The parents of a 1-year old Oregon boy began renovating their newly purchased 1907 home, living in a downstairs apartment during the remodeling work. They learned that this work might be creating a health hazard for their young son. They took him in for a blood test, which showed he had a blood lead level five times higher than the allowable upper limit.

The marked decline in childhood lead poisoning over the past 30 years is a great achievement for public health. From 1976–1980 an estimated 88% of children aged 1–5 years had a blood lead level (BLL) of ≥10 µg/dL; by 2007–2010, this had declined to 0.8% (data from the National Health and Nutrition Examination Survey; NHANES).1 Despite the decline in BLLs among the U.S. population, each year thousands of children are still exposed to lead at levels associated with negative health consequences.

Unfortunately, there is no safe level of lead exposure for children. Even low levels of blood lead have been associated with IQ deficits, attention-related behaviors and poor academic achievement. Lead is also known to cause growth, speech and language delays and hearing loss. New findings suggest that the adverse health effects of BLLs <10 µg/dL in children include cardiovascular, immunological, and endocrine effects.2

In May 2012, the Centers for Disease Control and Prevention (CDC) revised the level at which children are considered to have too much lead in their blood. Based on the absence of an identified BLL without deleterious effects, combined with the evidence that these effects appear to be irreversible, CDC eliminated the term “level of concern” and adopted a new BLL reference value of ≥5 µg/dL. What does this mean for clinicians in Oregon? This CD Summary reviews national and Oregon data on childhood lead poisoning, and provides resources for addressing elevated BLLs in your patients.

NATIONAL DATA

Nationally, childhood BLLs have been decreasing steadily since 1980. Nonetheless, in 2010, an estimated 535,000 U.S. children aged 1–5 years still had BLLs ≥5 µg/dL.3 BLLs in children aged 1–5 years remain much higher compared to all other age groups.1 Blacks have double the rate of elevated BLLs compared to whites and Mexican Americans.1

OREGON DATA

Like many other states, the overall prevalence of childhood lead poisoning in Oregon is low. Therefore, targeted screening of children at high risk for having elevated BLLs is recommended. A lead risk assessment questionnaire is available on the state’s website.4 Currently, about 5–6% (~15,000) of Oregon children <6 years of age are screened for elevated BLL each year.1

Figure 1 shows elevated childhood BLL in Oregon during the past decade. The percent of children with elevated BLLs has gradually decreased over time. In 2010, 438 Oregon children had a BLL ≥5 µg/dL, (the new reference value).

SOURCES OF LEAD

Both nationally and in Oregon, the most common source of lead exposure is deteriorated lead paint, or dust and debris created by renovation of homes built before 1978. Lead can also be found in lead solder or dust and debris created by renovation of homes built before 1978. Lead can also be found in lead solder or dust and debris created by renovation of homes built before 1978. Lead can also be found in lead solder or dust and debris created by renovation of homes built before 1978.

In 2011–2012, 144 (of 27,000 tests) Oregon children were reported with at least one BLL ≥10 µg/dL. Of these 43% were found to be false positives, and 27% of reports had missing data.

Figure 2 shows identified sources of lead poisoning for the remaining. For cases with a known source, one half were from the home (remodeling or disturbing lead based paint) and one third were from a hobby (of the parent), such as lead from firing bullets, or fishing weights.
If you need this material in an alternate format, call us at 971-673-1111.

If YOU WOULD PREFER to have your CD Summary delivered by e-mail, zap your request to cd.summary@state.or.us. Please include your full name and mailing address (not just your e-mail address), so that we can purge you from our print mailing list, thereby saving trees, taxpayer dollars, postal worker injuries, etc.

Table. Confirmation & follow-up schedule for childhood blood lead results

<table>
<thead>
<tr>
<th>BLL (µg/dL)</th>
<th>Confirmation Testing (venous)</th>
<th>Follow-Up Testing (venous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–9</td>
<td>1–3 months</td>
<td>3 months</td>
</tr>
<tr>
<td>Clinician case management</td>
<td>* Perform confirmatory testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Confirm recent known exposures as soon as possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Include history of EBLL in problem list of child’s permanent medical record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Assist family in identifying possible exposure source. Provide source reduction and nutritional information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Refer to WIC, social services and public assistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* No case management by public health, except Multnomah County</td>
<td></td>
</tr>
<tr>
<td>10–19</td>
<td>1 month</td>
<td>3 months</td>
</tr>
<tr>
<td>Clinician case management</td>
<td>* Above action, plus:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Monitor for developmental problems and discuss with caregiver the need for long-term developmental surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Completion of environmental assessments by public health will be based on local resources</td>
<td></td>
</tr>
</tbody>
</table>

5 IS NOT THE NEW 10: THE NEW GUIDELINES

In 2010, CDC’s Advisory Committee on Childhood Lead Poisoning Prevention convened a workgroup to define the reference level for an elevated BLL among children. Experts now use a reference level of ≥5 µg/dL to identify children with elevated blood lead levels. This new level is based on the U.S. population of children ages 1–5 years who are in the highest 2.5% of children when tested for blood lead.

THE ROLE OF CLINICIANS

At this new blood lead level, clinicians will play a crucial role in preventing lead exposure and responding to BLLs <10 µg/dL.

Primary prevention should start with counseling and education at prenatal and well child visits. Children between the ages of 1–3 years are at highest risk of lead poisoning due to hand to oral action during their development. Anticipatory guidance should provide information on lead exposures associated with the home, unsafe renovation practices, travel, potential occupational exposure, and exposure related to hobbies.

For management of elevated BLLs between 5–9 µg/dL please refer to the table. For comprehensive guidelines for all elevated BLL results see the disease guidelines on the Oregon Lead Prevention Program website (www.healthyoregon.org/lead).

REFERENCES:

The CD Summary (ISSN 0744-7035) is published fortnightly free of charge, by the Oregon Health Authority, Public Health Division, 800 NE Oregon St., Portland, OR 97232
Periodicals postage paid at Portland, Oregon.
Postmaster—send address changes to:
CD Summary, 800 NE Oregon St., Suite 730, Portland, OR 97232

If you need this material in an alternate format, call us at 971-673-1111.

If you would prefer to have your CD Summary delivered by e-mail, zap your request to cd.summary@state.or.us. Please include your full name and mailing address (not just your e-mail address), so that we can purge you from our print mailing list, thereby saving trees, taxpayer dollars, postal worker injuries, etc.