Appendix B: Technical notes - formulas

GENERAL:

\[ \text{PERCENT CHANGE} = \frac{\text{New Data} - \text{Old Data}}{\text{Old Data}} \times 100 \]

Birth rate, Oregon, 1993 = 13.7
Birth rate, Oregon, 1994 = 13.6

\[ \text{Percent change} = \frac{13.6 - 13.7}{13.7} \times 100 = -0.7\% \]

PREGNANCY:

1. **(CRUDE) BIRTH RATE** = \( \frac{\text{Resident Births}}{\text{Population}} \times 1,000 \)

   Oregon, 1994 = \( \frac{41,832}{3,082,800} \times 1,000 = 13.6 \)

2. **AGE-SPECIFIC BIRTH RATE** = \( \frac{\text{Resident Births To Mothers in Age Category}}{\text{Female Population in Age Category}} \times 1,000 \)

   Oregon, 1994, Age 20-24 = \( \frac{10,999}{104,718} \times 1,000 = 105.0 \)

3. **FERTILITY RATE** = \( \frac{\text{Resident Births to Mothers Aged 15-44}}{\text{Female Population Aged 15-44}} \times 1,000 \)

   **NOTE**: Some publications use the following: \( \frac{\text{All Resident Births}}{\text{Female Population Aged 15-44}} \)

   Oregon, 1994 = \( \frac{41,659}{682,428} \times 1,000 = 61.0 \)

4. **TOTAL FERTILITY RATE** = \( \left( \frac{\text{The Sum of Age Specific Birth Rates in 5-Year Categories between 15 and 44}}{5} \right) \times 5 \)

   Oregon, 1994 = \( 5 \left( 51.3 + 105.0 + 115.4 + 78.5 + 30.2 + 6.0 \right) = 1,932.0 \)
5. FETAL DEATH RATIO = \frac{\text{Resident Fetal Deaths (350+ grams Birthweight)}}{\text{Resident Live Births}} \times 1,000

\text{Oregon, 1994} = \frac{224}{41,832} \times 1,000 = 5.4

6. FETAL DEATH RATE = \frac{\text{Resident Fetal Deaths (350+ grams Birthweight)}}{\text{Resident Live Births} + \text{Resident Fetal Deaths}} \times 1,000

\text{Oregon, 1994} = \frac{224}{43,591 + 224} \times 1,000 = 5.1

7. PERINATAL DEATH RATE = \frac{\text{Resident Neonatal Deaths} + \text{Resident Fetal Deaths (350+ grams Birthweight)}}{\text{Resident Live Births} + \text{Resident Fetal Deaths}} \times 1,000

\text{Oregon, 1994} = \frac{148 + 203}{41,566 + 203} \times 1,000 = 8.4

Note: Publications vary in the definition of fetal deaths. In addition, some measures employ gestational age in place of birthweight. Fetal and perinatal death rates are based on year of birth.

8. ABORTION RATIO = \frac{\text{Resident Abortions}}{\text{Resident Births}} \times 1,000 \text{ or } \frac{\text{Occurrence Abortions}}{\text{Occurrence Births}} \times 1,000

\text{Oregon, 1994, Occurrence} = \frac{13,392}{43,591} \times 1,000 = 307.2

9. ABORTION RATE = \frac{\text{Resident Abortions or Occurrence Abortions}}{\text{Female Resident Population Aged 15–44}} \times 1,000

\text{Oregon 1994, Occurrence with total adjusted for unknown ages} = \frac{13,300}{682,428} \times 1,000 = 19.5
Appendix B: Technical notes

DEATHS:

10. (CRUDE) DEATH RATE = \( \frac{\text{Resident Deaths}}{\text{Population}} \times 1,000 \)

   \[ \text{Oregon, 1994} = \frac{27,361}{3,082,000} \times 1,000 = 8.9 \]

11. INFANT DEATH RATE = \( \frac{\text{Resident Infant Deaths}}{\text{Resident Births}} \times 1,000 \)

   \[ \text{Oregon, 1994} = \frac{295}{41,832} \times 1,000 = 7.1 \]

12. NEONATAL DEATH RATE = \( \frac{\text{Resident Neonatal Deaths}}{\text{Resident Births}} \times 1,000 \)

   \[ \text{Oregon, 1994} = \frac{164}{41,832} \times 1,000 = 3.9 \]

13. POSTNEONATAL DEATH RATE = \( \frac{\text{Resident Postneonatal Deaths}}{\text{Resident Births}} \times 1,000 \)

   \[ \text{Oregon, 1994} = \frac{131}{41,832} \times 1,000 = 3.1 \]

14. CAUSE–SPECIFIC DEATH RATE = \( \frac{\text{Resident Deaths Due to Specific Cause}}{\text{Population}} \times 100,000 \)

   \[ \text{Oregon, 1994, Heart Disease} = \frac{7,417}{3,082,000} \times 100,000 = 240.7 \]

15. AGE AND SEX–SPECIFIC DEATH RATE = \( \frac{\text{Resident Deaths in Age–Sex Category}}{\text{Population in Age–Sex Population}} \times 1,000 \)

   \[ \text{Oregon, 1994, Males Aged 5–14} = \frac{63}{225,880} \times 1,000 = 27.9 \]
Beginning with 1998 data, the following methodology is being used for calculating confidence intervals and statistical significance. This explanation is paraphrased from "Public Health Data: Our Silent Partner", a training manual from the Public Health Practice Program Office of the National Center for Health Statistics.¹

### CALCULATING CONFIDENCE INTERVALS FOR RATES:

**Confidence limits for rates based on less than 100 events**

When the number of events in the numerator is less than 100, the confidence interval for a rate can be estimated using the two formulas which follow and the values in Table B-1.

Lower Limit = \( R \times L \)

Upper Limit = \( R \times U \)

where:

- \( R \) = the rate
- \( L \) = the value in Table B-1 that corresponds to the number \( N \) in the numerator of the rate
- \( U \) = the value in Table B-1 that corresponds to the number \( N \) in the numerator of the rate

**Example: Confidence limits for rates based on less than 100 events**

In Baker County, the teen pregnancy rate for 10- to 17-year-old teens in 1998 was 13.0 per thousand, based on 12 live births in the numerator. Using Table B-1:

- Lower Limit = \( 13.0 \times 0.51671 = 6.7 \)
- Upper Limit = \( 13.0 \times 1.7468 = 22.7 \)

This means that the chances are 95 out of 100 that the pregnancy rate in Baker County for teens 10-17 lies between 6.7 and 22.7 per 1,000. So if there were 100 counties like Baker County, the teen pregnancy rate would be expected to lie between 6.7 and 22.7 per 1,000 in 95 of these counties.

---

¹ Public Health Data: Our Silent Partner, Public Health Practice Program Office, National Center for Health Statistics.
TABLE B-1.
Values of L and U for calculating 95% confidence limits for the numbers of events and rates when the number of events is less than 100.

<table>
<thead>
<tr>
<th>N</th>
<th>L</th>
<th>U</th>
<th>N</th>
<th>L</th>
<th>U</th>
<th>N</th>
<th>L</th>
<th>U</th>
<th>N</th>
<th>L</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02532</td>
<td>5.57164</td>
<td>34</td>
<td>0.69253</td>
<td>1.3974</td>
<td>67</td>
<td>0.77499</td>
<td>1.26996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1211</td>
<td>3.61234</td>
<td>35</td>
<td>0.69654</td>
<td>1.39076</td>
<td>68</td>
<td>0.77654</td>
<td>1.26774</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.20622</td>
<td>2.92242</td>
<td>36</td>
<td>0.70039</td>
<td>1.38442</td>
<td>69</td>
<td>0.77806</td>
<td>1.26556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.27247</td>
<td>2.5604</td>
<td>37</td>
<td>0.70409</td>
<td>1.37837</td>
<td>70</td>
<td>0.77955</td>
<td>1.26344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.3247</td>
<td>2.33367</td>
<td>38</td>
<td>0.70766</td>
<td>1.37258</td>
<td>71</td>
<td>0.78101</td>
<td>1.26136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.36698</td>
<td>2.17658</td>
<td>39</td>
<td>0.7111</td>
<td>1.36703</td>
<td>72</td>
<td>0.78244</td>
<td>1.25933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.40205</td>
<td>2.06038</td>
<td>40</td>
<td>0.71441</td>
<td>1.36172</td>
<td>73</td>
<td>0.78384</td>
<td>1.25735</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.43173</td>
<td>1.9704</td>
<td>41</td>
<td>0.71762</td>
<td>1.35661</td>
<td>74</td>
<td>0.78522</td>
<td>1.25541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.45726</td>
<td>1.89831</td>
<td>42</td>
<td>0.72071</td>
<td>1.35171</td>
<td>75</td>
<td>0.78656</td>
<td>1.25351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.47954</td>
<td>1.83904</td>
<td>43</td>
<td>0.7237</td>
<td>1.34699</td>
<td>76</td>
<td>0.78789</td>
<td>1.25165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.4992</td>
<td>1.78928</td>
<td>44</td>
<td>0.7266</td>
<td>1.34245</td>
<td>77</td>
<td>0.78918</td>
<td>1.24983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.51671</td>
<td>1.7468</td>
<td>45</td>
<td>0.72941</td>
<td>1.33808</td>
<td>78</td>
<td>0.79046</td>
<td>1.24805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.53246</td>
<td>1.71003</td>
<td>46</td>
<td>0.73213</td>
<td>1.33386</td>
<td>79</td>
<td>0.79171</td>
<td>1.2463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.54671</td>
<td>1.67783</td>
<td>47</td>
<td>0.73476</td>
<td>1.32979</td>
<td>80</td>
<td>0.79294</td>
<td>1.24459</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.55969</td>
<td>1.64935</td>
<td>48</td>
<td>0.73732</td>
<td>1.32585</td>
<td>81</td>
<td>0.79414</td>
<td>1.24291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.57159</td>
<td>1.62394</td>
<td>49</td>
<td>0.73981</td>
<td>1.32205</td>
<td>82</td>
<td>0.79533</td>
<td>1.24126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.58254</td>
<td>1.6011</td>
<td>50</td>
<td>0.74222</td>
<td>1.31838</td>
<td>83</td>
<td>0.79649</td>
<td>1.23965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.59266</td>
<td>1.58043</td>
<td>51</td>
<td>0.74457</td>
<td>1.31482</td>
<td>84</td>
<td>0.79764</td>
<td>1.23807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.60207</td>
<td>1.56162</td>
<td>52</td>
<td>0.74685</td>
<td>1.31137</td>
<td>85</td>
<td>0.79876</td>
<td>1.23652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.61083</td>
<td>1.54442</td>
<td>53</td>
<td>0.74907</td>
<td>1.30802</td>
<td>86</td>
<td>0.79987</td>
<td>1.23499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.61902</td>
<td>1.52861</td>
<td>54</td>
<td>0.75123</td>
<td>1.30478</td>
<td>87</td>
<td>0.80096</td>
<td>1.2335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.62669</td>
<td>1.51401</td>
<td>55</td>
<td>0.75334</td>
<td>1.30164</td>
<td>88</td>
<td>0.80203</td>
<td>1.23203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.63391</td>
<td>1.50049</td>
<td>56</td>
<td>0.75539</td>
<td>1.29858</td>
<td>89</td>
<td>0.80308</td>
<td>1.23059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.64072</td>
<td>1.48792</td>
<td>57</td>
<td>0.75739</td>
<td>1.29562</td>
<td>90</td>
<td>0.80412</td>
<td>1.22917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.64715</td>
<td>1.4762</td>
<td>58</td>
<td>0.75934</td>
<td>1.29273</td>
<td>91</td>
<td>0.80514</td>
<td>1.22778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.65323</td>
<td>1.46523</td>
<td>59</td>
<td>0.76125</td>
<td>1.28993</td>
<td>92</td>
<td>0.80614</td>
<td>1.22641</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.65901</td>
<td>1.45495</td>
<td>60</td>
<td>0.76311</td>
<td>1.2872</td>
<td>93</td>
<td>0.80713</td>
<td>1.22507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.66449</td>
<td>1.44528</td>
<td>61</td>
<td>0.76492</td>
<td>1.28454</td>
<td>94</td>
<td>0.8081</td>
<td>1.22375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.66972</td>
<td>1.43617</td>
<td>62</td>
<td>0.76669</td>
<td>1.28195</td>
<td>95</td>
<td>0.80906</td>
<td>1.22245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.6747</td>
<td>1.42756</td>
<td>63</td>
<td>0.76843</td>
<td>1.27943</td>
<td>96</td>
<td>0.81</td>
<td>1.22117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.67945</td>
<td>1.41942</td>
<td>64</td>
<td>0.77012</td>
<td>1.27698</td>
<td>97</td>
<td>0.81093</td>
<td>1.21992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.684</td>
<td>1.4117</td>
<td>65</td>
<td>0.77178</td>
<td>1.27458</td>
<td>98</td>
<td>0.81185</td>
<td>1.21868</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.68835</td>
<td>1.40437</td>
<td>66</td>
<td>0.7734</td>
<td>1.27225</td>
<td>99</td>
<td>0.81275</td>
<td>1.21746</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Confidence limits for rates based on 100 or more events

In this case, use the following formula for the rate ($R$) based on the number of events ($N$):

Upper Limit $= R + [1.96 \times R / \sqrt{N}]$

where:
- $R$ = the rate (birth rate, mortality rate, teen pregnancy rate, etc.)
- $N$ = the number of events (births, deaths, teen pregnancy, etc.)

Example: Confidence limits for rates based on 100 or more events

In Jackson County, the teen pregnancy rate for teens 10-17 was 13.7 in 1998 based on 143 pregnancies. Therefore, the confidence interval would be:

Lower Limit $= 13.7 - [1.96 \times (13.7 / \sqrt{143})]$

$= 13.7 - [1.96 \times (13.7 / 11.96)]$

$= 13.7 - [1.96 \times 1.15]$

$= 13.7 - 2.25$

$= 11.5$

Upper Limit $= 13.7 + [1.96 \times (13.7 / \sqrt{143})]$

$= 13.7 + [1.96 \times (13.7 / 11.96)]$

$= 13.7 + [1.96 \times 1.15]$

$= 13.7 + 2.25$

$= 16.0$

So if there were 100 counties like Jackson County with similar populations, the teen pregnancy rate would be expected to lie between 11.5 and 16.0 per 1,000 in 95 of these counties.

DETERMINING STATISTICAL SIGNIFICANCE FOR RATES:

If the difference between two rates would occur due to random variability less than 5 times out of 100, then we say that the difference is statistically significant at the 95% level. Otherwise the difference is not statistically significant.
Computing statistical significance when at least one of the rates is based on fewer than 100 events

To compare two rates, when one or both rates are based on fewer than 100 events, compute the confidence intervals for both rates. If the intervals overlap, the difference is not statistically significant.

Example: comparing rates when one is based on fewer than 100 events

Baker County teen pregnancy rate for age 10-17
Lower Limit = 6.7
Upper Limit = 22.7
Jackson County teen pregnancy rate for age 10-17
Lower Limit = 11.5
Upper Limit = 16.0

The confidence intervals overlap - the interval for Jackson County is entirely within the range of the interval for Baker County. Therefore, the difference between the teen pregnancy rate for age 10-17 in Baker County and the rate for Jackson County is not statistically significant.

Computing statistical significance when both rates are based on 100 or more events

When both rates are based on 100 or more events, calculate the difference between the two rates by subtracting the lower rate from the higher rate. The difference is considered statistically significant if it exceeds 1.96 times the standard error for the difference between the two rates.

\[ 1.96 \sqrt{\frac{R_1^2}{N_1} + \frac{R_2^2}{N_2}} \]

where:
\( R_1 \) = the first rate
\( R_2 \) = the second rate
\( N_1 \) = the first number
\( N_2 \) = the second number

If the difference is greater than the statistic, the difference would occur by chance less than 5 times out of 100. The difference is statistically significant at the 95 percent confidence level.

If the difference is less than the statistic, the difference might occur by chance more than 5 times out of 100. The difference is not statistically significant at the 95 percent confidence level.
Example: comparing rates when both are based on 100 or more events

The teen pregnancy rate for Oregon teens age 10-17 in 1997 was 18.0 and the comparable rate for 1998 was 17.2. Both rates are based on more than 100 pregnancies (3,197 in 1997 and 3,176 in 1998). The difference between the rates is 18.0 - 17.2 = 0.8. The statistic is calculated as follows:

\[
1.96 \sqrt{\frac{18.0^2}{3,197} + \frac{17.2^2}{3,176}}
\]

\[
1.96 \sqrt{\frac{324}{3,197} + \frac{295.84}{3,176}}
\]

\[
1.96 \sqrt{0.101 + 0.093}
\]

\[
1.96 \sqrt{0.194}
\]

= 1.96 x .44
= 0.86

The difference between the rates (0.8) is less than this statistic (0.9). Therefore, the difference is not statistically significant. A difference of 0.8 between these two rates might occur by chance more than 5 times out of 100.
CALCULATING RATES ADJUSTED FOR SEX/AGE/RACE:

When comparing rates and ratios, the influences of sex, age, and race differences in the populations must be taken into account. Comparing many different age-sex-race specific rates can be cumbersome. The following techniques are used by vital statisticians to summarize these rates into one number.

The direct adjusted rate applies each of the specific rates for a particular population (such as a county or a Health Service Area) to a standard population distribution (such as the state).

The standard mortality ratio compares the number of deaths for a particular population (such as a county or a Health Service Area) to the number of deaths which would be expected if some standard set of rates (such as the state or the U.S. rates) had occurred.²

Both of these techniques have their advantages and disadvantages. The easiest to calculate is the direct adjusted rate. The following example shows how to adjust a county's death rate for sex so that it may be compared to the state rate.

\[
\left( \frac{\text{county male deaths}}{\text{county male population}} \right) \times \text{state male population} + \left( \frac{\text{county female deaths}}{\text{county female population}} \right) \times \text{state female population} \times 1,000
\]

The same logic can be used to adjust for age and/or race.
REFERENCES:


For further information about calculating confidence intervals and adjusting rates, see:
