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1.0 INTRODUCTION

1.1 PROBLEM STATEMENT

Landslides are frequent hazards that result in major economic, environmental and social impacts
for operation, maintenance, and construction of Oregon highways. Current databases of
landslides in Oregon are limited and fragmented since they are based on a variety of
inventories/geologic maps from various sources, which have been mapped sporadically over
time. Often, when large landslides occur on Oregon highways, there is no information about
whether it is a reactivated existing landslide or a new slope failure without performing detailed,
costly investigations. Therefore, up to date inventories of landslides and associated hazards are
essential to provide baseline quantity, size, and location information for existing landslides -
especially for those of which are ongoing. Such knowledge is crucial to support asset
management, especially in the wake of significant rain events or strong seismic activity (e.g.,
Cascadia subduction zone event).

Despite their impact, maps and inventories of existing landslides are challenging, time-
consuming, and expensive to produce. Many current landslide mapping techniques do not have
sufficient accuracy, resolution or consistency for inventorying landslide deposits on a landscape
scale. Fortunately, recently popularized lidar data may be used to derive digital elevation models
(DEMs) that provide sufficient accuracy and detail to start inventorying regions subject to
landslides that surround Oregon highways. These high resolution DEMs can reveal the landscape
beneath vegetation and other obstructions, highlighting landslide features, including scarps,
deposits, and fans. Furthermore, such DEMs are scheduled to be available for the entire state of
Oregon in coming years (e.g., USGS 3D Elevation Plan, 3DEP), with critical highways likely to
be the first mapped areas. However, use of lidar for landslide inventorying, risk assessment, and
management prioritization is primarily reliant on the subjective interpretation of individual
geologists. The expertise of geologists certainly may provide improved manual landslide
inventories, but it also introduces inconsistency and is limited by a pace that is not sufficient to
accommodate ODOT’s large network of managed right-of-way traversing a dynamic landscape.
In order to improve large-scale asset management strategies in context of unstable slopes, it is
desirable that a consistent and automated landslide inventorying approach be developed and
employed by ODOT.

1.1.1 Study Area

Because Oregon has high topographic relief, high rainfall, and active tectonics, landslides are
scattered across the rugged terrain. Figure 1.1 shows the extents of the study area analyzed in this
report, consisting of sections of Oregon Routes 36, 42, and 126 within the Oregon Coast Range,
and the segment of U.S. Route 101 in Curry County. These highways are critical to the economic
and social well-being of coastal communities, but are often subject to road closures and repeated
maintenance due to regular landslide activity, particularly in winter months. Much of this
landslide activity stems from particular ongoing slope failures that require frequent maintenance.



However, there are also numerous other historic, active landslides that have a high potential of
affecting the function and safety of ODOT’s infrastructure. It is essential to not only inventory
these past slope failures, but also to investigate their proximity, and possible threats, to

infrastructure.
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Figure 1.1: Overview of study areas in Western Oregon.



1.2 COMPONENTS OF THIS STUDY

Lidar-derived DEMs play an ever-increasing role in mapping landslides, but a level of
automation is necessary to sufficiently and systematically inventory ODOT’s large road network
for improved allocation of resources, asset management, operations, and construction. This study
has developed an advanced risk and hazard mapping framework for prioritizing landslide
mitigation and management efforts. The framework expands the Contour Connection Method
(CCM, Leshchinsky, Olsen, & Tanyu, 2015) to consistently detect landslide deposits on a
landscape scale using publicly-available lidar data. It also considers risk posed by these
landslides to adjacent infrastructure as well as economic losses. A variety of deliverables have
been developed for efficient, immediate implementation of this framework by ODOT engineers.

The key components of this report and accompanying deliverables include:

A literature review documenting landslide hazards in Oregon, and summarizing existing
approaches to landslide inventory, hazard and risk mapping.

Description of modifications made to CCM to improve mapping efficiency and applicability to a
wider amount of terrain. The CCM tool is provided with this report.

Assessment of accuracy of the CCM tool in comparison to manual landslide inventories.

Landslide maps for three major ODOT corridors in western Oregon. Geographic Information
Systems (GI1S)-compatible landslide layers in a geodatabase are provided along with this report.

Spatial analysis of CCM-mapped landslides along ODOT right-of-way.

Description of risk-based approach to assess the impact of landslide reactivation along highway
corridors, provided with analyses that provide estimates of closure costs and delays for each
preselected ODOT corridor. GIS-compatible risk tools are provided alongside this report.

In addition to these products included with this report, a Special Paper publication (Bunn, 2018)
is in production by the Department of Geology and Mineral Industries (DOGAMI) that provides
detailed descriptions and workflows to apply the CCM tool to generate various types of landslide
inventories to support a wide range of needs.

Key objectives of this report include:

1. Describe advancements made to the CCM algorithm to be more computationally
efficient and effective in the mapping of landslide deposits in a variety of terrains.

2. Evaluate the accuracy of the CCM approach compared with manual inventories at
select locations.

3. Provide tools that ensure straightforward application of the CCM algorithm.

4. Create and analyze landslide maps along predefined ODOT corridors to provide
insight into the potential impacts of landslide reactivation along State right-of-way.



5. Create and describe a risk-centric framework for assessing the potential impacts of
landslide reactivation, both in terms of closure times and economic impacts.
Demonstrate applicability across three critical ODOT corridors.

6. Create a DOGAMI Special Publication outlining the application of CCM as a
supplement for manual landslide mapping by experts.

1.3 PROJECT SIGNIFICANCE AND LIMITATIONS

This project has resulted in a unique, computationally-efficient tool for landslide mapping on a
large scale. This tool has significant utility, particularly when leveraging quality datasets such as
high-resolution lidar, as it supplements and expedites the manual landslide mapping process. The
landslide maps are particularly useful for assessing potential impacts of landslide reactivation
along highway corridors, enabling enhanced planning and prioritization along infrastructure with
large spatial extents. However, when landslide inventories are used for regulatory or zoning
purposes, it is important that mapped landslides are subject to the expert judgment of trained
professionals, regardless of how the mapping was performed.

This project demonstrates, perhaps unsurprisingly, that there are a significant number of
landslides on the Oregon Coast and in the Oregon Coast Range, including many that traverse
ODOT right-of-way. However, prioritization and planning around such an extensive number of
hazards is daunting as there is often limited resources available. A starting point in planning
mitigation procedures, however, is first understanding the relative scale of potential hazards. Use
of the revised CCM approach provides a means of effectively estimating this relative hazard
along ODOT right-of-way, particularly when overlaid with multiple relevant datasets in a GIS
framework. Future work may better capture the relative probability of slide reactivation or
movement to provide enhanced prioritization, particularly considering the large number of
landslides encountered in proximity to state highways.

This project has resulted in the development of a new approach towards assessing the risk
towards infrastructure associated with landslide reactivation, including closure costs, soil cut/fill
volumes, and rerouting costs — to the authors’ knowledge, this has not been done using landslide
maps before. This original approach provides a unique means of using knowledge of the required
embankment geometry (stated in the ODOT Geotechnical Design Manual, GDM) leveraged with
lidar topographic data and landslide inventories to provide estimates of volumes of soil that must
be cut — or filled - to regain highway access in the case of landslide reactivation. These volume
estimates can be coupled with (1) estimates of material costs attained from ODOT’s “Unstable
Slopes” database or (2) closure costs associated with construction or excavation time (validated
with an internal database of landslide closures) to provide direct estimates of economic impacts
stemming from landslide reactivation. Of particular interest is the use of ODOT Transportation
Planning and Analysis Unit (TPAU) data to estimate the potential financial costs of landslide
reactivation from a commerce perspective. This approach is promising as it provides the basic
framework for ODOT to begin an assessment of “what-if” scenarios regarding landslide impacts
on state highways — valuable for planning purposes and enhancing infrastructure resilience.
Future work could further enhance the proposed planning tool by accounting for possible
material transport costs/time, creating more robust estimates of how supply-chain networks
would be affected by hypothetical landslides, and perhaps most practically, assisting in strategic



allotment of material and equipment stores statewide to enable expedited recovery from landslide
closures following an extreme event.






2.0 LITERATURE REVIEW

2.1 OVERVIEW

This literature review evaluates the current state of the art methodologies for landslide
inventorying and classification with their associated advantages and disadvantages. These
observations were used to further develop the CCM algorithm (Leshchinsky et al., 2015) and
develop the risk-based framework. This review also introduces relevant landslide dangers in
Oregon.

The review begins with the definition of landslides and landslide types followed by a description
of landslide hazards in Oregon. Next, we summarize existing landslide inventorying
methodologies as well as a discussion of landslide hazard and risk mapping. Finally, we close
with a description of challenges that guided the work in this report.

2.2 INTRODUCTION TO LANDSLIDES

Landslides can occur under a variety of circumstances, including heavy rainfall, the presence of
weak surficial soils, ground slope, and seismic loading (Cornforth, 2005). Anthropogenic
modifications, such as roadway cuts or the placement of fills, can also contribute to landslide
occurrence. Landslides also tend to re-occur at locations where a previous landslide has
occurred. Expectedly, any combination of these factors tends to exacerbate landslide hazard
through increased occurrence, although the exact influence of these factors is poorly understood.

Cruden (1991) defines landslides as a movement of a mass of rock, earth or debris down a slope.
Although simply defined here, this downslope movement is a very complex geohazard that can
take many forms. Cruden and Varnes (1996) classify landslides into five types (Table 2.1, Figure
2.1): Falls, topples, slides, spreads and flows. These type classifications are based on
characteristics of the material, water content, and movement rate.

Table 2.1: Summary of Landslide Movement Types (Modified from Cruden, 1996).

Example in
Movement Type Material | Water Content Rate Figure 2.1
Fall Rock Dry Extremely rapid | D, G
Topple Soil Moist Very rapid E
Slide Earth Wet Rapid A B, C
Spread Debris Very wet Moderate J
Flow - - Slow F, H, I




Translational landslide Block slide

Debris avalanche Earthflow

Lateral spread

Figure 2.1: lllustrations of various landslide types (from Highland, 2004).

Slides occur when masses of earth displace upon surfaces experiencing high shear strain. The
geometry of these sliding surfaces, also referred to as the surface of rupture or failure planes, can
usually be broken into one of two groups: rotational or translational. Rotational slides have
curved failure surfaces and tend to reach greater depths; whereas, translational slides have planar
failure surfaces and tend to be shallow in nature. The upper extent of rotational and some
translational slides can be defined by a steep face of undisturbed soil known as a scarp, while the
lower extents are typically comprised of displaced and disturbed material known as deposits.



Under certain conditions, it is also possible for slide deposits to transition into flow movements.
Any combination of landslide types, such as this example mentioned here, may also be referred
to as a complex landslide.

It is important to acknowledge that all types of movement included in Table 2.1 significantly
affect infrastructure; however, fundamental differences between each type mean that no single
engineering solution may be applied to all types. Current engineering methodologies exist for the
assessment, and sometimes mapping of, fall, topple, and spread hazards (Pierson, 1991; Pierson,
Gullixson, & Chassie, 2001; Youd, Hansen, & Bartlett, 2002), but they are not the focus of SPR-
786. The approach undertaken in this research focuses on landsliding associated with slides and
flows.

2.3 LANDSLIDE HAZARDS IN OREGON

The geology and climate of western Oregon are responsible for creating significant landslide
hazards, particularly in the Oregon Coast Range. This risk can be explained in large part by the
correspondence of high susceptibility (e.g., weak, weathered soils or rock) and high precipitation
(e.g., quantity, rate, duration) (Olsen et al., 2015). The Oregon Department of Geology and
Mineral Industries (Burns, 2016) recently published a new, statewide landslide susceptibly map
(Figure 2.2). When these high to very high susceptibility conditions throughout the Coast Range
and Cascades are exposed to substantial volumes of rainfall, the risk of landslides becomes large
and results in the frequent occurrence of damaging slides. Landslides often impact highway
infrastructure and result in closures for removal of debris and or repair. The major landslides of
the winter season of 2015-16 are summarized in Table 2.2.)
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Figure 2.2: Landslide susceptibility map of the state of Oregon (from Burns, 2016)



Table 2.2: Sampling of Major Landslides in Oregon, Winter Season 2015-16.

Date Location Description Reference
. Oregonian
12/8/2015 | Portland Landslide causes closure of Cornell Road 20154
12/8/2015 | Portland Landslide temporarily closes US 30 KPTV 2015
. - Oregonian
12/18/2015 | Florence L:rnsc(j)sr:lde destroys home, killing one 2015b.
P 2016a
Recurring landslides require the evacuation | Oregonian
12/23/2015 | Oregon City of several apartment units, and water and 2015c,
power shutoff to dozens more 2016a
12/23/2015 Douglas and Landslide closes Oregon 42 for one month, Zooriggnlan
Coos County costs an estimated $5 million to repair 2016a,
1/28/2016 | Brookings Landslide and sinkhole destroy US 101 ?giggman
2/28/2016 | Heceta Head Landslide causes closure of US 101 ?giggman
3/12/2016 | Triangle Lake Landslide causes closure of Oregon 36 KVAL 2016

Landslide events, such as those in Table 2.2, cost Oregon an average of more than $10 million
annually, with losses from particularly severe winter storms having cost more than $100 million
(Burns, 2009). As an example, in March 2011, winds and heavy rains resulted in nearly $6
million in damages to state highways (The Curry County Natural Hazards Mitigation Plan
(University of Oregon, 2016)).

In recent decades, efforts have been made by government agencies, such as the Oregon
Department of Geology and Mineral Industries (DOGAMI) and the Oregon Department of
Transportation (ODOT), to reduce these costs. One approach taken by these agencies has been to
map (inventory) previously occurring landslides throughout the state. The most current form of
these statewide inventories has been compiled by DOGAMI as the Statewide Landslide
Information Database for Oregon (SLIDO).

SLIDO is a collection of numerous layers of geospatial and geological data that includes
locations of historic landslides, extents of landslide features, landslide photographs, and
attributes for many of the landslides. Only parts of the state have been mapped in SLIDO, and
Figure 2.3 shows the distribution of mapped landslide features across the state of Oregon.
Creation of landslide inventories using lidar within SLIDO is documented by Burns and Madin
(2009) in DOGAMI Special Paper 42, and will be discussed further in a later section of this
review. Note that lidar-derived landslide mapping has only been completed and included in
SLIDO at a limited number of strategic locations. In these locales, the high resolution terrain
models have enabled a significant number of landslides to be detected.

10



125°W 124°W 123°W 122°W 121°w 120°W 119°W 118°W n7°W 116°W
1 1 1 1 1 1 1 1 1 1

‘ ‘ | ‘ ‘ Zoomed in Detail

Legend

« Historic Landslides
[ Scarp Flanks
Deposits

43°N

42°N

0 07515 3 Kilometers
I Y Y Y |

Basemap - ESRI

Figure 2.3: Mapped landslide features in SLIDO (version 3.2).

2.4 LANDSLIDE MAPPING

The aforementioned SLIDO database is an example of a landslide inventory map. Landslide
maps are created with the purpose of displaying the location of landslide hazards. They are
useful for community planning, as well as communicating hazards with the public (Cornforth,
2005). There are four major categories of landslide mapping (Highland & Bobrowsky, 2008).
The first is inventory mapping, which identifies the spatial extents of previously occurred
landslides. SLIDO is a collection of inventory maps. The second category is susceptibility
mapping, which examines the factors behind failures on an inventory map, identifies the factors
that contribute most to landsliding, and then maps susceptible areas based on these factors. The
final two categories are hazard and risk mapping, which incorporate the findings of both
previous categories, sometimes with theoretical models, to predict the severity and extent of
landsliding. These can be based on specific scenario events.

2.4.1 Inventory Mapping

Landslide inventory maps are simply the mapped spatial extents of past landslide occurrences.
Their purpose is to provide background for landslide hazard and risk assessment, to investigate
the distribution, types, and patterns of landslides, and to study landscape evolution (Guzzetti et
al., 2012). Despite this simple definition, performing landslide inventories can be a challenging
task. Hence, in recent decades, significant research has been oriented toward the improvement of
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inventory mapping procedures to utilize advances in technology. This section will review
existing landslide inventorying methodologies beginning with manual, non-lidar approaches,
continuing through semi-automated non-lidar approaches, and ending with both manual and
automated lidar approaches.

2.4.1.1 Manual, Non-Lidar Methods

Wills and McCrink (2002) compared two common landslide inventorying methods of the
time, aerial photograph interpretation and topographic map interpretation, with large-
scale field mapping. The inventory mapping was performed on a mountainous and
heavily forested 7.5 minute quadrangle for the purpose of gaging the effectiveness of
either method, given the assumption that field mapping would capture the “true” location
of landslides. What they found was that the aerial photograph interpretation identified 58
percent of the landslide area mapped in the field and that the contour map interpretation
identified a similar result of 57 percent. Wills and McCrink (2002) primarily attributed
the lack of correspondence to the presence of dense forest cover that prevented the
identification of landslide features. Further, when landslides identified through either
interpretation method did align with those identified during field mapping, the
interpretation-based maps lacked the detail to distinguish between landslide features (i.e.
scarps and deposits).

In addition to the accuracy of mapping landslides, Wills and McCrink (2002) compared
the effort required to produce each type of inventory map. While both interpretation
techniques produced results of similar accuracy, the contour map interpretation took
approximately one-tenth of the time needed for aerial photo interpretation. Additionally,
the field mapping took approximately ten times the amount of time required to perform
aerial photo interpretation.

2.4.1.2 Semi-Automated Non-Lidar Methods

As evidenced by Wills and McCrink (2002), the speed at which manual landslide
inventorying can be performed is an important limitation. The availability of digital
information in the form of multi-spectral satellite imagery has led to the development of a
number of automated methods for landslide inventory mapping.

Borghuis, Chang, and Lee (2007) presented two approaches for landslide inventory
mapping based on the classification of multi-spectral imagery for a mountainous and
forested region in Taiwan. An automated classification was performed using 10 m SPOT-
5 multi-spectral satellite images to extract landslide signatures from pixels within the
extents of previously mapped landslides. Alternatively, a manual classification was
performed that involved the visual interpretation of 2.5 m SPOT-5 supermode imagery
and a normalized difference vegetation index (NDVI) layer. Following their study,
Borghuis et al. (2007) found that the automated classification identified 63 percent of the
landslide area identified manually, and performed far better than the manual classification
at identifying the extents of small landslides, but was marred by identifying features such
as roadways and riverbeds to also be landslides.
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A more complex approach was presented by Martha, Kerle, Jetten, van Westen, and
Kumar (2010), who combined 10 m Cartosat-1 digital surface models with 5.8 m
resolution multi-spectral imagery from the Indian Remote Sensing Satellite P6 to map
landslides in a rugged and mountainous region of India. Landslides were identified from
NDVI values indicative of disturbed terrain. False positives were then determined and
removed using an object oriented, as opposed to pixel-based, analysis that considered
spectral, morphometric, and contextual information regarding each landslide. Landslide
class (i.e., shallow translations, flow, etc.) was then determined from the remaining
landslides based on topographic shape criteria. The result was that Martha et al. (2010)
were able to identify 76.4 percent of landslide areas determined through manual photo
interpretation, while also identifying five different landslide classes.

2.4.1.3 Manual Lidar Methods

A limitation of many of the previously mentioned techniques is that they cannot
adequately penetrate a dense, forest canopy such that the ground surface can be identified
to sufficient detail. Another limitation is the spatial and temporal resolution of the data.
Lidar technology overcomes many of these limitations and is ideally suited for landslide
inventory processes (Burns, 2009). Furthermore, the previously mentioned techniques
only consider two dimensional images, and provide limited information about the shape
of landslides. The use of lidar incorporates elevation, allowing for the addition of a third
dimension. A detailed discussion of the background of lidar technology, how it works,
and an introduction to its applications for landslide identification can be found in the
review work of Jaboyedoff et al. (2012).

For the purposes of this document, two example methodologies for identifying past
landslides provide sufficient background on how lidar can be effectively utilized for
landslide inventories. It should be noted that while these methods can be very accurate at
identifying landslide features, they are also highly time consuming and require an
experienced practitioner to minimize subjectivity.

Schulz (2004) used a 6 foot lidar-derived DEM to manually identify landslides in highly-
vegetated and urban Seattle, Washington. Identification was aided by orthorectified aerial
photographs and numerous additional lidar-derivatives, including hillshades of varying
sun azimuth, ground slope, and a 2 m contour map. The different forms of data were then
evaluated to locate morphological features of interest, including headscarps, hummocky
terrain, and convex and concave slopes, from which landslides were identified. The
method correctly identified the locations of recorded historic landslides, while also
identifying many landslides that had previously gone unnoticed.

In their documentation of the development of SLIDO, Burns and Madin (2009), or
DOGAMI Special Paper 42, discuss a similar methodology to Schulz (2004), while also
introducing a framework for tabular data that may accompany mapped features. This
supporting data includes the landslide types and other attributes (Table 2.3). The
additional information provided by this framework may serve as an important resource
for future research, but it is important to understand that not all of the data presented in
Table 2.3 has been provided for each landslide mapped in SLIDO. DOGAMI Special
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Paper 42 is the standard practice followed in Oregon for landslide inventory mapping and
has been adopted by other states.

Another limitation with the use of lidar data is that data are not yet available statewide.
The status of lidar data collection in Oregon is presented in Figure 2.6. Note that a
current, national initiative, the 3D-Elevation Plan (3DEP) has targeted acquiring
continuous lidar data for the conterminous United States. The Oregon Lidar Consortium
(OLC), led by DOGAMI, has been coordinating these efforts between agencies in

Oregon.

Table 2.3: Examples of Tabular Data Fields Included in the SLIDO Geodatabase (from

Burns, 2009).

Field Name Brief Description
TYPE_MOVE | Type of movement
CONFIDENCE | Confidence of identification
AGE Estimated age
DATE_MOVE | Date of last known movement
GEOL Geologic unit
SLOPE Adjacent slope angle
FAIL_DEPTH | Failure depth, estimated and/or calculated slope normal thickness of failure
depth
FAN_HEIGHT | Change in elevation from top to toe of fan
FAN_DEPTH | Estimated and/or calculated fan depth
DEEP_SHAL | Deep or shallow seated
DIRECT Direction of movement
AREA Area of landslide deposit
VOL Volume of landslide deposit

2.4.1.4 Automated Lidar Methods

Manual landslide mapping using lidar data is both expert-based and time consuming. For
these reasons, research efforts have aimed to develop computer algorithms that simulate
human interpretation to improve the speed and efficiency of the mapping process.
Automated methods using lidar typically come in one of two forms, pixel-based or object
based. Pixel-based classifies individual pixels of a lidar DEM, while object-based group
pixels together, typically through image segmentation, to form objects that are then

classified.

Using lidar data from much of the area studied by Schulz (2004) in Seattle, Washington,
and additional data for the Tualatin Mountains, near Portland, Oregon, Booth, Roering,
and Perron (2009) developed a pixel-based identification technique using the roughness
of deep-seated landslides based on two-dimensional discrete Fourier transforms and two-
dimensional continuous wavelet transforms, both spectral, performed on a lidar DEM.
The purpose of both transforms was to determine wavelengths than could then be
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compared with topographic wavelengths empirically determined to be representative of
landslide features.

Another pixel-based approach, focused on roughness, came from Berti, Corsini, and
Daehne (2013). They identified six geomorphologic units in their terrain, each with
unique roughness characteristics, and implemented an approach similar to what Booth et
al. (2009) applied to a single DEM, but for their six geomorphologic units.

An object-based alternative was presented by VVan Den Eeckhaut, Kerle, Poesen, and
Hervas (2012). The area considered consisted of vegetated hills in the Flemish Ardennes
of Belgium. Landslides were mapped through the segmentation and classification of a
lidar DEM. Segmentation was performed by implementing region grow and image
binarization algorithms to identify and group cells of similar texture and to locate abrupt
terrain changes. Segmented features were then classified as landslide scarps or bodies
based their ground roughness, slope, plan view curvature, and several other variables.

A similar approach to Van Den Eeckhaut et al. (2012) was presented by Li, Cheng, Chen,
Chen, and Liu (2015), who utilized similar machine learning techniques, but this time to
study rugged, mountainous terrain. Acknowledging that mountainous terrain serves to
disrupt traditional landslide signatures, Li et al. (2015) departed from Van Den Eeckhaut
et al. (2012) by allowing greater scaling of landslide objects during segmentation and
using a probabilistic approach for grouping nearby objects rather than the Van Den
Eeckhaut et al. (2012) reliance on adjacency of like classes.

Another object-based lidar approach came from Leshchinsky et al. (2015), who presented
the Contour Connection Method (CCM), which uses the shape of topographic features to
locate past landslides. Full resolution of most lidar-derived DEMs is typically
unnecessary, making CCM less influenced by noise in the scan itself or defects in the
DEM. CCM first identifies landslide scarps based on an upper slope threshold, then
moves downslope until a lower slope threshold is reached. Computational speed is
improved by reducing high resolution DEMs into a mesh of contours with regularly
spaced nodes that are connected when acceptable slopes between nodes are achieved.
After the algorithm has been implemented, information pertaining to the number of
connections to each node and the slope of each connecting line can then be analyzed to
reveal distinct signatures for the type of slide that has been mapped.
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Table 2.4: Overview of Landslide Inventory Methodologies.

connected, and the slope
of these connections is
identified as belonging to
a landslide or not.

-Provides a topographic
signature that may be useful
for age classification

scarps
-Sensitive to anthropogenic
land features (i.e. road cuts,
borrow pits)

Method \ Description Strengths Weaknesses Reference
Lidar
Landslides are mapped -Highly accurate for large -Time consuming, labor
Manual/ | based on the visual features. intensive Burns (2009);
SP42 interpretation of trained -ldentifies landslide features | -Requires the work of a trained | Schulz (2004)
geologists. (i.e. scarps and deposits) geologist
-Cannot distinguish between
Identifies topographic overla_pplng 'Ia'ndslldes_ .
; . -Requires minimal calibration
signatures corresponding -Quickly performs mappin using manual inventor
Spectral with manually mapped - Identif)i/ez landslide fszftur%s -OnIg meant for large )Eiee Berti et al. (2013);
P landslides and locates the . o y ge, deep Booth et al. (2009)
. . with topographic signatures landslides
same signatures in - :
unmaooed terrain -Sensitive to anthropogenic
PP ' land features (i.e. road cuts,
borrow pits)
-Computationally complex
. Segr_ngnts map and -ldentifies landslide features | -Requires calibration using
Object | classifies each segment . ) X Van Den Eeckhaut
. . . (i.e. scarps and deposits) manual inventory
Oriented | based on its topographic . . et al. (2012)
. -Quickly performs mapping -Only meant for large, deep
signature. .
landslides
A digital elevation model . . -Requires calibration using
. . -Computationally simple X
is broken into contours e 4 manual inventory
-ldentifies landslide features
and nodes. Nodes on . ) -Dependent on the successful
: (i.e. scarps and deposits) N X :
adjacent contours are . . identification of landslide Leshchinsky et al.
CCM -Quickly performs mapping

(2015)
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Satellite Imaging

Multi-
Spectral

Spectral signatures
corresponding with
manually mapped
landslides are identified
and used to identify
landslides in other similar
terrain.

-Data is relatively inexpensive
and frequently acquired
-Quickly performs mapping

-Subject to cloud cover and
inconsistent lighting
-Requires calibration using
manual inventory
-Vegetation may have a
significant influence on results
-Cannot distinguish between
overlapping landslides
-Only meant for large, deep
landslides due to low spatial
resolution

Borghuis et al.
(2007); Martha et
al. (2010)
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2.4.2 Hazard Mapping

Hazard mapping of landslides aims to predict the extents of hazard exposure and the associated
characteristics of a given hazard. In its deterministic form, hazard mapping seeks to estimate
magnitude of potential displacements, estimate a factor of safety against failure, or provide an
index of hazard, and may be adjusted to be probabilistic. Table 2.5 summarizes statistical
approaches that have been used to determine the probability of a specific quantified hazard being
exceeded. These approaches require a priori knowledge to identify and separate parameter values
associated with landslide occurrence from those associated with non-occurrence. The statistics
associated with occurrence for each parameter are then generalized to produce a probability for
the entire system.

An example of probabilistic, seismically-induced landslide hazard mapping in Oregon comes
from SPR-740 by Olsen et al. (2015), who applied a framework similar to the Saygili and Rathje
(2008) landslide hazard framework (Figure 2.4). Olsen et al. (2015) developed probability
distributions for input parameters, and incorporated them into a Newmark (1965) physical
model. While knowledge of the occurrence or non-occurrence of landslides (i.e. inventory maps)
is not used directly, it is necessary for developing the probability distributions and back
analyzing material strength. Alternatively, Pradhan and Lee (2010) used a logistic regression
analysis to produce rainfall-induced landslide hazard maps. Their approach lacks a physical
model and directly incorporates the occurrence/non-occurrence to develop a weighted equation
for probability.

PSHA Hazard
Curve
Displ t
‘Geology ‘ ‘Topography ‘ ‘ Hydrology ‘ Displacement 'SP acem.e.n Displacement
' . from Empirical
Time History o Hazard Curve
Prediction
Yield Yield
Acceleration Acceleration
Maps Thresholds
Seismic
Landslide
Hazard Map

Figure 2.4: Landslide hazard framework of Saygili and Rathje (2008).
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Table 2.5: Summary of Probabilistic Approaches Used in Landslide Hazard Mapping.

Method Type Short Description Reference
Luzi, Pergalani, and
Given a probability distribution of input | 1crien (2000);
Monte . . Refice and
Carlo Numerl_cal variables, values are rand(_)mly N Capolongo (2002):
. . Analysis selected and analyzed until a probability oy
simulation L Soeters (1996); Zhou,
distribution of outputs has been developed. Esaki. Mitani. Xie
and Mori (2003)
i Multiple independent variables are . i
Bayesian Regression | assigned a weight-of-evidence based on Lee, Choi, and Min
theory : (2002)
prior knowledge.
Spatially located objects are given weights
ranging from 0 to 1, called membership
Fuzzy values. Membership values of multiple (Lee & Sambath,
. . 2006); Pradhan, Lee,
gamma Regression | object types are then brought together .
. : > and Buchroithner
techniques using one of several geoprocessing (2009)
techniques to develop a final set of
weights.
A set of nodes, each representing an
Artificial Machine mdependen_t varla_ble, are tied _ Pradhan and Lee
Neural Learnin together using weighted connections. (2010)
Networks g Weights of each connection are optimized
through training with existing data.
Multiple independent variables (e.g. slope,
curvature, and lithology) are
divided into landslide and non-landslide
groups using a linear function. The mean
values and variance and covariance Erener and Duzgin
Multivariate | Regression | matrices of each group are then used to (2008); Lee et al.
compute a coefficient vector to weight each | (2008)
variable. In cases interested in the
occurrence/non-occurrence of landslides,
logistic multivariate regressions tend to be
used.

2.4.3 Risk Mapping

In the case of hazard mapping, landslide severity is identified over the entire region based on the
mechanisms behind landsliding, and not by what might be damaged. Risk mapping goes a step
further and considers the costs, economic, social or environmental, sustained by landslide
occurrence. In this way, a risk map is not necessarily sensitive to a landslide in a remote setting.
Corominas et al. (2014) define landslide risk as the product of landslide hazard, the exposure of
elements at risk, and their vulnerability. By this definition, hazard is the same as described
previously, and elements at risk tend to be the human infrastructure that stands to be damaged
when a landslide occurs. Exposure refers to the spatial correspondence of landslide hazard and
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the location of elements at risk, while vulnerability refers to the resilience of the elements at risk.
Examples of vulnerability are the potential lifeline closure time, importance of access, or
resilience of exposed infrastructure. Van Westen, Van Asch, and Soeters (2006) presented a
procedure for a multi-hazard assessment of risk, which is presented schematically in Figure 2.5.

Environmental Triggering Landslide Elements at
Parameters: Factors: | Occurrences: — Risk:

Geology - Earthquakes - Type = People

Land use + Rainfall « Magnitude * Infrastructure

Slope - Time

Hydrology

A h
' Temporal
Spatial Probability

Probability of

o LR Landslide Initiation

Initiation

!
-

N N

Risk | = | Hazard x | Vulnerability x | Exposure

Figure 2.5: Schematic of a multi-hazard risk assessment (modified from VVan Westen et al.,
2006).

2.4.4 Challenges and Future Opportunities

Two primary challenges exist regarding landslide mapping in Oregon. First, the state does not
have a complete inventory, and second, once a complete inventory exists, it is an ongoing
challenge to update it since landslides frequently occur. Other reasons for why these challenges
exist include application requirements and subjectivity for each inventorying method, natural
variability, and landscape evolution.

Requirements for the application of any inventorying method play a major role in what is
ultimately mapped. In the case of inventory mapping in Oregon, the availability of lidar data is
an important limitation. Currently, only a portion of the state has been covered with lidar data
(Figure 2.6). One hindrance to complete statewide coverage is the cost and time required to
perform airborne laser scans is accompanied by difficulties in storage and organization of large
datasets. In spite of this challenge in data acquisition, major efforts are being made to continue
collecting lidar data, adding optimism to the use of lidar-based inventorying methods. The USGS
3D Elevation Program (Sugarbaker et al., 2014) aims to accelerate the collection of lidar data
nationwide, and the state of North Carolina has already been covered, with many areas now
being covered for a second time (North Carolina Floodplain Mapping Program (“North Carolina
Floodplain Mapping Program, 2014 LiDAR Collection," 2014)).
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Figure 2.6. Status of lidar data collection in Oregon as of October 2017.

Natural variations in factors such as geology, precipitation, and anthropogenic alteration, mean
that inventorying methods requiring calibration that cannot necessarily be applied systematically
over a large area. This limitation is exacerbated by inconsistent levels of detail and quality for
complementary, relevant datasets throughout the state. Many important data sources are missing,
however, lidar shows promise as a critical and consistent starting point to infer other necessary
factors. Additional gains may also be made by incorporating inputs relative to site geology, soil
conditions, climate, and other factors that may influence the topography of past landslides into
semi-automated inventorying methods.

The ever-changing evolution of our landscape presents a second challenge towards maintaining
up-to-date landslide inventories. As time passes, erosion and landslides continue to occur,
particularly in coastal or fluvial regions subject to the forces of moving water. Changes to
topography and new landslide initiations cause existing inventories to become outdated. This
limitation is an important reason why automated inventorying methods and multi-temporal lidar
datasets may provide improved management decisions in consideration of hazards. The
opportunities presented by serial lidar are very promising as it enables better understanding of
landslide hazards and their behavior. However, these changes over time have limited meaning
without a starting inventory of landslides.

While major challenges do exist for landslide mapping in Oregon, the potential to overcome or
mitigate them also exists, particularly when utilizing computational tools to expedite and
improve the process. Enhancing the CCM algorithm to incorporate information other than solely
topography will enable a starting point of landslide inventories — critical to not only making
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management decisions about existing hazards, but the behavior of existing hazards and possible
future hazards. Furthermore, it presents an opportunity to streamline and supplement the current,
manual landslide inventorying process in a framework that would potentially be less subjective,
more repeatable and more expedient. Furthermore, there is potential to better classify various
landslide types based on associated data from application of the algorithm. That is, it is possible
that characteristics like activity, failure mechanism and runout distance may be inferred in a
consistent analysis.

The overlap of the aforementioned hazard mapping with data layers like state highway right-of-
way, associated traffic data, maintenance costs presents a means to evaluate risk, an important
aspect of making management decisions. There are quantifiable metrics, including cost of repair,
cost of closure, traffic counts and access to alternative roadways that may help inform the impact
of a given hazard. With knowledge of hazard proximity, impact and subsequent risk, a
generalized means to evaluate landslide risk may be developed — a critical tool for informed asset
management. Enhancing CCM to better inventory landslides, process landslide data into a
quantifiable metric, and overlap hazards with agency-relevant metrics presents promise for better
asset management and DOT decision-making.
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3.0 METHODOLOGY

3.1 SEMI-AUTOMATIC LANDSLIDE INVENTORY MAPPING

3.1.1 Overview

The semi-automated landslide inventorying method described in this report is a modification of
the Contour Connection Method (CCM) developed by Leshchinsky et al. (2015). While the new
procedure holds numerous similarities to the original, its implementation is considerably
different and has been significantly developed through this research. Notably, the new approach
has changed the initiation of CCM from a user-defined slope threshold to a scarp line. As a
result, the new approach is comprised of two primary steps, 1) the identification of scarp lines
(SI), and 2) running CCM to delineate deposits. Together, the two steps are referred to as Scarp
Identification and Contour Connection Method (SICCM). The details behind the performance of
either step are dictated by the desired results, the existence of nearby manual landslide
inventories, and available time. A detailed, step-by-step procedure for how to implement this
methodology may be found in Appendix E, and related source code may be found in Appendix
G. This section will provide the background needed for successful implementation.

3.1.2 Base Data Acquisition and Processing

All landslide inventory approaches presented in this report begin with a DEM, which may be
derived from lidar or other remotely sensed data. No DEM is automatically disqualified from
being mapped using this methodology, but the resolution and quality directly influence the size
of landslide that may be mapped. The user must first examine the hillshade, or other DEM-
derived layer of their choice and decide if landslides are visible. If the user cannot see landslides,
the computer likely will have difficulty identifying the features as well. If the user can see
landslides, the focus then shifts to how confident they are in the landslides that they see.
Confidence is often dictated by the quality of the DEM. Quality, in this sense, refers to the
amount of noise present in a DEM. Noise may be the result of processing, such as incomplete
vegetation removal from lidar data (Figure 3.1A), or spatial interpolation, such as the generation
of a triangular irregular network (TIN) with lidar (Figure 3.1B) or commonly available contour-
derived surfaces (Figure 3.1C). While these forms of noise may be present at the DEM’s native
resolution, we assume that when reduced to some working resolution, the noise will be muted.
Nonetheless, if the scarp features exist at the same scale as the noise, then the working resolution
will mute those features as well.

In this report, selection of a working resolution is a qualitative endeavor, although significant
testing of lidar data prepared to Oregon Lidar Consortium standards (Watershed Sciences Inc.,
2010) has shown that resampling of 3 foot native resolution DEMs to a 20 foot working
resolution can be reasonably effective. Practitioners interested in optimizing the working
resolution for a specific dataset should resample their DEM to several different resolutions and
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compute slope from each resampled DEM. The optimal resolution is the smallest raster cell-size
that eliminates unwanted artifacts and anthropogenic features (i.e., roads and building
foundations). This process is illustrated in Figure 3.2, where an originally 3 foot resolution DEM
was resampled to 10, 20, and 30 foot resolutions. Roughness from artifacts is evident at A and B
for the 3 and 10 foot examples, while roughness from landslide topography is evident at C in all
but the 30 foot example. Notice how artifacts are still present in the 10 foot hillshade, but not in
the 20 and 30 foot hillshade. The 20 foot DEM would be considered better than the 30 foot DEM
because it has eliminated most of the artifacts while sacrificing less detail of the original DEM.

o7
C ( Contours

3,000 6,000
Feet

Figure 3.1: Common examples of noise in DEMs through examination of hillshades. The
scale at which noise exists can vary significantly depending on how a DEM was produced.

3 feet 10 feet 20 feet 30 feet

Landslide Sca Best Choice

Figure 3.2: Illustration of original DEM and three resampled versions. The 20 foot
resolution is considered optimal because it eliminates the artifacts while retaining as much
of the original DEM’s detail.
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While the 20 foot resolution works well for the example in Figure 3.2 and serves as an excellent
starting point for all lidar-derived DEMs prepared to OLC standards, practitioners should
understand that some landslide scarps do exist at other scales. If these other scarps are very
important to the work being performed, then it is recommended that the scarp identification
procedure be completed at multiple resolutions and all resulting scarp lines combined into a
single shapefile in GIS before running the CCM algorithm.

3.1.3 Scarp ldentification Procedure

Landslide scarps are the location of vertical displacement that marks the uppermost boundary of
a landslide’s extent. At the base of the scarp, a hummock is where displaced material has come
to rest. Where the scarp and the hummock meet, there is a topographic trough where the terrain
briefly curves upward. For the purposes of this methodology, scarp lines may be defined as
either the crest of the scarp or upward curving trough (Figure 3.3).

Internal Fi
Searps

Top of Landslide

Head Scarp

s

Figure 3.3: Acceptable CCM input scarp locations (adapted from SP 42, Burns, 2009).

This methodology section will discuss two scenarios that exist for scarp identification: manual
digitization of scarp lines, and semi-automatic digitization of scarp lines. The semi-automatic
digitization can be further broken down based on whether or not a nearby, or geologically
similar, manually mapped landslide inventory exists. Manual mapping by an expert is considered
to be the most accurate yet most time consuming approach; whereas, semi-automatic mapping
requires less time, and in some cases, less experience from the practitioner. The performance of
each scenario will be detailed in the sections below.

The semi-automatic scarp line identification procedure is performed in three steps: segmentation,
classification, and formation of scarp line features (Figure 3.4). Strategically placed among these
three steps are several points of intervention that allow an experienced practitioner to manually
influence the process, if desired. Each intervention is meant as a brief period in time (several
minutes, or less) when the practitioner may review the entire study area and make minor changes
to numerical thresholds or the size of objects being mapped. The time involved in intervention is
a function of scale or the level of correction desired; however, after several minutes to an hour,
the returns tend become diminished.
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Figure 3.4: Flowchart of semi-automatic scarp line mapping procedure. Numbered items
represent tools within the SICCM toolbox.

3.1.3.1 Segmentation

Prepare Mixture Raster

The first group of tasks illustrated in Figure 3.4 are collectively titled segmentation. The
purpose of the segmentation process is to create the mixture raster. The mixture raster is
produced through pixel-by-pixel multiplication between two digital elevation model
(DEM) derivatives - slope and profile curvature - which results in cell values that
represent the terrain’s concavity or convexity. It exaggerates scarp crests (convex
topographical features) and troughs (concave topographical features). These
exaggerations can then be visualized on a given DEM to highlight scarp-like features.

Setting the Mixture Threshold

Once the mixture raster is created, a user should apply Jenks Natural Breaks optimization
(de Smith, 2015) to create three classes, each representing similar cell values. The lowest-
valued class will represent areas of convexity in the terrain, which includes scarp crests
and ridgelines. The highest-valued class will represent areas of concavity in the terrain,
which includes troughs and stream channels. The mixture threshold is the class break
between the highest-value class and the lower-value classes (Figure 3.5).
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Figure 3.5: Histogram produced from pixels of the Mixture raster.

Separating scarp crests from ridgelines is challenging due to their topographic similarities
(Figure 3.6), and failure to do so results in significant landslide over-prediction. Because
of this challenge, the semi-automatic procedure attempts to map the scarp troughs
instead. Nonetheless, a user may elect to use scarp crests as well, but should be cautious
about over-prediction. The values that represent the scarp troughs in the mixture raster
are found in the highest class. The mixture raster is then re-classified so that you exclude
all but the highest class, which is representative of troughs.

Ridgeline

______ﬂ_q_‘__ Scarp Crest Convexity

S / Scarp Trough .
i‘% Concavity -————-—-
| '”-_-""‘\g Internal Scarps

=
Roads
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Figure 3.6: Common sources of convex and concave topography in a typical mapped
region.

27



The values of the highest class are converted from clusters of cells to polygons called
scarp candidates. Each scarp candidate represents an area that may be a scarp trough, but
may also be streams, roads, and other topography with concavity, as displayed in Figure
3.6.

3.1.3.2 Classification

Once scarp candidates have been produced, the task is to identify which polygons are
scarp troughs. For this step, called classification, the practitioner may choose to eliminate
non-trough features using varying approaches or to use a logistic regression classifier to
filter scarp candidates based on training data sets, like manually mapped landslide
inventories with digitized headscarps. DOGAMI currently maps landslide features with
digitized headscarps. In either case, the outcome is that all candidates are assigned a class
of scarp or non-scarp.

Elimination of Non-Scarp Topography

Scarps troughs, roads, streams, and rock outcrops all have topography that may cause
them to be mapped as a scarp candidate. If most non-scarp trough topography is
associated with streams, roads, or rocks, then it is possible to eliminate these features
using digitized road, stream, or rock layers. Candidates that intersect (simple intersection,
no buffer) road or stream lines, or rock polygons, may simply be removed and the
remaining candidates are assumed to be scarp troughs.

This methodology comes with an approach for mapping rock outcrops on the working
resolution DEM. First, the working resolution DEM is resampled to a lower resolution to
create a smoother form of the topography. The smoothed DEM is then subtracted from
the working resolution DEM, effectively computing the volume difference between the
DEMs. Pixels with the greatest volume difference are considered to be rock outcrops, and
are converted into polygons, which can then be used in the elimination process.

- |- candicates]

Figure 3.7: Elimination of Non-Scarp Topography using stream beds and rock outcrops as
non-scarps to classify candidates.

Logistic Regression Classifier
Logistic regression is a statistical technique used to differentiate between two groups.

The classifier “learns” from an existing landslide inventory and uses the information to
classify candidates as scarp troughs, or non-scarp troughs. If a manually produced
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landslide inventory exists nearby, or has similar landslide geomorphology to the area
being mapped, then the logistic regression presents a simple and rapid way for a
practitioner to perform this classification with more confidence. In order to operate the
logistic regression classifier, candidates must also be produced for the area mapped in the
existing manual inventory. Candidates that lie within the extents of inventoried deposits
are called scarp troughs and all other candidates are called non-scarp troughs.

The logistic regression is driven by topographic variables describing each candidate and
outputs a label of scarp or non-scarp. Each variable is a statistic (i.e., mean, standard
deviation, range, etc.) computed from the raster cells of elevation derivatives underlying
each candidate polygon.

3.1.3.3 Formation of Scarp Lines

Once the candidates have been classified as scarp troughs, then they may be thinned into
scarp lines (Figure 3.8). The candidate represent an “area” where the scarp trough is
located. The CCM model requires polyline inputs; therefore, the candidates must be
converted from raster pixels to polylines.

B cendidates
Lines removed after thinning

. Final Lines (Scarps)

N <=
0 250 500
 Feet
—— Final Lines (Scarps)
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] 250 500
——— Feet

Figure 3.8: Blue candidates are thinned into green scarp lines during the thinning process.
Red lines are removed to prevent intersecting scarp lines.
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3.1.3.4 Interventions

Intervention 1: Finding a Cell Size for Mapping

Choice of a good mapping cell size will result in the best candidate shapes with the least
amount of noise. Selection is made by producing slope rasters at several cell sizes and
interpreting which one does the best at eliminating noise from the original DEM. Noise
has been eliminated when slopes are smooth surfaces with no small dimples or visible
triangular planes.

Intervention 2: Manual Mixture Thresholding

Although Jenk’s Natural Breaks is an acceptable method towards identifying the mixture
threshold, minor manual adjustments in the threshold value can lead to improved results
in the majority of cases. These adjustments include either increasing or decreasing the
threshold that divides the classes. Increasing the threshold decreases the number of
candidates. This may exclude some real scarp lines while removing false scarp lines.
Decreasing the threshold will increase the number of candidates. While this will increase
the capture of actual scarp lines, it may also include many false scarp lines (Figure 3.9).

In order to determine how to adjust the threshold, the user should review candidate scarp
lines overlain on the DEM. If there are many candidates that do not represent actual scarp
lines, increase the threshold. If there are actual scarp lines missing or excluded from
candidates, decrease the threshold.

Proper intervention requires that the practitioner understands the appearance of scarp
candidates and how it is influenced by the threshold. Figure 3.9 gives an example of what
to look for during manual thresholding of the mixture raster. Good scarp lines rely on
simple, continuous candidates, but removal of intersections means that some complex
shapes may still be reasonable. Procedurally, manual thresholding should begin at the
second and third class threshold defined by Jenk’s Natural Breaks.

Figure 3.9: Three examples of mixture thresholds and their effect on candidate formation.
Note that the threshold values are unique to the DEM depicted, and values will likely be
different for other DEMs.
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Intervention 3: Selecting the Best Stream Channels

The stream channels used in non-scarp identification are meant to represent any
topographic channels or gullies associated with streams, and are not necessarily where
surface water is flowing. In many cases, existing stream databases, such as the National
Hydrography Dataset (NHD) may provide adequate features for SICCM. Despite this
available data, producing a stream channel network is relatively easy, and Intervention 4
is an iterative process that tests various flow accumulated areas for the initiation of
stream lines.

Intervention 4: Manually Change Incorrect Classes

There will likely be instances where the chosen classification method incorrectly decides
between scarp and non-scarp. If time allows, practitioners should spend several minutes
to an hour looking over the mapped area and using judgement to manually change
incorrect classes.

Once classes of scarp and non-scarp have been assigned to candidates, they are ready to
be thinned into scarp lines. This methodology performs the steps illustrated in Figure 3.8,
which provides the practitioner with scarp line features. At this point, the scarp lines are
now ready for input into the modified Contour Connection Method for mapping the
landslide deposits below each scarp.

3.1.4 Mapping Landslide Deposits
3.1.4.1 Overview of the Contour Connection Method
Landslide deposits are mapped using an adaptation of the Contour Connection Method
(CCM, Leshchinsky et al., 2015). Required inputs include the scarp lines identified in
Section 3.1.3.3 and the parameters listed in Table 3.1.

Table 3.1: Definitions of Parameters Used by the Modified Contour Connection Method.
Notation follows that of Leshchinsky et al. (2015).

Parameter Name Definition Recommended Values
Aactive Active slope Minimum gradient for active 0.03, 0.05 (rise/run)
slide region
AE; Contour interval | A fixed vertical distance between | 10, 20, 30 feet
X-Y contour layers for a given
range Z
Ln Nodal spacing A fixed length between contour 10, 20, 30 feet
node assignments
Bn Branch parameter | A branching connection 3,5
parameter.

The steps implemented (automatically) by the modified Contour Connection Method are
as follows (Figure 3.10).
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A DEM is input. To prevent any ill effects of noise, it is recommended that the
DEM has been resampled to the working resolution, as described in section 3.1.2.

A collection of scarp lines is input, derived manually or from automated
approaches described in Section 3.1.3.

Based on dimensions of each individual scarp line, the algorithm draws a square
region of interest around a hypothetical inscribed circular landslide downslope of
the scarp. The diameter of the circle is set to 1.4 times the scarp line length.

The DEM is clipped to the region of interest in order to reduce the time required
for analysis.

Elevation contours are drawn at the user-specified contour interval.

Nodes are drawn at the user-defined nodal spacing along each contour.

Nodes are connected to downslope nodes that exist on an adjacent contour of
lower elevation. The connection between given nodes will occur at the steepest
gradient possible. The number of connections must be less than, or equal to, the
user-specified branch parameter. Connections may only be drawn if their slope
exceeds the user-specified active slope.

A polygon is drawn around the edges of the connected nodes. This polygon
represents the potential extents of a landslide feature.
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Figure 3.10: Operations of the modified Contour Connection Method.
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Operation of the modified CCM algorithm can take on two forms: use of recommended
CCM parameters (Table 3.1) or use of manually-selected CCM parameters. Practitioners
with little experience operating the algorithm or limited time should choose the
recommended parameters. The recommended parameters are not perfect for all
landslides, but perform well on terrain with a variety of landslide types (e.g., the Oregon
Coast Range).

Manually selecting appropriate CCM parameters requires some prior knowledge of the
relative influence of each parameter. Practitioners should always begin with the
recommended parameters, and then use the results to decide which parameters to vary.
Figures 3.11 through 3.15 are provided with the purpose of giving the practitioner some
basic experience with the sensitivity of each parameter. Landslide extents are shown with
transparent red polygons and the CCM connections that comprise them are shown as blue
lines. Below each figure is a description of how each parameter influenced mapping.

3.1.4.2 Effect of Varying the Active Slope

Active slope controls the termination of the CCM process. The basic idea is that
landslides occurring in steep terrain will follow steep active slopes, while landslides
occurring in gradual terrain will follow shallow, active slopes. In selecting an active
slope, the practitioner will want to choose a value that is steep enough to prevent
connections from traversing hillslopes, but shallow enough to allow connections to form
over and around landslide hummocks. In Figure 3.11, right image, the active slope was
too steep, which resulted in the landslide on the right being undermapped from a
premature termination of connections.

Figure 3.11: Effect of varying the active slope. The left image was mapped using
recommended parameters (contour interval and nodal spacing of 10 feet, active slope of
0.05, and branch parameter of 3) and the right image was mapped using the recommended
parameters and an active slope of 0.08.
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3.1.4.3 Effect of Varying the Branch Parameter

The branch parameter controls the ability of connections to spread laterally as the process
moves downslope. Larger branch parameters may be good for cases where the landslides
being mapped are broad, low-sloping, or hummocky, where connections need to flow
around objects. Use of too large of a branch parameter can lead to overmapped regions
(i.e. ridgelines such as shown in the center of Figure 3.12, right image) as well as major
increases in computation time. Recommended branch parameter values are between 2-5.

Figure 3.12: Effect of varying the branch parameter. The left image was mapped using
recommended parameters (contour interval and nodal spacing of 10 feet, active slope of
0.05, and branch parameter of 3) and the right image was mapped using the recommended
parameters and a branch parameter of 5.

3.1.4.4 Effect of Varying the Nodal Spacing

Nodal spacing controls the lateral resolution of the contour connection procedure, which
has a significant influence on the distance used to compute connection slope (Figure
3.13). As nodal spacing increases, there is an increase in the slope distance and no change
in the slope rise. The result is similar to increasing the branch parameter, but at the same
time reducing computation time.
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Figure 3.13: Effect of varying nodal spacing. The left image was mapped using
recommended parameters (contour interval and nodal spacing of 10 feet, active slope of
0.05, and branch parameter of 3) and the right image was mapped using the recommended
parameters and nodal spacing of 20 feet.

3.1.4.5 Effect of Varying the Contour Interval

Contour interval controls the vertical resolution of the contour connection procedure.
Increasing the contour interval can be a useful technique to overcome small features that
cause early termination (Figure 3.14, right image), without producing major changes to
results obtained using the recommended parameters. In all cases, the contour interval
should be chosen based on the dimensions of the smallest landslide being mapped as well
as considering the resolution of the corresponding DEM.

Figure 3.14: Effect of varying contour interval. The left image was mapped using
recommended parameters (contour interval and nodal spacing of 10 feet, active slope of
0.05, and branch parameter of 3) and the right image was mapped using the recommended
parameters and contour interval of 20 feet.
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3.1.4.6 Combined Effect of Varying the Contour Interval and Node Spacing

Increasing nodal spacing and contour interval together is generally the best way to reduce
the influence of the roughness of large hummocks that might prevent the algorithm from
moving downslope. The results are generally similar to those obtained using the
recommended parameters (Figure 3.15), and they should be used in situations where the
practitioner is limited by time.

Figure 3.15: Combined effect of contour interval and node spacing. The left image was
mapped using recommended parameters (contour interval and nodal spacing of 10 feet,
active slope of 0.05, and branch parameter of 3) and the right image was mapped using the
recommended parameters and contour interval and node spacing of 30 feet.

3.1.4.7 Computational Considerations for Running SICCM

Computation times for SICCM are dictated by the size of area being mapped and the
value of deposit mapping parameters. Time required to produce candidates and scarp
lines is a function of map size, and increases in time generally increase linearly with area.
Deposit mapping parameters behave differently, as increases in parameter values
typically result in larger increases to computation time. For example, a change in branch
parameter from three to five will result in an increase in computation time by a factor of
four, or even more.

Designing a set of deposit mapping parameters should not only be based on desired
results, but also the amount of time available. Changes in branch parameter will always
lead to the most significant increase in computation time, followed by contour interval
and nodal spacing, and then active slope. In many cases, changing the active slope will
result in very small increases in computation time.

Measured computation times for the SICCM inventories associated with this report
ranged from 15 to 45 minutes for scarp identification and 20 minutes to 3.5 hours for
deposit mapping over large extents (i.e. >100 sg. mi.). These times are unique to the
computers that performed the mapping, and times are expected to vary for other
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computers. Most users will likely see that the procedure requires more time to perform,
but the increase in time is not expected to be significant.

3.1.4.8 Advantages and Disadvantages versus Manual and other Automated
Approaches

SICCM has been designed to be simple to understand, quick to implement, applicable to
a large variety of terrain, and capable of producing accurate results. Other automated or
semi-automated landslide inventorying methods presented in the literature will likely
satisfy one or two of those criteria, but not all four. Appendix B includes a listing of
accuracies reported in the literature, and SICCM is on par with each of the methods.
SICCM has also been applied to a greater variety of terrain than other methods.
Furthermore, SICCM has been designed to operate without the need for software other
than ArcGIS™. All other approaches require the use of at least of MATLAB® or
eCognition®, which may incur additional licensing costs.

3.2 RISK MAPPING WITH CCM LANDSLIDE INVENTORIES

3.2.1 Overview

Chapter 2 established that a landside risk map is the synthesis of landslide hazard and
infrastructure exposure and vulnerability. Hazard has previously been considered as the
likelihood of some event, typically heavy precipitation or an earthquake, triggering landslides.
Because the goal of this report is to evaluate risk using a detailed landslide inventory, a new
approach was developed (Table 3.2).

Table 3.2: Incorporation of Landslide Inventory and Highway.

Risk Treatment
Component
Hazard e The deposits of deep-seated landslides are unstable and represent a

likely setting for shallow landslides
o Deep-seated landslides may reactivate during a wet winter season or
during a large earthquake

Exposure e The spatial correspondence of landslide extents with highway
infrastructure
Vulnerability e The cost of and time required to rebuild highway

e The economic loss due to reroutes and delays within the
transportation network

3.2.2 Hazard Component

Landslide hazard is visible in the context of a landslide inventory as either shallow landsliding of
unstable topography within the deposits of a deep-seated landslide or as movement of the entire
deep-seated landslide. The first hazard is more common as landslide-prone terrain often
experiences small slope failures from differential movements, settlement of loose landslide
material or relatively steep, weak topography deposited in vulnerable dynamic terrain (e.g.,
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streams, creeks, marine environments, etc.). These failures frequently occur after heavy rainfall,
and result in the deposition of soil and debris on infrastructure. The second hazard — large,
catastrophic movement of slopes - is rarer, but its occurrence can result in the total loss of
infrastructure and the ground it was built upon. Note that both hazards are likely to occur during
a major earthquake.

Despite potential differences in cause and frequency of these hazards, they may be modeled as
the same unstable block (Figure 3.16). This similarity exists because of a worst-case assumption
that the violent reactivation of a deep-seated landslide would lead to failure of a roadway
embankment. The difference in hazards is accounted for by defining that shallow landslides will
fall onto the roadway, which may be repaired using excavation, and that the deep-seated
landslides may fail with a total loss of roadway, which requires the roadway to be rebuilt for that
section.

Reactivation of Deep-Seated Landslide: Unstable Deposits within Deep-Seated Landslide
Roadway is completely lost Soil is deposited on roadway
Roadway Width Roadway Width
40 feet 40 feet

Fill
($18.50 per cu. yd.)

o, LB <
Excavation

($11.00 per cu. yd.)

Figure 3.16: Example geometry of unstable blocks modeled for deep-seated and shallow
landslides.

3.2.3 Exposure Component

Unstable blocks are identified by considering the slopes within the extents of a landslide mapped
by SICCM. Slopes that are steeper than the mean slope within landslide deposits are assumed to
be unstable, as the deposits tend to be weak, unconsolidated soils. Any time that there are
landslide deposits with a steeper slope than the mean slope, there must also be an adjacent slope
that is less steep than the mean slope. This less steep slope is uniquely associated with a single
unstable mass, whereas the steeper slope may link several unstable masses. For this reason, the
less steep slopes are used to identify the horizontal surface of an unstable mass (LB in Figure
3.16).

The hazard considered for each unstable block, deep-seated versus shallow, is determined by the
spatial relationship between the block and infrastructure. If the block intersects the road line,
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then it is treated as the deep-seated case (Figure 3.17). All other blocks are treated as the shallow
landslide case.

=

0 125250 500 750 1,000 "
= — F———Feet *\\ \

Figure 3.17: Hlustration of the two types of block failure and their interaction with the
roadway.

3.2.4 Vulnerability Component
3.2.4.1 Measurement of risk

Risk is ultimately expressed as (1) a volume of soil needing to be filled or excavated, (2)
an expected duration of road closure, (3) a dollar amount reflecting economic losses, or
(4) a dollar amount reflecting repair costs. This inventory-based approach exploits
landslide and infrastructure geometry to compute volumes, which can then be linked to
the other risk measures (Figure 3.18). Links between measures have been developed
through various sources, and the rest of this section will describe each source.
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Figure 3.18: Relationship between different risk measures and a description of the method
used to compute each measure.

3.2.4.2 Cost required to rebuild or repair highway

Rebuilding or repairing a highway is a complex process with many different costs, many
of which vary significantly. This method uses the available construction and repair costs
(Table 3.3) found in the ODOT Unstable Slopes Database to convert the volume of
unstable blocks into a dollar value. General excavation is used in the case that unstable
material falls onto the roadway and needs to be excavated, and stone embankment is used
in the case that the roadway fails and needs to be filled. This analysis used average
values, despite the fact that all study areas were located in either ODOT Region 2 or 3,
because the volatility of prices in the Unstable Slopes Database was interpreted as a
reflection of inconsistent estimating practices and not regional costs. Custom ArcGIS®
tools have been provided in the event that ODOT engineers choose to perform an analysis
with alternative values.

Table 3.3: Average Costs to Repair or Reconstruct Roadway Listed by ODOT Region
(from Unstable Slopes Database).

OoDOT General Excavation Stone Embankment
Region (Cost per m3) (Cost per m?)

1 $22.44 $34.61

2 $10.97 $20.66

3 $15.16 $30.69

4 $11.85 $16.65

5 $9.57 $17.50
Average $14.40 (~$11.00 per cu. yd.) $24.02 (~$18.50 per cu. yd.)
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3.2.4.3 Impact to commerce and economic cost of highway closure

Aside from highway repair, a road-closing landslide may also incur economic costs.
These costs are indirect, and are due to fuel expenses and time losses from reroutes in the
highway network. The magnitude of lost commerce and economic delays is a function of
time, and its calculation requires knowledge of the duration of a road closure.

The duration of a highway closure is equivalent to the time required to repair the
highway. While repair times may be related to the time it takes to excavate or fill a
certain amount of material, there are still many uncertainties. In an attempt to capture
these uncertainties, a database of landslide repairs was compiled and used to relate
volume of soil to time of closure (Table 3.4). The repair rate was determined as 250 cubic
yards per day, which is an approximate average of the values computed from this
database (Table 3.4).

Table 3.4: Landslides from Winter 2016-2017 Having Both Time of Road Closure and
VVolume of Material Excavated Reported in the News.

Date Date Days Material
Road Affected | Nearest City Closed Opened Closed Volume (yd?®)
OR 36 Triangle Lake | 1/18/2016 | 1/27/2016 9 100
River Road | Salem 2/21/2017 | 2/21/2017 1 200
US 20 Toledo 1/5/2017 1/6/2017 1 4000
W Burnside
Road Portland 1/18/2017 | 1/20/2017 2 200
OR 36 Triangle Lake | 1/18/2017 | 1/23/2017 5 1400
OR 36 Triangle Lake | 1/23/2017 | 1/27/2017 4 1200
W Burnside
Road Portland 3/15/2017 | 3/24/2017 9 300

Once the duration of closure has been determined, daily closure costs (Table 3.5)
prepared by the Transportation Planning Analysis Unit (TPAU; Knudson and Dudich,

2017 and 2018, in Appendix D) can be multiplied by the estimated duration of closure to

compute a total closure cost for each unstable block.
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Table 3.5: Range of Potential Daily Costs Due to a Landslide Closure on Route 126 (From

Appendix D).
Location Time Costs Vehicle Operating Range of Total Costs
Costs
OR 126
Tiernan $102,000 — $143,000 | $38,000 - $53,000 $140,000 - $196,000
OR 126
Walton $ 21,000 - $33,000 $ 7,500 - $12,000 $ 28,500 - $45,000
US101 $96,471 - $192,865 $70,013 - $139,969 $166,484 - $332,834
ORA42 East of
Remote $29,028 - $72,497 $7,048 - $17,601 $36,075 - $90,098
ORA42 South of
Myrtle Point | $188,021 - $375,892 | $47,393 - $94,749 $235,414 - $470,640
ORA42 At
Norway $26,303 - $52,596 $5,391 - $10,780 $31,695 - $63,376
ORA42 North of
Cedar Point | $39,277 - $78,538 $6,988 - $13,973 $46,265 - $92,511
OR36 at
Alderwood
State Wayside | $2,167 - $5,412 $6 - $16 $2,173 - $5,428
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4.0 ACCURACY ASSESSMENT

41 SEMI-AUTOMATIC LANDSLIDE INVENTORY MAPPING

The purpose of an accuracy assessment for the SICCM landslide inventorying procedure is
twofold. First, the assessment identifies values of deposit mapping parameters that produce the
best results. Second, the assessment is necessary to convey the quality of maps produced using
the procedure. The content of this section will describe the performance SICCM, as described in
Chapter 3, and will not discuss the performance of earlier iterations of the methodology.
Development of the SICCM methodology saw several changes to both scarp identification and
deposit mapping procedures, and accuracy assessments were performed following some of these
changes. These initial accuracy assessments have contributed to the design of SICCM and their
results have been included in Appendix B.

In order to identify appropriate deposit mapping parameters, a parametric analysis (Table 4.1)
was performed by comparing the results of several parameter combinations with manual
inventories derived by the Special Paper 42 methodology in Big Elk Creek (Burns, 2012a), Gales
Creek (Burns, 2012b), and Dixie Mountain (Burns, 2012c). The inventories are all located in
western Oregon (Figure 4.1), and are considered to represent a significant range of landslide
geomorphology and sizes. The result of this analysis is a single set of deposit mapping
parameters (Table 4.2) that were qualitatively deemed to have a good combination of precision,
recall, and accuracy on all three inventories.

Table 4.1 presents several accuracy measures that warrant further explanation. Each measure is
computed by converting both the manual inventory and SICCM inventory to rasters and then
comparing the rasters on a pixel-to-pixel basis. A simple illustration is provided in Figure 4.2.

e Landslide Percent of Map: the ratio of landslide area, based on the manual inventory, to the
area of terrain that was mapped. The measure is independent of SICCM results. It is
important because it highlights the challenge of appropriately mapping (neither overmapping
nor undermapping) landslides in a given terrain.

e Accuracy: the percentage of area mapped by SICCM in agreement with the manual
inventory. The accuracy computation considers both landslide and non-landslide area, pixel
by pixel. This value represents an overall assessment of SICCM’s ability to accurately map
the extents of landslides.

e Recall (Percent of Manual): the ratio of manual inventory landslide pixels to the pixels
mapped as landslide by SICCM. Low values represent under mapping by SICCM. While
high values are typically better, the measure does not account for area not mapped as
landslide by the manual inventory. This value represents SICCM’s ability to directly
replicate the shape of manually drawn landslides.
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e Precision (Percent Correct): the ratio of SICCM landslide pixels that correspond with
landslide pixels of the manual inventory to the total number of SICCM landslide pixels. Low
values tend to reflect over mapping.
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Table 4.1 Results of Parametric Study on SICCM Deposit Mapping Parameters.

Branch
Contour | Nodal | Active | Para- LS%
1D Site Interval | Spacing | Slope | meter TP TN FN FP | ACC | MAP | Recall | Precision
1 S?elzi 10 10 0.05 3 7716 | 122856 | 16053 | 5731 | 0.86 | 0.16 | 0.32 0.57
2 S?elzi 30 30 0.05 3 9172 | 121100 | 14608 | 7010 | 0.86 | 0.16 | 0.39 0.57
3 S?elzi 10 10 0.05 o) 11113 | 118046 | 12663 | 10534 | 0.85 | 0.16 | 0.47 0.51
4 S?elzi 30 30 0.03 o) 12975 | 114084 | 10823 | 144741 0.83 | 0.16 | 0.55 0.47
5 S?elzi 10 10 0.03 o) 12205 | 116737 | 11571 | 11843 |1 0.85 | 0.16 | 0.51 0.51
6 g?@!gls( 20 20 005 |3 8791 | 12167114973 6455 |0.86 |[0.16 [0.37 |0.58
7 g?@!gls( 20 20 005 |5 12397 | 117535 | 11387 | 11037 | 0.85 |0.16 [0.52 |0.53
8 g?@!gls( 30 30 003 |3 9507 |119988 | 14277 8118 |0.85 [0.16 |[0.40 |0.54
9 gfggsk 30 30 0.05 5) 12722 | 116010 | 11072 | 12552 |1 0.84 | 0.16 | 0.53 0.50
10 S?elzi 10 10 0.03 3 8427 | 122007 | 15343 | 6579 | 0.86 | 0.16 | 0.35 0.56
11 S?elzi 20 20 0.03 3 9193 | 121585 | 14571 | 7939 | 0.85 | 0.16 | 0.39 0.54
12 S?elzi 20 20 0.03 o) 12705 | 116456 | 11077 | 13050 | 0.84 | 0.16 | 0.53 0.49
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Dixie

1 M_Ol_mtain 10 10 0.05 17183 | 70702 | 36987 | 4984 |0.68 [0.42 |0.32 |0.78
2 I\D/If())(lfj?]tain 30 30 0.05 12348 | 72301 | 418043070 |0.65 [0.42 |0.23 ]0.80
3 I\D/If())(t;itain 10 10 0.05 13453 | 71772 | 40790 | 4124 | 0.65 [ 042 |025 |[0.77
4 I\D/If())(t;itain 30 30 0.03 22694 | 68704 |31494 6886 |0.70 [ 042 |0.42 |[0.77
5 I\D/If())(t;itain 10 10 0.03 8878 | 73384 | 45449 |2407 |0.63 [042 |016 [0.79
6 I\D/If())(;?\tain 20 20 0.05 10831 | 73027 | 43438 | 2748 |0.64 [ 042 |0.20 [0.80
7 I\D/If())(l;?]tain 20 20 0.05 17089 | 71146 | 37161 | 4660 |0.68 [0.42 |0.32 |0.79
8 I\D/If())(l;?]tain 30 30 0.03 15628 | 71410 | 385914198 |0.67 [0.42 |0.29 ]0.79
9 I\D/If())(l;?]tain 30 30 0.05 18816 | 70020 | 35330 | 5279 |0.69 [0.42 (035 |0.78
10 I\D/If())(lfj?]tain 10 10 0.03 12027 | 72461 | 42189 | 3160 |0.65 [0.42 |0.22 |0.79
11 I\D/If())(t;itain 20 20 0.03 13605 | 71948 | 40604 | 3596 |[0.66 |[0.42 |025 [0.79
12 I\D/I'I())(Llliltain 20 20 0.03 19864 | 69769 | 343795720 [0.69 [042 |037 [0.78
12 g;gellE(Ik 20 20 0.03 61757 | 140713 | 19654 | 24560 | 0.82 | 0.33 |0.76 [0.72
8 g;gellE(Ik 30 30 0.03 44108 | 154564 | 32279 | 107331 0.82 | 0.32 [0.58 [0.80
9 glrgellilk 30 30 0.05 60563 | 141296 | 20819 | 23938 | 0.82 | 0.33 |0.74 |[0.72
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Figure 4.1: Location of manual inventories used in the accuracy assessment and the
highway corridors mapped by SICCM.

Table 4.2: Recommended Values Based on the Parametric Study.

Parameter Value
Contour interval 20 feet
Nodal spacing 20 feet
Active slope 0.03
Branch parameter 5
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Figure 4.2: Illustration of the accuracy measures presented in Table 4.1. Solid colors,
represent the portion of each inventory used in calculations, and a solid black square represents
the entire mapped area.

The deposit mapping parameters in Table 4.2 used to produce SICCM inventory maps for the
highway corridors discussed in the next chapter. To provide a sense of the quality of the corridor
landslide inventories, Table 4.3 includes the accuracy measures computed based on the Table 4.2
parameters for all three manual inventories, and an additional manual inventory for coastal Curry
County (Burns, 2014). The Curry County inventory overlaps with much of the US Route 101
corridor, and provides a good representation of the quality of maps produced for this report.

Table 4.3 also includes a new measure, Percent of Slides Mapped > 50%, inspired by Van Den
Eeckhaut et al. (2012), to measure how well the SICCM inventories capture individual landslides
from a manual inventory. Unlike the other measures, 50% of Manual is computed by looking at
each manually mapped landslide and counting those whose extents have been at least 50 percent
mapped by SICCM. This measure does not completely describe accuracy, as it does not consider
over-prediction, but it does add another perspective to the accuracy assessment.
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Table 4.3: Results of Accuracy Evaluation for Selected Deposit Ma

pping Parameters.

Area Percent of
L ocation Mapped Landslide N Slides
(Square Percent of | Accuracy | Recall | Precision | Mapped >
Miles) Map (%0) (%) (%) (%) 50% (%)
Gales Creek |55 16 84 53 49 48
Dixie
Mountain 47 42 69 37 78 31
Big Elk 88 33 82 76 72 70
101 South of
Otter Point | 74 21 69 75 37 63
101 North of
Otter Point | 83 13 86 54 49 36

o1




52



5.0 RESULTSAND DISCUSSION

5.1 OVERVIEW

There are a number of outputs associated with this report, which include landslide inventory
maps and risk assessments for four ODOT-managed highways, but also the entire methodology
of Chapter 3, corresponding digital GIS data and the SICCM toolbox. This chapter will focus on
presentation and discussion of the inventory maps and risk assessments, and the digital data and
methodology are included with the report as geodatabases, an ArcGIS™ toolbox, and standalone
software. A list of these included files can be found in Appendix A, and step-by-step instructions
for how to use the methodology may be found in Appendix E.

Risk assessments have been presented as plots of risk measure (volume of soil, duration of
closure, etc.) versus milepost. Each unstable block is represented by a bar on the plot, with the
height corresponding to the total value for the block (not per unit length) and the length
corresponding to the length of highway that intersects the block. Figure 5.1 has been included to
assist in the interpretation of these plots.

Title displays y-axis label

<10 4——\— Estimated Failing Volume (m®)

2 !
15,000 m®> <«— 15/ TF i
— —
1 -
0.5}
0 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Milepost
Observations about landslides A and B:
* A affects the road for a greater length than B because its bar is wider
* A and B have similar failing volumes because their height is similar
* Since failing volume is similar, the landslides will also have similar durations of
closure

Figure 5.1: Guide to interpreting risk plots presented in this chapter.

The four ODOT-managed highways discussed in this section are Oregon Routes 36, 42, and 126,
and US Route 101 (Figure 5.2). Each highway serves a unique purpose in the Oregon
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transportation network, and all have been previously impacted by landslide activity. The
following sections will introduce each highway corridor, and then present landslide inventory
maps produced using SICCM and risk analyses based on the inventories.
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Figure 5.2: Location of the four study corridors within Western Oregon
(ODOT Regions 2 and 3).
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5.2 OREGON ROUTES 36 AND 126
5.2.1 Route 36 and 126 Overview

Oregon Routes 36 and 126 traverse the Oregon Coast Range between the southern Willamette
Valley and Florence. Although both are two lane highways passing through similar geology, the
purpose of each route is quite different. Route 36 services a number of small communities, and
sees annual average daily traffic (AADT) ranging from less than 500 west of Triangle Lake to
1,500 where it enters the Willamette Valley. Route 126 serves as a primary link between the
southern Willamette Valley and the Oregon Coast and sees AADT of approximately 4,000 to
6,000 for its entire course. Geology alongside most routes is entirely comprised of Tyee
Formation, with the exception of short alluvial segments when crossing floodplains. Landslide
activity along both routes is characterized by deep slides occurring at weak bedding interfaces,
and areas of high activity typically exists in places where bedrock dips steeply (Roering,
Kirchner, & Dietrich, 2005). The loosely deposited soils resulting from these deep landslides
also leads to small instabilities that routinely cause short road closures. This process has been
most visible in several multi-day closures of Route 36 during the 2015-16 and 2016-17 winters.

5.2.2 Route 36 and 126 Inventory Map

The SICCM methodology was used to map 466 square miles surrounding more than 80 miles of
Routes 36 and 126. A full-resolution landslide inventory map has been included with this report,
but a reduced size version can be found in Figure 5.3. A quantitative summary of the corridor is
presented in Table 5.1.

Table 5.1: Quantitative Summary of the Oregon Route 36 and 126 Landslide Inventory.

Quantity Route36 | Route 126
Area Mapped 466 sq. mi.
Number of Mapped Landslide Features 8,493
Number of Landslide Features that Intersect Highway | 63 48
Length of Highway 42.1 mi. 39.1 mi.
Length of Highway Crossing Landslide Deposits 6.1 mi. 5.9 mi.
Percent of Highway Length that Crosses Landslide
Deposits 14 % 15 %
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Figure 5.3: Landslide deposit inventory map for the Oregon Route 36 and 126 corridor of
the Oregon Coast Range. Inset maps have been provided to add detail in locations where
the highways pass through predicted areas of high landslide activity.
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The landslide inventory map shows a region dominated by landslide activity. Toward the west,
landslides occur on steeper slopes and at all aspects, and toward the east, landslides occur at
shallow slopes and appear on slopes of similar aspect. While landslide deposits are widespread in
the region, the highways were typically constructed on flat ground, near rivers and away from
landslides. The two settings where landslides appear to be a hazard are where the river forces the
highway against a canyon wall (Route 36: MP 1-5, MP 23-25; Route 126: MP 7-12, MP 15-18)
and where the highway crosses a pass from one river drainage to another (Route 36: MP 32-35;
Route 126: MP 19-23).

The aforementioned observations - that highways tend to be built on flat ground and away from
landslides - does not provide a sense of how far the two are apart. A look into how landslide
features are distributed within 1,000 feet of either highway (Figure 5.4) shows that a larger
number of landslides are located within 100 feet of Route 36 than Route 126; information not
obvious from Table 5.1 or from a quick glance at the inventory map. The close proximity of
landslides to Route 36 implies that it may be subject to more future landslides than Route 126.
Note that landslide features in Figure 5.4 are referred to as “new” because a given histogram
value does not reflect any values from histogram bars closer to the road. For example, the
histogram count of 200 to 300 feet does not reflect the count of 100 to 200 feet.

o 70 ‘ . .
§ 60 r I Route 36 | |
X% [ JRoute 126
Q50+ |
£
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=
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[¢)]
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Distance from Road Centerling, in feet

Figure 5.4: Distribution of landslide features within 1,000 feet of Oregon Routes 36 and
126. Note that the figure does not include landslides that intersect highway.

5.2.3 Route 36 and 126 Risk Analysis

A risk analysis was performed to gain more information about the potential dangers from
landslide hazards along Routes 36 (Figures 5.5 — 5.9) and 126 (Figures 5.11 — 5.15). Refer to
Chapter 3.2 of this report for detail on how the plots were created.

Figures 5.5 through 5.9 tend to agree with the previous observation that landslide risk is the
greatest when the highway crosses mountain passes (MP 34 — 39) or is confined by a river and
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hillslope (MP 2 and 14). Unfortunately, the plots do not indicate significant risk from mileposts
24 to 25, where recent landslide activity has been indicated by news reports. The omission is due
to SICCM’s failure to map the ancient Triangle Lake landslide and its deposits (Figure 5.10).
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Figure 5.5: Estimated volume unstable soil underlying Oregon Route 36 by milepost.
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Figure 5.6: Estimated duration of closures along Oregon Route 36.

60



«10° Repair Cost ($)

2 = 4
1 = 4
U 1 “ 1 H 1 1 1 1 | | ‘ u I“ ‘ 1 ‘ 1
0 1 2 3 4 5 6 7 8 9 10
%10°
2 - -
1 — -
0 1 L 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20
%10°
2 - -
| ‘ ‘ |
0 1 1 | 1 1 1 1 1 1 1
20 21 22 23 24 25 26 27 28 29 30
x105
2 — -
1 = 4
O 1 1 JL ‘ " lll 1 1 1 I 1 1
30 31 32 33 34 35 36 37 38 39 40

OR 36 Milepost

Figure 5.7: Estimated repair cost associated with reopening of Oregon Route 36 following
landslides the reactivation of mapped landslides.
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Figure 5.8: Approximate economic costs incurred by closures on Oregon Route 36.
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Figure 5.9: Cumulative volume of unstable soil estimated to underlie Oregon Route 36.
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Figure 5.10: Approximate extents of the ancient Triangle Lake landslide near Route 36.

More than 42,000 years (Baldwin, 1958) of sediment deposition makes much of the landslide too
flat for deposit mapping to occur, but the headscarp is well enough defined that scarp
identification should be expected to work. The reason why scarp identification failed is that the
landslide was too large for its headscarp to be mapped using a 20 foot resolution DEM. This
observation shows that while SICCM is flexible enough to capture many shapes and sizes of
landslides, it still cannot capture all landslides.
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The risk analysis for Route 126 is presented in Figures 5.11 to 5.15 below.
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Figure 5.11: Estimated volume unstable soil underlying Oregon Route 126 by milepost.
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Figure 5.12: Estimated duration of closures along Oregon Route 126.
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Figure 5.13: Estimated repair cost associated with reopening of Oregon Route 126
following landslides the reactivation of mapped landslides.
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Figure 5.14: Approximate economic costs incurred by closures on Oregon Route 126.
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Figure 5.15: Cumulative volume of unstable soil estimated to underlie Oregon Route 126.

The risk plots for Route 126 in Figure 5.11 to 5.15 are similar to those for Route 36, with most
landslide risk being estimated in areas where the highway is pinched between a river and a
hillslope.

5.3 OREGON ROUTE 42

5.3.1 Route 42 Overview

Oregon Route 42 connects Roseburg and Interstate 5 to the Oregon Coast communities of Coos
Bay, North Bend, and Bandon, as well as servicing numerous small towns and the cities of
Myrtle Point and Coquille along the way. AADT is greatest between Coquille and Coos Bay, at
greater than 8,000, and is lowest east of the junction with Oregon Route 542 (Powers Highway),
at less than 3,000. Detailed geologic information is generally unavailable for the road, but most
sources suggest similar geology to the Tyee Formation (Baldwin & Hess, 1971; Niem & Neim,
1990; Wells et al., 2000). A major landslide, resulting in a one-month highway closure, occurred
during the 2015-16 winter in an area of exposed bedding, which indicates that bedrock may be
weaker than expected of the Tyee Formation. Much of the highway east of Myrtle Point is in a
narrow canyon with limited stable ground, and is considerably more vulnerable to landslides and
rock fall than other routes traversing the Oregon Coast Range.

5.3.2 Route 42 Inventory Map
The SICCM methodology was used to map 480 square miles surrounding nearly 50 miles of
Route 42. The full-resolution landslide inventory map has been included with this report, but a

reduced size version can be found in Figure 5.16. A quantitative summary of the corridor is
presented in Table 5.2.
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Figure 5.16: Landslide deposit inventory map for the Oregon Route 42 corridor of the
Oregon Coast Range. Inset maps have been provided to add detail in locations where the
highway passes through predicted areas of high landslide activity.

69



Table 5.2: Quantitative Summary of the Oregon Route 42 Landslide Inventory.

Quantity Route 42
Area Mapped 480 sg. mi.
Number of Mapped Landslide Features 13,606
Number of Landslide Features that Intersect Highway 313
Length of Highway 49.4 mi.
Length of Highway Crossing Landslide Deposits 18.6 mi.
Percent of Highway Length that Crosses Landslide Deposits | 38 %

The inventory map for Route 42 exhibits two major landsliding patterns. First, a narrow canyon
on the eastern side (MP 40 — 50) leaves little stable ground for the highway, and results in a
major portion of Route 42 crossing landslide deposits. Second, small slumps between Coos Bay
and Myrtle Point (MP 0 — 22) present regular hazards to the highway, and endanger
infrastructure in the communities of Coos Bay, Coquille (MP 11), and Myrtle Point (MP 21).

As was done with Routes 36 and 126, a distribution of landslides within 1,000 feet of the
highway was prepared (Figure 5.17). Even more so than for Route 36, Figure 5.17 shows a
concentration of landslides in close proximity to the highway. This observation is likely related
to the geographic constraint posed by the narrow canyon mentioned previously.
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Figure 5.17: Distribution of landslide features within 1,000 feet of Oregon Route 42. The
figure does not include landslides that intersect highway.

The inventory-conveyed hazard observed in the narrow canyon (MP 40 — 50) is challenged by
the bedding planes evident in the canyon walls. A typical assumption is that the interbedded
sediments would be weakest along their bedding plane, and not orthogonal to it, as is visible in
Figure 5.18. Furthermore, this expected behavior is visible on the south canyon walls, where
shallow landslides appear to follow bedding. Initially, this observation might mean that the
inventory is incorrect, but closer examination shows that the bedding dips toward the east, and
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that the assumption is being satisfied. The reason for confusion is that the river has eroded the
formation in a way that gives the appearance of a strong northward dip.
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Figure 5.18: Illustration of assumed landslide behavior in a narrow canyon alongside Route
42.

5.3.3 Route 42 Risk Analysis

The risk analysis for Route 42 follows in Figures 5.19 to 5.23. Refer to Chapter 3.2 of this report
for details on how the plots were generated.

The risk plots correspond with the trend described previously, where gradual, consistent hazards
on the west transition into severe hazards within the narrow canyon on the east. Of the severe
hazards, those near milepost 35 and from milepost 40 to 50 appear to be the worst. The problem
is similar in both locations, where both sides of the canyon are unstable, and highway has been
built on an embankment above the river. In these cases, knowing costs associated with the repair
of the December 2015 landslide (Figure 5.21, MP 44.5) may be useful for predicting the
magnitude of future instabilities.
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Figure 5.19: Estimated volume of unstable soil underlying Oregon Route 42 by milepost.
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Figure 5.20: Estimated duration of closures along Oregon Route 42.
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Figure 5.21: Estimated repair cost associated with reopening of Oregon Route 42 following
landslides the reactivation of mapped landslides.
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Figure 5.22: Approximate economic costs incurred by closures on Oregon Route 42.
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Figure 5.23: Cumulative volume of unstable soil estimated to underlie Oregon Route 42.

54 USROUTE 101
5.4.1 Route 101 Overview

US Route 101 traces the Oregon coastline from Washington to California, passing through many
landslide-prone areas along the way. One particularly active area is where the highway passes
through Curry County in southern Oregon. Geology ranges from broken down, yet still
identifiable, strata, all the way to completely deformed mélange, leading to widespread
instabilities. Frequent creeping slides lead to road closures or travel delays, and the risk of a
major landslide movement threatens several communities along the route. Route 101 is the
primary, and in several places, the only link between Curry County’s communities, including the
county seat of Gold Beach and the largest city of Brookings. AADT ranges from 3,000 in
between cities to over 10,000 near Brookings.

Unique for this report, most of the US Route 101 corridor has been the subject of recent geologic
mapping (MP 274-341; McClaughry et al., 2013; Wiley et al., 2014) and manual landslide
inventory mapping (Burns, 2014). The high detail and accuracy of the manual landslide
inventory provided an excellent means for evaluating the performance of the scarp identification
and CCM methodology (shown previously in Table 4.3).

5.4.2 Route 101 Inventory Map

The SICCM methodology was used to map 380 square miles surrounding more than 80 miles of
Route 101. The full-resolution landslide inventory map has been included with this report, but a
reduced size version can be found in Figure 5.24. A quantitative summary of the corridor is
presented in Table 5.3.
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Figure 5.24: Landslide deposit inventory map for the US Route 101 corridor in Curry
County, Oregon.
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Table 5.3: Quantitative Summary of the US Route 101 Landslide Inventory.

Quantity Route 101
Area Mapped 383 sq. mi.
Number of Mapped Landslide Features 20,269
Number of Landslide Features that Intersect Highway 625
Length of Highway 80.6 mi.
Length of Highway Crossing Landslide Deposits 29.2 mi.
Percent of Highway Length that Crosses Landslide Deposits 36 %

The inventory map for Route 101 shows that the highway consistently traverses landslide
deposits from Port Orford to the California Border (MP 301 — 363). Between Port Orford and
Gold Beach (MP 330), several landslide hot spots are evident on the map (MP 305, MP 310 -
313, and MP 320 — 322), but there are still many stable areas. South of Gold Beach, there is a
pronounced increase in the frequency and size of landslides. Much of this change in frequency
may be attributed to a reduction in the amount of flat ground.

The landslide distribution within 1,000 feet of Route 101 is very consistent (Figure 5.25), when
compared to that of the previous corridors. This consistency can likely be attributed to the
highway’s exposure to similar shapes and sizes of landslide along its entire length.
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Figure 5.25: Distribution of landslide features within 1,000 feet of US Route 101. The figure
does not include landslides that intersect highway.

5.4.3 Route 101 Risk Analysis

The risk analysis for Route 101 follows in Figures 5.26 to 5.35. Refer to Chapter 3.2 of this
report for details on how the plots were generated.
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Figure 5.26: Estimated volume unstable soil underlying US Route 101 from milepost 290 to
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Figure 5.27: Estimated volume unstable soil underlying US Route 101 from milepost 322 to
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Figure 5.28: Estimated duration of closures along US Route 101 from milepost 290 to 322.
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Figure 5.29: Estimated duration of closures along US Route 101 from milepost 322 to 358.
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Figure 5.30: Estimated repair cost associated with reopening of US Route 101 following
landslides the reactivation of mapped landslides from milepost 290 to 322.
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Figure 5.31: Estimated repair cost associated with reopening of US Route 101 following
landslides the reactivation of mapped landslides from milepost 322 to 358.
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Figure 5.32: Approximate economic costs incurred by closures on US Route 101 from
milepost 290 to 322.
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Figure 5.33: Approximate economic costs incurred by closures on US Route 101 from
milepost 322 to 358.
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Figure 5.34: Cumulative volume of unstable soil estimated to underlie US Route 101 from
milepost 290 to 322.
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Figure 5.35: Cumulative volume of unstable soil estimated to underlie US Route 101 from
milepost 322 to 358.

The risk plots in Figures 5.26 to 5.35 agree with the inventory map appraisal, showing that Route
101 south of Port Orford is consistently at risk to landslides. North of Gold Beach (MP 330), the
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plots indicate several landslide hot spots that all seem to correspond with hazards visible on the
inventory map and when driving down Route 101.

The Curry County Natural Hazards Mitigation Plan (University of Oregon, 2016) includes a list
of previous landslides in the area, along with some repair costs (Table 5.4). A comparison shows
that the landslides described in the table all spatially correspond to high-risk areas on the plots,
but the values for repair costs are much higher for the table than they are for the plots. This
difference is likely attributed to the fact that repair cost calculations only account for excavation,
and do not factor in any construction or labor costs.

Table 5.4: List of landslide closures of Route 101 (from the Curry County Natural Hazards
Mitigation Plan).

Year Milepost Name Repair Cost

2001 311 Slide Creek $1,100,000

2001 307 Bear Trap Creek $175,000

2000 311-312 Reinhart Creek $1,300,000

2000 333 80 Acres Road $500,000

1999 310 Brush Creek $550,000

1998 349-350 Whaleshead Cove $550,000
1994-1995 | 344 Hooskanaden Slide Not Provided

1993 312 Arizona Inn Slide Not Provided
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6.1

6.0 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

6.1.1 Summary

This report has presented and implemented a methodology to semi-automatically detect
landslides and evaluate the risks they pose to highway infrastructure. Key details from Chapters
1 through 5 are as follows:

Landslides are frequent hazards that result in major economic, environmental and social
impacts for operation, maintenance and construction of Oregon highways. Current databases
of landslides in Oregon are limited and sometimes inconsistent due to the subjective mapping
process. Generating new maps is a time consuming process.

A new algorithm, called the Contour Connection Method (CCM, Leshchinsky et al., 2015),
utilizes any digital elevation model (DEM), including bare earth lidar, to consistently detect
landslide deposits on a landscape scale in an automated manner.

The CCM algorithm has been modified to reduce landslide over-prediction and to improve
computational efficiency, resulting in the SICCM methodology.

SICCM is a two-part process that first identifies landslide scarps, and then uses them as
initiation for the CCM algorithm to map landslide deposits.

Operation of SICCM is semi-automatic, meaning that the person performing the mapping is
given opportunities to intervene at strategic locations within the procedure to improve results.

A newly-developed risk analysis methodology uses landslide deposits, which may be
produced by SICCM or any other digital inventorying method, to calculate several measures
of risk from landslide reactivation and unstable deposits within the inventory. The measures
can then be applied to a corresponding highway to produce simple plots showing which
lengths of road face the greatest risk.

The accuracy of SICCM was evaluated using existing landslide inventories produced by
DOGAMII. Results showed high pixel-to-pixel accuracy for most areas. Furthermore, SICCM
showed accuracy levels on par with other automated inventorying methods while adhering to
a simple-to-use process based on physics to enable efficient and rapid mapping of areas of
interest.

Inventory maps and risk analyses were performed on four ODOT-managed highways,
Oregon Route 36, and Oregon Route 42 in the Oregon Coast Range, and US Route 101 in
Curry County. All four highways are known for landslide activity, but these results show that
Route 42 and Route 101 face the greatest landslide risk.
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6.1.2 Conclusions

Based on the accuracy assessment results, and observations from the highway corridor landslide
inventories and risk analyses, possible conclusions include:

6.2

SICCM performs well in producing inventories of landslide deposits. Measures of accuracy
are comparable, or better, than other similar methodologies (Appendix B), and deposits
mapped in each highway corridor correspond with known landslide problem areas.

Despite strong performance, most accuracy measures demonstrate that no automated
approach is a substitute for expertise. While SICCM is effective for quickly producing useful
landslide inventories, it does not substitute for the trained eye and judgment of an expert
geologist performing manual mapping. However, the intervention opportunities built into
application of SICCM provide opportunities to combine automation with professional
judgment. SICCM may be used for planning purposes, and it is recommended that more
detailed analyses be performed in cases of life-safety or legislative action.

The presented methodology for assessing highway risk using a landslide inventory is an
effective tool for identifying dangerous lengths of highway, and for determining the relative
magnitude of risk from one area to another.

The highway risk methodology does not solely require SICCM landslide deposits in order to
operate. Manually produced inventories, such as those produced by DOGAMI to Special
Paper 42 specifications, are a good alternative in places where results of the risk analysis
need higher confidence.

IMPLEMENTATION

This report and its supporting files represent both immediate and long-term assets for ODOT:

Inventory maps and milepost risk plots provided in Chapter 5 may be compared to existing
ODOT knowledge of high-risk areas. This activity may identify potentially unstable areas
that warrant more detailed investigations.

Milepost risk plots of soil volume may be used to approximate amounts of fill that ODOT
can store near high-risk areas in order to improve response to possible landslide events.

Unstable blocks, included as shapefiles to this report, may be used to predicted volumes of
soil that may fall onto the roadway during seasonal landslide activity.

Extents of landslide deposits from the inventory map may be used to plan alternative
highway routes, should an important section of roadway be damaged or destroyed.

The inclusion of both methodologies, inventory and risk mapping, with instructions and
computer programs for implementing them means that ODOT may quickly investigate more
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highway corridors, or remap one of the corridors of this report when future lidar data is
acquired.

Another key research product produced through this research project is a forthcoming DOGAMI
Special Paper (Bunn, 2018), which describes how SICCM can be used to generate landslide
inventory maps in conjunction with DOGAMI Special Paper 42 for enhanced efficiency. Based
on the assessment performed by DOGAMI, the SICCM methodology will save substantial time
in future mapping efforts across the state. As a result, DOGAMI will be directly implementing
this process into their current workflows.

6.3 RECOMMENDATIONS FOR FUTURE WORK

This report provides inventories for several corridors. Future work could assess event-based
susceptibility, hazard and risk. Some of these components of this are anticipated to be completed
in SPR-808.

This report only creates inventories of landslides that tend to be deep-seated or translational,
typically exhibiting well-defined headscarp morphology, many of which directly affect ODOT
right-of-way. Future work could better characterize other “landslide” hazards, such as rockfalls
(SPR-809), topples, flows, or creeping landslides (SPR-807).

This work is not meant to replace expertise in landslide mapping, which is inherently a
subjective effort due to the relative complexity associated with every landslide — each of which
shows different features. Future work could refine the process to provide a level of confidence
and mapping that is directly complementary to these ongoing efforts, particularly if outputs will
serve at a regulatory level.

This work was performed primarily using lidar DEMs. Future work could assess the utility of
alternative or multiple datasets for enhancing inventorying in locales where lidar are not yet
available. (Note that initiatives such as the USGS 3DEP program have the goal of seamless
coverage of lidar topographic data across the conterminous United States). The integration of
various satellite-derived datasets, such as INSAR, imagery, multispectral response, and others,
may enhance inventorying efforts and provide information on the level of activity associated
with inventoried landslides.

With increased collection of lidar, mapping efforts and refinements of inventorying procedures
will continue. In the future, mapping and remapping efforts will provide a more comprehensive
inventory of mountainous terrain in the state of Oregon. .
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APPENDIX A - LIST OF FILES INCLUDEDWITH THIS REPORT






List of files included with this report

1. Transportation Planning and Analysis Unit Memorandum GIS Files:
a. ValueTon_Summary.shp — shapefile showing daily value of commodities
traveling at each study point.
b. Data_Dictionary.xlsx — glossary of abbreviated field names in
ValueTon_Summary.shp
2. Tools and Scripts for Running SICCM:
a. SICCMToolbox.tbx — ArcGIS™ toolbox containing the tools associated with the
SICCM methodology:
i. 01 Create Inventory Mapping Project (create_project.py)
ii. 02 Prepare Visualization Layers (prepare_visualization_layers.py)
iii. 03 Find Cell Size for Mapping (select DEM _resolution.py)
iv. 04 Create Mixture Raster (prepare_mixture_raster.py)
v. 05 Create Candidates (create_candidates.py)
vi. 06 Digitize Stream Channels (digitize_streams.py)
vii. 07 Create Rock Score (create_rock_score.py)
viii. 08 Identify Rocks from Rock Score (id_rock_from_score.py)
iX. 09 Classify by Removing Non Scarps (eliminate_non_scarps.py)
X. 10 Create Scarp Lines (thin_to_lines.py)
xi. 11 Run CCM (run_ccm.py)
b. RiskToolbox.tbx
i. Create Risk Maps (create_risk_maps.py)
ii. Compute Risk Metrics (compute_risk_metrics.py)
3. Standalone Deposit Mapping Application Installers:
a. CCMFlow-gui-x64 Setup 1.6.2.exe — 64-bit Graphical User Interface (GUI)
version (Does not require administrative privileges to install)
b. CCMFlow-gui-x86 Setup 1.6.2.exe — 32-bit Graphical User Interface (GUI)
version (Does not require administrative privileges to install)
c. ccmflow-x64-cli-setup-2017091901.exe — 64-bit command line version
d. ccmflow-x86-cli-setup-2017091901.exe — 32-bit command line version
4. SICCM Landslide Inventory Maps:
a. HWY126 36_Corridor.pdf — 36 x 36” map of the Route 36 and 126 corridor.
Scale 1:62,500 (15-Minute).
b. HWY42_Corridor.pdf — 34 x 43” map of the Route 42 corridor. Scale 1:62,500
(15-Minute).
c. HWY101_Corridor.pdf — 34 x 43” map of the Route 101 corridor. Scale
1:62,500 (15-Minute).
d. HWY126_CCMFlow.shp — a shapefile of the Route 126 landslide inventory

(polygons).
e. HWY42_ _CCMFlow.shp — a shapefile of the Route 42 landslide inventory

(polygons).

f. HWY101N_CCMFlow.shp — a shapefile of the Route 101 landslide inventory
north of MP 322 (polygons).

g. HWY101S_CCMFlow.shp — a shapefile of the Route 101 landslide inventory
south of MP 322 (polygons).
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Initial accuracy assessments and sensitivity analysis of CCM
parameters

B.1 OVERVIEW OF ACCURACY ASSESSMENTS IN THE LITERATURE

Table B.1 presents a list of accuracy measures and their values, as reported by automated
landslide inventory mapping literature. The table contains many blank cells due to the fact that
most papers tend to report different measures. In the situation that the literature provided enough
information to compute a measure, but did not present it, the computations were performed for
this paper, and are shown as non-bold numbers.

The main takeaways from Table B.1 are:

1. Literature has been focused on landslides throughout the world, and while some
methods perform well in a specific place, they typically have not been proven to
perform elsewhere.

2. The Landslide Percent of Map measure is important to consider. Values near 50
percent may result in equal numbers of landslide and non-landslide examples, which
makes machine learning classifications, such as those from support vector machines
(SVM) or random forest (RF), easier to perform.

3. The only methodology applied to a similar breadth of terrain as SICCM is that of
Booth et al. (2009).
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Table B.1: Summary of Accuracy Assessments from the Literature.

Bold Values are those Reported by Literature.

Landslide
Model Percent >50% of
Location Reference Name TP | TN | FP [ FN [ Accuracy | of Map | Recall | Precision | Inventory
Pawluszek and
Outer West Carpathians, Poland | Borkowski (2016) SVM 4691 | 34.7 | 8.87 | 13.92 | 0.78 0.58 0.77 0.84 -
Pawtuszek and
Outer West Carpathians, Poland | Borkowski (2016) PCA+SVM 43.62 | 30.94 | 9.11 | 1475 | 0.76 0.59 0.75 0.83 -
Leshchinsky et al.
Pittsburg (actually Gales Creek)* | (2015) CCM 091 | 059 |041]0.09 |0.75 0.50 0.91 0.69 -
Leshchinsky et al.
Dixie Mountain* (2015) CCM 0.3 0.89 | 011 (0.7 0.60 0.50 0.30 0.73 -
MTC - Lower Puget Sound,
Washington Booth et al. (2009) DFT 3.9 1528 | 29 | 169 | 0.89 0.12 0.19 0.57 -
MTC - Lower Puget Sound,
Washington Booth et al. (2009) CWT 4.2 1477 | 25 | 22 0.86 0.15 0.16 0.63 -
SEA - Lower Puget Sound,
Washington Booth et al. (2009) DFT 21.8 | 163299 |[17.6 | 0.87 0.19 0.55 0.69 -
SEA - Lower Puget Sound,
Washington Booth et al. (2009) CWT 226 |163.2|8.7 |[17.1 | 0.88 0.19 0.57 0.72 -
CBP - Lower Puget Sound,
Washington Booth et al. (2009) DFT 0.7 2.1 02 |05 0.80 0.34 0.58 0.78 -
CBP - Lower Puget Sound,
Washington Booth et al. (2009) CWT 0.8 2 0.1 |05 0.82 0.38 0.62 0.89 -
DMQ - Dixie Mountain, Oregon | Booth et al. (2009) DFT 32.2 11.9 1.9 18.5 0.68 0.79 0.64 0.94 -
DMQ - Dixie Mountain, Oregon | Booth et al. (2009) CWT 32.3 11.4 1.8 19 0.68 0.80 0.63 0.95 -
NWD - Dixie Mountain, Oregon | Booth et al. (2009) DFT 5.2 0.7 02 |07 0.87 0.87 0.88 0.96 -
NWD - Dixie Mountain, Oregon | Booth et al. (2009) CWT 5.3 0.6 0.1 |08 0.87 0.90 0.87 0.98 -
Cao, Tong, Liu, and
Data Set A - Dujiangyan, China | Wang (2016) - - - - 89.58 - - - -
Data Set B - Ya'an City, China | Cao et al. (2016) - - - - 84 - - - _
Data Set C- Neijiang-Liupanshui
Railway, China Cao et al. (2016) - - - - 88.33 - - - -
Feature-
Shazhenxi, Zigui County, China | Li et al. (2015) reduced RF - - - - 77.36 - - - -
Full-Feature
Shazhenxi, Zigui County, China | Li et al. (2015) RF - - - - 76.5 - - - -
Feature-
Shazhenxi, Zigui County, China | Li et al. (2015) reduced SVM | - - - - 76.87 - - - -
Full-Feature
Shazhenxi, Zigui County, China | Li et al. (2015) SVM - - - - 74.53 - - - -
Van Den Eeckhaut et
Flemish Ardennes al. (2012) OO0A - - - - - - - - 0.71




B.2 SENSITIVITY OF SICCM DEPOSIT MAPPING PARAMETERS

The best SICCM deposit mapping parameters will likely vary based on the type of terrain and the
scale at which mapping is being performed. Despite this variation, there is still a range of values
for each parameter that will always perform better than parameter values selected outside of the
range. The purpose of a deposit mapping sensitivity analysis was determine the significance of
proper parameter selection, and to develop a strategy for finding the best parameters for each
terrain or scale.

The sensitivity analysis began by performing 81 trials with three values of each parameter (all
possible combinations). Each value was selected based on experience from previous SICCM
trials, with the goal of one value being the lowest reasonable number, one value being the highest
reasonable number, and one value being in the middle. Selected values are presented in Table
B.2. Trials were performed on a portion of the Big Elk Creek SLIDO inventory (Burns, 2012a),
due to its location within the Tyee Formation, which underlies all of the Route 36 and 126
inventory and much of the Route 42 inventory.

Table B.2: Parameters used in Deposit Mapping Parameter Sensitivity Analysis.

Parameter Selected Values
Contour interval (feet) 10, 20, 30
Nodal spacing (feet) 10, 20, 30
Active slope (rise/run) 0.02, 0.06, 0.10
Branch parameter 2,4,6

The first experiment was meant to investigate the accuracy achieved from a collection of samples
using randomly sampled parameters. For example, if five of the 81 trials were selected at
random, what would be the accuracy of the best trial and the worst trial, and what would be the
mean value of all five accuracies. Figure B.1 illustrates these results, where n represents the
number of randomly selected trials (5 in example), and m represents the number of times that n
trials were randomly sampled. In the figure, the value of m is 50, meaning that the blue line
represents the mean best accuracy of 50 selections of n trials, the red line represents the mean
worst accuracy of 50 selections of n trials, and the black line represents the mean value of all 50
mean accuracies. Changing the value of m has little effect on the shape of each dataset.
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Figure B.1: Results of random sampling parameters from the 81 trials.

Figure B.1 shows that randomly sampling somewhere between 10 and 20 trials will typically
yield results with similar best, worst, and average values to those obtained from all 81 trials.
While 10 to 20 trials are not an insignificant amount of work, they do help to simplify the
process. Because of this simplification, the results of this experiment helped to design the
parametric analysis displayed in Table 4.1.

A question that remained after the first experiment was how to know which of the n selected
trials was the best, if there was no validation inventory available. The answer lies in a consensus-
based approach, where the extents of all 81 trials were converted into a raster (valued 1 for
landslide, 0 for non-landslide) and summed to create a new consensus raster (Figure B.2). By
summing all raster cells within the extents of each SICCM trial, a simulated accuracy can be
derived, with the highest summation reflecting the highest accuracy. The approach generally
works for identifying a good trial, but it does not necessarily identify the highest accuracy trial.
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Figure B.2: Consensus raster for the 81 SICCM trials.
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The final experiment was an evaluation of whether or not the consensus raster would be suitable
as a proxy for confidence in landslide identification. Thresholds were chosen from 1 to 81, and
pixels exceeding each threshold were then evaluated for accuracy by the manual inventory. For
example, if the threshold was 21, only pixels in Figure B.2 with a value greater than 21 were
called landslides. The thresholded raster was then compared to the manual inventory to compute
accuracy and a confusion matrix (Figure B.3).
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Figure B.3: Accuracy assessment of the thresholded consensus raster.

Figure B.3 shows that as the threshold value increases, accuracy generally increases and false
positives decreases, meaning that the consensus raster may be a valid estimate of confidence in
landslide identification. More trials will need to be performed with consensus rasters computed
from a more feasible, fewer number of trials, to determine if the approach is still applicable.
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APPENDIX C - MAPS PRODUCED FOR BIG ELK CREEK, GALES
CREEK, AND DIXIE MOUNTAIN






Maps produced for Big Elk, Gales Creek, and Dixie Mountain

The inventory maps included in this appendix were produced as part of the accuracy assessment
of Chapter 4. Each map was produced using SICCM with the deposit mapping parameters
provided in Table 4.2. Accuracy measures of these inventories can be found in Table 4.3
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Flgure C-1: SICCM produced landslide inventory map produced for the Big Elk Creek watershed, Oregon.
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C-3



Location in Oregon

N
Legend A
| Landslide Extents
0 025 05 1 15 2
[ Area Mapped =E=M: | T I Miles
A e S ‘
ST
I,\ # It -3 J .
|
y
J
‘,
|
4

B
Figure C-3: SICCM produced landslide inventory map of the Dixie Mountain USGS
guadrangle, Oregon.

C-4



APPENDIX D - MEMORANDUMS FROM THE TRANSPORTATION
PLANNING AND ANALYSIS UNIT (TPAU)






Memorandums from the Transportation Planning and Analysis Unit

(TPAU)

STATE OF OREGON TECHNICAL REQUEST MEMO

Department of Transportation

Transportation Development Division

Mill Creek Office Park

555 13th Street NE Suite 2

Salem, Oregon 97301-4178

(503) 986-4112 FAX (503) 986-4174 Date: February 26", 2018

TO: Kira Glover-Cutter, Research Coordinator
ODOT TDD Research Section

CC: Curran Mohney, Engineering Geology Program Lead, ODOT

Michael Bunn, PhD Candidate, Civil & Construction Engineering, OSU

Ben Leshchinsky, Assistant Prof., Forest Engineering, Resources & Management,
OSuU

Michael Olsen, Associate Prof., Civil & Construction Engineering, OSU

FROM: Dejan Dudich, Transportation Analyst/Modeler;
Becky Knudson, Senior Transportation Economist;
Transportation Planning Analysis Unit, ODOT

SUBJECT: Estimated economic impacts of road closure due to major landslide for select
locations identified for SPR 786.
Attachments: DetourReportingTable.xlsx, SPR786_Selections.7z

In November 2016 Kira Glover-Cutter and a team of OSU researchers provided an overview of a
project related to potential landslide locations: “SPR 786 Enhancing Landslide Inventorying,
Hazard Assessment and Asset Management Using LIDAR.” The research team wanted to
explore the availability of economic data for use in the study. Becky Knudson described
analytical capability using the Oregon Statewide Integrated Model (SWIM). Together, the
project team identified information to be prepared using SWIM in support of the SPR 786
project.

The initial request completed April 2017 was expanded to include additional locations in January
2018. This secondary request provides information on commodity flows along designated
landslide risk corridors submitted by the project team. It was determined that SWIM could be
used in a similar fashion as the previous request to generate the information that the research
team was interested in.



Description of Request

The OSU research team requested commodity flow information for three corridors:

Highway Start Mile | End Mile Description
Point Point
OR 42 Junction with OR 42S to Camas
10 53
Valley
OR 126 1 45 Florence to Veneta
UusS 101 280 363 Bandon to CA border

The OSU team identified 3 highways corridors and their corresponding SWIM links using a GIS
file provided by TPAU. The OSU team identified a total of 333 SWIM links that corresponded to
their needs; TPAU reduced that number to 65 specific links that could be utilized to represent
commodity flow along the corridors. TPAU provided the commodity flow data in shape files as
requested by the OSU team. The methodology used to generate this data is described in the
Methodology section of this memo.

In addition, the OSU team requested detour analysis related to closure on these three corridors, 6
locations were chosen based on provided geocoded points: 1 on US 101, 4 on OR 42, and 1 on
OR 36. TPAU used a network select link process to identify the highway users forced to reroute
when the highways are closed. This information was used to estimate the user costs associated
with the closures with respect to travel time and route distance. The methodology used to prepare
this information is provided in the Methodology section of this memo.

SWIM Model Description

The Oregon Statewide Integrated Model (SWIM) is a data driven forecast model designed to
represent the Oregon economy with respect to land-use and transportation by simulating the
activity and market exchanges made by people and businesses. Household and business location
decisions are simulated, as well as the travel generated by activities - such as commuting to
work, purchasing commodities for industrial production and transporting final goods to markets
within Oregon and outside of the state. It is designed for statewide and regional long range
transportation planning and policy analysis. Information from SWIM is designed to inform other
modeling tools, such as metropolitan planning organization
travel models, freight models, and regional studies.

The statewide model is described as an “integrated” model
because the sub-models are interconnected. Information is
shared back and forth between sub-models, mimicking the
reactive and interactive behaviors observed in the real world. POLICY
The model is designed to represent how people and businesses
share information and exchange goods and services based on
prices and location. The integrated modular design better
represents real-world conditions and activity, but requires an
immense amount of data, significant development time,
powerful computing capabilities and trained staff. For these
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reasons, very few states have a statewide economic, land use and transportation model like
Oregon’s.

Detailed technical documentation on the design of SWIM is available online:
https://www.oregon.gov/ODOT/TD/TP/docs/statewide/swim2.pdf . SWIM consists of

specialized sub-models that interconnect with each other, which is illustrated in Figure 1. There
are seven key sub-models:

Economic Model (NED): provides the model-wide production activity levels, employment,
imports and exports based upon long range forecasts consistent with the Department of
Administrative Services’ Oregon Economic & Revenue Forecast and the associated baseline
macroeconomic forecast from IHS Markit;

Population Synthesizer (SPG): simulates a population with observed Oregon characteristics
such as age, household size, household location, income, worker status, and occupation;

Activity Allocation Model (AA): simulates where businesses locate, the commaodities they
purchase to use as production inputs, the amount and type of labor (workers) hired, the
amount of floorspace residence and businesses purchase/lease, and production of and sales of
goods and services based on market prices;

Aggregate Land Development Model (ALD): identifies land availability based on Oregon
local jurisdiction zoning and develops residential and commercial buildings (square footage)
based on floorspace prices and vacancy rates for firms and households to rent or purchase;

Person Travel (PT): simulates person travel activity for a typical weekday for the
population of Oregon simulated by the Population Synthesizer and located by the Activity
Allocation Model. Activity involving travel is assigned a travel mode such as auto, transit,
rail, bike, or walk;

Commercial Transport (CT): simulates how commaodities are moved as freight by different
modes of transport, such as marine, rail, and truck for a typical weekday. For trucks
specifically, shipments are simulated to appropriately transport daily commodity shipments
modeled by the Activity Allocation Model;

Transport Model (VISUM): assigns trips to a computer representation of the statewide

transportation network, trips generated in the Person Travel Model and Commercial
Transport Model, generating routes with distance and travel time information.
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Figure 8.1. SWIM Design Schematic
Select Link Methodology: Commodity Flows

The SWIM Commercial Travel (CT) module generates discrete truck trips. These truck trips are
created from two sources, the federal Freight Analysis Framework!(FAF), which provides
Oregon commodity flow data and the Activity Allocation (AA ) module which generates the
buying and selling allocations of commodities within SWIM. CT uses the FAF commaodity
flows and disaggregates them into the SWIM zones (~3000) using AA spatial allocation,
enabling commodity flows to be represented along Oregon’s roadways using network
assignment software.

To pull the required commodity flow data from SWIM the requested highway corridors were
matched up to the existing SWIM roadway network, which is managed using the commercial
network assignment software VISUM?2. Once SWIM roadway links are identified, a custom
process in SWIM, referred to as “select link”, is run twice, once for each direction, for the
identified corridors. The Select Link (SL) process tags all trips utilizing the identified link and

1 https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
2 https://data.ptvamerica.com/docs/VISUM%20Slideshow.pdf

D-4



https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
https://data.ptvamerica.com/docs/VISUM%20Slideshow.pdf

creates origin/destination matrices for those trips. A detailed explanation of the SL process is
available on the SWIM Wiki online at: https://github.com/tlumip/tlumip/wiki/SL .

The SL process creates a series of csv files containing the trips using the corridor selected links,
as well as the associated commaodity flows by value and weight. Using the R programming
language, truck trips are tabulated to produce total tons and values for the requested corridors for
over 40 commodity categories. These categories are aggregated into 7 commodity groups used
for reporting, illustrated in Table 1 on the next page. Further detailed technical documentation of
this process is available online: https://github.com/tlumip/tlumip/wiki/Analyzing-Disaggregate-
FAF-Flows . The model base year is 2010, so the value and tonnage is scaled to represent the
year requested using FAF growth rates to adjust to the year requested. Model data and summary
tables developed for this memo are provided in the attached file “ValueTon_Summary.zip”.

Select Link Methodology: Highway Closure Traffic Response

Simulated closures due to landslide blockage were requested along three corridors. Six locations
were evaluated as illustrated in Figures 2, 3, and 4. VISUM software was used to run the select
link process for each location in each direction. The assignment results are saved as four
individual VISUM version files (*.ver).

SL process was run, identifying users of the directional roadway links and tagging them in order
to observe the detour routes after the roadway links are closed. Next the SL process is run with
the roadway links “closed” within VISUM by restricting all vehicle access to the links. After a
VISUM network link is coded for closure, traffic is reassigned using VISUM to follow the
detour routes chosen for trips previously tagged as using the landslide link(s).

VISUM link tables are copied into Excel for the closure and non-closure assignment results for
the two locations. Using link speed, link length, and link traffic volume (autos and trucks),
vehicle-miles-traveled (VMT) and vehicle-hours-traveled (VHT) for both autos and trucks
detoured by the closure and all other background traffic are calculated. Once the VMT and VHT
are calculated for both the closure and non-closure scenarios, the difference in travel time and
distance for the detoured segment users are calculated and monetized in order to represent user
economic impacts associated with a closure due to a landslide.

Results

Estimated commodity flows along the corridors were prepared as a shape file and are provided as
an attachment in “SPR786_Selections.7z.” Understanding commodities shipped on highway
corridors reveals potential impacts on Oregon businesses relying on these corridors to access
goods used for their production activity. Flows for seven aggregate commodity groups are
reported by value and tons from SWIM. The commodity groups are described in Table 1.
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Table 1

Commodity Group Descriptions

Clay, Minerals & Stone: monument or building stone; natural sands; gravel and crushed stone; nonmetallic
minerals; metallic ores and concentrates; and nanmetallic mineral products;

Food & Kindred Products: live animals and fish; cereal grains; animal feed; meat, seafood; milled grain
products; alcoholic beverages; and tobacco products;

Forest & Wood Products: logs and other wood in the rough and wood products;

Machinery, Instruments, & Transportation Equipment: base metal in primary or semi-finished form; articles
of base metal; machinery; electronic and other electrical equipment; motorized and other vehicles (including
parts); transportation equipment; precision instruments and apparatus;

Other Miscellaneous: textiles, leather, furniture, mattresses, and miscellaneous manufactured products;
Petroleum, Coal & Chemicals: crude petroleum, gasoline and aviation fuel; fuel oils, pharmaceutical products,
fertilizers, plastics and rubber;

Pulp & Paper Products: newsprint, paperboard, paper or paperboard products, and printed products.

*  For more detailed descriptions of commaodities, refer to the Standard Classification of Transported Goods
booklet published by the U.S. Census Bureau: https://www.census.gov/econ/cfs/2017/CFS-1200_17.pdf

*  Commodity flows provided by the Oregon Statewide Integrated Model based on the federal Freight
Analysis Framework 4 data for Oregon.

Estimated user costs associated with an unexpected closure on US 101 and OR 36 at one location
each and OR 42 at 4 locations were prepared to represent the direct economic impacts of the road
closure for each location. User costs were estimated for two distinct categories — costs associated
with additional travel time and variable vehicle operating costs associated with additional travel
distance. Using the SWIM select link process described earlier in this memo, the additional
travel time and distance was measured for users of the highway at the closure locations. The US
101 location is provided in Figure 2, OR 42 locations are illustrated in Figure 3, and the OR 36
location is shown in Figure 4 .
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Figure 2: US 101

D-7



Figure 3: OR 42 Locations
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The time and distance costs caused by a detour route are monetized using an estimated value of
travel time for autos and trucks and an average variable vehicle operating cost estimate for a
medium sedan and heavy truck. These estimates are provided in Table 2, including links to the
source documents.

Table 2. Value of Travel Time and Vehicle Operating Costs

Auto Truck
Value of Time: per Hour* $25.78 $31.32
Operating Cost per Mile** $0.15 $0.20
*https://www.oreqon.qov/ODOT/TD/TP/Reports/Value of TravelTime.pdf
**https://exchange.aaa.com/wp-content/uploads/2017/05/2016-Y DC-Brochure.pdf for auto,
https://www.rtsfinancial.com/quides/trucking-calculations-formulas for truck.

Table 3 presents the impact closures have on highway users’ travel time and distance traveled. It
is important to note these estimates represent behavior assuming the highway users know of the
closure in advance. Without advance notice, additional time and miles would be incurred from
driving to the closure point and responding with a new route. If these closures were to last for
long periods (months or years), travel destinations would likely start to change, which could have
larger impacts than accounted for in this short term analysis. It is important to note that any
closure in the coastal vicinity has the potential to impose greater impacts to trucks due to the
limited presence of alternative routes designed to accommodate trucks’ larger sizes and weights.

Table 3. Estimated Impacts to Users of Unexpected Closure Due to Landslide: Travel Time
and Distance

Average Per Vehicle Change in Average Per Vehicle Change in
Miles of Travel Hours of Travel
Location Auto Truck Auto Truck
US101 173 182 194 201
ORA42 East of 44 37 54 53
Remote
ORA42 South of
Myrtle Point (E | 120 43 136 50
of Myrtle Pt)
OR42 At Norway
(Bt Coquilleand |5 63 15 71
Myrtle Pt)
OR42 North of
Cedar Point (W |8 93 11 100
of Coquille)
OR36 at
Alderwood State | 0 0 1 0
Wayside

On any given day of the year there is a range of potential traffic volumes (system users) at these
locations, which is reflected in the range of estimated user costs presented in Table 4. The data
and calculations are provided in the attached file “DetourReportingTable.xIsx.”
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Table 4. Estimated Range of User Costs Due to Landslide Closure for One Day

State Wayside

$2,167 - $5,412

$6 - $16

Location Time Costs Vehicle Operating Range of Total Costs
Costs
US101 $96,471 - $192,865 $70,013 - $139,969 $166,484 - $332,834
OR42 East of
Remote $29,028 - $72,497 $7,048 - $17,601 $36,075 - $90,098
OR42 South of
Myrtle Point | $188,021 - $375,892 | $47,393 - $94,749 $235,414 - $470,640
OR42 At
Norway $26,303 - $52,596 $5,391 - $10,780 $31,695 - $63,376
OR42 North of
Cedar Point | $39,277 - $78,538 $6,988 - $13,973 $46,265 - $92,511
OR36 at
Alderwood

$2,173 - $5,428

For further information regarding this analysis or related materials, please contact:

Dejan Dudich
503-986-3515

dejan.dudich@odot.state.or.us

or
Becky Knudson
503-986-4113

rebecca.a.knudson@odot.state.or.us
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STATE OF OREGON

Department of Transportation

Transportation Development Division

Mill Creek Office Park
555 13th Street NE Suite 2
Salem, Oregon 97301-4178

(503) 986-4112 FAX (503) 986-4174

TECHNICAL REQUEST MEMO

Date: June 15, 2017

TO:

FROM:

Kira Glover-Cutter, Research Coordinator
ODOT TDD Research Section

Becky Knudson, Senior Transportation Economist;

Dejan Dudich, Transportation Analyst/Modeler;
Transportation Planning Analysis Unit

SUBJECT:

locations identified for SPR 786.

Estimated economic impacts of road closure due to major landslide for select

Attachments: ValueTon_Summary.xIsx, ClosureVolumeMaps.pdf, ValueTon_Summary.zip

In November 2016 Kira Glover-Cutter and a team of OSU researchers provided an overview of a
project related to potential landslide locations: “SPR 786 Enhancing Landslide Inventorying,
Hazard Assessment and Asset Management Using LIDAR.” The research team wanted to
explore the availability of economic data for use in the study. Becky Knudson described
analytical capability using the Oregon Statewide Integrated Model. Together, the project team
identified information to be prepared using SWIM in support of the SPR 786 project.

Description of Request

The OSU research team requested commodity flow information for five corridors:

Highway Start Mile | End Mile Description
Point Point
Highway erii égzarpe”ter 343 362 Entire highway
OR 36 0 45 Mapleton to Willamette Valley
OR 42 10 53 Junction with OR 42S to Camas
Valley
OR 126 1 45 Florence to Veneta
US 101 280 363 Bandon to CA border

The OSU team identified 14 locations for reporting commodity flows. 12 of the 14 locations are
on the SWIM highway network. TPAU will provide the commodity flow data in shape files as
requested by the OSU team. The methodology used to generate this data is described in the
Methodology section of this memo.
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In addition, the OSU team requested analysis related to closure on OR 126 at two locations:
Tiernan and Walton. TPAU used a network select link process to identify the highway users
forced to reroute when the highway is closed. This information was used to estimate the
economic impacts associated with the closures with respect to travel time and route distance. The
methodology used to prepare this information is provided in the Methodology section of this
memao.

SWIM Model Description

The Oregon Statewide Integrated Model (SWIM) is a data driven forecast model designed to
represent the Oregon economy with respect to land-use and transportation by simulating the
activity and market exchanges made by people and businesses. Household and business location
decisions are simulated, as well as the travel generated by activities - such as commuting to
work, purchasing commodities for industrial production and transporting final goods to markets
within Oregon and outside of the state. It is designed for statewide and regional long range
transportation planning and policy analysis. Information from SWIM is designed to inform other
modeling tools, such as metropolitan planning organization travel models, freight models, and
regional studies.

The statewide model is described as an “integrated” model
because the sub-models are interconnected. Information is
shared back and forth between sub-models, mimicking the
reactive and interactive behaviors observed in the real
world. The model is designed to represent how people and
businesses share information and exchange goods and
services based on prices and location. The integrated POLICY
modular design better represents real-world conditions and
activity, but requires an immense amount of data, significant
development time, powerful computing capabilities and
trained staff. For these reasons, very few states have a
statewide economic, land use and transportation model like
Oregon’s.

Detailed technical documentation on the design of SWIM is
available online: https://www.oregon.gov/ODOT/TD/TP/docs/statewide/swim2.pdf . SWIM
consists of specialized sub-models that interconnect with each other, which is illustrated in
Figure 1. There are seven key sub-models:

e Economic Model (NED): provides the model-wide production activity levels, employment,
imports and exports based upon long range forecasts consistent with the Department of
Administrative Services’ Oregon Economic & Revenue Forecast and the associated baseline
macroeconomic forecast from IHS Markit;

e Population Synthesizer (SPG): simulates a population with observed Oregon characteristics
such as age, household size, household location, income, worker status, and occupation;
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Activity Allocation Model (AA): simulates where businesses locate, the commodities they
purchase to use as production inputs, the amount and type of labor (workers) hired, the
amount of floorspace residence and businesses purchase/lease, and production of and sales of
goods and services based on market prices;

Aggregate Land Development Model (ALD): identifies land availability based on Oregon
local jurisdiction zoning and develops residential and commercial buildings (square footage)
based on floorspace prices and vacancy rates for firms and households to rent or purchase;

Person Travel (PT): simulates person travel activity for a typical weekday for the
population of Oregon simulated by the Population Synthesizer and located by the Activity
Allocation Model. Activity involving travel is assigned a travel mode such as auto, transit,
rail, bike, or walk;

Commercial Transport (CT): simulates how commodities are moved as freight by different
modes of transport, such as marine, rail, and truck for a typical weekday. For trucks
specifically, shipments are simulated to appropriately transport daily commodity shipments
modeled by the Activity Allocation Model;

Transport Model (VISUM): assigns trips to a computer representation of the statewide
transportation network, trips generated in the Person Travel Model and Commercial
Transport Model, generating routes with distance and travel time information.

w
E : Component models:
Employment by industry .
E NED Construction $ fotals NED: Economic & demographic
Q0 C T ™ EF: Economic Feedback (optional)
E : Production SPG: Synthetic population generator
S EF |« ---, |ofals ALD: Aggregate land development
ﬁ : AA Activity allocation (part of PECAS)
: E _ PT: Person travel demand
3 . : pa;ee;gpczz e ¥ CT: Commgrcial travel demand _
° FAG”W’? l el VISUM: Third-party travel modeling
g ogsums A i » ALD platform (for network assignment)
=] ! ;
F=] L Space inventory
g SPG B Legend:
) — i I N e |
| O Alpha-beta zone conversion
_ Commodity $ flows , _

Synthetic i ’ Beta-alpha zone conversion

opulation I
0 Pee I |:| Aggregate/equilibrium model
7] 1
E ————— : I:l Microsimulation component

I

*é : I:l Mesoscopic component
] + : - —» Feedback in next period
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o Travel time & cost Travel time & cost |
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Figure 8.1. SWIM Design Schematic
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Select Link Methodology: Commodity Flows

The SWIM Commercial Travel (CT) module generates discrete truck trips. These truck trips are
created from two sources, the federal Freight Analysis Framework®(FAF), which provides
Oregon commodity flow data and the Activity Allocation (AA ) module which generates the
buying and selling allocations of commodities within SWIM. CT uses the FAF commaodity
flows and disaggregates them into the SWIM zones (~3000) using AA spatial allocation,
enabling commodity flows to be represented along Oregon’s roadways using network
assignment software.

To pull the required commodity flow data from SWIM the requested highway corridors were
matched up to the existing SWIM roadway network, which is managed using the commercial
network assignment software VISUM*. Once SWIM roadway links are identified, a custom
process in SWIM, referred to as “select link”, is run twice, once for each direction, for the
identified corridors. The Select Link (SL) process tags all trips utilizing the identified link and
creates origin/destination matrices for those trips. A detailed explanation of the SL process is
available on the SWIM Wiki online at: https://github.com/tlumip/tlumip/wiki/SL .

The SL process creates a series of csv files containing the trips using the corridor selected links,
as well as the associated commodity flows by value and weight. Using the R programming
language, truck trips are tabulated to produce total tons and values for the requested corridors for
over 40 commodity categories. These categories are aggregated into 7 commodity groups used
for reporting, illustrated in Table 1 on the next page. Further detailed technical documentation of
this process is available online: https://github.com/tlumip/tlumip/wiki/Analyzing-Disaggregate-
FAF-Flows . The model base year is 2010, so the value and tonnage is scaled to represent the
year requested using FAF growth rates to adjust to the year requested. Model data and summary
tables developed for this memo are provided in the attached file “ValueTon_Summary.xIsx”.

Select Link Methodology: Highway Closure Traffic Response

Simulated closures due to landslide blockage were requested for two locations on OR 126 at
Tiernan and Walton illustrated in Figures 2 and 3. VISUM software was used to run the select
link process for each location in each direction. The assignment results are saved as four
individual VISUM version files (*.ver).

SL was run, identifying users of the directional roadway links and tagging them in order to
observe the detour routes after the roadway links are closed. Next the SL process is run with the
roadway links “closed” within VISUM by restricting all vehicle access to the links. After a
VISUM network link is coded for closure, traffic is reassigned using VISUM to follow the trips
previously tagged as using the landslide link(s).

VISUM link tables are copied into Excel for the closure and non-closure assignment results for
the two locations. Using link speed, link length, and link traffic volume (autos and trucks),
vehicle-miles-traveled (VMT) and vehicle-hours-traveled (VHT) for both autos and trucks
detoured by the closure and all other background traffic are calculated. Once the VMT and VHT

8 https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
4 https://data.ptvamerica.com/docs/VISUM%20Slideshow.pdf
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are calculated for both the closure and non-closure scenarios, the difference in travel time and
distance for the detoured segment users are calculated and monetized in order to represent user
economic impacts associated with a closure due to a landslide.

Results

Estimated commodity flows at the identified locations were prepared as shape files and are
provided as an attachment in “ValueTon_Summary.zip.” Understanding commaodities shipped on
highway corridors reveals potential impacts on Oregon businesses relying on these corridors to
access goods used for their production activity. Flows for seven aggregate commodity groups
are reported by value and tons from SWIM. The commodity groups are described in Table 1.

Table 5

Commodity Group Descriptions

Clay, Minerals & Stone: monument or building stone; natural sands; gravel and crushed stone; nonmetallic
minerals; metallic ores and concentrates; and nonmetallic mineral products;

Food & Kindred Products: live animals and fish; cereal grains; animal feed; meat, seafood; milled grain
products; alcoholic beverages; and tobacco products;

Forest & Wood Products: logs and other wood in the rough and wood products;

Machinery, Instruments, & Transportation Equipment: base metal in primary or semi-finished form; articles
of base metal; machinery; electronic and other electrical equipment; motorized and other vehicles (including
parts); transportation equipment; precision instruments and apparatus;

Other Miscellaneous: textiles, leather, furniture, mattresses, and miscellaneous manufactured products;
Petroleum, Coal & Chemicals: crude petroleum, gasoline and aviation fuel; fuel oils, pharmaceutical products,
fertilizers, plastics and rubber;

Pulp & Paper Products: newsprint, paperboard, paper or paperboard products, and printed products.

*  For more detailed descriptions of commaeodities, refer to the Standard Classification of Transported Goods
booklet published by the U.S. Census Bureau: https://www.census.gov/econ/cfs/2017/CFS-1200_17.pdf

*  Commaodity flows provided by the Oregon Statewide Integrated Model based on the federal Freight
Analysis Framework 4 data for Oregon.

Estimated user costs associated with an unexpected closure on OR 126 for two locations were
prepared to represent the direct economic impacts of the road closure for each location. User
costs were estimated for two distinct categories — costs associated with additional travel time and
vehicle operating costs associated with additional travel distance. Using the SWIM select link
process described earlier in this memo, the additional travel time and distance was measured for
users of the highway at the two closure locations. Visual representation of the detoured traffic
routes is provided in the attached file “ClosureVolumeMaps.pdf.” The two locations on OR 126
are illustrated in Figure 2 and Figure 3.
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Figure 2. Tiernan

The time and distance costs caused by a detour route are monetized using an estimated value of
travel time for autos and trucks and an average vehicle operating cost estimate for a medium
sedan and heavy truck. These estimates are provided in Table 2, including links to the source
documents.
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Table 6. Value of Travel Time and Vehicle Operating Costs

Auto

Truck

Value of Time: per Hour*

$25.78

$31.32

Operating Cost per Mile**

$0.15

$0.20

*https://www.oregon.gov/ODOT/TD/TP/Reports/VValue of TravelTime.pdf
**https://exchange.aaa.com/wp-content/uploads/2017/05/2016-YDC-Brochure.pdf for auto,
https://www.rtsfinancial.com/quides/trucking-calculations-formulas for truck.

Table 3 presents the impact closures have on highway users’ travel time and distance traveled. It
is important to note these estimates represent behavior assuming the highway users know of the
closure in advance. Without advance notice, additional time and miles would be incurred from
driving to the closure point and responding with a new route. If these closures were to last for
long periods (months or years), travel destinations would likely start to change, which could have
larger impacts than accounted for in this short term analysis. It is important to note that any
closure in the coastal vicinity has the potential to impose greater impacts to trucks due to the
limited presence of alternative routes designed to accommodate trucks’ larger sizes and weights.

Table 7. Estimated Impacts to Users of Unexpected Closure Due to Landslide: Travel Time
and Distance

Average Additional Miles of Travel | Average Additional Hours of Travel

Auto

Truck

Auto

Truck

Tiernan

45

21

50

18

Walton

12

22

10

23

On any given day of the year there is a range of potential traffic volumes (system users) at these
two locations, which is reflected in the estimated user costs presented in Table 4.

Table 8. Range of Potential Economic Impacts of Landslide on OR 126

Location Time Costs Vehicle Operating Costs | Range of Total Costs
Tiernan | $102,000 — $143,000 $38,000 - $53,000 $140,000 - $196,000
Walton $ 21,000 - $33,000 $ 7,500 - $12,000 $ 28,500 - $45,000

For further information regarding this analysis or related materials, please contact:

Becky Knudson

503-986-4113
rebecca.a.knudson@odot.state.or.us
or

Dejan Dudich
503-986-3515
dejan.dudich@odot.state.or.us
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APPENDIX E - STEP-BY-STEP PROCEDURE FOR USING SICCM






Step-by-step procedure for using SICCM

This appendix shows step-by-step instructions for performing semi-automatic landslide deposit
mapping using the Scarp Identification and Contour Connection (SICCM) procedure. Prior to
getting started, it is important that the user understand the following items:

1. Updated versions of the SICCM tools may exist. The user should visit the faculty
webpage of Dr. Ben Leshchinsky, Oregon State University, to ensure that they are
using the newest version. Newer versions will have their own step-by-step
documentation, and in the case that a new version exists, the user should disregard
this document. Link to webpage: https://geotech.forestry.oregonstate.edu/

2. The procedure requires that the user has a basic understanding of ArcMap™, and has
Esri® ArcGIS™ 10.3, or greater, installed on their computer. The user will also need
to download the appropriate ArcGIS™ toolbox for their software and have the CCM
application installed before starting work. In its most basic form, the method inputs a
digital elevation model raster (DEM) and outputs polygons representing the extents of
landslide deposits. Along the way, there will also be opportunities for the user to
introduce other files, such as road and stream features to potentially improve results.

3. The DEM must be in a projected coordinate system, and may not use a
latitude/longitude (geographic) system. Tools in the SICCM toolbox are not designed
to compensate for discrepancies between horizontal and vertical units, and use of
degrees in a geographic coordinate system will cause them to crash. If the user finds
that their DEM uses a geographic coordinate system, then they are required to project
the raster into a projected coordinate system before attempting to use the toolbox.
Numerous projected coordinate systems exist, and if the user is not familiar with
which to use for their area of interest, it is recommended that they identify the
appropriate Universal Transverse Mercator (UTM) zone and use it.

4. The user should identify a location on their computer with enough available memory
to store SICCM outputs. A typical USGS quadrangle (~50 square miles) will require
up to 2 gigabytes of space for the Inventory Mapping Project geodatabase, and up to 5
gigabytes of space for each CCM Package. Users who have no prior experience with
SICCM are recommended to have at least 15 gigabytes of available space.

5. Each tool in the SICCM toolbox comes with built-in documentation. The
documentation may be accessed by clicking the Show Help >> button located at the
bottom right corner of a tool’s interface.

6. There are a large number of optional inputs associated with operation of the SICCM
toolbox, and to help prevent the user from being confused, all optional inputs and
default parameters have been summarized in Table E1.

7. Output file names are automatically selected by each SICCM tool based on input
parameters in an effort to maintain organization and reproducibility. The naming
convention is provided in Table E2.
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8. The SICCM toolbox has been tested thoroughly, but there is still the possibility that
users may encounter errors. If you encounter any error messages, please contact Dr.
Ben Leshchinsky, ben.leshchinsky@oregonstate.edu, with a description of the
problem and a copy of the message. Any reported errors will assist in the
development of SICCM tools, and are greatly appreciated.


mailto:ben.leshchinsky@oregonstate.edu

Table E1: Default Tool Inputs.

Tool Name

Optional Parameter

Default Value

How to Input Default

03 Find Cell Size for Mapping

Test Cell Size 1

Three times the cell size of the Input DEM

Leave blank

05 Create Scarp Polygon
Candidates

Threshold

third classes of the mixture raster when
classified into three groups using Natural
Breaks

03 Find Cell Size for Mapping | Test Cell Size 2 Six times the cell size of the Input DEM Leave blank

03 Find Cell Size for Mapping | Test Cell Size 3 Nine times the cell size of the Input DEM Leave blank

04 Create Mixture Raster Selected Cell Size The default value of Test Cell Size 2: Six Leave blank
times the value of the Input DEM

Mixture Raster Value used as | The class break between the second and Leave blank

Area

06 Digitize Stream Channels | First Stream Accumulated 1 Acre Input space is already populated
Area

06 Digitize Stream Channels | Second Stream Accumulated | 3 Acres Input space is already populated
Area

06 Digitize Stream Channels | Third Stream Accumulated 5 Acres Input space is already populated

08 Identify Rocks from Rock
Score Raster

07 Create Rock Score Raster | Cell Size used to Subtract Twice the cell size of the Input DEM Leave blank
from Input DEM
Rock Score Threshold 50 Leave blank

09 Eliminate Non Scarp

Input Non Scarps

At a minimum, the 5 acre stream channel

The user must select the 5 acre

during Cutoff

Topography !ayer - the user must select the layer as an layer from the dropdown menu
input to the tool
11 Run CCM Number of Nodes used to Tails are not removed Leave blank
Cutoff Tails
11 Run CCM Number of Contours to skip 3 Leave blank - only applies when

the previous option is filled out

Compute Risk Metrics

Rebuilt Embankment Slope

26 degrees (2H:1V)

Leave blank

Compute Risk Metrics Maximum Rebuilt Roadway 70 feet Leave blank
Width

Compute Risk Metrics Repair Rate 250 cubic yards per day Leave blank

Compute Risk Metrics Excavation Cost $11.00 per cubic yard Leave blank

Compute Risk Metrics Fill Cost $18.50 per cubic yard Leave blank




Table E2: Output File Naming Convention

Tool Name Output Output Name Variable Parts Location Saved
01 Create Inventory Mapping Project Specified by Name of Specified by Location to
Inventory Mapping | Folder Inventory Mapping Save Inventory Mapping
Project Project input Project input
01 Create Inventory Mapping Project Same as Inventory Inventory Mapping
Inventory Mapping | Geodatabase Mapping Project name Project Folder
Project
02 Prepare Copy of Input DEM OriginalDEM Inventory Mapping
Visualization Project Geodatabase
Layers
02 Prepare Hillshade Raster Hillshade Inventory Mapping
Visualization Project Geodatabase
Layers
02 Prepare Slope Raster Slope Inventory Mapping
Visualization Project Geodatabase
Layers
03 Find Cell Size | Test Slope 1 TestSlope[1] [1] Cell size Inventory Mapping
for Mapping Project Geodatabase
03 Find Cell Size | Test Slope 2 TestSlope[2] [2] Cell size Inventory Mapping
for Mapping Project Geodatabase
03 Find Cell Size | Test Slope 3 TestSlope[3] [3] Cell size Inventory Mapping
for Mapping Project Geodatabase
04 Create Mixture | Mixture Raster Mix_CS[1] [1] Cell size of the mixture raster Inventory Mapping
Raster Project Geodatabase
04 Create Mixture | Resampled DEM RS_Elev[2] [2] Cell size of the resampled DEM Inventory Mapping
Raster Project Geodatabase
05 Create Scarp Candidate Polygons Cand_CS[1]_MTI[2] [1] Cell size of the mixture raster Inventory Mapping
Polygon used to define candidate polygons, Project Geodatabase
Candidates and [2] the mixture threshold value

(If Natural Breaks were used, [2]
becomes "NB")

06 Digitize Stream
Channels

First Stream Channel Layer

Channels[1]

[1] First stream accumulated area
with units

Inventory Mapping
Project Geodatabase




06 Digitize Stream

Second Stream Channel Layer

Channels[2]

[2] Second stream accumulated area

Inventory Mapping

Channels with units Project Geodatabase
06 Digitize Stream | Third Stream Channel Layer Channels[3] [3] Third stream accumulated area Inventory Mapping

Channels with units Project Geodatabase
06 Digitize Stream | Flow Accumulation Raster FlowAcc Inventory Mapping

Channels Project Geodatabase

07 Create Rock
Score Raster

Rock Score Raster

RockScore_[1]

[1] Cell size of the rock score raster

Inventory Mapping
Project Geodatabase

08 Identify Rocks
from Rock Score

Rock Outcrop Polygons

Rocks_Sc[1]

[1] Rock score threshold used to
define outcrops

Inventory Mapping
Project Geodatabase

Raster
09 Eliminate Non | None
Scarp Topography
10 Create Scarp Scarp Polylines Scarps_CS[1]_MT[2] Same notation as for the candidate Inventory Mapping
Lines polygons used to produce scarp lines | Project Geodatabase
10 Create Scarp CCM Package Folder CCM_Package_CS[1]_M | [1] and [2] are the same as the scarps | Inventory Mapping
Lines T[2] included in the package Project Folder
10 Create Scarp CCM Package Geodatabase CCM Package Folder
Lines
10 Create Scarp Geotiff Copy of DEM CCM_DEM.tif CCM Package Folder
Lines
10 Create Scarp | 3D Scarp Polyline Shapefile CCM_scarps.shp CCM Package Folder
Lines
11 Run CCM CCM Folder CI[1]_NS[2]_AS[3]_BP[5 | [1] contour interval, [2] nodal CCM Package Folder
] spacing, [3] active slope, and [4]
branch parameter used in CCM run
11 Run CCM Deposit Extents Same as for the CCM Folder CCM Package

CI[1]_NS[2]_AS[3]_BP[5
]

Geodatabase

Create Risk Maps

Risk Zones

Risk_Zones

Specified by User

Compute Risk
Metrics

None




Users should also be aware that this appendix has been color-coded. The key to each color is
provided below:

Blue = File Name

Green = Field Name

Purple = Tool Variable Name

Red = Process/Tool Name

Understanding the previous items, you are now ready to begin work. Users who have already
digitized scarp lines should skip directly to part G.

w N e

Setup (Tools 01 and 02)

Open ArcGIS

Open the ArcToolbox window, and map the location of the SICCM and Risk toolboxes.
Run 01 Create Inventory Mapping Project. Save the project to an appropriate folder with a
relevant project name. The project name should not have spaces, and instead should use
underscores, for example “My_Project”.

Critical Step: Open your ArcGIS and set the Default
Geodatabase to the geodatabase in your newly created inventory mapping project folder. If
you fail to update the Default Geodatabase, output files will be sent and stored in the
ArcGIS default geodatabase located at within the “ArcGIS” folder of “My Documents” on
your computer.

Optionally, run 02 Prepare Visualization Layers with your Original DEM as the Input DEM.
The tool outputs a hillshade raster and a formatted slope and elevation (DEM) combination,
which are meant to be used as basemaps for the rest of the analysis. It is recommended that
users stick with the default layer, slope, since it is not biased by the choice of sun angle used
for hillshade computations (Burns and Madin, 2009). The outputs will be saved to you
inventory mapping project geodatabase.

Base Data Processing (Tool 03)

Run tool 03 Find Cell Size for Mapping with the Original DEM as the Input DEM, or move
on to tool 04 and use the default cell size. Operation of Tool 03 constitutes Intervention 1,
which is the first opportunity for the user to interject judgement and customize their results.

Intervention 1:

During the first attempt at Tool 03, leave the optional test cell sizes empty. Review the output
slope rasters and determine a good cell size. If necessary, run the tool again with different
cell sizes (Table E3) and repeat this step.
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Table E3. Recommended Inputs for Tool 03 Find Cell Size for Mapping when Performing

Intervention 1.

Tool Attempt

Test Cell Size 1

Test Cell Size 2

Test Cell Size 3

1 (Default Values)

3 x Original Cell
Size

6 x Original Cell Size

9 x Original Cell
Size

2 (If Necessary)

11 x Original Cell
Size

13 x Original Cell
Size

x Original Cell Size

Determine Scarp Candidate Polygons (Tools 04 and 05)

1. Run 04 Create Mixture Raster with the Original DEM as the Input DEM. Use the cell size
that you determined with Tool 03 as the Selected Cell Size, or leave the cell size blank to use
the default value. In this case, the default cell size is three times the cell size of the Input
DEM. The mixture raster, and a copy of the Input DEM resampled to the Selected Cell Size
(Resampled DEM: RS_Elev), will be saved to the project geodatabase. The mixture raster
will be automatically displayed as three classes defined by natural breaks.

If desired, perform Intervention 2 by inspecting the mixture raster.

Intervention 2:

Adjust the mixture threshold, and select a value that best includes most potential scarps.

Classification

X

100000+

50000

0

T

Classification Classification Statistics
Method: Natural Breaks (Jenks) i Count:
Classes: 3 v Minimum:
‘—I Maximum:
Data Exdusion S
Exdlusion ... sampling ... Mean:
Standard Deviation:
Columns: 100 5 [)show Std. Dev. [ show Mean
o= 2
A @
300000 5 § §
-
= -~ @
a5 a
250000+ L [ ]
2000004+ /
150000 Mixture
Threshold

T T
-40.84295273 -21.53305054 -2.223148346

Snap breaks to data values

T
17.08675385 36.3966560.

699132
-40.84295273
36.39665604
-18,992.1388
-0.027165312
3.13246873

Break Values %

-2.677498986

3.077609118 I

36.39665604

Cancel

Increase size of
candidate polygons

Decrease size of
candidate polygons

Figure E1. Identification of the mixture threshold within ArcGIS’s classification window.
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Run 05 Create Candidates with the desired Input Mixture Raster. If Intervention 2 was
performed, specify the mixture threshold for the Mixture Raster Value used as Threshold.

Identify Non Scarp Features (Optional; Tools 06, 07, and 08)

The tools used during the Identification of Non Scarp Features process are optional
because they present methods to identify stream channels and rock outcroppings, which may
be identified by other means. If a user has access to more advanced methods for identifying,
or has already identified, either of these features, then they are welcome to use a different
approach. While optional, the user should only skip straight to tool 09 if they have a stream
channel layer, at a minimum. Use of Tool 09 without at least a stream channel layer will
most likely lead to poor results.

Run 06 Digitize Stream Channels with the Resampled DEM (produced by Tool 04) as the
Input DEM and the DEM’s linear unit (found under its ) as the DEM
Linear Unit. For the first run, leave the optional cell sizes with default values (1, 3, 5).
Tool 06 may be performed with or without human interpretation. To not use human
interpretation, remove the 1 and 3 acre stream channel layers from the map, and retain the 5
acre layer. Human interpretation is highly recommended, and is performed through
Intervention 3.

Intervention 3:

Review the output stream channels, using the diagram in the tool’s help for guidance, and
select the best stream channel layer. If the diagram cannot be satisfied by the first three
stream channels, run Tool 06 again with different values (Table E4). Different values change
the area included in the flow accumulation area; higher numbers include larger drainage
areas; smaller values include less

Table E4. Recommended Inputs for Tool 03 Find Cell Size for Mapping when Performing
Intervention 1.

Tool Attempt

Accumulated Area 1

Accumulated Area 2

Accumulated Area 1

1 (Default Values)

1 acres

3 acres

S acres

2 (If Necessary)

7 acres

10 acres

15 acres

4. If the terrain appears to have rock outcrops, run 07 Create Rock Score with the Resampled
DEM as the Input DEM. Leave the Cell Size used to Subtract from Input DEM empty for
the first run. If the resulting rock score raster does not appear to highlight outcrops (observed
on the basemap layer), then try another Cell Size.

5. If Tool 07 has been performed, run 08 Identify Rock Outcrops from Rock Score with the
desired Input Rock Score Raster and save the Output Rock Outcrop Polygons to your
working folder. Leave the Rock Score Threshold blank, unless you are comfortable
recognizing rock outcrops on the basemap layer. If you are comfortable, locate some rocks
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and identify their rock score raster value using the Identity cursor. The minimum observed
rock score raster value may be used as the Rock Score Threshold.

Once Tools 06 through 08 have been performed, determine if a road polyline layer is
available for the map area. If so, inspect the layer against the basemap to determine if it is
accurate. Inaccurate, or poorly drawn, road polylines should not be used.

Identify Non Scarp Features (Tool 09)

Run 09 Eliminate Non Scarp Topography with the candidate polygons created by Step 05 as
the Input Candidates. Input Non Scarps may be rock outcrop polygons, stream channels,
or road polylines, and all available layers may be input together. In the case where poor
quality layers must be used as non scarps (not recommended), a Search Distance may be
used to eliminate candidates within a certain distance of the non scarps. Tool 09 does not
produce any outputs, but it does edit the “LS” field of the candidate polygons. Features with
an “LS” value of 1 following Tool 09 are now called scarp polygons.

Perform Intervention 4 to manually eliminate or reconsider classified candidates.

Intervention 4:
Consider reclassifying the candidates in the attribute table manually. Additionally, the
can allow a partial inclusion or exclusion of a candidate into candidates.

(Eeitor

|Editor o 3 e \j}.ﬁ
Editor~ [ » | : m;l:x:l} W|ER '
[

Cut interconnected polygons

Edit attributes

LU

3
£l
3
3

tov v [ | 0 out of 2508 Sebected)

Cand_C525 MTNE

Figure E2. Locations of tools and attributes used to implement Intervention 4.

Create Scarp Lines (Tool 10)

Run 10 Create Scarp Lines from Scarp Polygons with the classified candidates as Input
Candidates, and the Resampled DEM as the Input DEM. The output scarp lines will be
saved to your project geodatabase, and to a new CCM Package

Run CCM to Map Landslide Deposits within ArcMap (Tool 11)
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1.

2.

Make sure that you have the CCM Flow CLI (command line interface) application installed
on your computer.

Perform 12 Run CCM with the desired CCM Package and CCM parameters (contour
interval, node spacing, active slope, and branch parameter). If you choose to remove tails, fill
in the Number of Nodes used to Cutoff Tails and Number of Contours to skip during
Cutoff. Check the box if for all CCM outputs, or leave the box unchecked if you only want
landslide deposit extents.

Table 3.1 from Report: Definitions of Parameters used by the Modified Contour
Connection Method. Notation Follows that of Leshchinsky et al. (2015).

Parameter Name Definition Recommended
Values
Aactive Active slope | Minimum gradient for active slide 0.03, 0.05 (rise/run)
region
AE: Contour A fixed vertical distance between X- | 10, 20, 30 feet
interval Y contour layers for a given range Z
Ln Nodal spacing | A fixed length between contour 10, 20, 30 feet
node assignments
Bn Branch A branching connection parameter. | 3,5
parameter

Run CCM to Map Landslide Deposits Using Standalone GUI (Only if CCM Flow CLI

is not available)

Save the Map Document, leave ArcMap, and open the CCM Flow GUI application.

Create a New Model with the CCM_DEM.tif from the CCM Package as the Input DEM, the
desired CCM_scarps.shp from the desired CCM Package as the Input Scarp, and the
appropriate CCM Package folder as the Output Folder. Fill out the remaining required
inputs based on Section 4.4. Options on the right side of the New Model window may be
adjusted to control what is outputted by the model. Click Add to Queue.

Check that the model has been added to the queue, then click Run Queue. The tool will run
for several minutes, depending on the number of scarps and the input parameters.

Once the application has finished, the output prompt will say “Done with...” At this point, go
back to ArcMap and open the Map Document. Add the CCM results to the map and inspect
results. If necessary create another CCM model.

Preparing Risk Maps from SICCM Outputs

Open the Risk toolbox in ArcMap.

Run the Create Risk Maps tool using your Original DEM as the Input Elevation Raster and
choose the SICCM Deposit Extents. SICCM Deposit Extents can be found within the CCM
Project geodatabase. Input Highway or Road Polylines can be single line features, or
networks of roads. A recommended Output Folder is the CCM Package folder.
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3. Run Compute Risk Metrics on the outputs from Create Risk Maps. Fill out the various
optional parameters to customize the risk map for a variety of circumstances. Values from
the following tables may be helpful.

Table 3.3 from Report: Average costs to repair or reconstruct roadway listed by
ODOT region (from Unstable Slopes Database)

oDOT General Excavation Stone Embankment or Fill
Region (Cost per m?) (Cost per m?)

1 $22.44 $34.61

2 $10.97 $20.66

3 $15.16 $30.69

4 $11.85 $16.65

5 $9.57 $17.50
Average $14.40 (~$11.00 per cu. yd.) $24.02 (~$18.50 per cu. yd.)

Table E5: Conversions from H:V slope to degrees.

Horizonal:Vertical Slope (Degrees)
(H:V)
3:1 18.4
2.5:1 21.8
2:1 26.6
1.5:1 33.7
1:1 45
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Glossary of SICCM Terms

Active Slope — an input to the CCM Algorithm that that dictates the minimum connection slope
that may be mapped before the process terminates.

Branch Parameter — an input to the CCM Algorithm that regulates the amount that landslide
extents may spread transverse to the downslope direction.

CCM Algorithm — an updated version of the Contour Connection Method of Leshchinsky et al.
(2015) that uses inputted landslide scarp lines to draw the extents of landslide deposits.

Classification — the act of assigning labels to scarp candidates. Labels may either be non-
landslide scarp or landslide scarp.

Connection - a straight three-dimensional line that connects nodes on adjacent contours.

Contour Interval — the vertical distance between adjacent contours drawn by the CCM
algorithm.

Descriptive Variables — single values used to describe a scarp candidate polygon. These
variables may be geometric, such as perimeter or area, or topographic, such as statistical
measures of elevation derivatives corresponding to the polygon (i.e. mean, standard deviations,
etc.).

Elevation Derivative — a raster computed through manipulation of a digital elevation model.
Examples include slope, profile curvature, planform curvature, hillshade, and mixture.

Intervention — a break in the procedure that gives the practitioner an opportunity to interpret
interim results and to adjust them manually and iteratively.

Mixture Raster — the raster used to emphasize landslide scarps during segmentation.
Mathematically, the product of slope and profile curvature rasters.

Mixture Threshold — the value of the mixture raster used to separate scarp candidates from all
other terrain.

Nodes — three-dimensional points located at equal spacing on contour lines that are connected by
the CCM algorithm.

Node Spacing — the distance along a contour between that dictates the spacing on nodes.
Practitioner — the person performing modeling or mapping.

Scarp Candidate — a shape that represents the extents of features having topography similar to
landslide scarps. Computationally, a polygon that encompasses mixture raster values exceeding

the mixture threshold.

Segmentation — the act of breaking down a raster into smaller objects that may be classified.
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APPENDIX G - SUPPORTING SCRIPTS AND ARCGIS™ MODELS






Supporting Scripts and ArcGIS™ models

Table G1: Summary of tools included in Appendix G

Name

Description

01 Create Inventory Mapping
Project

Creates inventory mapping project used to organize
tool outputs

02 Prepare Visualization Layers

Computes resampled versions of slope, curvature, and
the mixture raster

03 Find Cell Size for Mapping

Aids in the determination of a digital elevation model
(DEM) cell size to use for mapping

04 Create Mixture Raster

Resamples the input DEM to the mapping cell size
and uses it to compute a mixture raster

05 Create Candidates

Divides mixture raster pixels at a threshold, and
converts clusters of pixels into candidate polygons

06 Digitize Stream Channels

Produces example stream channel layers from the
resampled DEM

07 Create Rock Score

Produces a roughness raster from the resampled DEM,
called the rock score

08 Identify Rocks from Rock Score

Divides the rock score pixels at a threshold, and
converts clusters of pixels into rock outcrop polygons

09 Classify by Removing Non Scarp
Features

Assigns candidate polygons with scarp or non-scarp
classes depending on their interaction with rocks,
streams, and any other non-scarp feature

10 Create Scarp Lines

Reduces scarp polygons into lines and assigns
elevations to the lines

11 Run CCM

Interface used to operate the CCM application, and
perform landslide deposit mapping

Create Risk Maps

Analyzes the topography within SICCM landslide
deposits and computes the geometry of unstable soil
masses

Compute Risk Metrics

Determines various cost measures for sections of
roadway, considering the geometry of each unstable
soil mass

G-1




SICCM Toolbox

et e S S e e S S S s

# create_project.py

# or "01 Create Inventory Mapping Project”™ tool in the SICCM toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import proper modules
import arcpy, 0S
arcpy.env.overwriteOutput=True

# As user for inputs

proj loc = arcpy.GetParameterAsText(0)

proj_name = arcpy.GetParameterAsText(1l)

directory = proj loc+"\\"+proj_ name

# Create new folder

if not os.path.exists(directory):
os.makedirs(directory)

# Create file geodatabase
gdbdir = directory+"\\"+proj_name+'".gdb"

if not os.path_exists(gdbdir):
arcpy.CreateFileGDB_management(directory, proj name, ""10.0")
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L L
prepare_visualization_layers.py
or 02 Prepare Visualization Layers"™ tool in the SICCM Toolbox

#
#
#
# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu
L L L e L L L L L D L D D B

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True

# Check out any necessary licenses
arcpy-CheckOutExtension(“'spatial™)

# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage (commentval)

# Ask user for input DEM
InputDEM = arcpy.GetParameterAsText(0)

# Ask user for output file locations
OrigDEM = "OriginalDEM"
OutputSlopeFR = ""Slope™

OutputHills = "Hillshade™”

# Compute new rasters
arcpy-CopyRaster_management(I1nputDEM,OrigDEM)
outSlopeFR = Slope(InputDEM, "DEGREE'™, ')
outSlopeFR.save(OutputSlopeFR)

outHS = Hillshade(InputDEM, ***, ", ", 1)
outHS._save(OutputHills)

arcpy-ChecklnExtension(‘'spatial™)
arcpy .ChecklnExtension(''3D™)

## Display mixture raster on map

# Set the map document and data frame
mxd = arcpy.mapping.MapDocument("'"CURRENT™)
df = arcpy.mapping.ListDataFrames(mxd, 'Layers'™)[0]

# Find location of layer file
lyrDir = os.path.dirname(__ file_ )

fileSlp lyrDir+"\\slope.lyr"
fileDEM lyrDir+"\\dem_lyr"
FfileHS = lyrDir+"\\hillshade.lyr"

lyrHS = arcpy.mapping.Layer(OutputHills)
arcpy-ApplySymbologyFromLayer_ management(lyrHS, FfileHS)
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arcpy.mapping.AddLayer(df, lyrHS)
# Create layer file and add to map
lyrSlp = arcpy.-mapping.Layer(OutputSlopeFR)
arcpy-ApplySymbologyFromLayer _management(lyrSlp, FileSlp)
arcpy.-mapping.AddLayer(df, lyrSip)
lyrDEM = arcpy-mapping.Layer(OrigDEM)
dir, fname = os.path.split(OrigDEM)
for lyr in arcpy.mapping.ListLayers(mxd, ", df):

if lyr_name == fname:

arcpy-mapping.RemovelLayer(df, lyrDEM)

arcpy-ApplySymbologyFromLayer _management(lyrDEM, FileDEM)
arcpy.-mapping.AddLayer(df, lyrDEM)

arcpy-ChecklnExtension(*'Spatial™)



e e e

# select_DEM_resolution.py

# or "03 Find Cell Size for Mapping" tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

L S L L L L L L L L D D
import arcpy, 0S

from arcpy.sa import *

arcpy.env.overwriteOutput = True
arcpy-CheckOutExtension("Spatial ™)

# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage(commentval)

# Ask user for input DEM
input_raster = arcpy.GetParameterAsText(0)

# Determine cellsize of input DEM
description = arcpy.Describe(input_raster)
cellsize = description.children[0].meanCellHeight

# Ask user for test cellsizes - If no value is selected,
# the script will compute values from the current cellsize
resA = arcpy.GetParameterAsText(l)
if resA == "#" or not resA:
resA = str(int(3*cellsize))

resB = arcpy.GetParameterAsText(2)
if resB == "#" or not resB:
resB = str(int(6*cellsize))

resC = arcpy.-GetParameterAsText(3)
if resC == "#" or not resC:
resC = str(int(9*cellsize))

# Name of slope files to be outputted (no user involvement)
SlopeA = "TestSlope"+resA
SlopeB = "TestSlope'"+resB
SlopeC = "TestSlope"+resC

# Prepare test cellsizes for input into ArcGIS Resample
cellA = resA+" "+resA
cellB = resB+" "+resB

cellC resC+" ""+resC
ResampleA = RS TS1"
ResampleB = RS TS2"
ResampleC = RS TS3"
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# Resample DEM to test cellsize and compute slope raster
arcpy-Resample_management(input_raster, ResampleA, cellA, "NEAREST™)
0S1 = Slope(ResampleA, "DEGREE'™, "1')

arcpy.-Resample_management(input_raster, ResampleB, cellB, "NEAREST™)
0S2 = Slope(ResampleB, "DEGREE'™, "1')

arcpy.-Resample_management(input_raster, ResampleC, cellC, "NEAREST™)
0S3 = Slope(ResampleC, "DEGREE'™, "1')

# Delete resampled DEMs

arcpy-Delete_management(ResampleA, ')
arcpy.Delete_management(ResampleB, ")
arcpy.Delete_management(ResampleC, ")

# Save slope rasters
0S1.save(SlopeA)
0S2.save(SlopeB)
0S3.save(SlopeC)

## Display slope rasters on map

# Set the map document and data frame

mxd = arcpy.mapping.MapDocument(""CURRENT™)

df = arcpy.mapping.ListDataFrames(mxd, Layers'™)[0]

# Find location of layer file
lyrDir = os.path.dirname(__ file_ )

fileA = lyrDir+"\\slope.lyr”
FfileB = lyrDir+"\\slope_lyr"
FfileC = lyrDir+"\\slope_lyr"

# Create layer files for each slope raster

lyrA = arcpy.mapping.Layer(SlopeA)
lyrB = arcpy.mapping.Layer(SlopeB)
lyrC = arcpy.mapping.Layer(SlopeC)

# Add layers to map

arcpy-ApplySymbologyFromLayer management(lyrA, fileA)
arcpy-mapping.AddLayer(df, lyrA)
arcpy-ApplySymbologyFromLayer management(lyrB, fileB)
arcpy.-mapping.AddLayer(df, lyrB)
arcpy-ApplySymbologyFromLayer management(lyrC, fileC)
arcpy.-mapping.AddLayer(df, lyrC)

arcpy-ChecklnExtension("“Spatial ")



et e L R R

# prepare_mixture_raster._py

# or "04 Create Mixture Raster'™ tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e L R R

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True

# Check out any necessary licenses
arcpy-CheckOutExtension(“'spatial™)

# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage (commentval)

# Ask user for input DEM
input_raster = arcpy.GetParameterAsText(0)

# Ask user for selected cellsize (determined from tool 01)
res = arcpy.GetParameterAsText(1)
if res == "#" or not res:

# Determine cellsize of input DEM
description = arcpy.Describe(input_raster)
cellsize = description.children[0]-meanCellHeight

# Assign default resolution of 6 x input cellsize
res = 6*cellsize

strint_res = str(int(res))

Output_Cell_Size = strint_res+" "+strint_res

# Name mixture file that will be output "Mix_CSXX"™ Cell Size XX
OutputMixture = "Mix_CS"+strint_res

# Name files to be output
OutputRSelev = "RS Elev"+strint_res

# Name of local files to be deleted
OutputSlope = "SlopeTemp™
OutputProfile = "ProfTemp"
OutputPlan = "PlanTemp"
SmoothInputDEM = "SmDEMTemp"

Curva = "CurvaTemp™

MixUnsmooth = "‘UnsmMixTemp"

# Perform smoothing on input DEM

arcpy.gp-FocalStatistics_sa(input_raster, SmoothlnputDEM, "Rectangle 5 5
CELL™, "MEAN", "DATA™)
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# Resample smoothed input DEM to selected cellsize
arcpy-Resample_management(SmoothlInputDEM, OutputRSelev, Output_Cell_Size,
"BILINEAR™)

# Compute slope and profile curvature from resampled DEM
outSlope = Slope(OutputRSelev, "DEGREE"™, "1')
outSlope.save(OutputSlope)

outCurve = Curvature(OutputRSelev, "1", OutputProfile, OutputPlan)
outCurve.save(Curva)

# Multiply slope and profile curvature together to obtain
# unsmoothed mixture raster

outTimes = Times(OutputSlope, OutputProfile)
outTimes.save(MixUnsmooth)

# Smooth mixture raster
arcpy.gp-FocalStatistics_sa(MixUnsmooth, OutputMixture, "Rectangle 5 5 CELL",
"“"MEAN', "DATA')

# Delete local fTiles
arcpy-Delete_management(OutputSlope, ')
arcpy.Delete_management(OutputProfile, ")
arcpy.Delete_management(OutputPlan, ')
arcpy .Delete_management(SmoothlInputDEM, **'*)
arcpy.Delete_management(Curva, ")
arcpy.Delete_management(MixUnsmooth, ")

## Display mixture raster on map

# Set the map document and data frame
mxd = arcpy.mapping.MapDocument(**CURRENT"'")
df = arcpy.mapping.ListDataFrames(mxd, " Layers'™)[0]

lyrRS = arcpy.mapping.Layer(OutputRSelev)
lyrRS_transparency = 100
arcpy.-mapping.AddLayer(df, IyrRS)

lyrDir = os.path.dirname(__ _file )
FfileMix = lyrDir+'"\\mixture.lyr"

lyrMix = arcpy.mapping.Layer(OutputMixture)
arcpy-ApplySymbologyFromLayer_management(lyrMix, FileMix)
arcpy.-mapping.AddLayer(df, lyrMix)

arcpy-ChecklnExtension(*'spatial')



et e L R R

# create_candidates.py

# or "05 Create Candidates™ tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e L R R

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage (commentval)

# Ask user for input mixture raster
mix_raster = arcpy.GetParameterAsText(0)
iCS = mix_raster.find('Cs™)

mix_extn = mix_raster[iCS:]

arcpy -AddMessage(mix_extn)

# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage (commentval)

# Determine cellsize of mixture raster
description = arcpy.Describe(mix_raster)

cellsize = description.children[0].-meanCellHeight
res = str(int(1*cellsize))

# Assign temporary variables
ExtractTrough = "extTroughTemp"
ExtractPoly = "extPolyTemp"
SliceMix = "SliceMixTemp"

UserThresh = arcpy.GetParameter(1)
if UserThresh == "#" or not UserThresh:
# Slice the mixture raster into three classes using Jenks
# natural breaks
outSlice = Slice(mix_raster, 3, "NATURAL BREAKS™)
outSlice.save(SliceMix)
extn = ""MTNB"
else:
Reclassification = RemapRange([[-1000000, UserThresh, 0], [UserThresh,
1000000, 31D
OutReclass = Reclassify(mix_raster, "VALUE"™, Reclassification, "DATA™)
OutReclass.save(SliceMix)
extn = "MT"+str(int(round(UserThresh)))
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Candidates = ""Cand "+mix_extn+" "+extn

# Extract all raster cells with a value of 3

OutExtract = ExtractByAttributes(SliceMix, ""\"VALUE\" =3"")
OutExtract.save(ExtractTrough)

# Convert extracted raster cells into candidate polygons
flip =0
try:

arcpy-RasterToPolygon_conversion(ExtractTrough, ExtractPoly, “SIMPLIFY",
"VALUE™)
except:

flip =1

arcpy.Adderror("'The specified Mixture Threshold lies outside of the range
of Mixture Values. Please choose a new value or leave the Mixture Threshold
blank™)

arcpy-MakeFeatureLayer management(ExtractPoly, "polys™)
arcpy.-SelectLayerByAttribute_management ('polys'™, "NEW SELECTION™,
"""GRIDCODE™ =3")

arcpy.CopyFeatures_management(“'polys', Candidates)

# Delete temporary variables
arcpy-Delete_management(ExtractPoly)
arcpy-Delete_management(ExtractTrough)
arcpy.Delete_management(SliceMix)

# Add perimeter and length attributes to the candidate polygons
arcpy-AddGeometryAttributes management(Candidates, "AREA;PERIMETER LENGTH™,

# Create candidates layer
arcpy -MakeFeatureLayer_management(Candidates, '‘candidates'™)

# Check if field LS exists in candidates. If not, create it
check = 0
Ist = arcpy.ListFields('candidates™™)
for f in Ist:
if f.name == "LS":
check = 1
else:
continue
if check == 0:
arcpy-AddField_management(‘‘candidates’™, "LS"™, "SHORT'™)
arcpy-Delete_management(‘‘candidates™)
## Display candidates on map

# Set the map document and data frame

mxd = arcpy.mapping.MapDocument(""CURRENT"")

df = arcpy.-mapping.ListDataFrames(mxd, 'Layers'™)[0]
arcpy.Delete_management(“'polys™)

it flip == O:
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# Create layer file and add to map
lyrDir = os.path.dirname(__ file_ )

fileCand = lyrDir+"\\candidates.lyr"
lyrCand = arcpy.mapping.Layer(Candidates)

arcpy-ApplySymbologyFromLayer_management(lyrCand, fileCand)
arcpy-mapping.AddLayer(df, lyrCand)
arcpy.-ChecklnExtension(‘'spatial™)

else:
arcpy-Delete_management(Candidates)
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# digitize_streams.py

# or "06 Digitize Stream Channels™ tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Define conversion fTunction#i#i#HHHHHHHAHAHHHH
def ArealUnit2Pixel(areal_unit, input_raster,raster_units):

# Determine the area of an individual DEM cell

# Units are in raster_units squared

description = arcpy.Describe(input_raster)

cell_size = description.children[0].meanCellHeight
cell _area = cell_size*cell_size

# Break Areal Unit into two parts; unit and value
idx = areal_unit.find(" )

idx1l = int(idx+1)

unit = areal_unit[idx1:]

accval = float(areal _unit[:idx])

# Create a dictionary with conversion values
conversions = {"SquareFeet:[1,0.092903], \
"Ares':[1076.39,100], \

"Acres' :[43560,4046.86], \
"Hectares':[107639,10000], \
""SquareCentimeters'™:[0.00107639,0.0001], \
""'SquareDecimeters™:[0.107639,0.01], \
""Squarelnches™:[0.00694444,0.00064516], \
"SquareKilometers':[10760000,1000000], \
""SquareMeters':[10.7639,0], \

"SquareMi les":[27880000,2590000], \
"SquareMillimeters™:[0.0000107639,0.000001], \
"SquareYards':[9,0.836127]}

# Mutliply the user specified area by a conversion to
# Square Feet or Square Meters
if raster_units == "Meters'":
# Accumulated area in square meters
user_area = accval*conversions[unit][1]
elif raster_units == "Feet":
# Accumulated area in square feet
user_area = accval*conversions[unit][0]

# Divide user specified area by cell area to get number of pixels

numpix = user_area/cell_area
return numpix, user_area
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# Display location

loc = arcpy.env.workspace

commentval = "Outputs will be saved to "+loc
arcpy -AddMessage(commentval)

# Ask user for input DEM and its units
inputDEM = arcpy.GetParameterAsText(0)
DEMunits = arcpy.GetParameterAsText(l)
arcpy.SetProgressorLabel (""Processing Inputs and Converting Units...")
# Ask user for minimum number of cells accumulated - If no value is selected,
# the script will use default values
if DEMunits == "'Meters":
extn = "SgM*
else:
extn = "SgFt"

accA = arcpy.GetParameterAsText(2)
if accA == "#" or not accA:
# Default 5000 Square Feet
pixA, areaA = ArealUnit2Pixel(*'5000 SquareFeet", inputDEM,DEMunits)
extnA = "SqFt"
else:
pixA, areaA = ArealUnit2Pixel(accA, inputDEM,DEMunits)
extnA = extn

accB = arcpy.GetParameterAsText(3)
if accB == "#" or not accB:
# Default 10000 Square Feet
pixB, areaB = ArealUnit2Pixel(*'10000 SquareFeet", inputDEM,DEMunits)
extnB = "SqFt"
else:
pixB, areaB = ArealUnit2Pixel(accB, inputDEM,DEMunits)
extnB = extn

accC = arcpy.GetParameterAsText(4)
if accC == "#" or not accC:
# Default 15000 Square Feet
pixC, areaC = ArealUnit2Pixel(*'15000 SquareFeet", inputDEM,DEMunits)
extnC = "SqgFt"
else:
pixC, areaC = ArealUnit2Pixel(accC, inputDEM,DEMunits)
extnC = extn

# Name of outputted stream layers

StreamsA = "Channels"+str(int(arealA))+extnA
StreamsB = ""Channels"+str(int(areaB))+extnB
StreamsC = ""Channels"+str(int(areaC))+extnC

## Follow typical stream identification workflow in ArcGIS

# Assign temporary variables
FillIDEM = “FilIDEM"

FlowDir = “FlowDir"

DropRast = '"DropRast"
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FlowAcc = "FlowAcc"

ReclassA = "ReclassA"
ReclassB = '""ReclassB"
ReclassC = ""ReclassC"

arcpy-ResetProgressor()
arcpy.SetProgressor(“'step”, " "Developing Flow Accumulation Raster...",0,5,1)
# Fill input DEM

arcpy.gp-Fill_sa(inputDEM, FillIDEM, ™)

# Compute Fflow direction from filled DEM
arcpy.-.gp-FlowDirection_sa(FilIDEM, FlowDir, "NORMAL", DropRast)

# Compute flow accumulation raster
arcpy.-gp-FlowAccumulation_sa(FlowDir, FlowAcc, "', "FLOAT'™)

# Reclassify flow accumulation layer using minimum values from above
remapA = RemapRange([[0, pixA, 0], [pixA, 1000000000, 11D
OutReclassA = Reclassify(FlowAcc, "VALUE", remapA, "DATA™)
OutReclassA.save(ReclassA)

remapB = RemapRange([[0, pixB, 0], [pixB, 1000000000, 11D
OutReclassB = Reclassify(FlowAcc, "VALUE", remapB, "DATA™)
OutReclassB.save(ReclassB)

remapC = RemapRange([[0, pixC, 0], [pixC, 1000000000, 11D
OutReclassC = Reclassify(FlowAcc, "VALUE", remapC, "DATA™)
OutReclassC.save(Reclass(C)

# Convert stream raster into polyline

arcpy-SetProgressor(“'step”, " Drawing First Set of Stream Channels...",0,4,2)
arcpy-RasterToPolyline_conversion(ReclassA, StreamsA, "ZERO™, "0,
“"SIMPLIFY'™, "VALUE'™)

arcpy.SetProgressor(''step”,"First Set Complete, Now Drawing Second...",0,5,3)
arcpy.RasterToPolyline _conversion(ReclassB, StreamsB, "ZERO™, "0",
“"SIMPLIFY™, "VALUE™)

arcpy-SetProgressor('step”,""Second Set Complete, Now Drawing Third...",0,5,4)
arcpy.RasterToPolyline_conversion(ReclassC, StreamsC, "ZERO"™, "0",
“"SIMPLIFY™, "VALUE™)

# Delete temporary files

arcpy-Delete_management(Fil IDEM)
arcpy.Delete_management(FlowDir)
arcpy.Delete_management(DropRast)
arcpy.Delete_management(FlowAcc)
arcpy-Delete_management(ReclassA)
arcpy-Delete_management(ReclassB)
arcpy.Delete_management(ReclassC)

## Display streams on map
# Find location of layer file
lyrDir = os.path._.dirname(__ file )

fileA
fileB

lyrDir+"\\streamsA.lyr"
lyrDir+"\\streamsB. lyr"
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fileC = lyrDir+"\\streamsC.lyr"

# Set the map document and data frame
mxd = arcpy.mapping.MapDocument(**CURRENT"'")
df = arcpy.mapping.ListDataFrames(mxd, " Layers'™)[0]

# Create layer file and add to map

lyrA = arcpy.-mapping.Layer(StreamsA)
arcpy-ApplySymbologyFromLayer management(lyrA, fileA)
arcpy.-mapping.AddLayer(df, lyrA)

lyrB = arcpy.mapping.Layer(StreamsB)
arcpy-ApplySymbologyFromLayer management(lyrB, fileB)
arcpy-mapping.AddLayer(df, lyrB)

lyrC = arcpy.mapping.Layer(StreamsC)
arcpy-ApplySymbologyFromLayer management(lyrC, FfileC)
arcpy-mapping.AddLayer(df, lyrC)

arcpy-ChecklnExtension(*'spatial™)

G-15



et e S S e e S S S s

# create_rock_score.py

# or "07 Create Rock Score™ tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Ask user for input DEM

inputDEM = arcpy.GetParameterAsText(0)

# Determine cellsize of input DEM
description = arcpy.Describe(inputDEM)
cellsize = description.children[0].-meanCellHeight

# Ask user for the resolution to resample to - If no value is selected,
# the script will use a default value of 2*input resolution
RockRes = arcpy.GetParameterAsText(1l)
if RockRes == "#" or not RockRes:
RockRes = str(int(2*cellsize))

# State where to save Rock Score raster
RockScore = ""RockScore "'+RockRes

# Assign temporary variables
RockResample = ""RockResample™
SmoothResample = ""SmoothResample’

# Perform resample
CellRock = RockRes+'" ""+RockRes
arcpy.-.Resample_management(inputDEM, RockResample, CellRock, "BILINEAR™)

# Smooth resampled DEM

neighborhood = NbrRectangle(5,5, ""CELL™)

outSmooth = FocalStatistics(RockResample,neighborhood, "MEAN", ")
outSmooth.save(SmoothResample)

# Subtract smooth resampled DEM from input DEM
outMinus = Minus(inputDEM, SmoothResample)
outMinus.save(RockScore)

# Delete temporary files
arcpy-Delete_management(RockResample)
arcpy.Delete_management(SmoothResample)

## Display Rock Score Raster on map
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lyrDir = os.path.dirname(__ file )

FfileRS = lyrDir+"\\rockscore.lyr"

# Set the map document and data frame

mxd = arcpy.mapping.MapDocument(*"CURRENT™)

df = arcpy.mapping.ListDataFrames(mxd,"Layers'™)[0]

# Create layer file and add to map

lyrRS = arcpy.mapping.Layer(RockScore)
arcpy.-ApplySymbologyFromLayer_management(lyrRS, fileRS)
arcpy.mapping.AddLayer(df, lyrRS)

arcpy-ChecklnExtension(*'spatial')
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# 1d_rocks _from_score.py

# or 08 ldentify Rocks from Rock Score'™ tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Ask user fTor input rock score raster
RockScore = arcpy.GetParameterAsText(0)

# Determine cellsize of input rock score raster
description = arcpy.Describe(RockScore)
cellsize = description.children[0].-meanCellHeight

# Ask user for rock score threshold

RockThresh = arcpy.GetParameterAsText(1l)

if RockThresh == "#" or not RockThresh:
RockThresh = str(int(0.25*cellsize*cellsize))

# Ask user where to save output rock outcrop polygons
RockPoly = ""Rocks Sc"+RockThresh

# Assign temporary variables

RockSlice = "RockSlice™
ExtractRock = "ExtractRock™
ExtractPoly = "ExtractPoly"

# Assign output variable
#RockPoly = OutputWorkspace+'\\RockOutcrops'+RockThresh+" _.shp"

# Reclassify the Rock Score raster
Reclassification = RemapRange([[-1000000, RockThresh, 0], [RockThresh,
1000000, 11D
OutReclass = Reclassify(RockScore, "VALUE", Reclassification, "DATA™)
OutReclass.save(RockSlice)
trigger = 0
try:
# Extract rock outcrop pixels
OutExtract = ExtractByAttributes(RockSlice, "\"VALUE\" =1")
OutExtract.save(ExtractRock)

# Convert rock score pixels exceeding the threshold to polygons

arcpy-RasterToPolygon_conversion(ExtractRock, ExtractPoly, "SIMPLIFY",
"WVALUE'™)

arcpy -MakeFeatureLayer_management(ExtractPoly, "polys™)
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arcpy.SelectLayerByAttribute_management ('polys'™, "NEW_SELECTION",
""GRIDCODE" =17)

arcpy-CopyFeatures_management(“'‘polys™, RockPoly)

arcpy-Delete_management(ExtractRock)

arcpy.Delete_management(ExtractPoly)

arcpy.Delete_management(*'polys™)

except:

arcpy-Adderror("'No Rock Outcrops ldentified - Rocks are not a problem, or
the rock score threshold is too large™)

trigger = 1

if trigger ==
arcpy-Delete_management(RockSlice)

## Display Rock Outcrops on map

# Find location of layer file
lyrDir = os.path.dirname(__ file_ )

fileRock = lyrDir+"\\rockoutcrops.lyr"

# Set the map document and data frame

mxd = arcpy-.mapping.MapDocument(**CURRENT"')

df = arcpy.mapping.ListDataFrames(mxd, " Layers')[0]

# Create layer file and add to map

lyrRock = arcpy.mapping.Layer(RockPoly)
arcpy-ApplySymbologyFromLayer management(lyrRock, fileRock)
arcpy.-mapping.AddLayer(df, lyrRock)

arcpy-ChecklnExtension(*'spatial™)
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# eliminate_non_scarps.py

# or 09 Classify by Removing Non Scarps' tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen

# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Ask user for candidates shapefile
Candidates = arcpy.GetParameterAsText(0)

# Create candidates layer
arcpy-MakeFeatureLayer _management(Candidates, 'candidates2'™)

# Check 1f field LS exists in candidates. If not, create it
check = 0
Ist = arcpy.ListFields('candidates2™)
for £ in Ist:
if f.name == "LS":
check = 1
else:
continue
if check == 0:
arcpy.AddField_management(‘‘candidates2™, "LS', "SHORT™)

# Assign a value of 1 to all candidates
arcpy.CalculateField_management(‘'candidates2', "LS", 1)

# Ask user fTor digitized non scarp topography shapefiles
NonScarps = arcpy.GetParameterAsText(1)
non_list = NonScarps.split(’;"™)

# Ask user for a search distance

search_distance = arcpy.GetParameter(2)

if search_distance == "#" or not search_distance:
search_distance = "0 Feet"”

# Process each non scarp layer
for NonScarps in non_list:
arcpy-AddMessage('Processing: {}'".format(NonScarps))

# Create temporary layer for current non scarp
arcpy -MakeFeatureLayer_management(NonScarps,"'NonScarp'™)

# Select candidates that are within the search distance of a non scarp

arcpy.-SelectLayerByLocation_management(*'candidates2",
"WITHIN_A DISTANCE"™, "NonScarp', search_distance, "NEW_SELECTION'™)
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# Change LS value to 0 for selected candidates
arcpy.-CalculateField_management(‘'candidates2","LS", 0)

# Clear selected candidates
arcpy.-SelectLayerByAttribute_management(‘'candidates2', "CLEAR_SELECTION'™)

# Delete temporary non scarp layer
arcpy-Delete_management(**‘NonScarp™)

# Set the map document and data frame

mxd = arcpy-.mapping.MapDocument(**CURRENT"'")

df = arcpy.mapping.ListDataFrames(mxd, " Layers')[0]
# Create layer file and add to map

lyrDir = os.path.dirname(__ file_ )

fileCand = lyrDir+"\\candidates.lyr"
lyrCand = arcpy.mapping.Layer(Candidates)
dir, fname = os.path.split(Candidates)

H O OHHHF O HHHEHH

for lyr in arcpy.mapping.ListLayers(mxd, ", df):
# 1f lyr_name == Candidates:
# arcpy.-.mapping.RemovelLayer(df, lyrCand)
# elif lyr.name == "candidates2":
# arcpy.mapping.RemovelLayer(df, lyrCand)
arcpy-ApplySymbologyFromLayer_ management(lyrCand, fileCand)
arcpy-mapping.AddLayer(df, lyrCand)

H H#*

arcpy.Delete_management(''candidates2'™)
arcpy-ChecklnExtension(*'spatial™)
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# thin_to_lines.py

# or "10 Create Scarp Lines" tool in the SICCM Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e S S e e S S S s

# Import arcpy module

import arcpy, 0S

from arcpy.sa import *
arcpy.env.overwriteOutput=True
arcpy.CheckOutExtension(“spatial™)

# Ask user for candidates shapefile
Candidates = arcpy.GetParameterAsText(0)

# Ask user for elevation raster
iNnputDEM = arcpy.GetParameterAsText(1l)

# Find cellsize of input DEM
description = arcpy.Describe(inputDEM)
cellsize = description.children[0].-meanCellHeight

# Assign name to scarp line file
idx = Candidates.find('CS™)

extn = Candidates[idx:]

Scarps = "'Scarps_'"+extn

# Assign temporary variables

CandRast = "'CandRast"
ThinRast = "ThinRast”
ThinPoly = ""ThinPoly"

# Convert candidates into raster
arcpy-PolygonToRaster_conversion(Candidates, LS, CandRast, """, """,
cellsize)

# Thin raster candidates into lines
thinOut = Thin(CandRast)
thinOut.save(ThinRast)

# Convert raster lines to vector polylines
arcpy.RasterToPolyline _conversion(ThinRast, ThinPoly, ", ", "SIMPLIFY",
“"WVALUE™)

# Add length field to polylines
arcpy.AddGeometryAttributes_management(ThinPoly, "LENGTH"™, ', ', ')

# Interpolate DEM to polylines to create polylineZz
try:

arcpy-CheckOutExtension(*'3D™)

arcpy. InterpolateShape_ 3d(inputDEM, ThinPoly, Scarps)
except:
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arcpy.AddMessage("'3D Analyst Extension Unavailable™)

# Create candidates layer
arcpy-MakeFeaturelLayer_management(Scarps, '‘scarps')

# Check if Id field exists in candidates. If not, create it
check = 0
Ist = arcpy.ListFields('scarps')
for f In Ist:
if f.name == "Id":
check = 1
else:
continue
iT check == 0O:
arcpy.AddField_management(*'scarps', "1d", "LONG')

# Assign a value of 1 to all candidates
try:
arcpy-CalculateField_management(*'scarps'™, "I1d", "[FID]'™)
except:
try:
arcpy.CalculateField_management(*'scarps', "I1d", "[OBJECTID]'™)
except:
try:
arcpy.CalculateField_management(''scarps'™, "Id", "[OID]'™)
except:
acrpy.Adderror("'Scarp file does not have FID or OBJECTID field™)

# Delete temporary variables

arcpy.Delete_management(CandRast)
arcpy.Delete_management(ThinRast)
arcpy.Delete_management(ThinPoly)
arcpy-Delete_management(‘'scarps')

## Create CCM Input Package

# ldentify project folder

projdir = os.path.dirname(arcpy.env.workspace)
idx = Candidates.find(''CS"™)

foldir = "CCM_Package "+Candidates[idx:]
newdir = projdir+"\\"+foldir

bool = 0
try:
os.mkdir(newdir)
except:
errval = "Folder - "+newdir+" - Already Exists. Delete it and run the

tool again”
arcpy.AddError(errval)
bool = 1

if bool == 0O:
copyrast = newdir + "\\" + "CCM_DEM.tif"
copyscarp = newdir + "\\" + "CCM_scarps.shp"
arcpy-CopyRaster_management(inputDEM, copyrast)
arcpy-CopyFeatures_management(Scarps, copyscarp)
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## Display scarps on map

lyrDir = os.path._.dirname(__file )
fileScarp = lyrDir+""\\scarps.lyr”

# Set the map document and data frame
mxd = arcpy.mapping.MapDocument(**CURRENT"'")
df = arcpy.-mapping.ListDataFrames(mxd, " Layers')[0]

# Create layer file and add to map

lyrScarp = arcpy.mapping.Layer(Scarps)
arcpy-ApplySymbologyFromLayer_management(lyrScarp, FileScarp)
arcpy-mapping.AddLayer(df, lyrScarp)

arcpy-ChecklnExtension(*'spatial™)
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# run_ccm.py

# or "11 Run CCM"™ tool in the SICCM Toolbox

#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

L L L e L L L L L D L D D B
import arcpy, math, os, shutil, subprocess

# Define conversion fTunction#i#i#HHHHHHAHAHAHAHHHHHHH
def LinearUnit2Pixel(linear_unit,input_raster):

# Determine the area of an individual DEM cell

# Units are in raster_units squared

description = arcpy.Describe(input_raster)

cell_size = description.children[0].meanCellHeight

cell_area = cell_size*cell_size

spat = arcpy.Describe(input_raster).spatialReference
raster_units = spat.linearUnitName

# Create a dictionary with conversion values
conversions = {"Feet'":[1,0.3048], \
"Centimeters":[0.0328,0.01], \
"Decimeters':[0.3281,0.1], \
"Inches™:[0.0833,0.0254], \
"Kilometers':[3280.84,1000], \
"Meters™:[3.2808,1], \
“"Miles":[5280,1609], \
“"Millimeters™:[0.0033,0.001], \
“"NauticalMiles":[6076,1852], \
"Yards':[3,0.9144]}

# Look up conversion factors
try:
if raster_units == "lMeter':
# Input raster in meters
conv_fTactor = conversions[linear_unit][1]
elif raster_units == "Foot":
# Input raster in feet
conv_Tfactor = conversions[linear_unit][0]
elif raster_units == "Foot _US":
# Input raster in feet
conv_fTactor = conversions[linear_unit][0]
except:
arcpy-AddError(*'Selected unit unavailable. Please input another

unit."™)
conv_factor = 1
try:
return conv_factor
except:
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arcpy.AddeError("""conv_factor®™ is empty. Please check that you have
specified Contour Interval and Node Spacing units, and that your DEM has a
spatial reference™)
HHHH AR R AR R R R R R R R R R R R A R R

## REQUIRED INPUTS

# Information from a CCM Package
CCM_Package = arcpy.GetParameterAsText(0)
DEM_FP = CCM_Package+"\\CCM_DEM.tif"
SCARP_FP = CCM_Package+"\\CCM_scarps.shp"
OUTPUT_FP = CCM_Package

# Create CCM Run File Geodatabase

RepDir, PackName = os.path.split(CCM_Package)

newGDBdir = CCM_Package+'\\"+PackName+" _.gdb"

if not os.path_exists(newGDBdir):
arcpy.-CreateFileGDB_management(CCM_Package, PackName, ""10.0")

arcpy.env.workspace = newGDBdir
save_message = "'Created new File GDB for CCM Package: "+newGDBdir
arcpy-AddMessage(save_message)

# Other inputs

contour_interval = arcpy.GetParameterAsText(1)
ici = contour_interval . find(" ™)

icil = int(ici+l)

unit_ci = contour_interval[icil:]

conv_ci LinearUnit2Pixel(unit_ci,DEM_FP)

CONTOUR = int(round((int(contour_interval[:ici])*conv_ci)))

node_spacing = arcpy.GetParameterAsText(2)
ins = node_spacing.find(" ')

insl = int(ins+l)

unit_ns = node_spacing[insl:]

conv_ns = LinearUnit2Pixel(unit_ns,DEM_FP)

SPACING

int(round((int(contour_interval[:ins])*conv_ns)))
active_slope = arcpy.GetParameter(3)

SLOPE = round(math.tan(math.radians(active_slope)),3)
BRANCHES = arcpy.GetParameter(4)

## OPTIONAL INPUTS - ACCORDING TO SICCM

if unit _ci == "Meter":

contour = str(CONTOUR)+"m"
else:

contour = str(CONTOUR)+"ft"
if unit _ns == "Meter":

nodal = str(SPACING)+"m"
else:

nodal = str(SPACING)+"ft"

G-26



run_name =
"CI"+contour+"_NS"+nodal+"_AS"+str(int(active_slope))+'"deg"+" BP"+str(BRANCHE

S)
model _name = " --model name "+run_name
id_Ffield = " --id_field 1d"

# Fixed - will never change

metadata = ' --no-metadata'

composite _metadata = " --no-composite-metadata™
composite_statistics = " --composite-statistics"
composite _nodes = " --no-composite-nodes"
composite_connections = ' --no-composite-connections"
composite_extent = ' --composite-extent"

# Optional - user can choose all or none

individual_files = arcpy.GetParameterAsText(7)

if individual_ files:
individual_statistics = " --individual-statistics”
individual _nodes = " --individual-nodes™
individual_connections = " --individual-connections"

individual _extent = " --individual-extent”

else:
individual _statistics = " --no-individual-statistics"
individual _nodes = " --no-individual-nodes"
individual_connections = " --no-individual-connections"

individual _extent = --no-individual-extent"
# Optional - user decides whether or not to remove tails
remove_tails = " --remove-tails"
tails_cutoff = arcpy.GetParameter(5)
if tails_cutoff == "#" or not tails_cutoff:
remove_tails = " --no-remove-tails”
tails_threshold = """
tails_remove_after =
else:
remove_tails = " --remove-tails"
tails_threshold = " --tails-threshold
"+str(round((tails_cutoff/float(SPACING)),3))
tail_remove = arcpy.GetParameterAsText(6)
if tail_remove =="#" or not tail_remove:
tails_remove_after = " --tails-remove-after-layer "+"3"
else:
tails_remove_after = " --tails-remove-after-layer
""+arcpy.GetParameterAsText(6)

ccm_input = "ccmflow-x64-cli.exe "+model name+id_field+ \
metadata + composite_metadata + composite_statistics + \
composite _nodes + composite_connections + composite _extent + \
individual _statistics + individual _nodes + \
individual _connections + individual _extent + remove tails + \
tails_threshold + tails_remove _after + \
" ' + DEM_FP + "™ " + SCARP_FP + "™ " + OUTPUT_FP + "™ "™ + \
str(CONTOUR) + "™ " + str(SPACING) + "™ " + str(SLOPE) + "™ " + \
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str(BRANCHES)

ccmdir = OUTPUT_FP+"\\"+run_name
extent_name = ccmdir+"\\"+run_name+"_extent_poly.shp"
if os.path.exists(ccmdir):

shutil.rmtree(ccmdir)

os.chdir("C:\Program Files\CCMFlow-x64-cli*®)
subprocess.check _call(ccm_input, stdin=None, stdout=None, stderr=None,
shel l=False)

HEry:

arcpy .CopyFeatures_management(extent_name, run_name)

#except:

#arcpy.AddMessage("'Failure during CCM run or extent poly has name with
decimals™)

arcpy-RefreshCatalog(CCM_Package)

## Display extents on map

# Set the map document and data frame
mxd = arcpy.mapping.MapDocument(**CURRENT"'")
df = arcpy.-mapping.ListDataFrames(mxd, " Layers')[0]

# Create layer file and add to map
lyrDir = os.path._.dirname(__ file )

fileExt = lyrDir+'"\\extents.lyr"

lyrExt = arcpy.mapping.Layer(run_name)
arcpy-ApplySymbologyFromLayer _management(lyrExt, FfileExt)
arcpy-mapping.AddLayer(df, lyrExt)
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# create_risk map.py

# or "Create Risk Maps"™ tool in the Risk Toolbox

#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

et e e e R

# Import modules, initiate arcpy
import arcpy

from arcpy import env

from arcpy.sa import *
arcpy.env.overwriteOutput = True
arcpy.-CheckOutExtension(“'Spatial™)

# Get input strings from GUI

#1 - RS_Elev

RS_Elev = arcpy.GetParameterAsText(0)
#2 - Deposits from CCM

Deposits = arcpy-GetParameterAsText(1l)
#3 - Highways

Highway = arcpy.GetParameterAsText(2)
#4 - Output Folder

OutFolder = arcpy.GetParameterAsText(3)

# Set "OutputFolder® as workspace
env.workspace = OutFolder

# Create temporary files

DisDep = "DisDep.shp™

DisRoad = ""DisRoad.shp™

UniDep = "UniDep.shp"

RS_Slope "RS Slope.tif"
RC_Slope "RC_Slope.tif"
Ext_Slope = "Ext Slope.tif”
Ext_Poly = "Ext Poly.shp”

Blocks = "Blocks.shp"

Zonal _Slope = "Zonal Slope.tif"”
Block _Stats = "Block Stats™

Risk Zones = ""Risk Zones SP.shp"
Risk Zones MP = "Risk Zones MP.shp"

# Fix Geometry of Deposits
arcpy-RepairGeometry_management(Deposits)

arcpy.-AddMessage('Initial Processes Complete (1/5)")
# Create DISS field and dissolve Deposits and Roads - DisDep, DisRoad
check = 0

Ist = arcpy.ListFields(Deposits)
for f in Ist:
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if f.name == "DIS":
check = 1
else:
continue
if check == 0O:
arcpy.AddField_management(Deposits, ' DIS",""SHORT")
arcpy.Dissolve_management(Deposits, DisDep, "DIS™)

check = 0
Ist = arcpy.ListFields(Highway)
for f in Ist:
if f.name == "DIS":
check = 1
else:
continue
if check == 0O:
arcpy.AddField_management(Highway,"DIS", " "SHORT'")
arcpy.-Dissolve_management(Highway, DisRoad, "DIS™)

# Perform union on Deposits - UniDep
arcpy.Union_analysis(Deposits, UniDep)

arcpy-AddMessage("'Feature Class Manipulation Complete (2/5)')
## PREPARE BLOCK POLYGONS

# Compute Slope - RS _Slope

outSlope = Slope(RS_Elev)

outSlope.save(RS_Slope)

# Reclassify Slope - RC_Slope

outReclass = Reclassify(RS_Slope, "VALUE", "0 5 1;5 30 2;30 90 3", "DATA™)
outReclass.save(RC_Slope)

# Extract Slope by attributes - Ext_Slope

attExtract = ExtractByAttributes(RC_Slope, "\"'VALUE\" = 1)
atteExtract.save(Ext_Slope)

# Convert Extracted Slope to polygons - Ext _Poly
arcpy.RasterToPolygon_conversion(Ext_Slope, Ext Poly, "SIMPLIFY'™)

# Clip Slope polygons using dissolved Deposits - Blocks
arcpy-Clip_analysis(Ext_Poly, DisDep, Blocks)

# Compute Area of remaining Slope polygons -
arcpy-AddGeometryAttributes _management(Blocks, "AREA™, ', "SQUARE_FEET_US'™)

arcpy.AddMessage("'Unstable Blocks Have Been ldentified (3/5)")
## COMPUTE BLOCK SLOPE
# Perform zonal statistics on RS_Slope with UniDep - Zonal_Slope

outZS = ZonalStatistics(UniDep, "FID", RS _Slope, "MEAN'™)
outZS.save(Zonal_Slope)
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# Perform zonal stats as table on Zonal Slope with Blocks using FID -
Block_Stats

outZSaT = ZonalStatisticsAsTable(Blocks, "FID", Zonal _Slope, Block Stats, ",
""MEAN')

# Join Block Stats with Blocks
arcpy -MakeFeatureLayer _management(Blocks, "BlockLyr'™)
arcpy-AddJoin_management("'BlockLyr', "FID", Block_Stats, "FID")

arcpy.-AddMessage(*'Slope Statistics Complete and Assigned to Unstable Blocks
475"

## INTERSECT

# Intersect Blocks with DisRoad - Risk Zones
inFeatures = [DisRoad,"BlockLyr']
arcpy. Intersect_analysis(inFeatures, Risk_Zones MP)

arcpy-MultipartToSinglepart_management(Risk_Zones_MP,Risk_Zones)

# Compute length of Risk_Zones
arcpy.AddGeometryAttributes _management(Risk Zones, "LENGTH'", "FEET_US", ')

# Delete Temporary Files
arcpy.Delete_management(DisDep)
arcpy.Delete_management(DisRoad)
arcpy.Delete_management(UniDep)
arcpy-Delete_management(RS_Slope)
arcpy-Delete_management(RC_Slope)
arcpy.Delete_management(Ext_Slope)
arcpy.Delete_management(Ext_Poly)
arcpy.Delete_management(Blocks)
arcpy.-Delete_management(Zonal_Slope)
arcpy.Delete_management(Block Stats)
arcpy.Delete_management(Block Stats)
arcpy.Delete_management(outZSaT)
arcpy.Delete_management(outZS)
arcpy-Delete_management(Risk_Zones_MP)

arcpy.AddMessage("'Intersect complete (5/5)")

# Alter field names and delete unnecessary fields
def addField(Features,Fieldname,Type):
check = 0
Ist = arcpy.ListFields(Features)
for f in Ist:
if f.name == Fieldname:
check = 1
else:
continue
if check == 0O:
arcpy.AddField_management(Features,Fieldname,Type)

addField(Risk_Zones, '"BLOCK_AREA™,"DOUBLE")

arcpy.CalculateField_management(Risk _Zones, "BLOCK AREA"™, "IBlocks POL!",
"PYTHON™)
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addField(Risk_Zones,'LS_SLOPE","DOUBLE™)
arcpy.CalculateField_management(Risk_Zones, "LS SLOPE"™, "Iblock st 41",
“"PYTHON™)

arcpy.DeleteField _management(Risk_Zones,"FID_DisRoa')
arcpy.DeleteField_management(Risk_Zones,'DIS™)

arcpy.DeleteField_management(Risk_Zones,"FID_Blocks™™)
arcpy.-DeleteField_management(Risk_Zones,'Blocks_I1d™)
arcpy-DeleteField_management(Risk_Zones,'Blocks _gri'™)
arcpy.DeleteField _management(Risk_Zones,"block stat')
arcpy.DeleteField _management(Risk_Zones,"block st 1')
arcpy.DeleteField _management(Risk_Zones,"block st 2')
arcpy-DeleteField_management(Risk_Zones,'block_st_3')
arcpy-DeleteField_management(Risk_Zones,'block_st _4')
arcpy.DeleteField _management(Risk_Zones,"Blocks POL'™)
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# compute_risk metrics.py

# or ""Compute Risk Metrics'"™ tool in the Risk Toolbox
#

# By Michael Bunn, Ben Leshchinsky, and Michael Olsen
# Oregon State University

# 05/01/2018

#

# Direct questions to ben.leshchinsky@oregonstate.edu

HHH R R R R

# Import modules, initiate arcpy
import arcpy

import math

import os

from arcpy import env

from arcpy.sa import *
arcpy.env.overwriteOutput = True
arcpy.-CheckOutExtension(“'Spatial™)

# Get parameters from GUI

Risk _Zones = arcpy.GetParameterAsText(0)

#OutFolder = arcpy.GetParameterAsText(1)

Emb_Slope = arcpy.GetParameterAsText(1l)

if Emb_Slope == "#" or not Emb_Slope:
Emb_Slope = str(26)

Max_Width = arcpy.GetParameterAsText(2)
if Max Width == "#" or not Max Width:
Max_Width = str(70.0)

Repair_Rate = arcpy.GetParameterAsText(3)
if Repair_Rate == "#" or not Repair_Rate:
Repair_Rate = str(250)

Excav = arcpy.GetParameterAsText(4)
if Excav == "#" or not Excav:
Excav = str(11.00)

Fill = arcpy.GetParameterAsText(5)
it Fill == "#" or not Fill:
Fill = str(18.50)

# Convert repair rate to cubic feet
RepairR = Ffloat(Repair_Rate)*27

# Define new addField function
def addField(Features,Fieldname,Type):
check = 0
Ist = arcpy.ListFields(Features)
for f in Ist:
if f.name == Fieldname:
check = 1
else:
continue
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if check == O:
arcpy.AddField_management(Features,Fieldname,Type)

#env.workspace = OutFolder

# Add new EMBSLOPE field
addField(Risk_Zones, "EMBSLOPE",""DOUBLE™)

# Compute EMBSLOPE field
arcpy.-CalculateField_management(Risk_Zones, "EMBSLOPE", Emb_Slope, "VB",'"'™)

# Add new WIDTH field
addField(Risk_Zones,"WIDTH",""DOUBLE"')

# Compute WIDTH field
arcpy.CalculateField_management(Risk_Zones, "WIDTH",
"IBLOCK_AREAI//ILENGTH!", "PYTHON'™)
arcpy-MakeFeaturelLayer_management(Risk_Zones, "RiskLyr™)

# Find widths greater than Max Width and change their value to Max_Width
expr = "\"WIDTH\" >= "+Max_Width
arcpy-SelectLayerByAttribute_management(*'RiskLyr",""NEW_SELECTION",expr)
arcpy-CalculateField_management(*'RiskLyr", "WIDTH" ,Max_Width)
arcpy.-SelectLayerByAttribute_management("'RiskLyr", "CLEAR_SELECTION')

# Add new XS _AREA field - cross sectional area
addField(""RiskLyr",""XS_AREA", " DOUBLE™)

# Calculate XS_AREA FIELD
codeblock = """'def calcArea(emWidth, IsSlope,emSlope):
emWidth
math_radians(180 - emSlope)
math_radians(IsSlope)
math.pi - b - c
(A*math.sin(b))/(math.sin(a))
(A*math.sin(c))/(math.sin(a))
(A+B+C)/2
it (S*(S-A)*(5-B)*(S-C)) >= O:
Aval = math.sqrt(8*(5-A)*(S-B)*(S-C))
else:
Aval = 0
return Aval™*
expression = "calcArea(!WIDTH!,!LS SLOPE!,'EMBSLOPE!I)"
arcpy.-CalculateField_management('RiskLyr", "'XS_ AREA"™, expression, "PYTHON",
codeblock)

VOWwW® O T >
L I A | O A 1|

# Add new VOLUME field and compute volume
addField("RiskLyr","VOLUME", ""'DOUBLE")

arcpy.-CalculateField_management("'RiskLyr™, "VOLUME"™, "IXS_AREAI*ILENGTH!",
"PYTHON™)

# Compute TIME_CLOSE

addField("RiskLyr","TIME_CLOSE",""DOUBLE™)
expression = "IVOLUME!/"+str(RepairR)
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arcpy.-CalculateField_management("'RiskLyr", "TIME_CLOSE"™, expression,
"PYTHON™)

# Compute Repair Cost
ExcavF = float(Excav)/27
FillF = Float(Fill)/27
TotalCost = (ExcavF+FillF)

addField("RiskLyr"," RP_COST","DOUBLE")
addField(""RiskLyr","RP_COST_FT","DOUBLE")

expression = "IVOLUME!*"+str(TotalCost)
arcpy-CalculateField_management(*'RiskLyr', "RP_COST", expression, "PYTHON™)
arcpy-CalculateField_management(*'RiskLyr', "RP_COST_FT",
"IRP_COST!I/ILENGTH!', "PYTHON™)

# Set the map document and data frame

mxd = arcpy.mapping.MapDocument(**CURRENT"'")
df = arcpy.mapping.ListDataFrames(mxd, " Layers')[0]

#

#

#

# # Find location of layer file

# #1lyrDir = os.path.dirname(__ _file_ )
#

#fileSlp = lyrDir+"\\slope.lyr"

lyrRisk = arcpy.mapping.Layer(Risk_Zones)
#arcpy .ApplySymbologyFromLayer_management(lyrRisk, FfileRisk)

H H#*

# Create layer file and add to map
dir, fname = os.path.split(Risk_Zones)
for lyr iIn arcpy.mapping.ListLayers(mxd, ", df):
# 1f lyr_name == fname:
# arcpy.mapping.RemovelLayer(df, lyrRisk)
# arcpy.mapping.AddLayer(df, lyrRisk)

HH#H

arcpy-Delete_management(*'RiskLyr™)
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