

Sediment Characterization Report Terminal 6, Berths 601 and 607 Portland, Oregon

Prepared for Port of Portland

June 12, 2008 15667-00

Sediment Characterization Report Terminal 6, Berths 601 and 607 Portland, Oregon

Prepared for Port of Portland

June 12, 2008 15667-00

Prepared by Hart Crowser, Inc.

Richard D. Ernst, RG Principal

 Five
 Centerpointe
 Drive,
 Suite 240

 Lake
 Oswego,
 Oregon 97035-8652

 Fax
 503.620.6918

 Tel
 503.620.7284

CONTENTS	Page
ACRONYMS	iii
1.0 INTRODUCTION	1
1.1 Terminal 6 and Berth Description1.2 Sediment Characterization Activities1.3 Project Description	1 1 2
2.0 SEDIMENT CHARACTERIZATION OBJECTIVES	2
3.0 SAMPLING AND ANALYSIS ACTIVITEIS	3
3.1 Sediment Sampling3.2 Analytical Program3.3 Modifications to the SAP	3 4 5
4.0 SEDIMENT QUALITY	5
 4.1 Data Quality Review 4.2 Grain Size Characteristics 4.3 Comparison to SEF Screening Levels 4.4 Data Evaluation 	5 6 6 7
5.0 SUMMARY	8
6.0 REFERENCES	8

TABLES

- 1 Sampling Locations and Elevations
- 2 Sample Compositing Scheme
- 3 Grain Size Distributions
- 4 Analytical Results for Sediment Samples

FIGURES

- 1 Site Location Map
- 2 Berth 601 and Core Sampling Locations
- 3 Berth 607 and Core Sampling Locations

APPENDIX A SEDIMENT CORE LOGS

APPENDIX B QUALITY ASSURANCE REVIEW

APPENDIX C ANALYTICAL LABORATORY REPORTS

APPENDIX D ADDITIONAL SCREENING CRITERIA TABLE

ACRONYMS

ARI	Analytical Resources, Inc.
COC	chemical of concern
Corps	U.S. Army Corps of Engineers
CRD	Columbia River Datum
су	cubic yard
DMMU	Dredge material management unit
EPA	Environmental Protection Agency
JPA	joint permit application
LCS	laboratory control sample
MDL	method detection limit
MRL	method reporting limit
MS	matrix spike
NOAA	National Oceanic and Atmospheric Administration
NSM	new surface material
NUC	Northwest Underwater Construction
PAHs	polynuclear aromatic hydrocarbons
PCBs	polychlorinated biphenyls
Port	Port of Portland
QA/QC	quality assurance/quality control
RSET	Regional Sediment Evaluation Team
SAP	Sampling and Analysis Plan
SEF	Northwest Regional Sediment Evaluation Framework
SL	screening level
SVOC	semivolatile organic compound
ТВТ	tributyltin
TOC	total organic carbon

SEDIMENT CHARACTERIZATION REPORT TERMINAL 6, BERTHS 601 AND 607 PORTLAND, OREGON

1.0 INTRODUCTION

The Port of Portland (Port) is proposing to conduct maintenance dredging at Berths 601 and 607 at Terminal 6 along the south bank of the Columbia River on the Oregon Slough in Portland, Oregon (Figure 1). To provide chemical quality data on sediment to be dredged and the future "leave surface" or new surface material (NSM), sediment characterization activities were completed in accordance with the Northwest Regional Sediment Evaluation Framework (SEF) Interim Final (U.S. Army Corps of Engineers [Corps] et al., 2006) and our Sampling and Analysis Plan (SAP) (Hart Crowser, 2008) as modified by comments from the Regional Sediment Evaluation Team (RSET). This report presents the results and findings of these activities.

1.1 Terminal 6 and Berth Description

Terminal 6 is located at 7201 N. Marine Drive in Portland, Oregon, along the south bank of the Columbia River on the Oregon Slough. The terminal spans approximately 1.5 miles beginning at river mile (RM) 102 on the Columbia River and ending upstream at RM1 on the Oregon Slough (Figure 1). Terminal 6 has five berths (Berths 601, 603, 604, 605, and 607). The project site is Berths 601 and 607, which are used for the unloading of Hyundai and Honda automobiles, respectively.

Figures 2 and 3 show Berths 601 and 607, along with June 2007 bathymetric surveys conducted by the Port. Sediment contours are relative to the Columbia River Datum (CRD). The berthing area for Berth 601 is approximately 1,350 feet long and 120 feet wide (Figure 2). Berth 607 is approximately 1,400 feet long and 145 feet wide. Based on a 2007 bathymetric survey, the river bottom ranges from -27 to -51 feet CRD at Berth 601 and from -30 to -46 feet CRD at Berth 607. The design depth for both berths is -35 feet CRD.

1.2 Previous Sediment Characterization Activities

Maintenance dredging was last performed in 1989 at Berth 601 and in 1982 at Berth 607. Sediment characterization data are not available for these berths.

1.3 Project Description

Maintenance dredging is needed due to the gradual and persistent deposition of river sediment in the berthing areas that compromises the authorized navigational depth clearances required for ships. The Port submitted a Joint Permit Application (JPA) in February 2008 to the Corps and the Oregon Department of State Lands to perform maintenance dredging at Berths 601 and 607 (Port/ENVIRON, 2008).

In-water dredging activities will be performed during the Columbia River in-water work window from November 1 through February 28. Project specifics for each berth are presented below, including the target dredging depth, the approximate leave surface elevation for NSM considering overdredge for inherent dredging accuracy, and the estimated volume of sediment to be dredged. Figures 2 and 3 show the sediment areas requiring dredging at Berths 601 and 607, respectively.

- Berth 601. The desired operating draft is -35 feet. Dredging will occur to a depth of -36 feet CRD plus up to 2 feet of overdredge allowance. The leave surface would likely average -37 feet CRD. The estimated volume of sediment is approximately 7,300 cy (between -27 and -37 feet CRD).
- Berth 607. The desired operating draft is -35 feet. Dredging will occur to a depth of -36 feet CRD plus up to 2 feet of overdredge allowance. The leave surface would likely average -37 feet CRD. The estimated volume of sediment is approximately 1,300 cy (between -30 and -37 feet CRD).

The Port will use its standard berth dredging methods, which are designed and have been previously demonstrated to minimize water quality impacts. A clamshell dredge will remove sediments using a close-lipped bucket operated either from the dock or from a floating crane. The depth and position of the bucket and dredge will be monitored by visual and positioning computer systems. The dredge material will be placed in a barge for transport and placement at a Corps-approved upland placement facility, either the Suttle Road Placement Facility or the West Hayden Island Placement Facility, or another approved beneficial use site. Placement of this dredged material is not anticipated to generate return water to the Columbia River at these facilities. The JPA discusses the proposed maintenance dredging project in further detail (Port/ENVIRON, 2008).

2.0 SEDIMENT CHARACTERIZATION OBJECTIVES

The overall objectives of this sediment characterization study were to characterize the quality of the proposed dredge material and NSM for permitting. As such, the specific objectives of the study were to:

- Characterize sediment affected by proposed dredging activities along the berths (i.e., the dredge prisms) to document the chemical quality of the sediments;
- Additionally, characterize the underlying NSM (a.k.a. leave surface) along the berths to document the chemical quality of these remaining sediments;
- Collect, handle, and analyze samples representative of the dredge prisms and NSM sediments in accordance with the SEF;
- Compare the sediment analytical results to SEF screening levels (SLs) to evaluate the nature of the dredge prisms and NSM sediments; and
- Evaluate and report the results of the analytical sediment testing in a complete and timely manner to support the permitting process.

Sediment characterization activities were conducted in accordance with our SAP (Hart Crowser, 2008), the SEF, and an EPA technical manual for sediment sampling (EPA, 2001). Quality assurance/quality control (QA/QC) procedures described in our Quality Assurance Project Plan in the SAP were followed. RSET approved the SAP in February 2008 (RSET, 2008), but requested that all six NSM samples be analyzed instead of the two samples proposed in the SAP (one at each berth).

3.0 SAMPLING AND ANALYSIS ACTIVITIES

This section summarizes these sampling activities and presents the analytical program for the dredge prism and NSM samples. This scope of work was conducted in accordance with the SAP (Hart Crowser, 2008).

3.1 Sediment Sampling

On March 12, 2008, Northwest Underwater Construction (NUC) of Vancouver, Washington (under subcontract to Hart Crowser) obtained sediment cores C-1 through C-6 from along Berths 601 and 607 (Figure 2). A representative of Hart Crowser was present to observe and document the coring activities and to collect dredge prism and NSM samples for analysis. Logs of the cores are included in Appendix A.

Field Coring Procedures. Positioning over each core location was performed using a global positioning system (GPS). Cores were obtained using a vibracorer with a 4-inch-diameter core barrel deployed from a sampling vessel operated by NUC. Cores were advanced from 2 to 8.5 feet, penetrating through the proposed dredge prism and the uppermost 1-foot of NSM that will remain after dredging. Sediment was contained in a polycarbonate liner inside of the core barrel.

Upon retrieval of the vibracorer, the liner with core was removed from the core barrel, and the ends sealed with caps. The sediment core was examined for acceptance. Core recoveries ranged from 70 to 95 percent. Core C-3 had slightly less than the preferred minimum recovery of 75 percent; but was deemed acceptable as this core was the best of three attempts retrieved from this location, the lower recovery appeared to be due to core compaction and the settling of the upper portion of the core, and the dredge prism and NSM were well represented.

Table 1 presents the sediment sample identification, core coordinates, mulline elevations, and target sample intervals. The sediment cores were then transported to our office for processing.

Core Processing for Samples. In the processing area, the core liners were split lengthwise and sediment photographed and described (including, as appropriate, physical description, odor, visual stratification, debris, and biological activity). As described further below, two samples were collected from the dredge prism and NSM from each core. The samples were labeled with the berth designation (T601 or T607), core location (C1 to C6), and the depth of the sample horizon (e.g. suffix MD for maintenance dredge prism, and suffix Z for the NSM sample [a.k.a. a Z-sample]). A separate dredge material management unit (DMMU) was designed at each berth for dredge prism material. A composite sample of the dredge prism was collected from cores within each DMMU, and labeled simply as T601-MD and T607-MD.

Dredge Prism Samples. After logging, sediment representing the entire depth of the dredge prism from each core was placed into a stainless steel bowl and homogenized with a stainless steel spoon until both color and texture were uniform. A discrete sample (e.g., T601-C1-MD) was obtained for archival purposes (these samples were frozen at the laboratory). The homogenized contents from the core were then combined (composited) with other sample cores from the same DMMU. The compositing of sediment for each DMMU yields a sample representative of the sediment of the dredge prism, which is being removed and placed at an upland placement site. For the DMMU at Berth 601, sediment from cores C1, C2, and C3 were composited (e.g., T601-MD). For the DMMU at Berth 607, sediment from cores C4, C5, and C6 were composited. These two composite samples were submitted for analysis. Table 2 summarizes sampling scheme used for the dredge prism.

NSM Samples. A discrete sample of the NSM from the anticipated leave surface from each core was collected (i.e., -37 to -38 feet CRD at Berth 601 and 607). All these NSM samples were submitted for analysis (Table 2).

3.2 Analytical Program

All samples were submitted under chain of custody to Analytical Resources, Inc. (ARI), of Tukwila, Washington (under subcontract to Hart Crowser). Dredge prism and NSM samples selected in Section 3.1 above were analyzed for the physical and chemical analyses listed below.

- Grain size by ASTM D 422M;
- Total solids by EPA Method 160.3;
- Total organic carbon (TOC) by Plumb (1981);
- Ammonia by EPA Method 350.1M;
- Sulfide by EPA Method 376.2;
- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) by EPA Method 200.8/6010B/7471A;
- Tributyltin (TBT) by Krone, et al. (written 1988; published 1989);
- Polynuclear aromatic hydrocarbon (PAHs) by EPA Method 8270D-SIM;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;
- Organochlorine pesticides by EPA Method 8081A; and
- Polychlorinated biphenyls (PCBs) by EPA Method 8082.

3.3 Modifications to the SAP

Sample protocols were conducted in accordance with the SAP (Hart Crowser, 2008). No modifications to the SAP were prompted by field conditions. The analytical program followed the SAP, except for the following.

- As requested by RSET (2008), all six NSM samples were analyzed instead of the two samples proposed in the SAP (one at each berth).
- Antimony and arsenic were analyzed by EPA Method 200.8 to obtain lower method reporting limits (MRLs) for comparison to screening levels.

4.0 SEDIMENT QUALITY

ARI completed analyses on two dredge prism composite samples and six NSM samples from Berths 601 and 607. Tables 3 and 4 list the physical and chemical results, respectively. Chemical results were compared to SEF SLs to assess the

chemical quality of the dredge prism and NSM sediments. This section presents the results and provides an evaluation of them.

4.1 Data Quality Review

A QA review of the data is provided in Appendix B. Both MRLs and method detection limits (MDLs) were reported for all chemical analyses except conventional analyses (although the ARI reports MDLs for metals, they do not estimate concentrations between the MDL and MRLs). The laboratory analyzed QC samples, including surrogates, method blanks, laboratory control samples (LCS), matrix spikes (MS), and laboratory, LCS, and MS duplicates. Upon review, the overall data quality objectives for collection and chemical testing of sediment samples were met, and the data for this project are acceptable for use as qualified. Laboratory reports for chemical analysis, including QC samples, are included in Appendix C.

4.2 Grain Size Characteristics

The grain size results are presented in Table 3, and grain size distribution curves are provided in Appendix C. The grain size distributions of the dredge prism composite samples (T601-MD and T607-MD) were similar, consisting of 54.5 to 59.5 percent fines and classified as a slightly clayey, very sandy silt. The NSM samples ranged from a sandy silt to a slightly silty sand. At each berth, NSM sediments became increasingly sandy upstream. The downstream samples at each berth had 69.2 to 72.6 percent fines (sandy silt), whereas upstream samples had 12.6 to 18.6 percent fines (a slightly silty sand).

4.3 Comparison to SEF Screening Levels

Table 4 presents the chemical results on the sediment samples. Per our SAP, these results were compared to the SEF SLs. These SLs were established in the SEF for protection of the aquatic environment and to provide a uniform framework for evaluating sediment quality of dredged material for unconfined aquatic disposal. Where established, SEF SLs in Table 4 are freshwater Screening Level 1 values from Table 7-1 of the SEF (revised October 20, 2006). If freshwater SLs were not available, marine SLs were used for comparison. Other SLs are also available, such as threshold effects levels, probable effects levels, and bioaccumulation screening level values. These SLs are listed with the data in Appendix D for reference.

4.3.1 Berth 601

Analytical results for the dredge prism sample and three NSM samples were compared to SEF SLs in Table 4. As indicated below, all detected chemical concentrations were below SLs.

Dredge Prism Sample. Analytical results for composite sample T601-MD indicate that detected concentrations of metals, TBT, SVOCs, and pesticides were below SEF SLs. PCBs were not detected.

NSM Samples. Analysis of the discrete NSM samples from cores C1, C2, and C3 indicate that detected concentrations of metals, TBT, SVOCs, and pesticides were below SEF SLs. PCBs were not detected.

4.3.2 Berth 607

Results for the dredge prism sample and three NSM samples were compared to SEF SLs in Table 4. Detected chemical concentrations were generally below SLs, except as noted below. SL exceedances are discussed further in Section 4.4.

Dredge Prism Sample. Analytical results for composite sample T607-MD indicate that detected concentrations of metals, SVOCs, and pesticides were below SEF SLs. PCBs were not detected. TBT was detected at 160 μ g/kg, exceeding its freshwater SL of 75 μ g/kg.

NSM Samples. Analysis of the discrete NSM samples from cores C4, C5, and C6 indicate that detected concentrations of most metals, SVOCs, and pesticides, were below SEF SLs. PCBs were not detected. Two exceedances were observed: 135 mg/kg zinc in sample T607-C4-Z (SL of 130 mg/kg); and 350 µg/kg in sample T607-C5-Z (SL of 75 µg/kg).

4.4 Data Evaluation

Sediment data for Berth 601 did not exceed SEF SLs for dredge prism and NSM sediments. For Berth 607, two chemicals of concern (COCs) were detected above their SLs: zinc and TBT. Further evaluation of these two COCs is as follows.

Zinc. Zinc was detected just barely above its SL 1 (130 mg/kg) in just one of the three NSM samples at a concentration of 135 mg/kg. This SL 1 represents a value at which no adverse effects are anticipated. Overall, this slight exceedance does not suggest that the NSM at Berth 607, when exposed, would pose an environmental risk due to it basically being right at the SL, that the other two NSM

samples and the NSM average are all well below the SL, and the extremely small area affected by the proposed dredging project (approximately 15,000 square feet; Figure 3). Additionally, the detected concentration of zinc is well below its SEF SL 2 of 400 mg/kg, which represents a division between where minor versus significant adverse effects may occur.

TBT. TBT is present in antifouling paints on ships to prevent biological growth on the ships' hulls. At berths, the presence of TBT in sediment may result from the flaking off of antifouling paint from ships, presumably when they rub against the dock. Therefore, the occurrence and magnitude of TBT in sediment depends on the proximity of the sample to the dock (including downstream) and the number of paint flakes present in the sample. Additionally, TBT slowly leaches from the painted hulls and paint flakes, and will adsorb onto suspended particles that can settle as sediment. Because TBT analysis uses only a small amount of sediment (10 grams), the resultant concentration can be variable depending on the number of paint flakes in this aliquot. To minimize this variability and provide an overall sediment concentration, sediment from the cores was homogenized prior to obtaining the sediment sample for analysis.

TBT was detected above its SL 1 (75 μ g/kg) in the dredge prism sample (160 μ g/kg) and the NSM sample in front of the Berth 607 dock (350 μ g/kg). No SL 2 value has been developed. Based on the NSM data and the above discussion regarding TBT from flaking paint, the area of exceedance is likely localized in front of the berthing dock. Considering that the dredge prism sample represents a composite of three cores, removal of the dredge prism (160 μ g/kg TBT) is actually predicted to result in improvement in sediment quality along the berth, as the average concentration of the resultant NSM based on the three Berth 607 NSM samples would be 120 μ g/kg.

5.0 SUMMARY

The Port is proposing to conduct maintenance dredging at Berths 601 and 607 to maintain the navigational depth clearances for vessels docking at these berths. Approximately 7,300 and 1,300 cy of sediment, respectively, will be dredged from these berths. In March 2008, three sediment cores each were collected from these berths. Composite dredge prism and discrete NSM samples were submitted for analyses per the approved SAP.

Analytical results on samples from Berth 601 showed that both dredge prism and NSM sediments are below SEF SLs. Sediment data for Berth 607 indicated two COCs exceeding SEF SLs: zinc in one NSM sample, and TBT in the dredge prism and one NSM sample. The zinc exceedance is minimal (135 mg/kg versus an SL of 130 mg/kg) and is unlikely to pose an environmental concern as discussed in

Section 4.4. TBT concentrations are several times the SEF SL of 75 μ g/kg; however, the small area affected by the proposed dredging project and the overall on average similar TBT concentrations in the dredge prism and resultant NSM do not suggest a detrimental effect to the aquatic environment would occur from the proposed dredging project.

6.0 REFERENCES

EPA, 2001. *Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual.* Office of Water. EPA-823-B-01-002, October 2001.

Hart Crowser 2008. *Sampling and Analysis Plan, Sediment Characterization, Terminal 6, Berths 601 and 607, Portland, Oregon.* January 9, 2008.

Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.-L. Chan, and U. Varanasi, 1989. *A method for analysis of butyltin species and the measurement of butyltins in sediment and English sole livers from Puget Sound*. Mar. Environ. Res. 27:1-18.

Plumb, Russell H., Jr., 1981. *Procedures for Handling and Chemical Analysis of Sediment and Water Samples.* U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. May 1981.

Port of Portland and ENVIRON International Corporation, 2008. U.S. Army Corps of Engineers/ Oregon Department of State Lands, Joint Permit Application, Maintenance Dredging, Marine Terminal 6, Berths 601 and 607, Lower Columbia River, Portland, Oregon. February 6, 2008.

RSET, 2007. Memorandum for Portland District Regulatory, Project Review Group Draft Sediment and Analysis Plan Review for Project - NWP-2008-28 – Port of Portland Dredging of Terminal 6, Berths 601 and 607. February 22, 2008.

U.S. Army Corps of Engineers, Seattle District, Portland District, Walla Walla District, and Northwestern Division; U.S. EPA, Region 10; Washington Departments of Ecology and Natural Resource; Oregon Department of Environmental Quality; Idaho Department of Environmental Quality; National Marine Fisheries Service; and U.S., Fish and Wildlife Service, 2006. *Northwest Region Sediment Evaluation Framework, Interim Final.* September 2006.

Table 1 - Sampling Locations and ElevationsTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Core Sample Location	Northing	Easting	Core Penetration in Feet	Percent Sediment Recovery	Approximate Mudline Elevation*	Average Dredge Depth	Dredge Prism Interval	NSM Interval
Berth 601								
C1	730460.8	7624601.1	2.0	90	-36	-37	-36 to -37	-37 to -38
C2	729951.8	7625048.8	6.5	90	-31.5	-37	-31.5 to -37	-37 to -38
C3	729712.8	7625262.5	8.5	70	-29.5	-37	-29.5 to -37	-37 to -38
Berth 607								
C4	725430.6	7629130.5	6.0	95	-32	-37	-32 to -37	-37 to -38
C5	725170.8	7629365.0	2.5	95	-35.5	-37	-35.5 to -37	-37 to -38
C6	724973.7	7629530.1	4.5	80	-33.5	-37	-33.5 to -37	-37 to -38

Notes:

1. Northing and easting based on North American Datum of 1983 (NAD 83/98), State Plane Coordinate System, Oregon North Zone.

2. All elevations, depths, and intervals are in feet CRD.

3. *Based on June 2007 bathymetry survey.

Table 2 - Sampling Scheme **Terminal 6 Sediment Characterization** N Marine Drive, Portland, Oregon

			Dredge Prism		NSM					
Core Sample Location	Approximate Mudline Elevation*	Sample Interval	Individual Sample	Composite Sample for Analysis	Sample Interval	Sample ID for Analysis				
Berth 601										
T601-C1	-36	-36 to -37	T601-C1-MD		-37 to -38	T601-C1-Z				
T601-C2	-31.5	-31.5 to -37	T601-C2-MD	T601-MD	-37 to -38	T601-C2-Z				
T601-C3	-29.5	-29.5 to -37	T601-C3-MD		-37 to -38	T601-C3-Z				
Berth 607										
T607-C4	-32	-32 to -37	T607-C4-MD		-37 to -38	T607-C4-Z				
T607-C5	-35.5	-35.5 to -37	T607-C5-MD	T607-MD	-37 to -38	T607-C5-Z				
T607-C6	-33.5	-33.5 to -37	T607-C6-MD		-37 to -38	T607-C6-Z				

Notes:

Berths 601 and 607 are to be dredged to an average depth of -37 feet Columbia River Datum (CRD).
 Shaded samples submitted for analysis. All others archived (frozen) at the laboratory.
 *Based on June 2007 bathymetry survey.

Table 3 - Grain Size DistributionsTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Berth		6	01			6	07	
Sediment Horizon	Prism		NSM		Prism		NSM	
Sample ID	T601-MD	T601-C1-Z	T601-C2-Z	T601-C3-Z	T607-MD	T607-C4-Z	T607-C5-Z	T607-C6-Z
Grain Size in %								
Gravel	0.2	0.2	0.2	0.1	0.4	0.2	0.6	1.6
Very Coarse Sand	0.3	0.2	0.5	0.2	0.5	0.3	0.4	6.4
Coarse Sand	0.5	0.2	1.3	2.4	0.9	0.4	0.6	18.9
Medium Sand	4.2	0.4	6.8	11.3	4.3	1.9	2.7	35.3
Fine Sand	14.5	2.6	14.9	59.1	10.1	6.5	10.1	12.2
Very Fine Sand	20.9	23.8	23.3	15.0	29.2	21.5	34.4	6.9
Coarse Silt	21.2	32.3	21.0	5.5	26.7	28.8	26.5	8.4
Medium Silt	16.0	16.4	13.3	2.6	13.5	18.7	11.3	3.8
Fine Silt	9.2	10.3	7.3	1.6	5.3	8.9	5.3	2.3
Very Fine Silt	4.7	5.3	4.3	0.7	2.6	4.5	2.6	1.1
8-9 Phi Clay	2.8	2.8	2.5	0.5	2.1	2.9	1.8	0.9
9-10 Phi Clay	2.1	2.1	1.9	0.4	1.6	2.1	1.5	0.9
> 10 Phi Clay	3.4	3.4	2.7	0.6	2.7	3.3	2.1	1.2
Total Fines	59.5	72.6	53.0	12.0	54.5	69.2	51.2	18.6
Material Description	Slightly clayey, very sandy SILT	Slightly clayey, sandy SILT	Slightly clayey, very silty SAND	Slightly silty SAND	Slightly clayey, very sandy SILT	Slightly clayey, sandy SILT	Slightly clayey, very silty SAND	Slightly silty SAND

Table 4 - Analytical Results for Sediment SamplesTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Berth				60)1							60	07				
Sediment Horizon	Prisr				NSM				Prisn				NSN				
Lab ID	MN43	G	MN43	D	MN43	E	MN43	F	MN42	G	MN42	D	MN42	E	MN42	F	Screening
Sample ID	T601-N	٨D	T601-C	1-Z	T601-C	2-Z	T601-C	3-Z	T607-N	ЛD	T607-C	4-Z	T607-C	5-Z	T607-C	6-Z	Level ¹
Conventional Parameters Total Solids (%) Total Organic Carbon (%) Ammonia (mg/kg) Total Sulfides (mg/kg)	63 1.04 112 61.7		64.4 0.947 137 34.1		65.1 0.971 176 36.6		79.9 0.252 12.8 1.33	U	64 0.96 120 72		65.7 1.02 179 56.8		69.4 0.796 112 49.7		80.1 0.941 25.8 20.3		
Metals in mg/kg																	
Antimony Arsenic Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc Butyltins in µg/kg	0.3 3.1 0.8 18.7 24.7 10 0.09 16 0.5 115	UJ U	0.3 3.1 0.7 18.5 25.8 10 0.08 16 0.4 105	UJ U	0.3 3.3 0.9 17.9 21.8 12 0.08 16 0.4 126	UJ	0.3 1.5 0.3 15.0 10.4 4 0.05 13 0.4 49	UJ U U U	0.3 3.1 0.8 17.1 37.4 9 0.08 15 0.5 114	UJ U	0.3 3.8 0.9 18.9 27.5 12 0.08 17 0.4 135	UJ	0.3 3.0 0.9 17.6 30.4 11 0.06 16 0.4 115	UJ U	0.3 1.4 0.4 11.8 13.7 5 0.05 10 0.4 56	UJ U U	150 ² 20 1.1 95 80 340 0.28 60 2.0 130
Tributyltin (TBT) Dry Weight	2.3	J	3.6	U	3.3	J	3.6	U	160		4.5		350		5.2		75
SVOCs in µg/kg <u>LPAHs</u> Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene 2-Methylnaphthalene Total LPAHs	4.9 4.9 4.9 7.4 4.9 4.9 4.9 7.4	U U U U U U	4.8 4.8 4.8 20 4.8 4.8 4.8 20	U U U U U U	5 5 5 29 5 5 29	U U U U U U	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9		5 5 100 95 270 50 5.9 521	U U	5 5 32 13 66 7.9 5 119	U U U	4.8 4.8 32 34 330 41 4.8 437	U U U	5 5 30 11 61 5 5 102	0 0 0	500 470 1,100 1,000 6,100 1,200 470 6,600
HPAHs Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bfluoranthene Benzo(b+k)fluoranthenes Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Total HPAHs Chlorinated Hydrocarbons	29 27 8.8 22 20 16 36 9.8 5.9 4.9 6.9 145	U	21 22 8.2 13 11 11 22 9.7 5.3 4.8 7.3 109	U	47 42 17 32 27 24 51 23 12 5 14 238	U	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	210 200 72 120 51 85 136 60 27 7.9 25 858		96 78 45 77 40 54 94 36 28 5 23 477	U	490 360 120 89 97 186 81 46 13 36 1452	ſ	51 44 12 10 14 5 14 7.5 5 5 5 139	U U U U	11,000 8,800 4,300 5,900 600 3,300 4,100 800 4,000 31,000
1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	20 20 20 20	U U U U	110 ² 35 ² 31 ² 22 ²
Phthalates Dimethyl Phthalate Diethyl Phthalate Di-n-butyl Phthalate Butyl Benzyl Phthalate Bis(2-ethylhexyl) Phthalate Di-n-octyl Phthalate	20 20 20 20 23 20	U U U U	20 20 20 20 13 20	U U U U U U	20 20 20 20 15 20	U U U U U U U	20 20 20 20 20 20	ບ ບ ບ ບ	20 20 20 20 76 20	U U U U	20 76 20 20 23 20	U U U U	20 20 20 20 32 20	U U U U U	20 20 20 20 12 20	U U U J U	46 200 ² 1,400 ² 260 220 26
Phenols Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol Pentachlorophenol (PCP)	29 20 20 20 98	U U U U	40 20 20 20 100	U U U U	40 20 20 20 100	U U U U	20 20 20 20 100	U U U U U	20 20 20 20 98	U U U U U	30 20 20 20 98	U U U U	20 20 20 20 99	U U U U U	20 20 20 20 98	U U U U U	420 ² 63 ² 670 ² 29 ² 400 ²

Please refer to notes on the last page of this table.

Table 4 - Analytical Results for Sediment SamplesTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Berth				6	01							6	07				
Sediment Horizon	Prism				NSM				Prism				NSM				
Lab ID	MN430	3	MN43E)	MN43E		MN43F	-	MN420	3	MN42E)	MN42E		MN42	-	Screening
Sample ID	T601-M	D	T601-C1	-Z	T601-C2	-Z	T601-C3	-Z	T607-M	D	T607-C4	-Z	T607-C5	ō-Z	T607-C6	δ-Ζ	Level 1
SVOCs in µg/kg (Cont.)																	
Miscellaneous Extractables																	
Benzyl Alcohol	20	U	20	U	20	U	20	U	20	U	20	U	20	U	20	U	57 ²
Benzoic Acid	350		470		360		200	U	230		360		280		140	J	650 ²
Dibenzofuran	4.9	U	4.8	U	5.0	U	4.9	U	37		5.0	U	16	J	5.0	U	400
Hexachlorobutadiene	7.9*/20	U	8.1*/20	U	8.1*/20	U	8.1*/20	U	7.9*/20	U	8.0*/20	U	8.0*/20	U	8.0*/20	U	11 ²
n-Nitrosodiphenylamine	20	U	20	U	20	U	20	U	20	U	20	U	20	U	20	U	28 ²
Pesticides in µg/kg																	
4,4'-DDE	3.3	J	3.7		2.7		2.0	U	2.0	J	3.3		2.3		2.0	U	9 ²
4,4'-DDD	4.4	J	2.7		2.4		2.0	U	3.9	U	2.0	J	2.0	U	2.0	U	16 ²
4,4'-DDT	3.9	U	2.0	U	2.0	U	2.0	U	3.9	U	1.6	J	2.0	U	2.0	U	12 ²
Total DDT	7.7	J	6.4		5.1		2.0	U	2.0	J	6.9	J	2.3		2.0	U	
Aldrin	2.0	U	1.0	U	1.0	U	1.0	U	2.0	U	0.98	U	0.99	U	0.98	U	9.5 ²
alpha-Chlordane	2.0	U	1.0	U	1.0	U	1.0	U	2.0	U	0.98	U	0.99	U	0.98	U	2.8 ²
Dieldrin	1.6*/3.9	U	0.84*/2.0	U	0.84*/2.0	U	0.84*/2.0	U	1.6*/3.9	U	0.83*/2.0	U	0.83*/2.0	U	0.83*/2.0	U	1.9 ²
Heptachlor	0.79*/2.0	U	1.0	U	1.0	U	1.0	U	0.79*/2.0	U	0.98	U	0.99	U	0.98	U	1.5 ²
gamma-BHC (Lindane)	2.0	U	1.0	U	1.0	U	1.0	U	2.0	U	0.98	U	0.99	U	0.98	U	
PCBs in µg/kg																	
Aroclor 1016	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1221	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1232	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1242	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1248	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1254	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	9.8	U	9.8	U	
Aroclor 1260	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	15	Υ	9.8	U	
Total PCBs	9.8	U	10	U	10	U	10	U	9.8	U	9.8	U	15	Υ	9.8	U	60

Note:

1. Screening levels are as follows:

¹ Screening levels are SEF's Freshwater Screening Level 1 (no adverse effects) (Corps, et al., 2006;

Table 7-1, revised 10/20/06), unless otherwise indicated by Note 2.

² No freshwater SL listed in SEF; values presented are marine SL1 from Table 7-1 of the SEF (Corps, et al., 2006; table revised 10/20/06).

2. PAH concentrations are the higher of the EPA Method 8270D-SIM and EPA Method 8270D analyses.

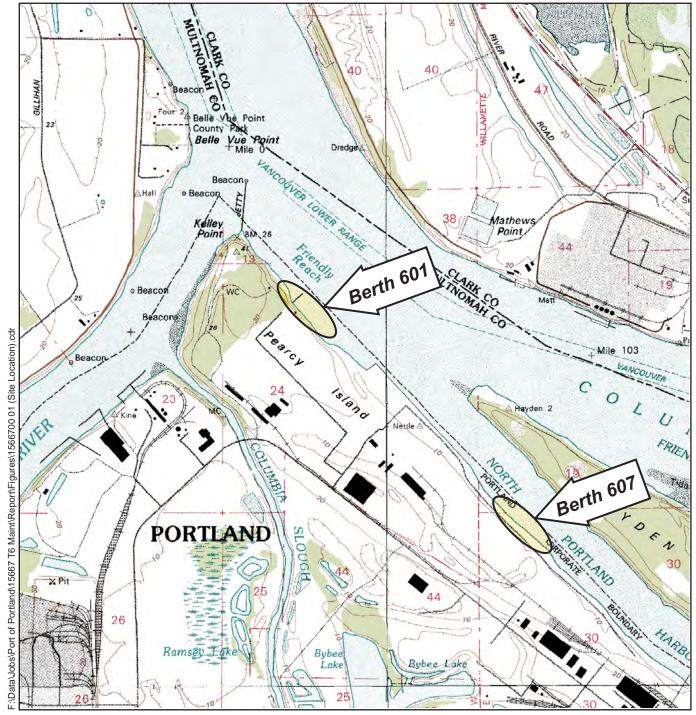
3. Bolded values are detected concentrations.

4. Shaded value is a concentration exceeding its respective SL.

5. For undetected compounds, method reporting limits are shown unless otherwise indicated.

6. *Method detection limit (MDL).

7. -- = Not analyzed or not available.

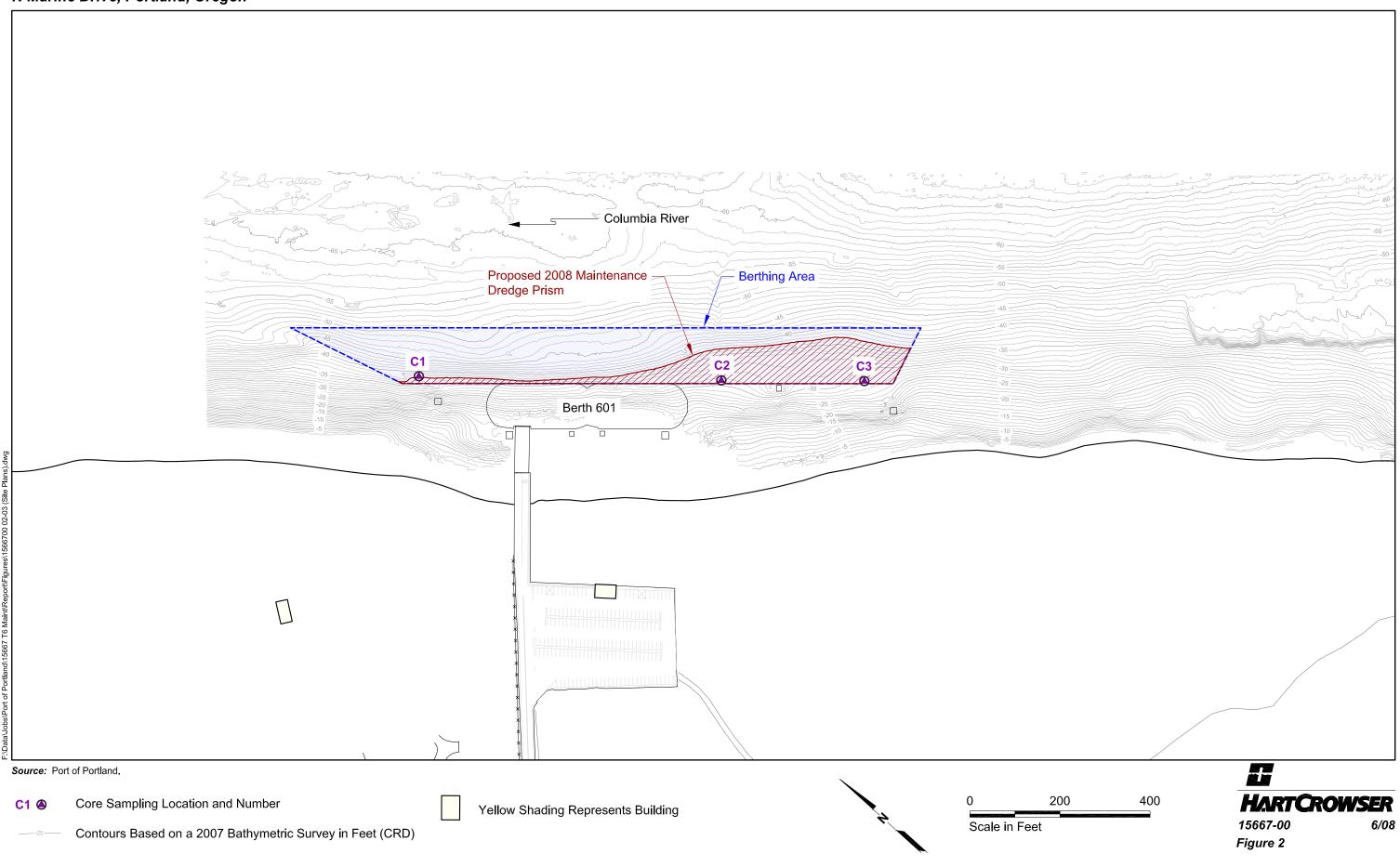

8. NSM = New surface material (i.e., leave surface).

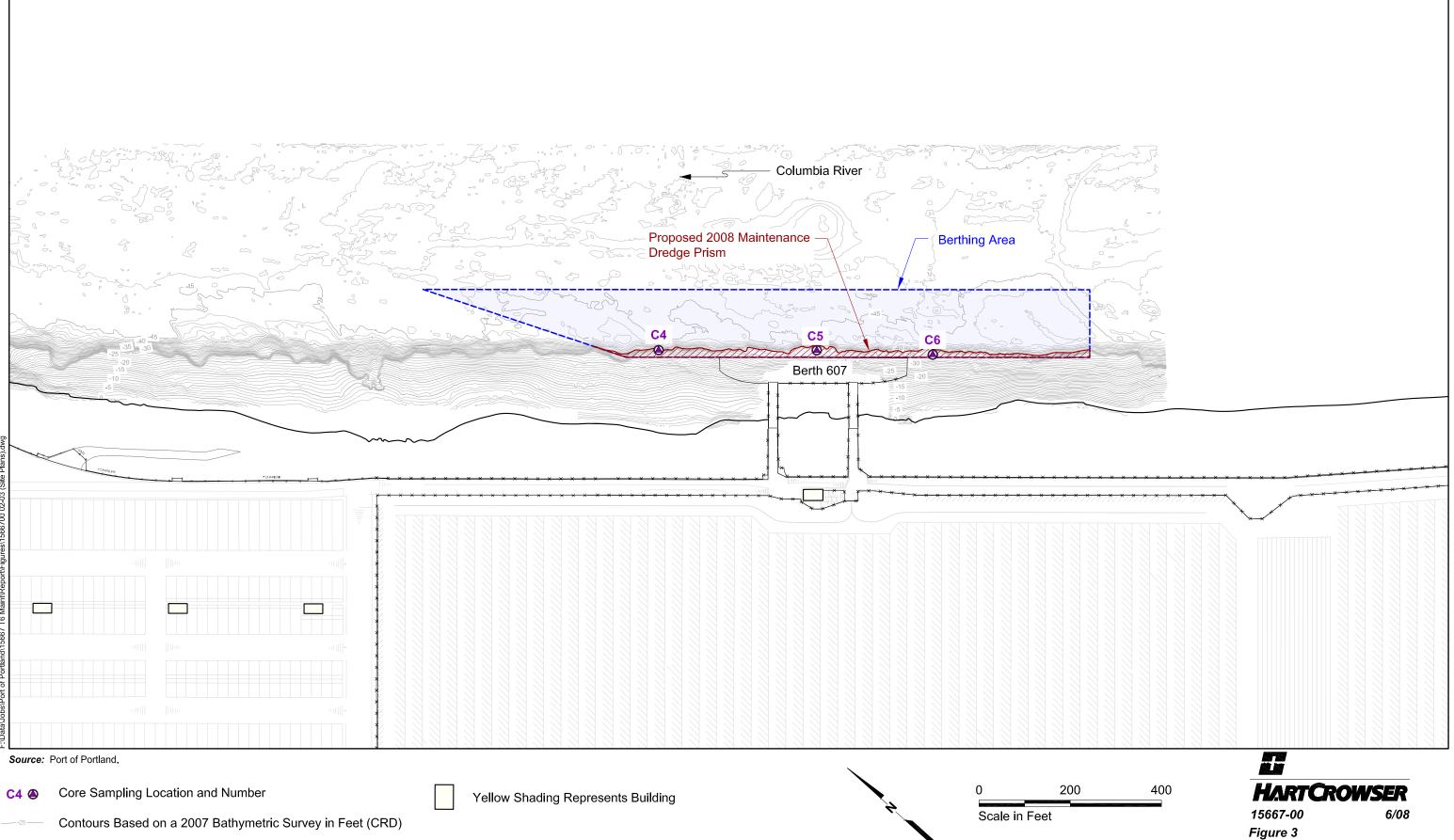
9. J = Estimated concentration between MDL and method reporting limit (MRL).

- 10. U = Not detected at the indicated MDL or MRL.
- 11. UJ = Estimated MRL (see Appendix B).

12. Y = Not detected at a MRL that was raised due to chromatographic interference.

Site Location Map Terminal 6 Sediment Characterization N Marine Drive, Portland, Oregon




Source: Base map prepared from the USGS 7.5-minute quadrangle of Sauvie Island, Oregon, dated 1990.

0 2,000 4,000 Scale in Feet Contour Interval 10 Feet HARTCROWSER 15667-00 6/08

Figure 1

APPENDIX A SEDIMENT CORE LOGS

Key for Soil/Sediment Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance.

Soil density/consistency in other explorations is estimated based on visual observation and is presented parenthetically on the logs.

SAND or GRAVEL	Standard Penetration Resistance (N)	SILT or CLAY	Standard Penetration Resistance (N)	Approximate Shear Strength	
Density	in Blows/Foot	Consistency	in Blows/Foot	in TSE	
Very loose	0 - 4	Very soft	0 - 2	<0.125	
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25	
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5	
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0	
Very dense	>50	Very stiff	15 - 30	1.0 - 2.0	
		Hard	>30	>2.0	

Moisture

Dry	Little perceptible moisture
Damp	Some perceptible moisture, probably below optimum
Moist	Probably near optimum moisture content
Wet	Much perceptible moisture, probably above optimum

Legends

Sample Acceptability Criteria:

- 1. Overlying water is present
- 2. Water has low turbidity
- 3. Sampler is not overfilled
- 4. Surface is flat
- 5. Penetration depth is acceptable
- 6. Compaction is less than 25 percent
- 7. Core tube is intact

Core Observations

Minor Constituents

Not identified in description	0 - 5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

Estimated Percentage

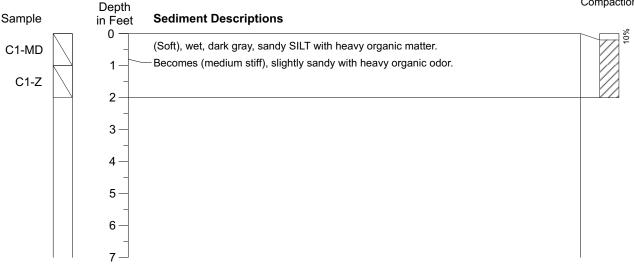
Estimated Percentage of Other Minor Constituents

(i.e., shells, wood, organics, plastic, metal brick, refuse)

Description	Estimated Percentage
Dusting	Trace on Surface
Trace	Discernible
Scattered	0-5
Moderate	5-20
Substantial	20-50
Major Constituent	>50

Test Symbols

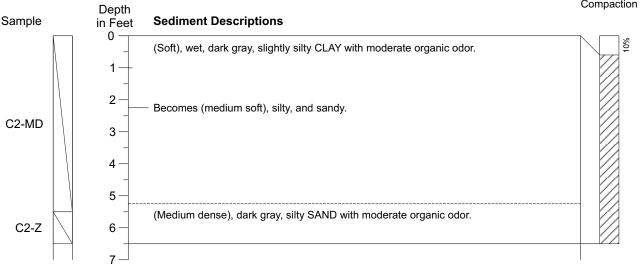
	Chamical Testing
CHEM	Chemical Testing
GS	Grain Size
ARCH	Archive
\square	Continuous Vibracore
AL	Atterberg Limits
SP GR	Specfic Gravity


Major Sediment Unit Contacts

----- Minor Sediment Unit Contacts

Sediment Core Log 601-C1

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 1.80 Total Drive Depth below Mudline in Feet: 2.0 Northing: 730460.76 Easting: 7624601.14 Approximate Mudline Elevation in Feet (CRD): -36.0 Core Tube Length in Feet: Continuous


> Core Tube, Sediment Recovery, and Percent Compaction

Sediment Core Log 601-C2

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 5.9 Total Drive Depth below Mudline in Feet: 6.5 Northing: 729951.77 Easting: 7625048.84 Approximate Mudline Elevation in Feet (CRD): -31.5 Core Tube Length in Feet: Continuous

> Core Tube, Sediment Recovery, and Percent Compaction

Notes:

1. Sediment contacts are inferred and actual contacts may vary.

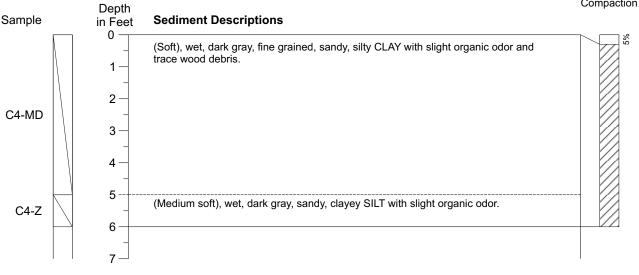
2. CRD = Columbia River Datum.

3. Northing and easting are based on the North American Datum of 1983 (NAD 83/98),

State Plane Coordinate System, Oregon North Zone.

Sediment Core Log 601-C3

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 6.0 Total Drive Depth below Mudline in Feet: 8.5 Northing: 729712.76 Easting: 7625262.47 Approximate Mudline Elevation in Feet (CRD): -29.5 Core Tube Length in Feet: Continuous


Depth Recovery, and Percent Sample **Sediment Descriptions** in Feet Compaction 0 (Soft), wet, dark gray, slightly silty CLAY with moderate organic odor. 1 30% Becomes (medium soft), silty, and sandy. 2 3 C3-MD 4 5 Wet, dark gray, fine-grained SAND with moderate organic odor. 6 7 C3-Z 8

Sediment Core Log 607-C4

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 5.7 Total Drive Depth below Mudline in Feet: 6.0 Northing: 725430.61 Easting: 7629130.53 Approximate Mudline Elevation in Feet (CRD): -32.0 Core Tube Length in Feet: Continuous

> Core Tube, Sediment Recovery, and Percent Compaction

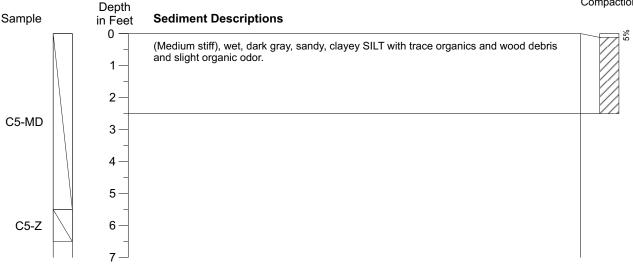
Core Tube, Sediment

Notes:

1. Sediment contacts are inferred and actual contacts may vary.

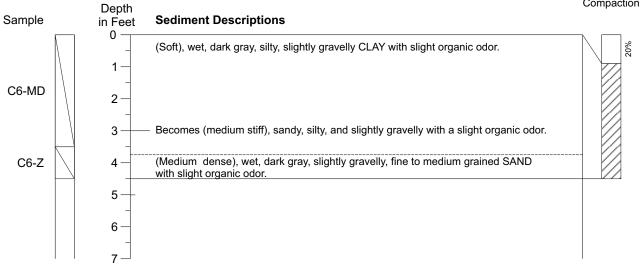
2. CRD = Columbia River Datum.

3. Northing and easting are based on the North American Datum of 1983 (NAD 83/98),


State Plane Coordinate System, Oregon North Zone.

Sediment Core Log 607-C5

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 2.38 Total Drive Depth below Mudline in Feet: 2.5 Northing: 725170.81 Easting: 7629365.01 Approximate Mudline Elevation in Feet (CRD): -35.5 Core Tube Length in Feet: Continuous


> Core Tube, Sediment Recovery, and Percent Compaction


Sediment Core Log 607-C6

Type of Sample: 4-inch Vibracore Date: 3/12/08 Recovery Length in Feet: 3.6 Total Drive Depth below Mudline in Feet: 4.5 Northing: 724973.72 Easting: 7629530.14 Approximate Mudline Elevation in Feet (CRD): -33.5 Core Tube Length in Feet: Continuous

> Core Tube, Sediment Recovery, and Percent Compaction

2. CRD = Columbia River Datum.

 Northing and easting are based on the North American Datum of 1983 (NAD 83/98), State Plane Coordinate System, Oregon North Zone. **HARTCROWSER** 15667-00 5/08 Figure A-4

APPENDIX B QUALITY ASSURANCE REVIEW

APPENDIX B QUALITY ASSURANCE REPORT

This appendix documents the results of a quality assurance (QA) review of the analytical data for dredge prism and new surface material (NSM) samples collected during the March 12, 2008, sediment characterization at the Berths 601 and 607. Field procedures used for sample collection are discussed in our Sampling and Analysis Plan (SAP; Hart Crowser, 2008). Hart Crowser submitted sediment samples to Analytical Resources, Inc. (ARI), of Tukwila, Washington, for chemical analysis. Copies of the analytical laboratory reports are included in Appendix C. Upon review, the analytical data are valid for their intended use. A Data Completeness (QA1) checklist is included as Table B-1 in this appendix.

The quality assurance review included examination and validation of the laboratories' summary report, including:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Standard reference material (SRM) recoveries;
- Matrix spike and matrix spike duplicate (MS/MSD) recoveries; and
- Laboratory duplicate relative percent difference (RPD).

The QA review did not include a review of raw data.

ANALYTICAL METHODS AND DETECTION LIMITS

Chemical Analyses on Sediment

A total of 14 sediment samples were collected from the six cores obtained during the sediment characterization fieldwork in March 2008 (i.e., a dredge prism and a NSM sample from each core and one composite sample from each of the two dredge material management units [DMMUs]). To assess the chemical quality of the DMMUs and future NSM after maintenance dredging, the two composite samples and six NSM samples were analyzed for the following:

Grain size by ASTM D 422M;

- Total solids by EPA Method 160.3;
- Total organic carbon (TOC) by Plumb (1981);
- Ammonia by EPA Method 350.1M;
- Sulfide by EPA Method 376.2;
- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) by EPA Method 200.8/6010B/7471A;
- Tributyltin (TBT) by Krone, et al. (written 1988; published 1989);
- Polynuclear aromatic hydrocarbon (PAHs) by EPA Method 8270D-SIM;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;
- Organochlorine pesticides by EPA Method 8081A; and
- Polychlorinated biphenyls (PCBs) by EPA Method 8082.

These analytical test methods were the analytical methods specified in the SAP (Hart Crowser, 2008), except analysis for arsenic and antimony by EPA Method 200.8 was used to obtain lower method reporting limits (MRLs) than EPA Method 6010B. Methods 200.8 and 6010B both use inductively coupled plasma to atomize and ionize the metals in the sample, but Method 200.8 follows with mass spectrometer to separate the metal ions for quantification.

Detection and Reporting Limits

Method detection limits (MDLs) are the minimum concentration of a chemical compound that can be measured and reported that the compound is present, and is based on instrumentation abilities and sample matrix. MRLs are set by the laboratory and are based on the low standard of the initial calibration curve or low-level calibration check standard, and represent the concentration that can be accurately quantified. In some cases, the MRL is raised due to high concentrations of analytes in the samples or matrix interferences. MRLs were consistent with industry standards.

Table 4 of this report lists the MRLs for undetected samples. For the majority of compounds, MRLs were below Sediment Evaluation Framework (SEF) screening levels (SLs). For dieldrin, heptachlor, and hexachlorobutadiene, their MRLs were above the SL; in these cases, their MDLs are also listed and are below their SLs. Upon review, MDLs and MRLs are sufficient in achieving SEF SLs. As presented in Appendix D, other SLs are available for screening sediment data; some of which are lower than SEF SLs. Additional MDLs are therefore indicated in Table D-1 for those compounds that have MRLs above one of these other SLs.

QA REVIEW RESULTS

The laboratory provided QC sample results, which underwent a QA review. QC samples were consistent with those specified in the SAP (Hart Crowser, 2008) to evaluate precision, accuracy, representativeness, comparability, and completeness. Upon review, the sample data and laboratory QC data were found to be suitable for their intended use in determining the chemical quality of sediments.

Physical and Chemical Analysis

The following section summarizes, by analyte or test, the results of our QA review of the analytical data.

Grain Size. Holding times were met. Samples were run in one batch along with triplicate analyses on one sample. QA ratios were acceptable. Results were reported to 0.1 percent for each sieve fraction. The laboratory noted that samples might contain organic matter, so the reported values are the "apparent" grain size distribution.

Total Solids. Holding times were met. No method blank contamination was detected. The laboratory duplicate RPD, reported for the Berth 607 analyses, was acceptable (samples from Berth 601 were also analyzed with Berth 607 samples).

TOC. Holding times were met. No method blank contamination was detected. The LCS and SRM recoveries were within control limits. The MS recovery and the laboratory duplicate RPD, reported for the Berth 607 analyses, were acceptable (samples from Berth 601 were also analyzed with Berth 607 samples).

Ammonia. Holding times were met. No method blank contamination was detected. The SRM recovery was within control limits. The MS recovery and the laboratory duplicate RPD, reported for the Berth 607 analyses, were acceptable (samples from Berth 601 were also analyzed with Berth 607 samples).

Sulfide. Holding times were met. No method blank contamination was detected. The LCS and SRM recoveries were within control limits. MS recovery and the laboratory duplicate RPD, reported for the Berth 607 analyses, were acceptable (samples from Berth 601 were also analyzed with Berth 607 samples).

Total Metals. Holding times were met. No method blank contamination was detected. LCS recoveries were within control limits for all elements. MS recoveries were within control limits with the following exception: antimony had a low recovery (2.7 percent). Results for antimony in the associated samples were qualified as estimated (UJ). The laboratory duplicate RPD was acceptable.

ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria for both reports.

Tributyltin. Holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. MS recoveries were within laboratory control limits for TBT; however, recoveries for dibutyltin and butyltin were below the control limits for the MS, but within the control limits for the MSD. As the compounds were not target analytes, no samples were qualified. ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria.

PAHs. Holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS recoveries were within laboratory control limits. ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria.

SVOCs. Holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS recoveries were within laboratory control limits. ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria.

Organochlorine Pesticides. Holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS recoveries were within laboratory control limits. ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria.

PCBs. Holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS recoveries were within laboratory control limits. ARI indicated in its case narrative that initial and continuing calibrations were within acceptance criteria.

Sample Integrity

Samples were collected in accordance with the SAP, following quality control procedures to ensure that sample data were representative of site conditions. Samples were sent via overnight courier to ARI for analysis. Chain of custody was maintained at all times. When received by the laboratory, the receiving temperature of the cooler was within the 2 to 6 °C acceptance criteria. Samples T601-C3-MD, T607-C6-MD, T607-C6-Z, and T607-MD, were received at the laboratory with cracked jar lids. The lids were replaced at the laboratory, and no samples were qualified. Sediment samples that were not analyzed were archived (frozen) at the time of receipt at ARI.

Table B-1 - QA1 Data ChecklistTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

	Test	Reference	Control	Water
	Sediment	Sediment	Sediment	Control
Sample Locations and Compositing		N1/A	N1/A	N1/A
Latitude and Longitude (to nearest 0.1 second)	NAD 83	N/A	N/A	N/A
NAD 1983 HARN (requirement for SEDQUAL)	Yes	N/A	N/A	N/A
Station Name (e.g. Carr Inlet)	Yes	N/A	N/A	N/A
Water depth (corrected to MLLW)	Bathymetric	N/A	N1/A	N 1/A
Drawing showing sampling locations and ID numbers	Yes	N/A	N/A	N/A
Compositing scheme (sampling locations/depths for composites)	Yes	N/A	N/A	N/A
Sampling method	Yes	N/A	N/A	N/A
Sampling dates	Yes	N/A		
Estimated volume of dredged material represented by each DMMU	Yes	N/A	N/A	N/A
Positioning method	Yes	N/A	N/A	N/A
Sediment Conventionals				
Preparation and analysis methods	Yes	N/A	N/A	N/A
Sediment conventional data and QA/QC qualifiers	Yes	N/A	N/A	N/A
QA qualifier code definitions	Yes	N/A	N/A	N/A
Units (dry weight except total solids)	Yes	N/A	N/A	N/A
Method blank data (sulfides, ammonia, TOC)	Yes	N/A	N/A	N/A
Method blank units (dry weight)	Yes	N/A	N/A	N/A
Analysis dates (sediment conventionals, blanks, TOC CRM)	Yes	N/A	N/A	N/A
TOC CRM ID	Yes	N/A	N/A	N/A
TOC CRM analysis data	Yes	N/A	N/A	N/A
TOC CRM target values	Yes	N/A	N/A	N/A
Grain Size Analysis				
Fine grain analysis method	Yes	N/A	N/A	N/A
Analysis dates	Yes	N/A	N/A	N/A
Triplicate for each batch	Yes	N/A	N/A	N/A
Grain size data (complete sieve and phi size distribution)	Yes	N/A	N/A	N/A
		SVOCs/	Pesticides/	
	Metals	PAHs	PCBs	VOCs
Extraction/digestion method				N/A
Extraction/digestion dates (test sediment, blanks, matrix spike, reference				
material)	Yes	Yes	Yes	N/A
Analysis method	Yes	Yes	Yes	N/A
Data and QA qualifier included for:	100	100	100	14/7
Test sediments	Yes	Yes	Yes	N/A
Reference materials including 95% confidence interval (each batch)	103	103	103	N/A
Method blanks (each batch)	Yes	Yes	Yes	N/A
Matrix spikes (each batch)	Yes	Yes	Yes	N/A
Matrix spikes (each batch) Matrix spike added (dry weight basis)	Yes	Yes	Yes	N/A
Replicates (each batch)	Yes	100	163	1 N/ /1
Units (dry weight)	Yes	Yes	Yes	N/A
Method blank units (dry weight)	Yes	Yes	Yes	N/A N/A
QA/QC qualifier definitions	Yes	Yes	Yes	N/A N/A
VIANAV ODAUDEL DEDDUODS	res	res	res	IN/A

Yes (TBT)

Yes

Yes

Yes

Yes

Yes

N/A

N/A

Please refer to notes at the end of this table.

Surrogate recovery for test sediment, blank, matrix spike, ref. material

Analysis dates (test sediment, blanks, matrix spike, reference material)

Table B-1 - QA1 Data ChecklistTerminal 2 Sediment CharacterizationPortland, Oregon

Notes:

QA Checklist based on Figures 12-2 and 12-3 of the SEF (Corps, et al., 2006). Shaded boxes indicated those type of data are not applicable for that column. N/A = Not applicable or not analyzed.

Acronyms and Abbreviations:

CRM = Control Reference Material DMMU = Dredge Material Management Unit MLLW = Mean lower low water NAD = North American Datum PAHs = Polynuclear aromatic hydrocarbons PCBs = Polychlorinated biphenyls QA = Quality assurance QC = Quality control SEF = Sediment evaluation framework SVOCs = Semivolatile organic compounds TBT = Tributyltin TOC = Total organic carbon VOCs = Volatile organic compounds

APPENDIX C ANALYTICAL LABORATORY REPORTS

Analytical Resources, Incorporated

Analytical Chemists and Consultants

March 28, 2008

Mr. Rick Ernst Hart Crowser, Inc. 5 Centerpointe Dr #240 Lake Oswego, OR 97035

RE: Project: T6- Berth 601, 156671 T2 ARI Job No: MN43

Dear Mr. Ernst:

Please find enclosed the original chain of custody documentation and the analytical results for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted seven sediment samples on March 14, 2008. The samples were received in good condition at 3.6°C. There were no discrepancies between the sample containers' labels and the COC. Three samples have been placed on hold pending further instructions.

The samples were analyzed for PSDDA PCBs, TBT, Pesticides, SIM PNAs, PSDDA SVOA, TOC, TS, Sulfide, Ammonia, Grainsize and Total Metals, as requested on the COC.

Please reference the Case Narrative for analytical details associated with this project.

An electronic copy of these reports and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Kelly Bottem Client Services Manager kellyb@arilabs.com 206/695-6211

Enclosures

cc: files MN43

Chain of Custody Documentation

> prepared for

HART CROWSER, INC.

Project: Port of Portland T6-Berth 601, 15667-T2

ARI JOB NO: MN43

prepared by

Analytical Resources, Inc.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:		Requested; Standa			Page:		(of						cal Resources, Incorporated cal Chemists and Consultants
	rowser		3-620-	7284	Date:	3112/08	lce Prese	ent?V P	weite	k T		Tukwila	outh 134th Place, Suite 100 a, WA 98168
Client Contact: RICK Er	nst				No. of Coolers:		Coole Temp	er	0			206-69	5-6200 206-695-6201 (fax)
Client Project Name:	Erflard	TUB	erthle	'0]		Ι.	al	Analysis	Requested			5	Notes/Comments
Client Project #: 1566772	Samplers:	-18462	INEN	K	SH	Size	o met	ts fatel		-Stal	22	&/Pest. &b&Aso82	
Sample ID	Date	Time	Matrix	No. Containers	E.C	Gran-Size	SEF is metal	TOC/1 NH3/	TRT	PA45 8270-SFM	SVOUS 82	PL&/Pest. & DBIAS	
TLOOI-CI-MO	3/12/18	1320	5	2	$\left X \right $								
TUD-C2-MD	3/208	1200	Ś	2	X								
T601-C3-MD	3/2/08	1415	5	2	\times								A
T60-C1-Z	3/12/08	1320	S	5		\times	X	X	X	X	\times	\times	Archive leftover sed.most
T601-C2-Z	3/12/18	200	5	5		×	\times	X	$\mathbf{\mathbf{x}}$	X	X	\times	(
+601-C3-2	3/12/08	1415	<u>Š</u>	5		X	\times	\times	\boldsymbol{X}	\times	X	X	
T601-MD	3/2/08	1430	5	9		X	$ \times$	X	X	X	\times	\times	Ý
Comments/Special Instructions	Relinquished by:	too e	<i>n</i> / (Received by:				Relinquished	by:		:	Received by	
	(Signature) Printed Name:	ww	Konet	(Signature) 2 Printed Name:	1705	hì		(Signature) Printed Nam	e:			(Signature) Printed Nam	ie:
	LUSA(SCONE	\vdash	Company:	Jost	1		Company:				Company:	
	Hart	Crowse	(AK	21								
	Date & Time:	<u>vs [(</u>	000	Date & Time: 3 14/0	<u>8 C</u>	925	-	Date & Time				Date & Time	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	
ARI Client: Hart Crowser	Project Na
COC No:	Delivered I
Assigned ARI Job No: MN43	Tracking N

Cooler Receipt Form

Project Name: Port of Portla	ind
Delivered by:PS	
racking No:	

Preliminary Examination Phase:

Were intact, properly	signed and dated custody seals attache	d to the outside of to cooler?	(YES) NO
Were custody papers	included with the cooler?		YES NO
Were custody papers	properly filled out (ink, signed, etc.)	• • • • • • • • • • • • • • • • • • • •	YES NO
Record cooler temper	ature (recommended 2.0-6.0 °C for che	mistry	<u>3.6</u> °C
Cooler Accepted by:	Grobhi	Date: 3/14/08_1	Fime: 0925
······	Complete custody forms and attacl	······································	

Log-In Phase:

		· ·
Was a temperature blank included in the cooler?	YES (
What kind of packing material was used?	BW	
Was sufficient ice used (if appropriate)?	YES	NO
Were all bottles sealed in individual plastic bags?	YES	Ø
Did all bottle arrive in good condition (unbroken)?	YES	NO
Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible?	(YES)	NO
Did all bottle labels and tags agree with custody papers?	YES	NØ
Were all bottles used correct for the requested analyses?	YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation checklist)	YES	NO
Were all VOC vials free of air bubbles?	YES	NO
Was sufficient amount of sample sent in each bottle?	(ES	NO

Samples Logged by: ____

** Notify Project Manager of discrepancies or concerns **

Explain discrepancies or negative responses: 11607 jar for sample T601-C3-MD jar lid cracked Replaced at sample receiving Sample T601-MD time sampled on COC = 1430 Time sampled on jars = 1420 Date: 3/17/8 By:

Case Narrative

prepared for

HART CROWSER, INC.

Project: Port of Portland T6-Berth 601, 15667-T2

ARI JOB NO: MN43

prepared by

Analytical Resources, Inc.

Case Narrative Hart Crowser **Port Of Portland** ARI Job: MN43 March 28, 2008

Semivolatile Analysis (PSDDA 8270D):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/20/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated Semivolatile organics list.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries are in control.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

Semivolatile SIM Analysis (8270D):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/19/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated SIM Semivolatile organics list.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

.

Case Narrative Hart Crowser Port Of Portland ARI Job: MN43 March 28, 2008 Page 2

Tributyl Tin Analysis (GC/MS Krone):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated Tributyl Tins analysis.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries were in control.

PCB and Pesticides Analysis (PSDDA):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/20/08 and 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): All method blanks were free of contamination

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the analyses.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

<u>Case Narrative</u> Hart Crowser Port Of Portland ARI Job: MN43 March 28, 2008 Page 3

Total Metals Analysis:

The samples were digested on 3/18/08 and the samples were analyzed between 3/20/08 and 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

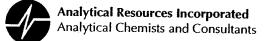
Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): The method blank was free of contamination

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries were in control.

The Matrix Spike is out of control low for Antimony for the total metals analysis on sample **T607-C4-Z.** All other spike recoveries are in control; therefore no further corrective action was taken.


General Chemistry Analyses

All General chemistry samples were analyzed within the method recommended holding time for the analyses.

Samples: No anomalies were encountered for these samples.

Method Blank(s): All method blanks were free of element contamination.

LCS/SRM/Replicate: All percent recoveries and RPDs were in control.

Data Reporting Qualifiers Effective 12/28/04

Inorganic Data

U Indicates that the target analyte was not detected at the reported concentration

- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for

Analytical Resources Incorporated Analytical Chemists and Consultants

- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses

an an an the States and a shell have been been as the second of the states of the states of the second second s

- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Analytical Resources, Incorporated Analytical Chemists and Consultants

Client: Hart Crowser

Project No.: MN43

Client Project: Port of Portland T6 Berth 601 15667/T2

Case Narrative

- 1. Four samples were submitted for grain size analysis according to PSEP methodology.
- 2. The samples were run in a single batch and one sample in the batch was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 3. The data is provided in summary tables and plots.
- 4. There were no other noted anomalies in this project.

Approved by: <u>Janlar Milcenzie</u> Title: Lead Technician Date: <u>3-24-08</u>

Data Summary Package

演え

prepared for

101

HART CROWSER, INC.

Project: Port of Portland T6-Berth 601, 15667-T2

ARI JOB NO: MN43

prepared by

Analytical Resources, Inc.

SEMIVOLATILE ORGANICS

i.

8 (d)

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: T601-C1-Z SAMPLE

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 18:23 Instrument/Analyst: NT6/LJR GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 34.0%

108-95-2 541-73-1 106-46-7	Phenol			
		14	20	40
106-46-7	1,3-Dichlorobenzene	7.4	20	< 20 U
	1,4-Dichlorobenzene	7.3	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	470
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.7	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.5	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	47	100	< 100 U
85-01-8	Phenanthrene	8.4	20	20
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	21
129-00-0	Pyrene	7.7	20	22
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	10 J
117-81-7	bis (2-Ethylhexyl) phthalate	11	20	13 J
218-01-9	Chrysene	6.6	20	15 J
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.5	20	14 J
207-08-9	Benzo (k) fluoranthene	9.2	20	14 J
50-32-8	Benzo (a) pyrene	8.1	20	14 U 15 J
193-39-5	Indeno (1, 2, 3-cd) pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.5	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	8.5	20	< 20 U < 20 U

ċ

100

.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T601-C1-Z SAMPLE

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Date Analyzed: 03/20/08 18:23 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	< 20 Ŭ

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	67.2%	2-Fluorobiphenyl	74.08
d14-p-Terphenyl	80.4%	d4-1,2-Dichlorobenzene	61.6%
d5-Phenol	69.6%	2-Fluorophenol	71.7%
2,4,6-Tribromophenol	82.9%	d4-2-Chlorophenol	72.3%

100

404L · ·

おおおおとないのにはなる時代にいたりになった。

Į.A.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 18:55 Instrument/Analyst: NT6/LJR GPC Cleanup: No Sample ID: T601-C2-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 30.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	40
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.3	20	< 20 Ŭ
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	360
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 Ŭ
131-11-3	Dimethylphthalate	7.7	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.5	20	< 20 Ŭ
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-7 4 -1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	47	100	< 100 U
85-01-8	Phenanthrene	8.4	20	29
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	47
129-00-0	Pyrene	7.7	20	42
85-68-7	Butylbenzylphthalate	11	20	< 20 Ŭ
56-55-3	Benzo (a) anthracene	5.9	20	18 J
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	15 J
218-01-9	Chrysene	6.6	20	32
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.5	20	27
207-08-9	Benzo(k) fluoranthene	9.2	20	24
50-32-8	Benzo (a) pyrene	8.1	20	23
193-39-5	Indeno (1,2,3-cd) pyrene	8.6	20	23 11 J
53-70-3	Dibenz (a, h) anthracene		20	< 20 Ŭ
191-24-2		8.5		< 20 U 10 J
17 1 - 4 4 - 4	Benzo(g,h,i)perylene	6.7	20	TO 9

Y. C.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T601-C2-Z SAMPLE

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Date Analyzed: 03/20/08 18:55 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.0%	2-Fluorobiphenyl	82.8%
d14-p-Terphenyl	89.6%	d4-1,2-Dichlorobenzene	67.2%
d5-Phenol	77.1%	2-Fluorophenol	78.9%
2,4,6-Tribromophenol	//.18 95.78	d4-2-Chlorophenol	78.9% 80.0%

1. 1. S. M.

2011 - 1242 M. C.

1997 B. 1999

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 19:27 Instrument/Analyst: NT6/LJR GPC Cleanup: No Sample ID: T601-C3-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 24.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85-01-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	20
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k)fluoranthene	9.2	20	< 20 U
50-32-8	Benzo(a)pyrene	8.2	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.6	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	8.5	20	< 20 U
191-24-2	Benzo(g,h,i) perylene	6.8	20	< 20 U

and the state of the

and the second

1000年1月1日の「1000年1月」の構成的です。

2.4

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T601-C3-Z SAMPLE

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Date Analyzed: 03/20/08 19:27 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	68.4%	2-Fluorobiphenyl	73.6%
d14-p-Terphenyl	82.4%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	69.1%	2-Fluorophenol	70.4%
2,4,6-Tribromophenol	75.7%	d4-2-Chlorophenol	72.0%

no.

4.

÷

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: T601-MD SAMPLE

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 19:59 Instrument/Analyst: NT6/LJR GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.6 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 34.3%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	29
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	12	20	< 20 U
67-72-1	Hexachloroethane	7.0	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	350
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	< 20 U
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.4	20	< 20 U
83-32-9	Acenaphthene	8.0	20	< 20 U
132-64-9	Dibenzofuran	7.4	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 2 0 U
86-73-7	Fluorene	8.7	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
8 7 -86-5	Pentachlorophenol	46	98	< 98 U
85-01-8	Phenanthrene	8.2	20	17 J
120-12-7	Anthracene	7.5	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.7	20	29
129-00-0	Pyrene	7.6	20	27
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	13 J
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	23
218-01-9	Chrysene	6.5	20	22
117-84-0	Di-n-Octyl phthalate	8.1	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.3	20	20
207-08-9	Benzo(k) fluoranthene	9.0	20	16 J
50-32-8	Benzo (a) pyrene	8.0	20	17 J
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	< 20 U
53-70-3	Dibenz(a, h) anthracene	8.3	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	6.6	20	< 20 U
171 47 4	Denne (3, 11, 1, bet à tene	0.0	20	

15

55

3

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T601-MD SAMPLE

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Date Analyzed: 03/20/08 19:59 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	67.6%	2-Fluorobiphenyl	75.2%
d14-p-Terphenyl	84.0%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	70.9%	2-Fluorophenol	71.5%
2,4,6-Tribromophenol	85.6%	d4-2-Chlorophenol	72.3%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-031808	68.0%	72.0%	89.2%	66.8%	75.7%	73.98	81.9%	76.0%	0
LCS-031808	69.6%	77.2%	89.6%	66.4%	77.3%	74.9%	87.7%	76.3%	õ
LCSD-031808	69.2%	74.0%	87.6%	66.4%	76.3%	73.9%	83.2%	75.5%	0
T601-C1-Z	67.2%	74.0%	80.4%	61.6%	69.6%	71.7%	82.9%	72.3%	0
T601-C2-Z	74.0%	82.8%	89.6%	67.2%	77.1%	78.9%	95.7%	80.0%	0
T601-C3-Z	68.4%	73.6%	82.4%	66.4%	69.1%	70.4%	75.7%	72.0%	0
T601-MD	67.6%	75.2%	84.0%	62.4%	70.9%	71.5%	85.6%	72.3%	0

		LCS/MB LIMITS	QC LIMITS
(NBZ)	= d5-Nitrobenzene	(37-85)	(29-87)
(FBP)	= 2-Fluorobiphenyl	(39-82)	(32-88)
(TPH)	= d14-p-Terphenyl	(38-105)	(21-97)
(DCB)	= d4-1,2-Dichlorobenzene	(33-79)	(25-82)
(PHL)	= d5-Phenol	(40-85)	(29-85)
(2FP)	= 2-Fluorophenol	(20-93)	(10-114)
(TBP)	= 2,4,6-Tribromophenol	(40-96)	(25-103)
(2CP)	= d4-2-Chlorophenol	(41-81)	(30-84)

Prep Method: SW3550B Log Number Range: 08-5468 to 08-5471

3

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/20/08 12:26 LCSD: 03/20/08 12:58 Instrument/Analyst LCS: NT6/LJR LCSD: NT6/LJR GPC Cleanup: NO

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: LCS-031808

LCS/LCSD

Sample Amount LCS: 25.0 g LCSD: 25.0 g Final Extract Volume LCS: 0.5 mL LCSD: 0.5 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Percent Moisture: NA

Ann Justin	LCS	Spike Added-LCS	LCS	T 00D	Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	390	500	78.0%	396	500	79.2%	1.5%
1,3-Dichlorobenzene	314	500	62.8%	330	500	66.0%	5.0%
1,4-Dichlorobenzene	319	500	63.8%	334	500	66.8%	4.6%
Benzyl Alcohol	721	1000	72.1%	709	1000	70.9%	1.7%
1,2-Dichlorobenzene	327	500	65.4%	339	500	67.8%	3.6%
2-Methylphenol	380	500	76.0%	385	500	77.0%	1.3%
4-Methylphenol	795	1000	79.5%	799	1000	79.9%	0.5%
Hexachloroethane	310	500	62.0%	325	500	65.0%	4.7%
2,4-Dimethylphenol	376	500	75.2%	380	500	76.0%	1.1%
Benzoic Acid	1060	1500	70.7%	1110	1500	74.0%	4.6%
1,2,4-Trichlorobenzene	344	500	68.8%	352	500	70.4%	2.3%
Naphthalene	353	500	70.6%	355	500	71.0%	0.6%
Hexachlorobutadiene	336	500	67.2%	343	500	68.6%	2.1%
2-Methylnaphthalene	369	500	73.8%	373	500	74.6%	1.1%
Dimethylphthalate	417	500	83.4%	409	500	81.8%	1.9%
Acenaphthylene	411	500	82.2%	403	500	80.6%	2.0%
Acenaphthene	385	500	77.0%	379	500	75.8%	1.6%
Dibenzofuran	401	500	80.2%	391	500	78.2%	2.5%
Diethylphthalate	416	500	83.2%	414	500	82.8%	0.5%
Fluorene	401	500	80.2%	393	500	78.6%	2.0%
N-Nitrosodiphenylamine	525	500	105%	528	500	106%	0.6%
Hexachlorobenzene	398	500	79.6%	398	500	79.6%	0.0%
Pentachlorophenol	360	500	72.0%	356	500	71.2%	1.1%
Phenanthrene	395	500	79.0%	395	500	79.0%	0.0%
Anthracene	411	500	82.2%	409	500	81.8%	0.5%
Di-n-Butylphthalate	441	500	88.2%	445	500	89.0%	0.9%
Fluoranthene	425	500	85.0%	429	500	85.8%	0.98
Pyrene	422	500	84.4%	424	500	84.8%	0.5%
Butylbenzylphthalate	424	500	84.8%	421	500	84.2%	0.7%
Benzo(a)anthracene	393	500	78.6%	393	500	78.6%	0.0%
bis(2-Ethylhexyl)phthalate	433	500	86.6%	436	500	87.2%	0.78
Chrysene	418	500	83.6%	417	500	83.4%	0.2%
Di-n-Octyl phthalate	410	500	82.0%	414	500	82.8%	1.0%
Benzo(b)fluoranthene	397	500	79.4%	401	500	80.2%	1.0%

4

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: LCSD-031808 LCS/LCSD

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Date Analyzed LCS: 03/20/08 12:26 LCSD: 03/20/08 12:58 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k)fluoranthene	442	500	88.4%	441	500	88.2%	0.2%
Benzo(a)pyrene	416	500	83.2%	415	500	83.0%	0.2%
Indeno(1,2,3-cd)pyrene	384	500	76.8%	382	500	76.4%	0.5%
Dibenz(a,h)anthracene	407	500	81.4%	401	500	80.2%	1.5%
Benzo(g,h,i)perylene	392	500	78.4%	381	500	76.2%	2.8%
1-Methylnaphthalene	381	500	76.2%	382	500	76.4%	0.3%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	69.6%	69.2%
2-Fluorobiphenyl	77.2%	74.0%
d14-p-Terphenyl	89.6%	87.6%
d4-1,2-Dichlorobenzene	66.4%	66.4%
d5-Phenol	77.3%	76.3%
2-Fluorophenol	74.9%	73.9%
2,4,6-Tribromophenol	87.7%	83.2%
d4-2-Chlorophenol	76.3%	75.5%

Results reported in μ g/kg RPD calculated using sample concentrations per SW846.

4B SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

MN42MBS1

Lab Name: ANALYTICAL RESOURCES, INCCARI Job No: MN42P:

Lab File ID: MN42MB

Instrument ID: NT6

Matrix: SOLID

Client: HART CROWSER Project: PORT OF PORTLAND T6-Date Extracted: 03/18/08 Date Analyzed: 03/20/08 Time Analyzed: 1153

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=============	=================	==========
01	MN42LCSS1	MN42LCSS1	MN42SB	03/20/08
02	MN42LCSDS1	MN42LCSDS1	MN42SBD	03/20/08
03	T607-C4-Z	MN42D	MN42D	03/20/08
04	T607-C5-Z	MN42E	MN42D MN42E	
05	T607-C6-Z	MN42E MN42F	MN42E MN42F	03/20/08
06	T607-MD			03/20/08
08		MN42G	MN42G	03/20/08
	T607-MD MS	MN42GMS	MN42GMS	03/20/08
08	T607-MD MSD	MN42GMSD	MN42GMD	03/20/08
09	T601-C1-Z	MN43D	MN43D	03/20/08
10	T601-C2-Z	MN43E	MN43E	03/20/08
11	T601-C3-Z	MN43F	MN43F	03/20/08
12	T601-MD	MN43G	MN43G	03/20/08
13	T501-C12-DPZ	MN44D	MN44D	03/20/08
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
•		I		

COMMENTS:

page 1 of 1

FORM IV SV

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 11:53 Instrument/Analyst: NT6/LJR GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA

Sample ID: MB-031808

METHOD BLANK

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85-01-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b)fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k)fluoranthene	9.3	20	< 20 U
50-32-8	Benzo (a) pyrene	8.2	20	< 20 U
193-39-5	Indeno (1,2,3-cd) pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.8	20	< 20 U
- <i></i>	Demie (3/11/1/Perliene	v ,• v	20	

-12

()

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: MB-031808 METHOD BLANK

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Date Analyzed: 03/20/08 11:53 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	68.0%	2-Fluorobiphenyl	72.0%
d14-p-Terphenyl	89.2%	d4-1,2-Dichlorobenzene	66.8%
d5-Phenol	75.7%	2-Fluorophenol	73.9%
2,4,6-Tribromophenol	81.9%	d4-2-Chlorophenol	76.0%

SIM PNA

ORGANICS ANALYSIS DATA SHEET PNAs by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: T601-C1-Z SAMPLE

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: M Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 20:00 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.3 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 34.0 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.2	4.8	< 4.8 U
91-57-6	2-Methylnaphthalene	0.87	4.8	< 4.8 U
90-12-0	1-Methylnaphthalene	1.1	4.8	< 4.8 U
208-96-8	Acenaphthylene	1.0	4.8	< 4.8 U
83-32-9	Acenaphthene	1.2	4.8	< 4.8 U
86-73-7	Fluorene	0.63	4.8	< 4.8 U
85-01-8	Phenanthrene	0.99	4.8	7.3
120-12-7	Anthracene	0.94	4.8	< 4.8 U
206-44-0	Fluoranthene	0.26	4.8	14
129-00-0	Pyrene	1.2	4.8	15
56-55-3	Benzo (a) anthracene	0.79	4.8	8.2
218-01-9	Chrysene	1.7	4.8	13
205-99-2	Benzo(b) fluoranthene	1.2	4.8	11
207-08-9	Benzo(k) fluoranthene	0.85	4.8	11
50-32-8	Benzo(a) pyrene	1.4	4.8	9.7
193-39-5 [,]	Indeno(1,2,3-cd)pyrene	0.83	4.8	5.3
53-70-3	Dibenz(a, h) anthracene	0.93	4.8	< 4.8 U
191-24-2	Benzo(g,h,i)perylene	1.2	4.8	7.3
132-64-9	Dibenzofuran	0.95	4.8	< 4.8 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 70.3% d14-Dibenzo(a,h)anthracen 79.0%

• \c

ORGANICS ANALYSIS DATA SHEET PNAs by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: T601-C2-Z SAMPLE

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 20:25 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 30.4 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	0.89	5.0	< 5.0 Ŭ
90-12-0	1-Methylnaphthalene	1.2	5.0	< 5.0 Ŭ
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 Ŭ
83-32-9	Acenaphthene	1.2	5.0	< 5.0 U
86-73-7	Fluorene	0.64	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	5.0	17
120-12-7	Anthracene	0.96	5.0	< 5.0 Ŭ
206-44-0	Fluoranthene	0.27	5.0	37
129-00-0	Pyrene	1.2	5.0	36
56-55-3	Benzo (a) anthracene	0.80	5.0	17
218-01-9	Chrysene	1.7	5.0	27
205-99-2	Benzo(b) fluoranthene	1.2	5.0	32
207-08-9	Benzo(k) fluoranthene	0.87	5.0	12
50-32-8	Benzo(a) pyrene	1.5	5.0	21
193-39-5	Indeno (1,2,3-cd) pyrene	0.85	5.0	12
53-70-3	Dibenz(a, h) anthracene	0.95	5.0	< 5.0 U
191-24-2	Benzo (g, h, i) perylene	1.2	5.0	14
132-64-9	Dibenzofuran	0.97	5.0	< 5.0 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 67.7% d14-Dibenzo(a,h)anthracen 75.3%

торан Т

ORGANICS ANALYSIS DATA SHEET PNAs by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: T601-C3-Z SAMPLE

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 20:50 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 24.2 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	4.9	< 4.9 U
91-57-6	2-Methylnaphthalene	0.88	4.9	< 4.9 U
90-12-0	1-Methylnaphthalene	1.1	4.9	< 4.9 U
208-96-8	Acenaphthylene	1.0	4.9	< 4.9 U
83-32-9	Acenaphthene	1.2	4.9	< 4.9 U
86-73-7	Fluorene	0.64	4.9	< 4.9 U
85-01-8	Phenanthrene	1.0	4.9	< 4.9 U
120-12-7	Anthracene	0.95	4.9	< 4.9 U
206-44-0	Fluoranthene	0.26	4.9	< 4.9 U
129-00-0	Pyrene	1.2	4.9	< 4.9 U
56-55-3	Benzo(a) anthracene	0.79	4.9	< 4.9 U
218-01-9	Chrysene	1.7	4.9	< 4.9 U
205-99-2	Benzo(b)fluoranthene	1.2	4.9	< 4.9 U
207-08-9	Benzo(k)fluoranthene	0.86	4.9	< 4.9 U
50-32-8	Benzo(a)pyrene	1.4	4.9	< 4.9 U
193-39-5	Indeno (1,2,3-cd) pyrene	0.84	4.9	< 4.9 U
53-70-3	Dibenz (a, h) anthracene	0.94	4.9	< 4.9 U
191-24-2	Benzo(g,h,i)perylene	1.2	4.9	< 4.9 U
132-64-9	Dibenzofuran	0.96	4.9	< 4.9 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 68.7% d14-Dibenzo(a,h)anthracen 86.3%

ORGANICS ANALYSIS DATA SHEET PNAs by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: T601-MD SAMPLE

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized:

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 21:16 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 34.3 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	4.9	< 4.9 U
91-57-6	2-Methylnaphthalene	0.88	4.9	< 4.9 U
90-12-0	1-Methylnaphthalene	1.1	4.9	< 4.9 U
208-96-8	Acenaphthylene	1.0	4.9	< 4.9 U
83-32-9	Acenaphthene	1.2	4.9	< 4.9 U
86-73 - 7	Fluorene	0.64	4.9	< 4.9 U
85-01-8	Phenanthrene	1.0	4.9	7.4
120-12-7	Anthracene	0.95	4.9	< 4.9 U
206-44-0	Fluoranthene	0.26	4.9	17
129-00-0	Pyrene	1.2	4.9	16
56-55-3	Benzo (a) anthracene	0.79	4.9	8.8
218-01-9	Chrysene	1.7	4.9	13
205-99-2	Benzo(b) fluoranthene	1.2	4.9	16
207-08-9	Benzo(k) fluoranthene	0.86	4.9	4.9
50-32-8	Benzo(a) pyrene	1.4	4.9	9.8
193-39-5	Indeno (1,2,3-cd) pyrene	0.84	4.9	5.9
53-70-3	Dibenz(a,h)anthracene	0.94	4.9	< 4.9 U
191-24-2	Benzo(g,h,i)perylene	1.2	4.9	6.9
132-64-9	Dibenzofuran	0.96	4.9	< 4.9 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 67.3% d14-Dibenzo(a,h)anthracen 79.0%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

Client ID	MNP	DBA	TOT OUT
MB-031808	80.0%	94.7%	0
LCS-031808	74.3%	93.3%	0
LCSD-031808	78.7%	96.7%	0
T601-C1-Z	70.3%	79.0%	0
T601-C2-Z	67.7%	75.3%	0
T601-C3-Z	68.7%	86.3%	0
T601-MD	67.3%	79.0%	0

		LCS/MB LIMITS	QC LIMITS	
• •	<pre>= d10-2-Methylnaphthalene = d14-Dibenzo(a,h)anthracene</pre>	(44-100) (46-121)	(37-106) (16-118)	

Prep Method: SW3550B Log Number Range: 08-5468 to 08-5471

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08

Date Analyzed LCS: 03/19/08 16:39 LCSD: 03/19/08 17:04 Instrument/Analyst LCS: NT1/VTS LCSD: NT1/VTS

Sample ID: LCS-031808 LAB CONTROL SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g-dry-wt LCSD: 10.0 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	104	150	69.3%	112	150	74.7%	7.4%
2-Methylnaphthalene	112	150	74.7%	118	150	78.7%	5.2%
1-Methylnaphthalene	108	150	72.0%	112	150	74.78	3.6%
Acenaphthylene	115	150	76.7%	120	150	80.0%	4.3%
Acenaphthene	118	150	78.7%	122	150	81.3%	3.3%
Fluorene	125	150	83.3%	134	150	89.3%	6.9%
Phenanthrene	132	150	88.0%	134	150	89.3%	1.5%
Anthracene	134	150	89.3%	142	150	94.7%	5.8%
Fluoranthene	145	150	96.7%	147	150	98.0%	1.4%
Pyrene	140	150	93.3%	144	150	96.0%	2.8%
Benzo(a)anthracene	148	150	98.7%	152	150	101%	2.7%
Chrysene	140	150	93.3%	144	150	96.0%	2.8%
Benzo(b)fluoranthene	148	150	98.7%	145	150	96.7%	2.0%
Benzo(k)fluoranthene	137	150	91.3%	156	150	104%	13.0%
Benzo(a)pyrene	141	150	94.0%	154	150	1038	8.8%
Indeno(1,2,3-cd)pyrene	136	150	90.7%	144	150	96.0%	5.7%
Dibenz (a, h) anthracene	138	150	92.0%	148	150	98.7%	7.0%
Benzo(g,h,i)perylene	128	150	85.3%	133	150	88.7%	3.8%
Dibenzofuran	116	150	77.3%	122	150	81.3%	5.0%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	74.3%	78.7%
d14-Dibenzo(a,h)anthracen	93.3%	96.7%

4B SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

MN42MBS1

Lab Name: ANALYTICAL RESOURCES, INC

ARI Job No: MN44

Lab File ID: MN42MB

Instrument ID: NT1

Matrix: SOLID

Client: HART CROWSER Project: PORT OF TORTLAND T6-Date Extracted: 03/18/08 Date Analyzed: 03/19/08 Time Analyzed: 1614

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		========================	============	========
01	MN42LCSS1	MN42LCSS1	MN42SB	03/19/08
02	MN42LCSDS1	MN42LCSDS1	MN42SBD	03/19/08
03	T607-C4-Z	MN42D	MN42D	03/19/08
04	T607-C4-Z MS	MN42DMS	MN42DMS	03/19/08
05	T607-C4-Z MSD	MN42DMSD	MN42DMSD	03/19/08
06	T607-C5-Z	MN42E	MN42E	03/19/08
07	T607-C6-Z	MN42F	MN42F	03/19/08
08 09	T607-MD	MN42G	MN42G	03/19/08
10	T601-C1-Z T601-C2-Z	MN43D	MN43D	03/19/08
11	T601-C2-Z	MN43E MN43F	MN43E MN43F	03/19/08
12^{11}	T601-MD	MN43F MN43G		03/19/08 03/19/08
$12 \\ 13$	T501-C12-DPZ	MN43G MN44D	MN43G MN44D	03/19/08
14^{13}	1501-C12-DF2	MIN44D	MIN44D	03/19/08
15				
16				
17			<u></u>	
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:

page 1 of 1

FORM IV SV

ORGANICS ANALYSIS DATA SHEET PNAs by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: MB-031808 METHOD BLANK

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 16:14 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	0.90	5.0	< 5.0 U
90-12-0	1-Methylnaphthalene	1.2	5.0	< 5.0 Ŭ
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 Ŭ
83-32-9	Acenaphthene	1.2	5.0	< 5.0 U
86-73-7	Fluorene	0.65	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	5.0	< 5.0 U
120-12-7	Anthracene	0.97	5.0	< 5.0 U
206-44-0	Fluoranthene	0.27	5.0	< 5.0 U
129-00-0	Pyrene	1.2	5.0	< 5.0 U
56-55-3	Benzo (a) anthracene	0.81	5.0	< 5.0 U
218-01-9	Chrysene	1.7	5.0	< 5.0 U
205-99-2	Benzo(b)fluoranthene	1.2	5.0	< 5.0 U
207-08-9	Benzo(k)fluoranthene	0.88	5.0	< 5.0 U
50-32-8	Benzo(a)pyrene	1.5	5.0	< 5.0 U
193-39-5	Indeno (1,2,3-cd) pyrene	0.86	5.0	< 5.0 U
53-70-3	Dibenz(a,h)anthracene	0.96	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	< 5.0 U
132-64-9	Dibenzofuran	0.98	5.0	< 5.0 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 80.0% d14-Dibenzo(a,h)anthracen 94.7%

TBT

Test

-22 22

100

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Sample ID: T601-C1-Z SAMPLE

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:54 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.31 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 34.0%

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION	Tributyl Tin Ion	1.7	3.6	< 3.6 U	-
DBT_ION	Dibutyl Tin Ion	3.0	5.4	< 5.4 Ŭ	
BT_ION	Butyl Tin Ion	3.8	3.8	< 3.8 U	

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	65.2%
Tripentyl	Tin	Chloride	108%

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Sample ID: T601-C2-Z SAMPLE

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 17:14 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.26 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 30.4%

CAS Number	Analyte	MDL	RL	Result	Q	
TBT ION	Tributyl Tin Ion	1.7	3.7	3.3 J	•	
DBTION	Dibutyl Tin Ion	3.0	5.5	< 5.5 U		
BT_ION	Butyl Tin Ion	3.9	3.9	< 3.9 U		

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	68.7%
Tripentyl	Tin	Chloride	94.4%

10.5

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Sample ID: T601-C3-Z SAMPLE

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 17:34 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.35 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 24.2%

CAS Number	Analyte	MDL	RL	Result	Q
TBT ION	Tributyl Tin Ion	1.7	3.6	< 3.6 U	-
DBTION	Dibutyl Tin Ion	3.0	5.4	< 5.4 U	
BT_ION	Butyl Tin Ion	3.8	3.8	< 3.8 U	

Reported in $\mu g/kg$ (ppb)

Tripropyl Ti	n Chloride	70.6%
Tripentyl Ti		106%

.....

÷,

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Sample ID: T601-MD SAMPLE

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 17:54 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.28 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 34.3%

CAS Number	Analyte	MDL	RL	Result Q
TBT ION	Tributyl Tin Ion	1.7	3.7	2.3 J
DBT ION	Dibutyl Tin Ion	3.0	5.5	< 5.5 U
BT_ION	Butyl Tin Ion	3.9	3.9	< 3.9 U

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	66.9%
Tripentyl			

Call States of

Contraction of the

•

TBT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2

Client ID	TPRT	TPNT	TOT OUT
MB-031808	71.1%	85.3%	0
LCS-031808	72.1%	87.7%	0
LCSD-031808	78.3%	104%	0
T601-C1-Z	65.2%	108%	0
T601-C2-Z	68.7%	94.4%	0
T601-C3-Z	70.6%	106%	0
T601-MD	66.9%	81.6%	0

					LCS/MB LIMITS	QC LIMITS
(TPRT)	=	Tripropyl	\mathtt{Tin}	Chloride	(37-99)	(25-96)
(TPNT)	=	Tripentyl	Tin	Chloride	(47-130)	(30-136)

Prep Method: SW3550B Analytical Method: TBT (Hexyl) Krone 1988 Log Number Range: 08-5468 to 08-5471

693

18 30 S

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted LCS: 03/18/08

Date Analyzed LCS: 03/21/08 14:19 LCSD: 03/21/08 14:38 Instrument/Analyst LCS: NT2/VTS LCSD: NT2/VTS Silica Gel Cleanup: No Sample ID: LCS-031808 LAB CONTROL SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt LCSD: 5.00 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Alumina Cleanup: Yes

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSI	LCSD Recovery	RPD
Tributyl Tin Ion	35.2	44.6	78.9%	44.5	44.6	99.8%	23.3%
Dibutyl Tin Ion	27.7	38.4	72.1%	35.7	38.4	93.0%	25.2%
Butyl Tin Ion	18.0	31.2	57.7%	24.5	31.2	78.5%	30.6%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

			LCS	LCSD
Tripropyl	Tin	Chloride	72.1%	78.3%
Tripentyl	Tin	Chloride	87.7%	104%

BLANK NO.

4B SEMIVOLATILE METHOD BLANK SUMMARY

MN42MBS1

Lab Name: ANALYTICAL RESOURCES, INC ARI Job No: MN44

Lab File ID: 032101

Instrument ID: NT2

Matrix: SOLID

Client: HART CROWSER Project: PORT OF PORTLAND T6-Date Extracted: 03/18/08 Date Analyzed: 03/21/08 Time Analyzed: 1359

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

1	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=============	==========	=========
01	MN42LCSS1	MN42LCSS1	032102	03/21/08
02	MN42LCSDS1	MN42LCSDS1	032103 ·	03/21/08
03	T607-C4-Z	MN42D	032104	03/21/08
04	T607-C4-Z MS	MN42DMS	032105	03/21/08
05	T607-C4-Z MSD	MN42DMSD	032106	03/21/08
06	T607-C5-Z	MN42E	032107	03/21/08
07	T607-C6-Z	MN42F	032108	03/21/08
08	T607-MD	MN42G	032109	03/21/08
09	T601-C1-Z	MN43D	032110	03/21/08
10	T601-C2-Z	MN43E	032111	03/21/08
11	T601-C3-Z	MN43F	032112	03/21/08
12	T601-MD	MN43G	032113	03/21/08
13	T501-C12-DPZ	MN44D	032114	03/21/08
14				
15				
16				
17				
18				
19				
20				
21				
22 23		<u></u>		
23 24		· · · · · · · · · · · · · · · · · · ·		
24 25	<u> </u>	<u> </u>		
25 26		<u> </u>		
20				·
28				
20 29				
30				
30				I I

COMMENTS:

page 1 of 1

FORM IV SV

ŝ

;

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Sample ID: MB-031808 METHOD BLANK

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 13:59 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 Event: 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION DBT_ION	Tributyl Tin Ion Dibutyl Tin Ion	1.8	3.9	< 3.9 U < 5.8 U	_
BT_ION	Butyl Tin Ion	4.1	4.1	< 4.1 U	

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	71.1%
Tripentyl	\mathtt{Tin}	Chloride	85.3%

PESTICIDES

÷

114.02.00

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 15:37 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: T601-C1-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 34.0%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.49	1.0	< 1.0 U
76-44-8	Heptachlor	0.40	1.0	< 1.0 U
309-00-2	Aldrin	0.48	1.0	< 1.0 U
60-57-1	Dieldrin	0.84	2.0	< 2.0 U
72-55-9	4,4'-DDE	1.1	2.0	3.7
72-54-8	4,4'-DDD	1.3	2.0	2.7
50-29-3	4,4'-DDT	0.88	2.0	< 2.0 U
5103-74-2	qamma Chlordane	0.92	1.0	< 1.0 U
5103-71-9	alpha Chlordane	0.36	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	90.8%
Tetrachlorometaxylene	83.0%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 15:57 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: T601-C2-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 30.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.49	1.0	< 1.0 U
76-44-8	Heptachlor	0.40	1.0	< 1.0 U
309-00-2	Aldrin	0.48	1.0	< 1.0 U
60-57-1	Dieldrin	0.84	2.0	< 2.0 U
72-55-9	4,4'-DDE	1.1	2.0	2.7
72-54-8	4,4'-DDD	1.3	2.0	2.4
50-29-3	4,4'-DDT	0.88	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.92	1.0	< 1.0 U
5103-71-9	alpha Chlordane	0.36	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.5%
Tetrachlorometaxylene	72.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 16:16 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: T601-C3-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 24.2%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.49	1.0	< 1.0 U
76-44-8	Heptachlor	0.40	1.0	< 1.0 U
309-00-2	Aldrin	0.48	1.0	< 1.0 U
60-57-1	Dieldrin	0.84	2.0	< 2.0 U
72-55-9	4,4'-DDE	1.1	2.0	< 2.0 U
72-54-8	4,4'-DDD	1.3	2.0	< 2.0 U
50-29-3	4,4'-DDT	0.88	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.92	1.0	< 1.0 U
5103-71-9	alpha Chlordane	0.37	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	90.0%
Tetrachlorometaxylene	73.0%

1. Carlos

10

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 16:36 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: T601-MD SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.6 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes

Percent Moisture: 34.3%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.96	2.0	< 2.0 U
76-44-8	Heptachlor	0.79	2.0	< 2.0 U
309-00-2	Aldrin	0.93	2.0	< 2.0 U
60-57-1	Dieldrin	1.6	3.9	< 3.9 U
72-55-9	4,4'-DDE	2.2	3.9	3.3 J
72-54-8	4,4'-DDD	2.5	3.9	4.4 J
50-29-3	4,4'-DDT	1.7	3.9	< 3.9 U
5103-74-2	gamma Chlordane	1.8	2.0	< 2.0 U
5103-71-9	alpha Chlordane	0.71	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.5%
Tetrachlorometaxylene	75.0%

5

 $|s| \cdot |2|$

SW8081 PESTICIDE SOLID SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

Client ID	DCBP	TCMX	TOT OUT
MB-031808	104%	90.5%	0
LCS-031808	91.5%	80.8%	0
LCSD-031808	97.5%	85.0%	0
T601-C1-Z	90.8%	83.0%	0
T601-C2-Z	89.5%	72.2%	0
T601-C3-Z	90.08	73.0%	0
T601-MD	89.5%	75.0%	0

	LCS/MB LIMITS	QC LIMITS
(DCBP) = Decachlorobiphenyl	(65-125)	(52-143)
(TCMX) = Tetrachlorometaxylene	(53-112)	(43-128)

Prep Method: SW3550B Log Number Range: 08-5468 to 08-5471

···· 2.42- 1

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/20/08 13:01 LCSD: 03/20/08 13:20 Instrument/Analyst LCS: ECD4/YZ LCSD: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes

Florisil Cleanup: No

Sample ID: LCS-031808 LCS/LCSD

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount LCS: 25.0 g-dry-wt LCSD: 25.0 g-dry-wt Final Extract Volume LCS: 5.0 mL LCSD: 5.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: Yes

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
gamma-BHC (Lindane)	4.36	4.00	109%	4.56	4.00	114%	4.5%
Heptachlor	3.44	4.00	86.0%	3.92	4.00	98.0%	13.0%
Aldrin	4.26	4.00	106%	4.20	4.00	105%	1.4%
Dieldrin	8.34	8.00	104%	8.72	8.00	1098	4.5%
4,4'-DDE	8.70	8.00	109%	9.34	8.00	1178	7.1%
4,4'-DDD	8.12	8.00	102%	8.64	8.00	108%	6.2%
4,4'-DDT	7.80	8.00	97.5%	8.12	8.00	102%	4.0%
gamma Chlordane	4.10	4.00	102%	4.16	4.00	104%	1.5%
alpha Chlordane	4.34	4.00	108%	4.46	4.00	112%	2.7%

Pest/PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	91.5%	97.5%
Tetrachlorometaxylene	80.8%	85. 0 %

Reported in μ g/kg (ppb) RPD calculated using sample concentrations per SW846. FORM 4 PESTICIDE METHOD BLANK SUMMARY

SAMPLE NO.

		MN42MBS1
Lab Name: ANALYTICAL RESOURCES, INC	Client: HART CROWSER	<u>ا</u>
ARI Job No.: MN42	Project: PORT OF POF	RTLAND T5
Lab Sample ID: MN42MBS1	Lab File ID: 0320A00)7
Matrix (soil/water) SOLID	Extraction:(SepF/Cor	t/Sonc) SW3550B
Sulfur Cleanup (Y/N) Y	Date Extracted: 03/1	8/08
Date Analyzed (1): 03/20/08	Date Analyzed (2): 0	3/20/08
Time Analyzed (1): 1241	Time Analyzed (2): 1	241
Instrument ID (1): ECD4	Instrument ID (2): E	CD4
GC Column (1): STX-CLP1 ID: 0.53(mm)	GC Column (2): STX-C	LP2 ID: 0.53(mm)
THIS METHOD BLANK APPLIES TO TH	HE FOLLOWING SAMPLES,	MS and MSD:

	1	<u> </u>		· .
	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	=================	==================	=========	=========
01	MN42LCSS1	MN42LCSS1	03/20/08	03/20/08
02	MN42LCSDS1	MN42LCSDS1	03/20/08	03/20/08
03	T607-C4-Z	MN42D	03/20/08	03/20/08
·04	T607-C5-Z	MN42E	03/20/08	03/20/08
05	T607-C6-Z	MN42F	03/20/08	03/20/08
06		MN42FMS	03/20/08	03/20/08
07	T607-C6-Z MS	MN42FMSD	03/20/08	03/20/08
	T607-MD	MN42G	03/20/08	03/20/08
09		MN43D	03/20/08	03/20/08
10		MN43E	03/20/08	03/20/08
-11	T601-C3-Z	MN43F	03/20/08	03/20/08
12		MN43G	03/20/08	03/20/08
13	T501-C12-DPZ	MN44D	03/20/08	03/20/08

FORM IV PEST

ige 1 of 1

ġ,

1

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 12:41 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: MB-031808 METHOD BLANK

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.49	1.0	< 1.0 U
76-44-8	Heptachlor	0.40	1.0	< 1.0 U
309-00-2	Aldrin	0.48	1.0	< 1.0 U
60-57-1	Dieldrin	0.84	2.0	< 2.0 U
72-55-9	4,4'-DDE	1.2	2.0	< 2.0 U
72-54-8	4,4'-DDD	1.3	2.0	< 2.0 U
50-29-3	4,4'-DDT	0.88	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.92	1.0	< 1.0 U
5103-71-9	alpha Chlordane	0.37	1.0	< 1.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	104%
Tetrachlorometaxylene	90.5%

PCBS

1

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: VTS Reported: 03/26/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:42 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: T601-C1-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 34.0%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	10	< 10 U
53469-21-9 12672-29-6	Aroclor 1242	3.3	10	< 10 U
11097-69-1	Aroclor 1248 Aroclor 1254	3.3	10 10	< 10 U < 10 U
11096-82-5	Aroclor 1260	3.3	10	< 10 U < 10 U
11104-28-2	Aroclor 1221	3.3	10	< 10 U
11141-16-5	Aroclor 1232	3.3	10	< 10 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	82.2%
Tetrachlorometaxylene	75.2%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized: VTS Reported: 03/26/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:59 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: T601-C2-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 30.4%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	10	< 10 U
53469-21-9	Aroclor 1242	3.3	10	< 10 U
12672-29-6	Aroclor 1248	3.3	10	< 10 U
11097-69-1	Aroclor 1254	3.3	10	< 10 U
11096-82-5	Aroclor 1260	3.3	10	< 10 U
11104-28-2	Aroclor 1221	3.3	10	< 10 U
11141-16-5	Aroclor 1232	3.3	10	< 10 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	75.0%
Tetrachlorometaxylene	69.8%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: VTS Reported: 03/26/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 17:16 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

ANALYTICAL RESOURCES INCORPORATED

1911 NA 1944 N

Sample ID: T601-C3-Z SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 24.2%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	10	< 10 U
53469-21-9	Aroclor 1242	3.3	10	< 10 U
12672-29-6	Aroclor 1248	3.3	10	< 10 U
11097-69-1	Aroclor 1254	3.3	10	< 10 U
11096-82-5	Aroclor 1260	3.3	10	< 10 U
11104-28-2	Aroclor 1221	3.3	10	< 10 U
11141-16-5	Aroclor 1232	3.3	10	< 10 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	87.8%
Tetrachlorometaxylene	81.0%

Ľ,

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized: VTS Reported: 03/26/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 17:33 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: T601-MD SAMPLE

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.6 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 34.3%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.2	9.8	< 9.8 U
53469-21-9	Aroclor 1242	3.2	9.8	< 9.8 U
12672-29-6	Aroclor 1248	3.2	9.8	< 9.8 U
11097-69-1	Aroclor 1254	3.2	9.8	< 9.8 U
11096-82-5	Aroclor 1260	3.2	9.8	< 9.8 U
11104-28-2	Aroclor 1221	3.2	9.8	< 9.8 U
11141-16-5	Aroclor 1232	3.2	9.8	< 9.8 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	70.8%
Tetrachlorometaxylene	66.0%

2

SW8082/PCB SOLIDS SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2

DCBP	DCBP	TCMX	TCMX	
% REC	LCL-UCL	% REC	LCL-UCL	TOT OUT
92.5%	36-130	89.8%	30-119	0
92.5%	36-130	85.2%	30-119	0
89.5%	36-130	85.0%	30-119	0
82.2%	33-149	75.2%	32-121	0
75.0%	33-149	69.8%	32-121	0
87.8%	33-149	81.0%	32-121	0
70.8%	33-149	66.0%	32-121	0
	% REC 92.5% 92.5% 89.5% 82.2% 75.0% 87.8%	% REC LCL-UCL 92.5% 36-130 92.5% 36-130 89.5% 36-130 82.2% 33-149 75.0% 33-149 87.8% 33-149	% REC LCL-UCL % REC 92.5% 36-130 89.8% 92.5% 36-130 85.2% 89.5% 36-130 85.0% 82.2% 33-149 75.2% 75.0% 33-149 69.8% 87.8% 33-149 81.0%	% REC LCL-UCL % REC LCL-UCL 92.5% 36-130 89.8% 30-119 92.5% 36-130 85.2% 30-119 89.5% 36-130 85.0% 30-119 82.2% 33-149 75.2% 32-121 75.0% 33-149 69.8% 32-121 87.8% 33-149 81.0% 32-121

Prep Method: SW3550B Log Number Range: 08-5468 to 08-5471

FORM-II SW8082

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: VIS Reported: 03/25/08

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/21/08 14:24

Instrument/Analyst LCS: ECD5/PK

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

LCSD: 03/21/08 14:42

LCSD: ECD5/PK

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA Sample Amount LCS: 25.0 g-dry-wt

Sample ID: LCS-031808

LCS/LCSD

LCSD: 25.0 g-dry-wt Final Extract Volume LCS: 2.5 mL LCSD: 2.5 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	38.7	50.4	76.8%	38.3	50.4	76.0%	1.0%
Aroclor 1260	43.6	50.4	86.5%	42.4	50.4	84.1%	2.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	92.5%	89.5%
Tetrachlorometaxylene	85.2%	85.0%

Results reported in μ g/kg (ppb) RPD calculated using sample concentrations per SW846. PCB METHOD BLANK SUMMARY

BLANK NO.

MN42MBS1

Lab Name: ANALYTICAL RESOURCES, INC	Client: HART CROWSER
ARI Job No.: MN42	Project: PORT OF PORTLAND T6-
Lab Sample ID: MN42MBS1	Lab File ID: 0321B015
Date Extracted: 03/18/08	Matrix: SOLID
Date Analyzed: 03/21/08	Instrument ID: ECD5
Time Analyzed: 1407	GC Columns: ZB5/ZB35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	1		
	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=======================================	=========	===========
	MN42LCSS1	MN42LCSS1	03/21/08
02	MN42LCSDS1	MN42LCSDS1	03/21/08
03	T607-C4-Z	MN42D	03/21/08
04	T607-C5-Z	MN42E	03/21/08
05	T607-C5-Z MS	MN42EMS	03/21/08
06	T607-C5-Z MSD	MN42EMSD	03/21/08
07	T607-C6-Z	MN42F	03/21/08
08	T607-MD	MN42G	03/21/08
09	T601-C1-Z	MN43D	03/21/08
10	T601-C2-Z	MN43E	03/21/08
11	T601-C3-Z	MN43F	03/21/08
12	T601-MD	MN43G	03/21/08
13	T501-C12-DPZ	MN44D	03/21/08
			00/21/00
	ATT DIDIO TOT DITE		

ALL RUNS ARE DUAL COLUMN

ge 1 of 1

FORM IV PCB

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Lab Sample ID: MB-031808 LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized: VTS Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 14:07 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: MB-031808 METHOD BLANK

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	10	< 10 U
53469-21-9	Aroclor 1242	3.3	10	< 10 U
12672-29-6	Aroclor 1248	3.3	10	< 10 U
11097-69-1	Aroclor 1254	3.3	10	< 10 U
11096-82-5	Aroclor 1260	3.3	10	< 10 U
11104-28-2	Aroclor 1221	3.3	10	< 10 U
11141-16-5	Aroclor 1232	3.3	10	< 10 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	92.5%
Tetrachlorometaxylene	89.8%

• METALS

17. ⁶1. 1921 (s. s.

ŝ

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/28/08 Sample ID: T607-C4-Z DUPLICATE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis	a b			Control	
Allaryte	Method	Sample	Duplicate	RPD	Limit	Q
Antimony	200.8	0.3 U	0.3 U	0.0%	+/- 0.3	L
Arsenic	200.8	3.8	3.5	8.2%	+/- 20%	
Cadmium	6010B	0.9	0.9	0.0%	+/-0.3	L
Chromium	6010B	18.9	18.3	3.2%	+/- 20%	
Copper	6010B	27.5	25.2	8.7%	+/- 20%	
Lead	6010B	12	12	0.0%	+/-3	L
Mercury	7471A	0.08	0.09	11.8%	+/- 0.05	L
Nickel	6010B	17	16	6.1%	+/- 20%	Ц
Silver	6010B	0.4 U	0.4 U	0.0%	+/-0.4	L
Zinc	6010B	135	130	3.8%	+/- 20%	

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

J.M.

....

「中国の主義機能はないでのないない」と

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T607-C4-Z MATRIX SPIKE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	a a		Spike	ક	
	Method	Sample	Spike	Added	Recovery	Q
Antimony	200.8	0.3 U	1.0	36.9	2.7%	N
Arsenic	200.8	3.8	36.1	36.9	87.5%	IN
Cadmium	6010B	0.9	66.4	72.7	90.1%	
Chromium	6010B	18.9	81.6	72.7	86.28	
Copper	6010B	27.5	89.0	72.7	84.6%	
Lead	6010B	12	262	291	85.9%	
Mercury	7471A	0.08	0.62	0.519	104%	
Nickel	6010B	17	77	72.7	82.5%	
Silver	6010B	0.4 U	61.1	72.7	84.0%	
Zinc	6010B	135	200	72.7	89.4%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

1

133

¢, 1

. ۲۵.

j.

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T601-C1-Z SAMPLE

Lab Sample ID: MN43D LIMS ID: 08-5468 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/Т2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 63.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
20505	00/10/00					· · · · · · · · · · · · · · · · · · ·			
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.20	0.3	0.3	U
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.30	0.3	3.1	
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.030	0.3	0.7	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.42	0.7	18.5	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.060	0.3	25.8	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.30	3	10	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0072	0.07	0.08	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.46	1	16	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.16	0.4	0.4	U
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.42	1	105	-

 \dot{v}

And the second

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T601-C2-Z SAMPLE

Lab Sample ID: MN43E LIMS ID: 08-5469 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 68.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
								· · · · ·	
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.18	0.3	0.3	U
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.27	0.3	3.3	-
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.029	0.3	0.9	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.40	0.7	17.9	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.057	0.3		
3050B	03/18/08	6010B	03/21/08	7439-92-1		-		21.8	
CLP					Lead	0.29	3	12	
	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0071	0.07	0.08	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.44	1	16	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.16	0.4	0.4	IJ
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.40	1	126	0

ar an an tha an tha

A second s

5

'n

. . . .

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T601-C3-Z SAMPLE

Lab Sample ID: MN43F LIMS ID: 08-5470 Matrix: Sediment Data Release Authorized: Reported: 03/28/08 QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 77.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.17	0.3	0.3	
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.25	0.3	1.5	
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.025	0.3	0.3	U
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.35	0.6	15.0	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.051	0.3	10.4	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.25	3	4	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0045	0.05	0.05	U
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.39	1	13	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.14	0.4	0.4	Ŭ
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.35	1	49	

.

154

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T601-MD SAMPLE

Lab Sample ID: MN43G LIMS ID: 08-5471 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN43-Hart Crowser Project: Port of Portland T6 Berth 601 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 61.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.20	0.3	0.2	 FT
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.20	0.3	0.3 3.1	0
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.031	0.3	0.8	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.44	0.8	18.7	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.062	0.3	24.7	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.31	3	10	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0061	0.06	0.09	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.48	2	16	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.17	0.5	0.5 (T T
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.44	2	115	0

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Sample ID: LAB CONTROL

Page 1 of 1

Lab Sample ID: MN42LCS LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

_	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Antimony	200.8	25.6	25.0	102%	
Arsenic	200.8	27.0	25.0	102%	
Cadmium	6010B	53.0	50.0	106%	
Chromium	6010B	51.8	50.0	104%	
Copper	6010B	52.6	50.0	105%	
Lead	6010B	205	200	102%	
Mercury	7471A	1.04	1.00	104%	
Nickel	6010B	51	50	102%	
Silver	6010B	49.8	50.0	99.6%	
Zinc	6010B	51	50	102%	

Reported in mg/kg-dry

N-Control limit not met Control Limits: 80-120%

Ì

isterna ultikulte

6

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: MN42MB LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-т2 Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
03/10/00	0.0.0.0	00/00/00		-				
		03/20/08	/440-36-0	Antimony	0.13	0.2	0.2	U
	200.8	03/20/08	7440-38-2	Arsenic	0.20	0.2	0.2	U
03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.020	0.2	0.2	U
03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.28	0.5	0.5	U
03/18/08	6010B	03/21/08	7440-50-8	Copper	0.040	0.2	0.2	Ū
03/18/08	6010B	03/21/08	7439-92-1	Lead	0.20	2	2	Ū
03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0050	0.05	0.05	U
03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.31	1	1	U
03/18/08	6010B	03/21/08	7440-22-4	Silver		03	о з	U
03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.28	1	1	U
	Date 03/18/08 03/18/08 03/18/08 03/18/08 03/18/08 03/18/08 03/18/08 03/18/08	DateMethod03/18/08200.803/18/08200.803/18/086010B03/18/086010B03/18/086010B03/18/086010B03/18/087471A03/18/086010B03/18/086010B03/18/086010B	DateMethodDate03/18/08200.803/20/0803/18/08200.803/20/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/0803/18/086010B03/21/08	DateMethodDateCAS Number03/18/08200.803/20/087440-36-003/18/08200.803/20/087440-38-203/18/086010B03/21/087440-43-903/18/086010B03/21/087440-47-303/18/086010B03/21/087440-50-803/18/086010B03/21/087439-92-103/18/086010B03/21/087439-92-103/18/086010B03/21/087440-02-003/18/086010B03/21/087440-02-003/18/086010B03/21/087440-22-4	DateMethodDateCAS NumberAnalyte03/18/08200.803/20/087440-36-0Antimony03/18/08200.803/20/087440-38-2Arsenic03/18/086010B03/21/087440-43-9Cadmium03/18/086010B03/21/087440-47-3Chromium03/18/086010B03/21/087440-50-8Copper03/18/086010B03/21/087439-92-1Lead03/18/086010B03/21/087439-97-6Mercury03/18/087471A03/21/087440-02-0Nickel03/18/086010B03/21/087440-22-4Silver	DateMethodDateCAS NumberAnalyteMDL03/18/08200.803/20/087440-36-0Antimony0.1303/18/08200.803/20/087440-38-2Arsenic0.2003/18/086010B03/21/087440-43-9Cadmium0.02003/18/086010B03/21/087440-47-3Chromium0.2803/18/086010B03/21/087440-50-8Copper0.04003/18/086010B03/21/087439-92-1Lead0.2003/18/086010B03/21/087439-97-6Mercury0.005003/18/086010B03/21/087440-02-0Nickel0.3103/18/086010B03/21/087440-22-4Silver0.1103/18/086010B03/21/087440-22-4Silver0.11	DateMethodDateCAS NumberAnalyteMDLRL03/18/08200.803/20/087440-36-0Antimony0.130.203/18/08200.803/20/087440-38-2Arsenic0.200.203/18/086010B03/21/087440-43-9Cadmium0.0200.203/18/086010B03/21/087440-47-3Chromium0.280.503/18/086010B03/21/087440-50-8Copper0.0400.203/18/086010B03/21/087439-92-1Lead0.20203/18/086010B03/21/087439-97-6Mercury0.00500.0503/18/086010B03/21/087440-02-0Nickel0.31103/18/086010B03/21/087440-22-4Silver0.110.3	DateMethodDateCAS NumberAnalyteMDLRLResult03/18/08200.803/20/087440-36-0Antimony0.130.20.203/18/08200.803/20/087440-38-2Arsenic0.200.20.203/18/086010B03/21/087440-43-9Cadmium0.0200.20.203/18/086010B03/21/087440-47-3Chromium0.280.50.503/18/086010B03/21/087440-50-8Copper0.0400.20.203/18/086010B03/21/087439-92-1Lead0.202203/18/086010B03/21/087439-97-6Mercury0.00500.050.0503/18/086010B03/21/087440-02-0Nickel0.311103/18/086010B03/21/087440-22-4Silver0.110.30.303/18/086010B03/21/087440-22-4Silver0.110.30.303/18/086010B03/21/087440-22-4Silver0.110.30.3

GENERAL CHEMISTRY

Matrix: Sediment Data Release Authorized Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T601-C1-Z ARI ID: 08-5468 MN43D

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	64.40
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	62.60
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	2.92	137
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	14.8	34.1
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	0.947

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

57

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T601-C2-Z ARI ID: 08-5469 MN43E

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	65.10
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	68.30
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	2.99	176
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	12.9	36.6
Total Organic Carbon	03/20/08 032008#1	Plumb, 1981	Percent	0.020	0.971

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

Soil Sample Report-MN43

Matrix: Sediment Data Release Authorized: Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T601-C3-Z ARI ID: 08-5470 MN43F

Analyte	Date	Method	Units	RL	Sample	
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	79.90	
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	74.50	٠
N-Ammonia	03/19/08 031908#2	EPA 350.1M	mg-N/kg	0.24	12.8	
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	1.33	< 1.33	U
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	0.252	

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

SAMPLE RESULTS-CONVENTIONALS MN43-Hart Crowser

Χ.,

Matrix: Sediment Data Release Authorized: Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T601-MD ARI ID: 08-5471 MN43G

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	63.00
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	62.60
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	3.10	112
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	15.4	61.7
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	1.04

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

1e

÷

 $\mathcal{L}^{(1)} = \mathcal{D}^{(1)} \mathcal{L}^{(2)} = \mathcal{D}^{(1)} \mathcal{L}^{(2)} \mathcal{D}^{(2)} \mathcal{D}^$

Matrix: Sediment Data Release Authorized Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	03/18/08	Percent	< 0.01 U
	03/18/08		< 0.01 U
Preserved Total Solids	03/18/08	Percent	< 0.01 U
	03/18/08		< 0.01 U
N-Ammonia	03/19/08	mg-N/kg	< 0.10 U
	03/19/08		< 0.10 U
Sulfide	03/19/08	mg/kg	< 1.00 U
Total Organic Carbon	03/20/08	Percent	< 0.020 U

LAB CONTROL RESULTS-CONVENTIONALS MN43-Hart Crowser

Samatra a state es

Matrix: Sediment Data Release Authorized: Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	03/19/08	mg/kg	6.59	6.94	95.0%
Total Organic Carbon	03/20/08	Percent	0.488	0.500	97.6%

Matrix: Sediment Data Release Authorized Reported: 03/25/08 Project: Port of Portland T6 Berth 60 Event: 15667/T2 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
		· · ·			
N-Ammonia	03/19/08	mg-N/kg	101	100	101.0%
SPEX 28-24AS	03/19/08		100	100	100.0%
Total Organic Carbon NIST #8704	03/20/08	Percent	3.03	3.35	90.4%

GRAINSIZE

Hart Crowser Port of Portland T6 Berth 601 15667/T2

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Silt		Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
6A-T	100.0	99.6	98.1	96.7	95.7	94.4	92.2	82.3	61.7	41.3	27.3	18.8	12.5	7.9
6A-T	100.0	99.9	98.8	97.7	96.8	95.9	94.0	83.2	62.9	42.4	28.2	19.2	12.8	8.0
6A-T	100.0	100.0	99.2	98.3	97.5	96.4	94.5	84.7	65.0	44.2	29.8	20.2	13.5	8.5
T601-C1-Z	100.0	100.0	99.8	99.6	99.4	99.0	96.4	72.6	40.3	23.9	13.6	8.3	5.5	3.4
T601-C2-Z	100.0	100.0	99.8	99.3	98.0	91.2	76.3	53.0	32.0	18.7	11.4	7.1	4.6	2.7
T601-C3-Z	100.0	100.0	100.0	99.8	97.4	86.1	27.0	12.0	6.4	3.9	2.3	1.6	1.1	0.6
T601-MD	100.0	100.0	99.8	99.5	99.1	94.9	80.4	59.5	38.3	22.3	13.0	8.3	5.6	3.4

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

MN43

Hart Crowser Port of Portland T6 Berth 601 15667/T2

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
6A-T	1.9	1.4	1.0	1.2	2.2	9.9	20.7	20.4	13.9	8.6	6.3	4.7	7.9	82.3
6A-T	1.2	1.1	0.9	1.0	1.9	10.8	20.3	20.5	14.2	9.0	6.3	4.9	8.0	83.2
6A-T	0.8	0.9	0.8	1.1	1.9	9.8	19.7	20.8	14.4	9.6	6.7	5.0	8.5	84.7
T601-C1-Z	0.2	0.2	0.2	0.4	2.6	23.8	32.3	16.4	10.3	5.3	2.8	2.1	3.4	72.6
T601-C2-Z	0.2	0.5	1.3	6.8	14.9	23.3	21.0	13.3	7.3	4.3	2.5	1.9	2.7	53.0
T601-C3-Z	0.0	0.2	2.4	11.3	59.1	15.0	5.5	2.6	1.6	0.7	0.5	0.4	0.6	12.0
T601-MD	0.2	0.3	0.5	4.2	14.5	20.9	21.2	16.0	9.2	4.7	2.8	2.1	3.4	59.5

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

MN43

QA SUMMARY

PROJECT:	Hart Crowser	Project No.:	Port of Portland T6 Berth 601 15667/T2	
ARI Triplicate Sample ID:	MM88 C	Batch No.:	MN43 -1	
Client Triplicate Sample ID:	6A-T	Page:	1 of 1	

					Re	lative Stand	lard Deviati	on, By Phi S	Size	-				
Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
6A-T	100.0	99.6	98.1	96.7	95.7	94.4	92.2	82.3	61.7	41.3	27.3	18.8	12.5	7.9
6A-T	100.0	99.9	98.8	97.7	96.8	95.9	94.0	83.2	62.9	42.4	28.2	19.2	12.8	8.0
6A-T	100.0	100.0	99.2	98.3	97.5	96.4	94.5	84.7	65.0	44.2	29.8	20.2	13.5	8.5
AVE	NA	99.85	98.69	97.58	96.67	95.56	93.56	83.42	63.20	42.64	28.45	19.40	12.95	8.10
STDEV	NA	0.21	0.58	0.81	0.92	1.02	1.19	1.21	1.71	1.49	1.26	0.75	0.49	0.31
%RSD	NA	0.21	0.59	0.83	0.96	1.06	1.27	1.45	2.71	3.49	4.44	3.87	3.78	3.88

	The Tr	iplicate Applies To The Following S	Samples			
Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
6A-T	3/12/2008	3/18/2008	3/22/2008	97.6		19.6
6A-T	3/12/2008	3/18/2008	3/22/2008	99.1		19.6
6A-T	3/12/2008	3/18/2008	3/22/2008	102.1		20.2
T601-C1-Z	3/12/2008	3/18/2008	3/22/2008	99.7		20.4
T601-C2-Z	3/12/2008	3/18/2008	3/22/2008	102.2		18.3
T601-C3-Z	3/12/2008	3/18/2008	3/22/2008	101.1		12.1
T601-MD	3/12/2008	3/18/2008	3/22/2008	100.4		19.5

* ARI Internal QA limits = 95-105%

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

MN43

TOTAL SOLIDS

Extractions Total Solids-extts Data By: Warren P. Woodard Created: 3/17/08

Worklist: 7724 Analyst: MS Comments: 10

	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
1.	MN43D 08-5468 T601-C1-Z	1.10	12.40	8.56	66.0	NR
2.	MN43E 08-5469 T601-C2-Z	1.10	12.34	8.92	69.6	NR
3.	MN43F 08-5470 T601-C3-Z	1.10	14.10	10.96	75.8	NR
4.	MN43G 08-5471 T601-MD	1.12	12.74	8.76	65.7	NR

Solids Data Entry Report Date: 03/19/08 Checked by: Date: 3/40/06 Data Analyst: DM

Solids Determination performed on 03/18/08 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS	_
MN43 MN43 MN43 MN43 MN43	D E F G	T601-C1-Z T601-C2-Z T601-C3-Z T601-MD	1.013 1.020 1.015 1.050	10.625 10.471 10.793 10.568	7.077 7.486 8.620 6.891	63.09 68.42 77.78 61.37	

¥ - __ ~

Analytical Resources, Incorporated Analytical Chemists and Consultants

March 28, 2008

Mr. Rick Ernst Hart Crowser, Inc. 5 Centerpointe Dr #240 Lake Oswego, OR 97035

RE: Project: T6- Berth 607, 156671 T2 ARI Job No: MN42

Dear Mr. Ernst:

Please find enclosed the original chain of custody documentation and the analytical results for the samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted seven sediment samples on March 14, 2008. The samples were received in good condition at 5.8°C. There were no discrepancies between the sample containers' labels and the COC. Three samples have been placed on hold pending further instructions.

The samples were analyzed for PSDDA PCBs, TBT, Pesticides, SIM PNAs, PSDDA SVOA, TOC, TS, Sulfide, Ammonia, Grainsize and Total Metals, as requested on the COC.

Please reference the Case Narrative for analytical details associated with this project.

An electronic copy of these reports and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALY ACAL RESOURCES, INC.

Kelly Bottem Client Services Manager kellyb@arilabs.com 206/695-6211

Enclosures

cc: files MN42

Chain of Custody Documentation

prepared for

HART CROWSER, INC.

Project: Port of Portland T6-Berth 607, 15667-T2

ARI JOB NO: MN42

prepared by

Analytical Resources, Inc.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: MARI Client Company: Hart Charge: Client Contact: Client Contact:	Turn-around		stard 3-00 er	0-7784	Page: Date: No. of Coolers:	1 1,2108	of Ice Prese Coole Temp	19	S Part	ially welled		Analytic 4611 So Tukwila,	al Resources, Incorporated al Chemists and Consultants outh 134th Place, Suite 100 WA 98168 5-6200 206-695-6201 (fax)
Client Project Name:	17)	1.1	11			ι. 	<u>i </u>	Analysis F	Requested	L	10-7	1	Notes/Comments
Port of Portla	rd Tlo	-Brt	JUOT			୶	545 1					1 &	
Client Project #: 15667-T2	Samplers:	15A G	1020E	К	1 je 1	-512	Art Mrt	5/NH3 Sulle	١	でたう	Sec	às/Pert− 8281A18083	
Sample ID	Date	Time	Matrix	No. Containers	Arch	Grain-G	SETTIO Metals	TOC/TS/ TOTALS	187	12445 8270-	SUDCS 8270	PCds/Dert 8281A18	
T607-C4-MD	3/2/08	1530	S	2	\boldsymbol{X}								
T1007-05-MD	312/08	1610	S	2	X								
T607-CLE-MD	3/12/08	1700	5	2	X								
TLE07-C4-Z	3/12/08	1530	S	5		X	X	\times	X	\boldsymbol{X}	X	$\left X \right $	Anchelie fettager sedment
T1007-C5-Z	312008	11010	S	5		X	X	X	X	X	X	\times	
TIOO7-Cle-Z	31208	(700	S	5		X	X	X	X	X	\times	\mathbf{X}	
TIOO7-MD	3/12/08	I715	S	5		X	X	X	X	X	X	$\dot{\succ}$	\checkmark
											·		
Comments/Special Instructions	Relinquished by (Signature)	Da Y	lonet	Received by: (Signature)	7/208	M.		Relinquished (Signature)	by:			Received by: (Signature)	
	Printed Name:	ING	K	Printed Name:	osh	, (Printed Name	9:			Printed Name	3:
	Company:	Course	~, ~~	Company:	(×		Company:				Company:	
	Date & Time:	$\frac{500}{100}$	ý V	Date & Time:	1/08	09	20	Date & Time:				Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

	Analytical Resources, Incorporated Analytical Chemists and Consultants
--	---

Cooler Receipt Form

ARI Client:	Hart Crowser	
COC No:		

Assigned ARI Job No:

Project Name:_	Port of	Port	and T	6-Bert	h 60
Delivered by: _					
Fracking No:	• • •				
				· .	

Preliminary Examination Phase:

Were intact, properly signed and dated custody seals attached to the outside of to cooler?	(YES)	NO
Were custody papers included with the cooler?	B	NO
Were custody papers properly filled out (ink, signed, etc.)	VES	NO
Record cooler temperature (recommended 2.0-6.0 °C for chemistry	5.8	°C
Cooler Accepted by:	ime: <u>09</u>	20

Cooler Accepted by: _________

Complete custody forms and attach all shipping documents

Log-In Phase:

Was a temperature blank included in the cooler?	YES	NO
What kind of packing material was used?	BW/	
Was sufficient ice used (if appropriate)?	YES	NO
Were all bottles sealed in individual plastic bags?	YES	NO
Did all bottle arrive in good condition (unbroken)?	(YES)*	NO
Were all bottle labels complete and legible?	YES	NO
Did all bottle labels and tags agree with custody papers?	ES	NO
Were all bottles used correct for the requested analyses?	(YES)	NO
Do any of the analyses (bottles) require preservation? (attach preservation checklist)	YES	NO
Were all VOC vials free of air bubbles?	YES	NO
Was sufficient amount of sample sent in each bottle?	(ES)	NO
Samples Logged by: SAOShi 1 Date:3/17/08 Time:	6640	-

** Notify Project Manager of discrepancies or concerns **

	cies or negative responses: T607 -C6 - MD - both lide	cracked; replaced	at sample receiving.
Sample Sample	T607-06-2 11602 jar lin T607-nd "	derackedj 11	
	By:	Date:	

Case Narrative

prepared for

HART CROWSER, INC.

Project: Port of Portland T6-Berth 607, 15667-T2

ARI JOB NO: MN42

prepared by

Analytical Resources, Inc.

<u>Case Narrative</u> Hart Crowser Port Of Portland ARI Job: MN42 March 28, 2008

Semivolatile Analysis (PSDDA 8270D):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/20/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated Semivolatile organics list.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries are in control.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

Semivolatile SIM Analysis (8270D):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/19/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated SIM Semivolatile organics list.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

<u>Case Narrative</u> Hart Crowser Port Of Portland ARI Job: MN42 March 28, 2008 Page 2

Tributyl Tin Analysis (GC/MS Krone):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated Tributyl Tins analysis.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries were in control.

The matrix spike is out of control low for Dibutyl Tin and Butyl Tin with wide RPDs for both Ions for sample T607-C4-Z. The matrix spike recoveries are in control.

PCB and Pesticides Analysis (PSDDA):

The samples were extracted on 3/18/08 and the extracts were analyzed on 3/20/08 and 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): All method blanks were free of contamination

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the analyses.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

Case Narrative Hart Crowser **Port Of Portland** ARI Job: MN42 March 28, 2008 Page 3

Total Metals Analysis:

The samples were digested on 3/18/08 and the samples were analyzed between 3/20/08 and 3/21/08 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): The method blank was free of contamination

Samples: There were no anomalies associated with this analysis.

LCS/LCSD (s): All percent recoveries were in control.

The Matrix Spike is out of control low for Antimony for the total metals analysis on sample T607-C4-Z. All other spike recoveries are in control; therefore no further corrective action was taken.

General Chemistry Analyses

All General chemistry samples were analyzed within the method recommended holding time for the analyses.

Samples: No anomalies were encountered for these samples.

Method Blank(s): All method blanks were free of element contamination.

LCS/SRM/Replicate: All percent recoveries and RPDs were in control.

Analytical Resources Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers Effective 12/28/04

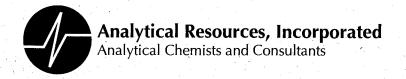
Inorganic Data

U Indicates that the target analyte was not detected at the reported concentration

- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for


Analytical Resources Incorporated Analytical Chemists and Consultants

- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

and a bar bar balling sang sang dina dina sang dina sang dina sang sang dina sang dina sang dina sang dina sang

Client: Hart Crowser

Project No.: MN42

Client Project: Port of Portland T6-Berth 607 15667-T2

Case Narrative

- 1. Four samples were submitted for grain size analysis according to PSEP methodology.
- 2. The samples were run in a single batch and one sample in the batch was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 3. The data is provided in summary tables and plots.
- 4. There were no other noted anomalies in this project.

Approved by: <u>*Tuylor Mc/Cenzie*</u> Title: Lead Jechnician Date: 3-24-08

Data Summary Package

prepared for

HART CROWSER, INC.

Project: Port of Portland T6-Berth 607, 15667-T2

ARI JOB NO: MN42

prepared by

Analytical Resources, Inc.

SEMIVOLATILE ORGANICS

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

DE GEORGE I V

ΰ.,

Sample ID: T607-C4-Z SAMPLE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 15:09 Instrument/Analyst: NT6/LJR GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 33.1%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	30
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	360
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	< 20 U
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	< 20 U
83-32-9	Acenaphthene	8.1	20	32
132-64-9	Dibenzofuran	7.4	20	< 20 U
84-66-2	Diethylphthalate	16	20	76
86-73-7	Fluorene	8.8	20	18 J
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	< 98 U
85-01-8	Phenanthrene	8.2	20	66
120-12-7	Anthracene	7.6	20	17 J
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	96
129-00-0	Pyrene	7.6	20	78
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	45
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	23
218-01-9	Chrysene	6.5	20	77
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	< 20 0 40
207-08-9	Benzo (k) fluoranthene	9.1	20	40 54
50-32-8	Benzo (a) pyrene	8.0	20	
193-39-5	Indeno (1,2,3-cd) pyrene			36
53-70-3	Dibenz (a, h) anthracene	8.4	20	28
191-24-2	Benzo (g, h, i) perylene	8.4	20	< 20 Ū
+/+ ⁻ 47~4	benzo (g, n, 1) perytene	6.6	20	23

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

×....

An edge Streph St. Shakan Arda the Caldeda

ē.,-

Sample ID: T607-C4-Z SAMPLE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Date Analyzed: 03/20/08 15:09

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

CAS Number Analyte

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

61.6% 75.2% 64.5% 74.9%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	65.6% 57.2% 64.0%
74.98	d4-2-Chlorophenol	64.5%
	75.2%	75.2%d4-1,2-Dichlorobenzene64.5%2-Fluorophenol

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

E

「日本日本の教育権において、その教育権的でなったのでにない

Sample ID: T607-C5-Z SAMPLE

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized:

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 15:41 Instrument/Analyst: NT6/LJR GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.3 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 Ŭ
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.3	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.8	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	280
120-82-1	1,2,4-Trichlorobenzene	9.0	20	< 20 U
91-20-3	Naphthalene	8.6	20	< 20 U
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	< 20 U
131-11-3	Dimethylphthalate	7.7	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	< 20 U
83-32-9	Acenaphthene	8.1	20	32
132-64-9	Dibenzofuran	7.5	20	16 J
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	34
86-30-6	N-Nitrosodiphenylamine	8.6	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	99	< 99 U
85-01-8	Phenanthrene	8.3	20	330
120-12-7	Anthracene	7.7	20	41
8 4 -74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	490
129-00-0	Pyrene	7.7	20	360
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55 - 3	Benzo(a) anthracene	5.9	20	120
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	32
218-01-9	Chrysene	6.6	20	120
117-84-0	Di-n-Octyl phthalate	8.2	20	·< 20 U
205-99-2	Benzo (b) fluoranthene	9.4	20	89
207-08-9	Benzo(k) fluoranthene	9.2	20	83 97
50-32-8	Benzo(a) pyrene	8.1	20	-
193-39-5	Indeno (1,2,3-cd) pyrene	8.5		81
53-70-3	Dibenz (a, h) anthracene		20	46
191-24-2	Benzo(g,h,i)perylene	8.5	20	13 J
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Peuro (A. II, I) het Areite	6.7	20	36



Arrist ... Sauce

 A statistical statisti Statistical statisticae statisticae statisticae statisticae statis

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T607-C5-Z SAMPLE

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Date Analyzed: 03/20/08 15:41

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U

Reported in  $\mu g/kg$  (ppb)

#### Semivolatile Surrogate Recovery

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	71.6%
d14-p-Terphenyl	81.6%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	66.4%	2-Fluorophenol	64.0%
2,4,6-Tribromophenol	82.7%	d4-2-Chlorophenol	66.4%

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2



 $\mathbf{b}$  $[\cdot, \cdot]$ 

- ことであります。 おようなななななない 人名英格兰 医部門の シング・シード アイ・ション・ 

5

-----

Sample ID: T607-C6-Z SAMPLE

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 16:14 Instrument/Analyst: NT6/LJR GPC Cleanup: No

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.9%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 t
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 t
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 t
100-51-6	Benzyl Alcohol	14	20	< 20 l
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 l
95-48-7	2-Methylphenol	14	20	< 20 l
106-44-5	4-Methylphenol	13	20	< 20 l
57-72-1	Hexachloroethane	7.1	20	< 20 t
105-67-9	2,4-Dimethylphenol	15	20	< 20 l
55-85-0	Benzoic Acid	110	200	140 J
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 l
91-20-3	Naphthalene	8.5	20	< 20 U
37-68-3	Hexachlorobutadiene	8.0	20	< 20 l
€1-57-6	2-Methylnaphthalene	8.1	20	< 20 Ŭ
L31-11-3	Dimethylphthalate	7.6	20	< 20 t
208-96-8	Acenaphthylene	8.5	20	< 20 Ŭ
33-32-9	Acenaphthene	8.1	20	30
132-64-9	Dibenzofuran	7.4	20	< 20 l
34-66-2	Diethylphthalate	16	20	< 20 Ŭ
86-73-7	Fluorene	8.8	20	11 J
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 Ŭ
18-74-1	Hexachlorobenzene	7.9	20	< 20 Ŭ
87-86-5	Pentachlorophenol	47	98	< 98 Ŭ
5-01-8	Phenanthrene	8.3	20	61
20-12-7	Anthracene	7.6	20	< 20 U
4-74-2	Di-n-Butylphthalate	12	20	< 20 U
06-44-0	Fluoranthene	7.8	.20	51
29-00-0	Pyrene	7.6	20	44
5-68 <b>-7</b>	Butylbenzylphthalate	11	20	< 20 U
6-55-3	Benzo(a) anthracene	5.8	20	15 J
17-81-7	bis(2-Ethylhexyl)phthalate	11	20	12 J
18-01-9	Chrysene	6.5	20	19 J
17-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
05-99-2	Benzo (b) fluoranthene	9.4	20	< 20 U
07-08-9	Benzo(k) fluoranthene	9.1	20	< 20 0 14 J
0-32-8	Benzo (a) pyrene	8.0	20	14 J
93-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	< 20 U
3-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U < 20 U
91-24-2	Benzo (g, h, i) perylene	6.6	20	< 20 U < 20 U

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2 ANALYTICAL RESOURCES INCORPORATED

÷

Sec.

Sample ID: T607-C6-Z SAMPLE

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Date Analyzed: 03/20/08 16:14

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U

Reported in  $\mu g/kg$  (ppb)

### Semivolatile Surrogate Recovery

72.8%
e 62.0%
69.3%
70.4%

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2



5 (

......

а. А .

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 16:46 Instrument/Analyst: NT6/LJR GPC Cleanup: No

Sample ID: T607-MD SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 32.8%

CAS Number	S Number Analyte		RL	Result	
108-95-2	Phenol	13	20	< 20 U	
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U	
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U	
100-51-6	Benzyl Alcohol	14	20	< 20 U	
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U	
95-48-7	2-Methylphenol	14	20	< 20 U	
106-44-5	4-Methylphenol	13	20	< 20 U	
67-72-1	Hexachloroethane	7.0	20	< 20 U	
105-67-9	2,4-Dimethylphenol	14	20	< 20 U	
65-85-0	Benzoic Acid	110	200	230	
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U	
91-20-3	Naphthalene	8.5	20	< 20 U	
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U	
91-57-6	2-Methylnaphthalene	8.0	20	< 20 U	
131-11-3	Dimethylphthalate	7.6	20	< 20 U	
208-96-8	Acenaphthylene	8.5	20	< 20 U	
83-32-9	Acenaphthene	8.0	20	100	
132-64-9	Dibenzofuran	7.4	20	37	
84-66-2	Diethylphthalate	16	20	< 20 U	
86-73-7	Fluorene	8.8	20	95	
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U	
118-74-1	Hexachlorobenzene	7.9	20	< 20 U	
87-86-5	Pentachlorophenol	47	98	< 98 U	
85-01-8	Phenanthrene	8.2	20	270	
120-12-7	Anthracene	7.6	20	50	
84-74-2	Di-n-Butylphthalate	12	20	< 20 U	
206-44-0	Fluoranthene	7.8	20	210	
129-00-0	Pyrene	7.6	20	140	
85-68-7	Butylbenzylphthalate	11	20	< 20 U	
56-55-3	Benzo (a) anthracene	5.8	20	< 20 0 72	
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	76	
218-01-9	Chrysene	6.5	20		
117-84-0	Di-n-Octyl phthalate	8.2	20	120	
205-99-2	Benzo (b) fluoranthene			< 20 U	
207-08-9	Benzo(k) fluoranthene	9.3	20	51	
50-32-8		9.1	20	85	
	Benzo(a)pyrene	8.0	20	60	
193-39-5	Indeno (1, 2, 3-cd) pyrene	8.4	20	27	
53-70-3	Dibenz(a,h)anthracene	8.4	20	< 20 U	
191-24-2	Benzo(g,h,i)perylene	6.6	20	22	



 $\mathbb{R}^{2}$ 

.....

1997 - 1997. 1997 - 1997

Sample ID: T607-MD SAMPLE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Date Analyzed: 03/20/08 16:46 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	< 20 U

Reported in  $\mu g/kg$  (ppb)

#### Semivolatile Surrogate Recovery

d5-Nitrobenzene	<b>7</b> 2.0%	2-Fluorobiphenyl	81.6%
d14-p-Terphenyl	91.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	77.9%	2-Fluorophenol	78.1%
2,4,6-Tribromophenol	93.6%	d4-2-Chlorophenol	78.7%



144. A

## SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2СР Т	от опт
T607-C4-Z	61.6%	65.6%		5.7.00	<i></i>				
			75.2%	57.2%	64.5%	64.0%	74.9%	64.5%	0
T607-C5-Z	62.4%	71.6%	81.6%	54.8%	66.4%	64.0%	82.7%	66.4%	0
T607-C6-Z	66.4%	72.8%	82.0%	62.0%	68.0%	69.3%	82.4%	70.4%	0
MB-031808	68.0%	72.0%	89.2%	66.8%	75.7%	73.9%	81.9%	76.0%	0
LCS-031808	69.6%	77.2%	89.6%	66.4%	77.3%	74.9%	87.7%	76.3%	õ
LCSD-031808	69.2%	74.0%	87.6%	66.4%	76.3%	73.9%	83.28	75.5%	õ
T607-MD	72.0%	81.6%	91.2%	65.6%	77.9%	78.1%	93.6%	78.78	õ
T607-MD MS	65.2%	71.6%	79.2%	56.0%	69.9%	69.1%	80.3%	69.9%	õ
T607-MD MSD	66.4%	72.8%	81.6%	62.8%	71.2%	71.7%	81.6%	71.7%	õ

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(37-85)	(29-87)
(FBP) = 2-Fluorobiphenyl	(39-82)	(32-88)
(TPH) = d14-p-Terphenyl	(38-105)	(21-97)
(DCB) = d4-1, 2-Dichlorobenzene	(33-79)	(25-82)
(PHL) = d5-Phenol	(40-85)	(29-85)
(2FP) = 2-Fluorophenol	(20-93)	(10-114)
(TBP) = 2,4,6-Tribromophenol	(40-96)	(25-103)
(2CP) = d4-2-Chlorophenol	(41-81)	(30-84)

Prep Method: SW3550B Log Number Range: 08-5461 to 08-5464



en ander soldtate der eine State für der

120228

ŝ

ć

orden er skalar ander er steller og som er steller og som er steller og som er ----

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted MS/MSD: 03/18/08

Date Analyzed MS: 03/20/08 17:18 MSD: 03/20/08 17:50 Instrument/Analyst MS: NT6/LJR MSD: NT6/LJR GPC Cleanup: NO

Sample ID: T607-MD MS/MSD

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount MS: 25.5 g-dry-wt MSD: 25.5 g-dry-wt Final Extract Volume MS: 0.5 mL MSD: 0.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Percent Moisture: 32.8 %

Analyte		Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	<	19.6	364	489	74.4%	336	489	68.7%	8.0%
1,3-Dichlorobenzene	<	19.6	305	489	62.4%	286	489	58.5%	6.4%
1,4-Dichlorobenzene	<	19.6	307	489	62.8%	290	489	59.3%	5.7%
Benzyl Alcohol	<	19.6	635	979	64.9%	655	979	66.9%	3.1%
1,2-Dichlorobenzene	<	19.6	316	489	64.6%	300	489	61.3%	5.2%
2-Methylphenol	<	19.6	365	489	74.6%	336	489	68.7%	8.3%
4-Methylphenol	<	19.6	752	979	76.8%	697	979	71.2%	7.6%
Hexachloroethane	<	19.6	265	489	54.2%	219	489	44.8%	19.0%
2,4-Dimethylphenol	<	19.6	366	489	74.8%	336	489	68.7%	8.5%
Benzoic Acid		226	1190	1470	65.6%	1190	1470	65.6%	0.0%
1,2,4-Trichlorobenzene		19.6	344	489	70.3%	319	489	65.2%	7.5%
Naphthalene	<	19.6	347	489	71.0%	322	489	65.8%	7.5%
Hexachlorobutadiene		19.6	333	489	68.1%	312	489	63.8%	6.5%
2-Methylnaphthalene		19.6	360	489	73.6%	335	489	68.5%	7.2%
Dimethylphthalate		19.6	395	489	80.8%	365	489	74.6%	7.9%
Acenaphthylene	<	19.6	398	489	81.4%	367	489	75.1%	8.1%
Acenaphthene		104	467	489	74.2%	432	489	67.1%	7.8%
Dibenzofuran		37.4	416	489	77.4%	382	489	70.5%	8.5%
Diethylphthalate	<	19.6	396	489	81.0%	361	489	73.8%	9.2%
Fluorene		94.8	467	489	76.1%	432	489	69.0%	7.8%
N-Nitrosodiphenylamine		19.6	456	489	93.3%	445	489	91.0%	2.4%
Hexachlorobenzene	<	19.6	384	489	78.5%	349	489	71.4%	9.5%
Pentachlorophenol	<	97.9	401	489	82.0%	352	489	72.0%	13.0%
Phenanthrene		270	606	489	68.7%	574	489	62.2%	5.4%
Anthracene		49.7	421	489	75.9%	403	489	72.2%	4.48
Di-n-Butylphthalate	<	19.6	409	489	83.6%	371	489	75.9%	9.7%
Fluoranthene		206	604	489	81.4%	560	489	72.4%	7.6%
Pyrene		145	533	489	79.3%	501	489	72.8%	6.2%
Butylbenzylphthalate	<	19.6	387	489	79.1%	361	489	73.8%	7.0%
Benzo(a)anthracene		71.8	412	489	69.6%	391	489	65.3%	5.2%
bis(2-Ethylhexyl)phthalate		76.0	455	489	77.5%	405	489	67.3%	11.6%
Chrysene		120	438	489	65.0%	503	489	78.3%	13.8%
Di-n-Octyl phthalate	<	19.6	391	489	80.0%	358	489	73.2%	8.8%
Benzo(b)fluoranthene		51.1	404	489	72.2%	423	489	76.1%	4.6%
Benzo(k)fluoranthene		84.8	487	489	82.2%	431	489	70.8%	12.2%
Benzo(a)pyrene		59.7	418	489	73.3%	394	489	68.4%	5.9%
Indeno(1,2,3-cd)pyrene		27.2	275	489	50.7%	250	489	45.6%	9.5%
Dibenz(a,h)anthracene	<	19.6	288	489	58.9%	250	489	51.1%	14.1%
Benzo(g,h,i)perylene		21.5	233	489	43.3%	204	489	37.3%	13.3%
1-Methylnaphthalene	<	19.6	381	489	77.9%	350	489	71.6%	8.5%

Results reported in  $\mu q/kq$ RPD calculated using sample concentrations per SW846. ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2



•

and the state of the state of 

Š,

jà.

in the second

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 17:18 Instrument/Analyst: NT6/LJR GPC Cleanup: No

Sample ID: T607-MD MATRIX SPIKE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 1566**7**-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 32.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	
541-73-1	1,3-Dichlorobenzene	7.3	20	
106-46-7	1,4-Dichlorobenzene	7.2	20	
100-51-6	Benzyl Alcohol	14	20	
95-50-1	1,2-Dichlorobenzene	7.7	20	
95-48-7	2-Methylphenol	14	20	
106-44-5	4-Methylphenol	13	20	
67-72-1	Hexachloroethane	7.0	20	
105-67-9	2,4-Dimethylphenol	14	20	
55-85-0	Benzoic Acid	110	200	
120-82-1	1,2,4-Trichlorobenzene	8.9	20	
91-20-3	Naphthalene	8.5	20	
37-68-3	Hexachlorobutadiene	7.9	20	
91~57-6	2-Methylnaphthalene	8.0	20	
L31-11-3	Dimethylphthalate	7.6	20	
208-96-8	Acenaphthylene	8.5	20	
33-32-9	Acenaphthene	8.0	20	
132-64-9	Dibenzofuran	7.4	20	
34-66-2	Diethylphthalate	16	20	
86-73-7	Fluorene	8.8	20	
86-30-6	N-Nitrosodiphenylamine	8.5	20	
18-74-1	Hexachlorobenzene	7.9	20	
7-86-5	Pentachlorophenol	47	98	
5-01-8	Phenanthrene	8.2	20	
20-12-7	Anthracene	7.6	20	
4-74-2	Di-n-Butylphthalate	12	20	
06-44-0	Fluoranthene	7.8	20	
29-00-0	Pyrene	7.6	20	
5-68-7	Butylbenzylphthalate	11	20	
6-55-3	Benzo(a)anthracene	5.8	20	
17-81-7	bis(2-Ethylhexyl)phthalate	11	20	
18-01-9	Chrysene	6.5	20	
17-84-0	Di-n-Octyl phthalate	8.2	20	
05-99-2	Benzo(b)fluoranthene	9.3	20	
07-08-9	Benzo(k)fluoranthene	9.1	20	
0-32-8	Benzo (a) pyrene	8.0	20	
93-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	
3-70-3	Dibenz(a, h) anthracene	8.4	20	
91-24-2	Benzo(g,h,i)perylene	6.6	20	



Result

国際の新たって

and the second second

÷

n de la gran de la constanta d

#### ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS 2 of 2 Page

Sample ID: T607-MD MATRIX SPIKE

RL

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Date Analyzed: 03/20/08 17:18 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

MDL

#### CAS Number Analyte

90-12-0	1-Methylnaphthalene	7.0	20	

Reported in  $\mu g/kg$  (ppb)

#### Semivolatile Surrogate Recovery

65.2%	2-Fluorobiphenyl	71.6%
79.2%	d4-1,2-Dichlorobenzene	56.0%
69.9%	2-Fluorophenol	69.1%
iol 80.3%	d4-2-Chlorophenol	69.9%
	79.2% 69.9%	79.2%d4-1,2-Dichlorobenzene69.9%2-Fluorophenol

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2



and a literation

st.

1997 St. 1997 

-31

MATRIX SPIKE DUPLICATE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 17:50 Instrument/Analyst: NT6/LJR GPC Cleanup: No

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: T607-MD

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 32.8%

108-95-2       Phenol       13       20         541-73-1       1, 3-Dichlorobenzene       7.3       20         106-46-7       1, 4-Dichlorobenzene       7.2       20         100-51-6       Benzyl Alcohol       14       20         95-48-7       2-Methylphenol       14       20         06-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         05-67-9       2,4-Dimethylphenol       14       20         05-67-9       2,4-Dimethylphenol       14       20         05-67-9       2,4-Dimethylphenol       14       20         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         91-57-6       2-Methylphthalate       7.6       20         91-57-6       2-Methylphthalate       8.0       20         028-96-8       Acenaphthylene       8.5       20         033-32-9       Acenaphthylene       8.5       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluoranthene<	CAS Number	Analyte	MDL	RL	Result
541-73-1       1,3-Dichlorobenzene       7.3       20         106-46-7       1,4-Dichlorobenzene       7.2       20         100-51-6       Benzyl Alcohol       14       20         95-50-1       1,2-Dichlorobenzene       7.7       20         95-48-7       2-Methylphenol       14       20         106-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         105-67-9       2,4-Dimethylphenol       14       20         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         203-32-9       Acenaphthylene       8.5       20         132-64-9       Dibenzofuran       7.4       20         84-65-2       Diethylphthalate       16       20         86-30-6       N-Nitrosodiphenylamine       8.5       20         85-61-8       Pentachlorobenzene       7.9       20         12-64-9       Dibenzofuran       7.4       20         86-73	108-95-2		13	20	
106-46-7       1,4-Dichlorobenzene       7.2       20         100-51-6       Benzyl Alcohol       14       20         95-50-1       1,2-Dichlorobenzene       7.7       20         95-48-7       2-Methylphenol       14       20         106-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         105-67-9       2,4-Dimethylphenol       14       20         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthylene       8.5       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-63-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.6       20         20-64-5 </td <td>541-73-1</td> <td>1,3-Dichlorobenzene</td> <td></td> <td></td> <td></td>	541-73-1	1,3-Dichlorobenzene			
100-51-6       Benzyl Alcohol       14       20         95-50-1       1,2-Dichlorobenzene       7.7       20         95-48-7       2-Methylphenol       14       20         106-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         65-85-0       Benzoic Acid       110       200         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         91-57-6       2-Methylphthalene       8.0       20         208-96-8       Acenaphthylene       8.5       20         208-96-8       Acenaphthylene       8.5       20         208-96-8       Acenaphthylene       8.0       20         208-96-8       Acenaphthylene       8.5       20         208-97-7       Fluorene       8.8       20         204-65-2       Diethylphthalate       16       20         205-73-7       Fluorene       8.8       20         207-86-5       Pentachlorobenzene       7.9       20         208-66-5       Pentachlorophenol       47       98         205-01-8       Phenanthren	106-46-7	1,4-Dichlorobenzene			
95-50-1       1,2-Dichlorobenzene       7.7       20         95-48-7       2-Methylphenol       14       20         106-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         105-67-9       2,4-Dimethylphenol       14       20         65-85-0       Benzoic Acid       110       200         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         3132-9       Acenaphthene       8.0       20         32-46-9       Dibenzofuran       7.4       20         36-30-6       N-Nitrosodiphenylamine       8.8       20         36-30-6       N-Nitrosodiphenylamine       8.2       20         37-86-5       Pentachlorophenol       47       98         35-01-8       Phenanthrene       7.6       20         20-44-0	100-51-6			-	
95-48-7       2-Methylphenol       14       20         106-44-5       4-Methylphenol       13       20         105-67-9       2,4-Dimethylphenol       14       20         105-67-9       2,4-Trichlorobenzene       8.9       20         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         33-32-9       Acenaphthylene       8.0       20         32-64-9       Dibenzofuran       7.4       20         34-66-2       Diethylphthalate       16       20         36-73-7       Fluorene       8.8       20         37-86-5       Pentachlorobenzene       7.9       20         37-86-5       Pentachlorobenzene       7.9       20         37-86-5       Pentachlorobenzene       7.9       20         37-86-5       Pentachlorobenzene       7.6       20         37-86-5       Pentachlorophenol       47       98         50-18	95-50-1	1,2-Dichlorobenzene			
106-44-5       4-Methylphenol       13       20         67-72-1       Hexachloroethane       7.0       20         105-67-9       2,4-Dimethylphenol       14       20         65-85-0       Benzoic Acid       110       200         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         33-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         34-66-2       Diethylphthalate       16       20         36-73-7       Fluorene       8.8       20         56-35       Pentachlorophenol       47       98         35-01-8       Phenanthrene       8.2       20         37-86-5       Pentachlorophenol       47       98         35-01-8       Phenanthrene       7.6       20         20-4-74-2       Di-n-Butylph	95-48-7				
67-72-1       Hexachloroethane       7.0       20         105-67-9       2,4-Dimethylphenol       14       20         105-67-9       2,4-Dimethylphenol       14       20         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         208-96-8       Acenaphthylene       8.5       20         208-96-8       Acenaphthylene       8.5       20         208-96-8       Acenaphthylene       8.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthylene       8.6       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         36-30-6       N-Nitrosodiphenylamine       8.5       20         37-86-5       Pentachlorobenzene       7.6       20         20-12-7       Anthracene       7.6       20         20-12-7       Anthracene       7.6       20         20-6-44-0 <td< td=""><td>106-44-5</td><td>4-Methylphenol</td><td>_</td><td></td><td></td></td<>	106-44-5	4-Methylphenol	_		
105-67-9       2,4-Dimethylphenol       14       20         65-85-0       Benzoic Acid       110       200         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-65       Pentachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         95-01-8       Phenanthrene       8.2       20         206-44-0       Fluoranthene       7.6       20         20-12-7       Anthracene       7.6       20         20-24-74-2       Di-n-Butylphthalate       11       20         20-64-7       Butylbenzy	67-72-1	Hexachloroethane	-	_	
65-85-0       Benzoic Acid       110       200         120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.9       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         33-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         34-66-2       Diethylphthalate       16       20         36-30-6       N-Nitrosodiphenylamine       8.8       20         36-30-6       N-Nitrosodiphenylamine       8.2       20         37-86-5       Pentachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         55-01-8       Phenanthrene       8.2       20         206-44-0       Fluoranthene       7.6       20         229-00-0       Pyrene       7.6       20         29-00-0       Pyrene       7.6       20         17-81-7       bis (2-E	105-67-9	2,4-Dimethylphenol			
120-82-1       1,2,4-Trichlorobenzene       8.9       20         91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         33-32-9       Acenaphthene       8.0       20         34-66-2       Diethylphthalate       16       20         36-73-7       Fluorene       8.8       20         36-30-6       N-Nitrosodiphenylamine       8.5       20         37-86-5       Pentachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         20-12-7       Anthracene       7.6       20         212-12-7       Anthracene       7.6       20         22-012-7       Anthracene       7.8       20         22-64-40       Fluoranthene       7.8       20         22-65-53       Benzo(a) anthracene       5.8       20         23-66-5       Di -n-Octy	55-85-0				
91-20-3       Naphthalene       8.5       20         87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         91-57-6       2-Methylnaphthalene       8.0       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         83-32-9       Acenaphthene       8.0       20         84-66-2       Diethylphthalate       16       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-73-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         20-12-7       Anthracene       7.6       20         212-12-7       Anthracene       7.8       20         229-00-0       Pyrene       7.6       20         229-00-0       Pyrene       7.6       20         14-74-2       Di-n-Octyl phthalate <t< td=""><td>120-82-1</td><td>1,2,4-Trichlorobenzene</td><td></td><td></td><td></td></t<>	120-82-1	1,2,4-Trichlorobenzene			
87-68-3       Hexachlorobutadiene       7.9       20         91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         87-86-5       Pentachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         87-90-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         2120-12-7       Anthracene       7.8       20         2129-00-0       Pyrene       6.5	€1-20-3		-	-	
91-57-6       2-Methylnaphthalene       8.0       20         131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-630-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         97-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         206-44-0       Fluoranthene       7.6       20         20-12-7       Anthracene       7.6       20         20-64-7       Di-n-Butylphthalate       11       20         206-44-0       Fluoranthene       7.6       20         212-12-7       Anthracene       5.8       20         17-81-7       Dis (2-Ethylhexyl)phthalate       11       20         25-68-7       Butylbenzyl	37-68-3			-	
131-11-3       Dimethylphthalate       7.6       20         208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         94-66-2       Diethylphthalate       16       20         96-73-7       Fluorene       8.8       20         96-30-6       N-Nitrosodiphenylamine       8.5       20         97-86-5       Pentachlorobenzene       7.9       20         97-86-5       Pentachlorophenol       47       98         98-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         206-44-0       Fluoranthene       7.8       20         209-00-0       Pyrene       7.6       20         20-12-7       Anthracene       5.8       20         120-12-7       Butylbenzylphthalate       11       20         206-44-0       Fluoranthene       7.6       20         212-9-00-0       Pyrene       7.6       20         12-5-68-7       Butylbenzylphthalate       11       20         17-81-7       Dis(2-Ethylhexyl)phthalate <td>91-57-6</td> <td>2-Methylnaphthalene</td> <td></td> <td></td> <td></td>	91-57-6	2-Methylnaphthalene			
208-96-8       Acenaphthylene       8.5       20         83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-73-6       N-Nitrosodiphenylamine       8.5       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         86-73-6       N-Nitrosodiphenylamine       8.5       20         87-86-5       Pentachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         24-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         2129-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-55-3       Benzo (a) anthracene	L31-11-3	Dimethylphthalate			
83-32-9       Acenaphthene       8.0       20         132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         86-73-7       Fluorene       8.8       20         86-30-6       N-Nitrosodiphenylamine       8.5       20         87-86-5       Pentachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         206-44-0       Fluoranthene       7.8       20         206-44-0       Fluoranthene       7.8       20         229-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-55-3       Benzo(a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl) phthalate       11       20         218-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate	208-96-8	Acenaphthylene			
132-64-9       Dibenzofuran       7.4       20         84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-30-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         24-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-47-7       bis (2-Ethylhexyl) phthalate       11       20         17-81-7       bis (2-Ethylhexyl) phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         0-32-8	3-32-9	Acenaphthene			
84-66-2       Diethylphthalate       16       20         86-73-7       Fluorene       8.8       20         86-30-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         35-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         20-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         29-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl) phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (c) pyrene       8.0       20         07-08-9       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (	32-64-9	Dibenzofuran			
86-73-7       Fluorene       8.8       20         86-30-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         87-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         84-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         206-44-0       Fluoranthene       7.8       20         206-44-0       Fluoranthene       7.6       20         206-44-0       Fluoranthene       7.8       20         206-44-0       Fluoranthene       7.8       20         206-44-0       Fluoranthene       7.8       20         20-12-7       Benzo (a) anthracene       5.8       20         20-29-00-0       Pyrene       7.6       20         20-29-00-0       Pyrene       6.5       20         212-90-00       Pyrene       6.5       20         217-81-7       bis (2-Ethylhexyl) phthalate       11       20         218-01-9       Chrysene	34-66-2				
36-30-6       N-Nitrosodiphenylamine       8.5       20         118-74-1       Hexachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         35-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         34-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-55-3       Benzo (a) anthracene       5.8       20         17-81-7       Dis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.4       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20	86-73-7	Fluorene			
118-74-1       Hexachlorobenzene       7.9       20         37-86-5       Pentachlorophenol       47       98         35-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         34-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         29-00-0       Pyrene       6.5       20         11       20       11       20         6-55-3       Benzo(a) anthracene       6.5       20         17-81-7       bis (2-Ethylhexyl) phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-0	6-30-6				
87-86-5       Pentachlorophenol       47       98         85-01-8       Phenanthrene       8.2       20         20-12-7       Anthracene       7.6       20         24-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         29-00-0       Pyrene       7.6       20         5-68-7       Butylbenzylphthalate       11       20         6-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20	18-74-1	Hexachlorobenzene			
35-01-8       Phenanthrene       8.2       20         120-12-7       Anthracene       7.6       20         34-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         35-68-7       Butylbenzylphthalate       11       20         36-55-3       Benzo(a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         07-08-9       Benzo (k) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         032-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20	7-86-5	Pentachlorophenol			
120-12-7       Anthracene       7.6       20         34-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         35-68-7       Butylbenzylphthalate       11       20         66-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         032-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20	5-01-8				
34-74-2       Di-n-Butylphthalate       12       20         206-44-0       Fluoranthene       7.8       20         29-00-0       Pyrene       7.6       20         25-68-7       Butylbenzylphthalate       11       20         26-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20	20-12-7	Anthracene		-	
206-44-0       Fluoranthene       7.8       20         129-00-0       Pyrene       7.6       20         35-68-7       Butylbenzylphthalate       11       20         36-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20			-		
29-00-0       Pyrene       7.6       20         5-68-7       Butylbenzylphthalate       11       20         6-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20	06-44-0				
75-68-7       Butylbenzylphthalate       11       20         6-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20					
6-55-3       Benzo (a) anthracene       5.8       20         17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         032-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20		-			
17-81-7       bis (2-Ethylhexyl)phthalate       11       20         18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1, 2, 3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20				_	
18-01-9       Chrysene       6.5       20         17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1,2,3-cd) pyrene       8.4       20         3-70-3       Dibenz (a,h) anthracene       8.4       20	-			- <b>-</b>	
17-84-0       Di-n-Octyl phthalate       8.2       20         05-99-2       Benzo (b) fluoranthene       9.3       20         07-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         93-39-5       Indeno (1,2,3-cd) pyrene       8.4       20         3-70-3       Dibenz (a,h) anthracene       8.4       20		Chrysene			
205-99-2       Benzo (b) fluoranthene       9.3       20         207-08-9       Benzo (k) fluoranthene       9.1       20         0-32-8       Benzo (a) pyrene       8.0       20         .93-39-5       Indeno (1,2,3-cd) pyrene       8.4       20         3-70-3       Dibenz (a, h) anthracene       8.4       20					
07-08-9         Benzo (k) fluoranthene         9.1         20           0-32-8         Benzo (a) pyrene         8.0         20           93-39-5         Indeno (1,2,3-cd) pyrene         8.4         20           3-70-3         Dibenz (a, h) anthracene         8.4         20		Benzo(b) fluoranthene			
0-32-8     Benzo (a) pyrene     8.0     20       93-39-5     Indeno (1,2,3-cd) pyrene     8.4     20       3-70-3     Dibenz (a, h) anthracene     8.4     20			-		
93-39-5         Indeno (1,2,3-cd) pyrene         8.4         20           3-70-3         Dibenz (a, h) anthracene         8.4         20	-			-	
3-70-3 Dibenz (a, h) anthracene 8.4 20		Indeno (1, 2, 3 ad) primana			
	-	Dibenz(2, b) anthroace			
91-24-2 Benzo(g,h,i) pervlene c.c. 20					
91-24-2 Benzo(g,h,i)perylene 6.6 20		benzo(g, n, r) peryrene	6.6	20	

ANALYTICAL RESOURCES INCORPORATED

Result

1841 A. 1941 A. 1944 

÷

and the set 1

÷

Westmin Streeting of the 

 $(A_{i}^{1})^{m}(A_{i}) = (A_{i}^{1})^{m}(A_{i}) = (A_{i}^{1})^{m}(A_{$ 

#### ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: T607-MD MATRIX SPIKE DUPLICATE

RL

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Date Analyzed: 03/20/08 17:50 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

MDL

#### CAS Number Analyte

		· · · · · · · · · · · · · · · · · · ·		
90-12-0	1-Methylnaphthalene	7.0	20	

Reported in  $\mu g/kg$  (ppb)

#### Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	81.6%	d4-1,2-Dichlorobenzene	62.8%
d5-Phenol	71.2%	2-Fluorophenol	71.7%
2,4,6-Tribromophene	ol 81.6%	d4-2-Chlorophenol	71.7%



.

h,

10000

.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Lab Sample ID: LCS-031808 LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/20/08 12:26 LCSD: 03/20/08 12:58 Instrument/Analyst LCS: NT6/LJR LCSD: NT6/LJR GPC Cleanup: NO Sample ID: LCS-031808 LCS/LCSD

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount LCS: 25.0 g LCSD: 25.0 g Final Extract Volume LCS: 0.5 mL LCSD: 0.5 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	390	500	78.0%	396	500	79.2%	1.5%
1,3-Dichlorobenzene	314	500	62.8%	330	500	66.0%	5.0%
1,4-Dichlorobenzene	319	500	63.8%	334	500	66.8%	4.6%
Benzyl Alcohol	721	1000	72.1%	709	1000	70.9%	1.7%
1,2-Dichlorobenzene	327	500	65.4%	339	500	67.8%	3.6%
2-Methylphenol	380	500	76.0%	385	500	77.0%	1.3%
4-Methylphenol	795	1000	79.5%	799	1000	79.98	0.5%
Hexachloroethane	310	500	62.0%	325	500	65.0%	4.7%
2,4-Dimethylphenol	376	500	75.2%	380	500	76.0%	1.1%
Benzoic Acid	1060	1500	70.7%	1110	1500	74.0%	4.6%
1,2,4-Trichlorobenzene	344	500	68.8%	352	500	70.4%	2.3%
Naphthalene	353	500	70.6%	355	500	71.0%	0.6%
Hexachlorobutadiene	336	500	67.2%	343	500	68.6%	2.1%
2-Methylnaphthalene	369	500	73.8%	373	500	74.6%	1.18
Dimethylphthalate	417	500	83.4%	409	500	81.8%	1.9%
Acenaphthylene	411	500	82.2%	403	500	80.6%	2.0%
Acenaphthene	385	500	77.0%	379	500	75.8%	1.6%
Dibenzofuran	401	500	80.2%	391	500	78.2%	2.5%
Diethylphthalate	416	500	83.2%	414	500	82.8%	0.5%
Fluorene	401	500	80.2%	393	500	78.6%	2.0%
N-Nitrosodiphenylamine	525	500	105%	528	500	106%	0.6%
Hexachlorobenzene	398	500	79.6%	398	500	79.6%	0.0%
Pentachlorophenol	360	500	72.0%	356	500	71.2%	1.1%
Phenanthrene	395	500	79.0%	395	500	79.0%	0.0%
Anthracene	411	500	82.2%	409	500	81.8%	0.5%
Di-n-Butylphthalate	441	500	88.2%	445	500	89.0%	0.9%
Fluoranthene	425	500	85.0%	429	500	85.8%	0.9%
Pyrene	422	500	84.4%	424	500	84.8%	0.5%
Butylbenzylphthalate	424	500	84.8%	421	500	84.2%	0.7%
Benzo(a)anthracene	393	500	78.6%	393	500	78.6%	0.0%
bis(2-Ethylhexyl)phthalate	433	500	86.6%	436	500	87.2%	0.7%
Chrysene	418	500	83.6%	417	500	83.4%	0.2%
Di-n-Octyl phthalate	410	500	82.0%	414	500	82.8%	1.0%
Benzo(b)fluoranthene	397	500	79.4%	401	500	80.2%	1.0%

#### ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2



and the instal installing and the state 

17.3 W 131 . . . . . . .

 $\{a_{i},a_{i}\}$ 

Sample ID: LCSD-031808 LCS/LCSD

Lab Sample ID: LCS-031808 LIMS ID: 08-5464 Matrix: Sediment Date Analyzed LCS: 03/20/08 12:26 LCSD: 03/20/08 12:58 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k)fluoranthene	442	500	88.4%	441	500	88.2%	0.2%
Benzo(a)pyrene	416	500	83.2%	415	500	83.0%	0.28
Indeno(1,2,3-cd)pyrene	384	500	76.8%	382	500	76.4%	0.5%
Dibenz(a,h)anthracene	407	500	81.4%	401	500	80.2%	1.5%
Benzo(g,h,i)perylene	392	500	78.4%	381	500	76.2%	2.8%
1-Methylnaphthalene	381	500	76.2%	382	500	76.4%	0.3%

#### Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	69.6%	69.2%
2-Fluorobiphenyl	77.2%	74.0%
d14-p-Terphenyl	89.6%	87.6%
d4-1,2-Dichlorobenzene	66.4%	66.4%
d5-Phenol	77.3%	76.3%
2-Fluorophenol	74.9%	73.9%
2,4,6-Tribromophenol	87.7%	83.2%
d4-2-Chlorophenol	76.3%	75.5%

Results reported in  $\mu g/kg$ RPD calculated using sample concentrations per SW846.

BLANK NO.

4B SEMIVOLATILE METHOD BLANK SUMMARY

MN42MBS1

2

いたのではないないで、これにないために、ション・ションド

Lab Name: ANALYTICAL RESOURCES, INCClient: HART CROWSERARI Job No: MN42Project: PORT OF PORTLAND T6-Lab File ID: MN42MBDate Extracted: 03/18/08Instrument ID: NT6Date Analyzed: 03/20/08Matrix: SOLIDTime Analyzed: 1153

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

·····		-	
CLIENT	LAB	LAB	DATE
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
=======================================	=======================================		========
01 MN42LCSS1	MN42LCSS1	MN42SB	03/20/08
02 MN42LCSDS1	MN42LCSDS1	MN42SBD	03/20/08
03 T607-C4-Z	MN42D	MN42D	03/20/08
04 T607-C5-Z	MN42E	MN42E	03/20/08
05 T607-C6-Z	MN42F	MN42F	03/20/08
06 T607-MD	MN42G	MN42G	03/20/08
07 T607-MD MS	MN42GMS	MN42GMS	03/20/08
08 T607-MD MSD	MN42GMSD	MN42GMD	03/20/08
09 T601-C1-Z	MN42GHDD MN43D	MN42GMD MN43D	03/20/08
10 T601-C2-Z	MN43E	MN43E	03/20/08
11 T601-C3-Z	MN43F	MN43F	
12 T601-MD	MN43G	MN43G	03/20/08 03/20/08
13 T501-C12-DPZ	MN430 MN44D	MN43G MN44D	
	MM44D	MIN44D	03/20/08
15	·		
16			
17			
18			
19			
20	······		
20		<u> </u>	
22			
23			
24			
25			
26			
27			
28			
29			
30			

COMMENTS:

page 1 of 1

FORM IV SV

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

V



1 A.

- 第二次の時間に、 こうにもわれていた。

Lab Sample ID: MB-031808 LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 11:53 Instrument/Analyst: NT6/LJR GPC Cleanup: No METHOD BLANK QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607

Sample ID: MB-031808

Project: Port of Portland T6-Berth 6 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85 <b>-0</b> 1-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44- <b>0</b>	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 Ū
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b)fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k)fluoranthene	9.3	20	< 20 U
50-32-8	Benzo(a)pyrene	8.2	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.8	20	< 20 U



ł

8

.

#### ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 2 of 2

Sample ID: MB-031808 METHOD BLANK

Lab Sample ID: MB-031808 LIMS ID: 08-5464 Matrix: Sediment Date Analyzed: 03/20/08 11:53 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U

Reported in  $\mu g/kg$  (ppb)

#### Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophenol	68.0% 89.2% 75.7% 81.9%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	72.0% 66.8% 73.9% 76.0%

# SIM PNA



.

States of Section 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19

A ANY IN COMPANY

 Sample ID: T607-C4-Z SAMPLE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 17:29 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 33.1 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5,0 U
91-57-6	2-Methylnaphthalene	0.89	5.0	< 5.0 U
90-12-0	1-Methylnaphthalene	1.2	5.0	< 5.0 U
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 U
83-32-9	Acenaphthene	1.2	5.0	24
86-73-7	Fluorene	0.64	5.0	13
85-01-8	Phenanthrene	1.0	5.0	34
120-12-7	Anthracene	0.96	5.0	7.9
206-44-0	Fluoranthene	0.27	5.0	54
129-00-0	Pyrene	1.2	5.0	50
56-55-3	Benzo(a)anthracene	0.80	5.0	24
218-01-9	Chrysene	1.7	5.0	40
205-99-2	Benzo(b)fluoranthene	1.2	5.0	41
207-08-9	Benzo(k) fluoranthene	0.87	5.0	15
50-32-8	Benzo(a)pyrene	1.5	5.0	24
193-39-5	Indeno (1,2,3-cd) pyrene	0.85	5.0	13
53-70-3	Dibenz (a, h) anthracene	0.95	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	16
132-6 <b>4</b> -9	Dibenzofuran	0.97	5.0	< 5.0 U

Reported in  $\mu g/kg$  (ppb)

#### SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 77.0% d14-Dibenzo(a,h)anthracen 85.3%



100

12.3

Sample ID: T607-C5-Z SAMPLE

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 18:45 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.3 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 31.7 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.2	4.8	< 4.8 U
91-57-6	2-Methylnaphthalene	0.87	4.8	< 4.8 U
90-12-0	1-Methylnaphthalene	1.1	.4.8	< 4.8 U
208-96-8	Acenaphthylene	1.0	4.8	< 4.8 U
83-32-9	Acenaphthene	1.2	4.8	4.8
86-73-7	Fluorene	0.63	4.8	4.8
85-01-8	Phenanthrene	0.99	4.8	26
120-12-7	Anthracene	0.94	4.8	< 4.8 U
206-44-0	Fluoranthene	0.26	4.8	35
129-00-0	Pyrene	1.2	4.8	31
56-55-3	Benzo (a) anthracene	0.79	4.8	11
218-01-9	Chrysene	1.7	4.8	16
205-99-2	Benzo(b)fluoranthene	1.2	4.8	20
207-08-9	Benzo(k)fluoranthene	0.85	4.8	7.3
50-32-8	Benzo (a) pyrene	1.4	4.8	12
193-39-5	Indeno (1,2,3-cd) pyrene	0.83	4.8	7.3
53- <b>7</b> 0-3	Dibenz(a,h)anthracene	0.93	4.8	< 4.8 U
191-24-2	Benzo(g,h,i)perylene	1.2	4.8	7.8
132-64-9	Dibenzofuran	0.95	4.8	< 4.8 U

Reported in  $\mu g/kg$  (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 70.7% d14-Dibenzo(a,h)anthracen 75.7%



2 - 1993) 1993

and and the of the second states of the

:

a Contraction Ale

e S

Sample ID: T607-C6-Z SAMPLE

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 19:10 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 22.9 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	0.90	5.0	< 5.0 U
90-12-0	1-Methylnaphthalene	1.2	5.0	< 5.0 U
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 U
83-32-9	Acenaphthene	1.2	5.0	16
86-73-7	Fluorene	0.65	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	5.0	38
120-12-7	Anthracene	0.97	5.0	< 5.0 U
206-44-0	Fluoranthene	0.27	5.0	41
129-00-0	Pyrene	1.2	5.0	42
56-55-3	Benzo(a)anthracene	0.81	5.0	12
218-01-9	Chrysene	1.7	5.0	10
205-99-2	Benzo(b)fluoranthene	1.2	5.0	14
207-08-9	Benzo(k)fluoranthene	0.88	5.0	< 5.0 U
50-32-8	Benzo (a) pyrene	1.5	5.0	7.5
193-39-5	Indeno(1,2,3-cd)pyrene	0.86	5.0	< 5.0 Ŭ
53-70-3	Dibenz(a,h)anthracene	0.96	5.0	< 5.0 Ŭ
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	< 5.0 U
132-64-9	Dibenzofuran	0.98	5.0	< 5.0 Ŭ

Reported in  $\mu g/kg$  (ppb)

### SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 78.3% d14-Dibenzo(a,h)anthracen 92.0%



A set of a state of the set of

. . .

Sample ID: T607-MD SAMPLE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized:

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 19:35 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 32.8 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	0.89	5.0	5.9
90-12-0	1-Methylnaphthalene	1.2	5.0	9.9
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 U
83-32-9	Acenaphthene	1.2	5.0	89
86-73-7	Fluorene	0.64	5.0	76
85-01-8	Phenanthrene	1.0	5.0	270
120-12-7	Anthracene	0.96	5.0	31
206-44-0	Fluoranthene	0.27	5.0	210
129-00-0	Pyrene	1.2	5.0	200
56-55-3	Benzo (a) anthracene	0.80	5.0	61
218-01-9	Chrysene	1.7	5.0	86
205-99-2	Benzo(b) fluoranthene	1.2	5.0	77
207-08-9	Benzo(k)fluoranthene	0.87	5.0	29
50-32-8	Benzo(a)pyrene	1.5	5.0	46
193-39-5	Indeno (1,2,3-cd) pyrene	0.85	5.0	23
53-70-3	Dibenz (a, h) anthracene	0.95	5.0	7.9
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	25
132-64-9	Dibenzofuran	0.97	5.0	21

Reported in  $\mu g/kg$  (ppb)

#### SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 74.7% d14-Dibenzo(a,h)anthracen 79.3%



1.014

1012

#### SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Client ID	MNP	DBA	TOT OUT
MB-031808	80.0%	94.7%	0
LCS-031808	74.3%	93.3%	0
LCSD-031808	78.7%	96.7%	0
T607-C4-Z	77.0%	85.3%	0
T607-C4-Z MS	73.7%	83.3%	0
T607-C4-Z MSD	77.3%	91.7%	0
T607-C5-Z	70.7%	75.7%	0
T607-C6-Z	78.3%	92.0%	0
T607-MD	74.7%	79.3%	0

		LCS/MB LIMITS	QC LIMITS	
(MNP)	= d10-2-Methylnaphthalene	(44-100)	(37-106)	
(DBA)	= d14-Dibenzo(a,h)anthracene	(46-121)	(16-118)	

Prep Method: SW3550B Log Number Range: 08-5461 to 08-5464

FORM-II SIM SW8270

Page 1 for MN42



 $[\lambda^{a_{1}}]$ 

.

#### ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/26/08

Date Extracted MS/MSD: 03/18/08

Date Analyzed MS: 03/19/08 17:54 MSD: 03/19/08 18:20 Instrument/Analyst MS: NT1/VTS MSD: NT1/VTS

#### Sample ID: T607-C4-Z MATRIX SPIKE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount MS: 10.1 g-dry-wt MSD: 10.1 g-dry-wt Final Extract Volume MS: 0.50 mL MSD: 0.50 mL Dilution Factor MS: 1.00 MSD: 1.00

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Naphthalene	< 5.0 U	98.5	149	66.1%	102	149	68.5%	3.5%
2-Methylnaphthalene	< 5.0 U	110	149	73.8%	115	149	77.2%	4.4%
1-Methylnaphthalene	< 5.0 U	106	149	71.1%	111	149	74.5%	4.6%
Acenaphthylene	< 5.0 U	122	149	81.9%	125	149	83.9%	2.4%
Acenaphthene	23.8	150	149	84.7%	149	149	84.0%	0.7%
Fluorene	13.4	143	149	87.0%	148	149	90.3%	3.4%
Phenanthrene	33.7	166	149	88.8%	164	149	87.48	1.2%
Anthracene	7.9	149	149	94.7%	150	149	95.4%	0.7%
Fluoranthene	54.0	196	149	95.3%	200	149	98.0%	2.0%
Pyréné	50.0	182	149	88.6%	188	149	92.6%	3.2%
Benzo(a)anthracene	24.3	166	149	95.1%	175	149	101%	5.3%
Chrysene	40.1	179	149	93.2%	182	149	95.2%	1.78
Benzo(b)fluoranthene	41.1	179	149	92.6%	184	149	95.9%	2.8%
Benzo(k)fluoranthene	15.3	158	149	95.8%	169	149	103%	6.7%
Benzo(a)pyrene	23.8	163	149	93.4%	176	149	102%	7.7%
Indeno(1,2,3-cd)pyrene	12.9	132	149	79.9%	149	149	91.3%	12.1%
Dibenz(a,h)anthracene	< 5.0 U	119	149	79.9%	136	149	91.3%	13.3%
Benzo(g,h,i)perylene	15.8	127	149	74.6%	142	149	84.7%	11.28
Dibenzofuran	< 5.0 U	122	149	81.9%	126	149	84.6%	3.2%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.



~

2

#### Sample ID: T607-C4-Z MATRIX SPIKE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 17:54 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 33.1 %

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	
91-57-6	2-Methylnaphthalene	0.89	5.0	
90-12-0	1-Methylnaphthalene	1.2	5.0	
208-96-8	Acenaphthylene	1.0	5.0	
83-32-9	Acenaphthene	1.2	5.0	
86-73-7	Fluorene	0.64	5.0	
85-01-8	Phenanthrene	1.0	5.0	
120-12-7	Anthracene	0.96	5.0	
206-44-0	Fluoranthene	0.27	5.0	
129-00-0	Pyrene	1.2	5.0	
56-55-3	Benzo (a) anthracene	0.80	5.0	
218-01-9	Chrysene	1.7	5.0	
205-99-2	Benzo(b)fluoranthene	1.2	5.0	
207-08-9	Benzo(k)fluoranthene	0.87	5.0	
50-32-8	Benzo(a)pyrene	1.5	5.0	
193-39-5	Indeno(1,2,3-cd)pyrene	0.85	5.0	
53-70-3	Dibenz(a,h)anthracene	0.95	5.0	
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	
132-64-9	Dibenzofuran	0.97	5.0	

Reported in  $\mu g/kg$  (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	<b>7</b> 3.7%
d14-Dibenzo(a,h)anthracen	83.3%



1 and

÷

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 18:20 Instrument/Analyst: NT1/VTS GPC Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: T607-C4-Z

MATRIX SPIKE DUP

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 33.1 %

		MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	
91-57-6	2-Methylnaphthalene	0.89	5.0	
90-12-0	1-Methylnaphthalene	1.2	5.0	
208-96-8	Acenaphthylene	1.0	5.0	
83-32-9	Acenaphthene	1.2	5.0	
86-73-7	Fluorene	0.64	5.0	
85-01-8	Phenanthrene	1.0	5.0	
120-12-7	Anthracene	0.96	5.0	
206-44-0	Fluoranthene	0.27	5.0	
129-00-0	Pyrene	1.2	5.0	
56-55-3	Benzo(a)anthracene	0.80	5.0	
218-01-9	Chrysene	1.7	5.0	
205-99-2	Benzo(b)fluoranthene	1.2	5.0	
207-08-9	Benzo(k)fluoranthene	0.87	5.0	
50-32-8	Benzo(a)pyrene	1.5	5.0	
193-39-5	Indeno(1,2,3-cd)pyrene	0.85	5.0	
53-70-3	Dibenz(a,h)anthracene	0.95	5.0	
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	
132-64-9	Dibenzofuran	0.97	5.0	

Reported in  $\mu g/kg$  (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 77.3% d14-Dibenzo(a,h)anthracen 91.7%

ANALYTICAL RESOURCES INCORPORATED

and a state of the second s

in state

. .

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/26/08

#### Date Extracted: 03/18/08

Date Analyzed LCS: 03/19/08 16:39 LCSD: 03/19/08 17:04 Instrument/Analyst LCS: NT1/VTS LCSD: NT1/VTS

#### Sample ID: LCS-031808 LAB CONTROL SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g-dry-wt LCSD: 10.0 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	104	150	69.3%	112	150	74.7%	7.4%
2-Methylnaphthalene	112	150	74.7%	118	150	78.7%	5.2%
1-Methylnaphthalene	108	150	72.0%	112	150	74.78	3.6%
Acenaphthylene	115	150	76.7%	120	150	80.0%	4.3%
Acenaphthene	118	150	78.7%	122	150	81.3%	3.3%
Fluorene	125	150	83.3%	134	150	89.3%	6.9%
Phenanthrene	132	150	88.0%	134	150	89.3%	1.5%
Anthracene	134	150	89.3%	142	150	94.7%	5.8%
Fluoranthene	145	150	96.7%	147	150	98.0%	1.4%
Pyrene	140	150	93.3%	144	150	96.0%	2.8%
Benzo(a)anthracene	148	150	98.7%	152	150	101%	2.78
Chrysene	140	150	93.3%	144	150	96.0%	2.8%
Benzo(b)fluoranthene	148	150	98.7%	145	150	96.7%	2.0%
Benzo(k)fluoranthene	137	150	91.3%	156	150	104%	13.0%
Benzo(a)pyrene	141	150	94.0%	154	150	103%	8.8%
Indeno(1,2,3-cd)pyrene	136	150	90.7%	144	150	96.0%	5.7%
Dibenz(a,h)anthracene	138	150	92.0%	148	150	98.78	7.0%
Benzo(g,h,i)perylene	128	150	85.3%	133	150	88.7%	3.8%
Dibenzofuran	116	150	77.3%	122	150	81.3%	5.0%

#### Reported in µg/kg (ppb)

### RPD calculated using sample concentrations per SW846.

#### SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	74.3%	78.7%
d14-Dibenzo(a,h)anthracen	93.3%	96.7%

BLANK NO.

4B

SEMIVOLATILE METHOD BLANK SUMMARY

MN42MBS1

Charles and the second second

Lab Name: ANALYTICAL RESOURCES, INC

ARI Job No: MN44

Lab File ID: MN42MB

Instrument ID: NT1

Matrix: SOLID

Client: HART CROWSER Project: PORT OF TORTLAND T6-Date Extracted: 03/18/08 Date Analyzed: 03/19/08 Time Analyzed: 1614

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	T 7 D	T A D	<u> </u>
		LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	==================	============	===========
01	MN42LCSS1	MN42LCSS1	MN42SB	03/19/08
02	MN42LCSDS1	MN42LCSDS1	MN42SBD	03/19/08
03	T607-C4-Z	MN42D	MN42D	03/19/08
04	T607-C4-Z MS	MN42DMS	MN42DMS	03/19/08
05	T607-C4-Z MSD	MN42DMSD	MN42DMSD	03/19/08
06	T607-C5-Z	MN42E	MN42E	03/19/08
07	T607-C6-Z	MN42F	MN42F	03/19/08
08	T607-MD	MN42G	MN42G	03/19/08
09	T601-C1-Z	MN43D	MN43D	03/19/08
10	T601-C2-Z	MN43E	MN43E	03/19/08
$11^{-1}$	T601-C3-Z	MN43F	MN43F	03/19/08
12	T601-MD	MN43G	MN43G	03/19/08
13	T501-C12-DPZ	MN44D	MN44D	03/19/08
14	IDUI CIZ DIZ	LUNAAD	MIN44D	03/19/08
15		· · · · · · · · · · · · · · · · · · ·		
16				
17				
18				
$19^{10}$				
20				
21				
22				
23	·			
24				
25				
26				
27				
28				
29				
30				
	· · · · · · · · · · · · · · · · · · ·			

COMMENTS:

page 1 of 1

FORM IV SV



: · · · · · · 

i de la

2

۰.

Lab Sample ID: MB-031808 LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/19/08 16:14 Instrument/Analyst: NT1/VTS GPC Cleanup: No

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA

Sample ID: MB-031808

METHOD BLANK

Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
91-20-3	Naphthalene	1.3	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	0.90	5.0	< 5.0 U
90-12-0	1-Methylnaphthalene	1.2	5.0	< 5.0 U
208-96-8	Acenaphthylene	1.0	5.0	< 5.0 U
83-32-9	Acenaphthene	1.2	5.0	< 5.0 U
86-73-7	Fluorene	0.65	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	5.0	< 5.0 U
120-12-7	Anthracene	0.97	5.0	< 5.0 U
206-44-0	Fluoranthene	0.27	5.0	< 5.0 U
129-00-0	Pyrene	1.2	5.0	< 5.0 Ŭ
56-55-3	Benzo(a)anthracene	0.81	5.0	< 5.0 U
218-01-9	Chrysene	1.7	5.0	< 5.0 U
205-99-2	Benzo(b)fluoranthene	1.2	5.0	< 5.0 U
207-08-9	Benzo(k)fluoranthene	0.88	5.0	< 5.0 U
50-32-8	Benzo(a)pyrene	1.5	5.0	< 5.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.86	5.0	< 5.0 U
53-70-3	Dibenz(a,h)anthracene	0.96	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	1.2	5.0	< 5.0 U
132-64-9	Dibenzofuran	0.98	5.0	< 5.0 U

Reported in  $\mu g/kg$  (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 80.0% d14-Dibenzo(a,h)anthracen 94.7%

# TBT

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 14:57 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No

# RESOURCES VINCORPORATED

ANALYTICAL

1989

## Sample ID: T607-C4-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.04 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 33.1%

CAS Number	Analyte	MDL	RL	Result Q	ţ
TBT_ION	Tributyl Tin Ion	1.8	3.8	4.5	
DBT_ION BT_ION	Dibutyl Tin Ion Butyl Tin Ion	3.2 4.0	5.7 4.0	< 5.7 U < 4.0 U	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	84.2%
Tripentyl	Tin	Chloride	110%



6.0

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:56 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No

#### Sample ID: T607-C5-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.15 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION	Tributyl Tin Ion	1.7	3.8	380 E	-
DBT_ION	Dibutyl Tin Ion	3.1	5.6	15	
BT_ION	Butyl Tin Ion	4.0	4.0	3.3 J	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	73.8%
Tripentyl	Tin	Chloride	98.5%



19192

K

Rese

#### Sample ID: T607-C5-Z DILUTION

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/22/08 11:49 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.15 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 5.00 Alumina Cleanup: Yes Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result Q	
<b>TBT_ION</b> DBT_ION BT ION	<b>Tributyl Tin Ion</b> Dibutyl Tin Ion Butyl Tin Ion	<b>8.6</b> 15	<b>19</b> 28	<b>350</b> < 28 U	
BI_ION	Bucyr IIn Ion	20	20	< 20 U	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	68.1%
Tripentyl	Tin	Chloride	86.3%

ANALYTICAL RESOURCES INCORPORATED

#### Sample ID: T607-C6-Z SAMPLE

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:16 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.03 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 22.9%

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION	<b>Tributyl Tin Ion</b>	<b>1.8</b>	<b>3.8</b>	<b>5.2</b>	-
DBT_ION	Dibutyl Tin Ion	3.2	5.8	< 5.8 U	
BT_ION	Butyl Tin Ion	4.1	4.1	< 4.1 U	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	73.5%
Tripentyl	Tin	Chloride	86.5%



#### Sample ID: T607-MD SAMPLE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:35 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.07 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 32.8%

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION DBT_ION	Tributyl Tin Ion Dibutyl Tin Ion	1.7 3.1	3.8	160 20	-
BT_ION	Butyl Tin Ion	4.0	4.0	4.9	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	80.3%
Tripentyl	Tin	Chloride	100%



#### TBT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2

Client ID	TPRT	TPNT	TOT OUT
MB-031808	71.1%	85.3%	0
LCS-031808	72.1%	87.7%	0
LCSD-031808	78.3%	104%	0
T607-C4-Z	84.2%	110%	0
T607-C4-Z MS	69.1%	85.4%	0
T607-C4-Z MSD	71.1%	99.7%	0
T607-C5-Z	73.8%	98.5%	0
T607-C5-Z DL	68.1%	86.3%	0
T607-C6-Z	73.5%	86.5%	0
T607-MD	80.3%	100%	0

	LCS/MB LIMITS	QC LIMITS
(TPRT) = Tripropyl Tin Chloride	(37-99)	(25-96)
(TPNT) = Tripentyl Tin Chloride	(47-130)	(30-136)

Prep Method: SW3550B Analytical Method: TBT (Hexyl) Krone 1988 Log Number Range: 08-5461 to 08-5464



Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Reported: 03/24/08

Date Extracted MS: 03/18/08

Date Analyzed MS: 03/21/08 15:17 MSD: 03/21/08 15:36 Instrument/Analyst MS: NT2/VTS MSD: NT2/VTS Silica Gel Cleanup: No

#### Sample ID: T607-C4-Z MATRIX SPIKE

Date Sampled: 03/12/08 Date Received: 03/14/08 Sample Amount MS: 5.02 g-dry-wt

MSD: 5.02 g-dry-wt Final Extract Volume MS: 0.5 mL MSD: 0.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Alumina Cleanup: Yes Moisture: 33.1%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Tributyl Tin Ion	4.5	40.8	44.4	81.8%	41.0	44.4	82.2%	0.5%
Dibutyl Tin Ion	< 5.7 U	9.9	38.2	25.9%	23.5	38.2	61.5%	81.4%
Butyl Tin Ion	< 4.0 U	3.9	J 31.0	12.6%	14.8	31.0	47.7%	117%

Results reported in  $\mu g/kg$ 

RPD calculated using sample concentrations per SW846.

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:17 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No

#### Sample ID: T607-C4-Z MATRIX SPIKE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.02 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 33.1%

CAS Number	Analyte	RL	Result Q
TBT_ION	Tributyl Tin Ion	3.8	
DBT_ION	Dibutyl Tin Ion	5.8	
BT_ION	Butyl Tin Ion	4.1	

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	69.1%
Tripentyl	Tin	Chloride	85.4%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:36 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No

#### Sample ID: T607-C4-Z MATRIX SPIKE DUP

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 5.02 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 33.1%

CAS Number	Analyte	RL	Result Q	
TBT_ION	Tributyl Tin Ion	3.8		
DBT_ION	Dibutyl Tin Ion	5.8		
BT_ION	Butyl Tin Ion	4.1		

Reported in  $\mu g/kg$  (ppb)

Tripropyl	Tin	Chloride	71.1%
Tripentyl	Tin	Chloride	99.7%

ANALYTICAL RESOURCES

ORGANICS ANALYSIS DATA SHEET Tributyl Tins by Krone 1988 SIM GC/MS Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted LCS: 03/18/08

Date Analyzed LCS: 03/21/08 14:19 LCSD: 03/21/08 14:38 Instrument/Analyst LCS: NT2/VTS LCSD: NT2/VTS Silica Gel Cleanup: No

#### Sample ID: LCS-031808 LAB CONTROL SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt LCSD: 5.00 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Alumina Cleanup: Yes

	_
8.4 72.1% 35.7 38.4 93.0% 25.	28
8	1110 99100 291

Reported in  $\mu g/kg$  (ppb)

RPD calculated using sample concentrations per SW846.

			LCS	LCSD
Tripropyl	Tin	Chloride	72.1%	78.3%
Tripentyl	Tin	Chloride	87.7%	104%

4B SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

MN42MBS1

Lab Name: ANALYTICAL RESOURCES, INC

ARI Job No: MN44

Lab File ID: 032101

Instrument ID: NT2

Matrix: SOLID

Client: HART CROWSER
Project: PORT OF PORTLAND T6-
Date Extracted: 03/18/08
Date Analyzed: 03/21/08
Time Analyzed: 1359

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=================		
01	MN42LCSS1	MN42LCSS1	032102	03/21/08
02	MN42LCSDS1	MN42LCSDS1	032102	03/21/08
03		MN42DCSDS1		03/21/08
04			032104	03/21/08
04		MN42DMS	032105	03/21/08
		MN42DMSD	032106	03/21/08
06		MN42E	032107	03/21/08
07		MN42F	032108	03/21/08
08	T607-MD	MN42G	032109	03/21/08
09	T601-C1-Z	MN43D	032110	03/21/08
10	T601-C2-Z	MN43E	032111	03/21/00
11	T601-C3-7	MN43F	032112	03/21/08
12	T601-MD	MN43G		03/21/08
13	T501-C12-DPZ		032113	03/21/08
$14^{13}$	T607-C5-Z	MN44D	032114	03/21/08
	1607-05-2	MN42EDL	MN42EDL	03/22/08
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
1	······································			

COMMENTS:

page 1 of 1

FORM IV SV

Lab Sample ID: MB-031808 LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/24/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 13:59 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No

### Sample ID: MB-031808 METHOD BLANK

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 Event: 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

CAS Number	Analyte	MDL	RL	Result	Q
TBT_ION	Tributyl Tin Ion	1.8	3.9	< 3.9 U	-
DBT_ION	Dibutyl Tin Ion	3.2	5.8	< 5.8 U	
BT_ION	Butyl Tin Ion	4.1	4.1	< 4.1 U	

Reported in  $\mu g/kg$  (ppb)

## TBT Surrogate Recovery

Tripropyl	Tin	Chloride	71.1%
Tripentyl	Tin	Chloride	85.3%



# PESTICIDES



#### ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 13:40 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

#### Sample ID: T607-C4-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 33.1%

CAS Number	Number Analyte		RL	Result	
58-89-9	gamma-BHC (Lindane)	0.48	0.98	< 0.98 U	
76-44-8	Heptachlor	0.40	0.98	< 0.98 U	
309-00-2	Aldrin	0.47	0.98	< 0.98 U	
60-57-1	Dieldrin	0.83	2.0	< 2.0 U	
72-55-9	4, 4'-DDE	1.1	2.0	3.3	
72-54-8	4,4'-DDD	1.3	2.0	2.0 J	
50-29-3	4,4'-DDT	0.87	2.0	1.6 J	
5103-74-2	gamma Chlordane	0.91	0.98	< 0.98 U	
5103-71-9	alpha Chlordane	0.36	0.98	< 0.98 U	

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	66.5%



CALCED BY

in the second second second

Andread Anna State Contraction

Ľ, 

# ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 13:59 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: T607-C5-Z

SAMPLE

Sample Amount: 25.3 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result	
58-89-9	gamma-BHC (Lindane)	0.49	0.99	< 0.99 U	
76-44-8	Heptachlor	0.40	0.99	< 0.99 U	
309-00-2	Aldrin	0.47	0.99	< 0.99 U	
60-57-1	Dieldrin	0.83	2.0	< 2.0 U	
72-55-9	4,4'-DDE	1.1	2.0	2.3	
72-54-8	4,4'-DDD	1.3	2.0	< 2.0 U	
50-29-3	4,4'-DDT	0.87	2.0	< 2.0 U	
5103-74-2	gamma Chlordane	0.91	0.99	< 0.99 U	
5103-71-9	alpha Chlordane	0.36	0.99	< 0.99 U	

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	91.2%
Tetrachlorometaxylene	67.2%



e shikeshi makif tara sa ka Matali NGA Abibi bila ƙalara ƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙƙ

ł

#### ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 14:19 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Sample ID: T607-C6-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 22.9%

CAS Number	Number Analyte		RL	Result	
58-89-9	gamma-BHC (Lindane)	0.48	0.98	< 0.98 U	
76-44-8	Heptachlor	0.40	0.98	< 0.98 U	
309-00-2	Aldrin	0.47	0.98	< 0.98 U	
60-57-1	Dieldrin	0.83	2.0	< 2.0 U	
72-55-9	4,4'-DDE	1.1	2.0	< 2.0 U	
72-54-8	4,4'-DDD	1.2	2.0	< 2.0 U	
50-29-3	4,4'-DDT	0.87	2.0	< 2.0 U	
5103-74-2	gamma Chlordane	0.91	0.98	< 0.98 U	
5103-71-9	alpha Chlordane	0.36	0.98	< 0.98 U	

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	94.0%
Tetrachlorometaxylene	67.28



 $\frac{1}{2}$ 

3 89

Sample ID: T607-MD SAMPLE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 15:17 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 2.00 Silica Gel: Yes

Percent Moisture: 32.8%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.96	2.0	< 2.0 U
76-44-8	Heptachlor	0.79	2.0	< 2.0 U
309-00-2	Aldrin	0.94	2.0	< 2.0 U
60-57-1	Dieldrin	1.6	3.9	< 3.9 U
72-55-9	4,4'-DDE	2.3	3.9	2.0 J
72-54-8	4,4'-DDD	2.5	3.9	< 3.9 U
50-29-3	4,4'-DDT	1.7	3.9	< 3.9 U
5103-74-2	gamma Chlordane	1.8	2.0	< 2.0 U
5103-71-9	alpha Chlordane	0.72	2.0	< 2.0 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	106%
Tetrachlorometaxylene	69.0%



ere e color a constant deba da e e

# SW8081 PESTICIDE SOLID SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Client ID	DCBP	TCMX	TOT OUT
T607-C4-Z	83.5%	66.5%	0
T607-C5-Z	91.2%	67.2%	0
MB-031808	104%	90.5%	0
LCS-031808	91.5%	80.8%	0
LCSD-031808	97.5%	85.0%	0
T607-C6-Z	94.0%	67.2%	0
T607-C6-Z MS	81.8%	67.2%	0
T607-C6-Z MSD	89.8%	72.0%	0
T607-MD	106%	69.0%	0

	LCS/MB LIMITS	QC LIMITS	
(DCBP) = Decachlorobiphenyl	(65-125)	(52-143)	
(TCMX) = Tetrachlorometaxylene	(53-112)	(43-128)	

Prep Method: SW3550B Log Number Range: 08-5461 to 08-5464

FORM-II SW8081

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

# Date Extracted MS/MSD: 03/18/08

Date Analyzed MS: 03/20/08 14:38 MSD: 03/20/08 14:58 Instrument/Analyst MS: ECD4/YZ MSD: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

## ANALYTICAL RESOURCES INCORPORATED

24 S. S. S.

> . ایرون

•

## Sample ID: T607-C6-Z MS/MSD

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount MS: 25.5 g-dry-wt MSD: 25.5 g-dry-wt Final Extract Volume MS: 5.0 mL MSD: 5.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: Yes

Percent Moisture: 22.9%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
gamma-BHC (Lindane)	< 0.981	3.95	3.93	101%	3.95	3.93	101%	0.0%
Heptachlor	< 0.981	3.40	3.93	86.5%	3.42	3.93	87.0%	0.6%
Aldrin	< 0.981	3.48	3.93	88.5%	3.48	3.93	88.5%	0.0%
Dieldrin	< 1.96	6.91	7.86	87.9%	7.82	7.86	99.5%	12.4%
4,4'-DDE	< 1.96	7.80	7.86	99.2%	8.92	7.86	113%	13.4%
4,4'-DDD	< 1.96	7.31	7.86	93.0%	8.62	7.86	110%	16.4%
4,4'-DDT	< 1.96	7.11	7.86	90.5%	7.60	7.86	96.7%	6.7%
gamma Chlordane	< 0.981	3.04	3.93	77.4%	3.24	3.93	82.4%	6.4%
alpha Chlordane	< 0.981	3.52	3.93	89.6%	3.81	3.93	96.9%	7.9%

Reported in  $\mu g/kg$  (ppb)

RPD calculated using sample concentrations per SW846.



markaran da andarata da tarta minagita (n. 1911). At

•

100 A

. ....

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 14:38 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

# Sample ID: T607-C6-Z MATRIX SPIKE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 22.9%

CAS Number	Number Analyte		RL	Result	
58-89-9	gamma-BHC (Lindane)	0.48	0.98		
76-44-8	Heptachlor	0.40	0.98		
309-00-2	Aldrin	0.47	0.98		
60-57-1	Dieldrin	0.83	2.0		
72-55-9	4,4'-DDE	1.1	2.0		
72-54-8	4,4'-DDD	1.3	2.0		
50-29-3	4,4'-DDT	0.87	2.0		
5103-74-2	gamma Chlordane	0.91	0.98		
5103-71-9	alpha Chlordane	0.36	0.98		

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	81.8%
Tetrachlorometaxylene	67.2%

# ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD



hene 10.00 1 Sec. 1

5327630

ţ 

Page 1 of 1

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted: 03/18/08 Date Analyzed: 03/20/08 14:58 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

# Sample ID: T607-C6-Z MATRIX SPIKE DUP

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 22.9%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.48	0.98	
76-44-8	Heptachlor	0.40	0.98	
309-00-2	Aldrin	0.47	0.98	
60-57-1	Dieldrin	0.83	2.0	
72-55-9	4,4'-DDE	1.1	2.0	
72-54-8	4,4'-DDD	1.3	2.0	
50-29-3	4,4'-DDT	0.87	2.0	
5103-74-2	gamma Chlordane	0.91	0.98	
5103-71-9	alpha Chlordane	0.36	0.98	

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	89.8%
Tetrachlorometaxylene	72.0%



ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: LCS-031808 LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: Reported: 03/21/08

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/20/08 13:01

Instrument/Analyst LCS: ECD4/YZ

GPC Cleanup: No

Sulfur Cleanup: Yes

Florisil Cleanup: No

LCSD: 03/20/08 13:20

LCSD: ECD4/YZ

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: LCS-031808

LCS/LCSD

Sample Amount LCS: 25.0 g-dry-wt LCSD: 25.0 g-dry-wt Final Extract Volume LCS: 5.0 mL LCSD: 5.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: Yes

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
gamma-BHC (Lindane)	4.36	4.00	109%	4.56	4.00	114%	4.5%
Heptachlor	3.44	4.00	86.0%	3.92	4.00	98.0%	13.0%
Aldrin	4.26	4.00	106%	4.20	4.00	105%	1.4%
Dieldrin	8.34	8.00	104%	8.72	8.00	109%	4.5%
4,4'-DDE	8.70	8.00	109%	9.34	8.00	117%	7.1%
4,4'-DDD	8.12	8.00	102%	8.64	8.00	108%	6.2%
4,4'-DDT	7.80	8.00	97.5%	8.12	8.00	102%	4.0%
jamma Chlordane	4.10	4.00	102%	4.16	4.00	104%	1.5%
alpha Chlordane	4.34	4.00	108%	4.46	4.00	112%	2.7%

Pest/PCB Surrogate Recovery

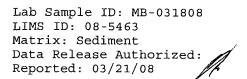
	LCS	LCSD
Decachlorobiphenyl	91.5%	97.5%
Tetrachlorometaxylene	80.8%	85.0%

Reported in  $\mu g/kg$  (ppb)

RPD calculated using sample concentrations per SW846.

FORM 4 PESTICIDE METHOD BLANK SUMMARY

age 1 of 1


SAMPLE NO.

	MN42MBS1
Lab Name: ANALYTICAL RESOURCES, INC	Client: HART CROWSER
ARI Job No.: MN42	Project: PORT OF PORTLAND T5
Lab Sample ID: MN42MBS1	Lab File ID: 0320A007
Matrix (soil/water) SOLID	Extraction:(SepF/Cont/Sonc) SW3550B
Sulfur Cleanup (Y/N) Y	Date Extracted: 03/18/08
Date Analyzed (1): 03/20/08	Date Analyzed (2): 03/20/08
Time Analyzed (1): 1241	Time Analyzed (2): 1241
Instrument ID (1): ECD4	Instrument ID (2): ECD4
GC Column (1): STX-CLP1 ID: 0.53(mm)	GC Column (2): STX-CLP2 ID: 0.53(mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· ·	
	EPA	LAB	DATE	DATE	T
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2	
	=======================================		==========	==========	
01	MN42LCSS1	MN42LCSS1	03/20/08	03/20/08	
	MN42LCSDS1	MN42LCSDS1	03/20/08	03/20/08	ĺ
03	T607-C4-Z	MN42D	03/20/08	03/20/08	Ĺ
04	T607-C5-Z	MN42E	03/20/08	03/20/08	
05	T607-C6-Z	MN42F	03/20/08	03/20/08	
06	T607-C6-Z MS	MN42FMS	03/20/08		
07	T607-C6-Z MS		03/20/08	03/20/08	
08		MN42G	03/20/08	03/20/08	
09		MN43D		03/20/08	
10		MN43E	03/20/08	03/20/08	
	T601-C3-Z	MN43F	03/20/08	03/20/08	
	T601-MD		03/20/08	03/20/08	
	T501-C12-DPZ	MN43G	03/20/08	03/20/08	
10	TOOT-CIZ-DPZ	MN44D	03/20/08	03/20/08	
		-	_		

FORM IV PEST



Date Extracted: 03/18/08 Date Analyzed: 03/20/08 12:41 Instrument/Analyst: ECD4/YZ GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

## Sample ID: MB-031808 METHOD BLANK

ANALYTICAL RESOURCES

INCORPORATED

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.49	1.0	< 1.0 U
76-44-8	Heptachlor	0.40	1.0	< 1.0 U
309-00-2	Aldrin	0.48	1.0	< 1.0 U
60-57-1	Dieldrin	0.84	2.0	< 2.0 U
72-55-9	4,4'-DDE	1.2	2.0	< 2.0 U
72-54-8	4,4'-DDD	1.3	2.0	< 2.0 U
50-29-3	4,4'-DDT	0.88	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.92	1.0	< 1.0 U
5103-71-9	alpha Chlordane	0.37	1.0	< 1.0 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	104%
Tetrachlorometaxylene	90.5%

PCBS

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: WW Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 14:59 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes



## Sample ID: T607-C4-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.4 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 33.1%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	9.8	< 9.8 U
53469-21-9	Aroclor 1242	3.3	9.8	< 9.8 U
12672-29-6	Aroclor 1248	3.3	9.8	< 9.8 U
11097-69-1	Aroclor 1254	3.3	9.8	< 9.8 Ŭ
11096-82-5	Aroclor 1260	3.3	9.8	< 9.8 U
11104-28-2	Aroclor 1221	3.3	9.8	< 9.8 Ŭ
11141-16-5	Aroclor 1232	3.3	9.8	< 9.8 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	81.5%
Tetrachlorometaxylene	77.2%

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: WWW Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:16 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes



# Sample ID: T607-C5-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.3 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

# Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	9.9	< 9.9 U
53469-21-9 12672-29-6	Aroclor 1242 Aroclor 1248	3.3	9.9 9.9	< 9.9 U < 9.9 U
11097-69-1	Aroclor 1254	3.3	9.9	< 9.9 U
11096-82-5 11104-28-2	Aroclor 1260 Aroclor 1221	3.3 3.3	15 9.9	< 15 Y < 9.9 U
11141-16-5	Aroclor 1232	3.3	9.9	< 9.9 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	87.0%
Tetrachlorometaxylene	74.5%

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized: WW Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:07 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes



12 CE

# Sample ID: T607-C6-Z SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

> Sample Amount: 25.4 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

> > Percent Moisture: 22.9%

CAS Number	Number Analyte MDL		RL	Result		
12674-11-2	Aroclor 1016	3.3	9.8	< 9.8 U		
53469-21-9	Aroclor 1242	3.3	9.8	< 9.8 U		
12672-29-6	Aroclor 1248	3.3	9.8	< 9.8 U		
11097-69-1	Aroclor 1254	3.3	9.8	< 9.8 U		
11096-82-5	Aroclor 1260	3.3	9.8	< 9.8 U		
11104-28-2	Aroclor 1221	3.3	9.8	< 9.8 U		
11141-16-5	Aroclor 1232	3.3	9.8	< 9.8 U		

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	99.0%
Tetrachlorometaxylene	77.0%

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized: Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 16:24 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

## Sample ID: T607-MD SAMPLE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08


Sample Amount: 25.6 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.2	9.8	< 9.8 U
53469-21-9	Aroclor 1242	3.2	9.8	< 9.8 U
12672-29-6	Aroclor 1248	3.2	9.8	< 9.8 U
11097-69-1	Aroclor 1254	3.2	9.8	< 9.8 U
11096-82-5	Aroclor 1260	3.2	9.8	< 9.8 U
11104-28-2	Aroclor 1221	3.2	9.8	< 9.8 U
11141-16-5	Aroclor 1232	3.2	9.8	< 9.8 U

Reported in  $\mu g/kg$  (ppb)

#### PCB Surrogate Recovery

Decachlorobiphenyl	93.8%
Tetrachlorometaxylene	76.8%



1218



## SW8082/PCB SOLIDS SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX	TOT OUT
		HCH UCH	0 1120		101 001
T607-C4-Z	81.5%	33-149	77.2%	32-121	0
MB-031808	92.5%	36-130	89.8%	30-119	0
LCS-031808	92.5%	36-130	85.2%	30-119	0
LCSD-031808	89.5%	36-130	85.0%	30-119	0
T607-C5-Z	87.0%	33-149	74.5%	32-121	0
T607-C5-Z MS	83.8%	33-149	73.0%	32-121	0
T607-C5-Z MSD	87.0%	33-149	84.8%	32-121	0
T607-C6-Z	99.0%	33-149	77.0%	32-121	0
T607-MD	93.8%	33-149	76.8%	32-121	0

Prep Method: SW3550B Log Number Range: 08-5461 to 08-5464



ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: WWW Reported: 03/25/08 MS/MSD QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08

Sample ID: T607-C5-Z

Date Received: 03/14/08

Date Extracted MS/MSD: 03/18/08

Date Analyzed MS: 03/21/08 15:33 MSD: 03/21/08 15:50 Instrument/Analyst MS: ECD5/PK MSD: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

#### Sample Amount MS: 25.3 g-dry-wt MSD: 25.3 g-dry-wt Final Extract Volume MS: 2.5 mL MSD: 2.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: No

Percent Moisture: 31.7%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 9.9 U	34.4	49.8	69.1%	35.6	49.8	71.5%	3.4%
Aroclor 1260	< 14.8 Y	40.6	49.8	81.5%	49.4	49.8	99.2%	19.6%

Results reported in  $\mu g/kg$  (ppb)

RPD calculated using sample concentrations per SW846.

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: Www Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:33 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes



1000

# Sample ID: T607-C5-Z MATRIX SPIKE

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample Amount: 25.3 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 31.7%

CAS Number	Number Analyte		RL	Result
12674-11-2	Aroclor 1016	3.3	9.9	
53469-21-9	Aroclor 1242	3.3	9.9	< 9.9 U
12672-29-6	Aroclor 1248	3.3	9.9	< 9.9 U
11097-69-1	Aroclor 1254	3.3	9.9	< 9.9 U
11096-82-5	Aroclor 1260	3.3	9.9	÷ – –
11104-28-2	Aroclor 1221	3.3	9.9	< 9.9 U
11141-16-5	Aroclor 1232	3.3	9.9	< 9.9 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	83.8%
Tetrachlorometaxylene	73.0%

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: WW Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 15:50 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

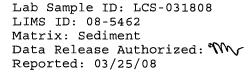


e te pro-

### MATRIX SPIKE DUP

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Sample ID: T607-C5-Z


Sample Amount: 25.3 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 31.7%

CAS Number Analyte		MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	9.9	
53469-21-9	Aroclor 1242	3.3	9.9	< 9.9 U
12672-29-6	Aroclor 1248	3.3	9.9	< 9.9 U
11097-69-1	Aroclor 1254	3.3	9.9	< 9.9 U
11096-82-5 11104-28-2	Aroclor 1260	3.3	9.9	
11141-16-5	Aroclor 1221 Aroclor 1232	3.3	9.9	< 9.9 U
TTTTTT	ALOCIOL 1232	3.3	9.9	< 9.9 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	87.0%
Tetrachlorometaxylene	84.8%



ANALYTICAL RESOURCES INCORPORATED 180

# Sample ID: LCS-031808 LCS/LCSD

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 03/18/08

Date Analyzed LCS: 03/21/08 14:24 LCSD: 03/21/08 14:42 Instrument/Analyst LCS: ECD5/PK LCSD: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No Sample Amount LCS: 25.0 g-dry-wt LCSD: 25.0 g-dry-wt Final Extract Volume LCS: 2.5 mL LCSD: 2.5 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	38.7	50.4	76.8%	38.3	50.4	76.0%	1.0%
Aroclor 1260	43.6	50.4	86.5%	42.4	50.4	84.1%	2.8%

#### PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	92.5%	89.5%
Tetrachlorometaxylene	85.2%	85.0%

Results reported in  $\mu$ g/kg (ppb) RPD calculated using sample concentrations per SW846.

# PCB METHOD BLANK SUMMARY

BLANK NO.

MN42MBS1
----------

Lab Name: ANALYTICAL RESOURCES, INC ARI Job No.: MN42 Lab Sample ID: MN42MBS1 Date Extracted: 03/18/08 Date Analyzed: 03/21/08 Time Analyzed: 1407 Client: HART CROWSER Project: PORT OF PORTLAND T6-Lab File ID: 0321B015 Matrix: SOLID Instrument ID: ECD5 GC Columns: ZB5/ZB35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		•	
	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
		==========	==========
01	MN42LCSS1	MN42LCSS1	03/21/08
02	MN42LCSDS1	MN42LCSDS1	03/21/08
03	T607-C4-Z	MN42D	03/21/08
04	T607-C5-Z	MN42E	03/21/08
05	T607-C5-Z MS	MN42EMS	03/21/08
. 06	T607-C5-Z MSD	MN42EMSD	03/21/08
07	T607-C6-Z	MN42F	03/21/08
80	T607-MD	MN42G	03/21/08
09	T601-C1-Z	MN43D	03/21/08
10	T601-C2-Z	MN43E	03/21/08
11	T601-C3-Z	MN43F	03/21/08
12	T601-MD	MN43G	03/21/08
13	T501-C12-DPZ	MN44D	03/21/08

ALL RUNS ARE DUAL COLUMN

page 1 of 1

FORM IV PCB

Lab Sample ID: MB-031808 LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized: WW Reported: 03/25/08

Date Extracted: 03/18/08 Date Analyzed: 03/21/08 14:07 Instrument/Analyst: ECD5/PK GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes



Sample ID: MB-031808 METHOD BLANK

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	3.3	10	< 10 U
53469-21-9	Aroclor 1242	3.3	10	< 10 U
12672-29-6	Aroclor 1248	3.3	10	< 10 U
11097-69-1	Aroclor 1254	3.3	10	< 10 U
11096-82-5	Aroclor 1260	3.3	10	< 10 U
11104-28-2	Aroclor 1221	3.3	10	< 10 U
11141-16-5	Aroclor 1232	3.3	10	< 10 U

Reported in  $\mu g/kg$  (ppb)

Decachlorobiphenyl	92.5%
Tetrachlorometaxylene	89.8%

# METALS



"我们们的,我们的是我们就能到来,"他的是我们的话,我们的

States of the second se

- そうない、システレンシンとなどの情報など、けたいしたいですたかです。 Tingen

1.

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T607-C4-Z SAMPLE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-т2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 65.5%

Prep Meth	Prep Date	Analysis	-						
		Method	Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.19	0.3	0.3	U
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.29	0.3	0.3 3.8	U
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.029	0.3	0.9	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.41	0.7	18.9	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.058	0.3	27.5	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.29	3	12	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0052	0.05	0.08	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.45	1	17	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.16	0.4		IJ
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.41	1	135	0

Reported in mg/kg-dry (ppm). U-Analyte undetected at given RL RL-Reporting Limit



Ë,

ţ.

and the second se

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T607-C4-Z DUPLICATE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

# MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	0
·····		•				Q
Antimony	200.8	0.3 U	0.3 U	0.0%	+/- 0.3	L
Arsenic	200.8	3.8	3.5	8.2%	+/- 20%	
Cadmium	6010B	0.9	0.9	0.0%	+/-0.3	L
Chromium	6010B	18.9	18.3	3.2%	+/- 20%	
Copper	6010B	27.5	25.2	8.7%	+/- 20%	
Lead	6010B	12	12	0.0%	+/- 3	L
Mercury	7471A	0.08	0.09	11.8%	+/-0.05	L
Nickel	6010B	17	16	6.1%	+/- 20%	Ц
Silver	6010B	0.4 U	0.4 U	0.08	+/-0.4	L
Zinc	6010B	135	130	3.8%	+/- 20%	Ц

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

ANALYTICAL RESOURCES

A CONTRACT OF A MARK OF A MARK OF A

1111

STATISTICS AND ADDRESS

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T607-C4-Z MATRIX SPIKE

Lab Sample ID: MN42D LIMS ID: 08-5461 Matrix: Sediment Data Release Authorized: Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

# MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Antimony	200.8	0.3 U	1 0		_	
Arsenic	200.8		1.0	36.9	2.7%	N
		3.8	36.1	36.9	87.5%	
Cadmium	6010B	0.9	66.4	72.7	90.18	
Chromium	6010B	18.9	81.6	72.7	86.2%	
Copper	6010B	27.5	89.0	72.7	84.6%	
Lead	6010B	12	262	291	85.9%	
Mercury	7471A	0.08	0.62	0.519	104%	
Nickel	6010B	17	77	72.7	82.5%	
Silver	6010B	0.4 U	61.1	72.7	84.0%	
Zinc	6010B	135	200	72.7	89.4%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%



We build

**H** 

189 July 31 

ţ,

ŝ.

 $\{v_{1},v_{2},v_{3},v_{4},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{5},v_{$ 

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

# Sample ID: T607-C5-Z SAMPLE

Lab Sample ID: MN42E LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 69.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	0
		· · · · · · · · · · · · · · · · · · ·						Result	<u></u>
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.18	0.3	0.3	U
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.27	0.3	3.0	•
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.027	0.3	0.9	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.37	0.7	17.6	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.053	0.3	30.4	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.27	3	11	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercurv	0.0061	0.06	0.06	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.41	1	0.08 16	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.15	0.4		
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc				U
		0010D	00,21,00	/==00-0	2THC	0.37	1	115	

Reported in mg/kg-dry (ppm). U-Analyte undetected at given RL RL-Reporting Limit

FORM-I



- 2

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

# Sample ID: T607-C6-Z SAMPLE

Lab Sample ID: MN42F LIMS ID: 08-5463 Matrix: Sediment Data Release Authorized Reported: 03/28/08 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 77.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q	
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.17	0.3	0.3 U	-
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.25	0.3	0.3 0 1.4	
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.025	0.2	0.4	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.35	0.6	11.8	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.050	0.2	13.7	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.25	2	5	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0051	0.05	0.05 U	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.38	1	10	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.14	0.4	0.4 1	
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.35	1	56	

Reported in mg/kg-dry (ppm). U-Analyte undetected at given RL RL-Reporting Limit

ANALYTICAL RESOURCES INCORPORATED

18.3

14

22 ÷. 

Vial and a local state 

INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

Sample ID: T607-MD SAMPLE

Lab Sample ID: MN42G LIMS ID: 08-5464 Matrix: Sediment Data Release Authorized Reported: 03/28/08

QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Percent Total Solids: 60.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	03/18/08	200.8	02/20/00	7440 26 0	<b>D b b</b>	0.01			
			03/20/08	7440-36-0	Antimony	0.21	0.3	0.3	U
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.32	0.3	3.1	
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.031	0.3	0.8	
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.43	0.8	17.1	
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.062	0.3	37.4	
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.31	3	9	
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0070	0.07	0.08	
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.48	2	15	
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.17	0.5	0.5	U
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.43	2	114	

Reported in mg/kg-dry (ppm). U-Analyte undetected at given RL RL-Reporting Limit



- 3

#### INORGANICS ANALYSIS DATA SHEET TOTAL METALS Page 1 of 1

#### Sample ID: LAB CONTROL

Lab Sample ID: MN42LCS LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized Reported: 03/28/08 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

#### BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	. <b>₽</b>	
Analyte	Method	Found	Added	Recovery	Q
Antimony	200.8	25.6	25.0	102%	
Arsenic	200.8	27.0	25.0	108%	
Cadmium	6010B	53.0	50.0	106%	
Chromium	6010B	51.8	50.0	104%	
Copper	6010B	52.6	50.0	105%	
Lead	6010B	205	200	102%	
Mercury	7471A	1.04	1.00	104%	
Nickel	6010B	51	50	102%	
Silver	6010B	49.8	50.0	99.6%	
Zinc	6010B	51	50	102%	

Reported in mg/kg-dry

N-Control limit not met Control Limits: 80-120%

ANALYTICAL RESOURCES È.

and a set best were the the That the Study of

A. 1997. V

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: MN42MB LIMS ID: 08-5462 Matrix: Sediment Data Release Authorized Reported: 03/28/08 QC Report No: MN42-Hart Crowser Project: Port of Portland T6-Berth 607 15667-T2 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	03/18/08	200.8	03/20/08	7440-36-0	Antimony	0.13	0.2	0.2	тт
					-			• • -	-
3050B	03/18/08	200.8	03/20/08	7440-38-2	Arsenic	0.20	0.2	0.2	U
3050B	03/18/08	6010B	03/21/08	7440-43-9	Cadmium	0.020	0.2	0.2	U
3050B	03/18/08	6010B	03/21/08	7440-47-3	Chromium	0.28	0.5	0.5	U
3050B	03/18/08	6010B	03/21/08	7440-50-8	Copper	0.040	0.2	0.2	U
3050B	03/18/08	6010B	03/21/08	7439-92-1	Lead	0.20	2	2	U
CLP	03/18/08	7471A	03/21/08	7439-97-6	Mercury	0.0050	0.05	0.05	U
3050B	03/18/08	6010B	03/21/08	7440-02-0	Nickel	0.31	1	1	U
3050B	03/18/08	6010B	03/21/08	7440-22-4	Silver	0.11	0.3	0.3	U
3050B	03/18/08	6010B	03/21/08	7440-66-6	Zinc	0.28	1	1	U

Reported in mg/kg (ppm). U-Analyte undetected at given RL RL-Reporting Limit

# **GENERAL CHEMISTRY**



r hand

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T607-C4-Z ARI ID: 08-5461 MN42D

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	65.70
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	67.40
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	2.98	179
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	14.5	56.8
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	1.02

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.



ł,

A CONTRACTOR

برسيلي وأبوليا

Matrix: Sediment Data Release Authorized: Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T607-C5-Z ARI ID: 08-5462 MN42E

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	69.40
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	67.30
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	2.66	112
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	13.5	49.7
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	0.796

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

Soil Sample Report-MN42



アー・キャット しんしん たいしん しいじょう たいのう たいせい 御祭 かけいしん けいしょうせい マット・バー

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T607-C6-Z ARI ID: 08-5463 MN42F

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	80.10
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	76.00
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	2.27	25.8
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	12.7	20.3
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	0.941

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

Soil Sample Report-MN42



The second se

Š.

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Client ID: T607-MD ARI ID: 08-5464 MN42G

Analyte	Date	Method	Units	RL	Sample
Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	64.00
Preserved Total Solids	03/18/08 031808#1	EPA 160.3	Percent	0.01	63.70
N-Ammonia	03/19/08 031908#1	EPA 350.1M	mg-N/kg	3.12	120
Sulfide	03/19/08 031908#1	EPA 376.2	mg/kg	16.2	72.0
Total Organic Carbon	03/20/08 032008#1	Plumb,1981	Percent	0.020	0.960

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.



1.1.1

1.

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	03/18/08 03/18/08	Percent	< 0.01 U < 0.01 U
Preserved Total Solids	03/18/08 03/18/08	Percent	< 0.01 U < 0.01 U
N-Ammonia	03/19/08 03/19/08	mg-N/kg	< 0.10 U < 0.10 U
Sulfide	03/19/08	mg/kg	< 1.00 U
Total Organic Carbon	03/20/08	Percent	< 0.020 U



į

Matrix: Sediment Data Release Authorized Reported: 03/25/08 Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	03/19/08	mg/kg	6.59	6.94	95.0%
Total Organic Carbon	03/20/08	Percent	0.488	0.500	97.6%



 $e_{i}^{(\frac{1}{2})}$ 

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
N-Ammonia SPEX 28-24AS	03/19/08 03/19/08	mg-N/kg	101 100	100 100	101.0% 100.0%
Total Organic Carbon NIST #8704	03/20/08	Percent	3.03	3.35	90.4%



the trainer

111111111111

1 1 1

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: MN42D Client ID:	T607-C4-Z				
Total Solids	03/18/08	Percent	65.70	65.30 65.50	0.3%
Preserved Total Solids	03/18/08	Percent	67.40	66.50 66.80	0.7%
N-Ammonia	03/19/08	mg-N/kg	179	182 183	1.1%
Total Organic Carbon	03/20/08	Percent	1.02	0.947 0.999	3.8%
ARI ID: MN42G Client ID:	1607-MD				
Sulfide	03/19/08	mg/kg	72.0	76.1	5.5%



ļ

Matrix: Sediment Data Release Authorized Reported: 03/25/08

Project: Port of Portland T6-Berth 60 Event: 15667-T2 Date Sampled: 03/12/08 Date Received: 03/14/08

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: MN42D Client ID:	T607-C4-Z					
N-Ammonia	03/19/08	mg-N/kg	179	327	150	98.7%
Total Organic Carbon	03/20/08	Percent	1.02	2.30	1.04	123.4%
ARI ID: MN42G Client ID:	<b>T</b> 607-MD					
Sulfide	03/19/08	mg/kg	72.0	241	205	82.4%

# GRAINSIZE

### Hart Crowser Port of Portland T6-Berth 607 15667-T2

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	iilt		CI	lay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8		10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	, 7.80	3.90	2.00	10
6A-T	100.0	99.6	98.1	96.7	95.7	94.4	92.2	82.3	61.7	41.3	27.3	18.8	10.5	70
6A-T	100.0	99.9	98.8	97.7	96.8	95.9	94.0	83.2	62.9	42.4	28.2		12.5	7.9
6A-T	100.0	100.0	99.2	98.3	97.5	96.4	94.5	84.7	65.0	44.2	29.8	19.2	12.8	8.0
T607-C4-Z	100.0	100.0	99.8	99.5	99.1	97.2	90.7	69.2	40.4	21.7		20.2	13.5	8.5
T607-C5-Z	100.0	99.8	99.4	99.0	98.4	95.6	85.5	51.2	24.7	13.4	12.8	8.3	5.5	3.3
T607-C6-Z	100.0	100.0	98,4	92.0	73.0	37.8	25.6	18.6			8.1	5.5	3.7	2.1
T607-MD	100.0	100.0	99.6	99.0	98.1	93.8	83.7	54.5	<u>10.2</u> 27.8	<u> </u>	<u>4.1</u> 9.0	<u>3.0</u> 6.4	2.0 4.3	1.2

## Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See parrative for discussion of the testing.

MN42

### Hart Crowser Port of Portland T6-Berth 607 15667-T2

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	<4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
6A-T	1.9	1.4	1.0	1.2	2.2	9.9	20,7	20.4	13.9	8.6	6.3	4.7	7.9	82.3
6A-T	1.2	1.1	0.9	1.0	1.9	10.8	20.3	20.5	14.2	9.0	6.3	4.9	8.0	
6A-T	0.8	0.9	0.8	1.1	1.9	9.8	19.7	20.8	14.4	9.6	6.7			83.2
T607-C4-Z	0.2	0.3	0.4	1.9	6.5	21.5	28.8	18.7	8.9	4.5	2.9	5.0	8.5	84.7
T607-C5-Z	0.6	0.4	0.6	2.7	10.1	34.4	26.5	11.3	5.3	2.6		2.1	3.3	69.2
T607-C6-Z	1.6	6.4	18.9	35.3	12.2	6.9	8.4	3.8	2.3		1.8	1.5	2.1	51.2
T607-MD	0.4	0.5	0.9	4.3	10.1	29.2	26.7	13.5	5.3	1.1 2.6	<u>0.9</u> 2.1	0.9	<u> </u>	18.6 54.5

## Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Notes to the Testing

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

MN42

QA SUMMARY

PROJECT:	Hart Crowser	Project No.:	Port of Portland T6-Berth 607 15667-T2
ARI Triplicate Sample ID:	MM88 C	Batch No.:	MN42 -1
Client Triplicate Sample ID:	6A-T	Page:	1 of 1

					Re	lative Stand	lard Deviati	on, By Phi S	Size					
Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7 7	0		
6A-T	100.0	99.6	98.1	96.7	95.7	94.4	92.2	82.3	61.7	41.3	27.3	- 10.0	9	10
6A-T	100.0	99.9	98.8	97.7	96.8	95.9	94.0	83.2	62.9	41.3		18.8	12.5	7.9
6A-T	100.0	100.0	99.2	98.3	97.5	96.4	94.5	84.7	65.0		28.2	19.2	12.8	8.0
AVE	NA	99.85	98.69	97.58	96.67	95.56	93.56	83.42		44.2	29.8	20.2	13.5	8.5
STDEV	NA	0.21	0.58	0.81	0.92	1.02			63.20	42.64	28.45	19.40	12.95	8.10
%RSD	NA	0.21	0.59	0.83	0.92		1.19	1.21	1.71	1.49	1.26	0.75	0.49	0.31
		0.21	0.03	0.05	0.96	1.06	1.27	1.45	2.71	3.49	4.44	3.87	3.78	3.88

Ine	Tri	plicate	: Appl	ies 7	Гo ⊺	The	Follov	ving	Sample	es

Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
6A-T	3/12/2008	3/18/2008	3/22/2008	97.6		19.6
6A-T	3/12/2008	3/18/2008	3/22/2008	99.1		19.6
6A-T	3/12/2008	3/18/2008	3/22/2008	102.1		
T607-C4-Z	3/12/2008	3/18/2008	3/22/2008	102.7	l	20.2
T607-C5-Z	3/12/2008	3/18/2008	3/22/2008			24.5
T607-C6-Z	3/12/2008	3/18/2008	3/22/2008	101.0		18.9
T607-MD	3/12/2008	3/18/2008	3/22/2008	98.6		10.4

* ARI Internal QA limits = 95-105%

## Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Verific representation of a contract system.

MN42

# TOTAL SOLIDS

Extractions Total Solids-extts Data By: Warren P. Woodard Created: 3/17/08

Worklist: 7723 Analyst: MS Comments:

	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
1.	MN42D 08-5461 T607-C4-Z	1.10	14.52	10.08	66.9	NR
2.	MN42E 08-5462 T607-C5-Z	1.12	12.36	8.80	68.3	NR
3.	MN42F 08-5463 T607-C6-Z	1.12	13.08	10.34	77.1	NR
4.	MN42G 08-5464 T607-MD	1.12	11.92	8.38	67.2	NR

Worklist ID: 7723 Page: 1

Solids Data Entry Report Date: 03/19/08 Checked by:  $\underline{\mathcal{M}}$  Date:  $\underline{\mathcal{A}}/\underline{\mathcal{M}}/\underline{\mathcal{O}}$ 

Solids Determination performed on 03/18/08 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS	
MN42	D	T607-C4-Z	0.991	10.095	6.952	65.48	
MN42	E	T607-C5-Z	1.048	10.598	7.701	69.66	
MN42	F	T607-C6-Z	1.040	10.314	8.252	77.77	
MN42	G	T607-MD	1.027	10.487	6.768	60.69	

APPENDIX D ADDITIONAL SCREENING CRITERIA TABLE

# Table D-1 - Additional Screening Criteria TableTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Berth		6	01		607				Screening Levels							
Sediment Horizon	Prism		NSM		Prism NS		NSM			SEF		SQuiRTs		Bioaccumulation		
Lab ID	MN43G	MN43D	MN43E	MN43F	MN42G	MN42D	MN42E	MN42F					Freshwater	Individ.	Individ.	General
Sample ID	T601-MD	T601-C1-Z	T601-C2-Z	T601-C3-Z	T607-MD	T607-C4-Z	T607-C5-Z	T607-C6-Z	SL1	SL2	TEL	PEL	Fish	Bird	Mammal	Humans
Conventional Parameters Total Solids (%) Total Organic Carbon (%) Ammonia (mg/kg) Total Sulfides (mg/kg)	63 1.04 112 61.7	64.4 0.947 137 34.1	65.1 0.971 176 36.6	<b>79.9</b> <b>0.252</b> <b>12.8</b> 1.33 U	64 0.96 120 72	65.7 1.02 179 56.8	69.4 0.796 112 49.7	80.1 0.941 25.8 20.3	- - -	- - - -	- - - -	- - - -		- - - -	- - - -	- - -
Metals in mg/kg																
Antimony Arsenic Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc	0.3 UJ 3.1 0.8 18.7 24.7 10 0.09 16 0.5 U 115	0.3 UJ 3.1 0.7 18.5 25.8 10 0.08 16 0.4 U 105	0.3 UJ 3.3 0.9 17.9 21.8 12 0.08 16 0.4 U 126	0.3 UJ 1.5 0.3 U 15.0 10.4 4 0.05 U 13 0.4 U 49	0.3 UJ 3.1 0.8 17.1 37.4 9 0.08 15 0.5 U 114	0.3 UJ 3.8 0.9 18.9 27.5 12 0.08 17 0.4 U 135	0.3 UJ 3.0 0.9 17.6 30.4 11 0.06 16 0.4 U 115	0.3 UJ 1.4 0.4 11.8 13.7 5 0.05 U 10 0.4 U 56	150 ^a 20 1.1 95 80 340 0.28 60 2.0 130	150 ^a 51 1.5 100 830 430 0.75 70 2.5 400	- 5.9 0.6 37 36 35 0.17 18 - 123	- 17 3.5 90 197 91 0.49 36 - 315	- 7 1 - - 17 0.07 - -	- 7 1 - - 17 0.07 - - -	- 7 1 - 17 0.07 - -	- 7 1 - 17 0.07 - - -
Butyltins in μg/kg Tributyltin (TBT) Dry Weight	2.3 J	3.6 U	3.3 J	3.6 U	160	4.5	350	5.2	75	75	-	-	2.3	1,600	730	85
SVOCs in µg/kg <u>LPAHs</u> Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene 2-Methylnaphthalene Total LPAHs	4.9 U 4.9 U 4.9 U <b>7.4</b> 4.9 U <b>7.4</b> 4.9 U 4.9 U 4.9 U <b>7.4</b>	4.8 U 4.8 U 4.8 U 4.8 U <b>20</b> 4.8 U 4.8 U 4.8 U <b>20</b> <b>20</b>	5 U 5 U 5 U 29 5 U 5 U 29 29	4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U 4.9 U	5 U 5 U 100 95 270 50 5.9 5.9 521	5 U 5 U <b>32</b> 13 66 7.9 5 U 119	4.8 U 4.8 U 32 34 330 41 4.8 U 437	5 U 5 U <b>30</b> 11 J 61 5 U 5 U 102	500 470 1,100 6,100 1,200 470 6,600	1,300 640 1,300 3,000 7,600 1,600 560 9,200	- - - 42 - - - - -	- - 515 - - - - -	- - - - - - - -	- - - - - - - - - -		
HPAHs Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(b+k)fluoranthenes Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Total HPAHs	29 27 8.8 22 20 16 J 36 9.8 5.9 4.9 U 6.9 145	21 22 8.2 13 11 11 22 9.7 5.3 4.8 ∪ 7.3 109	47 42 17 32 27 24 51 23 12 5 U 14 238	4.9       U         4.9       U	210 200 72 120 51 85 136 60 27 7.9 25 858	96 78 45 77 40 54 94 36 28 5 U 23 477	490 360 120 89 97 186 81 46 13 J 36 1452	51 44 12 10 14 5 U 14 7.5 5 U 5 U 5 U 5 U 139	11,000 8,800 4,300 5,900 - - 600 3,300 4,100 800 4,000 31,000	15,000 16,000 5,800 6,400 - - 4,000 4,800 5,300 840 5,200 55,000	111 53 32 57 - - 32 - - - - - - - - - - - - - - -	2,355 875 385 62 - - 782 - - - - - -	37,000 1,900 - - - - - - - - - - - - - - - - - -		360,000 18,000,000 - - - - - - - - - - - - - - - -	510,000 380,000 - - - - - - - - - - - - - - - - -
<u>Chlorinated Hydrocarbons</u> 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene	7.2*/20 U 20 U 20 U 7.8*/20 U	7.3*/20 U 20 U 20 U 8.0*/20 U	7.3*/20 U 20 U 20 U 8.0*/20 U	7.4*/20 U 20 U 20 U 8.0*/20 U	7.2*/20 U 20 U 20 U 7.9*/20 U	7.2*/20 U 20 U 20 U 7.9*/20 U	7.3*/20 U 20 U 20 U 7.9*/20 U	7.2*/20 U 20 U 20 U 7.9*/20 U	35 ^a 110 ^a 31 ^a 22 ^a	50 ^ª 110 ^ª 51 ^ª 70 ^ª	- - - -	- - -	- - - 61,000	- - -		- - - 19
<u>Phthalates</u> Dimethyl Phthalate Diethyl Phthalate Di-n-butyl Phthalate Butyl Benzyl Phthalate Bis(2-ethylhexyl) Phthalate Di-n-octyl Phthalate	20 U 20 U 20 U 20 U <b>23</b> 20 U	20 U 20 U 20 U 20 U <b>13</b> J 20 U	20 U 20 U 20 U 20 U <b>15</b> J 20 U	20 U 20 U 20 U 20 U <b>20</b> 20 U	20 U 20 U 20 U 20 U <b>76</b> 20 U	20 U <b>76</b> 20 U 20 U <b>23</b> 20 U	20 U 20 U 20 U 20 U <b>32</b> 20 U	20 U 20 U 20 U 20 U 12 J 20 U	46 200 ^a 1,400 ^a 260 220 26	440 200 ^a 1,400 ^a 370 320 45	- - - - - -	- - - - - - -	- - - - - - -	- - - - -	- - - - - - -	
Phenols         Phenol         2-Methylphenol         4-Methylphenol         2,4-Dimethylphenol         Pentachlorophenol (PCP)	<b>29</b> 20 U 20 U 20 U 20 U 98 U	<b>40</b> 20 U 20 U 20 U 100 U	<b>40</b> 20 U 20 U 20 U 20 U 100 U	20 U 20 U 20 U 20 U 20 U 100 U	20 U 20 U 20 U 20 U 20 U 98 U	<b>30</b> 20 U 20 U 20 U 98 U	20 U 20 U 20 U 20 U 99 U	20 U 20 U 20 U 20 U 20 U 98 U	420 ^a 63 ^a 670 ^a 29 ^a 400 ^a	1,200 ^a 63 ^a 670 ^a 29 ^a 690 ^a	- - - - -	- - - - -	- - - 310	- - - -	- - - 330	- - - 250

Please refer to notes on the last page of this table.

Sheet 1 of 2

# Table D-1 - Additional Screening Criteria TableTerminal 6 Sediment CharacterizationN Marine Drive, Portland, Oregon

Berth		6	01			6	07					Screeni	ng Levels			
Sediment Horizon	Prism	Prism		NSM		Prism NSM		SEF		SQu	SQuiRTs		Bioaccumulation			
Lab ID	MN43G	MN43D	MN43E	MN43F	MN42G	MN42D	MN42E	MN42F					Freshwater	Individ.	Individ.	General
Sample ID	T601-MD	T601-C1-Z	T601-C2-Z	T601-C3-Z	T607-MD	T607-C4-Z	T607-C5-Z	T607-C6-Z	SL1	SL2	TEL	PEL	Fish	Bird	Mammal	Humans
SVOCs in µg/kg (Cont.)																
Miscellaneous Extractables																
Benzyl Alcohol	20 U	20 U	20 U	57 ^a	73 ^a	-	-	-	-	-	-					
Benzoic Acid	350	470	360	200 U	230	360	280	<b>140</b> J	650 ^a	650 ^a	-	-	-	-	-	-
Dibenzofuran	0.96*/4.9 U	0.95*/4.8 U	0.97*/5.0 U	0.96*/4.9 U	37	0.97*/5.0 U	16 J	0.98*/5.0 U	400	440	-	-	-	-	-	-
Hexachlorobutadiene	7.9*/20 U	8.1*/20 U	8.1*/20 U	8.1*/20 U	7.9*/20 U	8.0*/20 U	8.0*/20 U	8.0*/20 U	11 ^a	120 ^a	-	-	-	-	-	-
n-Nitrosodiphenylamine	20 U	20 U	20 U	28 ^a	40 ^a	-	-	-	-	-	-					
Pesticides in µg/kg																
4,4'-DDE	3.3 J	3.7	2.7	1.1*/2.0 U	2.0 J	3.3	2.3	1.1*/2.0 U	9.0 ^a	9.3 ^a	1.4	6.8	-	-	-	-
4,4'-DDD	4.4 J	2.7	2.4	1.3*/2.0 U	2.5*/3.9 U	2.0 J	1.3*/2.0 U	1.2*/2.0 U	16 ^a	28 ^a	3.5	8.5	-	-	-	-
4,4'-DDT	1.7*/3.9 U	0.88*/2.0 U	0.88*/2.0 U	0.88*/2.0 U	1.7*/3.9 U	1.6 J	0.87*/2.0 U	0.87*/2.0 U	12 ^a	34 ^a	-	-	-	-	-	-
Total DDT	7.7 J	6.4	5.1	1.3*/2.0 U	2.0 J	6.9 J	2.3	1.2*/2.0 U	6.9 ^b	-	<u>1.2</u> °	4.8 [°]	<u>0.39</u>	<u>0.095</u> - 0.43	4.9	0.33
Aldrin	2.0 U	1.0 U	1.0 U	1.0 U	2.0 U	0.98 U	0.99 U	0.98 U	9.5 ^a	9.5 ^a	-	-	-	-	-	-
alpha-Chlordane	0.71*/2.0 U	0.36*/1.0 U	0.36*/1.0 U	0.37*/1.0 U	0.72*/2.0 U	0.36*/0.98 U	0.36*/0.99 U	0.36*/0.98 U	2.8 ^a	4.5 ^a	4.5	8.9	<u>0.5</u>	10	28	0.3
Dieldrin	1.6*/3.9 U	0.84*/2.0 U	0.84*/2.0 U	0.84*/2.0 U	1.6*/3.9 U	0.83*/2.0 U	0.83*/2.0 U	0.83*/2.0 U	1.9 ^a	3.5 ^a	2.9	6.7	2.2	0.37	<u>1.2</u>	0.0081
Heptachlor	0.79*/2.0 U	0.40*/1.0 U	0.40*/1.0 U	0.40*/1.0 U	0.79*/2.0 U	0.40/*0.98 U	0.40/*0.99 U	0.40/*0.98 U	1.5 ^a	2.0 ^a	<u>0.6</u>	2.7	-	-	-	-
gamma-BHC (Lindane)	0.96*/2.0 U	0.49*/1.0 U	0.49*/1.0 U	0.49*/1.0 U	0.96*/2.0 U	0.48/*0.98 U	0.49/*0.99 U	0.48/*0.98 U	10 ^b	-	0.9	1.4	-	-	-	-
PCBs in µg/kg																
Aroclor 1016	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1221	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1232	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1242	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1248	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1254	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/9.9 U	3.3*/9.8 U	-	-	-	-	-	-	-	-
Aroclor 1260	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/15 Y	3.3*/9.8 U	-	-	-	-	-	-	-	-
Total PCBs	3.2*/9.8 U	3.3*/10 U	3.3*/10 U	3.3*/10 U	3.2*/9.8 U	3.3*/9.8 U	3.3*/15 Y	3.3*/9.8 U	60	120	34.1	277	22	<u>1.8</u> - 57	44	<u>0.39</u>

#### Notes:

1. PAH concentrations are the higher of the detected concentrations (not estimated) of the EPA Method 8270D-SIM and EPA Method 8270D analyses.

2. Screening levels (SLs) are as follows:

SEF = Freshwater SLs (Corps, et al., 2006; Table 7-1, revised 10/20/06). If a freshwater value was not present, marine SLs marine SLs from the same table are listed and flagged with an^a. Gamma-BHC and Total DDT do not have a SEF SL; the values are flagged with a^b and are from Table 8-1 of the Dredge Material Evaluation Framework (Corps, et al., 1998).
 SQuiRTs = Screening Quick Reference Tables from Buchman (1999), except as modifed by DEQ (2006) and flagged with a^c. Bioaccumulation = Values from DEQ bioaccumulation guidance document (DEQ, 2007).

- 3. Bolded values are detected concentrations.
- 4. Shaded values are either:
  - A sediment concentration exceeding its respective SEF SL1; or
  - A screening level that was exceeded by a detection of the compound in a sediment sample.
- 5. Underlined screening level is below method detection limit.
- 6. For undetected compounds, method reporting limits are shown unless otherwise indicated.
- 7. *Method detection limit (MDL).
- 8. = Not available.
- 9. NSM = New surface material (i.e., leave surface).
- 10. J = Estimated concentration between MDL and method reporting limit (MRL).
- 11. U = Not detected at the indicated MDL or MRL.
- 12. UJ = Estimated MRL (see Appendix B).
- 13. Y = Not detected at a MRL that was raised due to chromatographic interference.

#### References:

Buchman, M.F., 1999. NOAA Screening Quick Reference Tables, HAZMAT Report 99-1, Seattle, WA, Coastal Protection and Restoration Division National Oceanic and Atmospheric Administration. 12 pp.

DEQ, 2006. Evaluation of Reliability of Potential Freshwater Sediment Screening Values. December 6, 2007.

DEQ, 2007. Guidance for Assessing Bioaccumulation Chemicals of Concern in Sediment. Updated April 2, 2007.

U.S. Army Corps of Engineers, Portland District and Seattle District; U.S. EPA, Region 10; Oregon Department of Environmental Quality; Washington State Department of Natural Resource and Department of Ecology, 1998. Dred Material Evaluation Framework for the Lower Columbia River Management Area. November 1998.

Sheet 2 of 2