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Why dissolved oxygen (DO) now?

• Listings for DO on the Mid Coast need to be addressed

• Linked to other water quality issues (i.e., temperature)

• Data from DEQ & watershed councils available for modeling
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Talk outline

• TMDL process

• Background on dissolved oxygen

• Dissolved oxygen TMDLs in Oregon

• Dissolved oxygen in the Mid Coast

• Next steps
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Total Maximum Daily Load (TMDL)

• Pollution a water body can receive before impairment

• Required when a water quality standard exceeded
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TMDL equation

TMDL = LA + WLA + MOS + RC

• LA: Load Allocation (nonpoint sources)
• WLA: Waste Load Allocation (point sources)• WLA: Waste Load Allocation (point sources)
• MOS: Margin of Safety (account for uncertainty)
• RC: Reserve Capacity (set aside for future development)
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Traditional TMDLs vs. Implementation-Ready TMDLs
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Background on dissolved oxygen
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Dissolved oxygen (DO) in rivers and streams

• A fundamental water quality parameter

• Essential to metabolism of aerobic organisms

• Influences solubility of nutrients, metals, and metalloids
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Take home messages

• Air-water exchange: adds or subtracts DO

• Gross Primary Production (GPP):  adds DO

Slide 25

• Ecosystem Respiration (ER): subtracts DO
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What influences air-water exchange rate?
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What influences air-water exchange rate?

Water column

Dissolved 
Oxygen

Atmospheric 
Oxygen

Air-water exchange rate (K)

• Increases with temperature
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What influences air-water exchange rate?
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What influences air-water exchange rate?

Water column
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• Increases with temperature

• Decreases with barometric 
pressure (elevation)

• Increases with channel 

Slide 29

Benthos/
Hyporheic zone

• Increases with channel 
roughness & slope



View “Slide Master” To Change Heading
What influences gross primary production (GPP)?
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What influences gross primary production (GPP)?
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What influences gross primary production (GPP)?

Water column
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• Increases with temperature

• Increases with light
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What influences gross primary production (GPP)?

Water column
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• Increases with temperature

• Increases with light

• Increases with nutrients
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What influences Ecosystem Respiration (ER)?
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What influences Ecosystem Respiration (ER)?

Water column

Dissolved 
Oxygen

• Increases with temperature

• Increases with GPP

• Increases with nutrients

Slide 36

Benthos/
Hyporheic zone

Autotrophic
respiration

Heterotrophic
respiration

Dissolved 
organic carbon 

Particulate organic 
carbon 

Ecosystem respiration (ER)



View “Slide Master” To Change Heading
What influences Ecosystem Respiration (ER)?

Water column
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• Increases with GPP

• Increases with nutrients
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Dissolved oxygen TMDLs in Oregon
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History of DO issues in Oregon rivers and streams

• Low DO prevalent in the Willamette River in early 1900s
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• Helped spur Water Purification and Prevention of Pollution 
Bill and creation of State Sanitary Authority (1938)

Willamette: A River Restored
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State criteria for DO in rivers and streams

Habitat Type Criteria Considered in TMDL Analysis

Spawning ≥ 11.0 mg/L or ≥ 
95% saturation

If minimal intergravel DO is ≥ 8.0 mg/L 
(spatial median), then criterion is ≥ 9.0 mg/L

Cold Water ≥ 8.0 mg/L or ≥ 
90% saturation

With adequate data, can be ≥ 8.0 mg/L (30-
day mean), ≥ 6.5 mg/L (7-day mean), or  ≥ 
6.0 mg/L minimum

Slide 41

6.0 mg/L minimum

Cool Water ≥ 6.5 mg/L With adequate data, can be ≥ 6.0 mg/L (30-
day mean), ≥ 5.0 mg/L (7-day mean), or  ≥ 
4.0 mg/L minimum

Warm Water ≥ 5.5 mg/L With adequate data, can be ≥ 5.5 mg/L (30-
day mean or  ≥ 4.0 mg/L minimum

OAR 340-041-0016
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DO listings in Oregon rivers (2010 Integrated Repor t)
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Approach for DO TMDLs in Oregon

• LA and WLA developed for pollution influencing DO

– Biochemical Oxygen Demand

– Nutrients

Slide 43

– Light

– Temperature
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EPA-approved DO TMDLs for Oregon rivers

Water Body Year Approved Pollutant(s) Model Used

Tualatin River 1988, 2001 & 2012 Ammonia, Phosphorus & Temperature CE-QUAL-W2

Bear Creek (Rogue) 1992 Ammonia & Biochemical Oxygen Demand Statistical

Pudding River 1993 Ammonia & Biochemical Oxygen Demand QUAL2E

Rickreal Creek 1994 Biochemical Oxygen Demand QUAL2E

Coast Fork Willamette River 1996 Ammonia & Phosphorus Mass Balance

Coquille River 1996 Biochemical Oxygen Demand DYNHYD5-WASP4

Columbia Slough 1998 Phosphorus & Biochemical Oxygen Demand CE-QUAL-W2

Slide 44

Columbia Slough 1998 Phosphorus & Biochemical Oxygen Demand CE-QUAL-W2

Upper Grande Ronde River 2000 Temperature, Sediment, Nitrogen & Phosphorus PCM

Sprague River 2002 Temperature QUAL2E

Snake River – Hells Canyon 2004 Phosphorus Mass Balance

Amazon & Coyote Creeks 2006 Temperature CE-QUAL-W2 & PCM

South Umpqua River 2007 Temperature & Nutrients QUAL2Kw

Upper John Day River 2010 Heat, Flow, & Morphology Statistical

Malheur River 2010 Phosphorus Mass Balance

http://www.deq.state.or.us/WQ/TMDLs/approved.htm
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DO in Oregon’s Mid Coast Rivers
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State criteria for DO in rivers and streams –
Relevant for the Mid Coast

Habitat Type Criteria Considered in TMDL Analysis

Spawning ≥ 11.0 mg/L or ≥ 
95% saturation

If minimal intergravel DO is ≥ 8.0 mg/L 
(spatial median), then criterion is ≥ 9.0 mg/L

Cold Water ≥ 8.0 mg/L or ≥ 
90% saturation

With adequate data, can be ≥ 8.0 mg/L (30-
day mean), ≥ 6.5 mg/L (7-day mean), or  ≥ 
6.0 mg/L minimum
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6.0 mg/L minimum

Cool Water ≥ 6.5 mg/L With adequate data, can be ≥ 6.0 mg/L (30-
day mean), ≥ 5.0 mg/L (7-day mean), or  ≥ 
4.0 mg/L minimum

Warm Water ≥ 5.5 mg/L With adequate data, can be ≥ 5.5 mg/L (30-
day mean or  ≥ 4.0 mg/L minimum

OAR 340-041-0016
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DO Listings in the Mid Coast (2010 Integrated Repor t)

Salmon River

Beaver Creek

Yaquina River

Alsea River
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DO Listings in the Mid Coast (2010 Integrated Repor t)

River/stream River miles Listing Period Criteria

Salmon River 0 – 23.1 Sep 15 – May 31 Spawning

Depot Creek 0 – 4.5 Year Around Cold Water

Beaver Creek (Yaquina) 0 – 7.3 Oct 15 – May 15 Spawning

Beaver Creek (Yaquina) 0 – 7.3 Year Around Cold Water

Yaquina River 0 – 26.9 Jan 1 – May 15 Spawning

Yaquina River 26.9 – 53.9 Oct 15 – May 15 Spawning

Yaquina River 0 – 56.8 Year Around Cold Water

Big Elk Creek 0 – 5.3 Jan 1 – May 15 Spawning

Big Elk Creek 5.3 – 29.5 Oct 15 – May 15 Spawning

Big Elk Creek 0 – 29.5 Year Around Cold Water

North Fork Beaver Creek 0 – 9.5 Oct 15 – May 15 Spawning

South Fork Beaver Creek 0 – 6 Oct 15 – May 15 Spawning

Slide 48

South Fork Beaver Creek 0 – 6 Year Around Cold Water

Alsea River 15.7 – 27 Sep 15 – Jun 15 Spawning

Alsea River 27 – 47.4 Sep 1 – June 15 Spawning

Alsea River 15.7 – 47.4 Year Around Cold Water

Williamson Creek 0 – 2.7 Oct 15 – May 15 Spawning

North Fork Yachats River 0 – 6.3 Oct 15 – May 15 Spawning

Beamer Creek 0 – 2.1 Oct 15 – May 15 Spawning

School Fork 0 – 3.2 Oct 15 – May 15 Spawning

Yachats River 3.4 – 16.6 Oct 15 – May 15 Spawning

Keller Creek 0 – 2.6 Oct 15 – May 15 Spawning

Stump Creek 0 – 2 Oct 15 – May 15 Spawning

Siuslaw River 5.7 – 105.9 Sep 15 – May 31 Spawning

Siuslaw River 5.7 – 105.9 Year Around Cold Water

Wildcat Creek 0 – 18.8 Oct 15 – May 15 Spawning

http://www.deq.state.or.us/wq/assessment/2010Report.htm
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Slide 49



View “Slide Master” To Change Heading
Dissolved oxygen data from the Mid Coast

• Since 2000, grab samples and continuous data collected
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Dissolved oxygen data from the Mid Coast

• Since 2000, grab samples and continuous data collected

• In 2008, DEQ collected continuous DO in six river basins

– Spring, Summer, and/or Fall

Slide 51

– 15-minute intervals for 3-5 days (DO and temperature)

– Grab sample data for nutrients, pH, and BOD

– Intended to populate QUAL2Kw – a mechanistic model
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Continuous DO data
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Continuous DO data
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Dawn Noon Dusk

Photo by York Johnson
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Continuous DO data from the Mid Coast - 2008

Salmon River (1)
October

Yaquina River (3)
May & October

Beaver Creek (6)
June, September, & November
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Alsea River (3)
September

Siuslaw River (1)
June & September
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Mid Coast dissolved oxygen analysis objectives

Slide 55
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Mid Coast dissolved oxygen analysis objectives

• Use continuous DO data to model air-water exchange, 
gross primary production, & ecosystem respiration
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Mid Coast dissolved oxygen analysis objectives

• Use continuous DO data to model air-water exchange, 
gross primary production, & ecosystem respiration

• Determine which rivers can be used for mechanistic 
modeling of DO dynamics
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What DO data are useable for this analysis?
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Steady-state continuous DO data - 2008

Salmon River (1)
October

Yaquina River (3)
May & October

Beaver Creek (4)
June, September, & November
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Alsea River (3)
September
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How did we model DO dynamics from continuous data?
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• Selected a 24-hr cycle 
within each period

Alsea River @ Five Rivers

How did we model DO dynamics from continuous data?
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• Night-time regression method for air-water exchange & ER

Alsea River @ Five Rivers

How did we model DO dynamics from continuous data?

Slide 64

Slope = Air-water exchange rate

Intercept = Ecosystem Respiration



View “Slide Master” To Change Heading
How did we model DO dynamics from continuous data?

• Solved for primary production during daylight

Alsea River @ Five Rivers

Air-water exchange

Slide 65
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Preliminary results
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Preliminary results

• Estimates of K, ER, and GPP comparable to other rivers
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Preliminary results

• Estimates of K, ER, and GPP comparable to other rivers

• In the Fall, ER consumed more DO than GPP produced
– Points toward decomposition of organic matter as important
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Preliminary results

• Estimates of K, ER, and GPP comparable to other rivers

• In the Fall, ER consumed more DO than GPP produced
– Points toward decomposition of organic matter as important

• In the Spring/Summer, pattern was less clear
– Mix of light, nutrient, and temperature limitations?

Slide 69
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GPP vs. ER
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Other important findings
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Other important findings

• Temperature important for estimating K, GPP, and ER
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Other important findings

• Temperature important for estimating K, GPP, and ER

• River flow might influence ER
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Other important findings

• Temperature important for estimating K, GPP, and ER

• River flow might influence ER

• GPP & ER in these rivers might be phosphorus limited

Slide 74
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Next steps
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Next steps

• Basin-specific, mechanistic model – QUAL2Kw (proposed)
– Proposed pilot basins: Alsea & Yaquina
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• Mechanistic, mass 
balance model

• Uses estimates of K, 
GPP, & ER
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Proposed model:  QUAL2Kw

• EPA-approved model 
(http://www.ecy.wa.gov/programs/eap/models.html)

• Used for TMDLs in 
Oregon & Washington
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Next Steps

• Basin-specific, mechanistic model – QUAL2Kw (proposed)
– Proposed pilot basins: Alsea & Yaquina

• Work with local technical workgroup (temperature TWG)

Slide 78

– Initial meeting: October 2015
– Set additional schedule afterwards
– Discuss modeling options for non steady-state data
– New data?
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Questions?
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Extra Slides
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Scaling estimates across 24-hr cycle

Kt = KN * 1.024Tt – TN

ERt = ERN * 1.07Tt – TN

Alsea River @ Five Rivers

Slide 82

Ft = Kt * [DOt_def/sur ]

GPPt = [DOt] – Ft + ERt



View “Slide Master” To Change Heading

Salmon River
-4.20 mg O2/L/d

Yaquina River
-8.10 mg O2/L/d
-6.90 mg O2/L/d

Beaver Creek

GPP – ER, Fall
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Alsea River
2.50 mg O2/L/d
-1.90mg O2/L/d
-1.50mg O2/L/d

Beaver Creek
-4.90 mg O2/L/d

-10.00 mg O2/L/d
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Yaquina River
-3.90 mg O2/L/d
1.70 mg O2/L/d

Beaver Creek
-8.50 mg O /L/d

GPP – ER,
Spring-Summer
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-8.50 mg O2/L/d
4.90 mg O2/L/d
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Conceptual model for dissolved oxygen analysis in Mid Coast 
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This conceptual model illustrates primary 
concentrations in a stream or river reach.  Dissolved oxygen con
reaches sets the baseline for local processes 
production, and ecosystem respiration) 
a downstream reach.  A glossary of terms in this figure can be found on the reverse side 
of this handout. 
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illustrates primary processes influencing dissolved oxygen 

concentrations in a stream or river reach.  Dissolved oxygen concentration in upstream 
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to influence dissolved oxygen concentrations in 

A glossary of terms in this figure can be found on the reverse side 



Glossary 
 
Air-water exchange rate (K): The physical exchange of oxygen between the gaseous 
phase (atmosphere) and dissolved phase (water).  K increases nonlinearly with warmer 
air and/or water temperatures and channel roughness/complexity. 
 
Atmospheric oxygen: Oxygen in the gaseous phase (O2).  Atmospheric oxygen makes 
up approximately 21% of the air we breathe. 
 
Autotrophic respiration: Respiration (oxygen consumption) by autotrophs (plants).  
Autotrophic respiration increases with gross primary production.  Gross primary 
production minus autotrophic respiration is net primary production. 
 
Benthos: The stream bottom. 
 
Dissolved organic carbon:  organic matter that can pass through a 0.7 µm pore-size 
filter.  Sources of dissolved organic carbon in streams and rivers can include leachates 
from soils, vegetation, algae, and human/animal waste. 
 
Dissolved oxygen:  Oxygen in the dissolved phase in water. 
 
Ecosystem respiration (ER):  Autotrophic and heterotrophic respiration (oxygen 
consumption).  ER can increase nonlinearly with gross primary production, nutrient 
concentrations (nitrogen and phosphorus), organic matter availability, and temperature. 
 
Gross Primary Production (GPP): The conversion of water and carbon dioxide to 
glucose (food) and oxygen in the presence of light.  GPP can increase nonlinearly with 
light, nutrient concentrations (nitrogen and phosphorus), and temperature. 
 
Heterotrophic respiration: Respiration (oxygen consumption) associated with the 
decomposition of organic matter.  Bacteria, fungi, and animals are responsible for 
heterotrophic respiration. 
 
Hyporheic zone: The zone below and adjacent to the stream channel (e.g., below flood 
plains and islands) where surface water mixes with groundwater.  The hyporheic zone 
often is an area where a substantial fraction of ecosystem respiration occurs. 
 
Particulate organic carbon:  Organic matter that cannot pass through a 0.7 µm pore-
size filter.  Forms of particulate organic matter present in streams and rivers can include 
vegetation, wood, algae, and human/animal waste. 
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Table 1. Relevant criteria for dissolved oxygen in Mid Coast rivers. OAR 340-041-0016. 
Habitat Type Criteria Considered in TMDL Analysis 
Spawning ≥ 11.0 mg/L or ≥ 

95% saturation 
If minimal intergravel DO is ≥ 8.0 mg/L 
(spatial median), then criterion is ≥ 9.0 mg/L 
 

Cold Water ≥ 8.0 mg/L or ≥ 
90% saturation 

With adequate data, can also be ≥ 8.0 mg/L 
(30-day mean), ≥ 6.5 mg/L (7-day mean), or  
≥ 6.0 mg/L minimum 

 
Table 2.  Mid Coast rivers listed for falling below dissolved oxygen criteria in the 2010 
ODEQ Integrated Report (http://www.deq.state.or.us/wq/assessment/2010Report.htm). 
River/stream River miles Listing Period Criteria 
Salmon River 0 – 23.1 Sep 15 – May 31 Spawning 
Depot Creek 0 – 4.5 Year Around Cold Water 
Beaver Creek (Yaquina) 0 – 7.3 Oct 15 – May 15 Spawning 
Beaver Creek (Yaquina) 0 – 7.3 Year Around Cold Water 
Yaquina River 0 – 26.9 Jan 1 – May 15 Spawning 
Yaquina River 26.9 – 53.9 Oct 15 – May 15 Spawning 
Yaquina River 0 – 56.8 Year Around Cold Water 
Big Elk Creek 0 – 5.3 Jan 1 – May 15 Spawning 
Big Elk Creek 5.3 – 29.5 Oct 15 – May 15 Spawning 
Big Elk Creek 0 – 29.5 Year Around Cold Water 
North Fork Beaver Creek 0 – 9.5 Oct 15 – May 15 Spawning 
South Fork Beaver Creek 0 – 6 Oct 15 – May 15 Spawning 
South Fork Beaver Creek 0 – 6 Year Around Cold Water 
Alsea River 15.7 – 27 Sep 15 – Jun 15 Spawning 
Alsea River 27 – 47.4 Sep 1 – June 15 Spawning 
Alsea River 15.7 – 47.4 Year Around Cold Water 
Williamson Creek 0 – 2.7 Oct 15 – May 15 Spawning 
North Fork Yachats River 0 – 6.3 Oct 15 – May 15 Spawning 
Beamer Creek 0 – 2.1 Oct 15 – May 15 Spawning 
School Fork 0 – 3.2 Oct 15 – May 15 Spawning 
Yachats River 3.4 – 16.6 Oct 15 – May 15 Spawning 
Keller Creek 0 – 2.6 Oct 15 – May 15 Spawning 
Stump Creek 0 – 2 Oct 15 – May 15 Spawning 
Siuslaw River 5.7 – 105.9 Sep 15 – May 31 Spawning 
Siuslaw River 5.7 – 105.9 Year Around Cold Water 
Wildcat Creek 0 – 18.8 Oct 15 – May 15 Spawning 

 


