>GD</td>
<td>YES</td>
<td>DT 1000</td>
<td>1000 1</td>
<td>2 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>744.17</td>
<td>759-45SF</td>
<td>NONE</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>DT 500</td>
<td>500 1</td>
<td>2 SK</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>744.42</td>
<td>canny excavating</td>
<td>house barn shed</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>GR 1000</td>
<td>750 1</td>
<td>3 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>744.85</td>
<td>driveway</td>
<td>HOUSE</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>GR 1000</td>
<td>1000 1</td>
<td>1 RT</td>
<td>12 99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>746.70</td>
<td>none</td>
<td>house small industrial</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>DT 300</td>
<td>150 1</td>
<td>1 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750.15</td>
<td>none</td>
<td>house small industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750.65</td>
<td>none</td>
<td>house small industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750.80</td>
<td>none</td>
<td>house small industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>751.35</td>
<td>3TE Corp.</td>
<td>collapsed bldg, machinery</td>
<td>WD</td>
<td>GD</td>
<td>NO</td>
<td>PV 100</td>
<td>100 2</td>
<td>1 SK</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>752.60</td>
<td>13100 S. 8th, & E 10</td>
<td>block</td>
<td>WD</td>
<td>GV</td>
<td>NO</td>
<td>PV 800</td>
<td>750 1</td>
<td>1 RT</td>
<td>10 99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>753.66</td>
<td>One City Marina</td>
<td>Marina Building</td>
<td>WD</td>
<td>GD</td>
<td>YES</td>
<td>PV 1000</td>
<td>1000 1</td>
<td>1 SK</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>753.70</td>
<td>Marina</td>
<td>Oregon City Marina Bldg</td>
<td>PD</td>
<td>none</td>
<td></td>
<td>GR 1000</td>
<td>1000 1</td>
<td>820 1</td>
<td>block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>754.33</td>
<td>Parket St Ped</td>
<td>3 houses/boats</td>
<td></td>
<td></td>
<td></td>
<td>GR 50</td>
<td>100 1</td>
<td>1 RT</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755.80</td>
<td>11th Street</td>
<td>3 houses/boats</td>
<td>PD</td>
<td>none</td>
<td></td>
<td>GR 50</td>
<td>100 1</td>
<td>1 SK</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>759.90</td>
<td>house</td>
<td>unknown</td>
<td>PD</td>
<td>unknown</td>
<td></td>
<td>GR 50</td>
<td>100 1</td>
<td>1 SK</td>
<td>99E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SP Mainline Willamette Valley Private and Pedestrian Crossings

Field party Names ____________________ Date (in field) ______________

Crossing mile post ________________ Rd/driveway ID ________________

Crossing type

___ ped (pd) ___ house driveway (hs)

___ field access (fu) ___ retail business (rt)

___ farm access (fr) ___ industrial (in)

What buildings are served:

Crossing material / condition

___ wood (wd) ___ good (gd) ___ loose gravel present? [y/n]

___ paved (pv) ___ poor (pr)

___ dirt (dt) Other/comments __________________

Approach surface

___ paved (pv) ___ gravel (gr) ___ dirt (dt)

Sight Distance estimates (meters — from map / comments?)

__________________ m. looking toward higher mile posts (generally toward N.)

__________________ m. looking toward lower mile posts (generally toward S.)

Comments: ________________________________

Number of tracks: at crossing _______ in sight _______

Angle of crossing: ___ right-angle (rt) ___ skew (sk)

Distance from nearest rail to fog line of parallel road _______ m.

Name of parallel road ____________________________

Comments:

Figure C.3 Data Collection Form and Key.