

Application for a

DEQ USE	ONLY - BUSINESS OFFICE
Date Receiv	ed:
Amount Rec	celved:
Check No.:	
Deposit No.	
	nfirmation of fee payment for:
	gion to DEQ, The Dalles
Northweste Western Re	m Region to DEQ NWR, Portland gion to DEQ, Salem
	르는 돈 그는 이 하면 맛있다는 결심했다.

-	MOBILHATED TO GA			1777, 14 19 19 19 19 19 19 19 19 19 19 19 19 19
A. 1	REFERENCE INFORMATION (Please ty	pe or print clearly.)		
	COLUMBIA STEEL CASTING	Co., INC_Business name of applica		
	Legal name of applicant	Business name of applica	ant if different	
	Po Box 83095	PORTLAMO		7283
	Mailing address	City	State Zij	503-
<u>ا</u>	03-286-0685	bruce s@coluc	MBIASTEEL COM Fax	286-3028
	Phone Mobile	E-mail	rax	
Г				
	SAME Generator of solid waste (may be same as applied)	cant)		
	Mailing address	City	State Zi	р
	Phone Mobile	E-mail	Fax	
В.	TYPE OF BENEFICIAL USE DETERMI categorized based on the type of information materials and render a decision. A tiered re	n and potential amount of work req eview and fee system has been est	tablished in rule. The f	iers are:
	manufactured product;	ole raw material of commercial pro-		,04
	concentration in a comparable r	aste that contains hazardous subs raw material or commercial produc	i, or myorves applicant	in on the tarta,
	Tion 2 For a happing use of a solid w	raste that requires research, such a ation project to demonstrate compli	as a literature review o	r risk
	i am applying for a 🔲 Tier 1 🔀 Tie			
	DOES THIS PROPOSED BENEFICIAL Yes No			
D.	SIGNATURE I hereby certify by my sign the documents I have attached, are true	gnature below that the informati e and correct to the best of my k	on contained in this knowledge and belie	application, and f.
Sig	Brun Jahret T	BRUCE SCHACHT PO	LANT EVGLNER Tille	12/3/10 Date

REQUIRED ATTACHMENTS TO THIS APPLICATION (For an application to be complete, it must provide the required information for each listed item of the tier which is being applied for.)
Tier 1
A description of the material, manner of generation, and estimated quantity to be used each year; A description of the proposed use; A comparison of the chemical and physical characteristics of the material proposed for use with the material will replace; A demonstration of compliance with the performance criteria in OAR 340-093-0280 based on knowledge of the process that generated the material, properties of the finished product, or testing; and Any other information that DEQ may require to evaluate the proposal.
Tier 2
The information required for a Tier 1 application; Sampling and analysis that provides chemical, physical, and biological characterization of the material and that identifies potential contaminants in the material or the end product, as applicable; A risk screening comparing the concentration of hazardous substances in the material to existing, DEQ approved, risk-based screening level values, and demonstrating compliance with acceptable risk levels; Location or type of land use where the material will be applied, consistent with the risk scenarios used to evaluate risk; Contact information of property owner(s) if this is a site-specific land application proposal, including name, address, phone number, e-mail, site address and site coordinates (latitude and longitude); and A description of how the material will be managed to minimize potential adverse impacts to public health, safety, welfare, or the environment.
Tier 3
 ☐ The information required for a Tier 1 & 2 application; ☐ A discussion of the justification for the proposal; ☐ An estimate of the expected length of time that would be required to complete the project, if it is a demonstration; and ☐ If it is a demonstration project, the methods proposed to ensure safe and proper management of the material
The first of demonstration best are marked to the

F. PERFORMANCE CRITERIA (For all tiers - An epplication for a beneficial use determination must demonstrate satisfactory compliance with the following performance criteria.)

The use is productive, including:

- There is an identified or reasonably likely use for the material that is not speculative;
- The use is a valuable part of a manufacturing process, an effective substitute for a valuable raw material
 or commercial product, or otherwise authorized by DEQ, and does not constitute disposal; and
- ♦ The use is in accordance with applicable engineering standards, commercial standards, and agricultural or horticultural practices.

The use will not create an adverse impact to public health, safety, welfare, or the environment, including:

- The material is not a hazardous waste under ORS 466.005;
- Until the time the material is used in accordance with a beneficial use determination, the material will be managed, including any storage, transportation, or processing, to prevent releases to the environment or nuisance conditions;
- ♦ Hazardous substances in the material do not significantly exceed the concentration in a comparable raw material or commercial product, or do not exceed naturally occurring background concentrations, or do not exceed acceptable risk levels, including evaluation of persistence and potential bioaccumulation, when the material is managed according to a beneficial use determination.

The use will not result in the increase of a hazardous substance in a sensitive environment.

The use will not create objectionable odors, dust, unsightliness, fire, or other nuisance conditions.

The use will comply with all applicable federal, state, and local regulations.

E.

G. FEES (Must accompany the application for it to be considered complete)

	Tier 1 beneficial use determination	\$1,000
×	Tier 2 beneficial use determination	\$2,000
	Tier 3 beneficial use determination	\$5,000

Make checks out to: Oregon DEQ

Total fees included:

2000,00

H. APPLICATION PROCEDURE

Contact a DEQ staff person for assistance with the preparation of the application. DEQ staff will help with: 1) Determination of the eligibility for a beneficial use determination of a particular waste or process; and, 2) If eligible, establish the tier of beneficial use determination review required and associated fee to submit with the application.

Step 2

Mail the original signed application, all attachments, including the fee payment plus one extra copy to the appropriate regional office (see listing below.) Note that DEQ review work will not begin until a complete application packet is received. Incomplete applications may be returned. DEQ recommends the applicant keep a full copy of all application materials to guard against possible loss in transit.

Step 3

DEQ will contact the applicant, acknowledging receipt of the application, and will identify the staff person assigned to carryout the review. This staff person will contact the applicant if any additional information is needed.

Region	Counties Served	Address & Phone
Eastern Region	Baker, Crook, Deschutes, Gilliam, Grant, Harney, Hood River, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler	Eastern Region Department of Environmental Quality 400 E Scenic Drive, Ste 2.307 The Dalles, OR 97058 (541) 298-7255 ext. 221
Northwest Region	Clatsop, Clackamas, Columbia, Multnomah, Tillamook, and Washington	Northwest Region DEQ Solid Waste Programs 2020 SW Fourth Ave. Ste 400 Portland, OR 97201 (503) 229-5353
Western Region	Benton, Coos, Curry, Douglas, Jackson, Josephine, Lane, Lincoln, Linn, Marion, Polk, and Yamhill	Western Region DEQ Solid Waste Programs 750 Front St. NE Suite 120 Salem, OR 97301 (503) 378-5047

Application for Solid Waste Beneficial Use Determination

Tier 2 Case Specific determination for Steel Foundry Slag used as non-residential construction fill, utility trench fill, roadbase and embankments.

Tier 1 requirements:

1.1 Material

The material proposed for beneficial use is slag generated in the melting of iron and steel, at the Columbia Steel Casting Co. foundry in Portland, Oregon. This is melted limestone, with occasional small amounts of fluorspar added to improve fluidity for some heats. During the metal melting process, the slag picks up small amounts of metallic elements and other impurities. When cooled and solidified, the metallics are encapsulated in the glassy matrix of the slag. The slag and melted metal are poured together out of the furnace and into waiting ladles. The slag floats to the top of the ladle, where it is manually skimmed off into slag pots. The skimming process, unintentionally but invariably, pulls small amounts of metal off with the slag. The cooled slag pots are taken to an outdoor processing area, where they are broken up to recover the metal by magnets, hand picking, and screening.

Maximum annual production is estimated at 1000 ton/yr. Current stockpiles are estimated at 40,000 tons. Estimated annual use for off site construction purposes could vary widely, depending on demand. It is conceivable that a single large job could use all that we have.

1.2 Proposed use

The proposed uses are the same as OAR340-093-0270 (5)(f), the standing beneficial use determination for foundry sand, including the types of use and the conditions of use stated therein.

1.3 Comparison with other materials

This material is recognized by contractors and engineers as a functional and cost effective substitute for crushed natural rock from quarries, gravel pits, and river beds. It is an equally suitable substitute for crushed recycled concrete. These types of uses are common practice in other states throughout the USA. Such uses are further endorsed and encouraged by the Federal Highway Administration, Dept. of Transportation, and numerous state depts. of transportation. Chemical and physical characteristics for those other materials are variable, dependant upon their specific source. The characteristics of Columbia Steel's slag are summarized in attached spreadsheets and supporting documents from laboratory analysis.

1.4 Compliance with OAR 340-093-0280

1.4.1 Characterization of material and use – see above

1.4.2 Productive use

Steel slag is widely recognized as a functional and cost effective substitute for crushed natural rock from quarries, gravel pits, and river beds. It is an equally suitable substitute for crushed recycled concrete. Such uses are common practice in other states throughout the USA. Such

uses are further endorsed and encouraged by the Federal Highway Administration, Dept. of Transportation, and numerous state depts. of transportation. The National Slag Association publishes numerous case studies of such uses in other states. Similar slag from other steel producers in Oregon has been used for years in similar applications around the Portland metro area.

1.4.3 No adverse impacts

This material is not a hazardous waste under ORS 466.005.

Established storage and handling practices, i.e. outdoor storage piles contained on site where access can be controlled, are sufficient to prevent harmful releases to the environment. Transportation, delivery, and application at the point of use can be safely accomplished using the same equipment and methods that are common to the comparable natural quarry materials.

Potentially hazardous substances in this material have been the subject of laboratory analysis. Results indicate that concentrations are within the acceptable risk levels as defined by one or more screening tables applied by DEQ, for Oregon natural background soil concentrations, DEQ Occupational Risk Based Screening Levels for Soil, EPA Regional Screening Tables, and DEQ Risk Based Concentrations for tap water.

The proposed uses will not result in the increase of a hazardous substance in a sensitive environment. The proposed uses will not include placement in waterways, wetlands, or other sensitive environments.

The proposed uses will not create odors, dust, unsightliness, fire hazards, or other nuisance conditions.

The proposed uses will comply with applicable federal, state, and local regulations, as well as standard practices in the construction industry. In most cases, the uses will be subject to inspection as part of a building permit.

Tier 2 requirements:

2.1 Sampling and analysis

The material has been sampled on multiple occasions, and analyzed by EPA certified laboratories, testing for all contaminants of potential concern that might reasonably be expected to be present. Summary spreadsheets are attached. Supporting laboratory reports, including QA/QC data, have been previously submitted to the department, but copies are also attached as part of this application.

2.2 Risk screening

Potentially hazardous substances in this material have been the subject of laboratory analysis. Results indicate that concentrations are within the acceptable risk levels as defined by one or more screening tables applied by DEQ, for Oregon natural background soil concentrations, DEQ Occupational Risk Based Screening Levels for Soil, EPA Regional Screening Tables, and DEQ Risk Based Concentrations for tap water.

2.3 Location and type of use

The proposed uses are the same as OAR340-093-0270 (5)(f), the standing beneficial use determination for foundry sand, including the types of use and the conditions of use stated therein.

2.4 Contact information

This is not a site specific proposed use. Columbia Steel Casting Co. will maintain records of approximate quantities and locations where the material is placed, according to 340-093-270 (4).

2.5 Material management

Upon removal from the foundry operations where it is created, it will be transferred to an outdoor processing and storage area at Columbia Steel Casting Co.'s plant site. It will be mechanically processed to remove metals and unwanted debris, then segregated into fractions based on size. The cleaned and sized material will be stockpiled on site until needed. Loading and hauling to destination sites will be done using conventional front end loader and trucks, same as the natural materials it replaces. Placement and use at the destination sites will be done by conventional earthmoving and construction equipment, same as the natural materials it replaces. Dust and erosion control should not require any special precautions, as the large granular nature of this material is not conducive to airborne particles or storm water erosion. Once in place at the destination site, the material will be covered with asphalt, concrete, soil, natural rock or sand, or similar materials to minimize exposure to ecological receptors.

al Matale Analy	Total Motals Analysis (inits - DDM)							
			Use Highest	Use Highest Value Shown per T	Tom Roick			
Metals of	Columbia Steel Products	Oregon	DEQ RBCs - C		ased Screening	g Levels for So	EPA Regional	Screening Table
Concern	Dust Sand Slag	Background	Ingestion		Vapor	Vapor Leaching to	Industrial	Industrial Soil RE:
	Geo Mean (range)	Soil	Control of the last of the las	Outdoor Air	Intrusion	Groundwater	Soil	GW Protection
Antimony	NT	4	Z	Z	Z	Z	410	0.66
Arsenic	4.97 (ND - 7.50)	7	1.7	N	N	NS	1.6	0.0013
	398 (30 - 1280)			NV	N	NS	190000	300
Be Beryllium	NT		2000	N/	N/	NS S	2000	58
1	007 (ND - 5.37)		500	NV	NV NV	3	800	1.4
Cu Copper	34 3 (15 1 - 138)	36	41000	N	N N	NS O	41000	51
	3.34 (1.42 - 36.30)	17	800	Z.	N.	30	800	NS .
Mn Manganese	46774 (20800 - 87800)		23000	N	N.	NS	23000	57
	0.05 (ND - 0.115)	0.07	310	N	N	NS	34	0.03
Nickel	233 (145 - 362)	38	20000	N	N	NS	SN	SN
Selenium	34.4 (ND - 82)	2	2	2	N.	N.	5100	0.95
Silver	ND (mrl 1.02)		5100	N	N N	NS NS	5100	1.6
Zinc	21.0 (13.2 - 33.1)	86	2 7	2 2	2 2	2 2	310000	680
	ND = none detected		NV = non volatile					
	NT = not tested for		NL = not listed NS = no standard listed	listed				
chable Metals	Leachable Metals Analysis (units = PPM except where noted) (ND = Non Detect)	re noted) (ND = Non Detect)		DEO RBCs for	or Tapwater			
			Res		Occupational	ational		
	SPLP SPLP SPLP		PPB	PPM	PPB	PPM		
Antimony	N		F	2	2	2		
Arsenic	ND (mrl 0.100)		0.038	0.000038	0.27	0.00027		
Barium	0.48 (0.11 - 1.90)		7300	7.3	29000	29		
Codmium	ND (man o of)		13	0.073	790	0.29		
Chromium	0.12 (ND - 0.30)		55000	55	220000	220		
Copper	ND (mrl 0.25)		1500	1.5	5800	5.8		
Lead	0.07 (ND - 0.07)		15	0.015	15	0.015		
Manganese	ND (mrl 0.05)		880	0.88	3500	3.5		
Nickel	ND (mr 0.005)		720	0.73	2000	0.044		
Selenium	0.11 (ND - 0.11)		2 0	2 5	NI O	Z 2.3		
Silver	ND (mrl 0.05)		180	0.18	730	0.73		
Thallium	IN		Z	N.	Z	2		
	i		Z	Z	N	Z		

										-			
21.0	233	46774	34.3	N.	34.4 ND	0.05	3.34	787	7.08	398	4.97		Geometric Mean
										8			
19.3	322	87800	34.6	ND	16.3 ND	Ď	3.43 ND	704	2.24	356	6.05	SLAG5	- {
30.0	181	20800	15.1	ND	76.0	ō	3.23 ND	580	5.37	1020	4.71	SLAG4	report date 9/29/10
16.2	223	41700	32.1	ND	39.4 ND	ō	3.20 ND	797	3.89	1240	3.94	SLAG3	sample date 9/14/10
13.2	145	56000	20.5	ND	61.2	ð	2.16 ND	688	3.01	1280	3.60	SLAG2	screened slag
33	362	52500	138	ND	14.4	Ū	3.36 ND	1290	5.18	858	7.50	SLAG1	APEX LABS
				50 ND	50	0.0180	1.61	3.87	0.142	30	P	Ch	
	-			B		0.1110	1.88	669	ō	940 ND	D	4	report date 8/7/06
	-			ND		0.1150 ND	1.42	218	0.101	270	B	ω	sample date 6/22/06
				43 ND	43	0.0253	4.35	160	0.180	140	ND	2	screened slag
ĺ				ND	8 <u>2</u>	0.0498	36.30	145	Ō	190 ND	ND		COLUMBIA INSPECTION
Zinc	Nickel	Manganese	Copper	Silver	Selenium	Mercury	Lead	Chromium	Cadmium	Barium	Arsenic	Sample ID	Q
	-	е											units = ma/ka
										ă l	de 8000/70	EDA metho	RCRA TOTAL METALS by EPA methods 6000/7000
									+			ֶר ו	FOLINDBA SLAC VALLASIO
	- -										. ' 	16 CO. INC	COLUMBIA STEEL CASTING CO., INC.

•

.

Geometric Mean		report date 9/29/10	sample date 9/14/1	screened slag	APEX LABS		report date 8/7/06	sample date 6/22/06	screened slag	COLUMBIA INSPECTION	Toxicity by TCLP	EPA Threshold Values for			units = mg/L	RCRA LEACHABLE METALS by SPLP EPA methods 200.7/6010B/1312	FOUNDRY SLAG ANALYSIS	COLUMBIA STEEL CASTING CO., INC.
			0					0		CTION	_	lues for				E METAL	ANALYSIS	_ CASTIN
	SLAG5		,	SLAG2	SLAG1	G	4	ω	2	-3			Sample ID #			S by SPLI	3	G CO., INC
B	ND	B	ND	B	B	8	ND	B	8	N	5.0		Arsen	iic		EPA met		
0.48 ND	ND	0.58	0.52 ND	ND	0.54 ND	1.30 ND	1.90 ND	0.41 ND	0.11 ND	0.15 ND	100.0		Bariur	n		hods 200.		
D	D	ND	N N	B	UD	N.	8	8	N	NO.	1.0		Cadm	iun	n	7/6010B/1		
0.12	0.30 ND	ND	ND	ND	ND	0.04 ND	0.14	0.28 ND	0.08 ND	0.06 ND	5.0		Chron	ทใบเ	m	312	-	
	ND	B	B	N	N	8		N	ND	ND	5.0		Lead					
0.07 ND	B	ND	ND	ND	ND	S	0.07 ND	ND	ND	ND	0.2		Mercu	ігу				
0.11	B	ND	ND N	0.11	ND	S	ND	ND	ND	ND	1.0		Seleni	ium	1			
ND	R	ND	ND	UD	ND	R	ND.	ND N	ND	ND	5.0	-	Silver		ĺ			
ND	R	ΝD	ND	ND	ND						<u> </u>		Сорре	er				
D	R	ND	ND	ND	ND ND													_
ON	P	ND	ND ND	N N	S B								Manga	ane	S			-
ND ND	ND	ND	ND	8	N								Nickel					
													Zinc				ſ	

CLIENT: Columbia Steel Casting Co., Inc.

ATTN: Bruce Schacht

P.O. Box 83095

Portland OR, 97283-0095

PHONE: (503) 286-0685 FAX: (503) 286-3028

PROJECT NAME: SOLID WASTE CHARACTERIZATION

SUBMITTED: 06/22/06 16:15

REPORT DATE: 08/07/06 15:10 REPORT NUMBER: 6062206

PAGE: 1 OF 14

CISAMPLE	CLIENTS ID#		DATE	TIME	MATRIX			
6062206-01	1 - Screened Slag			/2006 1500	Other(Sld)			
6062206-02	2 - Screened Slag		06/22	/2006 1500	Other(Sld)			
6062206-03	3 - Screened Slag		06/22	/2006 1500	Other(Sld)			
6062208-04	4 - Screened Slag		06/22	/2006 1500	Other(Sid)			
6062206-05	5 - Screened Slag		06/22	/2006 1500	Other(Sld)			
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME	NOTES
6062206-01	SAMPLE ID: 1 - Se	_						
Total Mercury by	y Cold Vapor Atom	ic Fluorescence						
MERCURY CV AF	EPA 245.7/1631	MERCURY	0.0498	mg/kg	0.000483	KEL	06/23/2006 13:41	
Total Metals by	Inductively Coupled	d Plasma	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
ARSENIC - ICP	EPA 200.7/6010B	ARSENIC	ND	mg/kg	32.5	KEL	06/23/2006 15:36	
BARIUM - ICP		BARIUM	190	mg/kg	0.19	KEL	06/23/2006 13:57	
CADMIUM - ICP		CADMIUM	ND	mg/kg	0.097	KEL	06/23/2006 15:36	
CHROMIUM - ICP		CHROMIUM	145	mg/kg	0.097	KEL	06/23/2006 15:36	
LEAD - ICP		LEAD	36.3	mg/kg	0.00500	KEL	06/23/2006 15:36	
SELENIUM - ICP		SELENIUM	82	mg/kg	1.3	KEL	06/23/2006 15:36	
SILVER - ICP		SILVER	ND	mg/kg	0.974	KEL	06/23/2006 13:57	
Leachate Metals	Methods							9 8
ARSENIC, SPLP - ICP	EPA 200.7/6010B	ARSENIC	ND	mg/L	0.020	KEL	06/23/2006 16:14	
BARIUM, SPLP - ICP		BARIUM	0.15	mg/L	0.020	KEL	06/23/2006 16:04	
CADMIUM, SPLP - ICP		CADMIUM	ND	mg/L	0.020	KEL	06/23/2006 16:14	
CHROMIUM, SPLP - ICP	···	CHROMIUM	0.060	mg/L	0.010	KEL	06/23/2006 16:14	7,000
LEAD, SPLP - ICP		LEAD	ND	mg/L	0.040	KEL	06/23/2006 16:14	
SELENIUM, SPLP - ICP		SELENIUM	ND	mg/L	0.070	KEL	06/23/2006 16:14	
SILVER, SPLP - ICP		SILVER	ND	mg/L	0.080,0	KEL	06/23/2006 16:04	
Leachate Procee	dure -Mercury							
MERCURY, SPLP - CV AF	EPA 245.7/1631	MERCURY	ND	mg/L	0.0300	KEL	06/23/2006 16:08	
6062206-02	SAMPLE ID: 2 - Sc	rooned Slag						

6062206-02

SAMPLE ID: 2 - Screened Slag

This report may not be reproduced except in full.

Authorized for Release By:

Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Ph:(503) 286-9464 Fax:(503) 286-5355 E-mail:cilabqa@ColumbiaInspection.com

REPORT DATE:	08/07/06 15:10		REPORT NUMBER:6062	206			PAGE:	2 OF 14
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME	NOTES
6062206-02 Total Mercury by	SAMPLE ID: 2 - Scre Cold Vapor Atomic F							
MERCURY CV AF	EPA 245.7/1631	MERCURY	0.0253	mg/kg	0.000395	KEL	06/23/2006 13:41	!
Total Metals by Ir	ductively Coupled P	'lasma	and the analysis of Parison					
ARSENIC - ICP	EPA 200.7/6010B	ARSENIC	ND	mg/kg	30.1	KEL	06/23/2006 15:36	5
BARIUM - ICP		BARIUM	140	mg/kg	0,18	KEL	06/23/2006 13:57	7
CADMIUM - ICP		CADMIUM	0.180	mg/kg	0.090	KEL	06/23/2006 15:36	3
CHROMIUM - ICP		CHROMIUM	160	mg/kg	0.090	KEL	06/23/2006 15:36	6
LEAD - ICP		LEAD	4.35	mg/kg	0.00451	KEL	06/23/2006 15:36	6
SELENIUM - ICP		SELENIUM	43	mg/kg	1.2	KEL	06/23/2006 15:36	\$
SILVER - ICP		SILVER	ND	mg/kg	0.902	KEL	06/23/2006 13:5	7
Leachate Metals	Methods							
ARSENIC, SPLP - ICP	EPA 200,7/6010B	ARSENIC	ND	mg/L	0.020	KEL	06/23/2006 16:14	\$
BARIUM, SPLP -		BARIUM	0.11	mg/L	0.020	KEL	06/23/2006 16:04	1
CADMIUM, SPLP -		CADMIUM	ND	mg/L	0.020	KEL	06/23/2006 16:14	1
CHROMIUM, SPLP		CHROMIUM	0.079	mg/L	0,010	KEL	06/23/2006 16:14	1
LEAD, SPLP - ICP		LEAD	ND	mg/L	0.040	KEL.	06/23/2006 16:1-	\$
SELENIUM, SPLP -		SELENIUM	ND	mg/L	0.070	KEL	06/23/2006 16:14	4
SILVER, SPLP - ICP		SILVER	ND	mg/L	0.080	KEL	06/23/2006 16:04	4
Leachate Proced	dure -Mercury							
MERCURY, SPLP - CV AF	EPA 245.7/1631	MERCURY	ND	mg/L	0.0300	KEL	06/23/2006 16:0	3
6062206-03	SAMPLE ID: 3 - Scre	ened Slag						
Total Mercury by	Cold Vapor Atomic I	Fluorescence						
MERCURY CV AF	EPA 245.7/1631	MERCURY	0.115	mg/kg	0.000499	KEL	06/23/2006 13:4	1
Total Metals by In	nductively Coupled F	Plasma						
ARSENIC - ICP	EPA 200.7/6010B	ARSENIC	ND	mg/kg	30.7	KEL	06/23/2006 15:3	ŝ
BARIUM - ICP		BARIUM	270	mg/kg	0.18	KEL	06/23/2006 13:5	7
CADMIUM - ICP		CADMIUM	0.101	mg/kg	0.092	KEL	06/23/2006 15:3	3
CHROMIUM - ICP		CHROMIUM	218	mg/kg	0,092	KEL	06/23/2006 15:3	6
LEAD - ICP		LEAD	1.42	mg/kg	0.00500	KEL	06/23/2006 15:3	6
SELENIUM - ICP		SELENIUM	ND	mg/kg	1.2	KEL	06/23/2006 15:3	5
SILVER - ICP		SILVER	ND	mg/kg	0.921	KEL	06/23/2006 13:5	7
Leachate Metals	Methods		The Parties				<u> </u>	
ARSENIC, SPLP -	EPA 200.7/6010B	ARSENIC	ND	mg/L	0.020	KEL	06/23/2006 16:1	4
BARIUM, SPLP -		BARIUM	0.41	mg/L	0.020	KEL	06/23/2006 16:0	4

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

REPORT DATE:	08/07/06 15:1	I U	REPORT NUMBER:6062	2206			PA	(GE: 3	OF 1
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIMI	Ę	NOTE
6062206-03	SAMPLE ID: 3 - Sc	reened Slag							
Leachate Metals	Methods								
CADMIUM, SPLP -	EPA 200.7/6010B	CADMIUM	ND	mg/L	0.020	KEL	06/23/2006	16:14	
CHROMIUM, SPLP - ICP		CHROMIUM	0.28	mg/L	0.010	KEL	06/23/2006	16:14	
LEAD, SPLP - ICP		LEAD	ND	mg/L	0.040	KEL	06/23/2006	16:14	
SELENIUM, SPLP - ICP		SELENIUM	ND	mg/L	0.070	KEL	06/23/2006	16:14	
SILVER, SPLP - ICP		SILVER	ND	mg/L	0.080	KEL	06/23/2006	16:04	
Leachate Proced	lure -Mercury	· · · · · · · · · · · · · · · · · · ·							
MERCURY, SPLP - CV AF	-	MERCURY	ND	mg/L	0.0300	KEL	06/23/2006	16:08	
6062206-04	SAMPLE ID: 4 - Sc	reened Slag							
Total Mercury by	Cold Vapor Atomic	Fluorescence							
MERCURY CV AF	EPA 245.7/1631	MERCURY	0.111	mg/kg	0.000543	KEL	06/23/2006	13:41	
Total Metals by In	ductively Coupled	Plasma							
ARSENIC - ICP	EPA 200.7/6010B	ARSENIC	ND	mg/kg	30.6	KEL	06/23/2006	15.36	
BARIUM - ICP		BARIUM	940	mg/kg	0.18	KEL	06/23/2006		
CADMIUM - ICP		CADMIUM	ND	mg/kg	0,092	KEL	06/23/2006		
CHROMIUM - ICP		CHROMIUM	669	mg/kg	0.092	KEL	06/23/2006		
LEAD - ICP		LEAD	1.88	mg/kg	0.00500	KEL	06/23/2006		
SELENIUM - ICP		SELENIUM	9.0	mg/kg	1.2	KEL	06/23/2006		
SILVER - ICP		SILVER	ND	mg/kg	0.919	KEL	06/23/2006		
Leachate Metals I	Methods								
ARSENIC, SPLP - ICP	EPA 200.7/60108	AR S ENIC	ND	mg/L	0.020	KEL	06/23/2006	16:14	
BARIUM, SPLP - ICP	100 t _{an 11}	BARIUM	1.9	mg/L	0.020	KEL	06/23/2006	16:04	
CADMIUM, SPLP - ICP		CADMIUM	ND	mg/L	0.020	KEL	06/23/2006	16:14	
CHROMIUM, SPLP - ICP		CHROMIUM	0.14	mg/L	0.010	KEL	06/23/2006	16:14	
LEAD, SPLP - (CP		LEAD	0.072	mg/L	0.040	KEL	06/23/2006	16:14	
SELENIUM, SPLP - CP		SELENIUM	ND	mg/L	0.070	KEL	06/23/2006	16:14	
SILVER, SPLP - ICP		SILVER	ND	mg/L	0.080	KEL	06/23/2006	16:04	
Leachate Procedu	ure -Mercury								
MERCURY, SPLP - CV AF		MERCURY	ND	mg/L	0.0300	KEL	06/23/2006	16:08	
3062206-05	SAMPLE ID: 5 - Scr	eened Slag							
	Cold Vapor Atomic	_							
	EPA 245.7/1631	MERCURY	0.0180	mg/kg	0.000465	KEL	06/23/2006	13:41	
Total Metals by Inc	ductively Coupled	Plasma							
This rapad may not	be reproduced excer	t in full							

Authorized for Release By:Richard D. Reid - Laboratory Director

REPORT DATE:	08/07/06 15:1	0	REPORT NUMBER:60622	206			PAGE: 4	OF 14
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME	NOTES
6062206-05	SAMPLE ID: 5 - So	reened Slag						
Total Metals by In	nductively Coupled	l Plasma						
ARSENIC - ICP	EPA 200,7/6010B	ARSENIC	ND	mg/kg	1.69	KEL	06/23/2006 15:36	
BARIUM - ICP		BARIUM	30	mg/kg	0.20	KEL	06/23/2006 13:57	
CADMIUM - ICP		CADMIUM	0.142	mg/kg	0.101	KEL	06/23/2006 15:36	
CHROMIUM - ICP		CHROMIUM	3,87	mg/kg	0.101	KEL	06/23/2006 15:36	
LEAD - ICP		LEAD	1.61	mg/kg	0.00500	KEL	06/23/2006 15:36	
SELENIUM - ICP		SELENIUM	50	mg/kg	1.4	KEL	06/23/2006 15:36	
SILVER - ICP		SILVER	ND	mg/kg	1.01	KEL	06/23/2006 13:57	
Leachate Metals	Methods							
ARSENIC, SPLP -	EPA 200.7/6010B	ARSENIC	ND	mg/L	0.020	KEL	06/23/2006 16:14	
BARIUM, SPLP -		BARIUM	1.3	mg/L	0.020	KEL	06/23/2006 16:04	
CADMIUM, SPLP -		CADMIUM	ND	mg/L	0.020	KEL.	06/23/2006 16:14	
CHROMIUM, SPLP		CHROMIUM	0.042	mg/L	0.010	KEL	06/23/2006 16:14	
LEAD, SPLP - ICP		LEAD	ND	mg/L	0.040	KEL	06/23/2006 16:14	
SELENIUM, SPLP -		SELENIUM	ND	mg/L	0.070	KEL	06/23/2006 16:14	
SILVER, SPLP - ICP		SILVER	ND	mg/L	080,0	KEL	06/23/2006 16:04	
Leachate Proce	dure -Mercury							
MERCURY, SPLP - CV AF	EPA 245,7/1631	MERCURY	ND	mg/L	0,0300	KEL	06/23/2006 16:08	

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 5 OF 14

Total Mercury by Cold Vapor Atomic Fluorescence - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Bato	ch 6F23016 - ***Metals Pro	ep***									
QC SAMPLE:	Blank (6F23016-BLK1)					Prepared 8	& Analyzed	: 06/23/06			
MERCURY		0.000013	0.000002	mg/kg							
QC SAMPLE:	Blank (6F23016-BLK2)					Prepared 8	k Analyzed	: 06/23/06			
MERCURY		0.000004	0.000002	mg/kg							
QC SAMPLE:	Calibration Blank (6F23016	S-CCB1)				Prepared 8	k Analyzed	: 06/23/06			
MERCURY		ND	0.000002	mg/kg							
QC SAMPLE:	Calibration Blank (6F23016	G-CCB2)				Prepared 8	Analyzed	06/23/06			
MERCURY		ND	0.000002	mg/kg							
QC SAMPLE:	Calibration Blank (6F23016	S-CCB3)				Prepared 8	Analyzed	06/23/06			
MERCURY		ND	0,000002	mg/kg							
QC SAMPLE:	Calibration Blank (6F23016	G-CCB4)				Prepared 8	Analyzed	06/23/06			
MERCURY		ND	0.000002	mg/kg							
QC SAMPLE:	Reference (6F23016-SRM1)	}				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000240	0.000002	mg/kg	0.00020		120	90-110		··· -	
QC SAMPLE:	Reference (6F23016-SRM2))				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000262	0.000002	mg/kg	0.00020		131	90-110	~~~		
QC SAMPLE:	Reference (6F23016-SRM3))				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000153	0.000002	mg/kg	0.00020		76.5	90-110			
QC SAMPLE:	Reference (6F23016-SRM4))				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000115	0.000002	mg/kg	0.00010		115	90-110			•

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 6 OF 14

Total Mercury I	y Cold Va	por Atomic Fluorescence	 Quality Control
-----------------	-----------	-------------------------	-------------------------------------

Batch/Sample/Analyte	Result	Detection Limit	Units	Spike S Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batch 6F23016 -	- ***Metals Prep***									
QC SAMPLE: Reference (6F23016-SRM5)			F	repared 8	k Analyzed	: 06/23/06			
MERCURY	0.000100	0.000002	mg/kg 0.	00010		100	90-110			

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 7 OF 14

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	/Analyte Result	Detection Limit	Units	Spike Level		%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23019 - ***Metals Prep***									
QC SAMPLE:	Blank (6F23019-BLK1)				Prepared	& Analyzed	: 06/2 3 /06			
BARIUM	ND	0.0020	mg/kg							
SILVER	ND	0.010	+1							
QC SAMPLE:	Blank (6F23019-BLK2)				Prepared	& Analyzed	: 06/23/06			
BARIUM	ND	0.0020	mg/kg				7			
SILVER	0.0403	0.010	hr							
QC SAMPLE:	Calibration Blank (6F23019-CCB1)				Prepared	& Analyzed	: 06/23/06			
BARIUM	ND	0.0020	mg/kg							
SILVER	0.101	0.010	н							
QC SAMPLE:	Calibration Blank (6F23019-CCB2)				Prepared -	& Analyzed	: 06/23/06			
BARIUM	ND	0.0020	mg/kg						•	
SILVER	0.0816	0.010	ır							
QC SAMPLE:	Calibration Blank (6F23019-CCB3)				Prepared -	& Analyzed	06/23/06			
BARIUM	ND	0.0020	mg/kg				1/4//			
SILVER	ND	0.010	ħ							
QC SAMPLE:	Calibration Blank (6F23019-CCB4)				Prepared a	& Analyzed	06/23/06			
BARIUM	ND	0.0020	mg/kg							
SILVER	0.0460	0.010	ıt							
QC SAMPLE:	Reference (6F23019-SRM1)				Prepared 8	& Analyzed	06/23/06			
BARIUM	0.986	0.0020	mg/kg	1.00		98,6	85-115			
SILVER	0.488	0.010	**	0.500		97.6	85-115			
QC SAMPLE:	Reference (6F23019-SRM2)				Prepared 8	& Analyzed:	06/23/06			
BARIUM	0.995	0.0020	mg/kg	1.00		99.5	85-115			
SILVER	0.511	0.010	н	0.500		102	85-115			

REPORT DATE: 08/07/06 15:10 REPORT NUMBER:6062206 PAGE: 8 OF 14

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	/Analyte Result	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23019 - ***Metals Prep***									
QC SAMPLE:	Reference (6F23019-SRM3)				Prepared	& Analyzed	1: 06/23/06			
BARIUM	1.01	0.0020	mg/kg	1.00		101	85-115			
SILVER	0.576	0.010	re	0.500		115	85-115			
QC SAMPLE:	Reference (6F23019-SRM4)				Prepared	& Analyzed	: 06/23/06		-	
BARIUM	ND	0,0020	mg/kg	1.00			85-115			
SILVER	121	0.010	11	0.500		NR	85-115			
BATCH: Bato	h 6F23029 - ***Metals Prep***									
QC SAMPLE:	Blank (6F23029-BLK1)				Prepared	& Analyzed	1: 06/23/06			
ARSENIC	0.00320	0.000333	mg/kg							
CADMIUM	ND	0.001	н							
CHROMIUM	0.0108	0.001	Ħ							
LEAD	ND	0.0000500	н							
SELENIUM	ND	0.013	н							
QC SAMPLE:	Calibration Blank (6F23029-CCB1)				Prepared	& Analyzed	1: 06/23/06			
ARSENIC	0.00130	0.000333	mg/kg							
CADMIUM	0.001	0.001	н							
CHROMIUM	0.00160	0.001	74							
LEAD	0.004	0.0000500	я							
SELENIUM	ND	0.013	п							
QC SAMPLE:	Calibration Blank (6F23029-CCB2)				Prepared	& Analyzed	1: 06/23/06	-,		
ARSENIC	0.000500	0.000333	mg/kg							
CADMIUM	0.002	0.001	н							
CHROMIUM	ND		н							
LEAD	0.003		ti							
SELENIUM	ND	0.013	H							

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 9 OF 14

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23029 - ***Metals Prep	***							-		
QC SAMPLE:	Calibration Blank (6F23029-C	CB3)				Prepared	& Analyzed	: 06/23/06			
ARSENIC		0.00940	0.000333	mg/kg							
CADMIUM		0.001	0.001	n							
CHROMIUM		ND	0.001	n							
LEAD		0.005	0.0000500	н							
SELENIUM		ND	0.013	н							
QC SAMPLE:	Reference (6F23029-SRM1)					Prepared	& Analyzed	: 08/23/06			
ARSENIC		0.970	0.000333	rng/kg	1.00		97.0	85-115			
CADMIUM		0.997	0.001	и	1.00		99.7	85-115			
CHROMIUM		1.01	0.001	10	1.00		101	85-115			
LEAD		0.996	0.0000500	H	1.00		99.6	85-115			
SELENIUM		0.859	0,013	ก	1.00		85.9	85-115			
QC SAMPLE:	Reference (6F23029-SRM2)					Prepared -	& Analyzed	: 06/23/06			
ARSENIC		1.01	0.000333	mg/kg	1.00		101	85-115		****	
CADMIUM		1.02	0.001	н	1.00		102	85-115			
CHROMIUM		1.05	0.001	R	1.00		105	85-115			
LEAD		1.04	0.0000500	10	1.00		104	85-115			
SELENIUM		1.13	0.013	#	1.00		113	85-115			
QC SAMPLE:	Reference (6F23029-SRM3)					Prepared of	& Analyzed:	06/23/06			
ARSENIC		1.02	0.000333	mg/kg	1.00		102	85-115			
CADMIUM		1.05	0,001		1.00		105	85-115			
CHROMIUM		0.984	0.001	19	1.00		98.4	85-115			
LEAD		1.05	0.0000500	•	1.00		105	85-115			
SELENIUM		1.18	0.013	**	1.00		118	85-115			

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 10 OF 14

Leachate Metals Methods - Quality Control

Batch/Sample	/Analyte Re	sult	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23023 - ***Metals Prep***						····				
QC SAMPLE:	Blank (6F23023-BLK1)					Prepared	& Analyzed	: 06/23/06			
BARIUM	-	ND	0,018	mg/L							
SILVER		ND	0.072								
QC SAMPLE:	Blank (6F23023-BLK2)					Prepared	& Analyzed	: 06/23/06			
BARIUM SILVER		ND ND	0.018 0.072	mg/L							
	Calibration Blank (CE22022 CCB		5.512			Prenared	& Analyzed	. 06/23/06			
QC SAMPLE: BARIUM	Calibration Blank (6F23023-CCB	ND	0.018	mg/L		Tioparoa	Q 7 many 200	. 00,20,00			
SILVER	0	.101	0.072	n gr							
QC SAMPLE:	Calibration Blank (6F23023-CCB	32)				Prepared	& Analyzed	: 06/23/06			
BARIUM		ND	0.018	mg/L							
SILVER	0,0	0816	0.072	н							
QC SAMPLE:	Calibration Blank (6F23023-CCB	33)				Prepared	& Analyzed	: 06/23/06			
BARIUM		ND	0.018	mg/L							
SILVER		ND	0.072	•							
QC SAMPLE:	Calibration Blank (6F23023-CCB	34)		·		Prepared	& Analyzed	: 06/23/06			
BARIUM		ND	0.018	mg/L							
SILVER		NO	0.072	н							
QC SAMPLE:	Reference (6F23023-SRM1)					Prepared	& Analyzed				
BARIUM	C	0.986	0.018	mg/L	1.00		98.6	B5-115			
SILVER	C	.488	0.072	t t	0.500		97.6	B5-115			
QC SAMPLE:	Reference (6F23023-SRM2)					Prepared	& Analyzed				
BARIUM	C	0.995	0.018	mg/L	1.00		99.5	85-115			
SILVER	C),511	0.072	11	0,500		102	85-115			

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 11 OF 14

Leachate Metals Methods - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23023 - ***Metals Prep	***									
QC SAMPLE:	Reference (6F23023-SRM3)					Prepared	& Analyzed	: 06/23/06			*
BARIUM		1.01	0.018	mg/L	1.00		101	85-115			
SILVER		0.576	0.072	Ħ	0.500		115	85-115			
QC SAMPLE:	Reference (6F23023-SRM4)					Prepared of	& Analyzed	: 06/23/06			
BARIUM		ND	0.018	mg/L	1.00			85-115			
SILVER		0.603	0.072	- "	0.500		121	85-115			
BATCH: Batc	h 6F23030 - ***Metals Prep	***									•
QC SAMPLE:	Blank (6F23030-BLK1)					Prepared 8	& Analyzed	: 06/23/06			
ARSENIC	***	ND	0.018	mg/L	*****						
CADMIUM		ND	0.018	,							
CHROMIUM		0.0108	0.0090	π							
LEAD		ND	0.036	н							
SELENIUM		ND	0.063	"							
QC SAMPLE:	Calibration Blank (6F23030-C	CB1)				Prepared 8	& Analyzed	: 06/23/06			
ARSENIC		ND	0.018	mg/L							***************************************
CADMIUM	•	ND	0.018	**							
CHROMIUM		ND	0.0090	п							
LEAD		ND	0.036	н							
SELENIUM		ND	0.063	11							
QC SAMPLE:	Calibration Blank (6F23030-C	CB2)			***************************************	Prepared 8	& Analyzed:	06/23/06			
ARSENIC		ND	0.018	mg/L							
CADMIUM		ND	0.018	Ħ							
CHROMIUM		ND	0.0090	n							
LEAD		ND	0.036								
SELENIUM		ND	0.063	is							

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 12 OF 14

Leachate Metals Methods - Quality Control

Batch/Sample	/Analyte Resu		Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23030 - ***Metals Prep***										
QC SAMPLE:	Calibration Blank (6F23030-CCB3)				Prepared	& Analyzed	: 06/23/06			
ARSENIC	<u> </u>	ND	0.018	mg/L							
CADMIUM	1	ďΡ	0.018	,							
CHROMIUM	1	ďΡ	0,0090	н							
LEAD	1	ΝD	0.036	n							
SELENIUM	1	ND	0.063	н							
QC SAMPLE:	Reference (6F23030-SRM1)					Prepared	& Analyzed	: 06/23/06			
ARSENIC	0.9	70	0.01B	mg/L	1.00		97.0	85-115			
CADMIUM	0,9		0.018	т.	1.00		99.7	B5-115			
CHROMIUM	1,	.01	0.0090	#	1.00		101	B5-115			
LEAD	0.9	96	0.036	,	1.00		99.6	B5-115			
SELENIUM	0.8	59	0.063	п	1.00		85.9	85-115			
QC SAMPLE:	Reference (6F23030-SRM2)					Prepared	& Analyzed	: 06/23/06			
ARSENIC		.01	0.018	mg/L	1.00		101	85-115	.,		
CADMIUM		.02	0.018	*	1.00		102	85-115			
CHROMIUM		.05	0.0090	п	1.00		105	85-115			
LEAD	1,	.04	0.036	Ħ	1.00		104	85-115			
SELENIUM	1.	.13	0.063	n	1.00		113	B5-115			
QC SAMPLE:	Reference (6F23030-SRM3)					Prepared	& Analyzed	1: 06/23/06			
ARSENIC		.02	0.018	mg/L	1.00		102	85-115			
CADMIUM	1.	.05	0.018	"	1.00		105	85-115			
CHROMIUM	0.9		0.0090	ч	1.00		98.4	85-115			
LEAD	1.	.05	0.036	Ħ	1.00		105	85-115			
SELENIUM	1,	.1B	0.063	ti.	1.00		118	85-115			SRM-1

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 13 OF 14

Leachate Procedure - Mercury - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	ch 6F23017 - ***Metals Pr	ep***									
QC SAMPLE:	Blank (6F23017-BLK1)					Prepared a	& Analyzed	: 06/23/06			
MERCURY		ND	0.000150	mg/L							
QC SAMPLE:	Blank (6F23017-BLK2)					Prepared 8	& Analyzed	: 06/23/06			
MERCURY		ND	0.000150	mg/L							
QC SAMPLE:	Calibration Blank (6F2301	7-CCB1)				Prepared 8	Analyzed	: 06/23/06			
MERCURY		ND	0.000150	mg/L							
QC SAMPLE:	Calibration Blank (6F2301	7-CCB2)				Prepared 8	& Analyzed	: 06/23/06			
MERCURY		ND	0.000150	mg/L							
QC SAMPLE:	Calibration Blank (6F2301)	7-CCB3)				Prepared 8	& Analyzed:	06/23/06			
MERCURY		ND	0.000150	mg/L				·			***************************************
QC SAMPLE:	Calibration Blank (6F2301)	7-CCB4)				Prepared 8	Analyzed:	06/23/06			
MERCURY		ND	0.000150	mg/L							
QC SAMPLE:	Reference (6F23017-SRM1	()				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000240	0.000150	mg/L	0.00020		120	90-110			
QC SAMPLE:	Reference (6F23017-SRM2	!)				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000262	0.000150	mg/L	0.00020		131	90-110		· · · · · · · · · · · · · · · · · · ·	
QC SAMPLE:	Reference (6F23017-SRM3)				Prepared 8	Analyzed:	06/23/06			
MERCURY		0.000153	0.000150	mg/L	0.00020		76.5	90-110			
QC SAMPLE:	Reference (6F23017-SRM4)				Prepared 8	Analyzed:	06/23/06			
MERCURY		ND	0.000150	mg/L	0.00010			90-110		***************************************	

REPORT DATE:

08/07/06 15:10

REPORT NUMBER:6062206

PAGE: 14 OF 14

Leachate Procedure -Mercury - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units	Spike Levei	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Batc	h 6F23017 - ***Metals Pre	o***									
QC SAMPLE:	Reference (6F23017-SRM5)					Prepared	& Analyzed	1: 06/23/06			
MERCURY		ND	0.000150	mg/L	0.00010			90-110			
Data Qualifie	ers:										
Qualifier	Notes										
SRM-1	The recovery of this SRM w	as hìgh. T	he batch was acc	epted on t	he basis (of other refe	erence mat	erials in this	s batch.		

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, September 29, 2010

Bruce Schacht Columbia Steel Casting Co., Inc. PO Box 83095 Portland, OR 97283

RE: Foundry Slag / [none]

Enclosed are the results of analyses for work order <u>A10I180</u>, which was received by the laboratory on 9/14/2010 at 4:00:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>AGreiner@Apex-Labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
SLAG 1	A101180-01	Soil	09/14/10 15:00	09/14/10 16:00						
SLAG 2	A101180-02	Soil	09/14/10 15:00	09/14/10 16:00						
SLAG 3	A10I180-03	Soil	09/14/10 15:00	09/14/10 16:00						
SLAG 4	A10I180-04	Soil	09/14/10 15:00	09/14/10 16:00						
SLAG 5	A10I180-05	Soil	09/14/10 15:00	09/14/10 16:00						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL SAMPLE RESULTS

		To	otal Metals by I	PA 6020 (IC	PMS)		·	
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SLAG 1 (A101180-01)			Matrix: Soil		latch: 100938	30		
Arsenic	7,50		2.04	mg/kg dry	10	09/23/10 15:10	EPA 6020	
Barium	858		10.2		100	09/23/10 15:42	N	
Cadmium	5,18		1.02	π	10	09/23/10 15:10	н	
Chromium	1290		20.4	Ħ	100	09/23/10 15:42	n	
Copper	138		4.07	H	10	09/23/10 15:10	н	
Lead	3.36		1.02	*	7	и	*	
Manganese	52500		204	Ħ	2000	09/23/10 16:17	**	
Mercury	ND		0.0815		10	09/23/10 15:10	n	
Nickel	362		2.04				P	
Selenlum	14,4		2.04	n	**	*	#	
Silver	ND		1.02	н		+r	ri	
Zine	33.1		4.07		π	**	*	
SLAG 2 (A10I180-02)			Matrix: Soil	В	atch: 100938	0		
Arsenic	3.60		2.04	mg/kg dry	10	09/23/10 15:13	EPA 6020	
Barium	1280		10.2	R	100	09/23/10 15:45	H 11 0020	
Cadmium	3.01		1.02	н	10	09/23/10 15:13	21	
Chromium	688		20.4		100	09/23/10 15:45		
Соррег	20.5		4.08	,	10	09/23/10 15:13	Ħ	
Lead	2.16		1.02	н	Ħ	Ħ	n	
Manganese	56000		204	N	2000	09/23/10 16:20	п	
Mercury	ND		0.0815	R	10	09/23/10 15:13	n	
Nickel	145		2.04	tr	я	Ħ	н	
Selenium	61.2		2.04	'n		б	N	
Silver	ND		1.02		,		*	
Zine	13.2		4.08	7	**	я	п	
LAG 3 (A10I180-03)			Matrix: Soil	Ва	atch: 1009386	0		
Arsenic	3.94		2.03	mg/kg dry	10	09/23/10 15:16	EPA 6020	
Bartum	1240		10.2	#	100	09/23/10 15:48	H	
Cadmium	3.89		1.02	•	10	09/23/10 15:16	π	
Chromium	797		20.3	7	100	09/23/10 15:48	н	
Copper	32.1		4.06	π	10	09/23/10 15:16		
Lead	3.20		1.02	•	Ħ	н	Ħ	
Manganese	41700		203	•	2000	09/23/10 16:23		
Mercury	ND		0.0812	*	10	09/23/10 15:16	н	
Nickel	223		2.03	я	, -	W	#	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095 Portland, OR 97283 Project: Foundry Slag

Project Number: [none]
Project Manager; Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL SAMPLE RESULTS

		То	tal Metals by E	PA 6020 (IC	PMS)			
Analyte SLAG 3 (A10l180-03)	Result	MDL	Reporting Limit Matrix: Soil	Units	Dilution	Date Analyzed	Method	Notes
	39.4	***	2.03	ıng/kg dry	10	n	EPA 6020	
Selenium	39.4 ND		1.02	mg/kg diy	#	Ħ	# #	
Silver			4.06	*		n	п	
Zinc	16.2			_				
SLAG 4 (A10I180-04)			Matrix: Soil		Batch: 10093			
Arsenic	4.71		2.00	mg/kg dry	10	09/23/10 15:19	EPA 6020	
Barlum	1020		10.0	π	100	09/23/10 15:51	н	
Cadmium	5.37		1.00	Ħ	10	09/23/10 15:19	н	
Chromium	580		20.0	n	100	09/23/10 15:51	"	
Соррег	15.1		4.01	•	10	09/23/10 15:19	n	
Lead	3,23		1.00	н	Ħ	n	4	
Manganese	20800		100	R	1000	09/23/10 16:26	H	
Мегситу	ND		0.0802	*	10	09/23/10 15:19	•	
Nickel	181		2.00	n	•	n	п	
Selenium	76.0		2.00	#	и	n	tr	
Silver	ND		1.00	π	п	н	Ħ	
Zinc	30,0	•••	4.01	н	*	*	H	
SLAG 5 (A10I180-05)			Matrix: Soil	E	Batch: 10093	80		
Arsenic	6.05		1.97	mg/kg dry	10	09/23/10 15:22	EPA 6020	
Barium	356		0.986	н	Ħ	n	h	
Cadmium	2.24		0.986	н	н	र्म	स	
Chromium	704		19.7	Ħ	100	09/23/10 15:54	•	
Соррег	34,6	•••	3.94	н	10	09/23/10 15:22	n	
Lead	3,43		0,986	Ħ	н	н	я	
Manganese	87800		197	Ħ	2000	09/23/10 16:29	н	
Mercury	ND		0.0789	*	10	09/23/10 15:22	Ħ	
Nickel	322		1.97	n	H	¥	R	
Selenium	16.3		1.97	n	fe	π	F	
Silver	ND		0.986	n	n	n	п	
Zinc	19.3		3.94	π	ч		Ħ	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]
Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL SAMPLE RESULTS

		SF	LP Metals by E	PA 6020 (I	ICPMS)			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SLAG 1 (A10 180-01)			Matrix: Soil		Batch: 100940	08		
Arsenic	ND		0.100	mg/L	5	09/27/10 14:55	EPA 1312/6020	
Barlum	0.543		0,500	*	*		Ħ	
Cadmium	ND		0.0500	11	н	H	н	
Chromium	ND		0.100	H	н	#	n	
Copper	ND		0.250	•	R	Ħ	7	
Lead	ND		0.0500	#	Ħ	н	n	
Manganese	ND		0.0500	*	**	π	,	
Mercury	ND		0,00500	H	-	п	H	
Nickel	ND		0.100	H		н	71	
Selenium	ND		0.100	77	11	π	n	
Silver	ND		0.0500	H		*	n	
Zinc	ND		0.250	P.	-	Ħ	Ħ	
SLAG 2 (A101180-02)			Matrix: Soil	Į	Batch: 100940	8		
Arsenic	ND		0,100	mg/L	5	09/27/10 14:58	EPA 1312/6020	
Barium	ND		0.500	•	•	Ħ	**	
Cadınium	ND		0.0500	H	17	n	н	
Chromium	ND		0.100	*	#	*	m	
Copper	ND		0.250	n	ię.	9	*	
Lead	ND		0.0500	n	*		н	
Manganese	ND	***	0.0500	Ħ	#	*	m	
Mercury	ND		0.00500	Ħ	ħ	*	n	
Nickel	ND		0,100	н	*	н	M	
Sclenium	0.108		0.100	n	ir	π.	m	
Silver	ND	***	0.0500	п	я	#	Ħ	
Zinc	ND		0.250	н	*	я	и	
LAG 3 (A10I180-03)			Matrix: Soil	E	Batch: 100940	8		
Arsenic	ND		0.100	mg/L	5	09/27/10 15:01	EPA 1312/6020	
Barlum	0.522		0.500	71		н	n	
Cadmium	ND	•••	0.0500	n	*		n	
Chromium	ND		0,100	*	Ħ	*	#	
Copper	ND		0.250	**		•	n	
Lead	ND		0.0500		*		H	
Manganese	ND		0.0500	N	н	*	Ħ	
Mercury	ND		0.00500	*		7		
Nickel	ND		0,100	4				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

Project: Foundry Slag

PO Box 83095

Portland, OR 97283

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL SAMPLE RESULTS

	SP	LP Metals by E	PA 6020	(ICPMS)			
Result	MDL	Reporting Limit Matrix: Soil	Units	Dilution	Date Analyzed	Method	Notes
ND			ma/l		п	EPA 1312/6020	
			*	,	Ħ	# #	
			n	*			
ND							
			·				
ND						EPA 1312/6020	
0,576		0.500				#	
ND		0,0500	Ħ		H	Ħ	
ND		0.100	n		N		
ND		0,250	*	Ħ	*	n	
ND		0.0500	Я	#	Ħ	Ħ	
ND		0.0500	н	Ħ	н	IT	
ND		0.00500	Ħ	H	*		
ND		0.100	н	н		Ħ	
ND		0.100	*	ท	н	N	
ND		0.0500	*	**	н	n	
ND		0,250	н	Ħ	н	THI .	
		Matrix: Soil		Batch: 10094	08		
ND		0.100	ing/L	5	09/27/10 15:07	EPA 1312/6020	
ND		0.500		π	н	R	
ND		0.0500	n	*	Ħ	n	
0,300		0.100	11	#	Ħ	Ħ	
ND		0.250	#		R	Ħ	
ND		0.0500	H	•	•	71	
ND	***	0.0500	Ħ	н	n	*	
ND		0,00500	n	*	я	,	
ND		0.100	н	H	я	n	
ND		0.100	π	n	R	Ħ	
		0,0500	×	н	н	н	
ND		0.250	,	11	н	*	
	ND ND ND 0.576 ND	Result MDL	Result MDL Limit	Result MDL Limit Units	No	Reporting Limit Units Dilution Date Analyzed Matrix: Soil Batch: 1009408 ND	Result

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

ANALYTICAL SAMPLE RESULTS

			Percent	Ory Weight			0 = 1	
Analyte SLAG 1 (A10l180-01)	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
			Matrix: Soil		tch: 10093			
% Solids	99.8		1.00	% by Weight	1	09/24/10 08:50	Apex SOP	
SLAG 2 (A10l180-02)			Matrix: Soil	Ba	stch: 10093	93		
% Solids	99,9		1.00	% by Weight	1	09/24/10 08:50	Apex SOP	
SLAG 3 (A10l180-03)			Matrix: Soil	Ba	itch: 10093	93		
% Solids	99.9		1.00	% by Weight	1	09/24/10 08:50	Apex SOP	
SLAG 4 (A10 180-04)			Matrix: Soil	Ва	tch: 100939	93		
% Solids	99,8		1.00	% by Weight	1	09/24/10 08:50	Apex SOP	
SLAG 5 (A101180-05)			Matrix: Soil	Ba	itch: 10093	93		
% Solids	99,8		1.00	% by Weight	I	09/24/10 08:50	Apex SOP	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095 Portland, OR 97283 Project: Foundry Slag

Project Number: [none]
Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS	6)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1009380 - EPA 3051/	4						Soi	l				
Blank (1009380-BLK1)				Prep	ared: 09/2	23/10 10:55	Analyzed:	09/23/10 1	5:04			
EPA 6020				-								
Arsenic	ND		2.00	mg/kg wet	10				+			
Barium	ND		1.00	#	п						***	
Cadmium	ND		1.00	W	Ħ			***				
Chromium	ND		2.00	*	n							
Copper	ND		4.00	•	n							
Lead	ND		1.00	H	H							
Manganese	ND		1,00	п	n		•••					
Mercury	ND		0.0800	14	н							
Nickel	ND		2.00	*	-							
Selenium	ND		2.00	Ħ	η							
Silver	ND		1.00	H	π							
Zinc	ND		4.00	*	#							
LCS (1009380-BS1)				Prep	ared: 09/.	23/10 10:55	Analyzed:	09/23/10 1	5:07			
EPA 6020												
Arsenic	51.4		2.00	mg/kg wet	10	50.0		103	80-120%			
Barium	53.0		1.00	tr	н	π		106	п			
Cadmium	49.8		1.00	π-	**			100	tr			
Chromium	49.3		2.00	n	Ħ	if		99	n		***	
Copper	52.3		4.00	Ħ	Ħ	17		105	π			
Lead	47.0		1,00	P	Ħ	19		94	R			
Manganese	48.6		1.00	**	п	Ħ		97	H			
Mercury	1,98		0.0800	н	n	2.00		99	×			
Nickel	52.1		2.00	н	P	50.0		104	*			
Selenium	24.9		2.00	π	н	25.0		99	п			
Silver	25.6		1.00	π	N	я		102	•			
Zinc	51.2		4.00	T	#	50.0		102	71	•••		
Duplicate (1009380-DUP1)				Prep	xared: 09/	23/10 10:55	Analyzed:	09/23/10 1	5:25			
QC Source Sample: SLAG 5 (A101	(80-05)							,				
EPA 6020												
Arsenic	6,25		1.97	mg/kg dry	10		6.05			3	40%	
Barium	339		0.984	π	N		356			5	40%	
Cadmium	2,12		0,984	,	н		2.24			6	40%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

		opportunities and the	Tota	l Metais by	EPA 60	20 (ICPMS	i)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1009380 - EPA 3051 <i>A</i>	4						Soi	ı				
Duplicate (1009380-DUP1)				Prej	pared: 09/2	23/10 10:55	Analyzed:	09/23/10 1	5;25			
QC Source Sample: SLAG 5 (A1011)	80-05)		•••									
Copper	26,3		3.94	mg/kg dry			34.6			27	40%	
Lead	3.46		0.984	Ħ	#		3.43			0.9	40%	
Mercury	ND		0.0787	Ħ	n	***	ND				40%	
Nickel	347		1.97	н	8		322			7	40%	
Selenium	12.6		1.97	н	H		16.3			25	40%	
Silver	ND		0.984	ń			ND		***		40%	
Zinc	21,8		3.94	•	*		19.3	***		12	40%	
Duplicate (1009380-DUP2)				Prep	pared: 09/2	3/10 10;55	Analyzed:	09/23/10 1	6:00			
QC Source Sample: SLAG 5 (A1011) EPA 6020	80-05)											
Chromium	579		19.7	mg/kg dry	100		704	•••		20	40%	Q-16
Duplicate (1009380-DUP3)				Prer	ared: 09/2	3/10 10:55	Analyzed:	09/23/10 1	6:32			
QC Source Sample: SLAG 5 (A10118	80-05)			· · · · · ·			•					
EPA 6020												
Manganese	87000		197	mg/kg dry	2000		87800			0.9	40%	Q-16
Matrix Spike (1009380-MS1)				Prep	ared: 09/2	3/10 10:55	Analyzed:	09/23/10 1:	5:30			
QC Source Sample: SLAG 5 (A10118	30-05)											
EPA 6020												
Arsenic	54.6		20.3	mg/kg dry	100	50,8	6.05	96	75-125%			
Barium	435		10.2	"	*	#	356	156	H			Q-03
Cadmium	51.8		10.2	R	**	4	2.24	98	п			
Chromium	531		20.3	**	71	•	704	-341	*		***	Q-03
Copper	72.9		40.6	11	H		34,6	75	н			
Lead	51.1		10.2	n	н	•	3.43	94	н			
Mercury	2.00		0.813	N	Ħ	2.03	ND	99			•••	
Nickel	351		20.3	P	πŧ	50,8	322	57	•			Q-03
Selenium	34.0		20.3	#	•	25.4	16.3	70	Ħ			Q-03 Q-11
Silver	26.1		10.2	#		7	ND	103	н			Q-11
Zinc	69.1		40.6	N		50.8	19.3	98	ь			
Matrix Spike (1009380-MS2)												

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095 Portland, OR 97283 Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported:

09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil,	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1009360 - EPA 3051A							Soi	l			· · · · ·	
Matrix Spike (1009380-MS2)				Pre	pared: 09/2	23/10 10:55	Analyzed:	09/23/10	16:35			
QC Source Sample: SLAG 5 (A10118)	0-05)											
EPA 6020 Manganese	84500		203	mg/kg dry	2000	50,8	87800	-6470	75-125%)I, Q-03, Q-16
Post Spike (1009380-PS1)				Pre	pared: 09/2	23/10 16:29	Analyzed:	09/23/10	16:38			
QC Source Sample: SLAG 5 (A10118	0-05)											
EPA 6020												
Barium	580			ug/L	10	200	361	110	80-120%			
Chromium	918			n	n	rt	714	102	**			
Nickel	543			'n	n	rt	327	108	н			
Selenium	111			н		100	16.5	95	Ħ			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager. Bruce Schacht

Reported: 09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

			OFLF	INGCAIS D	/ EFA OU	20 (ICPM:	o)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%RE	%REC C Limits	RPD	RPD Limit	Notes
Batch 1009408 - EPA 1312	/3015						So	il				
Blank (1009408+BLK1)				Pre	pared: 09/	27/10 08:50	Analyzed	09/27/10	14:49		4	
EPA 1312/6020												
Arsenic	ND		0.100	mg/L	5							
Barium	NĐ		0.500	n								
Cadmium	ND		0.0500	N	*						•••	
Chromium	ND		0.100	Ħ	#			***			•••	
Copper	ND		0,250	Ħ	н						***	
Lead	ND		0.0500		H							
Manganese	ND		0.0500	17	*							
Mercury	ND		0.00500	#	*	***	-++					
Nickel	ND	***	0.100	#1	н							
Selenium	ND		0.100	н	*					*		
Silver	ND		0.0500	*	*			***				
Zinc	ND		0.250	**	н							
.CS (1009408-BS1)				Pre	pared: 09/2	27/10 08:50	Analyzed:	09/27/10	14:52			
PA 1312/6020					-		··· ·					
Arsenic	1.98		0.100	mg/L	5	2.00		99	80-120%		***	
Barium	2.07		0.500	N	R	*		103	n	***	•••	
Cadmium	1.99		0.0500	Ħ	Ħ	F f		99	н	***		
Chromium	1.92		0.100	*	#	н		96	n			
Copper	2.13		0.250	н	ю	n		107	*			
Lead	1.93		0.0500	h	*	*		97	п			
Manganese	1.91		0.0500	R	গ			95	M			
Mercury	0.0968	*	0.00500	71	•	0.100		97	**			
Nickel	2.03		0,100	н	19	2.00		102	11			
Selenium	0.968		0.100	H	#	1,00	***	97	n	***	*-*	
Silver	0.984		0.0500	H	н	н		98	m			
Zinc	2.01		0.250	Ħ		2.00		101	π			
latrix Spike (1009408-MS1)				Pre	pared: 09/2	27/10 08:50	Analyzed:	09/27/10 1	15:10			
C Source Sample: SLAG 5 (A101)	180-05)						,3.					
PA 1312/6020	•											
Arsenic	1.96		0.100	mg/L	5	2.00	ND	98	50 1500/			
Barium	2.16		0.100	u.	,	2.00	0.139	98 101	50-150%			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager. Bruce Schacht

Reported: 09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

			SPLP	Metals by	/ EPA 60	20 (ICPMS	3)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1009408 - EPA 1312/	3015						Soil					
Matrix Spike (1009408-MS1)				Pro	pared: 09/	27/10 08:50	Analyzed: (09/27/10 15	:10			
QC Source Sample: SLAG 5 (A1011	80-05)											
Chromium	2.20		0,100	mg/L	п	п	0.300	95	н			
Copper	2.10		0.250	н	Ħ	π	ND	105	R			
Lead	1.92		0.0500	11	п	,	ND	96	п			
Manganese	1.91		0.0500	*		*	ND	96	#			
Mercury	0.0965		0.00500	ir .	n	0.100	ND	96	Ħ			
Nickel	1.99		0,100	n	п	2.00	ND	100	H			
Selenium	1.00		0,100	n	#	1.00	ND	100	H			
Silver	0,986		0,0500	71	п	H	ND	99				
Zinc	2.00		0,250	r	Ħ	2.00	0.0310	98	11			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1009393 - Dry Weig	ht						Soil					
Duplicate (1009393-DUP1)				Prep	ared: 09/	23/10 16:08	Analyzed:	09/24/10 08	:50			
QC Source Sample: SLAG 1 (A10)	[180-01]										***************************************	*****
Apex SOP												
% Solids	99.8		1.00	% by Weight	1		99.8			0	20%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in occardance with the chain of custody document. This onalytical report must be reproduced in its entirety.

Allison Greiner, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095 Portland, OR 97283 Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

SAMPLE PREPARATION INFORMATION

	Total Metals by EPA 6020 (ICPMS)												
Prep: EPA 3051A	Matrix	Method	Sampled	. Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor						
Batch: 1009380													
A10I180-01	Soil	EPA 6020	09/14/10 15:00	09/23/10 10:55	0.492g/50mL	0.5g/50mL	1.02						
A 10I180-02	Soil	EPA 6020	09/14/10 15:00	09/23/10 10:55	0.491g/50mL	0.5g/50mL	1.02						
A10I180-03	Soil	EPA 6020	09/14/10 15:00	09/23/10 10:55	0.493g/50mL	0.5g/50mL	1.01						
A101180-04	Soil	EPA 6020	09/14/10 15:00	09/23/10 10:55	0.5g/50mL	0.5g/50mL	1.00						
A101180-05	Soil	EPA 6020	09/14/10 15:00	09/23/10 10:55	0.508g/50mL	0.5g/50mL	0.98						

			SPLP Metals by EF	A 6020 (ICPMS)			
Prep: EPA 1312/30	15		***************************************		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 1009408							
A10I180-01	Soil	EPA 1312/6020	09/14/10 15:00	09/27/10 08:50	5mL/50mL	5mL/50mL	1.00
A101180-02	Soil	EPA 1312/6020	09/14/10 15:00	09/27/10 08:50	5mL/50mL	5mL/50mL	1.00
A10I180-03	Soil	EPA 1312/6020	09/14/10 15:00	09/27/10 08:50	5mL/50mL	5mL/50mL	1.00
A101180-04	Soil	EPA 1312/6020	09/14/10 15:00	09/27/10 08:50	5mL/50mL	5mL/50mL	1.00
A101180-05	Soil	EPA 1312/6020	09/14/10 15:00	09/27/10 08:50	5mL/50mL	5mL/50mL	1.00

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

Notes and Definitions

Qualifiers:

A-01 Despite out-of-control MS recovery of this analyte, a post spike will not be performed due to the extremely high concentration of analyte in the sample.

Q-03 Percent recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.

Q-11 Spike recovery cannot be accurately quantified due to sample dilution required for high analyte concentration and/or matrix interference.

Q-16 Reanalysis of an original Batch QC sample.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Columbia Steel Casting Co., Inc.

PO Box 83095

Portland, OR 97283

Project: Foundry Slag

Project Number: [none]

Project Manager: Bruce Schacht

Reported: 09/29/10 14:43

CHA CHA CHA CHA CHA CHA CHA CHA	718-2324 Fan	. 50.E.	CH	A II	Ō	5	SI	CHAIN OF CUSTODY	*				3	d	.∞. Afo±180)))	
Course () 1996 16 STEEL CHESTING Project My	•	SCHACHY	10	1			£	Proper Name.		770	l ă	FOUNDRY SCALE	ا, ا	П	Tejeria	Property Po # 5	58706	
Addres PO ROX 83025 Calland	200	97	97283		T g	282	0-	Frede: 286-0685	쒸	2	3	£23 284-3028		શું	5 60 6	SUMBIA.	bruce-5 @ coumanstreet, com	8
1											Ź	ANALYSIS REGIRET	닖					
		₹#3VIA1						ધાપ્ર				D'A U ™ H V O H O H V O H O H V O H O H V O H V O H O H V O H		5*	erani Paran	51413u		
2 GI EA	3MI XIXIVI	NO 60	FH41M	FIIJAM	XHL	740 JEND 740 KBD	30A 698	KIS OLT	ILOU (R)	1667 714 1911 CHI	ld ytindi		14 142)	too tot	7:102 7:102			
- %		, -		╌		-	-		-	x: x:x:x	1		—		티즈			
14	4,	1								×		×			×	×		
	tr.	7				-				×	_	×			×	×		
1	1,1			_					1	卜	\dashv	×			×	×		1
5096 5	J.	.	-	\dashv		-	4		-	K	4	×			×	×		1
				\dashv		\dashv	_		1						-			-
	_		\exists	-		\dashv			\dashv	WARES	-				-			<u> </u>
									1	DOCTION .	4				-			\exists
			~	-		\dashv	4				4				-			
				Н			_		_	1000MH		_	_		_			4
Norted Tark Anand Ting (TAT) = 5-10 Burners Days	1 = 5-10 Buche	w Days				7	PECSA!	SNOLLINSTRUCTIONS	5	SKS								
241118	# HR	AH 21					į ;	ν,	٩,		١,	970 Let	ŀ,	•	tomo	CRUSH EACH FAM PLE TO HOMOLENIZE	ul	
TAT Requested (circle)	SDAY	ag 6	Others 5720	Ŗ	١		3	5 to A 1.	4 4	∳ ξ	žž	BEFORE ANALYSIS. TOTAL METALS X 12, EACH SAMPLE	5	ð	# Z#	J) die		
SAMPLES ARE HELD FOR 36 DAYS	2 36 DAYS			1		Π		0705	0	₹	N. E.Y. 415	X Sy	12, ONCH	ű	X5 (43	SAMOLO		
ICD UNI	200	Sound House				# ₂ 7	L'ELINQUE	ivii aziiRippura Autura	É			Ä				DECRIVED EV: Square.	ä	
Present things of Their	Treeson No.	, <u>نال</u> ا	Á			1	himed Neme	Į,				Time				Prused Name	t	
BRUCE SCHACHT (800	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3				10	Cocreani:		İ	İ						Credent.		
Columbia STEEL CASTING CO.	#	冐	V			-							-	-				
		Ŀ.																

Δnev	Lahora	tories