

Sediment Characterization Report Terminal 4, Berths 401 and 410 11040 N. Lombard Street Portland, Oregon

Prepared for Port of Portland

July 11, 2012 15753-00

Sediment Characterization Report Terminal 4, Berths 401 and 410 11040 N. Lombard Street Portland, Oregon

Prepared for Port of Portland

July 11, 2012 15753-00

Prepared by Hart Crowser, Inc.

Phukart 11.

Expires: 5-31-2013

Richard D. Ernst, RG Principal

8910 SW Gemini Drive Beaverton, Oregon 97008-7123 Fax 503.620.6918 Tel 503.620.7284

CONTENTS

AC	RONYMS	iii
1.0	INTRODUCTION	1
	Terminal 4 and Berth Description	1
1.2	Sediment Characterization Activities	2
1.3	Project Description	2
2.0	SEDIMENT CHARACTERIZATION OBJECTIVES	3
3.0	SAMPLING AND ANALYSIS ACTIVITEIS	4
3.1	Sediment Core Sampling	4
	Reference Sediment Sampling	6
	Analytical Program	6
	Modifications to the SAP	7
4.0	SEDIMENT QUALITY	8
4.1	Data Quality Review	8
4.2	Grain Size Characteristics	9
4.3	Comparison to SEF Screening Levels	9
	Data Evaluation	10
5.0	SUMMARY	12
6.0	REFERENCES	12

TABLES

1

2

Hart Crow	ser
15753-00	July 11, 2012

Core and Sample Information

3 Sediment Chemical Analyses Results: Berth 4014 Sediment Chemical Analyses Results: Berth 410

Grain Size Distributions

<u>Page</u>

CONTENTS (Continued)

FIGURES

- 1 Site Location Map
- 2 Berth 401 and Core Locations
- 3 Berth 410 and Core Locations

APPENDIX A SEDIMENT CORE LOGS

APPENDIX B QUALITY ASSURANCE REVIEW

APPENDIX C ANALYTICAL LABORATORY REPORT

ACRONYMS

ARI	Analytical Resources, Inc.
BEHP	<i>bis</i> (2-ethylhexyl)phthalate
BUD	Beneficial Use Determination
CCV	Continuing Calibration Verification
COC	chemical of concern
Corps	U.S. Army Corps of Engineers
CRD	Columbia River Datum
DEQ	Oregon Department of Environmental Quality
DMMU	Dredge material management unit
EPA	Environmental Protection Agency
GPS	global positioning system
НРАН	High molecular weight polycyclic aromatic hydrocarbons
IS	Internal Standard
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MDL	method detection limit
µg/kg	micrograms per kilogram
MRL	method reporting limit
MS	matrix spike
MSD	matrix spike duplicate
NSM	new surface material
NUC	Northwest Underwater Construction
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
Port	Port of Portland
PSET	Portland Sediment Evaluation Team
QA/QC	quality assurance/quality control
RPD	relative percent difference
RSD	Relative Standard Deviation
SAP	Sampling and Analysis Plan
SEF	Sediment Evaluation Framework for the Pacific Northwest
SL	screening level
SRM	Standard Reference Material
SVOC	semivolatile organic compound
ТВТ	tributyltin
TOC	total organic carbon
Total DDx	DDT, DDE, and DDD
ТРН	total petroleum hydrocarbons

SEDIMENT CHARACTERIZATION REPORT TERMINAL 4, BERTHS 401 AND 410 11040 N. LOMBARD STREET, PORTLAND, OREGON

1.0 INTRODUCTION

The Port of Portland (Port) proposes to conduct a maintenance dredging event at Berths 401 and 410 at Terminal 4 along the Willamette River in Portland, Oregon (Figure 1). To provide chemical quality data on sediment to be dredged and the future "leave surface" or new surface material (NSM), sediment characterization activities were completed in accordance with the Sediment Evaluation Framework (SEF) for the Pacific Northwest (U.S. Army Corps of Engineers [Corps] et al., 2009) and our Sampling and Analysis Plan (SAP) (Hart Crowser, 2012). This report presents the results and findings of these activities.

1.1 Terminal 4 and Berth Descriptions

Terminal 4 is located at 11040 N. Lombard Street in Portland, Oregon, on the east bank of the Willamette River between River Miles 4 and 5.5. Berth 401, located downstream of Slip 1, was previously used by a grain handling facility (Cargill, Inc.) until 2004. Currently, the berth is occasionally used as a lay berth. Berths 410 and 411 are located within Slip 3 and used by Kinder Morgan for loading soda ash (sodium carbonate) for export. Berths 414, 415, and 416 at Terminal 4 are located further upstream. The proposed project includes only Berths 401 and 410.

Figure 2 shows Berth 401 and its bathymetry based on a July 2011 survey conducted by the Port. The berthing area ranges from 1,127 to 1,427 feet long and is 150 feet wide. The river bottom within the berthing area varies from approximately -35 to -57 feet, relative to the Columbia River Datum (CRD). The design depth of Berth 401 is -41 feet CRD, with 2 feet of overdredge allowance. The proposed maximum permitted depth is -44 feet CRD.

The bathymetry for Berth 410, as well as the rest of Slip 3, is shown on Figure 3. The berthing area for Berth 410 is generally the western portion of the north side of Slip 3 and extends 200 to 300 feet from the berthing wall. Currently, the river bottom within the berthing area varies from -36 to -61 feet CRD based on the Port survey in 2011. The design depth of Berth 410 is -41 feet CRD, with 2 feet of overdredge allowance. The proposed maximum permitted depth is -44 feet CRD.

1.2 Previous Sediment Characterization Activities

Previous sediment characterization and berth maintenance events for Berths 401 and 410 are discussed in the SAP (Hart Crowser, 2012). Berth 401 was last dredged in 1988. Berth 410 undergoes routine maintenance dredging, with the last dredging event occurring in 2008 as part of a removal action conducted in and near Slip 3 (Anchor 2009).

Previous sampling data from Berth 401 have detected mercury, zinc, tributyltin (TBT), *bis*(2-ethylhexyl)phthalate (BEHP), DDT, and polychlorinated biphenyls (PCBs) above SEF screening levels (SLs). Upon evaluation, the SAP identified TBT and BEHP as the primary chemicals of concern (COCs) at Berth 401. TBT was detected above SLs only in subsurface sediments and is likely localized near the middle of the berth. BEHP was also present in the dredge prism sediments. The other compounds (metals, DDT, and total PCBs) were detected infrequently above SLs. Based on the COC exceedances and berth use, a "moderate" to "high" rank was proposed for Berth 401 in accordance with Table 4-2 of the SEF (Corps, et al. 2009). The Portland Sediment Evaluation Team (PSET) indicated that a "high" ranking was appropriate PSET (2012).

For Berth 410, previous sediment characterization studies detected relatively high concentrations of polycyclic aromatic hydrocarbon (PAHs). Other contaminants include metals (cadmium, lead, silver, and zinc), BEHP, DDx (DDT and its breakdown products DDD and DDE), and PCBs. Chemical data from two cores performed in 2007 detected zinc, high molecular weight PAHs (HPAHs), and total PCBs above SLs near the middle of Berth 410 (Anchor, 2008). These compounds are COCs for Berth 410. Sediment quality at Berth 410 toward the mouth of Slip 3 was below SEF SLs. Based on the previous presence of COCs, we assigned a "high" rank to the berth in accordance with Table 4-2 of the SEF. PSET (2012) concurred with this ranking.

1.3 Project Description

Maintenance dredging is needed due to the gradual and persistent deposition of river sediment in the berthing areas that compromise the authorized navigational depth clearances required for ships. Dredging is imperative for Berth 410 as it is currently used. Berth 401 is used only occasionally as a lay berth; however, the Port anticipates putting this berth back in active use soon. The Port will be submitting a Joint Permit Application (JPA) to the Corps and Oregon Department of State Lands to obtain the necessary permits to perform maintenance dredging of these berths.

In-water dredging activities will be performed during the Willamette River in-water work window from July 1 to October 31. Figures 2 and 3 show the sediment areas requiring dredging for Berths 401 and 410, respectively. Dredging would be conducted to -41 feet CRD with a permitted 2 feet of overdredge for advanced maintenance and inherent dredging accuracy (i.e., to -43 feet CRD). The NSM, which is equivalent to the pay depth (i.e., the depth to which the dredging contractor is paid for material removed), is anticipated to average -42 feet CRD. As such, the estimated maximum dredging volumes for Berths 401 and 410 are 20,000 and 15,000 cubic yards, respectively. While the maximum depth of dredging is anticipated to be -43 feet CRD, the Port will be requesting a proposed maximum permitted depth of -44 feet CRD to account for occasional smaller areas that may exceed the maximum dredging depth of -43 feet CRD.

The Port will use its standard berth dredging methods, which are designed and have been previously demonstrated to minimize water quality impacts. A clamshell dredge will remove sediments using a close-lipped bucket operated either from the dock or from a floating crane. The depth and position of the bucket and dredge would be monitored by visual and positioning computer systems, including a global positioning system (GPS). The dredge material will be placed in a barge and transported for placement at an upland placement facility (West Hayden Island Placement Facility or Suttle Road Rehandling Facility), or another approved beneficial use site. For material that is unsuitable for these placement options, the material will be transported for disposal at a solid waste (RCRA Subtitle D) landfill. During dredge material handling, transport, or placement, it is not anticipated that return water flows to the Willamette or Columbia Rivers will be generated.

2.0 SEDIMENT CHARACTERIZATION OBJECTIVES

The overall objective of this sediment characterization study was to characterize the quality of the proposed dredge material and NSM. Specific objectives of the study were to:

- Characterize sediment affected by proposed dredging activities along the berths (i.e., the dredge prisms) to document the quality of the sediments;
- Additionally, characterize the underlying NSMs (a.k.a. leave surfaces) along the berths to document the chemical quality of these remaining sediments;
- Collect, handle, and analyze samples representative of the dredge prisms and NSM sediments in accordance with the SEF;
- Compare the sediment analytical results to applicable SLs to evaluate the nature of the dredge prisms and NSM sediments; and

• Evaluate and report the results of the analytical sediment testing in a complete and timely manner to support the necessary maintenance dredging activities.

Sediment characterization activities were conducted in accordance with our SAP (Hart Crowser, 2012), comments from PSET (PSET, 2012), the SEF, and an EPA technical manual for sediment sampling (EPA, 2001). Quality assurance/quality control (QA/QC) procedures described in our Quality Assurance Project Plan in the SAP were followed.

3.0 SAMPLING AND ANALYSIS ACTIVITIES

This section summarizes the sampling activities and presents the analytical program for the dredge prism and NSM samples obtained at Berths 401 and 410 at Terminal 4. Our activities also included collecting a reference sample in the Willamette River for contingency biological testing.

3.1 Sediment Core Sampling

On May 8 and 9, 2012, Northwest Underwater Construction (NUC) of Vancouver, Washington (under subcontract to Hart Crowser), obtained sediment cores three cores each from Berths 401 and 410 (Figures 2 and 3, respectively). A representative of Hart Crowser was present to observe and document the coring activities and to collect dredge prism and NSM samples for analysis.

Positioning. Horizontal positioning was performed using differential GPS. Prior to field deployment, the coordinates of the proposed core locations were uploaded into the GPS unit. The vessel was then positioned and anchored as close to the proposed locations and the actual field coordinates where recorded at the time of coring. Actual positions were within approximately 10 feet of planned positions. While positioned over the sample location, vertical measurements to the sediment surface (i.e., mudline) were made using a weighted tape (lead line). These depth-to-mudline measurements were used to calculate a mudline CRD elevation by referencing a United States Geological Survey (USGS) river gauging station on the Willamette River (Morrison Bridge Station 14211720). The mudline elevations were generally within 0.5 feet of those estimated from the July 2011 bathymetry except at core location 401B which was 1.5 feet different. Table 1 presents the core coordinates and mudline elevations.

Field Coring Procedures. Cores were obtained using a vibracorer with a 4-inchdiameter core barrel deployed from a sampling vessel operated by NUC. Cores were advanced from 9 to 10 feet at Berth 401 and from 5.6 to 7.3 feet at Berth 410, penetrating through the proposed dredge prism and into the underlying NSM that will remain after dredging. Sediment was contained in a polycarbonate liner inside of the core barrel.

Upon retrieval of the vibracorer, the liner with core was removed from the core barrel, the overlying water was drained, and the ends sealed with caps. The sediment core was examined for acceptance. To obtain sufficient sediment for contingency biological testing, two cores were needed from each core location. Acceptable cores used for sampling had core recoveries ranged from 70 to 100 percent. The two cores from location 401A (Figure 2) had slightly less than the preferred minimum recovery of 75 percent, but these cores were used as they were the best of five attempts retrieved from this location. The lower recoveries appeared to be due to core compaction, and the dredge prism and NSM are believed to be well represented.

Table 1 presents the sediment sampling information, including core identification, penetration, percent recovery, and target sample intervals. The sediment cores were then transported to our office for processing.

Core Processing for Samples. Per the SAP (Hart Crowser, 2012), each core location represents a separate dredged material management unit (DMMU); as such, one dredge prism sample and one NSM sample was collected, as described below, for each DMMU (i.e., for each core location). In the processing area, the core were opened by splitting the core liner lengthwise; sediment was then photographed and described including, as appropriate, physical description, odor, visual stratification, debris, and biological activity. Logs of the cores are included in Appendix A. The percent recovery was remeasured to derive a compaction correction factor to apply for determining the sample intervals. Sample intervals were also based on the field-determined mudline elevations (Table 1).

Dredge Prism Samples. After logging, the following procedures were used to sample dredge prism sediments from the two cores obtained from each core location. A discrete sample was obtained from one core for sulfide analyses, generally near the upper third of the Berth 401 cores and toward the bottom of the Berth 410 cores (sediments for sulfide analyses cannot be mixed). Sediment representing the entire depth of the dredge prism from the two cores was then placed into a stainless steel bowl and homogenized with a stainless steel spoon until both color and texture were uniform. The homogenized contents from the cores were then sampled. The sulfide and homogenized dredge prism samples were both labeled with the berth designation, core location, and the suffix DP for maintenance dredge prism (e.g., 401A/DP).

NSM Samples. The sampling procedure above was also used for the NSM samples. The NSM sample interval generally consisted of a 2-foot interval (-42 to -44 feet CRD) below the dredge prism. Due to the mudline being higher than expected at core location 401B, only 1.5 feet of NSM sediments was penetrated (Table 1). A discrete sulfide sample was obtained midway in the NSM interval from one of the two cores, and the NSM intervals of the two cores were then homogenized and sampled. The sulfide and homogenized NSM sediment samples were both labeled with the berth designation, core location, and the sulfix NSM (e.g., 401A/NSM).

3.2 Reference Sediment Sampling

On May 9, 2012, we collected reference sediment for contingency biological testing from Willamette River mile 19.5 near Elk Rock Island. NUC (under subcontract to Hart Crowser) used a grab sampler to obtain the sample from the upper 6.5 inches of sediment. Reference sediment was comprised of a slightly sandy silt. A sulfide sample was first obtained from sediment retrieved by the grab sampler. The sediment was placed in a stainless steel bowl, homogenized, and then transferred into sample containers for chemical and possible biological testing. Table 1 presents reference sample identification ("Reference"), coordinates, and mulline depth.

3.3 Analytical Program

Samples collected in Section 3.1 and 3.2 were submitted for chemical analysis under chain of custody to Analytical Resources, Inc. (ARI), of Tukwila, Washington (under subcontract to Hart Crowser). Sediment samples for contingency biological testing were archived (refrigerated) at our office pending chemical analyses results. Based on the results, biological testing was not performed.

3.3.1 Dredge Prism Samples

Dredge prism samples for the each core location (i.e., each representing a DMMU) were analyzed to assess the chemical quality of dredge prism, evaluate whether sediments could qualify for in-water placement, and perform an Oregon Department of Environmental Quality (DEQ) beneficial use determination (BUD) for upland placement. The samples were analyzed for the physical and chemical analyses listed below.

- Grain size by ASTM D 421/422;
- Total solids by EPA Method 160.3;
- Total organic carbon (TOC) by Plumb (1981);

- Ammonia by EPA Method 350.1M;
- Sulfide by EPA Method 376.2;
- Total petroleum hydrocarbons (TPH) as diesel and oil by Northwest Method NWTPH-Dx with a silica gel cleanup;
- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) by EPA Method 200.8/7471A;
- TBT in bulk sediment by Krone, et al. (written 1988; published 1989);
- PAHs by EPA Method 8270D-SIM;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;
- Organochlorine pesticides by EPA Method 8081A; and
- PCBs by EPA Method 8082.

3.3.2 NSM Samples

To fully characterize the NSM at Berths 401 and 410, NSM samples were analyzed for the full suite of chemical analyses listed above except TPH and PAHs. TPH analysis was only conducted on dredge prism samples for the beneficial use determination. Additionally, PAH analyses by EPA Method 8270-SIM is performed to best meet upland risk-based criteria. SVOC analyses provided PAH data, with method detection limits (MDLs) being sufficiently low to meet SEF SLs.

3.3.3 Reference Sample

Due to holding time constraints and the possibility that biological testing might be performed, we analyzed the reference sample for total solids, ammonia, and total sulfides.

3.4 Modifications to the SAP

Field activities and the analytical program were conducted in accordance with the SAP (Hart Crowser, 2012). As explained below, minor modifications were made to the field and sampling program as necessitated by field conditions.

A ship was present at Berth 401 and will be for at least several more months; as such, core location 401B as presented in the SAP could not be performed. This condition was anticipated in the SAP and an alternate core location (401B-Alt) was proposed. This alternate location was cored and is called 401B in this report.

The calculated mudline elevation for core location 401B was 1.5 feet higher than the estimated elevation based on the July 2011 bathymetry. To accommodate variability in mudline elevations such as this, we typically drive the vibracore deeper than stated in the SAP. For 401B, the vibracore was driven 1 foot deeper to the maximum vibracore length of 10 feet. Still, this left only 1.5 feet of NSM sediment being recovered instead of the 2 feet stated in the SAP. We believe that this slightly shorter NSM interval, however, is representative of the NSM.

4.0 SEDIMENT QUALITY

ARI completed analyses on six dredge prism samples and six NSM samples corresponding to each of the three DMMUs at Berths 401 and 410. Table 2 lists the physical results for both berths. Chemical results for Berths 401 and 410 are listed in Tables 3 and 4, respectively, and are compared to SLs to assess the chemical quality of the dredge prism and NSM sediments. This section presents the results and provides an evaluation of them.

4.1 Data Quality Review

A QA review of the data is provided in Appendix B. Method detection limits (MDLs) were reported for all chemical analyses except conventional analyses. The laboratory analyzed QC samples, including surrogates, method blanks, laboratory control samples (LCS), matrix spikes (MS), and laboratory, LCS, and MS duplicates. Upon review, the overall data quality objectives for collection and chemical testing of sediment samples were met, and the data for this project are acceptable for use as qualified. Four QA issues of note are as follows:

- The MS for antimony was well below control limits in sample 401A/DP. Based on our chemist's review of the data, the antimony results for this sample and the other DP samples from Berth 401 was rejected (R-flag). Antimony was not detected in these samples, nor is it a COC at this site based on previous data.
- BEHP was detected in all dredge prism and NSM samples; however, it was also detected in the method blank (19 µg/kg). Where the sample results were less than five times the method blank concentration, the sample concentration was qualified as undetected (U-flag).
- The results for DDE in samples 401C/NSM and 410B/NSM, and for DDD in sample 401B/DP differed by more than 40 percent between the two chromatographic columns (P-flag). The results were also qualified as estimated (J-flag).

The CCV for DDx associated with the undiluted analysis of sample 410C/NSM was greater than 15 percent. As such, the DDx results on the diluted sample (all non-detect) were reported in Table 4. MDLs for DDE and DDT on the diluted sample exceeded SEF SLs. Although not used, the undiluted sample results were below SEF SLs for both these compounds (8.2 µg/kg JP for DDE and non-detect at 0.18 µg/kg for DDT).

Several undetected and detected results were also J-flagged as estimated for reasons explained in Appendix B. Laboratory reports for chemical analysis, including QC samples, are included in Appendix C.

4.2 Grain Size Characteristics

The grain size results on the dredge prism samples are presented in Table 2, and grain size distribution curves are provided in Appendix C.

Berth 401. The dredge prism at core locations 401A and 401B consists of silty sand or sandy silt (43 to 65 percent fines); these sediments overlie sand in the NSM (less than 13 percent fines). At location 401C, dredge prism and NSM sediments consist of primarily slightly sandy to sandy, clayey silt (over 83 percent fines).

Berth 410. The dredge prism and NSM samples at core location 410A consisted of very silty sand (50 to 51 percent fines). Further into the Slip 3 at locations 410B and 410C, the dredge prism and NSM samples were comprised of a silty sand (22 to 40 percent fines).

4.3 Comparison to SEF Screening Levels

Table 3 presents the chemical results on sediment samples. These results were compared to the SEF SLs. These SLs were established in the SEF for protection of the aquatic environment and to provide a uniform framework for evaluating sediment quality of dredged material for unconfined aquatic disposal. Freshwater SEF SLs have not been finalized, so SLs in Tables 3 and 4 are freshwater Screening Level 1 values from Table 7-1 of the Interim Final SEF (Corps, et al., 2006; table revised October 20, 2006). Pesticides compounds do not have SL1 values so the Corps indicates marine SEF SLs are to be used (Corps, et al. 2009, Table 6-3).

4.3.1 Berth 401

Analytical results for the dredge prism and NSM samples were compared to SEF SLs in Table 3. As indicated below, only two chemicals (TBT and zinc) exceeded SEF SLs in the dredge prism. NSM samples were below SEF SLs.

Dredge Prism Samples. Analytical results on the dredge prism samples only detected two chemical compounds above SEF SLs: TBT at 140 μ g/kg (SL of 75 μ g/kg) in core location 401A downstream of Berth 401, and zinc at 132 mg/kg (SL of 130 mg/kg) at location 401B, in the upstream mid-section of the berthing area. Other metals, TPH as diesel and oil, PAHs, several SVOCs, DDD, DDE, and PCBs were also detected, but below SEF SLs.

NSM Samples. Chemical analysis of sample 401B/NSM only detected background concentrations of several metals. Results on the other two NSM samples detected metals, TBT, PAHs, several SVOCs, DDD, DDE, and PCBs; however, all detections were below SEF SLs.

4.3.2 Berth 410

Results for the dredge prism and NSM samples were compared to SEF SLs in Table 5. Chemical results show several SEF exceedances (zinc, PAHs, and/or PCBs) in dredge prism and NSM sediments at core location 410C in the eastern portion of the Berth 410. There was a slight exceedance of one PAH in the NSM at location 410B in the middle of the berth.

Dredge Prism Samples. Analytical results on dredge prism samples indicated that the only SEF SL exceedances were four chemical compounds in sample 410C/DP from the eastern portion of the Berth 410. Benzofluoranthenes were above their SEF SL (exceedance ratio of 10); however, zinc, benzo(a)pyrene, and HPAHs were only slightly above their respective SLs (exceedance ratios less than 1.2). Other metals and PAHs, TPH as diesel and oil, TBT, several SVOCs, DDD, DDE, and PCBs were also detected in this sample and the other two dredge samples; however, these detections were below SEF SLs.

NSM Samples. Chemical results did not indicate any SEF SL exceedances for sample 410A/NSM. Only benzofluoranthenes exceeded their SEF SL in sample 410B/NSM (640 μ g/kg; SL of 600 μ g/kg). In sample 410C/NSM, cadmium, zinc, and benzofluoranthenes had exceedance ratios of near or less than 2, and total PCBs were present at an estimated concentration of 435 μ g/kg (exceedance ratio of 7.3). Lead (201 mg/kg) and sulfide (150 mg/kg) were relatively high, but did not exceed SLs. Other metals, TBT, several SVOCs, DDD, and DDE were also detected NSM samples, but below SEF SLs.

4.4 Data Evaluation

Sediment characterization results indicated that several chemical compounds at each berth exceeded SEF SLs. As such, the data for each berth were evaluated

for possible placement options for dredge prism sediments and potential aquatic effects from exposure of the NSM after dredging.

4.4.1 Berth 401

Sediment data from the downstream DMMU, represented by core 401A, indicates that the dredge prism is not suitable for in-water placement due to the presence of TBT above its SL (140 μ g/kg versus SL of 75 μ g/kg). Overall, chemical concentrations in the DMMU are relatively low and upland placement under a DEQ-approved BUD is likely. Exposure of the NSM at this downstream end would not pose any effects to the aquatic environment (results below SLs; similar to dredge prism sediments).

For the mid-berth DMMU, only zinc in 401B was barely above its SL in dredge prism (exceedance ratio of 1.02). Previous investigations, however, found TBT in the mid-berth area. This area could not be sampled because of a ship in lay berth. In 2006, TBT was detected 1,000 µg/kg in a composite sample of NSM sediments (Anchor, 2006). A subsequent TBT-characterization study determined that TBT was present above its SEF in the mid-berth area to a depth of -44 feet CRD (a sample from -43 to -44 feet CRD had 230 µg/kg TBT; the next deeper sample was non-detect for TBT [Anchor, 2007; Hart Crowser, 2012). Dredging shallower than -44 feet CRD may leave TBT above SEF SLs in the NSM. As such, we recommend that dredging to -44 feet CRD be conducted mid-berth. While TBT and zinc preclude in-water placement of dredged material, the material is likely suitable for upland placement under a BUD.

The upstream DMMU met SEF SLs so dredged material is suitable for both inwater and upland placement. Exposure of the NSM at the upstream end would not pose any effects to the aquatic environment (results below SLs; similar to dredge prism sediments).

4.4.2 Berth 410

Sediment data from the west and mid-berth DMMUs, represented by cores 410A and 410B, indicates that the dredge prism is suitable for both in-water and upland placement. Exposure of the NSM is not anticipated to not pose an adverse effect to the aquatic environment, as results below SEF SLs with the exception of benzofluoranthenes. Benzofluoranthenes were detected in sample 410B/NSM at 640 μ g/kg, slightly above the SEF SL of 600 μ g/kg (exceedance ratio of 1.07). This result is within the laboratory error: the relative percent difference (RPD) of 6.5 percent between the result and the SL is similar to the RPD of the associated laboratory control sample and its duplicate (6.6 percent). As such, we believe that this minor exceedance does not pose an aquatic concern.

Chemical results from the eastern DMMU of Berth 410 (core location 410C) indicate that the dredge prism sediment is not suitable for in-water placement and, due to high PAH concentrations, may not be approved by the DEQ for upland placement. NSM sediments are lower in PAH concentrations, but have relatively higher lead, zinc, and PCB concentrations. Cadmium, zinc, benzofluoranthenes, and PCBs exceeded SEF SLs in the NSM, but only PCBs were much higher than its SL. As such, exposure of the NSM in the eastern portion of Berth 410 may pose a possible aquatic concern.

5.0 SUMMARY

The Port is proposing to conduct maintenance dredging at Berths 401 and 410 to maintain the navigational depth clearances for vessels docking at these berths. In May 2012, we obtained three sediment cores from each berth. Sediment from each core was sampled to represent the dredge prism and future NSM. Samples were submitted for physical and chemical analyses.

Chemical results from cores completed at Berth 401 indicate that dredge prism sediment from the downstream and mid-berth DMMUs is not suitable for inwater placement, but upland placement under a BUD is likely. Due to previous detections of TBT in the mid-berth area, we recommend dredging to -44 feet CRD in this area. Sediments from the upstream DMMU are suitable for both in-water and upland placement. After dredging, exposure of the NSM does not pose a concern to the aquatic environment.

Data from Berth 410 indicate that western and mid-berth DMMU sediments are suitable for both in-water and upland placement. Exposure of the NSM is unlikely to have an adverse impact on the aquatic environment. The eastern DMMU has relatively high concentrations of PAHs, which would likely preclude in-water or upland placement; as such, this dredged material would require landfill disposal. The NSM in this area also has SEF SL exceedances, and additional post-dredge assessment or actions may be necessary to assess for or mitigate, respectively, impacts to the aquatic environment.

6.0 REFERENCES

Anchor, 2006. *Supplemental Sampling and Analysis Plan, Port of Portland, Berth 401 Maintenance Dredging, Supplemental Sediment Characterization.* October 2006. Anchor, 2007. *Supplemental Sediment Characterization Report, Port of Portland, Berth 401 Maintenance Dredging, Supplemental Sediment Characterization.* July 2007.

Anchor, 2008. Final Design Analysis Report: Terminal 4 Phase I Removal Action. Specifically, Appendix G: Data Report, Sediment Characterization Results for Terminal 4 Phase I Removal Action Preconstruction Sampling, Port of Portland, Portland, Oregon. June 2008.

Anchor, 2009. *Final Removal Action Completion Report: Terminal 4 Phase I Removal Action, Port of Portland, Portland, Oregon.* June 2009.

DMMP, 2008. *Dredged Material Evaluation and Disposal Procedures (Users' Manual).* Prepared by the U.S. Army Corps of Engineers, Seattle District, Environmental Protection Agency Region 10, Washington State Department of Natural Resources, and Washington State Department of Ecology. June 2008.

EPA, 2001. Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. Office of Water. EPA-823-B-01-002. October 2001.

Hart Crowser, 2012. *Sampling and Analysis Plan, Sediment Characterization, Terminal 4 Berths 401 and 410, 14400 N. Lombard Street, Portland, Oregon.* March 7, 2012.

Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.L. Chan, and U. Varanasi, 1989. *A method for analysis of butyltin species and the measurement of butyltins in sediment and English sole livers from Puget Sound*. Mar. Environ. Res. 27:1-18.

Plumb, Russell H., Jr., 1981. *Procedures for Handling and Chemical Analysis of Sediment and Water Samples.* U.S. Environmental Protection Agency/U.S. Army Corps of Engineers. May 1981.

PSET, 2012. U.S. Army Corps of Engineers (Corps), Portland District, Operations Division, Regulatory Branch (Taylor), Regulatory File No. NWP-2000-984(2) – Technical Memorandum Re: review of the Port of Portland's (Port's) March 7, 2012 Level 2 Sampling and Analysis Plan: Sediment Characterization, Terminal 4 Berths 401 and 410, 11040 North Lombard Street, Portland, Oregon (SAP). Terminal 4 (T4) is located on the east bank of the Willamette River, between river miles (RMs) 4.0 and 5.5, in Portland, Multnomah County, Oregon. April 23, 2012.

U.S. Army Corps of Engineers, Seattle District, Portland District, Walla Walla District, and Northwestern Division; U.S. EPA, Region 10; Washington Departments of Ecology and Natural Resources; Oregon Department of Environmental Quality; Idaho Department of Environmental Quality; National Marine Fisheries Service; and U.S. Fish and Wildlife Service, 2006. *Northwest Region Sediment Evaluation Framework, Interim Final.* September 2006.

U.S. Army Corps of Engineers, Seattle District, Portland District, Walla Walla District, and Northwestern Division; U.S. EPA, Region 10; Washington Departments of Ecology and Natural Resources; Oregon Department of Environmental Quality; Idaho Department of Environmental Quality; National Marine Fisheries Service; and U.S. Fish and Wildlife Service, 2009. *Sediment Evaluation Framework for the Pacific Northwest.* September 2009.

Table 1 - Core and Sample InformationTerminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

			Location		Core	Number of	Percent
Core Sample			Northing	Easting	Penetration in	Cores	Sediment
Location	Date	Berth	(Latitude)	(Longitude)	Feet	Obtained	Recovery
Berth 401							
401A	5/9/12	Downstream	715579	7618374	9.0 - 9.2	2	71 to 75
401B	5/8/12	Mid-Berth to Upstream	714690	7618800	10	2	80 to 82
401C	5/9/12	Upstream	714501	7618778	9.5 - 9.7	2	84 to 87
Berth 410				·			
410A	5/8/12	West End of Slip	713545	7619337	6.2 - 6.3	2	82 to 85
410B	5/8/12	Mid-Berth	713519	7619551	7.1 - 7.3	2	76 to 85
410C	5/8/12	East End of Berth	713488	7619777	5.6 - 7.3	2	88 to 100
Willamette Rive	r Reference Se	diment					
Reference (Fine-Grained)	5/9/12	-	652800	7651293	0.5	1 Grab Sample	-

		Dredg	e Prism	N	SM
Core Sample Location	Approximate Mudline Elevation*	Sample Interval	Individual Sample	Sample Interval	Individual Sample
Berth 401	-				-
401A	-36	-36 to -42	401A/DP	-42 to -44	401A/NSM
401B	-33.5	-33.5 to -42	401B/DP	-42 to -43.5	401B/NSM
401C	-37	-37 to -42	401C/DP	-42 to -44	401C/NSM
Berth 410	-				
410A	-40.5	-40.5 to -42	410A/DP	-42 to -44	410A/NSM
410B	-40.5	-40.5 to -42	410B/DP	-42 to -44	410B/NSM
410C	-40.5	-40.5 to -42	410C/DP	-42 to -44	410C/NSM
Willamette Rive	er Reference Se	diment			
Reference (Fine-Grained)	**	-	-	-	Reference

Notes:

- 1. Northing and easting based on North American Datum of 1983 (NAD 83/98), State Plane Coordinate System, Oregon North Zone.
- 2. All elevations, depths, and intervals are in feet CRD.
- 3. = Not available, not applicable, or not sampled
- 4. *Based on lead line measurement and river levels from USGS Willamette River gage station 14211720 on Morrison Bridge. Rounded to nearest 0.5 feet. Mudline elevations were within 0.5 foot of the July 2011 bathymetric survey, except for 401B which was 1.5 feet different.
- 5. **Depth of water to mudline was 14.8 feet.

Table 2 - Grain Size DistributionsTerminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

			Berth 4	01			
S	ediment Horizon		Prism			NSM	
	Sample ID	401A/DP	401B/DP	401C/DP	401A/NSM	401B/NSM	401C/NSM
	Lab ID	UU16A	UU16B	UU16C	UU16D	UU16E	UU16F
	Date	9-May-12	8-May-12	9-May-12	9-May-12	8-May-12	9-May-12
Classification	Microns			Perce	nt (%)		
Gravel	>2,000	0.2	0.1	0.0	0.9	0.0	0.1
Very Coarse Sand	850-2000	1.1	1.2	0.3	2.3	1.0	0.2
Coarse Sand	425-850	8.8	17.3	0.3	22.4	34.9	2.2
Medium Sand	250-425	11.6	25.3	0.3	45.3	49.6	3.1
Fine Sand	150-250	4.3	6.7	0.8	14.0	10.3	2.3
Very Fine Sand	75-150	9.1	6.2	7.4	2.9	1.1	9.1
Coarse Silt	32-75	20.9	11.5	30.6	3.7	3.0	27.5
Medium Silt	13-32	16.1	13.6	25.8	2.5	0.0	22.4
Fine Silt	9-13	4.2	3.4	6.5	1.5	0.0	5.4
Very Fine Silt	7-9	6.0	3.4	6.5	1.5	0.0	4.7
8-9 Phi Clay	3.2-7	7.2	6.8	10.8	3.0	0.0	12.2
9-10 Phi Clay	1.3-3.2	4.8	1.7	5.0	0.0	0.0	4.1
> 10 Phi Clay	<1.3	6.0	2.8	5.7	0.0	0.0	6.8
Total Fines	<75	65.2	43.2	90.9	12.2	3.0	83.1
	Material Descripti	Clayey, very sandy SILT	Slightly clayey, silty SAND	Slightly sandy, clayey SILT	Slightly silty SAND	SAND	Sandy, clayey SILT

			Berth 4	10					
S	ediment Horizon		Prism			NSM			
	Sample ID	410A/DP	410B/DP	410C/DP	410A/NSM	410B/NSM	410C/NSM		
	Lab ID	UU16G	UU16H	UU16I	UU16J	UU16K	UU16L		
	Date	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12		
Classification	Microns			Perce	nt (%)				
Gravel	>2,000	0.1	0.2	0.3	0.1	0.0	0.2		
Very Coarse Sand	850-2000	1.0	0.5	0.4	0.7	0.8	0.5		
Coarse Sand	425-850	14.6	17.8	13.3	10.8	21.0	15.1		
Medium Sand	250-425	24.5	46.5	37.1	23.3	40.5	33.0		
Fine Sand	150-250	5.3	9.8	12.4	7.0	8.4	8.6		
Very Fine Sand	75-150	3.8	2.8	4.4	6.9	3.1	3.0		
Coarse Silt	32-75	14.6	5.8	7.8	14.8	7.9	8.4		
Medium Silt	13-32	15.0	7.1	9.8	15.4	7.8	13.6		
Fine Silt	9-13	4.4	1.9	2.9	4.7	1.9	4.0		
Very Fine Silt	7-9	4.4	1.9	2.9	4.7	1.9	4.0		
8-9 Phi Clay	3.2-7	7.5	3.8	5.8	7.1	4.9	7.4		
9-10 Phi Clay	1.3-3.2	3.1	1.9	1.9	3.6	1.0	2.3		
> 10 Phi Clay	<1.3	1.9	0.0	1.0	0.0	0.0	0.0		
Total Fines	<75	50.9	22.4	32.1	50.3	25.4	39.7		
	Material Descripti	Clayey, very silty SAND	Slightly clayey, silty SAND	Slightly clayey, silty SAND	Slightly clayey, very silty SAND	Slightly clayey, silty SAND	Slightly clayey silty SAND		

Notes:

1. Sample 410A was run in triplicate as part of laboratory quality control. The result shown shown is the first sample. The other samples were almost the same (total fines of 64.7 and 63.2 percent).

2. Samples were analyzed by ASTM D421/422 which has a slightly different grain scale from the Udden-Wentworth Scale used in the SEF. The SEF classifications listed above are approximately match the micron sizes specified.

Table 3 - Sediment Chemical Analyses Results: Berth 401Terminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

Sediment Horizon		Prism			NSM		
Sample	401A/DP	401B/DP	401C/DP	401A/NSM	401B/NSM	401C/NSM	SEF
Lab ID	UU16A	UU16B	UU16C	UU16D	UU16E	UU16F	Screening
Date	9-May-12	8-May-12	9-May-12	9-May-12	8-May-12	9-May-12	Levels
Conventional Parameters							
Total Solids (%)	54.0	65.4	48.7	78.9	82.5	56.5	-
Total Organic Carbon (%)	1.70	1.49	1.80	1.36	0.116	1.68	-
Ammonia (mg/kg)	137	128	4.31	28.0	16.0	293	-
Total Sulfides (mg/kg)	10.9	9.36	1.76	33.8	1.20 U	5.35	-
TPH in mg/kg							
Diesel-Range	2.3 U	21	11	-	-	-	-
Oil-Range	2.8 U	32	32	-	-	-	-
Total TPH	2.8 U	53	43	-	-	-	-
Metals in mg/kg							
Antimony	0.024 R	0.019 R	0.027 R	0.016 UJ	0.015 UJ	0.021 UJ	-
Arsenic	4.1	3.7	4.6	3.3	2.4	3.7	20
Cadmium	0.3	0.4	0.025 U	0.2	0.014 U	0.2	1.1
Chromium	27	24	31	16	13	28	95
Copper	39.4	31.4	47	20.5	15.2	42.0	80
Lead	15.6	18.5	14.1	9.5	2.4	14.2	340
Mercury	0.07	0.09	0.07	0.08	0.03 U	0.06	0.28
Nickel	25.6	24.8	31	20.1	18.5	27.5	60
Silver	0.015 U	0.012 U	0.016 U	0.010 U	0.0091 U	0.013 U	2.0
Zinc	115	132	111	78	46	98	130
Tributyltin (TBT)							
TBT in Bulk Sediment (µg/kg)	140	2.4 J	5.2	17	0.9 U	32	75
PAHs in µg/kg							
LPAHs							
Naphthalene	130	460	36	190	2.6 U	170	500
Acenaphthylene	16	36	8.9	26	5.4 U	28	470
Acenaphthene	49	180	12	54	3.1 U	99	1,100
Fluorene	30	87	11	47	4.1 U	84	1,000
Phenanthrene	190	460	86	390	3.4 U	340	6,100
Anthracene	42	82	29	70	4.3 U	62	1,200
2-Methylnaphthalene	40	160	11	71	2.9 U	44	470
Total LPAHs	497	1,465	194	848	5.4 U	827	6,600
<u>HPAHs</u>							
Fluoranthene	320	480	230	400	2.8 U	310	11,000
Pyrene	280	490	210	510	1.8 U	300	8,800
Benz(a)anthracene	75	150	91	140	3.1 U	140	4,300
Chrysene	130	210	140	190	3.6 U	1 6 0	5,900
Benzo(b)fluoranthene	-	-	-	-	-	-	-
Benzo(k)fluoranthene	-	-	-	-	-	-	-
Benzo(b+k)fluoranthenes	190	230	250	250	2.6 U	300	600
Benzo(a)pyrene	140	180	130	200	5.2 U	210	3,300
Indeno(1,2,3-cd)pyrene	80	100	67	110	4.4 U	100	4,100
Dibenz(a,h)anthracene	20	26	21	26	4.1 U	30	800
Benzo(g,h,i)perylene	110 1 345	140	78	150	4.1 U	120	4,000
Total HPAHs	1,345	2,006	1,217	1,976	5.2 U	1,670	31,000
SVOCs in µg/kg							
Chlorinated Hydrocarbons	0711	0711	07.11		07.11	07.11	
1,4-Dichlorobenzene	2.7 U	2.7 U	2.7 U	2.6 U	2.7 U	2.7 U	-
1,2-Dichlorobenzene	2.3 U	2.3 U	2.3 U	2.3 U	2.4 U	2.4 U	-
1,2,4-Trichlorobenzene	3.3 U	3.2 U	3.2 U	3.2 U	3.3 U	3.3 U	-
Hexachlorobenzene	4.0 U	4.0 U	4.0 U	3.9 U	4.1 U	4.1 U	-

Please refer to notes on the last page of this table.

Table 3 - Sediment Chemical Analyses Results: Berth 401Terminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

Sediment Horizon		Prism			NSM		
Sample	401A/DP	401B/DP	401C/DP	401A/NSM	401B/NSM	401C/NSM	SEF
Lab ID	UU16	UU16	UU16	UU16	UU16	UU16	Screening
Date	9-May-12	8-May-12	9-May-12	9-May-12	8-May-12	9-May-12	Levels
SVOCs in µg/kg (Continued)							
Phthalates							
Dimethyl Phthalate	2.7 U	2.8 U	46				
Diethyl Phthalate	34 U	34 U	34 U	33 U	35 U	35 U	-
Di-n-butyl Phthalate	7.7 U	7.6 U	7.6 U	7.5 U	7.7 U	7.7 U	-
Butyl Benzyl Phthalate	5.8 U	5.7 U	17 J	5.6 U	5.8 U	5.8 U	260
Bis (2-ethylhexyl) Phthalate	84 U	50 U	110	47 U	33 U	68 U	220
Di-n-octyl Phthalate	5.5 U	5.4 U	5.4 U	5.3 U	5.5 U	5.5 U	26
Phenols							
2,4-Dimethylphenol	3.2 U	3.2 U	3.2 U	3.2 U	3.3 U	3.3 U	-
2-Methylphenol	4.9 U	4.9 U	4.9 U	4.8 U	5.0 U	5.0 U	-
4-Methylphenol	39	130	37	67	6.3 U	110	-
Pentachlorophenol	46 UJ	45 UJ	45 UJ	44 UJ	46 UJ	46 UJ	-
Phenol	18 J	8.0 U	8.0 U	7.9 U	8.2 U	43	-
Miscellaneous Extractables					0.2 0		
Benzoic Acid	95 U	94 U	190 J	92 U	96 U	330 J	_
Benzyl Alcohol	39 39	25	98	5.6 U	5.8 U	190	_
Dibenzofuran	19	54	53	23	3.9 U	31	400
Hexachlorobutadiene	4.3 U	4.2 U	4.3 U	4.2 U	4.3 U	4.3 U	
<i>n</i> -Nitrosodiphenylamine	5.1 U	5.0 U	5.0 U	4.9 U	5.1 U	5.1 U	-
Pesticides in µg/kg							
4,4'-DDD	2.2	3.3	1.1	1.4	0.13 U	2.5	16 ^a
4,4'-DDE	3.6	4.1	2.2	2.1	0.12 U	5.5 JP	9 ^a
4,4'-DDT	0.19 U	0.18 U	0.19 U	0.18 U	0.12 U	0.19 U	12 ^a
Aldrin	0.054 U	0.053 U	0.053 U	0.053 U	0.053 U	0.054 U	9.5 ^a
alpha -Chlordane	0.050 U	0.049 U	0.049 U	0.049 U	0.049 U	0.050 U	2.8 ^a
Dieldrin	0.098 U	0.096 U	0.097 U	0.096 U	0.096 U	0.097 U	1.9 ^a
Heptachlor	0.000 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	1.5 ^a
gamma -BHC (Lindane)	0.047 U	0.046 U	0.046 U	0.046 U	0.046 U	0.047 U	10 ^b
PCBs in µq/kq							
Aroclor 1016	1.0 U	0.97 U	0.99 U	0.99 U	0.97 U	1.0 U	_
Aroclor 1221	1.0 U	1.3 U	1.3 U	1.3 U	1.3 U	1.0 U	_
Aroclor 1221 Aroclor 1232	1.3 U	-					
Aroclor 1232	1.3 U	_					
Aroclor 1248	12 JP	1.0 U	5.8 U	7.9	1.3 U	6.8 U	_
Aroclor 1254	12 U	19 U	5.8 U	9.7 U	1.3 U	9.8 U	-
Aroclor 1260	12 0	15 C	5.5 C	9.1	1.3 U	6.6	-
Aroclor 1262	1.3 U	-					
Aroclor 1268	1.3 U	_					
Total PCBs	22 J	16 J	5.5 J	1.0 0	1.3 U	6.6 J	60
	•						

Notes:

 Screening levels (SLs) are Freshwater Screening Levels 1 (no adverse effects) from the Sediment Evaluation Framework (SEF) (Corps, et al., 2006; Table 7-1, revised 10/20/06). For pesticides, no freshwater SLs have been established and the Corp uses marine SLs from corrected Table 6-3 of the Final SEF (Corps, et al., 2009). These marine SLs are listed and flagged with an ^a.

2. PAH and dibenzofuran concentrations are the higher of the lowest acceptable dilution of the EPA Method 8270D-SIM and EPA Method 8270D analyses.

3. Bolded values are detected concentrations.

4. For undetected compounds, method detections limits (MDLs) are shown.

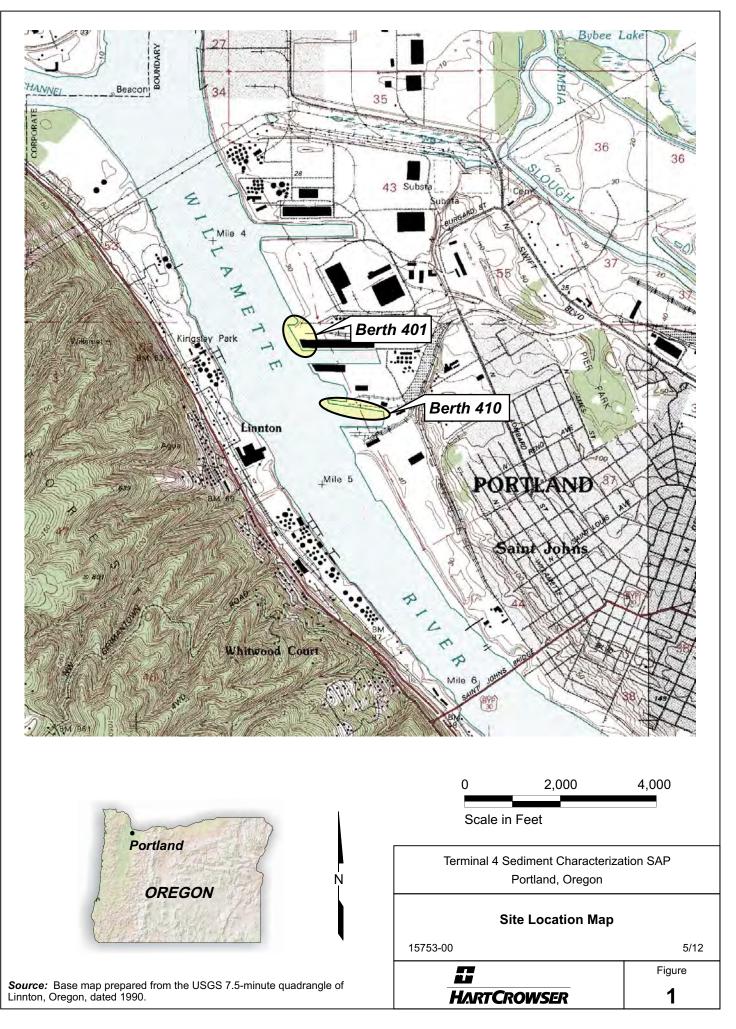
5. - = Not analyzed or not available.

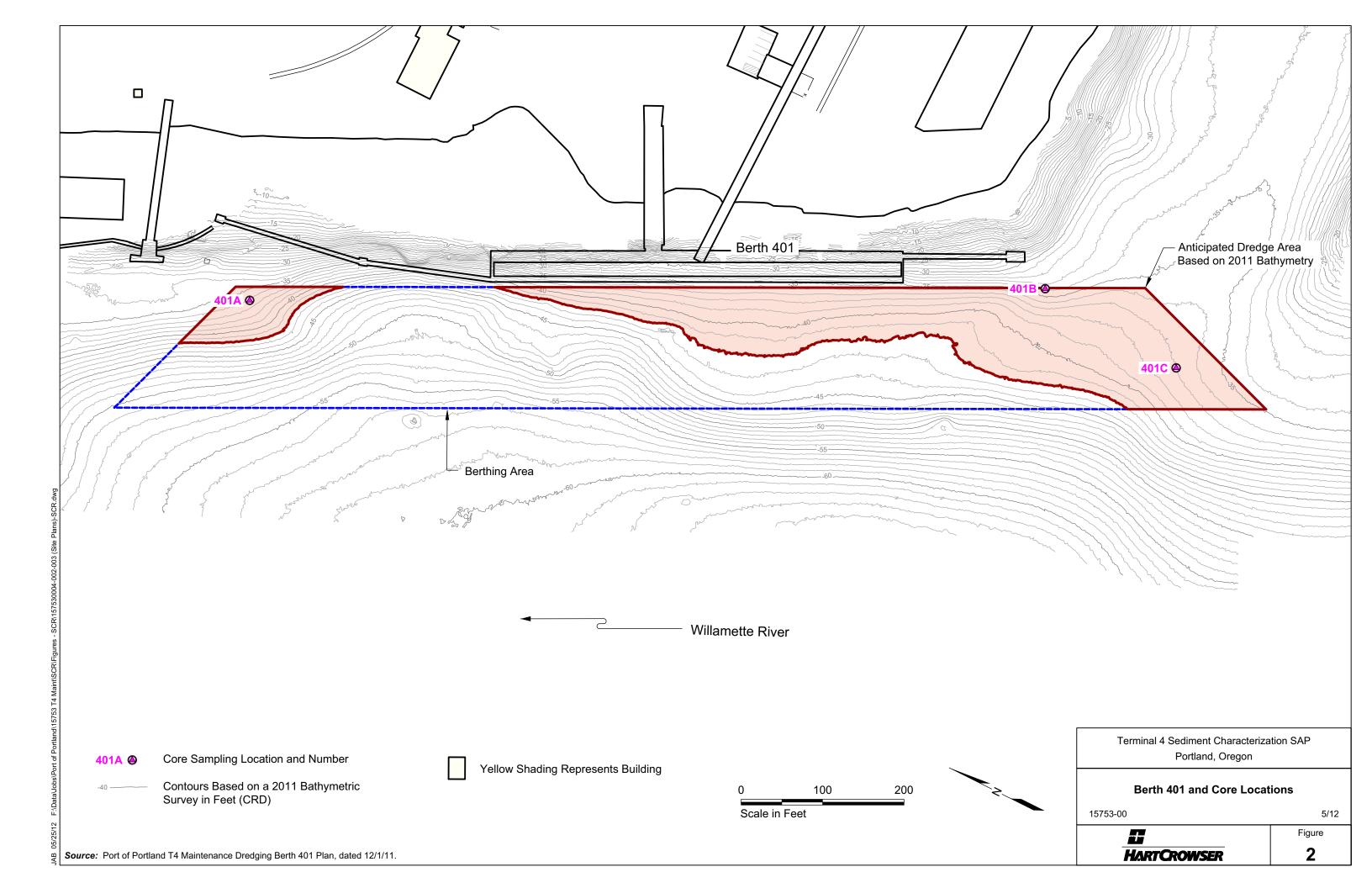
- 6. J = Estimated concentration. Result may be estimated due to value between MDL and method reporting limit (MRL), or due to QA exceedance.
- 7. U = Not detected at the indicated MDL.
- 8. P = The analyte was detected on both chromatographic columns but the RPD was greater than 40%.
- 9. Reference sample results: 51.7% solids, 29.9 mg/kg ammonia, and 2.51 mg/kg total sulfides.

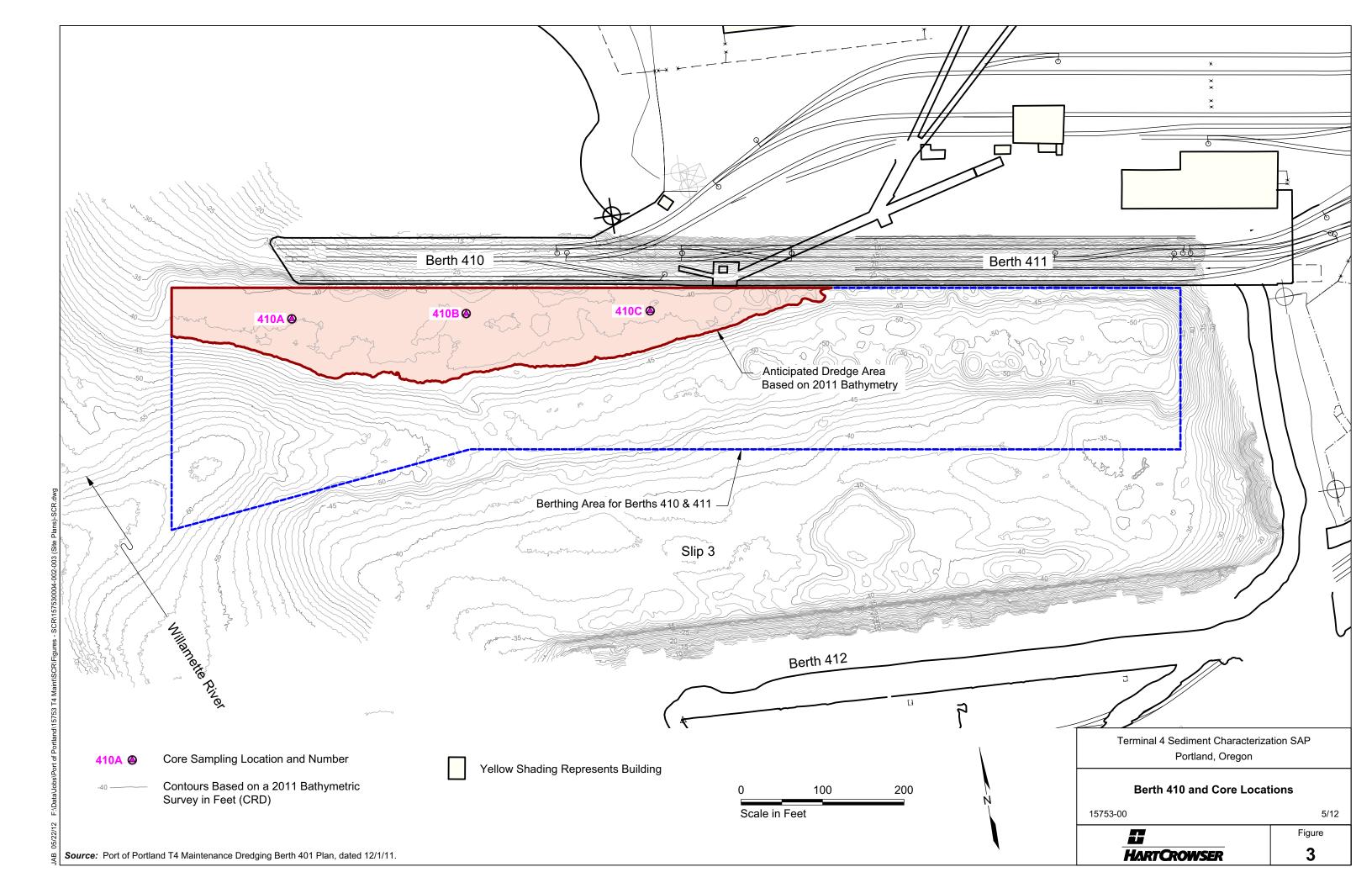
Table 4 - Sediment Chemical Analyses Results: Berth 410Terminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

Sediment Horizon		Prism			NSM		
Sample	410A/DP	410B/DP	410C/DP	410A/NSM	410B/NSM	410C/NSM	SEF
Lab ID	UU16G	UU16H	UU16I	UU16J	UU16K	UU16L	Screening
Date	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12	Levels
Conventional Parameters							
Total Solids (%)	55.3	71.1	65.5	60.6	72.7	69.4	-
Total Organic Carbon (%)	1.84	1.18	1.86	1.84	1.19	1.39	-
Ammonia (mg/kg)	105	81.9	85.8	152	96.2	140	-
Total Sulfides (mg/kg)	28.6	18.3	94.2	22.4	32.9	150	-
TPH in mg/kg							
Diesel-Range	10	1.3 U	20	_	_	_	_
Oil-Range	150	2.7 U	33	_	-	_	_
Total TPH	160	2.7 U	53	_	-	_	_
	100	2.7 0					
Metals in mg/kg							
Antimony	0.023 UJ	0.018 UJ	0.020 UJ	0.021 UJ	0.018 UJ	0.017 UJ	-
Arsenic	3.6	2.9	3.8	3.4	3.0	5.2	20
Cadmium	0.021 U	0.017 U	0.6	0.020 U	0.1	1.4	1.1
Chromium	22	16	18	22	18	21	95
Copper	31.7	24.5	35.9	31.4	26.8	43.5	80
Lead	9.5	8.3	53.7	13.7	19.1	201	340
Mercury	0.0018 U	0.03	0.05	0.07	0.0018 U	0.06	0.28
Nickel	23.7	19.8	22.7	24.5	20.0	23.2	60
Silver	0.014 U	0.011 U	0.012 U	0.013 U	0.011 U	0.5	2.0
Zinc	85	67	146	93	79	265	130
Tributyltin (TBT)							
TBT in Bulk Sediment (µg/kg)	1.0 U	1.9 J	10	2.9 J	14	18	75
PAHs in µg/kg							
LPAHs							
Naphthalene	34	37	140	510	47	150	500
Acenaphthylene	7.1	4.1 J	42	29	9.3 J	36	470
Acenaphthene	49	38	270	460	83	190	1,100
Fluorene	27	28	160	120	40	120	1,000
Phenanthrene	100	130	1,600	1,000	270	940	6,100
Anthracene	23	36	320	100	60	160	1,200
2-Methylnaphthalene	12	20	67	210	21	88	470
Total LPAHs	252	293	2,599	2,429	530	1,684	6,600
HPAHs							
Fluoranthene	160	170	5,900	600	500	1,400	11.000
Pyrene	160	170	5,000	580	450	1,200	8,800
Benz(a)anthracene	57	66	3,200	160	280	560	4,300
Chrysene	83	84	3,800	190	320	760	5,900
Benzo(b)fluoranthene	-	-	-	-	-	-	-
Benzo(k)fluoranthene	-	-	-	-	-	-	-
Benzo(b+k)fluoranthenes	130	130	6,200	260	640	1,300	600
Benzo(a)pyrene	86	83	3,900	170	400	720	3,300
Indeno(1,2,3-cd)pyrene	50	41	1,500	65	160	260	4,100
Dibenz(a,h)anthracene	12	8.4	600	19	58	110	800
Benzo(g,h,i)perylene	62	44	1,400	74	160	250	4,000
Total HPAHs	800	796	31,500	2,118	2,968	6,560	31,000
SVOCs in µg/kg							
Chlorinated Hydrocarbons							
1,4-Dichlorobenzene	2.7 U	2.8 U	2.6 U	2.7 U	2.7 U	2.8 U	-
1,2-Dichlorobenzene	2.4 U	2.4 U	2.0 U	2.4 U	2.3 U	2.0 U	_
1,2,4-Trichlorobenzene	3.3 U	3.4 U	3.2 U	3.3 U	3.2 U	3.4 U	_
Hexachlorobenzene	4.0 U	4.4 U	3.9 U	4.1 U	4.2 U	4.1 U	_
			5.0 0				

Please refer to notes on the last page of this table.

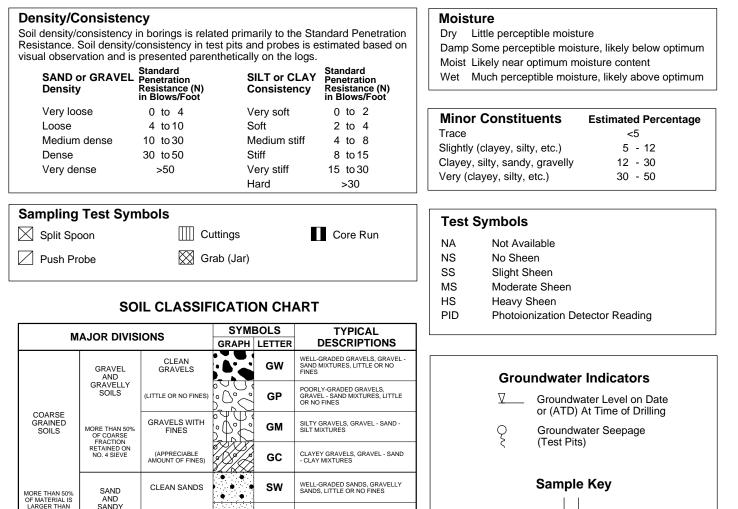

Table 4 - Sediment Chemical Analyses Results: Berth 410Terminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon


Sediment Horizon		Prism			NSM		
Sample	410A/DP	410B/DP	410C/DP	410A/NSM	410B/NSM	410C/NSM	SEF
Lab ID	UU16	UU16	UU16	UU16	UU16	UU16	Screening
Date	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12	8-May-12	Levels
SVOCs in µg/kg (Continued)							
Phthalates							
Dimethyl Phthalate	2.8 U	2.8 U	2.7 U	2.8 U	2.7 U	2.8 U	46
Diethyl Phthalate	35 U	36 U	34 U	35 U	34 U	35 U	-
Di-n-butyl Phthalate	7.7 U	7.9 U	7.5 U	7.8 U	7.6 U	7.9 U	-
Butyl Benzyl Phthalate	5.8 U	6.0 U	5.6 U	5.9 U	5.7 U	5.9 U	260
Bis (2-ethylhexyl) Phthalate	62 U	68 U	86 U	65 U	44 U	110	220
Di-n-octyl Phthalate	5.6 U	5.7 U	12 J	5.6 U	5.4 U	5.6 U	26
Phenols							
2,4-Dimethylphenol	3.3 U	3.4 U	3.2 U	3.3 U	3.2 U	3.3 U	-
2-Methylphenol	5 U	5.1 U	4.8 U	5.0 U	4.9 U	5.1 U	-
4-Methylphenol	14 J	6.5 U	26 J	110	9.3 J	34 J	-
Pentachlorophenol	46 UJ	47 UJ	44 UJ	46 UJ	45 UJ	47 UJ	-
Phenol	30 J	11 J	20 J	24 J	8.0 U	28 J	-
Miscellaneous Extractables		_					
Benzoic Acid	110 J	98 U	93 U	120 J	94 U	97 U	-
Benzyl Alcohol	73	20	25	68	5.6 U	12 J	-
Dibenzofuran	14	17	61	94	18 J	62	400
Hexachlorobutadiene	4.4 U	4.4 U	4.2 U	4.4 U	4.2 U	4.4 U	-
<i>n</i> -Nitrosodiphenylamine	5.1 U	5.2 U	4.9 U	5.2 U	5.0 U	30	-
Pesticides in µg/kg							
4,4'-DDD	0.92 J	1.1 JP	2.2	3.6	1.3	9.6* U	16 ^a
4,4'-DDE	1.7	0.96 J	2.3	3.3	2.5 JP	12* U	9 ^a
4,4'-DDT	0.19 U	0.18 U	0.19 U	0.19 U	0.19 U	12 U	12 ^a
Aldrin	0.053 U	0.052 U	0.054 U	0.054 U	0.054 U	0.053 U	9.5 ^a
alpha-Chlordane	0.049 U	0.048 U	0.050 U	0.050 U	0.050 U	0.049 U	2.8 ^a
Dieldrin	0.097 U	0.095 U	0.098 U	0.099 U	0.098 U	0.096 U	1.9 ^a
Heptachlor	0.13 U	0.12 U	0.13 U	0.13 U	0.13 U	0.13 U	1.5 ^a
gamma -BHC (Lindane)	0.046 U	0.015 U	0.047 U	0.047 U	0.047 U	0.016 U	10 ^b
PCBs in µq/kq							
Aroclor 1016	0.99 U	0.96 U	1.0 U	1.0 U	0.99 U	9.8 UJ	-
Aroclor 1221	1.3 U	1.3 U	1.0 U	1.0 U	1.3 U	13 UJ	-
Aroclor 1232	1.3 U	13 UJ	-				
Aroclor 1242	9.7 U	5.6 U	1.3 U	1.3 U	1.3 U	13 UJ	-
Aroclor 1248	1.3 U	1.3 U	20 U	9.9 U	5.8 U	160 JP	-
Aroclor 1254	5.8 U	1.3 U	20 U	9.9 U	5.8 U	180 J	-
Aroclor 1260	5.7	3.8	16	9.3	4.9	95 J	-
Aroclor 1262	1.3 U	13 UJ	-				
Aroclor 1268	1.3 U	13 UJ	-				
Total PCBs	5.7 J	3.8 J	16 J	9.3 J	4.9 J	435 J	60


Notes:

 Screening levels (SLs) are Freshwater Screening Levels 1 (no adverse effects) from the Sediment Evaluation Framework (SEF) (Corps, et al., 2006; Table 7-1, revised 10/20/06). For pesticides, no freshwater SLs have been established and the Corp uses marine SLs from corrected Table 6-3 of the Final SEF (Corps, et al., 2009). These marine SLs are listed and flagged with an ^a.

- 2. PAH and dibenzofuran concentrations are the higher of the lowest acceptable dilution of the EPA Method 8270D-SIM and EPA Method 8270D analyses.
- 3. Bolded values are detected concentrations.
- 4. For undetected compounds, method detections limits (MDLs) are shown.
- 5. = Not analyzed or not available.
- 6. J = Estimated concentration. Result may be estimated due to value between MDL and method reporting limit (MRL), or due to QA exceedance.
- 7. U = Not detected at the indicated MDL.
- 8. P = The analyte was detected on both chromatographic columns but the RPD was greater than 40%.
- 9. Reference sample results: 51.7% solids, 29.9 mg/kg ammonia, and 2.51 mg/kg total sulfides.
- *Results on diluted sample that had acceptable quality control. The undiluted sample, which had a calibration sample failure on the run, had 5.2 μg/kg DDD, 8.2 μg/kg JP DDE, and undetected DDT at 0.18 μg/kg.



APPENDIX A SEDIMENT CORE LOGS

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

	SOILS	(LITTLE OR NO FINES)	0°	GP	GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120			 	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	SOILS	лін лін - лін л	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

Sample Recovery Sample Type S-1 Sample Number Blows per 6-inches

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Vibracore Log 401A

Location: Terminal 4, Berth 401 Mudline Elevation: -36 Feet CRD Water Depth in Feet: 47.2

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 715578.743 Easting: 7618374.091 Logged By: J. Miles Reviewed By: R. Ernst

	USCS G Class	Graphic Log	Soil Descriptions	Depth in Feet	Sam	Sediment ple in Core	Recovery Tube	LAB TESTS
	ML	(S bi	Soft), wet, brown, slighly sandy SILT with a iological odor.	0				
		B OI	ecomes (slightly stiff), with small roots and rganic debris.	_				
					401A/DP			
	- <u>S</u> P -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Medium dense), wet, dark brown SAND with ieces of wood debris.					
		7	-Inch SILT lens.	_				
				5	401A/NSM			
		В	ottom of sediment in core tube.	_				
JP.J		B	ottom of Core Tube at 9.2 Feet.	_				
157530004 (SED-VIBRA-401).GPJ		D R	vrive length: 9.2 feet. lecovery Length: 6.7 feet. late/Time: 5/9/12 13:20.					

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

 Second state of a st with time.

Vibracore Log 401B (Alt)

Location: Terminal 4, Berth 401 Mudline Elevation: -33.5 Feet CRD Water Depth in Feet: 45.6

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 714689.667 Easting: 7618799.995 Logged By: J. Miles Reviewed By: R. Ernst

LAB

	USCS Class	Graph Log	Soil Descriptions	Depth in Feet	San	Sediment Recovery nple in Core Tube	TESTS
	ML		(Soft), wet, brown SILT with organic debris.	-			
	SP		(Medium dense), moist, dark gray-brown SAND.		401B/DP		
			 →Becomes brown and silty. →Becomes (dense), and slightly silty. 	5			
RA-401).GPJ			Bottom of sediment in core tube.		401B/NSM		
157530004 (SED-VIBRA-401).GPJ			Bottom of Core Tube at 10.0 Feet. Drive length: 10.0 feet. Recovery Length: 8.1 feet. Date/Time: 5/8/12 14:55.	10			

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

 Second state of a st with time.

Figure A-3

Vibracore Log 401C

Location: Terminal 4, Berth 401 Mudline Elevation: -37 Feet CRD Water Depth in Feet: 48.8

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 714501.226 Easting: 7618778.835 Logged By: J. Miles Reviewed By: R. Ernst

								LAB TESTS
I	USCS (Class	Grapi Log	Soil Descriptions	Depth in Feet	Sa	ample	Sediment Recovery in Core Tube	12010
	ML		(Soft), wet, brown, slightly sandy SILT with small roots and organic debris.	0				
			Becomes (slightly stiff).	_	401C/DP			
			Becomes slighly clayey.					
	SP		(Medium dense), wet, dark gray-brown, silty SAND with intermittent silt lenses.	5	401C/NSM			
	ML -		(Medium stiff), moist, brown, sandy, clayey SILT with sand lenses.					
101).GPJ			Bottom of sediment in core tube.	_				
157530004 (SED-VIBRA-401).GPJ		1	Bottom of Core Tube at 9.7 Feet. Drive length: 9.7 feet. Recovery Length: 8.3 feet. Date/Time: 5/9/12 12:08.	10				

HARTCROWSER 15753-00 6/12 Figure A-4

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

- Second state of a st with time.

Vibracore Log 410A

Location: Terminal 4, Berth 410 Mudline Elevation: -40.5 Feet CRD Water Depth in Feet: 53.2

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 713545.166 Easting: 7619336.653 Logged By: J. Miles Reviewed By: R. Ernst

							LAB TESTS
USCS (Class	Grapł Log	Soil Descriptions	Depth in Feet		Sample	Sediment Recovery in Core Tube	12010
ML		(Soft), wet, brown, sandy SILT with some wood debris.	0	410A/DP			
SP -		(Loose), wet, brown, gray, silty SAND with clam shells.		410A/NSM			
ML		(Soft), moist, brown, slightly sandy SILT.					
<u>sp</u>		(Dense), moist, gray to black-brown SAND. Bottom of sediment in core tube. Bottom of Core Tube at 6.3 Feet. Drive length: 6.3 feet. Recovery Length: 5.2 feet. Date/Time: 5/8/12 12:50.					
			10				

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

- Second state of a st with time.

157530004 (SED-VIBRA-410).GPJ

Vibracore Log 410B

Location: Terminal 4, Berth 410 Mudline Elevation: -40.5 Feet CRD Water Depth in Feet: 53.2

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 713519.278 Easting: 7619551.251 Logged By: J. Miles Reviewed By: R. Ernst

11000	0		Death				LAB TESTS
USCS Class	Log	Soil Descriptions	Depth in Feet		Sample	Sediment Recovery in Core Tube	
ML		(Soft), wet, brown, sandy SILT with abiological odor.	0		\bigotimes		
SP		(Medium dense), wet, brown SAND.		410B/DP 410B/NSM			
ML		(Medium stiff), moist, brown, slightly sandy SILT.					
SP		(Dense), moist, gray-brown SAND.	5				
		Bottom of sediment in core tube.	_				
		Bottom of Core Tube at 7.3 Feet. Drive length: 7.3 feet. Recovery Length: 6.0 feet. Date/Time: 5/8/12 10:48.					

157530004 (SED-VIBRA-410).GPJ

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

 Second state of a st with time.

Vibracore Log 410C

Location: Terminal 4, Berth 410 Mudline Elevation: -40.5 Feet CRD Water Depth in Feet: 53.5

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 713488.399 Easting: 7619777.139 Logged By: J. Miles Reviewed By: R. Ernst

LAB

USCS Class	Graphi Log	c Soil Descriptions	Depth in Feet		Sample	Sediment Recovery in Core Tube	TESTS
ML SP		(Soft), wet, brown, slighly sandy SILT with <u>t</u> wood debris. (Medium dense), wet, gray-brown, slightly silty SAND with wood debris.		410C/DP	\bigotimes		
			_	410C/NSM			
		(Medium stiff), moist, brown, slightly sandy SILT with wood debris.	+				
SP		(Medium dense), wet, brown-gray SAND with wood debris.					
		[∼] 1-Inch SILT lens.	5				
		Bottom of sediment in core tube.					
		Bottom of Core Tube at 7.3 Feet.	_				
		Drive length: 7.3 feet. Recovery Length: 6.4 feet. Date/Time: 5/9/12 10:00.	-				
			-				
			—10				

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless

 Second state of a st with time.

157530004 (SED-VIBRA-410).GPJ

APPENDIX B QUALITY ASSURANCE REVIEW

APPENDIX B QUALITY ASSURANCE REVIEW

This appendix documents the results of a quality assurance (QA) review of the analytical data for dredge prism and new surface material (NSM) samples collected during the May 2012 sediment characterization at the Berths 401 and 410. Field procedures used for sample collection are discussed in our Sampling and Analysis Plan (SAP; Hart Crowser, 2011). Hart Crowser submitted sediment samples to Analytical Resources, Inc. (ARI), of Tukwila, Washington, for chemical analysis. A copy of the analytical laboratory report (ARI Job No. UU16) is included in Appendix C. Upon review, the analytical data are valid with minor qualifications for their intended use. A Data Completeness (QA1) checklist is included as Table B-1 in this appendix.

The quality assurance review included examination and validation of the laboratory's summary reports, including:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Standard reference material (SRM) recoveries;
- Matrix spike and matrix spike duplicate (MS/MSD) recoveries;
- Calibration criteria;
- Internal Standard (IS) recoveries, where applicable;
- Laboratory duplicate relative percent difference (RPD), where applicable; and
- Laboratory replicate relative standard deviation (RSD), where applicable.

A Level IV Data Deliverables Package was available for review.

ANALYTICAL METHODS AND DETECTION LIMITS

Chemical Analyses on Sediment

Six cores were obtained during the sediment characterization fieldwork on May 8 and 9, 2012, with three cores from Berth 401 and three cores from

Berth 410. Each core was divided into two sections to represent the dredge prism and the NSM interval, for a total of twelve sediment samples. A reference sample was collected on May 9, 2012, and submitted with the core samples. The sediment samples were analyzed for one or more of the following:

- Total solids by EPA Method 160.3 modified;
- Total organic carbon (TOC) by Plumb (1981);
- Ammonia by EPA Method 350.1 modified;
- Sulfide by EPA Method 376.2;
- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) by EPA Methods 200.8/7471A;
- Total petroleum hydrocarbons as diesel and oil by Northwest Method NWTPH-Dx with silica gel and acid cleanup;
- Tributyltin (TBT) by Krone, et al. (written 1988; published 1989);
- Polycyclic aromatic hydrocarbon (PAHs) by EPA Method 8270D-SIM;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;
- Organochlorine pesticides by EPA Method 8081A;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082; and
- Grain size by ASTM D421/D422.

These analytical test methods were the analytical methods specified in the SAP (Hart Crowser, 2012) or in the case of metals (except mercury) is an equivalent method.

Detection and Reporting Limits

Method detection limits (MDLs) are the minimum concentration of a chemical compound that can be measured and reported that the compound is present, and is based on instrumentation abilities and sample matrix. Method reporting limits (MRLs) are set by the laboratory and are based on the low standard of the initial calibration curve or low-level calibration check standard, and represent the concentration that can be accurately quantified. In some cases, the MRL is raised due to high concentrations of analytes in the samples or matrix interferences. MRLs were consistent with industry standards. Tables 3 and 4 of this report list the MDLs for undetected values. The MDLs are sufficient in achieving the SEF SLs listed in Tables 3 and 4. Analytical results that fell between the MDL and MRL are qualified as estimated (J).

QA REVIEW RESULTS

The laboratory provided QC sample results, which were underwent a QA review. Laboratory QC samples were consistent with those specified in the SAP (Hart Crowser, 2012) to evaluate precision, accuracy, representativeness, comparability, and completeness. Upon review, the sample data and laboratory QC data were found to be suitable for their intended use with minor qualifications. The following summarizes, by analyte or test, the results of our QA review of the analytical data.

Total Solids. All required holding times were met. No method blank contamination was detected. The laboratory replicate RSD was acceptable.

TOC. All required holding times were met. No method blank contamination was detected. LCS, MS, and SRM recoveries were within control limits. The laboratory replicate RSD was acceptable.

Ammonia. All required holding times were met. No method blank contamination was detected. SRM and MS recoveries were within control limits. The laboratory replicate RSD was acceptable.

Sulfide. All required holding times were met. No method blank contamination was detected. The LCS and MS recovery were within laboratory control limits. The laboratory duplicate RPD was within 30 percent.

Total Metals. All required holding times were met. No method blank contamination was detected. LCS recoveries were within control limits for all elements. The laboratory duplicate RPD was acceptable. MS recoveries were within control limits except for antimony in sample 401A/DP. In this case, antimony (0%) was below control limits. A post digestion spike for antimony was analyzed and fell within control limits. Results for antimony were rejected (R) in the source sample (401A/DP) and two matrix-similar associated samples (401B/DP and 401C/DP). Non-detected results for antimony in the remaining samples were qualified as estimated (UJ).

TPH as Diesel and Oil. All required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. The initial calibration curve and continuing calibrations were within acceptance criteria.

Tributyltin. All required holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS recoveries were within

laboratory control limits. IS recoveries were within acceptance criteria. The initial calibration curve and continuing calibrations were within acceptance criteria.

PAHs. All required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. IS recoveries were within acceptance criteria.

MS recoveries were within control limits except for the recovery for phenanthrene in sample 410B/DP was below the marginal exceedance (ME) limits in the MS and MSD. The recoveries for fluoranthene and pyrene fell below the control limits, but were within the ME limits in the MSD; these compounds were within the control limits in the MS. Results for phenanthrene in the source sample (410B/DP) were qualified as estimated (J). Results for fluoranthene and pyrene were not qualified as the MS was within control limits.

The initial calibration curve was within acceptance criteria. CCVs were within control limits except for the recovery for benz(a)anthracene on May 14, 2012, was low. The laboratory qualified detections in the associated samples with Q. The Q qualifier was changed to J (estimated) in the associated samples (401A/DP, 401B/DP, 401C/DP, 410A/DP, 410B/DP, and 410C/DP).

SVOCs. All required holding times were met. Surrogate and LCS recoveries were within laboratory control limits. IS recoveries were within acceptance criteria. The initial calibration curve was within acceptance criteria.

The method blank was non-detect except for *bis*(2-ethylhexyl)phthalate (BEHP) was detected between the MDL and the RL at 19 μ g/kg. The laboratory qualified detections in the associated samples with "B". The results were evaluated as follows.

- Sample results that were greater than five times the method blank detection had the B qualifier removed (401C/DP and 410C/NSM).
- Sample results for BEHP that were less than five times the method blank detection were qualified as U (all other samples).

MS recoveries were within control limits except for the recovery for benzoic acid in sample 410B/NSM failed low in the MSD, but passed in the MS. Associated sample results were not qualified, as the recovery passed in the MS. The RPD for dibenz(a,h)anthracene exceeded the control limits. As the recoveries for dibenz(a,h)anthracene were in control in the MS and MSD, sample results were not qualified.

CCVs were within control limits with the following exceptions:

- CCV 05/12/12: The recovery for pentachlorophenol (PCP) failed low. The results for PCP in the associated samples (401A/DP, 401B/DP, 401C/DP, 401A/NSM, 401B/NSM, 401C/NSM, 410A/DP, 410B/DP, 410C/DP, 410A/NSM, 410B/NSM, and 410C/NSM) were non-detect and qualified as estimated (J).
- CCV 05/14/12: The recoveries for PCP and benzoic acid failed low. The associated sample, 410C/DP, was a diluted reanalysis, and results for PCP and benzoic acid were reported from the undiluted analysis. No sample results were qualified.

For samples 410A/DP, 410A/NSM, 410C/NSM, and 410C/DP, phenol results were qualified by the laboratory with M due to low spectral match parameters. The sample results are estimated, and the M qualifier was changed to J.

Organochlorine Pesticides. All required holding times were met. No method blank contamination was detected. LCS recoveries were within control limits. IS recoveries were within acceptance criteria. The initial calibration curve was within acceptance criteria.

Surrogate recoveries were within laboratory control limits except for the dilution for sample 410C/NSM. The sample was analyzed at a 100-fold dilution, and the surrogates were not recovered. Surrogate recoveries were within control in the undiluted analysis, and no sample results were qualified.

MS recoveries were within laboratory control limits except for sample 410B/NSM. The recoveries for 4,4'-DDT failed low in the MS and MSD. The results were reported from an analysis with a failing DDT breakdown check, and therefore, these results for 4,4'-DDT, 4,4'-DDD, and 4,4'-DDE are not valid. Associated sample results were not qualified due to the MS and MSD failures.

CCVs were within control limits with the following exceptions:

- CCVs 05/15/12 at 0723, 1133, 1636, 2138 and 05/16/12 at 0539: The recoveries for *delta*-BHC failed high on the STX-CLP2 column, but passed on the STX-CLP1 column. The analyte delta-BHC was not a target analyte, and no results were qualified.
- DDT Breakdown Check 05/16/12 at 1006: The breakdown check exceeded 15 percent on both columns. Results for 4,4'-DDT, 4,4'-DDD, and 4,4'-DDE in the associated sample 410C/NSM were reported from the diluted analysis on 05/15/12 with elevated reporting limits. Results for 4,4'-DDT, 4,4'-DDD,

and 4,4'-DDE in the associated MS and MSD were not valid. The MS and MSD were also analyzed at dilution on 05/15/12.

- CCV 05/16/12 at 1024: The recoveries for 4,4'-DDE, 4,4'-DDD, and gammachlordane failed high on the STX-CLP1 column, while the recoveries for 4,4'-DDT and methoxychlor failed low. The recoveries for delta-BHC and 4,4'-DDD failed high on the STX-CLP2 column, while the recoveries for 4,4'-DDT and methoxychlor failed low. The analytes *delta*-BHC, methoxychlor, and *gamma*-chlordane were not target analytes, and no results were qualified. As the associated DDT breakdown check failed, no results for 4,4'-DDT, 4,4'-DDD, and 4,4'-DDE were reported from this analysis.
- DDT and Endrin Closing Breakdown Checks 05/16/12 at 1229: The DDT breakdown check exceeded 15 percent on both columns; the Endrin breakdown check exceeded 15 percent on the STX-CLP2 column. Endrin was not a target analyte, and sample results were not affected. The laboratory used the internal standard method for analysis, and the closing CCVs and breakdown checks do not affect the preceding sample analysis. No samples were qualified.

The results for 4,4'-DDE in samples 401C/NSM, 410C/NSM, and 410B/NSM and for 4,4'-DDD in sample 410B/DP differed by more than 40 percent between the two chromatographic columns. The laboratory qualified the results with "P". The P qualifier was changed to JP.

The reporting limits for *trans*-chlordane in sample 410C/DP were elevated by the laboratory due to chromatographic interferences and qualified with "Y". The Y qualifier was changed to U. The reporting limits for 4,4'-DDT in sample 410C/NSM were elevated by the laboratory due to chromatographic interferences and qualified with "Y". Sample results were reported from the diluted analysis due to CCV failures.

PCBs. All required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. IS recoveries were within acceptance criteria. The initial calibration curve and continuing calibrations were within acceptance criteria. The reporting limits for Aroclors 1248 and 1262 in sample C 1/2-DP were elevated by the laboratory due to chromatographic interferences and qualified with "Y". The reporting limits for Aroclor 1232 in sample C3/4-N2 were elevated by the laboratory due to chromatographic interferences and qualified with "Y". Y qualifiers on sample results were changed to U.

PCBs. All required holding times were met. No method blank contamination was detected. LCS and MS recoveries were within laboratory control limits. IS

recoveries were within acceptance criteria. The initial calibration curve and continuing calibrations were within acceptance criteria. Surrogate recoveries were within laboratory control limits except for sample 410C/NSM. In this case, the recoveries for the surrogates TCMX and DBCP exceeded the control limits. The associated sample results were qualified as estimated (J).

The reporting limits for Aroclors 1242 in sample 410B/DP were elevated by the laboratory due to chromatographic interferences. The reporting limits for Aroclor 1254 in samples 401A/DP and 401A/NSM were elevated by the laboratory due to chromatographic interferences. The reporting limits for Aroclors 1248 and 1254 were elevated by the laboratory in samples 401A/DP, 401B/DP, 401C/DP, 401C/NSM, 410C/NSM, 410A/NSM, and 410B/NSM due to chromatographic interferences. The reporting limits for Aroclors 1242 and 1254 were elevated by the laboratory in samples 401A/DP, 401B/DP, 401C/DP, 401C/NSM, 410A/NSM, and 410B/NSM due to chromatographic interferences. The reporting limits for Aroclors 1242 and 1254 were elevated by the laboratory in samples 410A/DP due to chromatographic interferences. The laboratory qualified the affected results with "Y". The Y qualifier was changed to U.

The results for Aroclor 1248 in samples 401A/DP and 410C/NSM differed by more than 40 percent between the two chromatographic columns. The laboratory qualified the results with "P". The P qualifier was changed to JP.

Grain Size. All required holding times were met. The laboratory triplicate RSD was within criteria.

Table B-1 - QA1 Data ChecklistTerminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

	Test	Reference	Control	Water
	Sediment	Sediment	Sediment	Control
Sample Locations and Compositing				
Latitude and Longitude (to nearest 0.1 second)	NAD 83	NAD 83	N/A	N/A
NAD 1983 HARN (requirement for SEDQUAL)	Yes	Yes	N/A	N/A
Station Name (e.g. Carr Inlet)	Yes	Yes	N/A	N/A
Water depth (corrected to MLLW)	Lead Line	Lead Line		
Drawing showing sampling locations and ID numbers	Yes	In SAP	N/A	N/A
Compositing scheme (sampling locations/depths for composites)	Yes	N/A	N/A	N/A
Sampling method	Yes	Yes	N/A	N/A
Sampling dates	Yes	Yes		
Estimated volume of dredged material represented by each DMMU	Yes	N/A	N/A	N/A
Positioning method	Yes	Yes	N/A	N/A
Sediment Conventionals				
Preparation and analysis methods	Yes	Yes	N/A	N/A
Sediment conventional data and QA/QC qualifiers	Yes	All but TOC	N/A	N/A
QA qualifier code definitions	Yes	Yes	N/A	N/A
Units (dry weight except total solids)	Yes	Yes	N/A	N/A
Method blank data (sulfides, ammonia, TOC)	Yes	Yes	N/A	N/A
Method blank units (dry weight)	Yes	Yes	N/A	N/A
Analysis dates (sediment conventionals, blanks, TOC CRM)	Yes	Yes	N/A	N/A
TOC CRM ID	Yes	N/A	N/A	N/A
TOC CRM analysis data	Yes	N/A	N/A	N/A
TOC CRM target values	Yes	N/A	N/A	N/A
Grain Size Analysis	·			
Fine grain analysis method	Yes	N/A	N/A	N/A
Analysis dates	Yes	N/A	N/A	N/A
Triplicate for each batch	Yes	N/A	N/A	N/A
Grain size data (complete sieve and phi size distribution)	Yes	N/A	N/A	N/A

	Metals	SVOCs/ PAHs	Pesticides/ PCBs	VOCs
Extraction/digestion method				N/A
Extraction/digestion dates (test sediment, blanks, matrix spike, reference material)	Yes	Yes	Yes	N/A
Analysis method	Yes	Yes	Yes	N/A
Data and QA qualifier included for:				
Test sediments	Yes	Yes	Yes	N/A
Reference materials including 95% confidence interval (each batch)				N/A
Method blanks (each batch)	Yes	Yes	Yes	N/A
Matrix spikes (each batch)	Yes	Yes	Yes	N/A
Matrix spike added (dry weight basis)	Yes	Yes	Yes	N/A
Laboratory control sample (each batch)	Yes	Yes	Yes	N/A
Laboratory control sample duplicate (each batch)	No	No	No	N/A
Replicates (each batch)	Yes			
Continuing calibration verification	Yes	Yes	Yes	N/A
Units (dry weight)	Yes	Yes	Yes	N/A
Method blank units (dry weight)	Yes	Yes	Yes	N/A
QA/QC qualifier definitions	Yes	Yes	Yes	N/A
Surrogate recovery for test sediment, blank, matrix spike, ref. material	Yes (TBT)	Yes	Yes	N/A
Analysis dates (test sediment, blanks, matrix spike, reference material)	Yes	Yes	Yes	N/A

Please refer to notes at the end of this table.

Table B-1 - QA1 Data ChecklistTerminal 4 Sediment Characterization11040 N. Lombard Street, Portland, Oregon

Notes:

QA Checklist based on Figures 12-2 and 12-3 of the SEF (Corps, et al., 2006). Shaded boxes indicated those type of data are not applicable for that column. N/A = Not applicable or not analyzed.

Acronyms and Abbreviations:

CRM = Control Reference Material DMMU = Dredge Material Management Unit MLLW = Mean lower low water NAD = North American Datum PAHs = Polynuclear aromatic hydrocarbons PCBs = Polychlorinated biphenyls QA = Quality assurance QC = Quality control SEF = Sediment evaluation framework SVOCs = Semivolatile organic compounds TBT = Tributyltin TOC = Total organic carbon VOCs = Volatile organic compounds

APPENDIX C ANALYTICAL LABORATORY REPORT

May 18, 2012

Mr. Rick Ernst Hart Crowser, Inc. 8910 SW Gemini Drive Beaverton, OR 97008-7123

RE: Project: 15753-00, Port of Portland T4 Maintenance ARI Job No: UU16

Dear Mr. Ernst:

Please find enclosed the Chain-of-Custody (COC) record, sample receipt documentation, and the analytical results for samples from the project referenced above. Analytical Resources, Inc. (ARI) accepted thirteen soil samples on May 11, 2012. The samples were received in good condition. There were no discrepancies between the sample containers' labels and the COC.

Please reference the Case Narrative for analytical details associated with this project.

An electronic copy of this data package will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Kelly Boffem Client Services Manager kellyb@arilabs.com 206/695-6211

Enclosures

cc: files UU16

Page 1 of <u>2279</u>

Table of Contents: ARI Job UU16

Client: Hart Crowser

Project: 15753-00 P.O.P. T4 Maintenance

	Page From:	Page To:
Inventory Sheet		
Cover Letter	/	
Chain of Custody Documentation	2	
Case Narrative, Data Qualifiers, Control Limits		35
Semivolatile Analysis		
Report and Summary QC Forms	36	72
SIM PAH Analysis		
Report and Summary QC Forms	_73_	94
Butyl Tin Analysis		
Report and Summary QC Forms	95	120
Pesticide Analysis		
Report and Summary QC Forms	121	185
PCB Analysis		
Report and Summary QC Forms	186	227
TPHD Analysis		
Report and Summary QC Forms	228	243
Metals Analysis		
Report and Summary QC Forms	244	274
General Chemistry Analysis		
Report and Summary QC Forms	277	295
Geotechnical Analysis		
Report and Summary QC Forms	296	317
Total Solids		
Report and Summary QC Forms	318	322
Semivolatile Raw Data		
Extractions Bench Sheets and Notes	323	326
Initial Calibration	327	459
Run Logs, Continuing Calibrations, and Raw Data	440	709

<u>May-16-2012</u> Date

Table of Contents: ARI Job UU16

Client: Hart Crowser	Project: 15753-00 P.O.P. T4 Maintenance

	Page From:	Page To:
SIM PAH Raw Data		
Extractions Bench Sheets and Notes	710	712
Initial Calibration	713	959
Run Logs, Continuing Calibrations, and Raw Data	960	1257
Butyl Tin Raw Data		
Extractions Bench Sheets and Notes	1258	1260
Initial Calibration	1261	1299
Run Logs, Continuing Calibrations, and Raw Data	1300	1417
Pesticide Raw Data		
Extractions Bench Sheets and Notes	1418	1421
Initial Calibration	1422	1556
Run Logs, Continuing Calibrations, and Raw Data	1557	1725
PCB Raw Data		
Extractions Bench Sheets and Notes	1726	1729
Initial Calibration	1730	1838
Run Logs, Continuing Calibrations, and Raw Data	1839	1957
TPHD Raw Data		
Extractions Bench Sheets and Notes	1958	1960
Initial Calibration	1961	2035
Run Logs, Continuing Calibrations, and Raw Data	2036	2098
Metals Raw Data		
Preparation Bench Sheets and Notes	2099	2:04
Run Logs, Calibrations, and Raw Data	2105	2219
General Chemistry Raw Data		
Analyst Notes and Raw Data	2220	2264
Geotechnical Raw Data		
Analyst Notes and Raw Data	2265	2279

Chain of Custody Documentation

ARI Job ID: UU16

.

Chain of Custody Record & Laboratory Analysis Request

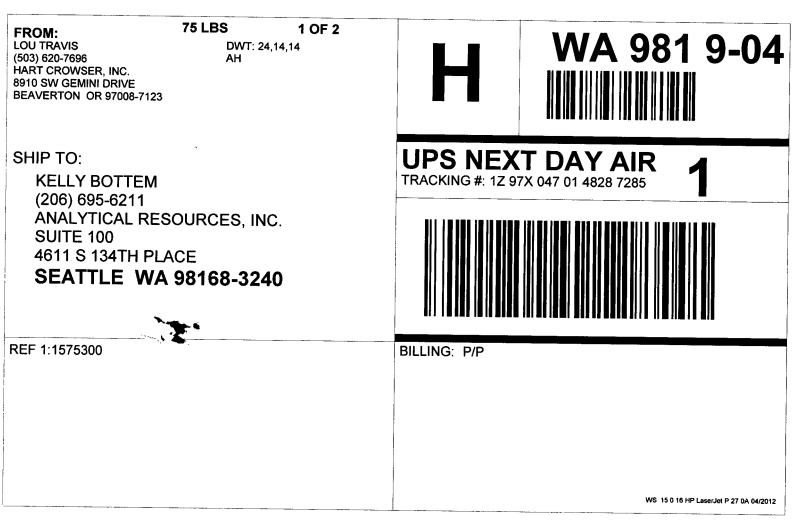
ARI Assigned Number:	Turn-around		3day	:	F	Page:		۱	(of	2					cal Resources, Incorporate cal Chemists and Consultan
ARI Client Company: Client Contact:	wser	Phone: 5	03-620-7	284		No. of	5/10	12	<u> </u>	ce Prese Coole					Tukwila	outh 134th Place, Suite 100 1, WA 98168 5-6200 206-695-6201 (fax)
Rick Ernst	<u> </u>				Cod	olers:		\mathcal{L}	٦	Temps	5:19	4,8				
Client Project Name: P.O.P. T4	Maite	a				1		i			Analysis	Requested	<u>() 1 ()</u> 3 () ()	1	1	Notes/Comments
Client Project #: 15753-00			es/Chris	Martín	0114S	376.2	FO.V		1-0×	8082	SOBIA BOBIA	111A	\$2700 100	(H	SIL	
Sample ID	Date	Time	Matrix		Total S EPA	Total Su	Ammon EPA :	100	NWTPH-Dx	PCB5 EPA8082	Restice EPA	Requested QROPED	SVOCI	TBT (drywit)	ASTIN D 422	
401A/DP	5/9/12	1750	Sediment	6	×	×		×	×	×	×	×	×	\star	×	
401B/DP	5/8/12	2225		6	×	×	×	×	×	×	×	×	×	×	×	* SVOC Include; Chlorinded Hudrocerton
401C/DP	5/9/12	1855		6	X	×	×	X	×	×	×	×	×	×	×	Philades, Phenois, Misc. extractadas, \$
401A/NSM	5/9/12	1800		6	×	ম	×	X		×	×	X	×	×	×	PAHS,
401B/NSM	5/8/12	2230		Q	×	×	×	×		×	X	×	×Ð	×	\star	DNO PAH'S W
401C/NSM	5/9/12	1905	$ $ \Rightarrow	G	×	×	×	×		У	X	×	Ð	×	×	SVOC analysis
																BZTOD levels okay
								$\left \right $								
Comments/Special Instructions	Relinguished by			Received by	Ľ		ŕ				Relinquished	d by.			Received by	
* Motals: Artimon	(Signature)	ism	\supset	(Signature)	1_	K	هر	ul	A	$\overline{}$	(Signature)	-			(Signature)	
Arsenic, Cad mum, Chromism, coppor, Lead, Company				viil	[FV	(n?	fis	ci (Printed Nam	ne:			Printed Nam	e	
Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Silver, Zinc. Also Marcury might EPA 7471A Date & Time				Company	1)				- v *	Company:				Company	
and determine	Date & Time ⁻		2	Date & Time	$\left u \right $	12		10	\leq		Date & Time				Date & Time	

A Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

	Turn-around	Requested:	3day		F	Page:		2	,	of	2				Analyti	ical Resources, Incorporate
ARI Client Company: Hart Cowser (503) 620-7284 Client Contact: Rick Ernst						5/10/12 Present?							Tukwila	4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)		
Client Project Name:											Analysis I	Requested	en s		2	Notes/Comments
P.O.P T4 Client Project #: 15753-00	Samplers	son Miles	1 Chris M	Nartin	Solids 1603	16.2	50.14		H-D.	8082	681A	* 6020 7	*COL	(7	Sile	
Sample ID	Date	Time	Matrix	No. Containers	Total So EPA 1	Total S. EPA 3	Ammonia EPA 3501	р Р	1.0 % PSAD	PC85 EPA 8082	Pesticidaes EPA 8081A	Methus# EPA602D Mercury EPA 74712	SNOCS EPA 8: PANS EPA 83	TBT (drywt.)	ASTN 1	
410A/DP	5/8/12	2120	Sediment	6	×	>	×	×	×	×	×	*	×	×	×	
410B/DP	5/8/12	1851		6	×	×	×	×	×	×	×	×	X	×	X	* SVOC'S INClude
410C/DP	5/8/12	2015		6	>	×	×	×	×	×	×	×	¥	×	X	Chlorinated Hydrocarbons,
410A/NSM	5/8/12	2130		6	×	×	X	×		×	×	×	Ex	×	×	Phtholdes, phends,
410B/NSM	5/8/12	1900		6	×	1	×	×		×	×	×	¥.	X	×	MISC. extractables, & PAHS
410C/NSM	5/8/12	2025		6	×			×		×	×	×	× D	×	×	SIM Level
Reference	5/9/12	0820	∇	2	x	x	×									DNO PAH'S WI
																SNOC qualyni B3700 levels akay
Comments/Special Instructions * Metals; Antimony,	Relinquished by. (Signature)	Sm	>	Received by (Signature)	Ĺ	4	Щ	Ĺ	1-	2	Relinquished (Signature)	d by:			Received b (Signature)	-
Arsenic, Cadmium,	Printed Name:	s Martin		Printed Name.	· (7	j/l	n	les	,)	Printed Nam	e.			Printed Nar	ne.
Arsenic, Cadmium, Chromium, Copper, lead, Nickel, silver, \$Zinc.	Company. Hart C		<u> </u>	Company [.]	<u>ине</u> M	<u>:r</u> [<u>[e]</u>	×		Company				Company	
Also mercury by EPA 7471A	Date & Time.			Date & Time ⁻ 5//0	11	2		/	0[:	5	Date & Time	:			Date & Tim	6


Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Form	
ARI Client: Hart (rowser	Project Name POP 74 Maintenauce	
	Delivered by Fed-ExUPS Courier Hand Delivered Other	
Assigned ARI Job No. UUIO	Tracking No 1290 971 047 61 488 7285 NA	
Preliminary Examination Phase:	12 97X 647 01 4702 4891	
Were intact, properly signed and dated custody seals attached to the c	outside of to cooler? (YES) NO	
Were custody papers included with the cooler?	·· ···································	
Were custody papers properly filled out (ink, signed, etc.)	NO	
Temperature of Cooler(s) (°C) (recommended 2.0-6 0 °C for chemistry	1.9 4.8	
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#. 9087795	Z
Cooler Accepted by Da	te 5/11/12 Time 1015	
Complete custody forms and a	ttach all shipping documents	
Log-In Phase:		-
Was a temperature blank included in the cooler?	YES NO	
	de Gel Packs Baggies) Foam Block Paper Other:	
Was sufficient ice used (if appropriate)?		
Were all bottles sealed in individual plastic bags?		
Did all bottles arrive in good condition (unbroken)?		
Were all bottle labels complete and legible?	NO	
Did the number of containers listed on COC match with the number of	containers received?	
Did all bottle labels and tags agree with custody papers?	NO	
Were all bottles used correct for the requested analyses?	NO	
Do any of the analyses (bottles) require preservation? (attach preserva	ation sheet, excluding VOCs)	
Were all VOC vials free of air bubbles?	YES NO	
Was sufficient amount of sample sent in each bottle?		
Date VOC Trip Blank was made at ARI		
Was Sample Split by ARI (NA) YES Date/Time	Equipment Split by:	
Samples Logged by Date	S/11/12Time1045	
needy i tojettimunuger er u		

Sample ID on Bottle	Sam	ple ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Discrep	ancies, & Resolu	utions:		
Ву	Date			
	abubbles'	RGE Air Bubbles	Small → "sm"	
		> 4 mm	Peabubbles → "pb"	
,	• • • 4		Large → "lg"	
			Headspace → "hs"	

Revision 014

Fold here and place in label pouch

79 LBS 2 OF 2 LOU TRAVIS DWT: 24,14,14 (503) 620-7696 AH HART CROWSER, INC. 8910 SW GEMINI DRIVE BEAVERTON OR 97008-7123 Frank	H WA 981 9-04
SHIP TO: KELLY BOTTEM (206) 695-6211 ANALYTICAL RESOURCES, INC. SUITE 100 4611 S 134TH PLACE SEATTLE WA 98168-3240	UPS NEXT DAY AIR 1 TRACKING #: 1Z 97X 047 01 4702 4891 1
REF 1:1575300	BILLING: P/P

Fold here and place in label pouch

.

٠

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: UU16

.

Client: Hart Crowser

ARI Job No.: UU16

Client Project: P.O.P. T4 Maintenance

Client Project No.: 15753-00

Case Narrative

- 1. Twelve samples were submitted for analysis on May 11, 2012, and were in good condition.
- 2. The samples were submitted for grain size distribution according to ASTM D422. The samples were prepared according to ASTM D421.
- 3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.
- 4. A standard milkshake mixer type device was used to disperse the fine fraction sample.
- 5. One sample from this job, 401A/DP, was chosen for triplicate analysis. The triplicate data can be found on the QA summary table.
- 6. The data is provided in summary tables and plots.
- 7. There were no noted anomalies in the samples or test method.

Released by: Reviewed by: Geotechnical Laboratory Manager

____ Date: <u>May 1k, 2012</u>____ ____ Date: <u>5/16/12</u>____

Sample ID Cross Reference Report

ARI Job No: UU16 Client: Hart Crowser Project Event: 15753-00 Project Name: P.O.P. T4 Maintenance

		ARI	ARI		- ·	
	Sample ID	Lab ID	LIMS ID	Matrix	Sample Date/Time	VTSR
1.	401A/DP	UU16A	12-8723	Sediment	05/09/12 17:50	05/11/12 10:15
2.	401B/DP	UU16B	12-8724	Sediment	05/08/12 22:25	05/11/12 10:15
з.	401C/DP	UU16C	12-8725	Sediment	05/09/12 18:55	05/11/12 10:15
4.	401A/NSM	UU16D	12-8726	Sediment	05/09/12 18:00	05/11/12 10:15
5.	401B/NSM	UU16E	12-8727	Sediment	05/08/12 22:30	05/11/12 10:15
6.	401C/NSM	UU16F	12-8728	Sediment	05/09/12 19:05	05/11/12 10:15
7.	410A/DP	UU16G	12-8729	Sediment	05/08/12 21:20	05/11/12 10:15
8.	410B/DP	UU16H	12-8730	Sediment	05/08/12 18:51	05/11/12 10:15
9.	410C/DP	UU16I	12-8731	Sediment	05/08/12 20:15	05/11/12 10:15
10.	410A/NSM	UU16J	12-8732	Sediment	05/08/12 21:30	05/11/12 10:15
11.	410B/NSM	UU16K	12-8733	Sediment	05/08/12 19:00	05/11/12 10:15
12.	410C/NSM	UU16L	12-8734	Sediment	05/08/12 20:25	05/11/12 10:15
13.	Reference	UU16M	12-8735	Sediment	05/09/12 08:20	05/11/12 10:15

Printed 05/11/12 Page 1 of 1

Sample Receipt:

Analytical Resources, Inc. (ARI) accepted thirteen soil samples in good condition on May 11, 2012 under Sample Delivery Group (SDG) UU16. The samples were received with cooler temperatures of 1.9 and 4.8°C. Select sample containers were archived upon receipt. For further details regarding sample receipt please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for SVOCs, SIM PAHs, Butyl Tins, Pesticides, PCBs, NWTPH-Dx, Metals, Total Solids, TOC, Sulfide, Ammonia, and Grain Size, as requested.

Semivolatiles Analysis (PSDDA):

The samples were extracted on 5/12/12 and the extracts were analyzed between 5/12/12 and 5/14/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): The 5/12/12 CCAL is out of control low for pentachlorophenol. All associated samples that contain analyte have been flagged with a "Q" qualifier.

The 5/14/12 CCAL is out of control low for Pentachlorophenol and Benzoic Acid. All associated samples that contain analyte have been flagged with a "Q" qualifier.

Method Blank (s): Bis(2-Ethylhexylphthalate was present in the method blank at a level that was greater than $\frac{1}{2}$ the reporting limit. All detected results for this compound have been flagged with a "B" qualifier. No further corrective action was taken.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

MS/MSD (s): The matrix spike duplicate is out of control low for Benzoic Acid with RPDs for Dibenz (g,h,i) perylene. All other QC is in control and no further corrective action was taken.

SIM PAH Analysis:

The samples were extracted on 5/12/12 and the extracts were analyzed on 5/14/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): The CCAL is out of control low for Benzo (a) anthracene. All associated samples that contain analyte have been flagged with a "Q" qualifier.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

MS/MSD (s): The matrix spike and matrix spike duplicate in association with sample 410B/DP are out of control low for Phenanthrene.

Butyl Tin Analysis:

The samples were extracted on 2/8/12 and the extracts were analyzed on 2/11/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): The method blank was free of contamination

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

MS/MSD (s): Are in control.

Pesticides Analysis (PSDDA):

The samples were extracted on 5/12/12 and the extracts were analyzed on 5/15/12 and 5/16/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): Several of the CCALs were out of control both low and/or high on one column. The samples were re-analyzed at dilutions with similar to same matrix effects.

Method Blank (s): The method blank was free of contamination

Surrogate(s): Are in control.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): Are in control.

MS/MSD (s): The matrix spike in association with sample 410B/NSM is out of control low for 4,4-DDT.

PCBs Analysis (PSDDA):

The samples were extracted on 5/12/12 and the extracts were analyzed on 5/14/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): The method blank was free of contamination

Surrogate(s): The surrogates DCBP and TCMX are out of control high in association with sample 410C/NSM. All other surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

MS/MSD (s): Are in control.

Acid/Silica Cleaned NWTPH-Dx Analysis:

The samples were extracted on 5/11/12 and the extracts were analyzed on 5/12/12 within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): The method blank was free of contamination

Surrogate(s): All surrogate recoveries were within control limits.

Samples: There were no anomalies associated with the samples.

LCS/LCSD (s): All percent recoveries and RPDs were in control.

Total Metals Analysis:

The samples were digested on 5/11/12 and analyzed on 5/14/12 within the method recommended holding time.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria for the associated analyses.

Method Blank (s): The method blank was free of contamination.

Samples: There were no anomalies associated with the samples.

Blank Spike (s): All percent recoveries were in control.

Matrix Spike/Duplicate (s): The matrix spike percent recovery of antimony fell outside the control limit low for sample 401A/DP. A post digestion spike was performed and the recovery was within control limits.

All duplicate RPDs were within control limits.

Conventional Parameters (TS, NH3, S2, TOC):

The samples were prepared and analyzed between 5/11/12 and 5/15/12 within the method recommended holding time.

Method Blank (s): The method blanks were free of contamination

Samples: There were no anomalies associated with the samples.

LCS/SRM (s): All percent recoveries were in control.

Matrix Spike/Replicate (s): Are in control.

Geotechnical Parameters (Grain Size):

A laboratory-specific Case Narrative follows this page.

Analytical Resources, Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers

Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Analytical Resources, Incorporated Analytical Chemists and Consultants

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

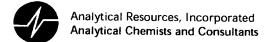
Analytical Resources, Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers

Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD


Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

3/14/12

SURR SOLUTIONS

LABEL	SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
A	1953-4	ABN	100/150	MEOH	07/05/12
В	1917-2	SIM PNA	15/75	ACETONE	
С	NA	SIM ABN	25/37.5	MEOH	NA
D	1925-5	LOW PCB	0.2	ACETONE	
E	1900-2	HERB	62.5	MEOH	10/06/12
F	1919-5	PCP	12.5	ACETONE	
G	1906-3	d8-DIOXANE	100	MEOH	04/30/12
H	1847-2	OP-PEST	25	ACETONE	
	1896-3	LOW S. PNA	1.5	ACETONE	
J	1915-4	TBT-PORE	0.125	MECL2	11/23/12
K	1925-4	MED PCB	20	ACETONE	
L	1915-3	TBT	2.5	MECL2	11/23/12
M	1888-4	EPH	1500	MECL2	04/04/12
N	1914-2	PCB	2	ACETONE	
0	1947-2	TPH	450	MECL2	09/28/12
Р	1948-3	HCID	2250	MECL2	09/28/12
Q	NA	EDB	1	MEOH	NA
R	NA	RESIN ACID	250	ACETONE	NA
S	1864-1	PBDE	.5	MEOH	05/21/12
T	1884-2	ALKYL PNA	10	MEOH	07/15/12
<u> </u>		CONGENER	2.5	ACETONE	NA
V	1925-2	LOW PCP		ACETONE	

Page 1

3/14/12

LCS SOLUTIONS

LABL	SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
1	1907-1	PCB 1660	20	ACETONE	11/01/12
2#		BCOC PEST	10	ACETONE	NA
3	1922-2	PEST	01/02/10	ACETONE	12/13/12
4	1922-3	LOW PEST	.1/.2/1	ACETONE	12/13/12
5	1902-4	EPH	1500	MECL2	10/04/12
6	1919-2	PCP	12.5/125	ACETONE	10/15/12
7	1926-2	ABN	100	MEOH	05/31/12
8	1916-2	TBT	2.5	MECL2	11/23/12
9	1918-2	PORE TBT	.125/.25	MECL2	11/23/12
10					
11	1860-4	TPHD	15000	ACETONE	05/12/12
12					
13	1948-1	LOW PCB	2	ACETONE	11/01/12
14					
15	1929-1	SIM PNA	15/75	MEOH	06/21/12
16	1906-4	1,4-DIOXANE	100	MEOH	04/30/12
17	1869-4	1248 PCB	10	ACETONE	· · · · · · · · · · · · · · · · · · ·
18	1927-2	LOW SIM PNA	1.5	ACETONE	06/20/12
19	1931-1	AK103	7500	ACETONE	05/17/12
20	1930-1	PNA	100	ACETONE	06/23/12
21	1943-2	SKY/BHT	100	MEOH	07/27/12
22	1957-1	HERB	04 to 5000	MEOH	04/22/12
23	1887-2	EXTRA PNA	15	ACETONE	08/25/12
_24					
25#		DIPHENYL	100	MEOH	NA
26	1951-2	OP-PEST	25	MEOH	03/31/12
27		STEROLS	200	MEOH	NA
28#		ADD. PEST	2	ACETONE	NA
29#		DECANES	100	MEOH	NA

LCS SOLUTIONS

	30		EDB/DBCP	0.2	MEOU	
	31	1944-1	TERPINEOL	100		NA
	32	NA	GUAIACOL	50-200	MEOH	07/27/12
	33		RETENE	100	ACETONE	+
	34	NA	CONGENERS		MEOH	NA
	35	1875-3	ALKYL PNA A		ACETONE	
	36		ALKYL PNA B	10	MEOH	07/18/12
Ī	37	1	CAR/PERY	10	MEOH	NA
ľ	38	1926-3		100	ACETONE	NA
ł	39	1853-4	ABN ACID	200-450	MEOH	06/19/12
\mathbf{F}	40	1851-3	BENZIDINE	500	MEOH	04/30/12
F	50		PBDE	0.5	MEOH	04/22/12
\vdash	50	1900-1	FULL RESIN	250	ACETONE	
\vdash		 	DDTS	0.01	ACETONE	NA
\vdash	52		1232 PCB	20	ACETONE	NA
┝	53	1919-1	DALAPON	50		08/22/12
┝	54		T-CHLORDANE	10	ACETONE	NA
┡	55		TOXAPHENE	50	ACETONE	
	56	1952-3	ABN BASE	50-200		NA
	#	=PROJE	CT SPECIFIC SC			08/14/12
	·····					

			Contr Analy			-		
			270 Fu					
Microwave Extraction (EPA Me	thod 3546	i) - 10 g s	ample wit	h extract	concentr	ated to 1 n	nL final volu	ime
LOD Spike level = LOQ (unless	otherwis	e noted)						
······	Full	Scan Ana	lysis	5	6IM Analy	sis	LCS,MS	2
Analyte	DL	LOD	LOQ	DL	LOD	LOQ	Control Limits	RPD ²
Phenol	8.65	10	20	2.56	5	5	30 – 160	≤ 40
bis-(2-Chloroethyl)ether	3.35	10	20				30 – 160	≤ 40
2-Chlorophenol	2.39	10	20				30 – 160	≤ 40
1,3-Dichlorobenzene	2.63	10	20	1.31	2.5	5	30 – 160	≤ 40
1,4-Dichlorobenzene	2.86	10	20	1.19	2.5	5	30 – 160	≤ 40
1,2-Dichlorobenzene	2.50	10	20	1.10	2.5	5	30 - 160	≤ 40
Benzyl alcohol	6.09	10	20	7.04	10	20 ³	30 – 160	≤ 40
2,2'-oxy-bis-(1-Chloropropane)	3.76	10	20				30 – 160	≤ 40
2-Methylphenol	5.25	10	20	1.81	2.5	5	30 – 160	≤ 40
Hexachloroethane	2.94	10	20				30 – 160	≤ 40
N-Nitroso-di-n-propylamine	3.36	10	20	9.48	10	12 ³	30 – 160	≤ 4 0
4-Methylphenol ⁶	6.63	20	40	2.52	5	10	30 – 160	≤ 40
Nitrobenzene	4.06	10	20				30 – 160	≤ 40
Isophorone	2.86	10	20				30 – 160	≤ 40
2-Nitrophenol	38.7	50	100				30 – 160	≤ 40
2,4-Dimethylphenol	3.46	20	40	2.89	10	20	30 – 160	≤ 40
bis-(2-Chloroethoxy)methane	2.00	10	20				30 - 160	≤ 40
2,4-Dichlorophenol	21.5	100	200				30 – 160	≤ 40
1,2,4-Trichlorobenzene	3.48	10	20	1.86	2.5	5	30 – 160	≤ 40
Naphthalene	2.76	10	20				30 – 160	≤ 40
Benzoic acid	101	200	400 ⁵				30 – 160	≤ 40
4-Chloroaniline	22.3	135	270 ⁴				30 – 160	≤ 40
Hexachlorobutadiene	4.57	50	100	0.96	2.5	5	30 – 160	≤ 40
4-Chloro-3-methylphenol	15.1	50	100				30 – 160	≤ 40
2-Methylnaphthalene	3.06	10	20				30 – 160	≤ 40
Hexachlorocyclopentadiene	66.4	200	400 ⁴				30 – 160	≤ 40
2,4,6-Trichlorophenol	22.4	50	100				30 – 160	≤ 40
2,4,5-Trichlorophenol	21.4	50	100				30 – 160	≤ 40
2-Chloronaphthalene	2.64	10	20				30 – 160	≤ 40
2-Nitroaniline	18.4	50	100				30 – 160	≤ 40
Acenaphthylene	5.71	10	20				30 – 160	≤ 40
Dimethylphthalate	2.90	10	20	1.34	2.5	5	30 – 160	≤ 40
2,6-Dinitrotoluene	30.6	50	100				30 160	≤ 40
Acenaphthene	3.28	10	20				30 – 160	≤ 40
3-Nitroaniline	22.5	50	100				30 – 160	≤ 40
2,4-Dinitrophenol	111	425	850 ⁴				30 – 160	≤ 40

5/4/12

GC	DL ¹ LOD ¹ , LOQ ¹ and Control Limits Summary GC - MS – SVOA Analysis of Sediment EPA Method 8270 Full Scan & SIM							
Microwave Extraction (EPA M							n final volu	Ime
LOD Spike level = LOQ (unles			umpic m		Concent			
	-	Full Scan Analysis			SIM Analy	sis	LCS,MS	
Analyte	DL	LOD	LOQ	DL	LOD	LOQ	Control Limits	RPD ²
Dibenzofuran	4.10	10	20				30 – 160	≤ 40
4-Nitrophenol	34.7	50	100				30 – 160	≤ 40
2,4-Dinitrotoluene	19.5	50	100				30 - 160	≤ 40
Fluorene	4.35	10	20				30 – 160	≤ 40
4-Chlorophenyl-phenylether	5.29	10	20				30 – 160	≤ 40
Diethylphthalate	36.6	50	50 ³	3.26	5.0	5.0	30 – 160	≤ 40
4-Nitroaniline	37.9	50	100				30 – 160	≤ 40
4,6-Dinitro-2-methylphenol	21.2	100	200				30 – 160	≤ 40
N-Nitrosodiphenylamine	5.39	10	20	1.38	10	20	30 – 160	≤ 40
4-Bromophenyl-phenylether	5.03	10	20				30 – 160	≤ 40
Hexachlorobenzene	4.29	10	20	1.26	2.5	5	30 - 160	≤ 40
Pentachlorophenol	48.5	100	200 ⁴	14.3	25	50	30 - 160	≤ 40
Phenanthrene	3.64	10	20				30 – 160	≤ 40
Anthracene	4.50	10	20				30 – 160	≤ 40
Carbazole	2.69	10	20				30 – 160	≤ 40
Di-n-butylphthalate	8.16	10	20				30 – 160	≤ 40
Fluoranthene	2.91	10	20				30 – 160	≤ 40
Pyrene	1.94	10	20				30 160	≤ 40
Butylbenzylphthalate	6.14	10	20	2.89	5.0	5	30 – 160	≤ 40
Benzo(a)anthracene	3.29	10	20				30 – 160	≤ 40
3,3'-Dichlorobenzidine	17.8	75	150 ⁴				30 – 160	≤ 40
Chrysene	3.75	10	20				30 – 160	≤ 40
bis-(2-Ethylhexyl)phthalate	14.6	20	25 ³				30 – 160	≤ 40
Di-n-octylphthalate	5.84	10	20				30 – 160	≤ 40
Benzo(b)fluoranthene ⁷	3.47	10	20				30 160	≤ 40
Benzo(k)fluoranthene ⁷	4.18	10	20				30 – 160	≤ 40
Benzofluoranthene-Total ⁸	6.67	20	40				30 - 160	≤ 40
Benzo(a)pyrene	5.45	10	20				30 – 160	≤ 40
Indeno(1,2,3-cd)pyrene	4.68	10	20				30 - 160	≤ 40
Dibenzo(a,h)anthracene	4.31	10	20	2.02	2.5	5	30 – 160	≤ 40
Benzo(g,h,i)perylene	4.40	10	20				30 – 160	≤ 40
N-Nitrosodimethylamine	14.1	50	100	3.15	13	25	30 – 160	≤ 40
Aniline	40.0	270	540 ⁴				30 - 160	≤ 40
Pyridine	32.7	75	150 ⁴				30 – 160	≤ 40
1-Methylnaphthalene	2.68	10	20				30 – 160	≤ 40
Azobenzene (1,2-DP- Hydrazine)	2.98	10	20				30 – 160	≤ 40

DL¹ LOD¹, LOQ¹ and Control Limits Summary GC - MS – SVOA Analysis of Sediment EPA Method 8270 Full Scan & SIM

Microwave Extraction (EPA Method 3546) - 10 g sample with extract concentrated to 1 mL final volume

	Full	Full Scan Analysis			SIM Analysis			2
Analyte	DL	LOD	LOQ	DL	LOD	LOQ	Control Limits	RPD ²
Surrogate Standards						MB/LCS	Samples	RPD
2-Fluorophenol						30 - 160	30 – 160	≤ 40
Phenol-d₅						30 – 160	30 – 160	≤ 40
2-Chlorophenol-d₄						30 – 160	30 – 160	≤ 40
1,2-Dichlorobenzene-d ₄						30 – 160	30 – 160	≤ 40
Nitrobenzene-d ₅						30 – 160	30 – 160	≤ 40
2-Fluorobiphenyl						30 – 160	30 - 160	≤ 40
2,4,6-Tribromophenol					1	30 – 160	30 – 160	≤ 40
<i>p</i> -Terphenyl-d ₁₄					T	30 – 160	30 – 160	≤ 40

(1) Detection Limit (DL), Limit of Detection (LOD), Limit of Quantitation (LOQ) are defined in ARI SOP 1018S

(2) Relative Percent Difference between analytes in replicate analyzes. If C_o and C_D are the concentrations of the original and duplicate respectively then $\frac{|C_o - C_D|}{RPD} = \frac{|C_o - C_D|}{r_{100}}$

$$PD = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} x100$$

(3) Spiked at 5 ppb

(4) Spiked at 100 ppb

(5) Spiked at 200 ppb

(6) 3-Methylphenol (not calibrated) co-elutes with 4-Methylphennol (calibrated)

(7) Benzo(b)fluoranthene and Benzo(k)fluoranthene are reported as separate analytes only when the height of the valley between the isomer peaks is less than than 50% of the average of the two peak heights, otherwise total Benzofluoranthenes are reported.

(8) Benzo(b)fluoranthene + Benzo(j)fluoranthene + Benzo(k)fluoranthene (only the b & k isomers are calibrated)

DL, LOD, LOQ and Control Limits Summary Analysis of Solid Samples for PNA EPA Method 8270 – SIM

Microwave (EPA 3546) or Sonication (EPA 3550C) Extraction using 10 g sample with extract with 0.5 mL final volume. ARI Bench Sheet 3060F or 3051F ARI Analyses: PNSSMI & PNSSCI

Analyte	DL ¹ µg/kg	LOD ^{1,2} µg/kg	LOQ ¹ µg/kg	LCS Control Limit ^{3,4}	Replicate RPD ⁵
Naphthalene	2.63	5.0	5.0	37 – 100	≤ 40
1-Methylnaphthalene	1.71	2.5	5.0	30 – 160 ⁶	≤ 40
2-Methylnaphthalene	1.52	2.5	5.0	37 – 100	≤ 40
Biphenyl	1.44	2.5	5.0	30 – 160 ⁶	≤ 40
2,6-Dimethylnapthalene	0.75	2.5	5.0	30 – 160 ⁶	≤ 40
Acenaphthylene	1.26	2.5	5.0	35 – 100	≤ 40
Acenaphthene	1.32	2.5	5.0	39 – 100	≤ 40
Dibenzofuran	1.51	2.5	5.0	<u> 39 – 100</u>	≤ 40
1,6,7-TrimethyInaphthalene	0.42	2.5	5.0	30 – 160 ⁶	≤ 40
Fluorene	1.29	2.5	5.0	42 - 100	≤ 40
Benzothiophene	0.43	2.5	5.0	30 – 160 ⁶	≤ 40
Phenanthrene	1.98	2.5	5.0	47 - 100	≤ 40
Anthracene	1.46	2.5	5.0	41 – 106	≤ 40
Carbazole	0.62	2.5	5.0	30 – 160 ⁶	≤ 40
1-Methylphenanthrene	0.70	2.5	5.0	30 – 160 ⁶	≤ 40
Fluoranthene	1.77	4.0	5.0	52 - 109	≤ 40
Pyrene	2.22	4.0	5.0	47 – 111	≤ 40
Benzo(a)anthracene	1.60	2.5	5.0	47 – 114	≤ 40
Chrysene	1.88	2.5	5.0	51 106	≤ 40
Benzo(b)fluoranthene	1.90	2.5	5.0	30 – 160 ⁶	≤ 40
Benzo(k)fluoranthene	2.05	2.5	5.0	30 – 160 ⁶	≤ 40
Benzo(e)pyrene	0.65	2.5	5.0	30 – 160 ⁶	≤ 40
Benzo(a)pyrene	1.75	2.5	5.0	44 – 111	≤ 40
Indeno(1,2,3-cd)pyrene	3.47	4.0	5.0	41 – 114	≤ 40
Dibenz(a,h)anthracene	2.38	4.0	5.0	42 - 116	≤ 40
Benzo(g,h,i)perylene	3.05	4.0	5.0	37 – 115	≤ 40
Perylene	2.99	4.0	5.0	30 – 160 ⁶	≤ 40
Surrogate Recovery			MB / LCS	Samples	RPD
2-Methylnapthalene-d ₁₀			35 – 100	34 – 100	≤ 40
Dibenzo(a,h)anthracene-d ₁₄			37 – 120	10 – 117	≤ 40

(1) Detection Limit (DL), Limit of Detection (LOD), Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) LOD verification performed 8/26/11 ARI Sample TJ75I

(3) Highlighted control limits (**bold font**) are adjusted from the calculated values to reflect that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

(4) Control limits calculated using all data from 1/1/08 through 12/31/08.

(5) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of

$$PD = \frac{\left|C_o - C_D\right|}{\frac{C_o + C_D}{2}} x100$$

RÌ

(6) Default limits pending generation of historic limits.

the original and duplicate respectively then

Q	uality Cor		nary for B hods 8270	-	Compour	nds	<u>,</u>
		1.001	1.001	Spike F	Recovery Limi	ts (%) ^{2, 3}	4
Analyte		LOD ¹	LOQ ¹	LCS	MB/LCS Surrogate	Sample Surrogate	RPD ⁴
TBTWSI – Aqueo EPA Method 3510				tion - 100 to	o 0.5 mL)		
Tributyl Tin Ion⁵	0.043 µg/L	0.096 µg/L	0.193 µg/L	30-160			≤ 40
Dibutyl Tin Ion⁵	0.096 µg/L	0.216 µg/L	0.433 µg/L	30-160			≤ 40
Butyl Tin Ion ⁵	0.108 µg/L	0.153 µg/L	0.306 µg/L	30-160			≤ 40
Tripentyl Tin					30-160	30-160	≤ 40
Tripropyl Tin					30-160	30-160	≤ 40
TBTWSI – Pore V EPA Method 3510				action - 150	to 0.5 mL)	τ	
Tributyl Tin Ion ⁶			0.0052 µg/L	30-160			≤ 40
Dibutyl Tin Ion ⁶			0.0077µg/L	30-160			≤ 40
Butyl Tin Ion ⁶			0.0054 µg/L	30-160			≤ 40
Tripentyl Tin					30-160	30-160	≤ 40
Tripropyl Tin					30-160	30-160	≤ 40
TBTSMI - Soil / S EPA Method 3546	Sediment Sar S – ARI Bench	nples (Microvisheet TBT#4	wave Extraction - 3064F	on – 5g dry v	wt to 0.5mL)		
Tributyl Tin Ion	1.52 µg/kg	1.93 µg/kg	3.86 µg/kg	40 – 144			≤ 40
Dibutyl Tin Ion	3.72 µg/kg	4.33 µg/kg	5.78 µg/kg	34 – 115			≤ 40
Butyl Tin Ion	2.95 µg/kg	3.06 µg/kg	4.08 µg/kg	10 – 111			≤ 40
Tripentyl Tin					35 – 130	25 – 140	≤ 40
Tripropyl Tin					28 - 106	32 – 104	≤ 40

(1) Detection Limit (DL), limit of detection (LOD) and limit of quantation (LOQ) as defined in ARI SOP 1018S.

(2) Highlighted control limits (**bold font**) are adjusted from the calculated values to reflect that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

(3) 30 – 160 are default, advisory control limits used when there is insufficient data to calculate historic control limits. These limits are not used as the sole reason to reject data from a batch of of analyzes.

(4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C₀ and C_D are the concentrations of the original and duplicate respectively then $\frac{|C_0 - C_D|}{R^{PD}} = \frac{|C_0 - C_D|}{r_{100}}$

$$PD = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} \times 100$$

(5) DL from ARI MDL study QD32

(6) ARI does not report concentrations below the LOQ (low calibration standard concentration) and does not, therefore, determine a DL or LOD for butyl tin analysis in interstitial (pore) water.

Spike Recovery Control Limits for Chlorinated Pesticides EPA Method SW-846-8081B Analysis of Soil / Sediment Samples^(1,2) Effective 10/25/11

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

Sample Dry Weight / Final Vol.	12.5 g to 2.5 mL					
Extraction Method	Microwave EPA	A Method 3546				
LCS Spike Recovery ⁽⁵⁾	Control Limits	ME Limits ⁽³⁾				
alpha-BHC	49 - 111	39 - 121				
beta-BHC	54 - 107	45 - 116				
delta-BHC	72 - 112	65 - 119				
gamma-BHC (Lindane)	54 - 115	44 - 125				
Heptachlor	45 - 133	30 - 148				
Aldrin	53 - 114	43 - 124				
Hepachlor Epoxide	60 - 121	50 - 131				
Endosulfan I	40 - 129	25 - 144				
Dieldrin	68 - 123	59 - 132				
4,4'-DDE	66 - 124	56 - 134				
Endrin	60 - 135	48 - 148				
Endosulfan II	46 - 130	32 - 144				
4,4'-DDD	54 - 129	42 - 142				
Endosulfan Sulfate	36 - 110	24 - 122				
4,4'-DDT	50 - 133	36 - 147				
Methoxychlor	46 - 138	31 - 153				
Endrin Ketone	45 - 131	31 - 145				
Endrin Aldehyde	25 - 100	13 - 113				
<i>trans</i> -Chlordane (<i>beta</i> -Chlordane, <i>gamma</i> - Chlordane)	66 - 119	57 - 128				
cis-Chlordane (alpha-chlordane)	62 - 119	53 - 129				
Hexachlorobenzene	41 - 108	30 - 119				
Hexachlorobutadiene	39 - 100	29 - 110				
MB / LCS Surrogate Recovery						
Tetrachloro-m-xylene (TCMX)	42 - 112	(4)				
Decachlorobiphenyl	59 - 123	(4)				
Sample Surrogate Recovery		· · ·				
Tetrachloro-xylene (TCMX)	29 - 142	(4)				
Decachlorobiphenyl	22 - 156	(4)				

(1) Control limits calculated using all available spike recovery data from 1/1/11 to 10/1/11.

(2) Highlighted control limits (**bold font**) adjusted to demonstrate that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

(3) **ME** = A marginal exceedance defined in the NELAC Standard ⁽⁶⁾ as beyond the LCS-CL but still within the ME limits. ME limits are between 3 and 4 standard deviations around the mean. <u>A maximum of one marginal exceedance is acceptable</u>. Two or more marginal exceedances require corrective action.

(4) Marginal Exceedances not allowed for a surrogate standard.

(5) Laboratory Control Sample (LCS) spike recovery control limits also used as advisory control limits for sample matrix spike (MS) analyzes. MS recovery values are advisory and not used to assess the acceptability of an analytical batch.

(6) 2003 NELAC Standard (EPA/600/R-04/003), July 2003, Chapter 5, pages 251-252.

Page 1 of 1

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Quality Control Criteria for Analysis of Solid Matrix Samples for Aroclors (Polychlorinated Biphenyls – PCB) EPA Method 8082B

Analysis	Extrac-		LOD ¹	LOQ1		Spike Reco	very Control Li	mits (%) ^{2,3,8}	
Code	tion	(ppb)	(ppb)	(ppb)	Analyte	LCS	MB/LCS Surrogate	Sample Surrogate	- RPD ⁴
Soll / Sedime	ent Samples	(Microwave E	ktraction - EPA I	Method 3546)				-	
PCBSMI		9.83	17	33	Aroclor 1016	55 – 109			1
15-3067F	12g to 4	7.06	17	33	Aroclor 1260	50 – 125			
PCBSCI	mL				TCMX		53 – 108	39 – 122	≤ 40
08-3025F				-	DCBP		49 – 126	31 – 140	
PCBDMP20		9.33	10	20 ⁶	Aroclor 1016	46 – 110			
05-3017F	12.5 g to	10.82	15	20 ⁶	Aroclor 1260	47 – 124			1
PCBDCP20	2.5 mL ⁶				ТСМХ		43 – 107	34 – 109	≤ 40
06-3026F				-	DCBP		48 – 123	24 – 127	
PCBDMP10	12.5 g to 2.5 mL ⁶	0.759	5	10 ⁶	Aroclor 1016	46 – 110			≤ 40
05-3017F		1.066	5	10 ⁶	Aroclor 1260	47 – 124			
PCBDCP10			-		тсмх	-	43 - 107	34 – 109	
06-3026F					DCBP		48 – 123	24 – 127	
PCBDMP4		0.577	2	4 ⁶	Aroclor 1016	46 – 110			<u> </u>
05-3017F	12.5 g to	0.610	2	4 ⁶	Aroclor 1260	47 – 124			
PCBDCP4	2.5 mL ⁶				ТСМХ		43 – 107	34 – 109	_ ≤ 40
06-3026F					DCBP	-	48 – 123	24 – 127	
Soil / Sedime	ent Samples	Medium Level	(Vortex Extraction	on – EPA Meth	od 3546)				
		109 ⁷	400	800	Aroclor 1016	30 – 160			≤ 40
PCBSVX	5 g to	192 ⁷	400	800	Aroclor 1260	30 – 160			
12-3019F	40 mL				ТСМХ	-	30 – 160	30 – 160	
					DCBP		30 - 160	30 – 160	1

(1) Detection Limit (DL), Limit of Detection (LOD) & Limit of Quantitation (LOQ) are defined in ARI SOP 1018S.

(2) Highlighted control limits (**bold font**) are adjusted from the calculated values to reflect that ARI does not use control limits < 10 for the lower limit or < 100 for the upper limit.

(3) 30 - 160 are default limits used when there is insufficient data to calculate historic control limits

(4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C₀ and C_D are the concentrations of the original and duplicate respectively then $_{RPD} = \frac{|C_o - C_D|}{|c_o - C_D|} + \frac{|C_o - C_D|}{|c_o - C_D|}$

$$PD = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} x100$$

(6) LOQ determined by lowest concentration used to calibrate the GC-ECD instrument.

(7) MDL Study PC66 6/24/09

(8) Control Limits calculated using all data generated between 1/1/11 and 11/30/11

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Quality Control Criteria Total Petroleum Hydrocarbons (Diesel & Motor Oil)

Analysis	5	- .1		LOQ ²	Spike % R	ecovery Cont	rol Limits ³	4
Code	Analyte⁵	DL ¹	LOD ¹	ppm	LCS	MB/LCS Surrogate	Sample Surrogate	RPD⁴
HCIWVX	NWTPH-HCID – Water Samples	-	-	0.50 7			50-150	≤ 40
HCISVX	NWTPH-HCID – Solid Samples			50 ⁷			50-150	5 40
Aqueous Sar	nples – No Extract Clean-up – Sepa	ratory Funne	Extraction	- 500 to 1.0) mL			
DIESWI	DRO – NWTPH-Dext (C ₁₂ -C ₂₄)	0.022	0.05	0.1	64-112	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.022	0.05	0.1	75-125 ⁶	60-120	50-150	- 10
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.044	0.1	0.2	64-112	50-150	50-150	≤ 40
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 ⁹	0.1	0.2	60-120 ⁶	60-120	50-150	
Aqueous Sar	nples – With Acid and/or Silica Gel	Clean-up – S	eparatory F	unnel Extra	ction — 500 t	o 1.0 mL	, , , , , , , , , , , , , , , , , , ,	
DIESWI	DRO – NWTPH-Dext (C12-C24)	0.039	0.05	0.1	61-104	50-150	50-150	
AK2WSI	DRO – AK102 (C ₁₀ -C ₂₅)	0.042	0.05	0.1	75-125 ⁶	60-120	50-150	≤ 40
OILWSI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	0.010	0.1	0.2	61-104	50-150	50-150	5 40
AK3WSI	RRO – AK103 (C ₂₅ -C ₃₆)	0.030 8	0.1	0.2	60-120 ⁶	60-120	50-150	
Solid Matrix	Samples – No Extract Clean-up – Mi	crowave Ext	raction - 10	g to 1 mL				
DIESMI	DRO – NWTPH-Dext (C12-C24)	1.35	2.5	5	62-119	50-150	50-150	
DIESMI	DRO – NWTPH-Dext Jet A	2.22 ¹¹	2.5	5	60 – 130 ⁸	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.43	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	2.48	5	10	62-119	50-150	50-150	
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 ⁹	5	10	60-120 ⁶	60-120	50-150	
Solid Matrix	Samples – With Acid and/or Silica G	iel Clean-up	- Microwav	e Extraction	- 10 g to 1 r	nL		
DIESMI	DRO – NWTPH-Dext (C12-C24)	1.28	2.5	5	60-108	50-150	50-150	
AK2SMI	DRO – AK102 (C ₁₀ -C ₂₅)	2.06	2.5	5	75-125 ⁶	60-120	50-150	≤ 40
OILSMI	RRO – NWTPH-Dext (C ₂₄ -C ₃₈)	1.57	5	10	60-108	50-150	50-150	≥ 40
AK3SMI	RRO – AK103 (C ₂₅ -C ₃₆)	0.665 10	5	10	60-120 ⁶	60-120	50-150	

(1) DL (Detection Limit) and LOD (Limit of Detection) as defined in ARI SOP 1018S.

(2) Limit of Quantitation as defined in ARI SOP 1018S. The spike concentration used to determine the DL and the concentration of the lowest standard used to calibrate the GC-FID instrument.

(3) All surrogate recovery limits are specified in the published methods (AK102, AK103 & NWTPH-Dext). The surrogate standard is o-Terphenyl.

(4) Acceptance criteria for the relative percent difference (RPD) between analytes in replicate analyzes. If C_o and C_D are the concentrations of the original and duplicate respectively then $RPD = \frac{|C_o - C_D|}{2} x_{100}$

$$D = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} x10$$

(5) DRO = Diesel Range Organics and RRO = Residual Range Organics as defined in the methods referenced in footnote 3.

(6) Method specified LCS acceptance limits.

(7) Method specified reporting limits

(8) Default LCS control limits pending calculation of historic limits

(9) MDL study QD55 completed 2/12/10

(10) MDL study QD35 completed 1/29/10

(11) LOD Study UI44 completed 2/28/12

3/20/12

		Ααι	eous Sam	ples ²	als Analys Spike R	ecovery		Solids ³
Analyte	Mass	DL'	LOD	LOQ1	Matrix	LCS	RPD ⁴	LOQ
•• •		µg/L	µg/L	µg/L	Spike			mg/kg
Aluminum	27	1.601	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Antimony	121	0.010	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
	123	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #1	75	0.048	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Arsenic #2	75	0.092	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Barium	135	0.020	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
	137	0.019	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Beryllium	9	0.021	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Cadmium	111	0.010	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
	114	0.005	0.05	0.1	75 – 125	80 – 120	≤ 20	0.1
Calcium	43	3.983	25	50.0	75 – 125	80 – 120	≤ 20	50.0
Chromium	52	0.045	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
	53	0.118	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Cobalt	59	0.011	0.1	0.2	75 – 125	80 – 120	≤ 20	0.2
Copper	63	0.158	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
	65	0.236	0.25	0.5	75 – 125	80 – 120	≤ 20	0.5
Iron	54	5.753	10	20.0	75 – 125	80 - 120	≤ 20	20.0
	57	3.876	10	20.0	75 – 125	80 – 120	≤ 20	20.0
Lead	208	0.046	0.05	0.1	75 – 125	80 - 120	≤ 20	0.1
Magnesium	24	0.297	10	20.0	75 – 125	80 - 120	≤ 20	20.0
Manganese	55	0.022	0.25	0.5	75 – 125	80 - 120	≤ 20	0.5
Molybdenum	98	0.013	0.1	0.2	75 – 125	80 - 120	≤ 20	0.2
Nickel	60	0.079	0.25	0.5	75 – 125	80 - 120	<u> </u>	0.5
	62	0.089	0.25	0.5	75 - 125	80 - 120	<u> </u>	0.5
Potassium	39	2.944	10	20.0	75 - 125	80 - 120	≤ 20	20.0
Selenium	82	0.127	0.25	0.5	75 - 125	80 - 120	≤ 20	0.5
	78	0.324	0.25	2.0	75 - 125	80 - 120	≤ 20 ≤ 20	2.0
Silver	107	0.008	0.23	0.2	75 – 125	80 - 120	≤ 20 ≤ 20	0.2
Sodium	23	2.833	50	100.0	75 – 125	80 - 120	≤ 20 ≤ 20	100.0
Thorium ⁵	23	0.013	0.1	0.2	75 – 125	80 - 120		0.2
Thallium	205	0.013		0.2	75 - 125		≤ 20 < 20	
Uranium ⁵		-	0.1			80 - 120	≤ 20 ≤ 20	0.2
	238	0.003	0.1	0.2	75 – 125	80 - 120	≤ 20 ≤ 20	0.2
Vanadium	51	0.043	0.1	0.2	75 - 125	80 - 120	≤ 20	0.2
Zinc	66	0.497	2	4.0	75 – 125	80 - 120	≤ 20	4.0
	67	0.531	2	4.0	75 – 125	80 - 120	≤ 20	4.0
	68	0.524	2	4.0	75 – 125	80 – 120	≤ 20	4.0

(1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S (2) 50 mL sample and 50 mL final volume

(3) Solids LOQ based on 100% solids using 1.0 g sample with 100 mL final volume.

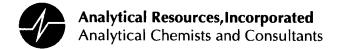
(4) Relative Percent Difference between analytes in replicate analyzes. If C_0 and C_D are the concentrations of the original and duplicate respectively then $|C_0 - C_D|$

$$RPD = \frac{\left|C_{o} - C_{D}\right|}{\frac{C_{o} + C_{D}}{2}} \times 100$$

(5) ARI has no accreditation for these elements.

Quality Co	ontrol Para	ameters fo	or Mercur	y Analysis ı	using CVA	Α
	Aq	ueous Sampl	es ²	Spike R		
	DL ¹ µg/L	LOD ¹ µg/L	LOQ ¹ µg/L	Matrix Spike	LCS	RPD ⁵
Mercury	0.0069	0.05	0.10 ²	75 – 125	80 – 120	≤ 20
Mercury (low level)	0.0026	0.01	0.02 ³	75 – 125	80 – 120	≤ 20
	Soil / Sedi	ment / Tissue	⁴ Samples	Spike R		
	DL ¹ mg/kg	LOD ¹ mg/kg	LOQ ¹ mg/kg	Matrix Spike	LCS	RPD ⁵
Mercury	0.0021	0.0125	0.025 ^{3,4}	75 – 125	80 – 120	≤ 20

(1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S


(2) 20 mL sample with 20 mL final volume

(3) 0.2 g sample with 50 mL final volume assuming 100% dry weight. Soil and sediment are reported on a dry weight basis.

(4) Tissue LOQ is 0.005 mg/kg as received (wet weight) based on 1 g sample with 50 mL final volume.

(5) Relative Percent Difference between analytes in replicate analyzes. If C_0 and C_D are the concentrations of the original and duplicate respectively then $|C_0 - C_0|$

$$RPD = \frac{|C_o - C_b|}{\frac{C_o + C_b}{2}} x100$$

Spike Recovery Control Limits for Conventional Wet Chemistry Effective 5/1/09

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

	ARI's Control Limits				
Sample Matrix:	Water	Soil / Sediment			
Matrix Spike Recoveries	% Recovery	% Recovery			
Ammonia	75 - 125	75 - 125			
Bromide	75 125	75 - 125			
Chloride	75 125	75 - 125			
Cyanide	75 - 125	75 - 125			
Ferrous Iron	75 - 125	75 - 125			
Fluoride	75 - 125	75 - 125			
Formaldehyde	75 - 125	75 - 125			
Hexane Extractable Material		78 - 114			
Hexavalent Chromium	75 - 125	75 - 125			
Nitrate/Nitrite	75 - 125	75 - 125			
Oil and Grease	75 - 125	75 - 125			
Phenol	75 - 125	75 - 125			
Phosphorous	75 - 125	75 - 125			
Sulfate	75 - 125	75 - 125			
Sulfide	75 - 125	75 - 125			
Total Kjeldahl Nitrogen	75 - 125	75 - 125			
Total Organic Carbon	75 - 125	75 - 125			
Duplicate RPDs					
Acidity	±20%	±20%			
Alkalinity	±20%	±20%			
BOD	±20%	±20%			
Cation Exchange	±20%	±20%			
COD	±20%	±20%			
Conductivity	±20%	±20%			
Salinity	±20%	±20%			
Solids	±20%	±20%			
Turbidity	±20%	±20%			

Semivolatile Analysis Report and Summary QC Forms

ARI Job ID: UU16

÷

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 16:58 Instrument/Analyst: NT10/YZ GPC Cleanup: No

Sample ID: 401A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 10.6 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 45.1%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.1	19	18 J
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.7	19	39
95-50-1	1,2-Dichlorobenzene	2.3	19	< 19 U
95-48-7	2-Methylphenol	4.9	19	< 19 U
106-44-5	4-Methylphenol	6.2	38	39
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.2	38	< 38 U
65-85-0	Benzoic Acid	95	380	< 380 U
120-82-1	1,2,4-Trichlorobenzene	3.3	19	< 19 U
91-20-3	Naphthalene	2.6	19	81
87-68-3	Hexachlorobutadiene	4.3	94	< 94 U
91-57-6	2-Methylnaphthalene	2.9	19	25
131-11-3	Dimethylphthalate	2.7	19	< 19 U
208-96-8	Acenaphthylene	5.4	19	15 J
83-32-9	Acenaphthene	3.1	19	33
132-64-9	Dibenzofuran	3.8	19	10 J
84-66-2	Diethylphthalate	34	47	< 47 U
86-73-7	Fluorene	4.1	19	22
86-30-6	N-Nitrosodiphenylamine	5.1	19	< 19 U
118-74-1	Hexachlorobenzene	4.0	19	< 19 U
87-86-5	Pentachlorophenol	46	190	< 190 U
85-01-8	Phenanthrene	3.4	19	140
120-12-7	Anthracene	4.2	19	29
84-74-2	Di-n-Butylphthalate	7.7	19	< 19 U
206-44-0	Fluoranthene	2.7	19	180
129-00-0	Pyrene	1.8	19	210
85-68-7	Butylbenzylphthalate	5.8	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	75
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	84 B
218-01-9	Chrysene	3.5	19	95
117-84-0	Di-n-Octyl phthalate	5.5	19	< 19 U
50-32-8	Benzo (a) pyrene	5.1	19	110
193-39-5	Indeno (1,2,3-cd) pyrene	4.4	19	68
53-70-3	Dibenz (a, h) anthracene	4.0	19	20
191-24-2	Benzo(g,h,i)perylene	4.1	19	90
90-12-0	1-Methylnaphthalene	2.5	19	10 J
TOTBFA	Total Benzofluoranthenes	2.6	19	150

Reported in µg/kg (ppb)

d5-Nitrobenzene	72.48	2-Fluorobiphenyl	77.68
d14-p-Terphenyl	83.0%	d4-1,2-Dichlorobenzene	65.4%
d5-Phenol	69.9%	2-Fluorophenol	68.8%
2,4,6-Tribromophenol	83.3%	d4-2-Chlorophenol	70.5%

Page 1 of 1

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: (Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 17:36 Instrument/Analyst: NT10/YZ GPC Cleanup: No

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample ID: 401B/DP

SAMPLE

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 35.0%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.0	19	< 19 U
541-73-1	1,3-Dichlorobenzene	2.4	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.6	19	25
95-50-1	1,2-Dichlorobenzene	2.3	19	< 19 U
95-48-7	2-Methylphenol	4.9	19	< 19 U
106-44-5	4-Methylphenol	6.2	37	130
67-72-1	Hexachloroethane	2.7	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.2	37	< 37 U
65-85-0	Benzoic Acid	94	370	< 370 U
120-82-1	1,2,4-Trichlorobenzene	3.2	19	< 19 U
91-20-3	Naphthalene	2.6	19	390
87-68-3	Hexachlorobutadiene	4.2	93	< 93 U
91-57-6	2-Methylnaphthalene	2.8	19	140
131-11-3	Dimethylphthalate	2.7	19	< 19 U
208-96-8	Acenaphthylene	5.3	19	24
83-32-9	Acenaphthene	3.0	19	180
132-64-9	Dibenzofuran	3.8	19	54
84-66-2	Diethylphthalate	34	46	< 46 U
86-73-7	Fluorene	4.0	19	87
86-30-6	N-Nitrosodiphenylamine	5.0	19	< 19 U
118-74-1	Hexachlorobenzene	4.0	19	< 19 U
87-86-5	Pentachlorophenol	45	190	< 190 U
85-01-8	Phenanthrene	3.4	19	640
120-12-7	Anthracene	4.2	19	82
84-74-2	Di-n-Butylphthalate	7.6	19	< 19 U
206-44-0	Fluoranthene	2.7	19	480
129-00-0	Pyrene	1.8	19	490
85-68-7	Butylbenzylphthalate	5.7	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	150
117-81-7	bis(2-Ethylhexyl)phthalate	14	23	50 B
218-01-9	Chrysene	3.5	19	210
117-84-0	Di-n-Octyl phthalate	5.4	19	< 19 U
50-32-8	Benzo (a) pyrene	5.1	19	180
193-39-5	Indeno (1,2,3-cd) pyrene	4.3	19	96
53-70-3	Dibenz (a, h) anthracene	4.0	19	26
191-24-2	Benzo(g,h,i)perylene	4.1	19	130
90-12-0	1-Methylnaphthalene	2.5	19	58
TOTBFA	Total Benzofluoranthenes	2.6	19	230

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	73.6%	2-Fluorobiphenyl	80.6%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	69.4%
d5-Phenol	73.5%	2-Fluorophenol	73.3%
2,4,6-Tribromophenol	90.5%	d4-2-Chlorophenol	76.08

Page 1 of 1

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 18:13 Instrument/Analyst: NT10/YZ GPC Cleanup: No

Sample ID: 401C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 52.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.0	19	< 19 U
541-73-1	1,3-Dichlorobenzene	2.4	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.7	19	98
95-50-1	1,2-Dichlorobenzene	2.3	19	< 19 U
95-48-7	2-Methylphenol	4.9	19	< 19 U
106-44-5	4-Methylphenol	6.2	37	37
67-72-1	Hexachloroethane	2.7	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.2	37	< 37 U
65-85-0	Benzoic Acid	94	370	190 J
120-82-1	1,2,4-Trichlorobenzene	3.2	19	< 19 U
91-20-3	Naphthalene	2.6	19	36
87-68-3	Hexachlorobutadiene	4.3	93	< 93 U
91-57-6	2-Methylnaphthalene	2.8	19	10 J
131-11-3	Dimethylphthalate	2.7	19	< 19 U
208-96-8	Acenaphthylene	5.3	19	14 J
83-32-9	Acenaphthene	3.1	19	15 J
132-64-9	Dibenzofuran	3.8	19	< 19 U
84-66-2	Diethylphthalate	34	46	< 46 U
86-73-7	Fluorene	4.0	19	17 J
86-30-6	N-Nitrosodiphenylamine	5.0	19	< 19 U
118-74-1	Hexachlorobenzene	4.0	19	< 19 Ŭ
87-86-5	Pentachlorophenol	45	190	< 190 U
85-01-8	Phenanthrene	3.4	19	86
120-12-7	Anthracene	4.2	19	29
84-74-2	Di-n-Butylphthalate	7.6	19	< 19 U
206-44-0	Fluoranthene	2.7	19	230
129-00-0	Pyrene	1.8	19	210
85-68-7	Butylbenzylphthalate	5.7	19	17 J
56-55-3	Benzo (a) anthracene	3.1	19	91
117-81-7	bis(2-Ethylhexyl)phthalate	14	23	110 B
218-01-9	Chrysene	3.5	19	140
117-84-0	Di-n-Octyl phthalate	5.4	19	< 19 U
50-32-8	Benzo (a) pyrene	5.1	19	130
193-39-5	Indeno (1,2,3-cd) pyrene	4.4	19	67
53-70-3	Dibenz (a, h) anthracene	4.0	19	21
191-24-2	Benzo (g,h,i) perylene	4.1	19	78
90-12-0	1-Methylnaphthalene	2.5	19	< 19 U
TOTBFA	Total Benzofluoranthenes	2.5	19	250

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	74.08	2-Fluorobiphenyl	78.4%
d14-p-Terphenyl	82.2%	d4-1,2-Dichlorobenzene	66.8%
d5-Phenol	72.3%	2-Fluorophenol	70.5%
2,4,6-Tribromophenol	87.5%	d4-2-Chlorophenol	75.7%

UU16:00039

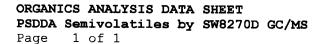
Page 1 of 1

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 18:50 Instrument/Analyst: NT10/YZ GPC Cleanup: No

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample ID: 401A/NSM


SAMPLE

Sample Amount: 10.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 24.8%

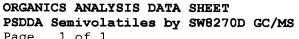
CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	7.9	18	< 18 U
541-73-1	1,3-Dichlorobenzene	2.4	18	< 18 U
106-46-7	1,4-Dichlorobenzene	2.6	18	< 18 U
100-51-6	Benzyl Alcohol	5.6	18	< 18 U
95-50-1	1,2-Dichlorobenzene	2.3	18	< 18 U
95-48-7	2-Methylphenol	4.8	18	< 18 U
106-44-5	4-Methylphenol	6.1	37	67
67-72 - 1	Hexachloroethane	2.7	18	< 18 U
105-67-9	2,4-Dimethylphenol	3.2	37	< 37 U
65-85-0	Benzoic Acid	92	370	< 370 U
120-82-1	1,2,4-Trichlorobenzene	3.2	18	< 18 U
91-20-3	Naphthalene	2.5	18	190
87-68-3	Hexachlorobutadiene	4.2	92	< 92 U
91-57-6	2-Methylnaphthalene	2.8	18	71
131-11-3	Dimethylphthalate	2.7	18	< 18 U
208-96-8	Acenaphthylene	5.2	18	26
83-32-9	Acenaphthene	3.0	18	54
132-64-9	Dibenzofuran	3.8	18	23
84-66-2	Diethylphthalate	33	46	< 46 U
86-73-7	Fluorene	4.0	18	47
86-30-6	N-Nitrosodiphenylamine	4.9	18	< 18 U
118-74-1	Hexachlorobenzene	3.9	18	< 18 U
87-86-5	Pentachlorophenol	44	180	< 180 U
85-01-8	Phenanthrene	3.3	18	390
120-12-7	Anthracene	4.1	18	70
84-74-2	Di-n-Butylphthalate	7.5	18	< 18 U
206-44-0	Fluoranthene	2.7	18	400
129-00-0	Pyrene	1.8	18	510
85-68-7	Butylbenzylphthalate	5.6	18	< 18 U
56-55-3	Benzo (a) anthracene	3.0	18	140
117-81-7	bis(2-Ethylhexyl)phthalate	13	23	47 B
218-01-9	Chrysene	3.4	18	190
117-84-0	Di-n-Octyl phthalate	5.3	18	< 18 U
50-32-8	Benzo (a) pyrene	5.0	18	200
193-39-5	Indeno (1,2,3-cd) pyrene	4.3	18	110
53-70-3	Dibenz (a, h) anthracene	3.9	18	26
191-24-2	Benzo(g,h,i)perylene	4.0	18	150
90-12-0	1-Methylnaphthalene	2.5	18	25
TOTBFA	Total Benzofluoranthenes	2.5	18	250

Reported in µg/kg (ppb)

d5-Nitrobenzene	72.6%	2-Fluorobiphenyl	78.4%
d14-p-Terphenyl	92.2%	d4-1,2-Dichlorobenzene	68.0%
d5-Phenol	68.9%	2-Fluorophenol	71.2%
2,4,6-Tribromophenol	89.1%	d4-2-Chlorophenol	74.8%

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 19:26 Instrument/Analyst: NT10/YZ GPC Cleanup: No Sample ID: 401B/NSM SAMPLE


QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.6 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 19.6%

100 05 0				
108-95-2	Phenol	8.2	19	< 19 U
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.8	19	< 19 U
95-50-1	1,2-Dichlorobenzene	2.4	19	< 19 U
95-48-7	2-Methylphenol	5.0	19	< 19 U
106-44-5	4-Methylphenol	6.3	38	< 38 U
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.3	38	< 38 U
65-85-0	Benzoic Acid	96	380	< 380 U
120-82-1	1,2,4-Trichlorobenzene	3.3	19	< 19 U
91-20-3	Naphthalene	2.6	19	< 19 U
87-68-3	Hexachlorobutadiene	4.3	95	< 95 U
91-57-6	2-Methylnaphthalene	2.9	19	< 19 U
131-11-3	Dimethylphthalate	2.7	19	< 19 U
208-96-8	Acenaphthylene	5.4	19	< 19 U
83-32-9	Acenaphthene	3.1	19	< 19 U
132-64-9	Dibenzofuran	3.9	19	< 19 U
84-66-2	Diethylphthalate	35	47	< 47 U
86-73-7	Fluorene	4.1	19	< 19 U
86-30-6	N-Nitrosodiphenylamine	5.1	19	< 19 Ū
118-74-1	Hexachlorobenzene	4.1	19	< 19 U
87-86-5	Pentachlorophenol	46	190	< 190 U
85-01-8	Phenanthrene	3.4	19	< 19 U
120-12-7	Anthracene	4.3	19	< 19 U
84-74-2	Di-n-Butylphthalate	7.7	19	< 19 U
206-44-0	Fluoranthene	2.8	19	< 19 U
129-00-0	Pyrene	1.8	19	< 19 U
85-68-7	Butylbenzylphthalate	5.8	19	< 19 U
56-55-3	Benzo(a)anthracene	3.1	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	33 B
218-01-9	Chrysene	3.6	19	< 19 U
117-84-0	Di-n-Octyl phthalate	5.5	19	< 19 U
50-32-8	Benzo(a) pyrene	5.2	19	< 19 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.4	19	< 19 U
53-70-3	Dibenz(a, h) anthracene	4.1	19	< 19 U
191-24-2	Benzo(g,h,i)perylene	4.2	19	< 19 U
90-12-0	1-Methylnaphthalene	2.5	19	< 19 U
TOTBFA	Total Benzofluoranthenes	2.6	19	< 19 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	68.0%	2-Fluorobiphenyl	65.0%
d14-p-Terphenyl	85.8%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	59.6%	2-Fluorophenol	66.4%
2,4,6-Tribromophenol	78.7%	d4-2-Chlorophenol	67.1%

Page 1 of 1 Lab Sample ID: UU16F

LIMS ID: 12-8728 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 21:18 Instrument/Analyst: NT10/YZ GPC Cleanup: No QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample ID: 401C/NSM

SAMPLE

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 44.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.2	19	43
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.8	19	190
95-50-1	1,2-Dichlorobenzene	2.4	19	< 19 U
95-48-7	2-Methylphenol	5.0	19	< 19 U
106-44-5	4-Methylphenol	6.3	38	110
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.3	38	< 38 U
65-85-0	Benzoic Acid	96	380	330 J
120-82-1	1,2,4-Trichlorobenzene	3.3	19	< 19 U
91-20-3	Naphthalene	2.6	19	170
87-68-3	Hexachlorobutadiene	4.3	95	< 95 U
91-57-6	2-Methylnaphthalene	2.9	19	44
131-11-3	Dimethylphthalate	2.8	19	< 19 U
208-96-8	Acenaphthylene	5.4	19	28
83-32-9	Acenaphthene	3.1	19	99
132-64-9	Dibenzofuran	3.9	19	31
84-66-2	Diethylphthalate	35	48	< 48 U
86-73-7	Fluorene	4.1	19	84
86-30-6	N-Nitrosodiphenylamine	5.1	19	< 19 U
118-74-1	Hexachlorobenzene	4.1	19	< 19 U
87-86-5	Pentachlorophenol	46	190	< 190 U
85-01-8	Phenanthrene	3.5	19	340
120-12-7	Anthracene	4.3	19	62
84-74-2	Di-n-Butylphthalate	7.7	19	< 19 U
206-44-0	Fluoranthene	2.8	19	310
129-00-0	Pyrene	1.8	19	300
85-68-7	Butylbenzylphthalate	5.8	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	140
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	68 B
218-01-9	Chrysene	3.6	19	160
117-84-0	Di-n-Octyl phthalate	5.5	19	< 19 U
50-32-8	Benzo (a) pyrene	5.2	19	210
193-39-5	Indeno (1,2,3-cd) pyrene	4.4	19	100
53-70-3	Dibenz (a, h) anthracene	4.1	19	30
191-24-2	Benzo(g,h,i)perylene	4.2	19	120
90-12-0	1-Methylnaphthalene	2.5	19	24
TOTBFA	Total Benzofluoranthenes	2.6	19	300

Reported in µg/kg (ppb)

d5-Nitrobenzene	69.6%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	83.0%	d4-1,2-Dichlorobenzene	64.2%
d5-Phenol	72.5%	2-Fluorophenol	69.5%
2,4,6-Tribromophenol	82.5%	d4-2-Chlorophenol	73.9%

Page 1 of 1

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized: 💋 Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 21:55 Instrument/Analyst: NT10/YZ GPC Cleanup: No

SAMPLE QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance

Sample ID: 410A/DP

15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 44.1%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.2	19	30 M
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.8	19	73
95-50-1	1,2-Dichlorobenzene	2.4	19	< 19 U
95-48-7	2-Methylphenol	5.0	19	< 19 U
106-44-5	4-Methylphenol	6.3	38	14 J
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.3	38	< 38 U
65-85-0	Benzoic Acid	96	380	110 J
120-82-1	1,2,4-Trichlorobenzene	3.3	19	< 19 U
91-20-3	Naphthalene	2.6	19	34
87-68-3	Hexachlorobutadiene	4.4	95	< 95 U
91-57-6	2-Methylnaphthalene	2.9	19	11 J
131-11-3	Dimethylphthalate	2.8	19	< 19 U
208-96-8	Acenaphthylene	5.4	19	< 19 U
83-32-9	Acenaphthene	3.1	19	49
132-64-9	Dibenzofuran	3.9	19	< 19 U
84-66-2	Diethylphthalate	35	48	< 48 U
86-73-7	Fluorene	4.1	19	19
86-30-6	N-Nitrosodiphenylamine	5.1	19	< 19 U
118-74-1	Hexachlorobenzene	4.1	19	< 19 U
87-86-5	Pentachlorophenol	46	190	< 190 U
85-01-8	Phenanthrene	3.5	19	86
120-12-7	Anthracene	4.3	19	23
84-74-2	Di-n-Butylphthalate	7.8	19	< 19 U
206-44-0	Fluoranthene	2.8	19	140
129-00-0	Pyrene	1.8	19	140
85-68-7	Butylbenzylphthalate	5.8	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	57
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	62 B
218-01-9	Chrysene	3.6	19	72
117-84-0	Di-n-Octyl phthalate	5.6	19	< 19 U
50-32-8	Benzo (a) pyrene	5.2	19	86
193-39-5	Indeno (1,2,3-cd) pyrene	4.5	19	41
53-70-3	Dibenz (a, h) anthracene	4.1	19	13 J
191-24-2	Benzo(g,h,i)perylene	4.2	19	48
90-12-0	1-Methylnaphthalene	2.6	19	< 19 U
TOTBFA	Total Benzofluoranthenes	2.6	19	120

Reported in µg/kg (ppb)

d5-Nitrobenzene	73.6%	2-Fluorobiphenyl	79.6%
d14-p-Terphenyl	85.8%	d4-1,2-Dichlorobenzene	67.6%
d5-Phenol	72.5%	2-Fluorophenol	70.7%
2,4,6-Tribromophenol	87.1%	d4-2-Chlorophenol	75.6%

Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 22:32 Instrument/Analyst: NT10/YZ GPC Cleanup: No

SAMPLE QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Sample ID: 410B/DP

Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.3 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 27.4%

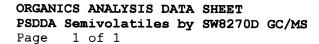
CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.4	20	11 J
541-73-1	1,3-Dichlorobenzene	2.6	20	< 20 U
106-46-7	1,4-Dichlorobenzene	2.8	20	< 20 U
100-51-6	Benzyl Alcohol	5.9	20	20
95-50-1	1,2-Dichlorobenzene	2.4	20	< 20 U
95-48-7	2-Methylphenol	5.1	20	< 20 U
106-44-5	4-Methylphenol	6.5	39	< 39 U
67-72-1	Hexachloroethane	2.9	20	< 20 U
105-67-9	2,4-Dimethylphenol	3.4	39	< 39 U
65-85-0	Benzoic Acid	98	390	< 390 U
120-82-1	1,2,4-Trichlorobenzene	3.4	20	< 20 U
91-20-3	Naphthalene	2.7	20	37
87-68-3	Hexachlorobutadiene	4.4	97	< 97 U
91-57-6	2-Methylnaphthalene	3.0	20	16 J
131-11-3	Dimethylphthalate	2.8	20	< 20 U
208-96-8	Acenaphthylene	5.6	20	< 20 U
83-32-9	Acenaphthene	3.2	20	27
132-64-9	Dibenzofuran	4.0	20	12 J
84-66-2	Diethylphthalate	36	49	< 49 U
86-73-7	Fluorene	4.2	20	23
86-30-6	N-Nitrosodiphenylamine	5.2	20	< 20 U
118-74-1	Hexachlorobenzene	4.2	20	< 20 U
87-86-5	Pentachlorophenol	47	200	< 200 U
85-01-8	Phenanthrene	3.5	20	120
120-12-7	Anthracene	4.4	20	32
84-74-2	Di-n-Butylphthalate	7.9	20	< 20 U
206-44-0	Fluoranthene	2.8	20	170
129-00-0	Pyrene	1.9	20	170
85-68-7	Butylbenzylphthalate	6.0	20	< 20 U
56-55-3	Benzo (a) anthracene	3.2	20	66
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	68 B
218-01-9	Chrysene	3.7	20	84
117-84-0	Di-n-Octyl phthalate	5.7	20	< 20 U
50-32-8	Benzo (a) pyrene	5.3	20	83
193-39-5	Indeno (1,2,3-cd) pyrene	4.6	20	41
53-70-3	Dibenz (a, h) anthracene	4.2	20	15 J
191-24-2	Benzo(g,h,i)perylene	4.3	20	45
90-12-0	1-Methylnaphthalene	2.6	20	< 20 U
TOTBFA	Total Benzofluoranthenes	2.7	20	130

Reported in µg/kg (ppb)

d5-Nitrobenzene	74.28	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	89.6%	d4-1,2-Dichlorobenzene	69.4%
d5-Phenol	71.1%	2-Fluorophenol	72.4%
2,4,6-Tribromophenol	90.4%	d4-2-Chlorophenol	75.2%

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 23:09 Instrument/Analyst: NT10/YZ GPC Cleanup: No Sample ID: 410C/DP SAMPLE


QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	7.9	18	20 M
541-73-1	1,3-Dichlorobenzene	2.4	18	< 18 U
106-46-7	1,4-Dichlorobenzene	2.6	18	< 18 U
100-51-6	Benzyl Alcohol	5.6	18	25
95-50-1	1,2-Dichlorobenzene	2.3	18	< 18 U
95-48-7	2-Methylphenol	4.8	18	< 18 U
106-44-5	4-Methylphenol	6.1	37	26 J
67 - 72-1	Hexachloroethane	2.7	18	< 18 U
105-67-9	2,4-Dimethylphenol	3.2	37	< 37 U
65-85-0	Benzoic Acid	93	370	< 370 U
120-82-1	1,2,4-Trichlorobenzene	3.2	18	< 18 U
91-20-3	Naphthalene	2.5	18	140
87-68-3	Hexachlorobutadiene	4.2	92	< 92 U
91-57-6	2-Methylnaphthalene	2.8	18	67
131 - 11-3	Dimethylphthalate	2.7	18	< 18 U
208-96-8	Acenaphthylene	5.2	18	42
83-32-9	Acenaphthene	3.0	18	270
132-64-9	Dibenzofuran	3.8	18	61
84-66-2	Diethylphthalate	34	46	< 46 U
86-73-7	Fluorene	4.0	18	160
86-30-6	N-Nitrosodiphenylamine	4.9	18	< 18 U
118-74-1	Hexachlorobenzene	3.9	18	< 18 U
87-86-5	Pentachlorophenol	44	180	< 180 U
85-01-8	Phenanthrene	3.3	18	1,600
120-12-7	Anthracene	4.1	18	320
84-74-2	Di-n-Butylphthalate	7.5	18	< 18 U
206-44-0	Fluoranthene	2.7	18	5,700 E
129-00-0	Pyrene	1.8	18	5,200 E
85-68-7	Butylbenzylphthalate	5.6	18	< 18 U
56-55-3	Benzo (a) anthracene	3.0	18	3,200 E
117-81-7	bis(2-Ethylhexyl)phthalate	13	23	86 B
218-01-9	Chrysene	3.4	18	3,900 E
117-84-0	Di-n-Octyl phthalate	5.4	18	12 J
50-32-8	Benzo (a) pyrene	5.0	18	4,000 E
193-39-5	Indeno (1,2,3-cd) pyrene	4.3	18	1,500
53-70-3	Dibenz (a, h) anthracene	4.0	18	600
191-24-2	Benzo(g,h,i)perylene	4.0	18	1,400
90-12-0	1-Methylnaphthalene	2.5	18	36
TOTBFA	Total Benzofluoranthenes	2.5	18	6,700 E

Reported in µg/kg (ppb)

d5-Nitrobenzene	68.2%	2-Fluorobiphenyl	75.6%
d14-p-Terphenyl	85.8%	d4-1,2-Dichlorobenzene	63.6%
d5-Phenol	67.9%	2-Fluorophenol	65.5%
2,4,6-Tribromophenol	87.6%	d4-2-Chlorophenol	71.1%

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 13:22 Instrument/Analyst: NT10/YZ GPC Cleanup: No Sample ID: 410C/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.9 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 10.0 Percent Moisture: 33.9%

541-73-1 1,3-Dichlorobenzene 24 180 < 180 106-46-7 1,4-Dichlorobenzene 26 180 < 180 95-50-1 1,2-Dichlorobenzene 23 180 < 180 95-48-7 2-Methylphenol 48 180 < 180 106-44-5 4-Methylphenol 61 370 < 370 67-72-1 Hexachloroethane 27 180 < 180 105-67-9 2,4-Dimethylphenol 32 370 < 370 65-85-0 Benzoic Acid 930 3,700 < 3,700 120-82-1 1,2,4-Trichlorobenzene 32 180 < 180 91-20-3 Naphthalene 25 180 140 87-68-3 Hexachlorobutadiene 42 920 < 920 91-57-6 2-Methylphthalate 27 180 <t80< td=""> 131-11-3 Dimethylphthalate 27 180 <t80< td=""> 132-64-9 Dibenzofuran 38 180 180 132-64-9 Dibenzofuran 38 180 140 86-30-6 N-Nitr</t80<></t80<>	CAS Number	Analyte	MDL	RL	Result
106-46-7 1,4-Dichlorobenzene 26 180 < 180	108-95-2	Phenol	79	180	< 180 U
100-51-6 Benzyl Alcohol 56 180 < 180	541-73-1	1,3-Dichlorobenzene	24	180	< 180 U
95-50-1 1,2-Dichlorobenzene 23 180 < 180	106-46-7	1,4-Dichlorobenzene	26	180	< 180 U
95-48-7 2-Methylphenol 48 180 < 180	100-51-6		56	180	< 180 U
106-44-5 4-Methylphenol 61 370 < 370	95-50-1	1,2-Dichlorobenzene	23	180	< 180 U
67-72-1 Hexachloroethane 27 180 < 180	95-48-7	2-Methylphenol	48	180	< 180 U
105-67-9 2,4-Dimethylphenol 32 370 < 370		4-Methylphenol	61	370	< 370 U
65-85-0 Benzoic Acid 930 3,700 < 3,700			27	180	< 180 U
120-82-1 1,2,4-Trichlorobenzene 32 180 < 180			32	370	< 370 U
91-20-3 Naphthalene 25 180 140 87-68-3 Hexachlorobutadiene 42 920 < 920			930	3,700	< 3,700 U
87-68-3 Hexachlorobutadiene 42 920 < 920		1,2,4-Trichlorobenzene	32	180	< 180 U
91-57-6 2-Methylnaphthalene 28 180 < 180	91-20-3	Naphthalene	25	180	140 J
131-11-3Dimethylphthalate27180< 180208-96-8Acenaphthylene52180< 180		Hexachlorobutadiene	42	920	< 920 U
208-96-8 Acenaphthylene 52 180 < 180	91-57-6	2-Methylnaphthalene	28	180	< 180 U
83-32-9 Acenaphthene 30 180 260 132-64-9 Dibenzofuran 38 180 <180	131-11-3	Dimethylphthalate	27	180	< 180 U
132-64-9 Dibenzofuran 38 180 < 180	208-96-8		52	180	< 180 U
84-66-2 Diethylphthalate 340 460 < 460	83-32-9	Acenaphthene	30	180	260
86-73-7 Fluorene 40 180 140 86-30-6 N-Nitrosodiphenylamine 49 180 180 118-74-1 Hexachlorobenzene 39 180 180 87-86-5 Pentachlorophenol 440 1,800 1,800 85-01-8 Phenanthrene 33 180 1,600 120-12-7 Anthracene 41 180 310 84-74-2 Di-n-Butylphthalate 75 180 < 180	132-64-9	Dibenzofuran	38	180	< 180 U
86-30-6 N-Nitrosodiphenylamine 49 180 < 180	84-66-2		340	460	< 460 U
118-74-1 Hexachlorobenzene 39 180 < 180	86-73-7	Fluorene	40	180	140 J
87-86-5 Pentachlorophenol 440 1,800 < 1,800	86-30-6	N-Nitrosodiphenylamine	49	180	< 180 U
85-01-8 Phenanthrene 33 180 1,600 120-12-7 Anthracene 41 180 310 84-74-2 Di-n-Butylphthalate 75 180 < 180	118-74-1	Hexachlorobenzene	39	180	< 180 U
120-12-7 Anthracene 41 180 310 84-74-2 Di-n-Butylphthalate 75 180 < 180	87-86-5	Pentachlorophenol	440	1,800	< 1,800 U
120-12-7Anthracene4118031084-74-2Di-n-Butylphthalate75180< 180	85-01-8	Phenanthrene	33	180	1,600
206-44-0 Fluoranthene 27 180 5,900 129-00-0 Pyrene 18 180 5,000 85-68-7 Butylbenzylphthalate 56 180 < 180	120-12-7	Anthracene	41	180	310
206-44-0Fluoranthene271805,900129-00-0Pyrene181805,00085-68-7Butylbenzylphthalate56180< 180	84-74-2	Di-n-Butylphthalate	75	180	< 180 U
129-00-0Pyrene181805,00085-68-7Butylbenzylphthalate56180< 180	206-44-0	Fluoranthene	27	180	
85-68-7 Butylbenzylphthalate 56 180 < 180 56-55-3 Benzo (a) anthracene 30 180 3,200 117-81-7 bis (2-Ethylhexyl)phthalate 130 230 < 230	129-00-0	Pyrene	18	180	
117-81-7bis(2-Ethylhexyl)phthalate130230< 230218-01-9Chrysene341803,800	85-68-7	Butylbenzylphthalate	56	180	< 180 U
117-81-7bis(2-Ethylhexyl)phthalate130230< 230218-01-9Chrysene341803,800	56-55-3	Benzo (a) anthracene	30	180	3,200
218-01-9 Chrysene 34 180 3,800	117-81-7		130		< 230 U
	218-01-9		34		
	117-84-0	Di-n-Octyl phthalate	54	180	< 180 U
	50-32-8		50	180	3,900
	193-39-5		43	180	2,300
	53-70-3		40		940
					2,500
	90-12-0				< 180 U
	TOTBFA				6,200

Reported in µg/kg (ppb)

d5-Nitrobenzene	56.0%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	84.0%	d4-1,2-Dichlorobenzene	60.0%
d5-Phenol	42.7%	2-Fluorophenol	60.0%
2,4,6-Tribromophenol	61.3%	d4-2-Chlorophenol	52.0%

Page 1 of 1

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized: 4 Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 23:46 Instrument/Analyst: NT10/YZ GPC Cleanup: No

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample ID: 410A/NSM

SAMPLE

Sample Amount: 10.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 40.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.3	19	24 M
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.8	19	68
95-50-1	1,2-Dichlorobenzene	2.4	19	< 19 U
95-48-7	2-Methylphenol	5.0	19	< 19 U
106-44-5	4-Methylphenol	6.3	38	110
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.3	38	< 38 U
65-85-0	Benzoic Acid	97	380	120 J
120-82-1	1,2,4-Trichlorobenzene	3.3	19	< 19 U
91-20-3	Naphthalene	2.6	19	510
87-68-3	Hexachlorobutadiene	4.4	96	< 96 U
91-57-6	2-Methylnaphthalene	2.9	19	210
131-11-3	Dimethylphthalate	2.8	19	< 19 U
208-96-8	Acenaphthylene	5.5	19	29
83-32-9	Acenaphthene	3.1	19	460
132-64-9	Dibenzofuran	3.9	19	94
84-66-2	Diethylphthalate	35	48	< 48 U
86-73-7	Fluorene	4.2	19	120
86-30-6	N-Nitrosodiphenylamine	5.2	19	< 19 U
118-74-1	Hexachlorobenzene	4.1	19	< 19 U
87-86-5	Pentachlorophenol	46	190	< 190 U
85-01-8	Phenanthrene	3.5	19	1,000
120-12-7	Anthracene	4.3	19	100
84-74-2	Di-n-Butylphthalate	7.8	19	< 19 U
206-44-0	Fluoranthene	2.8	19	600
129-00-0	Pyrene	1.9	19	580
85-68-7	Butylbenzylphthalate	5.9	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	160
117-81-7	bis (2-Ethylhexyl) phthalate	14	24	65 B
218-01-9	Chrysene	3.6	19	190
117-84-0	Di-n-Octyl phthalate	5.6	19	< 19 U
50-32-8	Benzo (a) pyrene	5.2	19	170
193-39-5	Indeno (1,2,3-cd) pyrene	4.5	19	65
53-70-3	Dibenz (a, h) anthracene	4.1	19	19
191-24-2	Benzo(g,h,i)perylene	4.2	19	74
90-12-0	1-Methylnaphthalene	2.6	19	68
TOTBFA	Total Benzofluoranthenes	2.6	19	260

Reported in µg/kg (ppb)

d5-Nitrobenzene	73.4%	2-Fluorobiphenyl	83.6%
d14-p-Terphenyl	92.0%	d4-1,2-Dichlorobenzene	70.2%
d5-Phenol	75.1%	2-Fluorophenol	72.8%
2,4,6-Tribromophenol	93.9%	d4-2-Chlorophenol	86.0%

Page 1 of 1

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/13/12 00:23 Instrument/Analyst: NT10/YZ GPC Cleanup: No

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12

Sample ID: 410B/NSM

SAMPLE

Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 25.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.0	19	< 19 U
541-73-1	1,3-Dichlorobenzene	2.4	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.7	19	< 19 U
100-51-6	Benzyl Alcohol	5.6	19	< 19 U
95-50 - 1	1,2-Dichlorobenzene	2.3	19	< 19 U
95-48-7	2-Methylphenol	4.9	19	< 19 U
106-44-5	4-Methylphenol	6.2	37	9.3 J
67-72-1	Hexachloroethane	2.7	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.2	37	< 37 U
65-85-0	Benzoic Acid	94	370	< 370 U
120-82-1	1,2,4-Trichlorobenzene	3.2	19	< 19 U
91-20-3	Naphthalene	2.6	19	47
87-68-3	Hexachlorobutadiene	4.2	93	< 93 U
91-57-6	2-Methylnaphthalene	2.8	19	21
131-11-3	Dimethylphthalate	2.7	19	< 19 U
208-96-8	Acenaphthylene	5.3	19	9.3 J
83-32-9	Acenaphthene	3.0	19	83
132-64-9	Dibenzofuran	3.8	19	18 J
84-66-2	Diethylphthalate	34	46	< 46 U
86-73-7	Fluorene	4.0	19	40
86-30-6	N-Nitrosodiphenylamine	5.0	19	< 19 U
118-74-1	Hexachlorobenzene	4.0	19	< 19 U
87-86-5	Pentachlorophenol	45	190	< 190 U
85-01-8	Phenanthrene	3.4	19	270
120-12-7	Anthracene	4.2	19	60
84-74-2	Di-n-Butylphthalate	7.6	19	< 19 U
206-44-0	Fluoranthene	2.7	19	500
129-00-0	Pyrene	1.8	19	450
85-68-7	Butylbenzylphthalate	5.7	19	< 19 U
56-55-3	Benzo (a) anthracene	3.1	19	280
117-81-7	bis(2-Ethylhexyl)phthalate	14	23	44 B
218-01-9	Chrysene	3.5	19	320
117-84-0	Di-n-Octyl phthalate	5.4	19	< 19 U
50-32-8	Benzo (a) pyrene	5.1	19	400
193-39-5	Indeno (1,2,3-cd) pyrene	4.3	19	160
53-70-3	Dibenz (a, h) anthracene	4.0	19	58
191-24-2	Benzo(g,h,i)perylene	4.1	19	160
90-12-0	1-Methylnaphthalene	2.5	19	< 19 U
TOTBFA	Total Benzofluoranthenes	2.6	19	640

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	72.4%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	87.6%	d4-1,2-Dichlorobenzene	69.2%
d5-Phenol	65.5%	2-Fluorophenol	70.9%
2,4,6-Tribromophenol	88.8%	d4-2-Chlorophenol	79.2%

SAMPLE

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/13/12 01:00 Instrument/Analyst: NT10/YZ GPC Cleanup: No QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.4 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.3	19	28 M
541-73-1	1,3-Dichlorobenzene	2.5	19	< 19 U
106-46-7	1,4-Dichlorobenzene	2.8	19	< 19 U
100-51-6	Benzyl Alcohol	5.9	19	12 J
95-50-1	1,2-Dichlorobenzene	2.4	19	< 19 U
95-48-7	2-Methylphenol	5.1	19	< 19 U
106-44-5	4-Methylphenol	6.4	39	34 J
67-72-1	Hexachloroethane	2.8	19	< 19 U
105-67-9	2,4-Dimethylphenol	3.3	39	< 39 U
65-85-0	Benzoic Acid	97	390	< 390 U
120-82-1	1,2,4-Trichlorobenzene	3.4	19	< 19 U
91-20-3	Naphthalene	2.7	19	150
87-68-3	Hexachlorobutadiene	4.4	96	< 96 U
91-57-6	2-Methylnaphthalene	3.0	19	88
131-11-3	Dimethylphthalate	2.8	19	< 19 U
208-96-8	Acenaphthylene	5.5	19	36
83-32-9	Acenaphthene	3.2	19	190
132-64-9	Dibenzofuran	4.0	19	62
84-66-2	Diethylphthalate	35	48	< 48 U
86-73-7	Fluorene	4.2	19	120
86-30-6	N-Nitrosodiphenylamine	5.2	19	30
118-74-1	Hexachlorobenzene	4.1	19	< 19 U
87-86-5	Pentachlorophenol	47	190	< 190 U
85-01-8	Phenanthrene	3.5	19	940
120-12-7	Anthracene	4.3	19	160
84-74-2	Di-n-Butylphthalate	7.9	19	< 19 U
206-44-0	Fluoranthene	2.8	19	1,400
129-00-0	Pyrene	1.9	19	1,200
85-68-7	Butylbenzylphthalate	5.9	19	< 19 U
56-55-3	Benzo (a) anthracene	3.2	19	560
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	110 B
218-01-9	Chrysene	3.6	19	760
117-84-0	Di-n-Octyl phthalate	5.6	19	< 19 U
50-32-8	Benzo (a) pyrene	5.3	19	720
193-39-5	Indeno (1,2,3-cd) pyrene	4.5	19	260
53-70-3	Dibenz (a, h) anthracene	4.2	19	110
191-24-2	Benzo(g,h,i)perylene	4.2	19	250
90-12-0	1-Methylnaphthalene	2.6	19	36
TOTBFA	Total Benzofluoranthenes	2.7	19	1,300

Reported in µg/kg (ppb)

d5-Nitrobenzene	74.0%	2-Fluorobiphenyl	81.6%
d14-p-Terphenyl	87.0%	d4-1,2-Dichlorobenzene	72.4%
d5-Phenol	70.48	2-Fluorophenol	72.8%
2,4,6-Tribromophenol	86.9%	d4-2-Chlorophenol	76.1%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	TUO TC
401A/DP	72.48	77.6%	83.0%	65.4%	69.9%	68.8%	83.3%	70.5%	0
401B/DP	73.6%	80.6%	87.6%	69.4%	73.5%	73.3%	90.5%	76.0%	0
401C/DP	74.0%	78.4%	82.2%	66.8%	72.3%	70.5%	87.5%	75.7%	0
401A/NSM	72.6%	78.4%	92.2%	68.0%	68.9%	71.2%	89.1%	74.8%	0
MB-051212	71.8%	71.2%	91.4%	67.4%	67.3%	70.1%	71.2%	77.6%	0
LCS-051212	70.0%	72.48	94.2%	64.2%	73.2%	70.3%	81.5%	72.3%	0
LCSD-051212	76.8%	76.2%	93.4%	70.8%	78.7%	76.3%	81.5%	77.2%	0
401B/NSM	68.0%	65.0%	85.8%	66.4%	59.6%	66.4%	78.7%	67.1%	0
401B/NSM MS	70.6%	75.8%	92.4%	65.2%	71.5%	71.2%	85.1%	71.9%	0
401B/NSM MSD	72.0%	78.0%	88.0%	67.4%	73.78	72.0%	82.0%	73.7%	0
401C/NSM	69.6%	77.2%	83.0%	64.2%	72.5%	69.5%	82.5%	73.9%	0
410A/DP	73.6%	79.6%	85.8%	67.6%	72.5%	70.7%	87.1%	75.6%	0
410B/DP	74.28	79.2%	89.6%	69.4%	71.1%	72.48	90.4%	75.2%	0
410C/DP	68.2%	75.6%	85.8%	63.6%	67.9%	65.5%	87.6%	71.1%	0
410C/DP DL	56.0%	64.0%	84.0%	60.0%	42.7%	60.0%	61.3%	52.0%	0
410A/NSM	73.4%	83.6%	92.0%	70.2%	75.1%	72.8%	93.9%	86.0%	0
410B/NSM	72.4%	76.4%	87.6%	69.2%	65.5%	70.9%	88.8%	79.2%	0
410C/NSM	74.0%	81.6%	87.0%	72.4%	70.4%	72.8%	86.9%	76.1%	0

		LCS/MB LIMITS	QC LIMITS
(NBZ)	= d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	= 2-Fluorobiphenyl	(30-160)	(30-160)
(TPH)	= d14-p-Terphenyl	(30-160)	(30-160)
(DCB)	= d4-1,2-Dichlorobenzene	(30-160)	(30-160)
(PHL)	= d5-Phenol	(30-160)	(30-160)
(2FP)	= 2-Fluorophenol	(30-160)	(30-160)
(TBP)	= 2,4,6-Tribromophenol	(30-160)	(30-160)
(2CP)	= d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546 Log Number Range: 12-8723 to 12-8734

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted MS/MSD: 05/12/12

Date Analyzed MS: 05/12/12 20:03 MSD: 05/12/12 20:41 Instrument/Analyst MS: NT10/YZ MSD: NT10/YZ GPC Cleanup: No

Sample ID: 401B/NSM MS/MSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

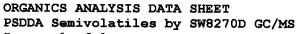
Sample Amount MS: 11.0 g-dry-wt MSD: 10.5 g-dry-wt Final Extract Volume MS: 1.0 mL MSD: 1.0 mL Dilution Factor MS: 1.00 MSD: 1.00 Percent Moisture: 19.6 %

Analyte	Sampl	e	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 18.9	U	297	455	65.3%	328	476	68.9%	9.98
1,3-Dichlorobenzene	< 18.9	U	285	455	62.6%	323	476	67.9%	12.5%
1,4-Dichlorobenzene	< 18.9	U	292	455	64.2%	321	476	67.48	9.5%
Benzyl Alcohol	< 18.9	U	309	455	67.9%	351	476	73.78	12.7%
1,2-Dichlorobenzene	< 18.9		298	455	65.5%	331	476	69.5%	10.5%
2-Methylphenol	< 18.9		267	455	58.7%	282	476	59.2%	5.5%
4-Methylphenol	< 37.9	U	544	910	59.8%	582	951	61.2%	6.7%
Hexachloroethane	< 18.9	U	213	455	46.8%	250	476	52.5%	16.0%
2,4-Dimethylphenol	< 37.9	U	934	1360	68.7%	851	1430	59.5%	9.3%
Benzoic Acid	< 379	U	977	2500	39.1%	745	2620	28.4%	26.9%
1,2,4-Trichlorobenzene	< 18.9	U	301	455	66.2%	322	476	67.6%	6.7%
Naphthalene	< 18.9	U	335	455	73.6%	365	476	76.7%	8.6%
Hexachlorobutadiene	< 94.7	U	304	455	66.8%	323	476	67.9%	6.1%
2-Methylnaphthalene	< 18.9	U	345	455	75.8%	366	476	76.9%	5.9%
Dimethylphthalate	< 18.9	U	417	455	91.6%	456	476	95.8%	8.9%
Acenaphthylene	< 18.9	U	384	455	84.4%	449	476	94.3%	15.6%
Acenaphthene	< 18.9	U	398	455	87.5%	428	476	89.9%	7.3%
Dibenzofuran	< 18.9	U	371	455	81.5%	413	476	86.8%	10.7%
Diethylphthalate	< 47.3	U	450	455	98.9%	474	476	99.6%	5.2%
Fluorene	< 18.9	U	434	455	95.4%	476	476	100%	9.2%
N-Nitrosodiphenylamine	< 18.9	U	427	455	93.8%	428	476	89.9%	0.2%
Hexachlorobenzene	< 18.9	U	389	455	85.5%	418	476	87.8%	7.2%
Pentachlorophenol	< 189	U	998	Q 1360	73.4%	1050 Q		73.48	5.1%
Phenanthrene	< 18.9	U	456	455	100%	498	476	105%	8.8%
Anthracene	< 18.9	U	439	455	96.5%	465	476	97.7%	5.8%
Di-n-Butylphthalate	< 18.9		510	455	112%	529	476	1118	3.78
Fluoranthene	< 18.9	U	498	455	109%	520	476	109%	4.3%
Pyrene	< 18.9	U	443	455	97.4%	461	476	96.8%	4.0%
Butylbenzylphthalate	< 18.9	U	497	455	109%	507	476	107%	2.0%
Benzo(a)anthracene	< 18.9	U	455	455	100%	459	476	96.4%	0.98
bis(2-Ethylhexyl)phthalate	33.1	В	486	B 455	99.5%	500 B	476	98.1%	2.8%
Chrysene	< 18.9		468	455	103%	466	476	97.9%	0.4%
Di-n-Octyl phthalate	< 18.9	U	459	455	101%	480	476	101%	4.5%
Benzo(a)pyrene	< 18.9	U	453	455	99.6%	451	476	94.7%	0.4%
Indeno(1,2,3-cd)pyrene	< 18.9		403	455	88.6%	438	476	92.0%	8.3%
Dibenz(a,h)anthracene	< 18.9		386	455	84.8%	525	476	110%	30.5%
Benzo(g,h,i)perylene	< 18.9		379	455	83.3%	408	476	85.7%	7.48
1-Methylnaphthalene	< 18.9		334	455	73.48	357	476	75.0%	6.78
Total Benzofluoranthenes	< 18.9	ט	912	910	100%	947	951	99.6%	3.8%

Reported in μ g/kg (ppb) RPD calculated using sample concentrations per SW846.

Sample ID: 401B/NSM MATRIX SPIKE

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized:


Date Extracted: 05/12/12 Date Analyzed: 05/12/12 20:03 Instrument/Analyst: NT10/YZ GPC Cleanup: No QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 11.0 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 19.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	7.9	18	
541-73-1	1,3-Dichlorobenzene	2.4	18	
106-46-7	1,4-Dichlorobenzene	2.6	18	
100-51-6	Benzyl Alcohol	5.5	18	
95-50-1	1,2-Dichlorobenzene	2.3	18	
95-48-7	2-Methylphenol	4.8	18	
106-44-5	4-Methylphenol	6.0	36	
67-72-1	Hexachloroethane	2.7	18	
105-67-9	2,4-Dimethylphenol	3.1	36	-
65-85-0	Benzoic Acid	92	360	
120-82-1	1,2,4-Trichlorobenzene	3.2	18	
91-20-3	Naphthalene	2.5	18	
87-68-3	Hexachlorobutadiene	4.2	91	
91-57-6	2-Methylnaphthalene	2.8	18	
131-11-3	Dimethylphthalate	2.6	18	
208-96-8	Acenaphthylene	5.2	. 18	
83-32-9	Acenaphthene	3.0	18	
132-64-9	Dibenzofuran	3.7	18	
84-66-2	Diethylphthalate	33	46	
86-73-7	Fluorene	4.0	18	
86-30-6	N-Nitrosodiphenylamine	4.9	18	
118-74-1	Hexachlorobenzene	3.9	18	
87-86-5	Pentachlorophenol	44	180	
85-01-8	Phenanthrene	3.3	18	
120-12-7	Anthracene	4.1	18	
84-74-2	Di-n-Butylphthalate	7.4	18	
206-44-0	Fluoranthene	2.6	18	
129-00-0	Pyrene	1.8	18	
85-68-7	Butylbenzylphthalate	5.6	18	
56-55 - 3	Benzo(a)anthracene	3.0	18	
117-81-7	bis(2-Ethylhexyl)phthalate	13	23	
218-01-9	Chrysene	3.4	18	
117-84-0	Di-n-Octyl phthalate	5.3	18	
50-32-8	Benzo(a)pyrene	5.0	18	
193-39-5	Indeno (1, 2, 3-cd) pyrene	4.3	18	
53-70-3	Dibenz(a,h)anthracene	3.9	18	
191-24-2	Benzo(g,h,i)perylene	4.0	18	
90-12-0	1-Methylnaphthalene	2.4	18	
TOTBFA	Total Benzofluoranthenes	2.5	18	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	70.6%	2-Fluorobiphenyl	75.8%
d14-p-Terphenyl	92.4%	d4-1,2-Dichlorobenzene	65.2%
d5-Phenol	71.5%	2-Fluorophenol	71.2%
2,4,6-Tribromophenol	85.1%	d4-2-Chlorophenol	71.9%

MATRIX SPIKE DUPLICATE

Page 1 of 1

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/14/12

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 20:41 Instrument/Analyst: NT10/YZ GPC Cleanup: No

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Sample ID: 401B/NSM

Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.5 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 19.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.2	19	
541-73-1	1,3-Dichlorobenzene	2.5	19	
106-46-7	1,4-Dichlorobenzene	2.7	19	
100-51-6	Benzyl Alcohol	5.8	19	
95-50-1	1,2-Dichlorobenzene	2.4	19	
95-48-7	2-Methylphenol	5.0	19	
106-44-5	4-Methylphenol	6.3	38	
67-72-1	Hexachloroethane	2.8	19	
105-67-9	2,4-Dimethylphenol	3.3	38	
65-85-0	Benzoic Acid	96	380	
120-82-1	1,2,4-Trichlorobenzene	3.3	19	-
91-20-3	Naphthalene	2.6	19	
87-68-3	Hexachlorobutadiene	4.3	95	
91-57-6	2-Methylnaphthalene	2.9	19	-
131-11-3	Dimethylphthalate	2.8	19	
208-96-8	Acenaphthylene	5.4	19	
83-32-9	Acenaphthene	3.1	19	
132-64-9	Dibenzofuran	3.9	19	
84-66-2	Diethylphthalate	35	48	
86-73-7	Fluorene	4.1	19	
86-30-6	N-Nitrosodiphenylamine	5.1	19	
118-74-1	Hexachlorobenzene	4.1	19	
87-86-5	Pentachlorophenol	46	190	
85-01-8	Phenanthrene	3.5	19	
120-12-7	Anthracene	4.3	19	
84-74-2	Di-n-Butylphthalate	7.8	19	
206-44-0	Fluoranthene	2.8	19	
129-00-0	Pyrene	1.8	19	
85-68-7	Butylbenzylphthalate	5.8	19	
56-55 - 3	Benzo(a)anthracene	3.1	19	
117-81-7	bis(2-Ethylhexyl)phthalate	14	24	
218-01-9	Chrysene	3.6	19	
117-84-0	Di-n-Octyl phthalate	5.6	19	
50-32-8	Benzo(a)pyrene	5.2	19	
193-39-5	Indeno (1, 2, 3-cd) pyrene	4.5	19	
53-70-3	Dibenz (a, h) anthracene	4.1	19	
191-24-2	Benzo(g,h,i)perylene	4.2	19	
90-12-0	1-Methylnaphthalene	2.5	19	
TOTBFA	Total Benzofluoranthenes	2.6	19	

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	72.0%	2-Fluorobiphenyl	78.0%
d14-p-Terphenyl	88.0%	d4-1,2-Dichlorobenzene	67.4%
d5-Phenol	73.7%	2-Fluorophenol	72.0%
2,4,6-Tribromophenol	82.0%	d4-2-Chlorophenol	73.78

ક્ર ક્ર

Lab Sample ID: LCS-051212 LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized:

Date Extracted LCS/LCSD: 05/12/12

Date Analyzed LCS: 05/12/12 15:44 LCSD: 05/12/12 16:21 Instrument/Analyst LCS: NT10/YZ LCSD: NT10/YZ

GPC Cleanup: No

Sample ID: LCS-051212 LCS/LCSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount LCS: 10.0 g LCSD: 10.0 g Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	322	500	64.4%	366	500	73.2%	12.8%
1,3-Dichlorobenzene	299	500	59.8%	350	500	70.0%	15.7%
1,4-Dichlorobenzene	301	500	60.2%	354	500	70.8%	16.2%
Benzyl Alcohol	353	500	70.6%	397	500	79.4%	11.7%
1,2-Dichlorobenzene	310	500	62.0%	364	500	72.8%	16.0%
2-Methylphenol	278	500	55.6%	309	500	61.8%	10.6%
4-Methylphenol	587	1000	58.7%	646	1000	64.6%	9.6%
Hexachloroethane	306	500	61.28	361	500	72.2%	16.5%
2,4-Dimethylphenol	880	1500	58.7%	967	1500	64.5%	9.4%
Benzoic Acid	1600	2750	58.2%	1480	2750	53.8%	7.8%
1,2,4-Trichlorobenzene	308	500	61.6%	357	500	71.4%	14.7%
Naphthalene	343	500	68.6%	394	500	78.8%	13.8%
Hexachlorobutadiene	303	500	60.6%	356	500	71.2%	16.1%
2-Methylnaphthalene	342	500	68.4%	395	500	79.0%	14.48
Dimethylphthalate	437	500	87.4%	463	500	92.6%	5.8%
Acenaphthylene	388	500	77.6%	420	500	84.0%	7.98
Acenaphthene	398	500	79.6%	435	500	87.0%	8.9%
Dibenzofuran	387	500	77.4%	415	500	83.0%	7.0%
Diethylphthalate	478	500	95.6%	515	500	103%	7.5%
Fluorene	444	500	88.8%	488	500	97.6%	9.4%
N-Nitrosodiphenylamine	434	500	86.8%	458	500	91.6%	5.48
lexachlorobenzene	401	500	80.2%	434	500	86.8%	7.98
Pentachlorophenol	1090 Q	1500	72.7%	1140	Q 1500	76.0%	4.5%
Phenanthrene	484	500	96.8%	518	500	104%	6.8%
Anthracene	452	500	90.4%	471	500	94.2%	4.1%
Di-n-Butylphthalate	539	500	108%	570	500	114%	5.6%
fluoranthene	513	500	103%	551	500	110%	7.1%
?yrene	478	500	95.6%	498	500	99.6%	4.1%
Butylbenzylphthalate	524	500	105%	550	500	110%	4.8%
Benzo(a)anthracene	474	500	94.8%	500	500	100%	5.3%
bis(2-Ethylhexyl)phthalate	512 B	500	102%	559 1	B 500	112%	8.8%
Chrysene	492	500	98.4%	509	500	102%	3.4%
Di-n-Octyl phthalate	494	500	98.8%	529	500	106%	6.8%
Benzo(a)pyrene	459	500	91.8%	466	500	93.2%	1.5%

Sample ID: LCSD-051212 LCS/LCSD

Lab Sample ID: LCS-051212 LIMS ID: 12-8727 Matrix: Sediment Date Analyzed LCS: 05/12/12 15:44 LCSD: 05/12/12 16:21 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Indeno(1,2,3-cd)pyrene	474	500	94.8%	502	500	100%	5.7%
Dibenz(a,h)anthracene	472	500	94.48	508	500	102%	7.3%
Benzo(g,h,i)perylene	482	500	96.4%	506	500	101%	4.98
1-Methylnaphthalene	334	500	66.8%	381	500	76.2%	13.1%
Total Benzofluoranthenes	964	1000	96.4%	1030	1000	103%	6.6%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	70.0%	76.8%
2-Fluorobiphenyl	72.4%	76.2%
d14-p-Terphenyl	94.2%	93.4%
d4-1,2-Dichlorobenzene	64.2%	70.8%
d5-Phenol	73.2%	78.7%
2-Fluorophenol	70.3%	76.3%
2,4,6-Tribromophenol	81.5%	81.5%
d4-2-Chlorophenol	72.3%	77.2%

Reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

BLANK NO.

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Lab File ID: UU16MB

Instrument ID: NT10

Matrix: SOLID

Client: HART CROWSER Project: P.O.P. T4 MAINTENANC Date Extracted: 05/12/12 Date Analyzed: 05/12/12 Time Analyzed: 1507

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		================	===========	=========
01	UU16LCSS1	UU16LCSS1	UU16SB	05/12/12
02	UU16LCSDS1	UU16LCSDS1	UU16SBD	05/12/12
03	401A/DP	UU16A	UU16A	05/12/12
04	401B/DP	UU16B	UU16B	05/12/12
05	401C/DP	UU16C	UU16C	05/12/12
06	401A/NSM	UU16D	UU16D	05/12/12
07	401B/NSM	UU16E	UU16E	05/12/12
08	401B/NSM MS	UU16EMS	UU16EMS	05/12/12
09	401B/NSM MSD	UU16EMSD	UU16EMSD	05/12/12
10	401C/NSM	UU16F	UU16F	05/12/12
11	410A/DP	UU16G	UU16G	05/12/12
12	410B/DP	UU16H	UU16H	05/12/12
13	410C/DP	UU16I	UU16I	05/12/12
14	410A/NSM	UU16J UU16K	UU16J UU16K	05/12/12
15 16	410B/NSM 410C/NSM	UU16L	UU16L	05/13/12 05/13/12
$10 \\ 17$	410C/DP	UU16I	UU16I10	05/13/12
18	410C/DP	00101		05/14/12
10^{10}				
20				
21				
22				
23				
24				
25				
26				· · · · · · · · · · · · · · · · · · ·
27				
28				
29				
30				· ·

Lab Sample ID: MB-051212 LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/12/12 15:07 Instrument/Analyst: NT10/YZ GPC Cleanup: No QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample ID: MB-051212

METHOD BLANK

Sample Amount: 10.0 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	8.6	20	< 20 U
541-73-1	1,3-Dichlorobenzene	2.6	20	< 20 U
106-46-7	1,4-Dichlorobenzene	2.9	20	< 20 U
100-51-6	Benzyl Alcohol	6.1	20	< 20 U
95-50-1	1,2-Dichlorobenzene	2.5	20	< 20 U
95-48-7	2-Methylphenol	5.2	20	< 20 U
106-44-5	4-Methylphenol	6.6	40	< 40 U
67-72-1	Hexachloroethane	2.9	20	< 20 U
105-67-9	2,4-Dimethylphenol	3.5	40	< 40 U
65-85-0	Benzoic Acid	100	400	< 400 U
120-82-1	1,2,4-Trichlorobenzene	3.5	20	< 20 U
91-20-3	Naphthalene	2.8	20	< 20 U
87-68-3	Hexachlorobutadiene	4.6	100	< 100 U
91-57 - 6	2-Methylnaphthalene	3.1	20	< 20 U
131-11-3	Dimethylphthalate	2.9	20	< 20 U
208-96-8	Acenaphthylene	5.7	20	< 20 U
83-32-9	Acenaphthene	3.3	20	< 20 U
132-64-9	Dibenzofuran	4.1	20	< 20 U
84-66-2	Diethylphthalate	37	50	< 50 U
86-73-7	Fluorene	4.4	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	5.4	20	< 20 U
118-74-1	Hexachlorobenzene	4.3	20	< 20 U
87-86-5	Pentachlorophenol	48	200	< 200 U
85-01-8	Phenanthrene	3.6	20	< 20 U
120-12-7	Anthracene	4.5	20	< 20 U
84-74-2	Di-n-Butylphthalate	8.2	20	< 20 U
206-44-0	Fluoranthene	2.9	20	< 20 U
129-00-0	Pyrene	1.9	20	< 20 U
85-68-7	Butylbenzylphthalate	6.1	20	< 20 U
56-55-3	Benzo(a)anthracene	3.3	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	15	25	19 J
218-01-9	Chrysene	3.8	20	< 20 U
117-84-0	Di-n-Octyl phthalate	5.8	20	< 20 U
50-32-8	Benzo(a)pyrene	5.4	20	< 20 U
193-39-5	Indeno (1, 2, 3-cd) pyrene	4.7	20	< 20 U
53-70-3	Dibenz(a, h) anthracene	4.3	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	4.4	20	< 20 U
90-12-0	1-Methylnaphthalene	2.7	20	< 20 U
TOTBFA	Total Benzofluoranthenes	2.8	20	< 20 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	71.8%	2-Fluorobiphenyl	71.2%
d14-p-Terphenyl	91.4%	d4-1,2-Dichlorobenzene	67.4%
d5-Phenol	67.3%	2-Fluorophenol	70.1%
2,4,6-Tribromophenol	71.2%	d4-2-Chlorophenol	77.6%

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

Instrument ID: NT10

DFTPP Injection Time: 1408

Project: P.O.P. T4 MAINTENANCE

DFTPP Injection Date: 05/07/12

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE 51 10.0 - 80.0% of mass 198 68 Less than 2.0% of mass 69 24.5 0.6(1.4)169 Mass 69 relative abundance 39.2 70 | Less than 2.0% of mass 69 $\overline{}$ 0.2 (0.4)1Less than 2.0% of mass 198 47.6 127 197 0.0 Base Peak, 100% relative abundance_____ 5.0 to 9.0% of mass 198_____ 100.0 198 199 6.8 10.0 - 60.0% of mass 198_____ Greater than 1.0% of mass 198_____ 275 26.3 365 3.43 0.0 - 24.0% of mass 442 441 13.1 (15.5)250.0 - 200.0% of mass 198_____ 442 84.2 15.0 - 24.0% of mass 442 17.0 (20.2)2443

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
0.1		TC05075			1422
01		IC05075	IC0507A	05/07/12	1423
02		IC050720	IC0507B	05/07/12	1500
03		IC05070.2	IC0507C	05/07/12	1537
04		IC05071	IC0507D	05/07/12	1614
05		IC05072.5	IC0507E	05/07/12	1651
06		IC050710	IC0507G	05/07/12	1805
07		IC05070.5	IC0507I	05/07/12	1919
08					
09					
10					
11					
12					
13					
14					
15					
16	· · · · · ·				
17					
18					
19					
20					
21	ļ ———				
22	l	l			

page 1 of 1

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

Instrument ID: NT10

Project: P.O.P. T4 MAINTENANCE

DFTPP Injection Date: 05/12/12

DFTPP Injection Time: 1357

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE 51 | 10.0 - 80.0% of mass 198 27.3 0.7 (68 | Less than 2.0% of mass $6\overline{9}$ 1.5)1 Mass 69 relative abundance_____ 69 44.8 Less than 2.0% of mass 69______ 10.0 - 80.0% of mass 198_____ 0.2 (0.5)170 $52.9 \\ 0.2 \\ 100.0 \\ 6.8 \\ 24.2$ 127 Less than 2.0% of mass 198 197 Less than 2.0% of mass 198 Base Peak, 100% relative abundance_____ 198 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1.0% of mass 198 199 275 3.31 365 441 0.0 - 24.0% of mass 442_____ 11.1 (15.8)2 442 50.0 - 200.0% of mass 198_____ 70.3 14.1 (20.0)2443 | 15.0 - 24.0% of mass 442 2-Value is % mass 442 1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=================		===========	===========
01		CC0512	CC0512	05/12/12	1412
02	UU16MBS1	UU16MBS1	UU16MB	05/12/12	1507
03	UU16LCSS1	UU16LCSS1	UU16SB	05/12/12	1544
04	UU16LCSDS1	UU16LCSDS1	UU16SBD	05/12/12	1621
05	401A/DP	UU16A	UU16A	05/12/12	1658
06	401B/DP	UU16B	UU16B	05/12/12	1736
07	401C/DP	UU16C	UU16C	05/12/12	1813
08	401A/NSM	UU16D	UU16D	05/12/12	1850
09	401B/NSM	UU16E	UU16E	05/12/12	1926
10	401B/NSM MS	UU16EMS	UU16EMS	05/12/12	2003
11	401B/NSM MSD	UU16EMSD	UU16EMSD	05/12/12	2041
12	401C/NSM	UU16F	UU16F	05/12/12	2118
13	410A/DP	UU16G	UU16G	05/12/12	2155
14	410B/DP	UU16H	UU16H	05/12/12	2232
15	410C/DP	UU16I	UU16I	05/12/12	2309
16	410A/NSM	UU16J	UU16J	05/12/12	2346
17	410B/NSM	UU16K	UU16K	05/13/12	0023
18	410C/NSM	UU16L	UU16L	05/13/12	0100
19					
20					
21					
22					
	·	·	·		· · ·

page 1 of 1

INTE: DOD59

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

Instrument ID: NT10

DFTPP Injection Time: 1230

Project: P.O.P. T4 MAINTENANCE

DFTPP Injection Date: 05/14/12

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE 10.0 - 80.0% of mass 198 51 27.168 | Less than 2.0% of mass $6\overline{9}$ 0.6(1.4)169 Mass 69 relative abundance 43.8 70 Less than 2.0% of mass 69 0.2 (0.4)152.1 10.0 - 80.0% of mass 198 127 Less than 2.0% of mass 198 197 0.0 Base Peak, 100% relative abundance 100.0 198 5.0 to 9.0% of mass 198 6.8 199 10.0 - 60.0% of mass 198 275 24.2 Greater than 1.0% of mass 198 3.24 365 0.0 - 24.0% of mass 442 11.4 (16.0)2 441 50.0 - 200.0% of mass 198 442 71.3 14.2 (19.9)215.0 - 24.0% of mass 442 443 2-Value is % mass 442 1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

CLIENT LAB LAB DATE TIME FILE ID ANALYZED SAMPLE NO. SAMPLE ID ANALYZED ______ CC0514 CC0514 05/14/12 1245 01 02 410C/DP UU16I UU16I10 05/14/12 1322 03 04 05 06 07 80 09 10 11 12 13 14 15 16 17 18 19 20 21 22

page 1 of 1

UU16:00060

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT10

Project: P.O.P. T4 MAINTENANCE

Calibration Date: 05/07/12

	RRF2.5=IC050' RRF20 =IC050'	7B	RRF5 =	=IC0507 <i>I</i>	A P	RRF10 =1	[C0507G			
	RRF20 =IC0507								•	
COMPOUND										
COMPOUND		000								
COMPOUND		RRF	RRF	RRF	RRF	RRF	RRF	RRF		%RSD
		0.2	0.5	1	2.5	5	10	20		/R^2
=======================================	============	•								
Phenol		1.935	•					1.734		
1,3-Dichlorobenz	ene	1.779								
1,4-Dichlorobenz	ene	1.705								
1,2-Dichlorobenz	ene	1.621								•
		0.878							0.869	
2-Methylphenol		1.498								1
Hexachloroethane		0.620		0.653	0.627	0.607	0.591	0.604	0.622	
4-Methylphenol		1.580		1.633	1.554	1.512	1.457	1.431	1.530	4.6
2,4-Dimethylphen	.ol	0.378			0.355					
1,2,4-Trichlorob	enzene		1	0.346				0.298	0.324	7.0
Naphthalene		1.070		1.044	0.996	0.959	0.950	0.945	0.999	5.0
Benzoic acid		0.192		0.279					0.276	17.3
Hexachlorobutadi	ene	0.192		0.190	0.175					1
2-Methylnaphthal	ene	0.708			0.682	0.673	0.668	0.669	0.685	2.4
Acenaphthylene		1.933	1.799	1.908	1.732	1.704	1.677	1.656		•
Dimethylphthalat	e	1.369	1.250	1.336	1.212	1.166	1.114	1.096	1.220	8.6
Acenaphthene		1.120		1.119	1.038	1.015	1.011	1.016	1.058	4.7
Dibenzofuran	· · · · · · · · · · · · · · · · · · ·	1.663	1.616	1.675	1.541	1.519	1.511	1.499	1.575	4.7
Fluorene		1.279	1.233	1.287	1.194	1.152	1.142	1.124	1.202	5.5
Diethylphthalate		1.250	1.217	1.262	1.155	1.134	1.089	1.071	1.168	6.5
N-Nitrosodipheny	lamine (1)	0.548	0.536	0.570	0.514	0.494	0.475	0.467	0.515	7.5
Hexachlorobenzer	.e	0.265	0.255	0.254	0.241	0.236	0.227	0.225	0.243	6.2
Pentachlorophenc)1	0.149	0.153	0.181	0.175	0.177	0.172	0.176	0.169	7.4
Phenanthrene		1.034	1.002	1.054	0.961	0.951	0.956	0.966	0.989	4.2
Anthracene		1.094	1.028	1.073	1.052	1.018	1.015	1.029	1.044	2.9
Di-n-butylphthal	ate	1.273	1.184	1.308	1.263	1.292	1.327	1.342	1.284	4.1
Fluoranthene		1.137	1.060	1.180	1.117	1.121	1.121	1.144	1.126	3.2
Pyrene		1.271	1.213	1.276	1.196	1.160	1.172	1.173	1.209	3.9
Butylbenzylphtha	late	0.557	0.494	0.547	0.508	0.501	0.500	0.493	0.514	5.1
Benzo(a)anthrace	ene	1.196	1.104	1.136	1.072	1.030	1.022	1.032	1.084	6.0
Chrysene		1.045	0.978	1.003	0.959	0.924			0.968	4.5
bis(2-Ethylhexy))phthalate	0.552	0.538	0.547	0.512	0.489	0.507	0.495	0.520	4.9
Di-n-octylphthal	.ate	1.073	1.003	0.999	0.931	0.883	0.896	0.879	0.952	7.8
Benzo(a)pyrene		0.990	0.955	0.999	0.953	0.951	0.971	0.983	0.972	2.0
Indeno $(1, 2, 3-cd)$	pyrene	1.115	1.022	1.130	1.102	1.097	1.123	1.150	1.106	3.7
Dibenzo(a,h)anth	iracene	0.829	0.790	0.875	0.845	0.844	0.868	0.897	0.850	4.1
Benzo(g,h,i)pery		0.965	0.889	1.000	0.939	0.937	0.970	0.992	0.956	4.0
		İ	1	İ	İ		l	İ	İ	

(1) Cannot be seperated from Diphenylamine

<- Outside QC limits: %RSD <20% or R^2 > 0.990

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT10

Project: P.O.P. T4 MAINTENANCE

Calibration Date: 05/07/12

LAB FILE ID: RRF0.2=IC05 RRF2.5=IC05 RRF20 =IC05	07E	RRF0.5= RRF5 =	=IC05072 =IC05072		RF1 =] RF10 =]	IC0507D IC0507G			
COMPOUND	RRF 0.2	RRF 0.5 ======	RRF 1 ======	RRF 2.5	RRF 5	RRF 10	RRF 20	RRF	%RSD /R^2
1-methylnaphthalene Total Benzofluoranthenes	_ 0.714 _ 1.153	0.700	0.722 1.140	0.699		0.681	0.682 1.052	0.699	2.2 4.0
2-Fluorophenol Phenol-d5 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 	1.436 1.717 1.531 1.083 0.356 1.486 0.174 0.852 	1.494 1.035 0.348 1.395 0.179	1.459	1.486 0.998 0.342 1.341 0.180	1.461 0.967 0.326 1.308 0.187	1.404 0.924 0.334 1.288 0.181	1.673 1.407 0.934 0.325 1.274 0.186	1.472 0.998 0.342 1.364 0.183	3.5 5.9 4.2 6.2

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Instrument ID: NT10

Init. Calib. Date: 05/07/12

Client: HART CROWSER Project: P.O.P. T4 MAINTENANCE Cont. Calib. Date: 05/12/12 Cont. Calib. Time: 1412

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
=======================================					
Phenol	1.864			AVRG	-8.8
1,3-Dichlorobenzene	1.644	1.589		AVRG	
1,4-Dichlorobenzene	1.596	1.546	0.010	AVRG	-3.1
1,2-Dichlorobenzene	1.549	1.495	0.010	AVRG	-3.5
Benzyl alcohol	0.869	0.728	0.010	AVRG	-16.2
2-Methylphenol	1.468	1.378			-6.1
Hexachloroethane	0.622	0.631	0.300	AVRG	1.4
4-Methylphenol	1.530	1.401	0.600	AVRG	-8.4
2.4-Dimethylphenol	0.355	0.333	0.200	AVRG	-6.2
1,2,4-Trichlorobenzene	0.324	0.302	0.010	AVRG	-6.8
Naphthalene	0.999	0.955	0.700	AVRG	-4.4
Benzoic acid	0.276	0.252	0.010		-8.7
Hexachlorobutadiene	0.178	0.170	0.010	AVRG	-4.5
2-Methylnaphthalene	0.685	0.656	0.400	AVRG	-4.2
Acenaphthylene	1.773	1.868	0.900	AVRG	5.4
Dimetĥylpĥthalate	1.220	1.154	0.010	AVRG	-5.4
Acenaphthene	1.058		0.900	AVRG	-3.6
Dibenzofuran	1.575	1.478	0.800	AVRG	-6.2
Fluorene	1.202	1.187	0.900	AVRG	-1.2
Diethylphthalate	1.168	1.152	0.010	AVRG	-1.4
N-Nitrosodiphenylamine(1)	0.515	0.492	0.010	AVRG	-4.5
Hexachlorobenzene	0.243	0.219	0.100	AVRG	-9.9
Pentachlorophenol	0.169		0.050		-21.3 <
Phenanthrene	0.989	0.943	0.700	AVRG	-4.6
Anthracene	1.044		0.700		-2.3
Di-n-butylphthalate	1.284	1.351	0.010	AVRG	5.2
Fluoranthene	1.126			AVRG	
lPyrene	1.209		0.600		-4.9
Butylbenzylphthalate	0.514		0.010		4.7
Benzo (a) anthracene	1.084		0.800		-6.0
Chrysene	0.968	0.932	0.700	AVRG	-3.7
bis(2-Ethylhexyl)phthalate	0.520		0.010		-3.5
Di-n-octylphthalate	0.952		0.010		-7.1
Benzo (a) pyrene	0.972		0.700		-2.3
Indeno (1, 2, 3-cd) pyrene	1.106		0.500		-1.2
Dibenzo(a,h)anthracene	0.850	0.860	0.400	AVRG	1.2
Benzo(g,h,i)perylene	0.956	0.909	0.500	AVRG	-4.9

(1) Cannot be separated from Diphenylamine <- Exceeds QC limit of 20% D * RF less than minimum RF

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT10

Init. Calib. Date: 05/07/12

Project: P.O.P. T4 MAINTENANCE

Cont. Calib. Date: 05/12/12

Cont. Calib. Time: 1412

COMPOUND	CalAmt or ARF	CC Amt or RF	MIN RRF	CURVE TYPE	%D or Drift
	OI ARF			1186	
1-methylnaphthalene	0.699	0.682	0.010	AVRG	-2.4
Total Benzofluoranthenes	1.088		0.010		-5.5
=======================================	======	======	=====	=====	=====
2-Fluorophenol	1.368	1.331	0.010	AVRG	-2.7
Phenol-d5	1.701	1.610	0.010	AVRG	-5.3
2-Chlorophenol-d4	1.472	1.419	0.010	AVRG	-3.6
1,2-Dichlorobenzene-d4	0.998	0.960	0.010	AVRG	-3.8
Nitrobenzene-d5	0.342	0.325	0.010	AVRG	-5.0
2-Fluorobiphenyl	1.364	1.282	0.010	AVRG	-6.0
2,4,6-Tribromophenol	0.183	0.162	0.010	AVRG	-11.5
Terphenyl-d14	0.758	0.679	0.010	AVRG	-10.4
Europedia OC limit of 20% D					<u> </u>

<- Exceeds QC limit of 20% D
 * RF less than minimum RF</pre>

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Instrument ID: NT10

Init. Calib. Date: 05/07/12

Client: HART CROWSER Project: P.O.P. T4 MAINTENANCE Cont. Calib. Date: 05/14/12 Cont. Calib. Time: 1245

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF		RRF	TYPE	Drift
	======				
Phenol	1.864			AVRG	
1,3-Dichlorobenzene	1.644				
1,4-Dichlorobenzene	1.596				
1,2-Dichlorobenzene	1.549		0.010		
Benzyl alcohol	0.869		0.010		-11.8
	1.468				-8.1
2-Methylphenol Hexachloroethane	0.622				0.8
4-Methylphenol	1.530				-11.1
2.4-Dimethvlphenol	0.355				
1,2,4-Trichlorobenzene	0.324				-5.9
Naphthalene	0.999				-3.9
Benzoic acid	0.276				-34.4 <
Hexachlorobutadiene	0.178	0.167			-6.2
2-Methylnaphthalene	0.685	0.658			-3.9
Acenaphthylene	1 1.773	1.826	0.900	AVRG	3.0
Dimethylphthalate	1.220	1.153	0.010	AVRG	-5.5
Acenaphthene	1.058	1.004	0.900	AVRG	-5.1
Dibenzofuran	1.575	1.445	0.800	AVRG	-8.2
Fluorene	1.202	1.172	0.900	AVRG	-2.5
Diethylphthalate	1.168	1.127	0.010	AVRG	-3.5
N-Nitrosodiphenylamine(1)	0.515	0.484	0.010	AVRG	-6.0
Hexachlorobenzene	0.243			AVRG	
Pentachlorophenol	0.169				-21.9 <
Phenanthrene	0.989				
Anthracene	1.044				-2.3
Di-n-butylphthalate	1.284			AVRG	6.8
Fluoranthene	1.126			AVRG	
Durano	1.209			AVRG	
Butylbenzylphthalate	0.514				
Benzo(a)anthracene	1.084			AVRG	-7.5
Chrysene	0.968	0.908			-6.2
bis(2-Ethylhexyl)phthalate	0.520	0.486	0.010		-6.5
Di-n-octylphthalate	0.952		0.010		-7.9
Benzo(a)pyrene	0.972		0.700		-3.2
Indeno(1,2,3-cd)pyrene	1.106		0.500		0.5
Dibenzo(a,h)anthracene	0.850		0.400		4.0
Benzo(g,h,i)perylene	0.956	0.940	0.500	AVRG	-1.7
			<u> </u>		

(1) Cannot be separated from Diphenylamine <- Exceeds QC limit of 20% D * RF less than minimum RF

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT10

Init. Calib. Date: 05/07/12

Project: P.O.P. T4 MAINTENANCE

Cont. Calib. Date: 05/14/12

Cont. Calib. Time: 1245

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
=======================================	======	=====	=====	=====	=====
1-methylnaphthalene	0.699	0.684	0.010	AVRG	-2.1
Total Benzofluoranthenes	1.088	1.016	0.010	AVRG	-6.6
=======================================	======	======	=====	=====	=====
2-Fluorophenol	1.368	1.310	0.010	AVRG	-4.2
Phenol-d5	1.701	1.540	0.010	AVRG	-9.5
2-Chlorophenol-d4	1.472	1.396	0.010	AVRG	-5.2
1,2-Dichlorobenzene-d4	0.998	0.962	0.010	AVRG	-3.6
Nitrobenzene-d5	0.342	0.316	0.010	AVRG	-7.6
2-Fluorobiphenyl	1.364	1.252	0.010	AVRG	-8.2
2,4,6-Tribromophenol	0.183	0.154	0.010	AVRG	-15.8
Terphenyl-d14	0.758	0.653	0.010	AVRG	-13.8
Evanda OC limit of 20% D					

<- Exceeds QC limit of 20% D
 * RF less than minimum RF</pre>

UU16:00066

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Instrument ID: NT10

Ical Date: 05/07/12

Cont. Cal Date: 05/12/12

Project: P.O.P. T4 MAINTENANCE

	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3(ANT) AREA #	RT #
ICAL MIDPT UPPER LIMIT LOWER LIMIT	======================================	== == == 9.02	======== 1080694 2161388 540347	====== 11.70	========= 623821 1247642 311910	====== 15.60
CCAL UPPER LIMIT LOWER LIMIT	211630	9.06 9.56 8.56	846583	11.73 12.23 11.23	========= 483640	15.65 16.15 15.15
01 UU16MBS1 02 UU16LCSS1 03 UU16LCSDS1 04 401A/DP 05 401B/DP 06 401C/DP 07 401A/NSM 08 401B/NSM 09 401B/NSM MS 10 401B/NSM MSD 11 401C/NSM 12 410A/DP 13 410B/DP 14 410C/DP 15 410A/NSM 16 410B/NSM 17 410C/NSM 18 19 20 21 22 23 24 25	200167 196328 191847 203562 198089 200987 200740 201393 189586 191220 199456 206492 200117 209726 195217 193308 200515	9.06 9.05 9.05 9.05 9.06 9.06 9.06 9.06 9.06 9.06 9.06 9.06	765559 789583 756776 783832 767143 783992 763953 762652 735940 762676 777120 811652 772590 812612 762961 734684 778032	11.74 11.73	403599 429365 417279 424242 417641 429596 427811 396485 413159 413675 426556 436846 422594 451071 417862 408433 430204	$15.65 \\ 15.64 \\ 15.64 \\ 15.64 \\ 15.64 \\ 15.65 \\ 15.65 \\ 15.65 \\ 15.65 \\ 15.64 \\ 15.64 \\ 15.64 \\ 15.64 \\ 15.64 \\ 15.65 \\ 15.6$

IS1 = 1,4-Dichlorobenzene-d4
IS2 = Naphthalene-d8
IS3 = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 1 of 3

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Instrument ID: NT10

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 05/07/12

Cont. Cal Date: 05/12/12

		IS4 (PHN)		IS5(CRY)		IS6(PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	ICAL MIDPT	999143	=======================================	1001009	23.93	======== 988348	26.40
	UPPER LIMIT	1998286		2002018		1976696	
	LOWER LIMIT	499572		500504		494174	
	CCAL	======== 768993	18.93	774214	23.98	781228	26.46
	UPPER LIMIT		19.43		24.48		26.96
	LOWER LIMIT		18.43		23.48		25.96
01	UU16MBS1	652694	18.93	636729	23.98	625605	26.46
02	UU16LCSS1	653202	18.93	672959	23.98	671485	26.46
03	UU16LCSDS1	624922 672423	18.92 18.92	651242	23.98 23.98	648616	26.46
04 05	401A/DP 401B/DP	654924	18.92	696718 690896	23.98	688696 685875	26.46 26.46
06	401C/DP	679957	18.93	725106	23.98	682711	26.47
07	401A/NSM	672911	18.93	705306	23.99	682313	26.47
80	401B/NSM	625435	18.93	688612	23.99	661534	26.46
09	401B/NSM MS	629309	18.93	661621	23.98	659695	26.46
10	401B/NSM MSD	629873	18.93 18.93	683761	23.98 23.99	653018	26.46
11 12	401C/NSM 410A/DP	663603 697406	18.93	720191 723070	23.99 23.98	668285 673209	26.46 26.46
13^{12}	410B/DP	665015	18.93	694445	23.98	635099	26.46
14^{-1}	410C/DP	722834	18.93	742319	24.00	663113	26.49
15	410A/NSM	676056	18.93	699645	23.99	617747	26.48
16	410B/NSM	669039	18.93	698747	23.99	614904	26.47
17	410C/NSM	698519	18.93	719781	24.00	605198	26.49
18							
19							
20 21			······				
∠⊥ 22						· · · · · · · · · · · · · · · · · · ·	
23			·				·
24	·····						
25							
							· ····································

IS4 = Phenanthrene-d10
IS5 = Chrysene-d12
IS6 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 2 of 3

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Instrument ID: NT10

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 05/07/12

Cont. Cal Date: 05/12/12

		IS7					
		AREA #	RT #	AREA #	1	AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	========== 1489422 2978844 744711	====== 25.02		====== 		
	CCAL UPPER LIMIT LOWER LIMIT	========== 1235054	25.07 25.57 24.57	×			
$\begin{array}{c} 01\\ 02\\ 03\\ 04\\ 05\\ 07\\ 09\\ 112\\ 14\\ 16\\ 7\\ 8\\ 90\\ 12\\ 23\\ 2\\ 2\\ 2\end{array}$	UU16MBS1 UU16LCSS1 UU16LCSDS1 401A/DP 401B/DP 401C/DP 401A/NSM 401B/NSM MS 401B/NSM MSD 401C/NSM 410A/DP 410B/DP 410C/DP 410C/DP 410C/DP 410C/NSM 410C/NSM	982550 1042110 978352 1078039 1074692 1112884 1112460 1062392 1058736 1056339 1103854 1128169 1089840 1108385 1076668 1082550 1121891	25.07 25.06 25.07 25.07 25.07 25.07 25.07 25.06 25.07 25.06 25.07 25.06 25.07 25.08 25.07 25.08 25.07 25.08				
24 25				· · · · · · · · · · · · · · · · · · ·			

IS7 = Di-n-octylphthalate-d4

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 3 of 3

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 05/07/12

Instrument ID: NT10

Cont. Cal Date: 05/14/12

1		IS1 (DCB)		IS2(NPT)		IS3 (ANT)	I
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		=========	=======	=========	======	=========	=======
	ICAL MIDPT	271872	9.02	1080694	11.70	623821	15.60
ſ	UPPER LIMIT	543744		2161388		1247642	
I	LOWER LIMIT	135936		540347		311910	
ſ	=============	=========	======	=========	======	=========	======
ľ	CCAL	213901	9.06	849142	11.73	489775	15.65
ļ	UPPER LIMIT		9.56		12.23		16.15
	LOWER LIMIT		8.56		11.23		15.15
01	410C/DP	199208	9.06	700833	11.73	388403	15.64
02	410C/DI	199200	5.00	,00055		500405	10.04
03						·	
04				I			
05							
06							
07							
80							
09 10							
11							
12^{11}							
13							
14		·					
15							
16							
17					·		
18							
19						<u> </u>	
20 21							
21					[
22							
$\frac{2}{24}$		·					
25							

IS1 = 1,4-Dichlorobenzene-d4
IS2 = Naphthalene-d8
IS3 = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 1 of 3

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Instrument ID: NT10

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 05/07/12

Cont. Cal Date: 05/14/12

		IS4(PHN) AREA #	RT #	IS5(CRY) AREA #	RT #	IS6(PRY) AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	=========== 999143 1998286 499572	====== 18.87	========== 1001009 2002018 500504	====== 23.93	======= 988348 1976696 494174	====== 26.40
	CCAL UPPER LIMIT LOWER LIMIT	======================================	====== 18.93 19.43 18.43	=========== 810765	23.99 24.49 23.49	========= 827698	====== 26.46 26.96 25.96
01 02	410C/DP	615958	18.93	674214	23.98	706514	26.46
03 04 05							
06 07 08							
09 10							
11 12 13							
14 15 16							
17 18							
19 20 21							
22 23 24							
24							<u> </u>

IS4 = Phenanthrene-d10
IS5 = Chrysene-d12
IS6 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 2 of 3

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0507A

Instrument ID: NT10

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 05/07/12

Cont. Cal Date: 05/14/12

		IS7 AREA #	RT #	AREA #		AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	1489422 2978844 744711	25.02				
	CCAL UPPER LIMIT LOWER LIMIT	1290931	25.07 25.57 24.57				
01 02	410C/DP	1047391	25.06				
03 04 05					-		
06 07							
08 09 10							
11 12							
13 14 15			·····		-		
16 17					-		
18 19 20			<u> </u>		-		
21 22							
23 24 25				·	-		

IS7 = Di-n-octylphthalate-d4

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 3 of 3

SIM PAH Analysis Report and Summary QC Forms

.

ARI Job ID: UU16

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 14:30 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 401A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 10.6 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 45.1 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.5	4.7	130	
91-57-6	2-Methylnaphthalene	1.4	4.7	40	
90-12-0	1-Methylnaphthalene	1.6	4.7	16	
208-96-8	Acenaphthylene	1.2	4.7	16	
83-32-9	Acenaphthene	1.2	4.7	49	
86-73-7	Fluorene	1.2	4.7	30	
85-01-8	Phenanthrene	1.9	4.7	190	
120-12-7	Anthracene	1.4	4.7	42	
206-44-0	Fluoranthene	1.7	4.7	320	
129-00-0	Pyrene	2.1	4.7	280	
56-55-3	Benzo (a) anthracene	1.5	4.7	99 Q	
218-01-9	Chrysene	1.8	4.7	130	
50-32-8	Benzo (a) pyrene	1.7	4.7	140	
193-39-5	Indeno (1,2,3-cd) pyrene	3.3	4.7	80	
53-70-3	Dibenz (a, h) anthracene	2.3	4.7	17	
191-24-2	Benzo(g,h,i)perylene	2.9	4.7	110	
132-64-9	Dibenzofuran	1.4	4.7	19	
TOTBFA	Total Benzofluoranthenes	1.8	4.7	190	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 66.3% d14-Dibenzo(a,h)anthracen 72.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 14:57 Instrument/Analyst: NT4/JZ GPC Cleanup: No Sample ID: 401B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 35.0 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.4	4.6	460	
91-57-6	2-Methylnaphthalene	1.4	4.6	160	
90-12-0	1-Methylnaphthalene	1.6	4.6	61	
208-96-8	Acenaphthylene	1.2	4.6	36	
83-32-9	Acenaphthene	1.2	4.6	170	
86-73-7	Fluorene	1.2	4.6	74	
85-01-8	Phenanthrene	1.8	4.6	470 E	
120-12-7	Anthracene	1.3	4.6	63	
206-44-0	Fluoranthene	1.6	4.6	400	
129-00-0	Pyrene	2.1	4.6	430	
56-55-3	Benzo (a) anthracene	1.5	4.6	130 Q	
218-01-9	Chrysene	1.7	4.6	160	
50-32-8	Benzo (a) pyrene	1.6	4.6	150	
193-39-5	Indeno (1,2,3-cd) pyrene	3.2	4.6	100	
53-70-3	Dibenz (a, h) anthracene	2.2	4.6	21	
191-24-2	Benzo(g,h,i)perylene	2.8	4.6	140	
132-64-9	Dibenzofuran	1.4	4.6	48	
TOTBFA	Total Benzofluoranthenes	1.7	4.6	200	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 73.3% d14-Dibenzo(a,h)anthracen 101%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:08 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 401B/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 3.00 Percent Moisture: 35.0 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	7.3	14	450	
91-57-6	2-Methylnaphthalene	4.2	14	170	
90-12-0	1-Methylnaphthalene	4.7	14	69	
208-96-8	Acenaphthylene	3.5	14	37	
83-32-9	Acenaphthene	3.7	14	170	
86-73-7	Fluorene	3.6	14	75	
85-01-8	Phenanthrene	5.5	14	460	
120-12-7	Anthracene	4.0	14	56	
206-44-0	Fluoranthene	4.9	14	400	
129-00-0	Pyrene	6.2	14	450	
56-55-3	Benzo (a) anthracene	4.4	14	140 Q	
218-01-9	Chrysene	5.2	14	160	
50-32-8	Benzo (a) pyrene	4.9	14	160	
193-39-5	Indeno (1,2,3-cd) pyrene	9.6	14	98	
53-70-3	Dibenz (a, h) anthracene	6.6	14	20	
191-24-2	Benzo(g,h,i)perylene	8.5	14	130	
132-64-9	Dibenzofuran	4.2	14	47	
TOTBFA	Total Benzofluoranthenes	5.1	14	220	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 84.0% d14-Dibenzo(a,h)anthracen 81.0%

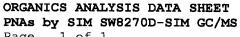
ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 15:24 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 401C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12


Sample Amount: 10.8 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 52.4 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.4	4.6	34	
91-57-6	2-Methylnaphthalene	1.4	4.6	11	
90-12-0	1-Methylnaphthalene	1.6	4.6	6.7	
208-96-8	Acenaphthylene	1.2	4.6	8.9	
83-32-9	Acenaphthene	1.2	4.6	12	
86-73-7	Fluorene	1.2	4.6	11	
85-01-8	Phenanthrene	1.8	4.6	58	
120-12-7	Anthracene	1.4	4.6	18	
206-44-0	Fluoranthene	1.6	4.6	110	
129-00-0	Pyrene	2.1	4.6	120	
56-55-3	Benzo (a) anthracene	1.5	4.6	50 Q	
218-01-9	Chrysene	1.7	4.6	67	
50-32-8	Benzo (a) pyrene	1.6	4.6	69	
193-39-5	Indeno (1,2,3-cd) pyrene	3.2	4.6	42	
53-70-3	Dibenz (a, h) anthracene	2.2	4.6	7.2	
191-24-2	Benzo(g,h,i)perylene	2.8	4.6	52	
132-64-9	Dibenzofuran	1.4	4.6	7.1	
TOTBFA	Total Benzofluoranthenes	1.7	4.6	97	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.0% d14-Dibenzo(a,h)anthracen 73.0%

Page 1 of 1

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 15:52 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 410A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 44.1 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.6	4.9	29	
91-57-6	2-Methylnaphthalene	1.5	4.9	12	
90-12-0	1-Methylnaphthalene	1.7	4.9	11	
208-96-8	Acenaphthylene	1.2	4.9	7.1	
83-32-9	Acenaphthene	1.3	4.9	35	
86-73-7	Fluorene	1.3	4.9	27	
85-01-8	Phenanthrene	1.9	4.9	100	
120-12-7	Anthracene	1.4	4.9	23	
206-44-0	Fluoranthene	1.7	4.9	160	
129-00-0	Pyrene	2.2	4.9	160	
56-55-3	Benzo (a) anthracene	1.6	4.9	68 Q	
218-01-9	Chrysene	1.8	4.9	83	
50-32-8	Benzo (a) pyrene	1.7	4.9	80	
193-39-5	Indenc (1,2,3-cd) pyrene	3.4	4.9	50	
53-70-3	Dibenz (a, h) anthracene	2.3	4.9	12	
191-24-2	Benzo(g,h,i)perylene	3.0	4.9	62	
132-64-9	Dibenzofuran	1.5	4.9	14	
TOTBFA	Total Benzofluoranthenes	1.8	4.9	130	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.3% d14-Dibenzo(a,h)anthracen 79.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:19 Instrument/Analyst: NT4/JZ GPC Cleanup: No Sample ID: 410B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.3 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 27.4 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.6	4.9	21	
91-57-6	2-Methylnaphthalene	1.5	4.9	20	
90-12-0	1-Methylnaphthalene	1.7	4.9	14	
208-96-8	Acenaphthylene	1.2	4.9	4.1 J	
83-32-9	Acenaphthene	1.3	4.9	38	
86-73-7	Fluorene	1.3	4.9	28	
85-01-8	Phenanthrene	1.9	4.9	130	
120-12-7	Anthracene	1.4	4.9	36	
206-44-0	Fluoranthene	1.7	4.9	140	
129-00-0	Pyrene	2.2	4.9	140	
56-55-3	Benzo (a) anthracene	1.6	4.9	46 Q	
218-01-9	Chrysene	1.8	4.9	56	
50-32-8	Benzo (a) pyrene	1.7	4.9	52	
193-39-5	Indeno (1,2,3-cd) pyrene	3.4	4.9	34	
53-70-3	Dibenz (a, h) anthracene	2.3	4.9	8.4	
191-24-2	Benzo(g,h,i)perylene	3.0	4.9	44	
132-64-9	Dibenzofuran	1.5	4.9	17	
TOTBFA	Total Benzofluoranthenes	1.8	4.9	89	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.3% d14-Dibenzo(a,h)anthracen 85.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: A Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:41 Instrument/Analyst: NT4/JZ GPC Cleanup: No Sample ID: 410C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 33.9 %

CAS Number	Analyte	LOD	LOQ	Result	
91-20-3	Naphthalene	2.4	4.6	140	
91-57-6	2-Methylnaphthalene	1.4	4.6	64	
90-12-0	1-Methylnaphthalene	1.6	4.6	32	
208-96-8	Acenaphthylene	1.2	4.6	21	
83-32-9	Acenaphthene	1.2	4.6	210	
86-73-7	Fluorene	1.2	4.6	120	
85-01-8	Phenanthrene	1.8	4.6	820 E	
120-12-7	Anthracene	1.3	4.6	190	
206-44-0	Fluoranthene	1.6	4.6	1,400 ES	
129-00-0	Pyrene	2.0	4.6	1,200 ES	
56-55-3	Benzo (a) anthracene	1.5	4.6	1,200 QES	
218-01-9	Chrysene	1.7	4.6	1,300 ES	
50-32-8	Benzo (a) pyrene	1.6	4.6	1,400 ES	
193-39-5	Indeno (1,2,3-cd) pyrene	3.2	4.6	1,000 ES	
53-70-3	Dibenz (a, h) anthracene	2.2	4.6	280	
191-24-2	Benzo(g,h,i)perylene	2.8	4.6	1,200 ES	
132-64-9	Dibenzofuran	1.4	4.6	53	
TOTBFA	Total Benzofluoranthenes	1.7	4.6	2,800 ES	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 64.7% d14-Dibenzo(a,h)anthracen 110%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:35 Instrument/Analyst: NT4/JZ GPC Cleanup: No Sample ID: 410C/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.8 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 10.0 Percent Moisture: 33.9 %

CAS Number	ber Analyte		LOQ	Result	
91-20-3	Naphthalene	24	46	160	
91-57-6	2-Methylnaphthalene	14	46	70	
90-12-0	1-Methylnaphthalene	16	46	37 J	
208-96-8	Acenaphthylene	12	46	24 J	
83-32-9	Acenaphthene	12	46	230	
86-73-7	Fluorene	12	46	140	
85-01-8	Phenanthrene	18	46	1,100	
120-12-7	Anthracene	13	46	190	
206-44-0	Fluoranthene	16	46	2,700	
129-00-0	Pyrene	20	46	2,400	
56-55-3	Benzo (a) anthracene	15	46	1,500 Q	
218-01-9	Chrysene	17	46	1,900	
50-32-8	Benzo (a) pyrene	16	46	1,900	
193-39-5	Indeno (1,2,3-cd) pyrene	32	46	1,200	
53-70-3	Dibenz (a, h) anthracene	22	46	300	
191-24-2	Benzo(g,h,i)perylene	28	46	1,400	
132-64-9	Dibenzofuran	14	46	60	
TOTBFA	Total Benzofluoranthenes	17	46	3,400	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 70.0% d14-Dibenzo(a,h)anthracen 113%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Client ID	MNP	DBA	TOT OUT
	66.00		
401A/DP	66.3%		0
401B/DP	73.3%	101%	0
401B/DP DL	84.0%	81.0%	0
401C/DP	63.0%	73.0%	0
410A/DP	62.3%	79.38	0
MB-051212	64.7%	70.7%	0
LCS-051212	61.3%	75.3%	0
LCSD-051212	61.7%	78.7%	0
410B/DP	69.3%	85.0%	0
410B/DP MS	65.0%	81.0%	0
410B/DP MSD	65.7%	85.0%	0
410C/DP	64.7%	110%	0
410C/DP DL	70.0%	113%	0

LCS/MB LIMITS QC LIMITS

(MNP)	=	d10-2-Methylnaphthalene	(35-100)	(34-100)
(DBA)	=	d14-Dibenzo(a,h)anthracene	(37-120)	(10-117)

Prep Method: SW3546 Log Number Range: 12-8723 to 12-8731

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted MS/MSD: 05/12/12

Date Analyzed MS: 05/14/12 16:46 MSD: 05/14/12 17:14 Instrument/Analyst MS: NT4/JZ MSD: NT4/JZ

Sample ID: 410B/DP MATRIX SPIKE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount MS: 10.6 g-dry-wt MSD: 10.2 g-dry-wt Final Extract Volume MS: 0.50 mL MSD: 0.50 mL Dilution Factor MS: 1.00 MSD: 1.00

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Naphthalene	21.3	94.8	142	51.8%	103	146	56.0%	8.3%
2-Methylnaphthalene	20.3	84.5	142	45.2%	89.0	146	47.1%	5.2%
1-Methylnaphthalene	14.0	90.9	142	54.2%	96.2	146	56.3%	5.7%
Acenaphthylene	4.1 J	98.8	142	66.7%	106	146	69.8%	7.0%
Acenaphthene	38.5	106	142	47.5%	107	146	46.9%	0.9%
Fluorene	27.6	110	142	58.0%	146	146	81.1%	28.1%
Phenanthrene	127	162	142	24.6%	169	146	28.8%	4.2%
Anthracene	35.9	113	142	54.3%	116	146	54.9%	2.6%
Fluoranthene	145	261	142	81.7%	220	146	51.4%	17.0%
Pyrene	145	209	142	45.1%	229	146	57.5%	9.1%
Benzo(a)anthracene	46.4 Q	148 Ç	2 142	71.5%	154 Q	146	73.7%	4.0%
Chrysene	55.5	152	142	68.0%	158 -	146	70.2%	3.9%
Benzo(a)pyrene	52.1	148	142	67.5%	156	146	71.2%	5.3%
Indeno(1,2,3-cd)pyrene	34.2	131	142	68.2%	136	146	69.7%	3.7%
Dibenz(a,h)anthracene	8.4	108	142	70.1%	114	146	72.3%	5.4%
Benzo(g,h,i)perylene	44.2	138	142	66.1%	145	146	69.0%	4.9%
Dibenzofuran	16.8	88.7	142	50.6%	95.7	146	54.0%	7.6%
Total Benzofluoranthenes	89.4	266	284	62.2%	276	293	63.7%	3.78

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:46 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 410B/DP MATRIX SPIKE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.6 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 27.4 %

CAS Number	Analyte	LOD	LOQ	Result
91-20-3	Naphthalene	2.5	4.7	
91-57-6	2-Methylnaphthalene	1.4	4.7	
90-12-0	1-Methylnaphthalene	1.6	4.7	
208-96-8	Acenaphthylene	1.2	4.7	
83-32-9	Acenaphthene	1.2	4.7	
86-73-7	Fluorene	1.2	4.7	
85-01-8	Phenanthrene	1.9	4.7	-
120-12-7	Anthracene	1.4	4.7	
206-44-0	Fluoranthene	1.7	4.7	
129-00-0	Pyrene	2.1	4.7	
56-55-3	Benzo(a)anthracene	1.5	4.7	-
218-01-9	Chrysene	1.8	4.7	
50-32-8	Benzo(a)pyrene	1.7	4.7	
193-39-5	Indeno(1,2,3-cd)pyrene	3.3	4.7	
53-70-3	Dibenz(a, h) anthracene	2.3	4.7	_
191-24-2	Benzo(g,h,i)perylene	2.9	4.7	
132-64-9	Dibenzofuran	1.4	4.7	
TOTBFA	Total Benzofluoranthenes	1.8	4.7	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	65.0%
d14-Dibenzo(a, h) anthracen	81.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: M Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:14 Instrument/Analyst: NT4/JZ GPC Cleanup: No

Sample ID: 410B/DP MATRIX SPIKE DUP

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: 27.4 %

CAS Number	Analyte	LOD	LOQ	Result
91-20-3	-20-3 Naphthalene		4.9	
91-57-6	2-Methylnaphthalene	1.5	4.9	
90-12-0	1-Methylnaphthalene	1.7	4.9	
208-96-8	Acenaphthylene	1.2	4.9	
83-32-9	Acenaphthene	1.3	4.9	
86-73-7	Fluorene	1.3	4.9	
85-01-8	Phenanthrene	1.9	4.9	
120-12-7	Anthracene	1.4	4.9	
206-44-0	Fluoranthene	1.7	4.9	
129-00-0	Pyrene	2.2	4.9	
56-55-3	Benzo (a) anthracene	1.6	4.9	
218-01-9	Chrysene	1.8	4.9	
50-32-8	Benzo(a)pyrene	1.7	4.9	
193-39-5	Indeno(1,2,3-cd)pyrene	3.4	4.9	
53 - 70-3	Dibenz(a, h) anthracene	2.3	4.9	
191-24-2	Benzo(g,h,i)perylene	3.0	4.9	
132-64-9	Dibenzofuran	1.5	4.9	
TOTBFA	Total Benzofluoranthenes	1.8	4.9	

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene	65.7%
d14-Dibenzo(a, h) anthracen	85.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: LCS-051212 LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12

Date Analyzed LCS: 05/14/12 13:35 LCSD: 05/14/12 14:02 Instrument/Analyst LCS: NT4/JZ LCSD: NT4/JZ

Sample ID: LCS-051212 LAB CONTROL SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g-dry-wt LCSD: 10.0 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Naphthalene	80.6	150	53.7%	79.9	150	53.3%	0.9%
2-Methylnaphthalene	76.9	150	51.3%	78.6	150	52.4%	2.2%
1-Methylnaphthalene	85.2	150	56.8%	86.6	150	57.7%	1.6%
Acenaphthylene	78.0	150	52.0%	80.3	150	53.5%	2.9%
Acenaphthene	85.5	150	57.0%	84.4	150	56.3%	1.3%
Fluorene	91.5	150	61.0%	95.8	150	63.9%	4.6%
Phenanthrene	103	150	68.7%	104	150	69.3%	1.0%
Anthracene	103	150	68.7%	91.5	150	61.0%	11.8%
Fluoranthene	112	150	74.78	115	150	76.7%	2.6%
Pyrene	112	150	74.7%	117	150	78.0%	4.48
Benzo(a)anthracene	103 Q	150	68.7%	109 O	150	72.78	5.7%
Chrysene	112	150	74.7%	116 -	150	77.3%	3.5%
Benzo(a)pyrene	93.2	150	62.1%	96.6	150	64.4%	3.6%
Indeno(1,2,3-cd)pyrene	101	150	67.3%	107	150	71.3%	5.8%
Dibenz(a,h)anthracene	93.9	150	62.6%	94.9	150	63.3%	1.1%
Benzo(g,h,i)perylene	105	150	70.0%	109	150	72.7%	3.7%
Dibenzofuran	82.4	150	54.9%	87.8	150	58.5%	6.3%
Total Benzofluoranthenes	238	300	79.3%	241	300	80.3%	1.3%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	61.3%	61.7%
d14-Dibenzo(a, h) anthracen	75.3%	78.7%

SEMIVOLATILE METHOD BLANK SUMMARY

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Lab File ID: 05141203

Instrument ID: NT4

Matrix: SOLID

Client: HART CROWSER Project: P.O.P. T4 MAINTENANC

Date Extracted: 05/12/12

Date Analyzed: 05/14/12

Time Analyzed: 1308

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=================		================
01	UU16LCSS1	UU16LCSS1	05141204	05/14/12
02	UU16LCSDS1	UU16LCSDS1	05141205	05/14/12
03	401A/DP	UU16A	05141206	05/14/12
04	401B/DP	UU16B	05141207	05/14/12
05	401C/DP	UU16C	05141208	05/14/12
06	410A/DP	UU16G	05141209	05/14/12
07	410B/DP	UU16H	05141210	05/14/12
80	410B/DP MS	UU16HMS	05141211	05/14/12
09	410B/DP MSD	UU16HMSD	05141212	05/14/12
10	410C/DP	UU16I	05141213	05/14/12
11	401B/DP	UU16B	05141214	05/14/12
12	410C/DP	UU16I	05141215	05/14/12
13				
14				
15				
16				
17				
18			· · · · · · · · · · · · · · · · · · ·	
19				
20				
21				
22				
23				
24				
25				
26				
27				
28		· · ·		
29				
30				

page 1 of 1

ORGANICS ANALYSIS DATA SHEET PNAs by SIM SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: MB-051212 LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 13:08 Instrument/Analyst: NT4/JZ GPC Cleanup: No

METHOD BLANK QC Report No: UU16-Hart Crowser

Sample ID: MB-051212

Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	LOD	LOQ	Result
91-20-3	Naphthalene	2.6	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.5	5.0	< 5.0 U
90-12-0	1-Methylnaphthalene	1.7	5.0	< 5.0 U
208-96-8	Acenaphthylene	1.3	5.0	< 5.0 U
83-32-9	Acenaphthene	1.3	5.0	< 5.0 U
86-73-7	Fluorene	1.3	5.0	< 5.0 U
85-01-8	Phenanthrene	2.0	5.0	< 5.0 U
120-12-7	Anthracene	1.5	5.0	< 5.0 U
206-44-0	Fluoranthene	1.8	5.0	< 5.0 U
129-00-0	Pyrene	2.2	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.6	5.0	< 5.0 U
218-01-9	Chrysene	1.9	5.0	< 5.0 U
50-32-8	Benzo(a)pyrene	1.8	5.0	< 5.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	3.5	5.0	< 5.0 U
53-70-3	Dibenz(a, h) anthracene	2.4	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	3.0	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.5	5.0	< 5.0 U
TOTBFA	Total Benzofluoranthenes	1.8	5.0	< 5.0 U

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 64.7% d14-Dibenzo(a, h) anthracen 70.7%

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

Instrument ID: NT4

Project: P.O.P T4 MAINTENANCE

DFTPP Injection Date: 03/16/12 DFTPP Injection Time: 1132

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE _____ ______ 51 10.0 - 80.0% of mass 198 34.7 0.0 (0.0)1 Less than 2.0% of mass 69 68 Mass 69 relative abundance_____ 69 41.8 Less than 2.0% of mass 69_____ 70 0.2 (0.5)1127 10.0 - 80.0% of mass 198 48.8 197 Less than 2.0% of mass 198 0.0 Base Peak, 100% relative abundance 198 100.0 5.0 to 9.0% of mass 198_____ 10.0 - 60.0% of mass 198_____ 199 7.1 275 28.9 365 | Greater than 1.0% of mass 198_____ 3.31

 441
 0.0 - 24.0% of mass 442

 442
 50.0 - 200.0% of mass 198

 443
 15.0 - 24.0% of mass 442

 14.6 (17.2)2 84.4 17.0 (20.2)2 1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

CLIENT LAB LAB DATE TIME SAMPLE NO. SAMPLE ID FILE ID ANALYZED ANALYZED 01 IC010316 IC010316 03161202 03/16/12 1311 02 IC050316 IC050316 03161203 03/16/12 1340 03 IC100316 IC100316 03161205 03/16/12 1409 04 IC250316 IC250316 03161205 03/16/12 1438 05 IC50316 IC100316 03161207 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1536 07 IC100316 IC100316 03161207 03/16/12 1536 08 IC100316 IC1000316 IC1000316 IC1000316						
1 1		CLIENT	LAB	LAB	DATE	TIME
====== ====== ====== ======= ======= ======= ======= ======= ======= ======== ======== ======== ======== ======== ======= ======== ======== ======== ======== ======== ======== ======== ======= ======= ======= ======= ======== ======== ======= ======= ======= ======= ======= ======= ======== ======== ======== ======= ======= ======== ======== ======== ======== ======== ======== ========= ========= ========== ========= ========= ========== =========== =========== ============ =============== ================= ====================================		SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
02 IC050316 IC050316 03161203 03/16/12 1340 03 IC100316 IC100316 03161204 03/16/12 1409 04 IC250316 IC250316 03161205 03/16/12 1438 05 IC50316 IC50316 03161206 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1536 07		=======================================			==========	
02 IC050316 IC050316 03161203 03/16/12 1340 03 IC100316 IC100316 03161204 03/16/12 1409 04 IC250316 IC250316 03161205 03/16/12 1438 05 IC50316 IC50316 03161206 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1536 07	01	TC010316	TC010316	03161202	03/16/12	1211
03 IC100316 IC100316 03161204 03/16/12 1409 04 IC250316 IC50316 03161205 03/16/12 1438 05 IC50316 IC50316 03161206 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1507 08						
04 IC250316 IC250316 03161205 03/16/12 1438 05 IC50316 IC50316 03161206 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1536 09						
05 IC50316 IC50316 03161206 03/16/12 1507 06 IC100316 IC100316 03161207 03/16/12 1536 07						
06 IC100316 IC100316 03161207 03/16/12 1536 07			IC250316			1438
07	05	IC50316	IC50316	03161206	03/16/12	1507
07	06	IC100316	IC100316	03161207	03/16/12	1536
08	07					
09						
10						
11		·				
12						
13						
14						
15						
16						
17	15					
17	16					
18		······································				
19						
20 21			·			
21						
22						
	22					

Lab Name: ANALYTICAL RESOURCES INC

INC Client: HART CROWSER

Instrument ID: NT4

Project: P.O.P T4 MAINTENANCE

DFTPP Injection Date: 05/14/12

DFTPP Injection Time: 1147

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE 51 10.0 - 80.0% of mass 198 36.6 0.0 (0.0)1Less than 2.0% of mass 6968 Mass 69 relative abundance_____ 69 43.5 Less than 2.0% of mass 69 0.2 (0.4)170 49.1 ____ 127 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 197 0.0 Base Peak, 100% relative abundance_____ 198 100.0 199 5.0 to 9.0% of mass 198 8.1 10.0 - 60.0% of mass 198 275 29.4 Greater than 1.0% of mass 198_____ 3.12 365

 441
 0.0 - 24.0% of mass 442

 442
 50.0 - 200.0% of mass 198

 443
 15.0 - 24.0% of mass 442

 14.8 (15.5)2 95.5 19.0 (19.9)22-Value is % mass 442 1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=============	=======================================	=========	========
01	CC0514	CC0514	05141202	05/14/12	1204
02	UU16MBS1	UU16MBS1	05141203	05/14/12	1308
03	UU16LCSS1	UU16LCSS1	05141204	05/14/12	1335
04	UU16LCSDS1	UU16LCSDS1	05141205	05/14/12	1402
05	401A/DP	UU16A	05141206	05/14/12	1430
06	401B/DP	UU16B	05141207	05/14/12	1457
07	401C/DP	UU16C	05141208	05/14/12	1524
80	410A/DP	UU16G	05141209	05/14/12	1552
09	410B/DP	UU16H	05141210	05/14/12	1619
10	410B/DP MS	UU16HMS	05141211	05/14/12	1646
11	410B/DP MSD	UU16HMSD	05141212	05/14/12	1714
12	410C/DP	UU16I	05141213	05/14/12	1741
13	401B/DP	UU16B	05141214	05/14/12	1808
14	410C/DP	UU16I	05141215	05/14/12	1835
15	-				
16					
17					
18			······		
19					
20		· · · · · · · · · · · · · · · · · · ·			
21					
22					
		1 <u></u>	I		I

page 1 of 1

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Instrument ID: NT4

Client: HART CROWSER

Project: P.O.P T4 MAINTENANCE

Calibration Date: 03/16/12

LAB FILE ID: RRF0.1=03161 RRF2.5=03161			=0316120 =0316120		RRF1 = (RRF10 = (03161204		
KKF2.5=05101	.205	KKF5 -	=031612	00 1	KRFIU =0	310120	/	
	RRF	RRF	RRF	RRF	RRF	RRF		%RSD
COMPOUND	0.1	0.5	1	2.5	5	10	RRF	/R^2
======================================	1.249			====== 1.063				
2-Methylnaphthalene				•	0.552	1		•
Acenaphthylene	1.608	•						•
Acenaphthene		1.194			•	,		
Dibenzofuran	1.856			1				
Fluorene	1.420			1	•			
Phenanthrene	1.285							
Anthracene	1.304	•	•					
Fluoranthene	1.538	•	•					
Pyrene	1.262				1			1
Benzo(a)anthracene	1.202	•						
Chrysene	1.313							
Benzo(b)fluoranthene	- !		•					•
Benzo(k) fluoranthene	1.112		•					
	1.235	•	•	•				!
Benzo(j)fluoranthene	0.914		:					!
Benzo(a)pyrene		1.002	•					1
Indeno(1,2,3-cd)pyrene	1.256							•
Dibenzo(a,h)anthracene	1.176							
Benzo(g,h,i)perylene	1.274		•					
1-methylnaphthalene				•				•
Perylene	0.725							
2-Methylnaphthalene-d10	0.803				•			
Dibenzo(a,h)anthracene-d14	0.854	0.755	0.845	0.883	0.808	0.930	0.846	7.
			ļ	<u> </u>				
								¦
		Í						Í
				!				! <u> </u>
	.				· ·	[
	1	<u></u>						
		¦						

FORM VI SV-1

SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Instrument ID: NT4

Init. Calib. Date: 03/16/12

Client: HART CROWSER Project: P.O.P T4 MAINTENANCE

Cont. Calib. Date: 05/14/12

Cont. Calib. Time: 1204

<pre>Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene</pre>	r ARF ===== L.062 D.647 L.599 L.156 L.654 L.274 L.137 L.114 L.263 L.130 L.088 L.140 L.088	===== 1.001 0.607 1.422 1.061 1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.700 0.400 0.900 0.800 0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	-5.7 -6.2 -11.1 -8.2 -5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
Naphthalene2-MethylnaphthaleneAcenaphthyleneAcenaphtheneDibenzofuranFluorenePhenanthreneAnthraceneFluoranthenePyreneBenzo (a) anthraceneChryseneBenzo (b) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) fluorantheneBenzo (c) pyreneIndeno (1, 2, 3 - cd) pyreneDibenzo (a, h) anthracene	L.062).647 L.599 L.156 L.654 L.274 L.137 L.114 L.263 L.130 L.055 L.088 L.140 L.198	1.001 0.607 1.422 1.061 1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.700 0.400 0.900 0.800 0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	-5.7 -6.2 -11.1 -8.2 -5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene).647 L.599 L.156 L.654 L.274 L.137 L.114 L.263 L.130 L.088 L.140 L.198	0.607 1.422 1.061 1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.400 0.900 0.800 0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	-6.2 -11.1 -8.2 -5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
AcenaphthyleneAcenaphtheneDibenzofuranFluorenePhenanthreneAnthraceneFluoranthenePyreneBenzo(a) anthraceneChryseneBenzo(b) fluorantheneBenzo(c) fluorantheneBenzo(c) fluorantheneBenzo(c) pyreneIndeno(1, 2, 3 - cd) pyreneDibenzo(a, h) anthracene	L.599 L.156 L.654 L.274 L.137 L.114 L.263 L.130 L.055 L.088 L.140 L.198	1.422 1.061 1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.900 0.900 0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	-11.1 -8.2 -5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (j) fluoranthene Benzo (j) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3 - cd) pyrene Dibenzo (a, h) anthracene	L.156 L.654 L.274 L.137 L.114 L.263 L.130 L.055 L.088 L.140 L.198	1.061 1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.900 0.800 0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG AVRG AVRG	-8.2 -5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (c) fluoranthene Benzo (c) pyrene Indeno (1, 2, 3 - cd) pyrene Dibenzo (a, h) anthracene	L.654 L.274 L.137 L.114 L.263 L.130 L.055 L.088 L.088 L.140 L.198	1.571 1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.800 0.900 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG	-5.0 -7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
FluorenePhenanthreneAnthraceneFluoranthenePyreneBenzo (a) anthraceneChryseneBenzo (b) fluorantheneBenzo (k) fluorantheneBenzo (j) fluorantheneBenzo (a) pyreneIndeno (1, 2, 3 - cd) pyreneDibenzo (a, h) anthracene	L.274 L.137 L.114 L.263 L.130 L.055 L.088 L.088 L.140 L.198	1.180 1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.900 0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG AVRG	-7.4 -5.2 -15.0 -18.8 -10.3 -20.3 -7.8
PhenanthreneAnthraceneFluoranthenePyreneBenzo (a) anthraceneChryseneBenzo (b) fluorantheneBenzo (k) fluorantheneBenzo (j) fluorantheneBenzo (a) pyreneIndeno (1, 2, 3 - cd) pyreneDibenzo (a, h) anthracene	L.137 L.114 L.263 L.130 L.055 L.088 L.140 L.198	1.078 0.947 1.025 1.014 0.841 1.003 1.189	0.700 0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG AVRG	-5.2 -15.0 -18.8 -10.3 -20.3 -7.8
AnthraceneFluoranthenePyreneBenzo(a) anthraceneChryseneBenzo(b) fluorantheneBenzo(k) fluorantheneBenzo(j) fluorantheneBenzo(a) pyreneIndeno(1,2,3-cd) pyreneDibenzo(a,h) anthracene	L.114 L.263 L.130 L.055 L.088 L.140 L.198	0.947 1.025 1.014 0.841 1.003 1.189	0.700 0.600 0.600 0.800 0.700	AVRG AVRG AVRG AVRG	-15.0 -18.8 -10.3 -20.3 -7.8
FluoranthenePyreneBenzo(a) anthraceneChryseneBenzo(b) fluorantheneBenzo(k) fluorantheneBenzo(j) fluorantheneBenzo(a) pyreneIndeno(1,2,3-cd) pyreneDibenzo(a,h) anthracene	L.263 L.130 L.055 L.088 L.140 L.198	1.025 1.014 0.841 1.003 1.189	0.600 0.600 0.800 0.700	AVRG AVRG AVRG	-18.8 -10.3 -20.3 -7.8
PyreneBenzo(a) anthraceneChryseneBenzo(b) fluorantheneBenzo(k) fluorantheneBenzo(j) fluorantheneBenzo(a) pyreneIndeno(1,2,3-cd) pyreneDibenzo(a,h) anthracene	L.130 L.055 L.088 L.140 L.198	1.014 0.841 1.003 1.189	0.600 0.800 0.700	AVRG AVRG	-10.3 -20.3 -7.8
Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (j) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3 - cd) pyrene Dibenzo (a, h) anthracene	L.055 L.088 L.140 L.198	0.841 1.003 1.189	0.800	AVRG	-20.3 -7.8
Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(j)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	L.088 L.140 L.198	1.003 1.189	0.700		-7.8
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(j)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	l.140 L.198	1.189		AVRG	
Benzo(k)fluoranthene Benzo(j)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	1.198				
Benzo(j)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene			10.700	AVRG	4.3
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene		1.202	0.700	AVRG	0.3
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	1.059	1.155	0.010	AVRG	9.1
Dibenzo(a,h)anthracene	1.073	1.004	0.700	AVRG	-6.4
	1.293	1.205	0.500	AVRG	-6.8
Benzo(g,h,i)perylene	1.090	0.934	0.400	AVRG	-14.3
	1.160	1.140	0.500	AVRG	-1.7
1-methylnaphthalene	0.605	0.580	0.010	AVRG	-4.1
Perylene	1.054	1.100	0.010	AVRG	4.4
=======================================	====	======	=====	=====	=====
2-Methylnaphthalene-d10	0.646	0.609	0.010	AVRG	-5.7
Dibenzo(a, h) anthracene- $\overline{d14}$			0.010	AVRG	-7.8

<- Exceeds QC limit of 20% D

* RF less than minimum RF

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

page 1 of 2

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

Project: P.O.P T4 MAINTENANCE

Ical Midpoint ID: 03161205

Instrument ID: NT4

ARI Job No: UU16

Ical Date: 03/16/12

Cont. Cal Date: 05/14/12

		IS1(NPT)		IS2(ANT)		IS3 (PHN)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
			=======			=========	
	ICAL MIDPT	364113	5.43	210739	7.72	347113	9.69
	UPPER LIMIT	728226		421478		694226	
	LOWER LIMIT	182056		105370		173556	
	============	=========	======	=========	======	=========	======
	CCAL	384779	4.39	237979	6.62	488928	8.54
	UPPER LIMIT		4.89		7.12		9.04
	LOWER LIMIT		3.89		6.12		8.04
01	UU16MBS1	394255	4.38	232386	6.61	427297	8.53
02	UU16LCSS1	453442	4.38	276218	6.61	478231	8.53
03	UU16LCSDS1	364035	4.38	280096	6.61	495339	8.53
04	401A/DP	344633	4.38	228018	6.61	415032	8.53
05	401B/DP	347223	4.38	230408	6.61	404175	8.53
06	401C/DP	373175	4.38	232274	6.61	431878	8.53
07	410A/DP	372531	4.38	229182	6.61	415831	8.53
08	410B/DP	337894	4.38	221453	6.61	385282	8.53
09	410B/DP MS	355611	4.38	236357	6.61	428643	8.53
10	410B/DP MSD	343042	4.38	229752	6.61	512097	8.53
11	410C/DP	320796	4.38	259567	6.61	461625	8.53
12	401B/DP	325468	4.38	258433	6.61	460989	8.53
13 14	410C/DP	451610	4.38	280781	6.61	515746	8.53
$14 \\ 15$						· · · · · · · · · · · · · · · · · · ·	
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

IS1 = Naphthalene-d8 IS2 = Acenaphthene-d10 IS3 = Phenanthrene-d10

* Values outside of QC limits.

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Ical Midpoint ID: 03161205

Instrument ID: NT4

Ical Date: 03/16/12

Cont. Cal Date: 05/14/12

Project: P.O.P T4 MAINTENANCE

		IS4 (CRY)		IS5(PRY)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	===========	=========	=======	=========	======	==========	
	ICAL MIDPT	412003	14.89	386633	18.72		
	UPPER LIMIT	824006		773266			
	LOWER LIMIT	206002		193316			
	=============	==========	======	=========	======		=======
	CCAL	529116	12.87	429765	16.35		
	UPPER LIMIT		13.37		16.85		
	LOWER LIMIT		12.37		15.85		
0.1		400017	10.00				
01 02	UU16MBS1 UU16LCSS1	428917	12.86	328735	16.34		
02 03	UU16LCSDS1	541308 551090	12.85 12.86	455583	16.34		
03	401A/DP	640063	12.86	469935 650427	16.33 16.34		
04	401B/DP	496425	12.86	529777	16.34		
06	401C/DP	502945	12.80	636129	16.33		
07	410A/DP	503351	12.85	493256	16.34		
08	410B/DP	454589	12.85	449529	16.33		
09	410B/DP MS	620667	12.86	598083	16.34	·	
10	410B/DP MSD	579671	12.85	572943	16.34		
11	410C/DP	574865	12.86	578670	16.34		
12	401B/DP	548454	12.86	531902	16.33		
13	410C/DP	607770	12.86	604014	16.34		
14					-		
15							
16							
17							
18							
19							
20				·			
21							
22							
23							
24							
25		<u></u>					

IS4 = Chrysene-d12 IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 2 of 2 Butyl Tin Analysis Report and Summary QC Forms

ARI Job ID: UU16

.

Sample ID: 401A/DP SAMPLE

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: M Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:03 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/09/12	
Date Received:	05/11/12	

Sample Amount: 5.53 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 45.1%

CAS Number	Analyte	LOD	LOQ	Result (Q
36643-28-4	Tributyltin Ion	0.9	3.5	140	
14488-53-0	Dibutyltin Ion	3.4	5.2	9.8	
78763-54-9	Butyltin Ion	2.1	3.7	2.9 J	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	74.48
Tripentyl	Tin	Chloride	90.48

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: A Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:16 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No Sample ID: 401B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 5.38 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 35.0%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4	Tributyltin Ion	0.9	3.6	2.4 J
14488-53-0	Dibutyltin Ion	3.5	5.4	< 5.4 U
78763-54-9	Butyltin Ion	2.1	3.8	< 3.8 U

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	60.6%
Tripentyl	Tin	Chloride	84.4%

Sample ID: 401C/DP SAMPLE

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:29 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/09/12	
Date Received:	05/11/12	

Sample Amount: 5.37 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 52.4%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4	Tributyltin Ion	0.9	3.6	5.2
14488-53-0	Dibutyltin Ion	3.5	5.4	< 5.4 U
78763-54-9	Butyltin Ion	2.1	3.8	4.1 M

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	65.0%
Tripentyl	Tin	Chloride	89.5%

Sample ID: 401A/NSM SAMPLE

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:42 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No: Project:		Crowser Maintenance
Event:	15753-00	Mathtenance
Date Sampled:		
Date Received:	05/11/12	

Sample Amount: 5.32 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 24.8%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4	Tributyltin Ion	1.0	3.6	17
14488-53-0	Dibutyltin Ion	3.6	5.4	< 5.4 U
78763-54-9	Butyltin Ion	2.2	3.8	< 3.8 U

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	71.1%
Tripentyl	Tin	Chloride	92.3%

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:20 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

Sample ID: 401B/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 5.91 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 19.6%

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4	Tributyltin Ion	0.9	3.3	< 3.3 U	-
14488-53-0	Dibutyltin Ion	3.2	4.9	< 4.9 U	
78763-54-9	Butyltin Ion	1.9	3.4	< 3.4 U	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	76.7%
Tripentyl	Tin	Chloride	91.6%

Lab Sample ID: UU16F LIMS ID: 12-8728 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:33 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No Sample ID: 401C/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 5.61 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 44.8%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4	Tributyltin Ion	0.9	3.4	32
14488-53-0	Dibutyltin Ion	3.4	5.2	3.4 J
78763-54-9	Butyltin Ion	2.0	3.6	2.0 JM

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	66.78
Tripentyl	Tin	Chloride	71.2%

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:46 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No Sample ID: 410A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 5.23 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 44.1%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4 14488-53-0	Tributyltin Ion Dibutyltin Ion	1.0	3.7	< 3.7 U
78763-54-9	Butyltin Ion	3.6 2.2	5.5 3.9	< 5.5 U < 3.9 U

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	64.3%
Tripentyl	Tin	Chloride	74.78

Sample ID: 410B/DP SAMPLE

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:59 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/08/12	
Date Received:	05/11/12	

Sample Amount: 5.30 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 27.4%

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4	Tributyltin Ion	1.0	3.6	1.9 J	-
14488-53-0	Dibutyltin Ion	3.6	5.4	< 5.4 U	
78763-54-9	Butyltin Ion	2.2	3.8	< 3.8 U	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	63.1%
Tripentyl	Tin	Chloride	69.8%

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:11 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No QC Report No: UU16-Hart Crowser

Sample ID: 410C/DP

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 5.31 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 33.9%

CAS Number	Analyte	LOD	LOQ	Result Ç	2
36643-28-4	Tributyltin Ion	1.0	3.6	10	
14488-53-0	Dibutyltin Ion	3.6	5.4	< 5.4 U	
78763-54-9	Butyltin Ion	2.2	3.8	< 3.8 U	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	62.3%
Tripentyl	Tin	Chloride	71.0%

Sample ID: 410A/NSM SAMPLE

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:24 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/08/12	
Date Received:	05/11/12	

Sample Amount: 5.41 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 40.4%

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4	Tributyltin Ion	0.9	3.6	2.9 J	-
14488-53-0	Dibutyltin Ion	3.5	5.3	< 5.3 U	
78763-54-9	Butyltin Ion	2.1	3.8	< 3.8 U	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	63.1%
Tripentyl	Tin	Chloride	75.6%

Sample ID: 410B/NSM SAMPLE

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:37 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:		
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/08/12	
Date Received:	05/11/12	

Sample Amount: 5.26 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 25.7%

CAS Number	Analyte	LOD	LOQ	Result <u>C</u>	2
36643-28-4	Tributyltin Ion	1.0	3.7	14	
14488-53-0	Dibutyltin Ion	3.6	5.5	< 5.5 U	
78763-54-9	Butyltin Ion	2.2	3.9	< 3.9 U	

Reported in µg/kg (ppb)

TBT Surrogate Recovery

Tripropyl	Tin	Chloride	54.5%
Tripentyl	Tin	Chloride	65.0%

ł

Sample ID: 410C/NSM SAMPLE

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:50 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:		
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/08/12	
Date Received:	05/11/12	

Sample Amount: 5.50 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 31.7%

CAS Number	Analyte	LOD	LOQ	Result Q
36643-28-4	Tributyltin Ion	0.9	3.5	18
14488-53-0	Dibutyltin Ion	3.5	5.2	< 5.2 U
78763-54-9	Butyltin Ion	2.1	3.7	< 3.7 U

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	70.6%
Tripentyl	Tin	Chloride	77.5%

TBT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance Event: 15753-00

Client ID	TPRT	TPNT	TOT OUT
401A/DP	74.48	90.4%	0
401B/DP	60.6%	84.4%	0
401C/DP	65.0%	89.5%	0
MB-051212	66.0%	90.0%	0
LCS-051212	72.78	89.9%	0
LCSD-051212	73.8%	90.48	0
401A/NSM	71.1%	92.3%	0
401A/NSM MS	72.78	94.3%	0
401A/NSM MSD	65.9%	88.8%	0
401B/NSM	76.78	91.6%	0
401C/NSM	66.7%	71.2%	0
410A/DP	64.3%	74.78	0
410B/DP	63.1%	69.8%	0
410C/DP	62.3%	71.0%	0
410A/NSM	63.1%	75.6%	0
410B/NSM	54.5%	65.0%	0
410C/NSM	70.6%	77.5%	0

	LCS/MB LIMITS	QC LIMITS
(TPRT) = Tripropyl Tin Chloride	(28-106)	(32 - 104)
(TPNT) = Tripentyl Tin Chloride	(35-130)	(25 - 140)

Prep Method: SW3546 Analytical Method: TBT (Hexyl) Krone 1988 Log Number Range: 12-8723 to 12-8734

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted MS: 05/12/12

Date Analyzed MS: 05/14/12 16:55 MSD: 05/14/12 17:07 Instrument/Analyst MS: NT12/YZ MSD: NT12/YZ Silica Gel Cleanup: No

Sample ID: 401A/NSM MATRIX SPIKE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount MS: 5.35 g-dry-wt MSD: 5.35 g-dry-wt Final Extract Volume MS: 0.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Alumina Cleanup: Yes Moisture: 24.8%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Tributyltin Ion	17.3	52.7	41.7	84.9%	55.3	41.7	91.1%	4.8%
Dibutyltin Ion Butyltin Ion	< 5.4 U < 3.8 U	26.4 11.5	35.9 29.2	73.5% 39.4%	37.0 14.8	35.9 29.2	103% 50.7%	33.4% 25.1%

Results reported in µg/kg

RPD calculated using sample concentrations per SW846.

Sample ID: 401A/NSM MATRIX SPIKE

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:55 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
		Maintenance
Event:	15753-00	
Date Sampled:	05/09/12	
Date Received:	05/11/12	

Sample Amount: 5.35 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 24.8%

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4	Tributyltin Ion	1.0	3.6		-
14488-53-0	Dibutyltin Ion	3.6	5.4		
78763-54-9	Butyltin Ion	2.1	3.8		

Reported in µg/kg (ppb)

TBT Surrogate Recovery

Tripropyl	Tin	Chloride	72.7%
Tripentyl	Tin	Chloride	94.3%

.

Sample ID: 401A/NSM MATRIX SPIKE DUP

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:07 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	05/09/12	
Date Received:	05/11/12	

Sample Amount: 5.35 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 24.8%

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4	Tributyltin Ion	1.0	3.6		_
14488-53-0	Dibutyltin Ion	3.6	5.4		
78763-54-9	Butyltin Ion	2.1	3.8		

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	65.9%
Tripentyl	Tin	Chloride	88.8%

Lab Sample ID: LCS-051212 LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized:

Date Extracted LCS: 05/12/12

Silica Gel Cleanup: No

Date Analyzed LCS: 05/14/12 15:38

Instrument/Analyst LCS: NT12/YZ

LCSD: 05/14/12 15:51

LCSD: NT12/YZ

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample ID: LCS-051212

LAB CONTROL SAMPLE

Sample Amount LCS: 5.00 g-dry-wt LCSD: 5.00 g-dry-wt Final Extract Volume LCS: 0.50 mL LCSD: 0.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Alumina Cleanup: Yes

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSI	LCSD Recovery	RPD
Tributyltin Ion	33.3	44.6	74.78	35.1	44.6	78.7%	5.3%
Dibutyltin Ion	32.9	38.4	85.7%	34.8	38.4	90.6%	5.6%
Butyltin Ion	17.3	31.2	55.4%	18.1	31.2	58.0%	4.5%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

			LCS	LCSD
Tripropyl	Tin	Chloride	72.7%	73.8%
Tripentyl	Tin	Chloride	89.9%	90.4%

BLANK NO.

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Lab File ID: UU16MB

Instrument ID: NT12

Matrix: SOLID

Client: HART CROWSER Project: P.O.P. T4 MAINTENANC Date Extracted: 05/12/12 Date Analyzed: 05/14/12 Time Analyzed: 1525

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=======================================	==================	===========
01	UU16LCSS1	UU16LCSS1	UU16SB	05/14/12
02	UU16LCSDS1	UU16LCSDS1	UU16SBD	05/14/12
03	401A/DP	UU16A	UU16A	05/14/12
04	401B/DP	UU16B	UU16B	05/14/12
05	401C/DP	UU16C	UU16C	05/14/12
06	401A/NSM	UU16D	UU16D	05/14/12
07	401A/NSM MS	UU16DMS	UU16DMS	05/14/12
08	401A/NSM MSD	UU16DMSD	UU16DMSD	05/14/12
09	401B/NSM	UU16E	UU16E	05/14/12
10	401C/NSM	UU16F	UU16F	05/14/12
11	410A/DP	UU16G	UU16G	05/14/12
12	410B/DP	UU16H	UU16H	05/14/12
13	410C/DP	UU16I	UU16I	05/14/12
14	410A/NSM	UU16J	UU16J	05/14/12
15	410B/NSM	UU16K	UU16K	05/14/12
16 17	410C/NSM	UU16L	UU16L	05/14/12
18		<u> </u>		
$10 \\ 19$				
20				
21				
$\frac{21}{22}$				
23				
$\frac{23}{24}$				
25				
26				
27				
28				
29				
30	1.1 = 1			
'			·	

Sample ID: MB-051212 METHOD BLANK

Lab Sample ID: MB-051212 LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 15:25 Instrument/Analyst: NT12/YZ Silica Gel Cleanup: No

QC Report No:	UU16-Hart	Crowser
Project:	P.O.P. T4	Maintenance
Event:	15753-00	
Date Sampled:	NA	
Date Received:	NA	

Sample Amount: 5.00 g-dry-wt Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

CAS Number	Analyte	LOD	LOQ	Result	Q
36643-28-4 14488-53-0 78763-54-9	Dibutyltin Ion	1.0 3.8	3.9 5.8	< 3.9 U < 5.8 U	-
/0/03-54-9	Butyltin Ion	2.3	4.1	< 4.1 U	

Reported in µg/kg (ppb)

Tripropyl	Tin	Chloride	66.0%
Tripentyl	Tin	Chloride	90.0%

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

Instrument ID: NT12

DFTPP Injection Time: 1052

Project: P.O.P. T4 MAINTENANCE

DFTPP Injection Date: 04/19/12

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE ===== _____ 51 10.0 - 80.0% of mass 198 27.6 Less than 2.0% of mass $6\overline{9}$ 68 1.1 (1.8)169 Mass 69 relative abundance 63.8 Less than 2.0% of mass 69 70 0.2 (0.4)1127 10.0 - 80.0% of mass 198 59.0 197 Less than 2.0% of mass 198 0.0 Base Peak, 100% relative abundance 198 100.0 5.0 to 9.0% of mass 198 199 6.9 10.0 - 60.0% of mass 198_____ Greater than 1.0% of mass 198_____ 275 28.2 365 5.23 0.0 - 24.0% of mass 442 441 19.7 (16.7)2442 50.0 - 200.0% of mass 198 118.3 443 15.0 - 24.0% of mass 442 25.1 (21.2)2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

CLIENT LAB LAB DATE TIME SAMPLE NO. SAMPLE ID FILE ID ANALYZED ANALYZED 04/19/12 04/19/12 04/19/12 01 TBT 1 IC0419A 1105 02 TBT 4 IC0419B 1118 03 TBT .05 IC0419C 1131 TBT 2 04 04/19/12 IC0419D 1143 TBT .2 TBT .5 05 04/19/12 IC0419E 1156 06 04/19/12 IC0419F 1209 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

page 1 of 1

UU16:00115

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

Instrument ID: NT12

Project: P.O.P. T4 MAINTENANCE

DFTPP Injection Date: 05/14/12

DFTPP Injection Time: 1446

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE | 10.0 - 80.0% of mass 198 51 28.6 68 Less than 2.0% of mass 69 0.1 (0.1)1Mass 69 relative abundance 69 60.4 Less than 2.0% of mass 69_____ 70 0.5 (0.8)1 60.8 127 Less than 2.0% of mass 198 10.0 - 80.0% of mass 198 197 0.1 Base Peak, 100% relative abundance 198 100.0 7.4 5.0 to 9.0% of mass 198 199 _____ 10.0 - 60.0% of mass 198_____ Greater than 1.0% of mass 198_____ 275 30.5 365 5.73 441 0.0 - 24.0% of mass 442 _____ 23.7 (17.4)250.0 - 200.0% of mass 198_____ 442 135.9 443 15.0 - 24.0% of mass 442 32.4 (23.8)2 2-Value is % mass 442

1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========================	============	=================	============	============
01		CC0514	CC0514	05/14/12	1512
02	UU16MBS1	UU16MBS1	UU16MB	05/14/12	1525
03	UU16LCSS1	UU16LCSS1	UU16SB	05/14/12	1538
04	UU16LCSDS1	UU16LCSDS1	UU16SBD	05/14/12	1551
05	401A/DP	UU16A	UU16A	05/14/12	1603
06	401B/DP	UU16B	UU16B	05/14/12	1616
07	401C/DP	UU16C	UU16C	05/14/12	1629
80	401A/NSM	UU16D	UU16D	05/14/12	1642
09	401A/NSM MS	UU16DMS	UU16DMS	05/14/12	1655
10	401A/NSM MSD	UU16DMSD	UU16DMSD	05/14/12	1707
11	401B/NSM	UU16E	UU16E	05/14/12	1720
12	401C/NSM	UU16F	UU16F	05/14/12	1733
13	410A/DP	UU16G	UU16G	05/14/12	1746
14	410B/DP	UU16H	UU16H	05/14/12	1759
15	410C/DP	UU16I	UU16I	05/14/12	1811
16	410A/NSM	UU16J	UU16J	05/14/12	1824
17	410B/NSM	UU16K	UU16K	05/14/12	1837
18	410C/NSM	UU16L	UU16L	05/14/12	1850
19					
20					
21					
22					

page 1 of 1

UU16:00116

SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT12

Project: P.O.P. T4 MAINTENANCE

Calibration Date: 04/19/12

LAB FILE ID: RRF0.05=IC04		RRF0.2=	=IC04191	E]	RRF0.5=	IC0419F		
RRF1 =IC041	9A	RRF2 =	=IC04191	D 1	RRF4 =	IC0419B		
COMPOUND	RRF 0.05	RRF 0.2	RRF 0.5		RRF	RRF	<u></u>	8RSI
=======================================				1	2	4	RRF	/R^2
Tributyl Tin (Hexyl)								===:
Dibutyl Tin (Hexyl)		0.053					0.757	11
Butyl Tin (Hexyl)		0.086						10
Tetrabutyl Tin		0.744						12
	======	======				0.660	0.793	±2
Tripropyl Tin (Hexyl)	0.902	0.729	0 905	0 765	0 714	0 664	0 700	====
Tripentyl Tin (Hexyl)	0.094	0.076	0 087					
+ · · · · · · · · · · · · · · · · · · ·			0.007		0.072	0.000		12
							<u></u>	
	·							. <u></u>
	<u> </u>							
					·			
		I						
					I			
			I					
			I	l	l			
······································								
			I					
	I							•
]	
Outside QC limits: %RSD <20		I		I			<u> </u>	

FORM VI SV-1

SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No: UU16

Instrument ID: NT12

Init. Calib. Date: 04/19/12

Project: P.O.P. T4 MAINTENANCE

Cont. Calib. Date: 05/14/12

Cont. Calib. Time: 1512

COMPOUND		CC Amt or RF		CURVE TYPE	%D or Drift
Tributyl Tin (Hexyl) Dibutyl Tin (Hexyl) Butyl Tin (Hexyl) Tetrabutyl Tin	0.757 0.054 0.090 0.793	0.059 0.096	===== 0.010 0.010 0.010 0.010	AVRG AVRG	===== -6.7 9.2 6.7 -7.4
Tripropyl Tin (Hexyl) Tripentyl Tin (Hexyl)	====== 0.780 0.079				===== -8.5 5.1

Exceeds QC limit of 20% D
 * RF less than minimum RF

8B

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No: UU16

Ical Midpoint ID: IC0419A

Instrument ID: NT12

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

Ical Date: 04/19/12

Cont. Cal Date: 05/14/12

		IS1		IS2			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==============================	=========	========	==========	======	==================	========
	ICAL MIDPT	301873	7.94	282776	8.92		
	UPPER LIMIT	603746		565552			
	LOWER LIMIT	150936		141388			
	================	===========	======	==========	=======	=========	=======
	CCAL	254139	7.88	211309	8.86		
	UPPER LIMIT		8.38		9.36		
	LOWER LIMIT		7.38		8.36		
• •							
01		230207	7.88	173098	8.84		
02	UU16LCSS1	232687	7.88	193292	8.84		
03	UU16LCSDS1	216538	7.88	181619	8.84		
04 05	401A/DP	228176	7.88	179945	8.84		
05	401B/DP 401C/DP	251662 255244	7.88 7.88	194919	8.84		
06	401C/DP 401A/NSM	234507	7.88	194355	8.84		
08	401A/NSM 401A/NSM MS	245378	7.88	180292 191239	8.84 8.84		
08	401A/NSM MSD	245378 245946	7.88	186494	8.84 8.84		
10	401B/NSM MSD	286263	7.88	227745	8.84		
11	401C/NSM	301511	7.88	262475	8.84		
12^{11}	410A/DP	313880	7.88	288810	8.84		
13	410B/DP	375407	7.88	358996	8.84		
14^{-1}	410C/DP	342835	7.88	306380	8.84		
15	410A/NSM	338316	7.88	298848	8.84		
16	410B/NSM	378491	7.88	345483	8.84		·
17	410C/NSM	308824	7.88	268252	8.84		
18							
19				****			
20							
21							
22							
23							
24							
25							

IS1 = Tetrapentyl Tin IS2 = p-Terphenyl-d14

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits. page 1 of 1

FORM VIII SV-1

SEMIVOLATILES SUMMARY 05/11/12 ARI Job No: UU16 ANALYTICAL Page 1 of 1 INCORPORATED PC: Kelly Inquiry Number: NONE VTSR: 05/11/12 10:15 Analysis Requested: 05/11/12 Data Due: 05/15/12 Contact: Ernst, Rick Client: Hart Crowser Project #: 15753-00 Logged by: JM Sample Set Used: Yes-49 Sample Site: Validatable Package; Lv4 SDG No: J-flags required: YES NO Deliverables Require Spectra (Circle one): YES NO

Special Instructions All Samples:

Project: P.O.P. T4 Maintenance

See enclosed instructions

12 Sample(s)

GC/MS SIM TBT Analytes (3 Total) Butyltin Ion Dibutyltin Ion Tributyltin Ion GC/MS SIM TBT Surrogates Tripropyl Tin Chloride Tripentyl Tin Chloride

ARI ID	Client ID	Matrix	Sampling Date	TBT (Hexyl)	Rtype
12-8723-UU16A	401A/DP	Sediment	05/09/12	X(3)	32
12-8724-UU16B	401B/DP	Sediment	05/08/12	X(3)	32
12-8725-UU16C	401C/DP	Sediment	05/09/12	X(3)	32
12-8726-UU16D	401A/NSM	Sediment	05/09/12	X(3)	32
12-8727-UU16E	401B/NSM	Sediment	05/08/12	X(3)	32
12-8728-UU16F	401C/NSM	Sediment	05/09/12	X(3)	32
12-8729-UU16G	410A/DP	Sediment	05/08/12	X(3)	32
12-8730-UU16H	410B/DP	Sediment	05/08/12	X(3)	32
12-8731-UU16I	410C/DP	Sediment	05/08/12	X(3)	32
12-8732-UU16J	410A/NSM	Sediment	05/08/12	X(3)	32
12-8733-UU16K	410B/NSM	Sediment	05/08/12	X(3)	32
12-8734-UU16L	410C/NSM	Sediment	05/08/12	X (3)	32

SVOA Special Instructions: None

Sample Condition Sample Comment-All Analyses

__ Date рм ок

Pesticide Analysis Report and Summary QC Forms

ARI Job ID: UU16

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 06:33 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401A/DP SAMPLE

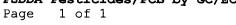
QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 45.1%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.047	0.49	< 0.49 U
76-44-8	Heptachlor	0.13	0.49	< 0.49 U
309-00-2	Aldrin .	0.054	0.49	< 0.49 U
60-57-1	Dieldrin	0.098	0.98	< 0.98 U
72-55-9	4,4'-DDE	0.12	0.98	3.6
72-54-8	4,4'-DDD	0.13	0.98	2.2
50-29-3	4,4'-DDT	0.19	0.98	< 0.98 U
5103-74-2	trans-Chlordane	0.076	0.49	< 0.49 U
5103-71-9	cis-Chlordane	0.050	0.49	< 0.49 U

Reported in µg/kg (ppb)


Pest/PCB Surrogate Recovery

Decachlorobiphenyl	87.2%
Tetrachlorometaxylene	85.8%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: A Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 14:13 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401A/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 45.1%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.47	4.9	< 4.9 U
76-44-8	Heptachlor	1.3	4.9	< 4.9 U
309-00-2	Aldrin	0.54	4.9	< 4.9 U
60-57-1	Dieldrin	0.98	9.8	< 9.8 U
72-55-9	4,4'-DDE	1.2	9.8	< 9.8 U
72-54-8	4,4'-DDD	1.3	9.8	< 9.8 U
50-29-3	4,4'-DDT	1.9	9.8	< 9.8 U
5103-74-2	trans-Chlordane	0.76	4.9	< 4.9 U
5103-71-9	cis-Chlordane	0.50	4.9	< 4.9 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	94.0%
Tetrachlorometaxylene	103%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 06:50 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 35.0%

Analyte	MDL	RL	Result
gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
Heptachlor	0.13	0.48	< 0.48 U
Aldrin	0.053	0.48	< 0.48 U
Dieldrin	0.096	0.96	< 0.96 U
4,4'-DDE	0.12	0.96	4.1
4,4'-DDD	0.13	0.96	3.3
4,4'-DDT	0.18	0.96	< 0.96 U
trans-Chlordane	0.074	0.48	0.67
cis-Chlordane	0.049	0.48	< 0.48 U
	<pre>gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT trans-Chlordane</pre>	gamma-BHC (Lindane) 0.046 Heptachlor 0.13 Aldrin 0.053 Dieldrin 0.096 4,4'-DDE 0.12 4,4'-DDT 0.18 trans-Chlordane 0.074	gamma-BHC (Lindane) 0.046 0.48 Heptachlor 0.13 0.48 Aldrin 0.053 0.48 Dieldrin 0.096 0.96 4,4'-DDE 0.12 0.96 4,4'-DDD 0.13 0.96 4,4'-DDT 0.18 0.96 4,4'-DDT 0.18 0.96

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	85.5%
Tetrachlorometaxylene	76.2%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 14:31 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401B/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 35.0%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.46	4.8	< 4.8 U
76-44-8	Heptachlor	1.3	4.8	< 4.8 U
309-00-2	Aldrin	0.53	4.8	< 4.8 U
60-57-1	Dieldrin	0.96	9.6	< 9.6 U
72-55-9	4,4'-DDE	1.2	9.6	< 9.6 U
72-54-8	4,4'-DDD	1.3	9.6	< 9.6 U
50-29-3	4,4'-DDT	1.8	9.6	< 9.6 U
5103-74-2	trans-Chlordane	0.74	4.8	< 4.8 U
5103-71-9	cis-Chlordane	0.49	4.8	< 4.8 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	86.8%
Tetrachlorometaxylene	98.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 07:08 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 52.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
76-44-8	Heptachlor	0.13	0.48	< 0.48 U
309-00-2	Aldrin	0.053	0.48	< 0.48 U
60-57-1	Dieldrin	0.097	0.97	< 0.97 U
72-55-9	4,4'-DDE	0.12	0.97	2.2
72-54-8	4,4'-DDD	0.13	0.97	1.1
50-29-3	4,4'-DDT	0.19	0.97	< 0.97 U
5103-74-2	trans-Chlordane	0.075	0.48	< 0.48 U
5103-71-9	cis-Chlordane	0.049	0.48	< 0.48 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	70.0%
Tetrachlorometaxylene	74.2%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 14:49 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401C/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 52.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.46	4.8	< 4.8 U
76-44-8	Heptachlor	1.3	4.8	< 4.8 U
309-00-2	Aldrin	0.53	4.8	< 4.8 U
60-57-1	Dieldrin	0.97	9.7	< 9.7 U
72-55-9	4,4'-DDE	1.2	9.7	< 9.7 U
72-54-8	4,4'-DDD	1.3	9.7	< 9.7 U
50-29-3	4,4'-DDT	1.9	9.7	< 9.7 U
5103-74-2	trans-Chlordane	0.75	4.8	< 4.8 U
5103-71-9	cis-Chlordane	0.49	4.8	< 4.8 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	75.5%
Tetrachlorometaxylene	102%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 07:26 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401A/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 24.8%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
76-44-8	Heptachlor	0.13	0.48	< 0.48 U
309-00-2	Aldrin	0.053	0.48	< 0.48 U
60-57-1	Dieldrin	0.096	0.96	< 0.96 U
72-55-9	4,4'-DDE	0.12	0.96	2.1
72-54-8	4,4'-DDD	0.13	0.96	1.4
50-29-3	4,4'-DDT	0.18	0.96	< 0.96 U
5103-74-2	trans-Chlordane	0.074	0.48	< 0.48 U
5103-71-9	cis-Chlordane	0.049	0.48	< 0.48 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	99.2%
Tetrachlorometaxylene	85.5%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 15:07 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401A/NSM DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 24.8%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.46	4.8	< 4.8 U
76-44-8	Heptachlor	1.3	4.8	< 4.8 U
309-00-2	Aldrin	0.53	4.8	< 4.8 U
60-57-1	Dieldrin	0.96	9.6	< 9.6 U
72-55-9	4,4'-DDE	1.2	9.6	< 9.6 U
72-54-8	4,4'-DDD	1.3	9.6	< 9.6 U
50-29-3	4,4'-DDT	1.8	9.6	< 9.6 U
5103-74-2	trans-Chlordane	0.74	4.8	< 4.8 U
5103-71-9	cis-Chlordane	0.49	4.8	< 4.8 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	103%
Tetrachlorometaxylene	100%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 17:29 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401B/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 19.6%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
76-44-8	Heptachlor	0.13	0.48	< 0.48 U
309-00-2	Aldrin	0.053	0.48	< 0.48 U
60-57-1	Dieldrin	0.096	0.96	< 0.96 U
72-55-9	4,4'-DDE	0.12	0.96	< 0.96 U
72-54-8	4,4'-DDD	0.13	0.96	< 0.96 U
50-29-3	4,4'-DDT	0.18	0.96	< 0.96 U
5103-74-2	trans-Chlordane	0.074	0.48	< 0.48 U
5103-71-9	cis-Chlordane	0.049	0.48	< 0.48 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	82.8%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: UU16F LIMS ID: 12-8728 Matrix: Sediment Data Release Authorized: 🎢 Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 07:44 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

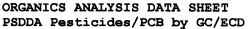
Sample ID: 401C/NSM SAMPLE

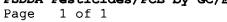
QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 44.8%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.047	0.49	< 0.49 U
76-44-8	Heptachlor	0.13	0.49	< 0.49 U
309-00-2	Aldrin	0.054	0.49	< 0.49 U
60-57-1	Dieldrin	0.097	0.97	< 0.97 U
72-55-9	4,4'-DDE	0.12	0.97	5.5 P
72-54-8	4,4'-DDD	0.13	0.97	2.5
50-29-3	4,4'-DDT	0.19	0.97	< 0.97 U
5103-74-2	trans-Chlordane	0.075	0.49	< 0.49 U
5103-71-9	cis-Chlordane	0.050	0.49	< 0.49 U


Reported in µg/kg (ppb)


Pest/PCB Surrogate Recovery

Decachlorobiphenyl	83.0%
Tetrachlorometaxylene	82.5%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Lab Sample ID: UU16F LIMS ID: 12-8728 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 17:47 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 401C/NSM DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 44.8%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.47	4.9	< 4.9 U
76-44-8	Heptachlor	1.3	4.9	< 4.9 U
309-00-2	Aldrin	0.54	4.9	< 4.9 U
60-57-1	Dieldrin	0.97	9.7	< 9.7 U
72-55-9	4,4'-DDE	1.2	9.7	< 9.7 U
72-54-8	4,4'-DDD	1.3	9.7	< 9.7 U
50-29-3	4,4'-DDT	1.9	9.7	< 9.7 U
5103-74-2	trans-Chlordane	0.75	4.9	< 4.9 U
5103-71-9	cis-Chlordane	0.50	4.9	< 4.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	90.0%
Tetrachlorometaxylene	110%

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 08:02 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

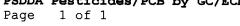
Sample ID: 410A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 44.1%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
76-44-8	Heptachlor	0.13	0.48	< 0.48 U
309-00-2	Aldrin	0.053	0.48	< 0.48 U
60-57-1	Dieldrin	0.097	0.97	< 0.97 U
72-55-9	4,4'-DDE	0.12	0.97	1.7
72-54-8	4,4'-DDD	0.13	0.97	0.92 J
50-29-3	4,4'-DDT	0.19	0.97	< 0.97 U
5103-74-2	trans-Chlordane	0.074	0.48	< 0.48 U
5103-71-9	cis-Chlordane	0.049	0.48	< 0.48 U


Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	92.0%
Tetrachlorometaxylene	81.8%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 18:05 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410A/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 44.1%

CAS Number	Analyte	MDL	\mathbf{RL}	Result
58-89-9	gamma-BHC (Lindane)	0.46	4.8	< 4.8 U
76-44-8	Heptachlor	1.3	4.8	< 4.8 U
309-00-2	Aldrin	0.53	4.8	< 4.8 U
60-57-1	Dieldrin	0.97	9.7	< 9.7 U
72-55-9	4,4'-DDE	1.2	9.7	< 9.7 U
72-54-8	4,4'-DDD	1.3	9.7	< 9.7 U
50-29-3	4,4'-DDT	1.9	9.7	< 9.7 U
5103-74-2	trans-Chlordane	0.74	4.8	< 4.8 U
5103-71-9	cis-Chlordane	0.49	4.8	< 4.8 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	90.5%
Tetrachlorometaxylene	117%

Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 08:19 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.2 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 27.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.045	0.47	< 0.47 U
76-44-8	Heptachlor	0.12	0.47	< 0.47 U
309-00-2	Aldrin	0.052	0.47	< 0.47 U
60-57-1	Dieldrin	0.095	0.95	< 0.95 U
72-55-9	4,4'-DDE	0.12	0.95	0. 96 J
72-54-8	4,4'-DDD	0.13	0.95	1.1 JP
50-29-3	4,4'-DDT	0.18	0.95	< 0.95 U
5103-74-2	trans-Chlordane	0.073	0.47	< 0.47 U
5103-71-9	cis-Chlordane	0.048	0.47	< 0.47 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	85.0%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

ORGANICS ANALYSIS DATA SHEET

PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 18:22 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.2 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 27.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.45	4.7	< 4.7 U
76-44-8	Heptachlor	1.2	4.7	< 4.7 U
309-00-2	Aldrin	0.52	4.7	< 4.7 U
60-57 - 1	Dieldrin	0.95	9.5	< 9.5 U
72-55-9	4,4'-DDE	1.2	9.5	< 9.5 U
72-54-8	4,4'-DDD	1.3	9.5	< 9.5 U
50-29-3	4,4'-DDT	1.8	9.5	< 9.5 U
5103-74-2	trans-Chlordane	0.73	4.7	< 4.7 U
5103-71-9	cis-Chlordane	0.48	4.7	< 4.7 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	90.2%
Tetrachlorometaxylene	1048

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 08:37 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.047	0.49	< 0.49 U
76-44-8	Heptachlor	0.13	0.49	< 0.49 U
309-00-2	Aldrin	0.054	0.49	< 0.49 U
60-57-1	Dieldrin	0.098	0.98	< 0.98 U
72-55-9	4,4'-DDE	0.12	0.98	2.3
72-54-8	4,4'-DDD	0.13	0.98	2.2
50-29-3	4,4'-DDT	0.19	0.98	< 0.98 U
5103-74-2	trans-Chlordane	0.076	1.9	< 1.9 Y
5103-71-9	cis-Chlordane	0.050	0.49	< 0.49 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	90.5%
Tetrachlorometaxylene	86.5%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 18:40 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410C/DP DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.47	4.9	< 4.9 U
76-44-8	Heptachlor	1.3	4.9	< 4.9 U
309-00-2	Aldrin	0.54	4.9	< 4.9 U
60-57-1	Dieldrin	0.98	9.8	< 9.8 U
72-55-9	4,4'-DDE	1.2	9.8	< 9.8 U
72-54-8	4,4'-DDD	1.3	9.8	< 9.8 U
50-29-3	4,4'-DDT	1.9	9.8	< 9.8 U
5103-74-2	trans-Chlordane	0.76	4.9	< 4.9 U
5103-71-9	cis-Chlordane	0.50	4.9	< 4.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	90.8%
Tetrachlorometaxylene	1048

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 08:55 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410A/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 40.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.047	0.49	< 0.49 U
76-44-8	Heptachlor	0.13	0.49	< 0.49 U
309-00-2	Aldrin	0.054	0.49	< 0.49 U
60-57-1	Dieldrin	0.099	0.99	< 0.99 U
72-55-9	4,4'-DDE	0.12	0.99	3.3
72-54-8	4,4'-DDD	0.13	0.99	3.6
50-29-3	4,4'-DDT	0.19	0.99	< 0.99 U
5103-74-2	trans-Chlordane	0.076	0.49	< 0.49 U
5103-71-9	cis-Chlordane	0.050	0.49	< 0.49 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	76.2%
Tetrachlorometaxylene	76.8%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 18:58 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410A/NSM DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 40.4%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.47	4.9	< 4.9 U
76-44-8	Heptachlor	1.3	4.9	< 4.9 U
309-00-2	Aldrin	0.54	4.9	< 4.9 U
60-57-1	Dieldrin	0.99	9.9	< 9.9 U
72-55-9	4,4'-DDE	1.2	9.9	< 9.9 U
72-54-8	4,4'-DDD	1.3	9.9	< 9.9 U
50-29-3	4,4'-DDT	1.9	9.9	< 9.9 U
5103-74-2	trans-Chlordane	0.76	4.9	< 4.9 U
5103-71-9	cis-Chlordane	0.50	4.9	< 4.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	80.5%
Tetrachlorometaxylene	93.2%

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 09:13 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 25.7%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.047	0.49	< 0.49 U
76-44-8	Heptachlor	0.13	0.49	< 0.49 U
309-00-2	Aldrin	0.054	0.49	< 0.49 U
60-57-1	Dieldrin	0.098	0.98	< 0.98 U
72-55-9	4,4'-DDE	0.12	0.98	2.5 P
72-54-8	4,4'-DDD	0.13	0.98	1.3
50-29-3	4,4'-DDT	0.19	0.98	< 0.98 U
5103-74-2	trans-Chlordane	0.075	0.49	< 0.49 U
5103-71-9	cis-Chlordane	0.050	0.49	< 0.49 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	87.8%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Page 1 of 1

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 19:16 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/NSM DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: Yes

Percent Moisture: 25.7%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.47	4.9	< 4.9 U
76-44-8	Heptachlor	1.3	4.9	< 4.9 U
309-00-2	Aldrin	0.54	4.9	< 4.9 U
60-57-1	Dieldrin	0.98	9.8	< 9.8 U
72-55-9	4,4'-DDE	1.2	9.8	< 9.8 U
72-54-8	4,4'-DDD	1.3	9.8	< 9.8 U
50-29-3	4,4'-DDT	1.9	9.8	< 9.8 U
5103-74-2	trans-Chlordane	0.75	4.9	< 4.9 U
5103-71-9	cis-Chlordane	0.50	4.9	< 4.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	86.5%
Tetrachlorometaxylene	109%

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 12:11 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410C/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result
58-89-9	gamma-BHC (Lindane)	0.046	0.48	< 0.48 U
76-44-8	Heptachlor	0.13	0.48	< 0.48 U
309-00-2	Aldrin	0.053	0.48	< 0.48 U
60-57-1	Dieldrin	0.096	3.6	< 3.6 Y
72-55-9	4,4'-DDE	0.12	0.96	8.2 P
72-54-8	4,4'-DDD	0.13	0.96	5.2
50-29-3	4,4'-DDT	0.18	2.7	< 2.7 Y
5103-74-2	trans-Chlordane	0.074	0.48	< 0.48 U
5103-71-9	cis-Chlordane	0.049	0.48	< 0.48 U

Reported in µg/kg (ppb)

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	110%
Tetrachlorometaxylene	88.0%

This analyte (CAS registry No. 5103-74-2) is named trans-Chlordane in EPA Method 8081B(Feb 2007). It has also been named gamma-Chlordane and beta-Chlordane.

\$ This analyte (CAS registry No. 5103-71-9) is named cis-Chlordane in EPA Method 8081B(Feb 2007). It has also been named alpha-Chlordane.

Page 1 of 1

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 20:09 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410C/NSM DILUTION

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 100 Silica Gel: Yes

Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result	
58-89-9	gamma-BHC (Lindane)	4.6	48	< 48 U	
76-44-8	Heptachlor	13	48	< 48 U	
309-00-2	Aldrin	5.3	48	< 48 U	
60-57-1	Dieldrin	9.6	96	< 96 U	
72-55-9	4,4'-DDE	12	96	< 96 U	
72-54-8	4,4'-DDD	13	96	< 96 U	
50-29-3	4,4'-DDT	18	96	< 96 U	
5103-74-2	trans-Chlordane	7.4	48	< 48 U	
5103-71-9	cis-Chlordane	4.9	48	< 48 U	

Reported in µg/kg (ppb)

Decachlorobiphenyl	D
Tetrachlorometaxylene	D

SW8081 PESTICIDE SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Client ID	DCBP	TCMX	TOT OUT
401A/DP	87.2%	85.8%	0
401A/DP DL	94.0%	103%	0
401B/DP	85.5%	76.2%	0
401B/DP DL	86.8%	98.2%	0
401C/DP	70.0%		0
401C/DP DL	75.5%		0
401A/NSM	99.2%	85.5%	0
401A/NSM DL	103%	100%	0
401B/NSM	83.5%	82.8%	0
401C/NSM	83.0%	82.5%	0
401C/NSM DL	90.0%	110%	0
410A/DP	92.0%		0
410A/DP DL	90.5%	117%	0
410B/DP	87.5%		0
410B/DP DL	90.28		0
410C/DP	90.5%		
410C/DP DL	90.8%		
410A/NSM	76.2%		
410A/NSM DL	80.5%		0
MB-051212	91.8%		
LCS-051212	93.8%		
LCSD-051212	91.8%		0
410B/NSM	83.5%		0
410B/NSM DL	86.5%	109%	0
410B/NSM MS	88.2%		
410B/NSM MSD	91.2%		0
410C/NSM	110%		0
410C/NSM DL	D	D	0

LCS/MB LIMITS QC LIMITS

(DCBP) = Decachlorobiphenyl	(59-123)	(22-156)
(TCMX) = Tetrachlorometaxylene	(42-112)	(29-142)

Prep Method: SW3546 Log Number Range: 12-8723 to 12-8734

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted MS/MSD: 05/12/12

Date Analyzed MS: 05/16/12 10:42 MSD: 05/16/12 11:00 Instrument/Analyst MS: ECD6/AAR MSD: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: 410B/NSM MS/MSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount MS: 12.8 g-dry-wt MSD: 12.8 g-dry-wt Final Extract Volume MS: 2.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: Yes

Percent Moisture: 25.7%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
gamma-BHC (Lindane)	< 0.489	3.76	3.91	96.2%	3.83	3.91	98.0%	1.8%
Heptachlor	< 0.489	2.31	3.91	59.1%	2.44	3.91	62.4%	5.5%
Aldrin	< 0.489	3.23	3.91	82.6%	3.34	3.91	85.4%	3.3%
Dieldrin	< 0.978	6.94	7.82	88.7%	7.27	7.81	93.1%	4.6%
4,4'-DDE	2.52	10.9 P	7.82	107%	11.8 P	7.81	119%	7.98
4,4'-DDD	1.31	8.22	7.82	88.4%	8.87	7.81	96.8%	7.6%
4,4'-DDT	< 0.978	2.82	7.82	36.1%	3.18	7.81	40.7%	12.0%
trans-Chlordane	< 0.489	4.13	3.91	106%	4.32	3.91	110%	4.5%
cis-Chlordane	< 0.489	3.60	3.91	92.1%	3.98 P	3.91	102%	10.0%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 10:42 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/NSM MATRIX SPIKE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 25.7%

CAS Number	Analyte	MDL	RL	Result	
58-89-9	gamma-BHC (Lindane)	0.047	0.49		
76-44-8	Heptachlor	0.13	0.49		
309-00-2	Aldrin	0.054	0.49		
60-57-1	Dieldrin	0.098	0.98		
72-55-9	4,4'-DDE	0.12	0.98		
72-54-8	4,4'-DDD	0.13	0.98		
50-29-3	4,4'-DDT	0.19	0.98		
5103-74-2	trans-Chlordane	0.075	0.49		
5103-71-9	cis-Chlordane	0.050	0.49		

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.2%
Tetrachlorometaxylene	88.5%

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted: 05/12/12 Date Analyzed: 05/16/12 11:00 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: 410B/NSM MATRIX SPIKE DUP

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 25.7%

0.49	
0.49	
0.49	
0.49	
0.98	
0.98	
0.98	
0.98	
0.49	
0.49	
	0.49 0.98 0.98 0.98 0.98 0.98 0.49

Reported in µg/kg (ppb)

Decachlorobiphenyl	91.2%
Tetrachlorometaxylene	93.5%

Page 1 of 1

Lab Sample ID: LCS-051212 LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/16/12

Date Extracted LCS/LCSD: 05/12/12

Date Analyzed LCS: 05/15/12 08:35 LCSD: 05/15/12 08:52 Instrument/Analyst LCS: ECD6/AAR LCSD: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: LCS-051212 LCS/LCSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount LCS: 12.5 g-dry-wt LCSD: 12.5 g-dry-wt Final Extract Volume LCS: 2.5 mL LCSD: 2.5 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: Yes

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
gamma-BHC (Lindane)	3.98	4.00	99.5%	4.02	4.00	100%	1.0%
Heptachlor	3.22	4.00	80.5%	3.28	4.00	82.0%	1.8%
Aldrin	3.34	4.00	83.5%	3.36	4.00	84.0%	0.6%
Dieldrin	7.58	8.00	94.8%	7.56	8.00	94.5%	0.3%
4,4'-DDE	8.60	8.00	108%	8.80	8.00	110%	2.3%
4,4'-DDD	7.58	8.00	94.8%	7.52	8.00	94.0%	0.8%
4,4'-DDT	6.98	8.00	87.2%	6.94	8.00	86.8%	0.6%
trans-Chlordane	3.84	4.00	96.0%	4.00	4.00	100%	4.18
cis-Chlordane	3.68	4.00	92.0%	3.66	4.00	91.5%	0.5%

Pest/PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	93.8%	91.8%
Tetrachlorometaxylene	87.0%	82.0%

Reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No.: UU16

Lab Sample ID: UU16MBS1

Date Extracted: 05/12/12

Date Analyzed: 05/15/12

Time Analyzed: 0817

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANC

Lab File ID: 0514A083

Matrix: SOLID

Instrument ID: ECD6

GC Columns: STX-CLP1/STX-CLP2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=======================================	=========	=========
	UU16LCSS1	UU16LCSS1	05/15/12
02		UU16LCSDS1	05/15/12
03		UU16A	05/15/12
04	401B/DP	UU16B	05/15/12
05	401C/DP	UU16C	05/15/12
06	401A/NSM	UU16D	05/15/12
07	401B/NSM	UU16E	05/15/12
08	401C/NSM	UU16F	05/15/12
09	410A/DP	UU16G	05/15/12
10	410B/DP	UU16H	05/15/12
11	410C/DP	UU16I	05/15/12
12		UU16J	05/15/12
13	410B/NSM	UU16K	05/15/12
14		UU16KMS	05/15/12
15		UU16KMSD	05/15/12
16	410C/NSM	UU16L	05/15/12
17		UU16A	05/16/12
18	401B/DP	UU16B	05/16/12
19	401C/DP	UU16C	05/16/12
20	401A/NSM	UU16D	05/16/12
21		UU16F	05/16/12
22	410A/DP	UU16G	05/16/12
23	410B/DP	UU16H	05/16/12
24		UU16I	05/16/12
25		UU16J	05/16/12
26	410B/NSM	UU16K	05/16/12
27	410B/NSM MS	UU16KMS	05/16/12
	ALL RUNS ARE DUAL COLU	JMN	

page 1 of 1

FORM IV PCB

Page 1 of 1

Lab Sample ID: MB-051212 LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/15/12 08:17 Instrument/Analyst: ECD6/AAR GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Sample ID: MB-051212 METHOD BLANK

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample Amount: 12.5 g Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

CAS Number	S Number Analyte		RL	Result
58-89-9	gamma-BHC (Lindane)	0.048	0.50	< 0.50 U
76-44-8	Heptachlor	0.13	0.50	< 0.50 U
309-00-2	Aldrin	0.055	0.50	< 0.50 U
60-57-1	Dieldrin	0.10	1.0	< 1.0 U
72-55-9	4,4'-DDE	0.12	1.0	< 1.0 U
72-54-8	4,4'-DDD	0.14	1.0	< 1.0 U
50-29-3	4,4'-DDT	0.19	1.0	< 1.0 U
5103-74-2	trans-Chlordane	0.077	0.50	< 0.50 U
5103-71-9	cis-Chlordane	0.051	0.50	< 0.50 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	91.8%
Tetrachlorometaxylene	87.2%

6D 8081 INITIAL CALIBRATION RETENTION TIMES

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER						
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE						
GC Column: STX-CLP1 ID: 0.53 (mm)	Instrument ID: ECD6						
Calibration Date: 04/09/12							

RT OF STANDARDS								MEAN	RT W	INDOW
COMPOUND	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	RT	FROM	TO
=======================================	======	======	======	======	======	======	======	======	======	======
alpha-BHC	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.87	3.82	3.92
beta-BHC	4.23	4.23	4.23	4.23	4.22	4.21	4.21	4.22	4.16	4.26
delta-BHC	4.39	4.39	4.39	4.38	4.38	4.37	4.37	4.38	4.32	4.42
gamma-BHC (Lindane)	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.13	4.08	4.18
Heptachlor	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.54	4.49	4.59
Aldrin	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.76	4.86
Heptachlor epoxide b	5.37	5.37	5.37	5.37	5.37	5.37	5.37	5.37	5.32	5.42
Endosulfan I	5.75	5.75	5.75	5.75	5.75	5.75	5.74	5.75	5.69	5.79
Dieldrin	5.97	5.97	5.97	5.97	5.97	5.97	5.97	5.97	5.92	6.02
4,4'-DDE	5.71	5.71	5.71	5.71	5.70	5.70	5.70	5.71	5.65	5.75
Endrin	6.19	6.19	6.19	6.19	6.19	6.19	6.19	6.19	6.14	6.24
Endosulfan II	6.40	6.40	6.40	6.40	6.40	6.40	6.39	6.40	6.34	6.44
4,4'-DDD	6.27	6.27	6.27	6.26	6.26	6.26	6.25	6.26	6.20	6.30
Endosulfan sulfate	7.16	7.16	7.16	7.16	7.16	7.16	7.16	7.16	7.11	7.21
4,4'-DDT	6.52	6.52	6.52	6.51	6.51	6.51	6.51	6.51	6.46	6.56
Methoxychlor	6.95	6.95	6.95	6.95	6.95	6.95	6.95	6.95	6.90	7.00
Endrin ketone	7.41	7.42	7.41	7.41	7.41	7.41	7.41	7.41	7.36	7.46
Endrin aldehyde	6.78	6.78	6.78	6.78	6.77	6.77	6.77	6.78	6.72	6.82
gamma-Chlordane	5.50	5.50	5.50	5.50	5.49	5.49	5.49	5.50	5.44	5.54
alpha-Chlordane	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.57	5.67
Hexachlorobutadiene	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.02	2.12
Hexachlorobenzene	3.76	3.76	3.76	3.76	3.75	3.74	3.74	3.75	3.69	3.79
==============================	=====	======	======	======	======	======	======	======	=====	=====
Tetrachloro-m-xylene	3.43	3.43	3.43	3.43	3.43	3.43	3.42	3.43	3.37	3.47
Decachlorobiphenyl	8.28	8.28	8.28	8.27	8.27	8.27	8.27	8.27	8.22	8.32

6D 8081 INITIAL CALIBRATION RETENTION TIMES

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE
GC Column: STX-CLP2 ID: 0.53 (mm)	Instrument ID: ECD6
Calibration Date: 04/09/12	

RT OF STANDARDS									RT WI	INDOW
COMPOUND	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	RT	FROM	TO
=======================================	======	======	======	======	======	======	======	======	======	=====
alpha-BHC	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.09	4.19
beta-BHC	4.55	4.55	4.55	4.55	4.55	4.54	4.54	4.55	4.49	4.59
delta-BHC	4.84	4.83	4.83	4.83	4.83	4.83	4.82	4.83	4.77	4.87
gamma-BHC (Lindane)_	4.46	4.46	4.46	4.46	4.46	4.46	4.46	4.46	4.41	4.51
Heptachlor	4.89	4.89	4.89	4.89	4.89	4.89	4.89	4.89	4.84	4.94
Aldrin	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.16	5.26
Heptachlor epoxide b	5.77	5.77	5.77	5.77	5.77	5.77	5.77	5.77	5.72	5.82
Endosulfan I	6.16	6.16	6.16	6.16	6.16	6.16	6.16	6.16	6.11	6.21
Dieldrin	6.42	6.42	6.42	6.42	6.42	6.42	6.42	6.42	6.37	6.47
4,4'-DDE	6.26	6.26	6.26	6.26	6.25	6.25	6.25	6.26	6.20	6.30
Endrin	6.71	6.71	6.71	6.71	6.71	6.71	6.71	6.71	6.66	6.76
Endosulfan II	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.85	6.95
4,4'-DDD	6.80	6.80	6.80	6.79	6.79	6.79	6.79	6.79	6.74	6.84
Endosulfan sulfate	7.45	7.45	7.45	7.45	7.45	7.45	7.45	7.45	7.40	7.50
4,4'-DDT	7.08	7.08	7.08	7.08	7.08	7.08	7.07	7.08	7.02	7.12
Methoxychlor	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.62	7.72
Endrin ketone	7.93	7.93	7.92	7.92	7.92	7.92	7.92	7.92	7.87	7.97
Endrin aldehyde	7.20	7.20	7.20	7.20	7.20	7.20	7.20	7.20	7.15	7.25
gamma-Chlordane	5.96	5.96	5.96	5.96	5.96	5.96	5.96	5.96	5.91	6.01
alpha-Chlordane	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.05	6.15
Hexachlorobutadiene_	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.14	2.09	2.19
Hexachlorobenzene	4.04	4.04	4.04	4.04	4.04	4.03	4.03	4.04	3.98	4.08
=======================================	=====	=====	======	======	=====	======	======	=====	=====	=====
Tetrachloro-m-xylene	3.62	3.62	3.62	3.62	3.62	3.62	3.62	3.62	3.57	3.67
Decachlorobiphenyl	8.96	8.96	8.96	8.95	8.95	8.95	8.95	8.95	8.90	9.00

6E 8081 PESTICIDE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE
GC Column: STX-CLP1 ID: 0.53 (mm)	Instrument ID: ECD6
Calibration Date: 04/09/12	

	CALIBRATION FACTORS								R^2
COMPOUND	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	MEAN	%RSD
	=========	=========	==========	=========	=================	=======		========	======
alpha-BHC	1.5907	1.6216	1.6040	1.6266	1.6275	1.6963	1.8514	1.6597	5.5
beta-BHC	0.5483	0.5895	0.5955	0.6031	0.6184	0.6252	0.6865	0.6095	6.9
delta-BHC	0.9142	0.9480	0.9828	1.0447	1.1864	1.2582	1.4766	1.1158	18.2
gamma-BHC (Lindane)	1.0869	1.1296	1.1641	1.2043	1.3156	1.3316	1.4642	1.2423	10.8
Heptachlor	1.5434	1.5606	1.5671	1.6063	1.5757	1.6136	1.7163	1.5976	3.6
Aldrin	1.2837	1.3181	1.3460	1.3879	1.4413	1.4614	1.5710	1.4013	7.0
Heptachlor epoxide b_	1.2906	1.2582	1.2685	1.2954	1.3466	1.3297	1.4023	1.3130	3.8
Endosulfan I	1.8687	1.8151	1.8173	1.8312	1.6422	1.7264	1.7516	1.7789	4.3
Dieldrin	1.2904	1.3069	1.3495	1.3836	1.2066	1.3835	1.4912	1.3445	6.7
4,4'-DDE	0.6438	0.6504	0.6956	0.7646	1.0021	0.9306	1.0894	0.8252	0.9915
Endrin	0.9888	0.9804	1.0097	1.0383	1.0222	1.0475	1.1127	1.0285	4.3
Endosulfan II	0.9426	0.9191	0.9326	0.9539	0.9113	0.9588	1.0205	0.9484	3.8
4,4'-DDD	0.7562	0.7451	0.7612	0.7957	0.8241	0.8558	0.9325	0.8101	8.3
Endosulfan sulfate	0.8655	0.8173	0.8261	0.8536	0.8272	0.8564	0.9202	0.8523	4.1
4,4'-DDT	0.8609	0.8403	0.8689	0.9143	0.9232	0.9617	1.0434	0.9161	7.6
Methoxychlor	0.5312	0.5029	0.4924	0.4863	0.4580	0.4760	0.5152	0.4946	5.0
Endrin ketone	1.2466	1.1542	1.1148	1.1059	1.0492	1.0769	1.1434	1.1273	5.7
Endrin aldehyde	0.7925	0.7556	0.7572	0.7737	0.7587	0.7825	0.8348	0.7793	3.6
gamma-Chlordane	1.2915	1.2598	1.2730	1.3037	1.3684	1.3829	1.4952	1.3392	6.2
alpha-Chlordane	1.2764	1.2246	1.2310	1.2542	1.1303	1.3010	1.4073	1.2607	6.7
Hexachlorobutadiene	1.9234	1.8810	1.8170	1.8086	1.7617	1.7440	1.8410	1.8252	3.5
Hexachlorobenzene	1.2905	1.2692	1.2066	1.1756	1.2087	1.2014	1.3157	1.2382	4.3
	============		==========	========	=========	========		==========	======
Tetrachloro-m-xylene_	1.4191	1.2582	1.1152	1.0550	1.0174	1.0176	1.0817	1.1377	13.1
Decachlorobiphenyl	1.2542	1.0802	1.0115	0.9662	0.8883	0.8967	0.9349	1.0046	12.8

FORM VI PEST-2

6E 8081 PESTICIDE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE
GC Column: STX-CLP2 ID: 0.53 (mm)	Instrument ID: ECD6
Calibration Date: 04/09/12	

	CALIBRATION FACTORS								R^2
COMPOUND	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	MEAN	%RSD
	========	=========	=========		==========	=========	==============		
alpha-BHC	1.4570	1.4464	1.4244	1.4045	1.3188	1.4163	1.5125	1.4257	4.1
beta-BHC	0.5672	0.5623	0.5775	0.5553	0.5317	0.5259	0.5644	0.5549	3.4
delta-BHC	0.8602	0.7854	0.7783	0.8001	0.8576	0.9259	1.0828	0.8700	12.3
gamma-BHC (Lindane)	1.2554	1.2054	1.1760	1.1534	1.1248	1.1840	1.2845	1.1976	4.7
Heptachlor	1.5955	1.5070	1.4242	1.3578	0.9224	1.2072	1.2213	1.3193	17.1
Aldrin	1.4604	1.3233	1.1916	1.1098	1.0593	1.0478	1.0857	1.1826	13.2
Heptachlor epoxide b_	1.2127	1.1756	1.0685	1.0242	1.0015	0.9610	1.0091	1.0646	8.9
Endosulfan I	1.0434	1.0159	0.9340	0.9154	0.8718	0.8545	0.8882	0.9319	7.7
Dieldrin	1.0676	1.0390	0.9833	0.9638	0.9097	0.8927	0.9123	0.9669	7.0
4,4'-DDE	0.9305	0.8898	0.8158	0.8055	0.8197	0.7703	0.8327	0.8378	6.5
Endrin	1.6309	1.6003	1.5135	1.4830	1.3580	1.3460		1.4686	8.2
Endosulfan II	1.5036	1.4467	1.3945	1.3697	1.2914	1.2696	1.2731	1.3641	
4,4'-DDD	1.3297	1.2773	1.2112	1.1971	1.1791	1.1455	1.2017	1.2202	5.1
Endosulfan sulfate	1.2936	1.1917	1.1582	1.2057	1.1032	1.0866	1.1100	1.1641	
4,4'-DDT	1.4385	1.2992	1.2682	1.2631	1.2194	1.2041	1.2668	1.2799	6.0
Methoxychlor	0.7026	0.6402	0.5953	0.5797	0.4879	0.4594	0.4440	0.5584	15.8
Endrin ketone	1.7674	1.6756	1.5810	1.7512	1.5000	1.4429	1.4124	1.5901	
Endrin aldehyde	1.2810	1.1836	1.1393	1.1127	0.9181	1.0079	1.0294	1.0960	
gamma-Chlordane	1.0876	1.0784	1.0109	0.9820	0.9639	0.9411	1.0080	1.0103	
alpha-Chlordane	1.0324	1.0059	0.9442	0.9210	0.7750	0.8794	0.9485	0.9295	
Hexachlorobutadiene	1.7827	1.6408	1.5743	1.4821	1.1765	1.4008	1.4483	1.5008	
Hexachlorobenzene	1.3488	1.3141	1.2720	1.2295	1.1756	1.2166		1.2670	
	========		=========	========		========	1	,	
Tetrachloro-m-xylene_								,	7.1
Decachlorobiphenyl	1.4682	1.3588	1.2120	1.1302	1.0158			-	15.4

FORM VI PEST-2

7E 8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

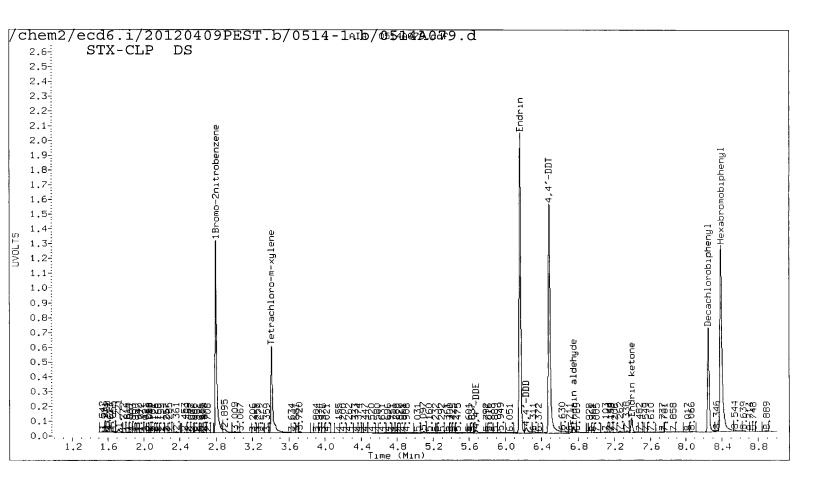
Analysis Date: 15-MAY-2012 07:06 Init. Calib. Date: 09-APR-2012

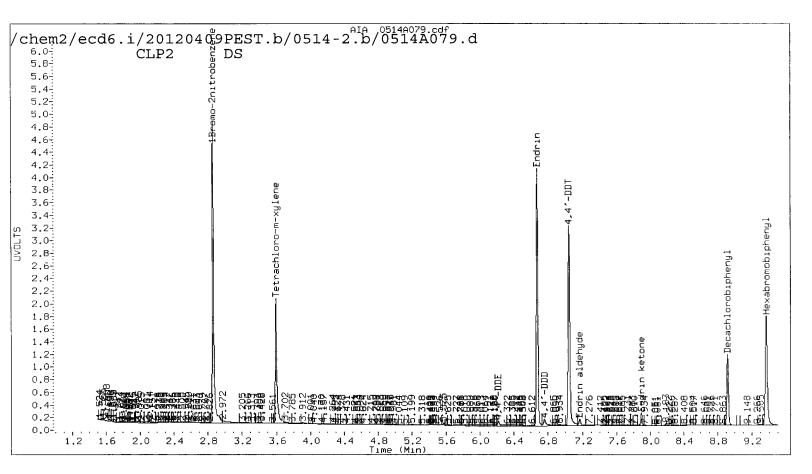
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE Endrin 4,4'-DDD 4,4'-DDT Endrin ketone Endrin aldehyde	5.675 6.167 6.233 6.487 7.392 6.753	99724 4923991 165653 4475412 269416 124293

DDT Percent Breakdown = 5.6 %((99724+165653) * 100)/(99724+165653+4475412)

Endrin Percent Breakdown = 7.4 % ((124293+269416) * 100)/(124293+269416+4923991)


GC Column: STX-CLP2 ID: 0.53(mm)


COMPOUND	RT	AREA
4,4'-DDE Endrin 4,4'-DDD 4,4'-DDT Endrin ketone	6.217 6.673 6.758 7.043 7.891	387477 9955056 513495 8531695 518639
Endrin aldehyde	7.168	324173

DDT Percent Breakdown = 9.6 % ((387477+513495) * 100)/(387477+513495+8531695)

Endrin Percent Breakdown = 7.8 % ((324173+518639) * 100)/(324173+518639+9955056)

Form VII Pest-1

UU16:00157

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP1 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,0723

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	=====	=======	=====
alpha-BHC	3.85	3.82	3.92	22.9	20.0	14.6
beta-BHC	4.19	4.16	4.26	23.2	20.0	16.1
delta-BHC	4.34	4.32	4.42		20.0	10.1
gamma-BHC (Lindane)	4.11	4.08	4.18		20.0	11.2
Heptachlor	4.52	4.49	4.59	21.9	20.0	9.6
Aldrin	4.79	4.76	4.86		20.0	19.3
Heptachlor epoxide b	5.35	5.32	5.42		20.0	13.3
Endosulfan I	5.73	5.69	5.79	19.3	20.0	-3.6
Dieldrin	5.95	5.92	6.02	46.3	40.0	15.7
4,4'-DDE	5.67	5.65	5.75	47.9	40.0	19.8
Endrin	6.17	6.14	6.24		40.0	-5.0
Endosulfan II	6.37	6.34	6.44		40.0	-4.5
4,4'-DDD	6.23	6.20	6.30	40.8	40.0	1.9
Endosulfan sulfate	7.14	7.11	7.21		40.0	-5.0
4,4'-DDT	6.49	6.46	6.56		40.0	-3.4
Methoxychlor	6.93	6.90	7.00	169.0	200.0	-15.5
Endrin ketone	7.39	7.36	7.46	38.1	40.0	-4.8
Endrin aldehyde	6.75	6.72	6.82	34.2	40.0	-14.4
gamma-Chlordane	5.47	5.44	5.54	23.9	20.0	19.3
alpha-Chlordane	5.60	5.57	5.67	20.3	20.0	1.3
Hexachlorobutadiene	2.05	2.02	2.12	21.4	20.0	6.8
Hexachlorobenzene	3.72	3.69	3.79		20.0	4.8
Tetrachloro-m-xylene	3.41	3.37	3.47	42.6	40.0	6.6
Decachlorobiphenyl	8.25	8.22	8.32	34.1	40.0	-14.7

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,0723

PEST MIX			INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
	======	=====	======	=======	1	=====
alpha-BHC	4.11	4.09	4.19		20.0	10.8
beta-BHC	4.51	4.49	4.59		20.0	7.8
delta-BHC	4.79	4.77	4.87			32.7 <
gamma-BHC (Lindane)	4.44	4.41	4.51		20.0	16.1
Heptachlor	4.86	4.84	4.94		20.0	-5.2
Aldrin	5.18	5.16			20.0	-0.8
Heptachlor epoxide b	5.74	5.72			20.0	10.6
Endosulfan I	6.13		6.21		20.0	6.9
Dieldrin	6.39	6.37	6.47		40.0	7.8
4,4'-DDE	6.22	6.20	6.30		40.0	12.2
Endrin	6.67	6.66	6.76		40.0	5.1
Endosulfan II	6.87	6.85	6.95		40.0	6.0
4,4'-DDD	6.76	6.74	6.84		40.0	6.6
Endosulfan sulfate	7.41	7.40	7.50	38.8	40.0	-3.0
4,4'-DDT	7.04	7.02	7.12		40.0	-0.0
Methoxychlor	7.64	7.62	7.72		200.0	-7.9
Endrin ketone	7.89	7.87	7.97		40.0	-1.1
Endrin aldehyde	7.17	7.15	7.25	36.5	40.0	-8.8
gamma-Chlordane	5.93	5.91	6.01		20.0	19.0
alpha-Chlordane	6.07	6.05	6.15		20.0	8.2
Hexachlorobutadiene	2.12	2.09	2.19	19.2	20.0	-4.0
Hexachlorobenzene	4.00	3.98	4.08		20.0	17.1
Tetrachloro-m-xylene	3.59	3.57	3.67	44.9	40.0	12.2
Decachlorobiphenyl	8.92	8.90	9.00	37.5	40.0	-6.2

7E

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC ARI Job No.: UU16 GC Column: STX-CLP1 ID: 0.53 (mm) Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/16/12,0539

PEST MIX		RT W	INDOW	CALC	NOM	1
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	========	==========	=====
alpha-BHC	3.85	3.82	3.92	22.8	20.0	14.0
beta-BHC	4.19	4.16	4.26	23.2	20.0	16.2
delta-BHC	4.34	4.32	4.42	21.0	20.0	4.8
gamma-BHC (Lindane)	4.11	4.08	4.18	22.2	20.0	10.9
Heptachlor	4.52	4.49	4.59	22.0	20.0	9.9
Aldrin	4.79	4.76	4.86	23.9	20.0	19.4
Heptachlor epoxide b	5.35	5.32	5.42	22.7	20.0	13.6
Endosulfan I	5.73	5.69	5.79	19.7	20.0	-1.7
Dieldrin	5.95	5.92	6.02	46.8	40.0	16.9
4,4'-DDE	5.67	5.65	5.75	47.5	40.0	18.6
Endrin	6.17	6.14	6.24	37.9	40.0	-5.2
Endosulfan II	6.37	6.34	6.44	38.2	40.0	-4.6
4,4'-DDD	6.23	6.20	6.30	40.3	40.0	0.7
Endosulfan sulfate	7.14	7.11	7.21	36.8	40.0	-8.1
4,4'-DDT	6.49	6.46	6.56	37.4	40.0	-6.4
Methoxychlor	6.93	6.90	7.00	165.9	200.0	-17.0
Endrin ketone	7.39	7.36	7.46	37.8	40.0	-5.5
Endrin aldehyde	6.75	6.72	6.82	33.5	40.0	-16.3
gamma-Chlordane	5.47	5.44	5.54	23.6	20.0	18.2
alpha-Chlordane	5.60	5.57	5.67	20.3	20.0	1.5
Hexachlorobutadiene	2.05	2.02	2.12	21.4	20.0	7.2
Hexachlorobenzene	3.72	3.69	3.79	21.0	20.0	5.0
Tetrachloro-m-xylene	3.41	3.37	3.47	42.9	40.0	7.2
Decachlorobiphenyl	8.25	8.22	8.32	34.3	40.0	-14.2

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 GC Column: STX-CLP2 ID: 0.53 (mm)

Project: P.O.P. T4 MAINTENANCE

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/16/12,0539

PEST MIX	 	RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	TO	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	=====	======	=======	=========	=====
alpha-BHC	4.11	4.09	4.19		20.0	9.1
beta-BHC	4.51	4.49	4.59		20.0	7.5
delta-BHC	4.79	4.77			20.0	26.4 <
gamma-BHC (Lindane)	4.43	4.41	4.51		20.0	14.2
Heptachlor	4.86	4.84	4.94		20.0	-6.7
Aldrin	5.18	5.16	5.26		20.0	-1.5
Heptachlor epoxide b	5.74	5.72			20.0	10.2
Endosulfan I	6.13	6.11	6.21		20.0	6.9
Dieldrin	6.38	6.37	6.47		40.0	7.6
4,4'-DDE	6.22	6.20	6.30		40.0	12.8
Endrin	6.67	6.66	6.76		40.0	2.8
Endosulfan II	6.86	6.85	6.95		40.0	4.4
4,4'-DDD	6.76	6.74	6.84		40.0	3.8
Endosulfan sulfate	7.41	7.40	7.50		40.0	-7.7
4,4'-DDT	7.04	7.02	7.12		40.0	-3.6
Methoxychlor	7.64	7.62	7.72		200.0	-11.1
Endrin ketone	7.89	7.87	7.97		40.0	-2.6
Endrin aldehyde	7.17	7.15	7.25		40.0	-12.0
gamma-Chlordane	5.93	5.91	6.01		20.0	16.0
alpha-Chlordane	6.07	6.05	6.15		20.0	8.6
Hexachlorobutadiene	2.11	2.09	2.19		20.0	-4.4
Hexachlorobenzene	4.00	3.98	4.08		20.0	16.2
Tetrachloro-m-xylene	3.59	3.57	3.67		40.0	11.8
Decachlorobiphenyl	8.92	8.90	9.00	37.3	40.0	-6.7

7E 8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

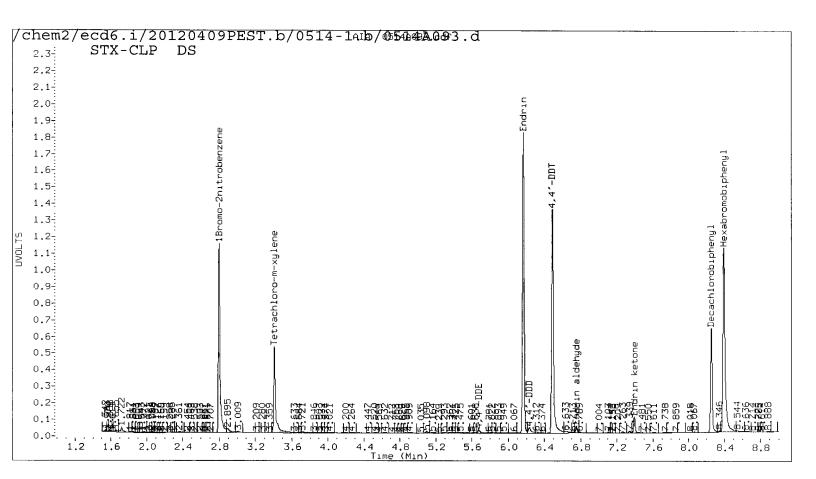
Analysis Date: 15-MAY-2012 11:15 Init. Calib. Date: 09-APR-2012

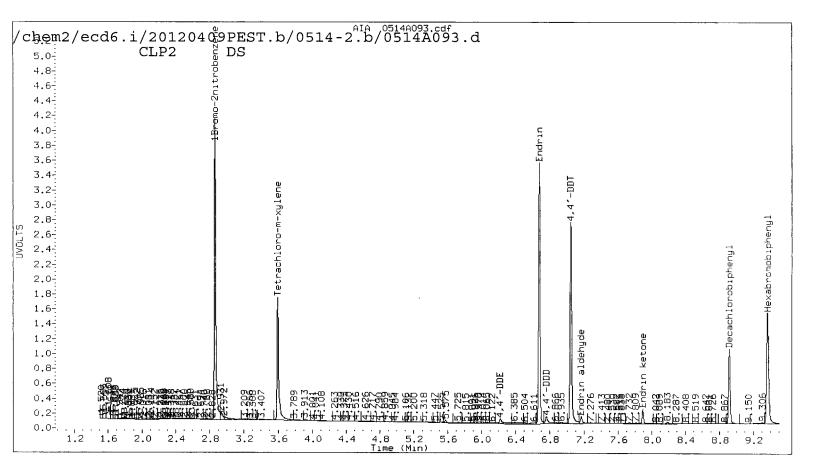
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE	5.677	93651
Endrin	6.167	4385909
4,4'-DDD	6.234	162791
4,4'-DDT	6.489	3918606
Endrin ketone	7.393	253246
Endrin aldehyde	6.753	109229

DDT Percent Breakdown = 6.1 % ((93651+162791) * 100)/(93651+162791+3918606)

Endrin Percent Breakdown = 7.6 % ((109229+253246) * 100)/(109229+253246+4385909)


GC Column: STX-CLP2 ID: 0.53(mm)


COMPOUND	RT	AREA
4,4'-DDE Endrin 4,4'-DDD 4,4'-DDT Endrin ketone Endrin aldehyde	6.218 6.674 6.759 7.045 7.891 7.168	457236 8588053 475859 7273722 545825 309570
· · · · · · · · · · · · · · · · · · ·		222070

DDT Percent Breakdown = 11.4 % ((457236+475859) * 100)/(457236+475859+7273722)

Endrin Percent Breakdown = 9.1 % ((309570+545825) * 100)/(309570+545825+8588053)

Form VII Pest-1

UU16:00163

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP1 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,1133

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	=======	========	=====
alpha-BHC	3.85	3.82	3.92	22.5	20.0	12.7
beta-BHC	4.19	4.16	4.26		20.0	13.9
delta-BHC	4.34	4.32	4.42		20.0	18.6
gamma-BHC (Lindane)	4.11	4.08	4.18		20.0	10.3
Heptachlor	4.52	4.49	4.59		20.0	8.0
Aldrin	4.79	4.76	4.86		20.0	18.8
Heptachlor epoxide b	5.35	5.32	5.42		20.0	13.0
Endosulfan I	5.73	5.69	5.79		20.0	-1.3
Dieldrin	5.95	5.92	6.02	46.7	40.0	16.7
4,4'-DDE	5.68	5.65	5.75		40.0	15.3
Endrin	6.17	6.14	6.24		40.0	-5.6
Endosulfan II	6.37	6.34	6.44	38.3	40.0	-4.3
4,4'-DDD	6.23	6.20	6.30		40.0	0.4
Endosulfan sulfate	7.14	7.11	7.21		40.0	-5.8
4,4'-DDT	6.49	6.46	6.56	37.7	40.0	-5.6
Methoxychlor	6.93	6.90	7.00	167.5	200.0	-16.2
Endrin ketone	7.39	7.36	7.46	38.3	40.0	-4.2
Endrin aldehyde	6.75	6.72	6.82		40.0	~15.2
gamma-Chlordane	5.47	5.44	5.54	23.4	20.0	17.1
alpha-Chlordane	5.60	5.57	5.67	20.1	20.0	0.6
Hexachlorobutadiene	2.05	2.02	2.12		20.0	7.2
Hexachlorobenzene	3.72	3.69	3.79		20.0	3.9
Tetrachloro-m-xylene	3.41	3.37	3.47	42.5	40.0	6.3
Decachlorobiphenyl	8.25	8.22	8.32	34.6	40.0	-13.5
	i					

8081 PESTICIDE CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,1133

PEST MIX		RT W.	INDOW	CALC	NOM	
COMPOUND	RT	FROM	TO TO	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	======	=======	=====
alpha-BHC	4.12	4.09	4.19	21.9	20.0	9.6
beta-BHC	4.51	4.49			20.0	8.4
delta-BHC	4.79	4.77	4.87	25.3	20.0	26.5
gamma-BHC (Lindane)	4.44	4.41			20.0	14.8
Heptachlor	4.86	4.84		19.1	20.0	-4.7
Aldrin	5.18	5.16			20.0	-0.1
Heptachlor epoxide b	5.74	5.72			20.0	12.2
Endosulfan I	6.13	6.11			20.0	7.8
Dieldrin	6.39	6.37			40.0	8.2
4,4'-DDE	6.22	6.20	6.30		40.0	11.6
Endrin	6.67	6.66			40.0	4.3
Endosulfan II	6.87	6.85			40.0	6.4
4,4'-DDD	6.76	6.74	6.84		40.0	5.2
Endosulfan sulfate	7.41	7.40	7.50		40.0	-4.9
4,4'-DDT	7.04	7.02	7.12		40.0	-2.0
Methoxychlor	7.64	7.62			200.0	-7.3
Endrin ketone	7.89	7.87			40.0	-1.0
Endrin aldehyde	7.17	7.15	7.25		40.0	-9.1
gamma-Chlordane	5.93	5.91			20.0	5.5
alpha-Chlordane	6.07	6.05			20.0	9.0
Hexachlorobutadiene	2.12	2.09		19.3	20.0	-3.6
Hexachlorobenzene	4.00	3.98			20.0	16.4
Tetrachloro-m-xylene	3.59	3.57			40.0	11.8
Decachlorobiphenyl	8.92	8.90	9.00	37.8	40.0	-5.5

7E 8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

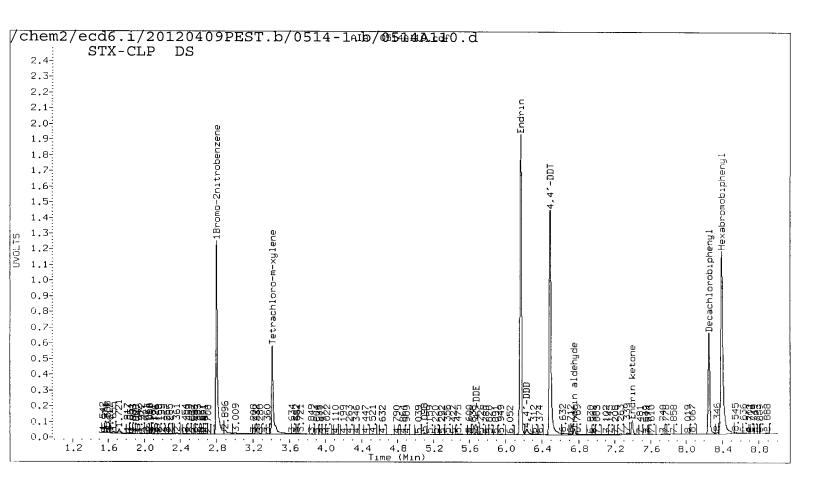
Analysis Date: 15-MAY-2012 16:18 Init. Calib. Date: 09-APR-2012

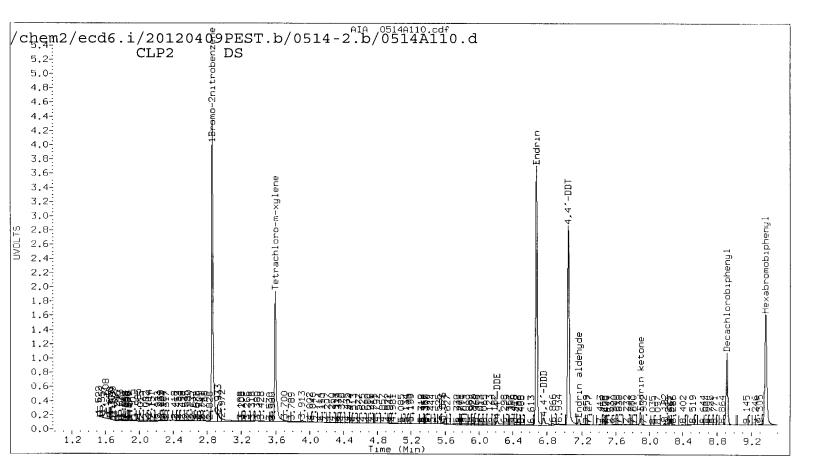
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE Endrin	5.676	68135
4,4'-DDD	6.234	4634228 170539
4,4'-DDT Endrin ketone	6.488 7.392	4099860 246268
Endrin aldehyde	6.753	106357

DDT Percent Breakdown = 5.5 % ((68135+170539) * 100)/(68135+170539+4099860)

Endrin Percent Breakdown = 7.1 % ((106357+246268) * 100)/(106357+246268+4634228)


GC Column: STX-CLP2 ID: 0.53(mm)


COMPOUND	RT	AREA
4,4'-DDE Endrin 4,4'-DDD 4,4'-DDT Endrin ketone Endrin aldehyde	6.217 6.674 6.758 7.044 7.891 7.168	311097 9055959 490580 7498594 462566 274206
marin ardenyde	7.100	2/4200

DDT Percent Breakdown = 9.7 % ((311097+490580) * 100)/(311097+490580+7498594)

Endrin Percent Breakdown = 7.5 % ((274206+462566) * 100)/(274206+462566+9055959)

Form VII Pest-1

UU16:00167

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 Project: P.O.P. T4 MAINTENANCE GC Column: STX-CLP1 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,1636

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	TO	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	========	=======	=====
alpha-BHC	3.85	3.82		22.6	20.0	13.1
beta-BHC	4.19	4.16	4.26		20.0	15.5
delta-BHC	4.34	4.32	4.42	21.3	20.0	6.3
gamma-BHC (Lindane)	4.11	4.08	4.18		20.0	11.0
Heptachlor	4.52	4.49	4.59		20.0	9.0
Aldrin	4.79	4.76	4.86		20.0	18.2
Heptachlor epoxide b	5.35	5.32	5.42		20.0	12.1
Endosulfan I	5.73	5.69	5.79		20.0	-3.1
Dieldrin	5.95	5.92	6.02	46.2	40.0	15.4
4,4'-DDE	5.67	5.65	5.75		40.0	16.3
Endrin	6.17	6.14	6.24		40.0	-3.1
Endosulfan II	6.37	6.34	6.44		40.0	-3.9
4,4'-DDD	6.23	6.20	6.30	40.6	40.0	1.6
Endosulfan sulfate	7.14	7.11	7.21		40.0	-4.9
4,4'-DDT	6.49	6.46			40.0	-4.8
Methoxychlor	6.93	6.90	7.00		200.0	-14.5
Endrin ketone	7.39	7.36	7.46	38.0	40.0	-5.0
Endrin aldehyde	6.75	6.72	6.82		40.0	-14.3
gamma-Chlordane	5.47	5.44	5.54		20.0	19.1
alpha-Chlordane	5.60	5.57	5.67	20.1	20.0	0.4
Hexachlorobutadiene	2.05	2.02	2.12		20.0	8.1
Hexachlorobenzene	3.72	3.69	3.79		20.0	4.7
Tetrachloro-m-xylene	3.41	3.37	3.47		40.0	6.4
Decachlorobiphenyl	8.25	8.22	8.32	34.3	40.0	-14.1
	l					

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 GC Column: STX-CLP2 ID: 0.53 (mm)

Project: P.O.P. T4 MAINTENANCE

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,1636

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	=====	======	========	=======	=====
alpha-BHC	4.11	4.09			20.0	4.5
beta-BHC	4.51	4.49	4.59		20.0	3.3
delta-BHC	4.79	4.77			20.0	23.5 <
gamma-BHC (Lindane)	4.44	4.41			20.0	9.7
Heptachlor	4.86	4.84			20.0	-9.6
Aldrin	5.18	5.16			20.0	-5.1
Heptachlor epoxide b	5.74	5.72			20.0	6.4
Endosulfan I	6.13	6.11			20.0	2.5
Dieldrin	6.39	6.37	6.47		40.0	3.2
4,4'-DDE	6.22	6.20	6.30		40.0	6.8
Endrin	6.67	6.66			40.0	5.8
Endosulfan II	6.87	6.85	6.95		40.0	6.2
4,4'-DDD	6.76	6.74	6.84		40.0	5.9
Endosulfan sulfate	7.41	7.40	7.50		40.0	-3.9
4,4'-DDT	7.04	7.02	7.12		40.0	-1.8
Methoxychlor	7.64	7.62	7.72		200.0	-7.5
Endrin ketone	7.89	7.87	7.97		40.0	-2.0
Endrin aldehyde	7.17	7.15	7.25		40.0	-9.1
gamma-Chlordane	5.93	5.91	6.01		20.0	15.8
alpha-Chlordane	6.07	6.05	6.15		20.0	3.7
Hexachlorobutadiene	2.12	2.09	2.19		20.0	-7.8
Hexachlorobenzene	4.00	3.98	4.08		20.0	11.3
Tetrachloro-m-xylene	3.59	3.57		42.9	40.0	7.2
Decachlorobiphenyl	8.92	8.90	9.00	37.4	40.0	-6.5
	l					

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 GC Column: STX-CLP1 ID: 0.53 (mm) Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,2138

Project: P.O.P. T4 MAINTENANCE

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	=====	========	========	=====
alpha-BHC	3.85	3.82	3.92	22.7	20.0	13.5
beta-BHC	4.19	4.16	4.26	23.2	20.0	15.9
delta-BHC	4.34	4.32	4.42		20.0	5.9
gamma-BHC (Lindane)	4.11	4.08	4.18		20.0	11.3
Heptachlor	4.52	4.49	4.59		20.0	9.2
Aldrin	4.79	4.76	4.86		20.0	18.1
Heptachlor epoxide b	5.35	5.32	5.42		20.0	11.6
Endosulfan I	5.73	5.69	5.79		20.0	-3.7
Dieldrin	5.95	5.92	6.02	46.1	40.0	15.2
4,4'-DDE	5.67	5.65	5.75		40.0	16.9
Endrin	6.17	6.14	6.24		40.0	-3.2
Endosulfan II	6.38	6.34	6.44		40.0	-3.9
4,4'-DDD	6.23	6.20	6.30	40.8	40.0	2.1
Endosulfan sulfate	7.14	7.11	7.21		40.0	-5.4
4,4'-DDT	6.49	6.46	6.56		40.0	-5.3
Methoxychlor	6.93	6.90	7.00		200.0	-15.3
Endrin ketone	7.39	7.36	7.46	37.9	40.0	-5.3
Endrin aldehyde	6.75	6.72	6.82		40.0	-14.6
gamma-Chlordane	5.47	5.44	5.54		20.0	18.2
alpha-Chlordane	5.60	5.57	5.67		20.0	0.3
Hexachlorobutadiene	2.05	2.02	2.12		20.0	6.6
Hexachlorobenzene	3.72	3.69	3.79		20.0	5.0
Tetrachloro-m-xylene	3.41	3.37	3.47		40.0	6.7
Decachlorobiphenyl	8.25	8.22	8.32	34.3	40.0	-14.4
			<u> </u>			

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/15/12,2138

PEST MIX		RT W	INDOW	CALC	NOM	
COMPOUND	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	=====	======	=========	=======	=====
alpha-BHC	4.11	4.09	4.19	22.1	20.0	10.3
beta-BHC	4.51	4.49	4.59	21.6	20.0	7.9
delta-BHC	4.79	4.77	4.87		20.0	30.5
gamma-BHC (Lindane)	4.44	4.41	4.51	23.1	20.0	15.4
Heptachlor	4.86	4.84	4.94		20.0	-5.5
Aldrin	5.18	5.16	5.26		20.0	-0.7
Heptachlor epoxide b	5.74	5.72	5.82		20.0	12.7
Endosulfan I	6.13	6.11	6.21	21.4	20.0	6.8
Dieldrin	6.39	6.37	6.47		40.0	7.2
4,4'-DDE	6.22	6.20	6.30		40.0	11.5
Endrin	6.67	6.66	6.76		40.0	6.2
Endosulfan II	6.87	6.85	6.95		40.0	6.5
4,4'-DDD	6.76	6.74	6.84	42.6	40.0	6.4
Endosulfan sulfate	7.41	7.40	7.50	38.2	40.0	-4.4
4,4'-DDT	7.04	7.02	7.12	39.1	40.0	-2.2
Methoxychlor	7.64	7.62	7.72	183.0	200.0	-8.5
Endrin ketone	7.89	7.87	7.97	39.0	40.0	-2.4
Endrin aldehyde	7.17	7.15	7.25	36.3	40.0	-9.3
gamma-Chlordane	5.93	5.91	6.01	23.8	20.0	19.1
alpha-Chlordane	6.07	6.05	6.15	21.6	20.0	7.9
Hexachlorobutadiene	2.12	2.09	2.19	19.2	20.0	-4.1
Hexachlorobenzene	4.00	3.98	4.08	23.5	20.0	17.4
Tetrachloro-m-xylene	3.59	3.57	3.67	45.0	40.0	12.5
Decachlorobiphenyl	8.92	8.90	9.00	37.2	40.0	-7.1
	<u> </u>				I	

7E

8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

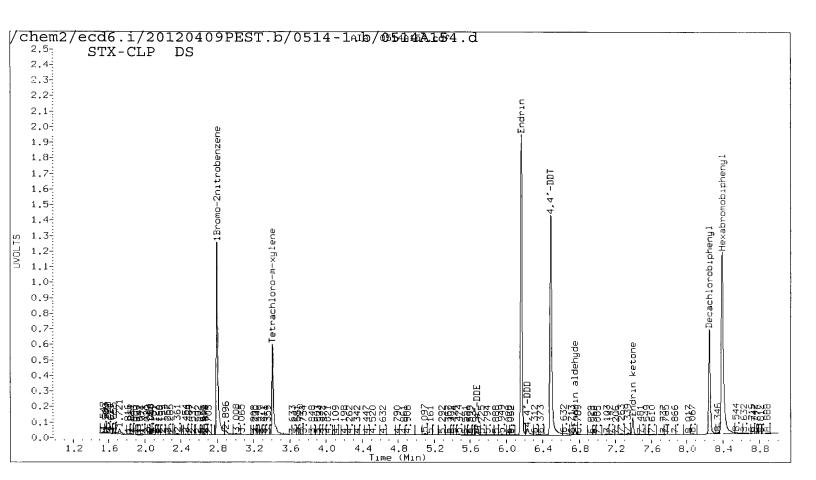
Analysis Date: 16-MAY-2012 05:21 Init. Calib. Date: 09-APR-2012

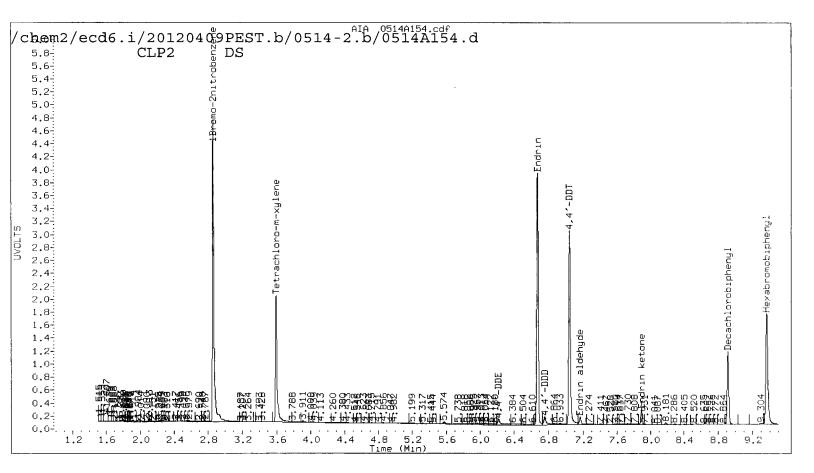
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE	5.676	79870
Endrin	6.167	4648175
4,4'-DDD	6.233	183149
4,4'-DDT	6.488	4095220
Endrin ketone	7.392	292266
Endrin aldehyde	6.753	135797

DDT Percent Breakdown = 6.0 % ((79870+183149) * 100)/(79870+183149+4095220)

Endrin Percent Breakdown = 8.4 % ((135797+292266) * 100)/(135797+292266+4648175)


GC Column: STX-CLP2 ID: 0.53(mm)


4,4'-DDE 6.217 507266 Endrin 6.672 9557188	
Endrin6.67295571884,4'-DDD6.7575704964,4'-DDT7.0428014254Endrin ketone7.890574866Endrin aldehyde7.166357989	

DDT Percent Breakdown = 11.9 % ((507266+570496) * 100)/(507266+570496+8014254)

Endrin Percent Breakdown = 8.9 % ((357989+574866) * 100)/(357989+574866+9557188)

Form VII Pest-1

1016:00133

8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

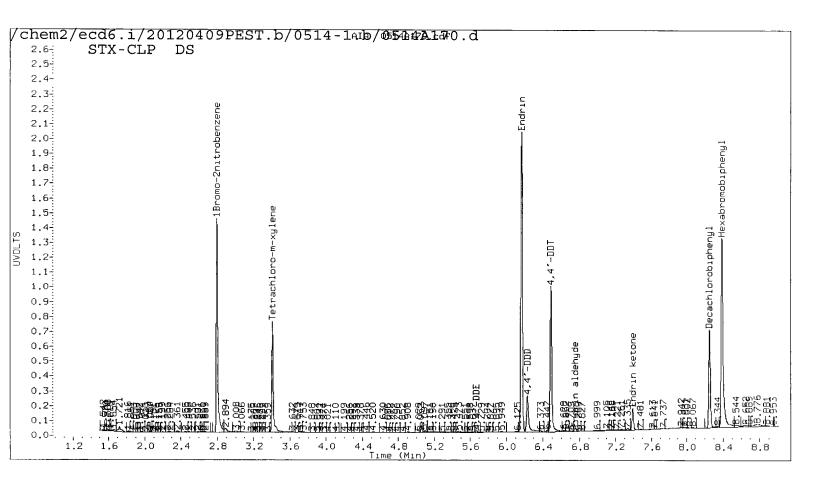
Analysis Date: 16-MAY-2012 10:06 Init. Calib. Date: 09-APR-2012

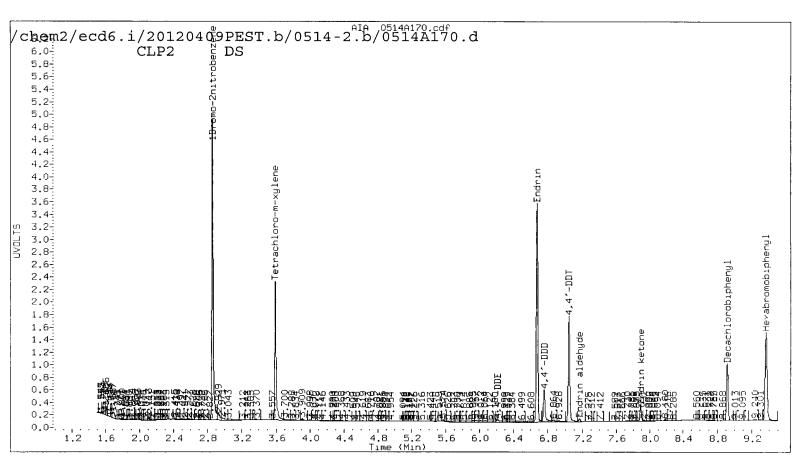
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE	5.672	41239
Endrin	6.167	4805660
4,4'-DDD	6.230	834443
4,4'-DDT	6.487	2586312
Endrin ketone	7.392	364985
Endrin aldehyde	6.752	60175

DDT Percent Breakdown = 25.3 % ((41239+834443) * 100)/(41239+834443+2586312)

Endrin Percent Breakdown = 8.1 % ((60175+364985) * 100)/(60175+364985+4805660)


GC Column: STX-CLP2 ID: 0.53(mm)


4,4'-DDE 6.214 204382	
Endrin6.67285059364,4'-DDD6.75615958404,4'-DDT7.0414228635Endrin ketone7.889656185Endrin aldehyde7.166141091	

DDT Percent Breakdown = 29.9 % ((204382+1595840) * 100)/(204382+1595840+4228635)

Endrin Percent Breakdown = 8.6 % ((141091+656185) * 100)/(141091+656185+8505936)

Form VII Pest-1

UU16:00175

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP1 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/16/12,1024

PEST MIX		RT W	INDOW	CALC	NOM	1	
COMPOUND	RT	FROM	TO	AMOUNT	AMOUNT	%D	
				(ng)	(ng)		
=======================================	======	======		========	======	=====	
alpha-BHC	3.85	3.82			20.0	11.9	
beta-BHC	4.18	4.16			20.0	6.7]
delta-BHC	4.34	4.32	4.42		20.0	19.1	1
gamma-BHC (Lindane)	4.11	4.08			20.0	13.0	
Heptachlor	4.52	4.49	4.59		20.0	0.1	
Aldrin	4.79					15.6	
Heptachlor epoxide b	5.35	5.32				11.0	
Endosulfan I	5.72	5.69			20.0	-8.8	
Dieldrin	5.95	5.92	6.02		40.0	12.9	
4,4'-DDE	5.67	5.65				20.7	< -
Endrin	6.17	6.14				1.1	
Endosulfan II	6.37	6.34			40.0	1.3	
4,4'-DDD	6.23	6.20	6.30		40.0	26.6	< ·
Endosulfan sulfate	7.14	7.11	7.21		40.0	-1.3	
4,4'-DDT	6.49	6.46				-38.6	
Methoxychlor	6.93	6.90			200.0	-39.0	
Endrin ketone	7.39	7.36	7.46		40.0	-10.0	
Endrin aldehyde	6.75	6.72			40.0	-14.0	
gamma-Chlordane	5.47	5.44	5.54		20.0	23.4	<
alpha-Chlordane	5.60	5.57			20.0	0.3	
Hexachlorobutadiene	2.05	2.02	2.12		20.0	5.6	
Hexachlorobenzene	3.72	3.69			20.0	4.8	
Tetrachloro-m-xylene	3.41	3.37		37.8	40.0	-5.4	
Decachlorobiphenyl	8.25	8.22	8.32	33.6	40.0	-15.9	
l			 				

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53 (mm)

Init. Calib. Date: 04/09/12

Lab Ccal ID: INDAE

Date/Time Analyzed: 05/16/12,1024

PEST MIX	T	RT W	INDOW	CALC	NOM	1	
COMPOUND	RT	FROM	TO	AMOUNT	AMOUNT	%D	ł
				(ug/L)	(ug/L)		
=======================================	======	======	======	=======	=======	=====	1
alpha-BHC	4.11	4.09	4.19	21.8	20.0	9.2	1
beta-BHC	4.51	4.49	4.59	20.9	20.0	4.3	1
delta-BHC	4.79	4.77	4.87		20.0	38.7	< -
gamma-BHC (Lindane)	4.43	4.41	4.51	22.9	20.0	14.6	ł
Heptachlor	4.86		4.94		20.0	-13.5	
Aldrin	5.18	5.16	5.26	19.3	20.0	-3.7	
Heptachlor epoxide b	5.74	5.72	5.82	20.7	20.0	3.5	1
Endosulfan I	6.12	6.11	6.21	20.4	20.0	2.0	
Dieldrin	6.38	6.37	6.47		40.0	1.6	
4,4'-DDE	6.21	6.20	6.30		40.0	8.2	
Endrin	6.67	6.66			40.0	13.6	
Endosulfan II	6.86	6.85	6.95	47.6	40.0	19.0	
4,4'-DDD	6.75	6.74	6.84	54.2	40.0	35.4	< -
Endosulfan sulfate	7.41	7.40			40.0	4.7	
4,4'-DDT	7.04	7.02	7.12	25.9	40.0	-35.3	< -
Methoxychlor	7.64		7.72		200.0	-33.0	< -
Endrin ketone	7.89				40.0	-7.5	
Endrin aldehyde	7.17		7.25	37.8	40.0	-5.5	
gamma-Chlordane	5.93	5.91	6.01	22.8	20.0	13.9	1
alpha-Chlordane	6.06	6.05	6.15		20.0	3.1	
Hexachlorobutadiene	2.11	2.09	2.19	19.0	20.0	-4.8	
Hexachlorobenzene	4.00	3.98	4.08	23.5	20.0	17.6	
Tetrachloro-m-xylene	3.59	3.57	3.67	44.8	40.0	12.0	
Decachlorobiphenyl	8.92	8.90	9.00	37.2	40.0	-7.1	

7E

8081 DDT/ENDRIN BREAKDOWN VERIFICATION SUMMARY

Lab ID: DS

ARI Job No.: 20120409PEST

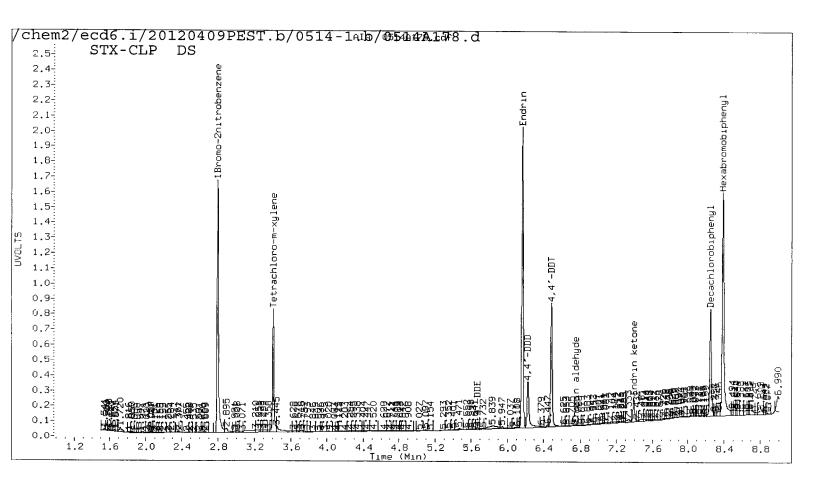
Analysis Date: 16-MAY-2012 12:29 Init. Calib. Date: 09-APR-2012

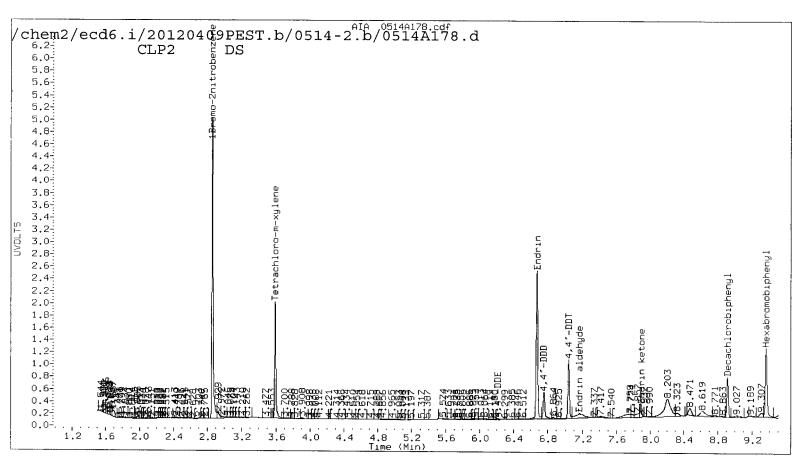
GC Column: STX-CLP1 ID: 0.53(mm)

COMPOUND	RT	AREA
4,4'-DDE Endrin	5.671 6.167	42270 4561687
4,4'-DDD	6.229	959780
4,4'-DDT Endrin ketone	6.486 7.392	1957789 428090
Endrin aldehyde	6.752	31909

DDT Percent Breakdown = 33.9 % ((42270+959780) * 100)/(42270+959780+1957789)

Endrin Percent Breakdown = 9.2 % ((31909+428090) * 100)/(31909+428090+4561687)


GC Column: STX-CLP2 ID: 0.53(mm)


COMPOUND	RT	AREA
4,4'-DDE Endrin 4,4'-DDD 4,4'-DDT Endrin ketone Endrin aldehyde	6.213 6.672 6.755 7.041 7.889 7.167	83770 6131985 1320675 2329058 579386 964579
_		

DDT Percent Breakdown = 37.6 % ((83770+1320675) * 100)/(83770+1320675+2329058)

Endrin Percent Breakdown = 20.1 % ((964579+579386) * 100)/(964579+579386+6131985)

Form VII Pest-1

UU15:00179

PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP1 ID: 0.53(mm)

Instrument ID: ECD6

Init. Calib. Date: 04/09/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
			İ		AREA	RT	AREA	RT
			======	======	=========	=======	==========	=======
			ICAL	MIDPT	4065981	2.814	5201182	8.422
			UPPER	LIMIT	8131962	2.864	10402364	8.472
				LIMIT	2032990	2.764	2600591	8.372
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	=======================================	=========	=== ==== ==	======	========	======	==========	=======
01		DS 1878-2	04/09/12	1604	4180862	2.814	4997426	8.421
02	ZZZZZ	ZZZZZ	04/09/12	1622	4384393	2.814	5303728	8.419
03		INDAE 1922-5	04/09/12	1640	4065981	2.814	5201182	8.422
04		INDAA	04/09/12	1658	4331944	2.814	5237996	8.423
05		INDAB	04/09/12	1715	4011658	2.814	4909286	8.424
06		INDAC	04/09/12	1733	4035775	2.815	4959976	8.423
07		INDAD	04/09/12	1751	3727447	2.814	4581822	8.423
80		INDAF	04/09/12	1809	3776224	2.814	4668865	8.422
09		INDAG	04/09/12	1827	3636146	2.814	4515836	8.421
10	ZZZZZ	ZZZZZ	04/09/12	1844	4021979	2.814	5172803	8.414
11	ZZZZZ	ZZZZZ	04/09/12	1902	4282083	2.812	5492520	8.409
12		TOXAPH 1924-	04/09/12	1920	4085909	2.814	5016891	8.423
13		WNDE 1938-1	04/09/12	1938	3956891	2.815	4785711	8.424
14		WNDA	04/09/12	1956	4240372	2.814	5212711	8.421
15		WNDB	04/09/12	2013	4297467	2.815	5318442	8.422
16		WNDC	04/09/12	2031	4362697	2.814	5372628	8.422
17		WNDD	04/09/12	2049	4529122	2.814	5473634	8.421
18		WNDF	04/09/12	2107	4111764	2.814	5001246	8.421
19		WNDG	04/09/12	2125	4279954	2.814	5299972	8.421
20	ZZZZZ	ZZZZZ	04/09/12	2142	4253819	2.814	5183779	8.423
21	ZZZZZ	ZZZZZ	04/09/12	2200	4208844	2.814	5204235	8.421
22	ZZZZZ	ZZZZZ	04/09/12	2218	4375060	2.814	5349331	8.423
23		DS	05/15/12	0706	3054487	2.798	4204814	8.393
24		INDAE	05/15/12	0723	3017422	2.798	4422107	8.392
25		TOXAPH 2500	05/15/12	0741	3305158	2.799	4728423	8.393
26		WNDE	05/15/12	0759	3268286	2.798	4443997	8.392
	UU16MBS1	UU16MBS1	05/15/12	0817	5214091	2.796	7297022	8.389
	UU16LCSS1	UU16LCSS1	05/15/12	0835	4997045	2.796	7001141	8.389
29	UU16LCSDS1	UU16LCSDS1	05/15/12	0852	5077279	2.797	7210521	8.389
30	ZZZZZ	ZZZZZ	05/15/12	0910	4690079	2.799	6643359	8.394
31	ZZZZZ	ZZZZZ	05/15/12	0928	4663469	2.800	6997860	8.393
32	ZZZZZ	ZZZZZ	05/15/12	0946	4611532	2.799	6935629	8.393
33	ZZZZZ	ZZZZZ	05/15/12	1004	6568877	2.796	7189610	8.392
34	ZZZZZ	ZZZZZ	05/15/12	1022	6524610	2.797	7156899	8.391
35	ZZZZZ	ZZZZZ	05/15/12	1039	2796056	2.799	4030503	8.392

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min

IS2 = Hexabromobiphenyl

UU16:00180

PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP1 ID: 0.53(mm) Instrument ID: ECD6

Init. Calib. Date: 04/09/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
			ĺ		AREA	RT	AREA	RT
			=======		==========	=======	================	=======
			ICAL MIDPT		4065981	2.814	5201182	8.422
			UPPER LIMIT		8131962	2.864	10402364	8.472
			LOWER		2032990	2.764	2600591	8.372
-	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	================	==============	==========	======	=========	=======	=========	=======
36	ZZZZZ	ŻZZZZ	05/15/12	1057	2858021	2.799	4159388	8.393
37		DS	05/15/12	1115	2739259	2.799	3800500	8.393
38		INDAE	05/15/12	1133	2463540	2.800	3619327	8.392
39		TOXAPH 2500	05/15/12	1151	3159520	2.799	4562089	8.393
40		WNDE	05/15/12	1209	2782628	2.799	3983591	8.394
	ZZZZZ	ZZZZZ	05/15/12	1226	5145283	2.800	7402348	8.394
	ZZZZZ	ZZZZZ	05/15/12	1244	5091761	2.797	7755843	8.389
43		ZZZZZ	05/15/12	1302	5588062	2.796	9144284	8.388
	ZZZZZ	ZZZZZ	05/15/12	1320	5626862	2.796	7608170	8.387
45	ZZŻZZ	ZZZZZ	05/15/12	1338	5195019	2.795	7351207	8.388
46	ZZZZZ	ZZZZZ	05/15/12	1355	6072000	2.797	7843229	8.389
47	401A/DP	UU16A	05/15/12	1413	4487632	2.796	6521611	8.388
48	401B/DP	UU16B	05/15/12	1431	4582211	2.797	6603421	8.387
49	401C/DP	UU16C	05/15/12	1449	4611229	2.797	6569947	8.388
50	401A/NSM	UU16D	05/15/12	1507	4458700	2.797	6477685	8.387
51	ZZZZZ	ZZZZZ	05/15/12	1524	6726913	2.796	6773428	8.391
52	ZZZZZ	ZZZZZ	05/15/12	1542	2992799	2.798	4224598	8.393
53	ZZZZZ	ZZZZZ	05/15/12	1600	2848908	2.799	4037026	8.392
54		DS	05/15/12	1618	2869659	2.799	3898388	8.393
55		INDAE	05/15/12	1636	2570880	2.799	3717399	8.393
56		TOXAPH 2500	05/15/12	1653	3173168	2.799	4505678	8.393
57		WNDE	05/15/12	1711	2904859	2.799	4053456	8.393
58	401B/NSM	UU16E	05/15/12	1729	5184125	2.797	7257466	8.389
	401C/NSM	UU16F	05/15/12	1747	4502442	2.797	6453888	8.388
	410A/DP	UU16G	05/15/12	1805	4623765	2.797	6667178	8.388
	410B/DP	UU16H	05/15/12	1822	4561395	2.797	6473309	8.388
	410C/DP	UU16I	05/15/12	1840	4535820	2.797	6755389	8.387
	410A/NSM	UU16J	05/15/12	1858	4560770	2.796	6542190	8.388
	410B/NSM	UU16K	05/15/12	1916	4596453	2.797	6643756	8.387
	410B/NSM MS	UU16KMS	05/15/12	1934	4552648	2.797	6574579	8.387
	410B/NSM MSD		05/15/12	1952	4564362	2.797	6657060	8.387
	410C/NSM	UU16L	05/15/12	2009	4295027	2.797	6072295	8.388
	ZZZZZ	ZZZZZ	05/15/12	2005	6616908	2.797	7088845	
	ZZZZZ	ZZZZZ	05/15/12	2027	2919624	2.797	4117517	8.392
	ZZZZZ	ZZZZZ	05/15/12	2103	3024971	2.799	4372598	8.392 8.393
70			03/13/14	<u>2</u> 103 	JU2+2/1	2.133	4312390 	0.373
	I (I	l	I	I		l	

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min

IS2 = Hexabromobiphenyl

UU16:00181

PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE
GC Column: STX-CLP1 ID: 0.53(mm)	Instrument ID: ECD6

Init. Calib. Date: 04/09/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
					AREA	RT	AREA	RT
			=======	======	=========	======	===============	=======
				MIDPT	4065981	2.814	5201182	8.422
			UPPER		8131962	2.864	10402364	8.472
			LOWER	LIMIT	2032990	2.764	2600591	8.372
	CLIENT	LAB	DATE		IS1		 IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	=============	==================	=============	======	=======	=======	=========	=======
71		DS	05/15/12	2121	2916735	2.799	3993060	8.393
72		INDAE	05/15/12	2138	2663840	2.799	3844567	8.393
73		DS	05/16/12	0521	2912747	2.798	4032449	8.393
74		INDAE	05/16/12	0539	2678171	2.798	3972322	8.392
75		TOXAPH 2500	05/16/12	0557	3105654	2.798	4435496	8.393
76		WNDE	05/16/12	0615	2996182	2.798	4260600	8.393
77	401A/DP	UU16A	05/16/12	0633	4854071	2.794	6894613	8.396
78	401B/DP	UU16B	05/16/12	0650	4893421	2.794	7164272	8.393
79	401C/DP	UU16C	05/16/12	0708	4704670	2.794	6357749	8.393
80	401A/NSM	UU16D	05/16/12	0726	4366690	2.794	6671502	8.395
81	401C/NSM	UU16F	05/16/12	0744	5448515	2.794	7350131	8.395
82	410A/DP	UU16G	05/16/12	0802	5190253	2.795	6917040	8.392
83	410B/DP	UU16H	05/16/12	0819	4565004	2.795	6501896	8.389
84	410C/DP	UU16I	05/16/12	0837	4744056	2.794	7199968	8.394
85	410A/NSM	UU16J	05/16/12	0855	5551311	2.794	8062328	8.394
86	410B/NSM	UU16K	05/16/12	0913	4596963	2.794	6792423	8.390
87	ŻZZZZ	ZZZZZ	05/16/12	0931	6225236	2.796	6098784	8.390
88	ZZZZZ	ZZZZZ	05/16/12	0948	3243616	2.797	4152060	8.390
89		DS	05/16/12	1006	3121376	2.797	3925812	8.390
90		INDAE	05/16/12	1024	3016677	2.797	4033257	8.390
91	410B/NSM MS	UU16KMS	05/16/12	1042	4606831	2.794	6899324	8.391
								<u></u>

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min
IS2 = Hexabromobiphenyl

* Indicates value outside QC Limits

PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No.: UU16

Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53(mm)

Instrument ID: ECD6

Init. Calib. Date: 04/09/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
			İ		AREA	RT	AREA	RT
			=======		=========	=======	==========	=======
			ICAL	MIDPT	13489775	2.879	7611062	9.411
			UPPER	LIMIT	26979550	2.929	15222124	9.461
			LOWER	LIMIT	6744888	2.829	3805531	9.361
			i i					
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	=======================================	==================	==========	======	=======================================	======	=========	=======
01		DS 1878-2	04/09/12	1604	12836781	2.879	7264392	9.411
02	ZZZZZ	ZZZZZ	04/09/12	1622	13904689	2.879	7705210	9.410
03		INDAE 1922-5	04/09/12	1640	13489775	2.879	7611062	9.411
04		INDAA	04/09/12	1658	13588685	2.879	7709640	9.413
05		INDAB	04/09/12	1715	12498845	2.879	7192528	9.413
06		INDAC	04/09/12	1733	12839386	2.880	7330569	9.412
07		INDAD	04/09/12	1751	11658983	2.879	6702587	9.412
08		INDAF	04/09/12	1809	12029213	2.879	6968039	9.411
09		INDAG	04/09/12	1827	11327539	2.879	6662082	9.411
10	ZZZZZ	ZZZZZ	04/09/12	1844	12756271	2.879	7569631	9.408
11	ZZZZZ	ZZZZZ	04/09/12	1902	13789940	2.878	8074028	9.404
12		TOXAPH 1924-	04/09/12	1920	12918332	2.879	7219586	9.412
13		WNDE 1938-1	04/09/12	1938	12661297	2.879	7235238	9.413
14		WNDA	04/09/12	1956	13492559	2.879	7746564	9.411
15		WNDB	04/09/12	2013	13499763	2.879	7908740	9.411
16		WNDC	04/09/12	2031	14149521	2.879	8001827	9.412
17		WNDD	04/09/12	2049	14092686	2.879	8317415	9.411
18		WNDF	04/09/12	2107	13223519	2.879	7561168	9.411
19		WNDG	04/09/12	2125	13605469	2.879	7837962	9.411
20	ZZZZZ	ZZZZZ	04/09/12	2142	13921837	2.879	7903688	9.411
21	ZZZZZ	ZZZZZ	04/09/12	2200	13169398	2.879	7824009	9.411
22	ZZZZZ	ZZZZZ	04/09/12	2218	14257571	2.879	8143706	9.411
23	-	DS	05/15/12	0706	10889762	2.860	5616685	9.366
24		INDAE	05/15/12	0723	10292474	2.860	5787112	9.366
25		TOXAPH 2500	05/15/12	0741	11011979	2.860	5975373	9.367
26		WNDE	05/15/12	0759	10886849	2.859	6094683	9.365
27	UU16MBS1	UU16MBS1	05/15/12	0817	15948591	2.858	8841517	9.363
28	UU16LCSS1	UU16LCSS1	05/15/12	0835	15233720	2.858	8394392	9.363
29	UU16LCSDS1	UU16LCSDS1	05/15/12	0852	15431113	2.858	8602697	9.363
30	ZZZZZ	ZZZZZ	05/15/12	0910	15400516	2.860	8215875	9.368
31	ZZZZZ	ZZZZZ	05/15/12	0928	15647583	2.860	8621480	9.367
32	ZZZZZ	ZZZZZ	05/15/12	0946	15879628	2.860	8538594	9.366
33	ZZZZZ	ZZZZZ	05/15/12	1004	14517367	2.858	8155274	9.365
34	ZZZZZ	ZZZZZ	05/15/12	1022	14239218	2.858	8167378	9.364
35	ZZZZZ	ZZZZZ	05/15/12	1039	9144355	2.859	5070048	9.366
	l							
						·		· /

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min

IS2 = Hexabromobiphenyl

UU16:00183

PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE

GC Column: STX-CLP2 ID: 0.53(mm) Instrument ID: ECD6

Init. Calib. Date: 04/09/12

.

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

			1		IS1		IS2	
					AREA	RT	AREA	RT
			============		========	=======	=======================================	=======
					13489775	2.879	7611062	9.411
				LIMIT	26979550	2.929	15222124	9.461
				LIMIT	6744888	2.829	3805531	9.361
						,	0000001	5.501
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	=======================================	===========	=======	======	==========	======	=========	=======
36	ZZZZZ	ZZZZZ	05/15/12	1057	9541722	2.860	5360545	9.367
37		DS	05/15/12	1115	9163054	2.860	4967623	9.367
38		INDAE	05/15/12	1133	8258514	2.860	4636159	9.365
39		TOXAPH 2500	05/15/12	1151	10253612	2.860	5600991	9.365
40		WNDE	05/15/12	1209	9470705	2.860	5115452	9.366
41	ZZZZZ	ZZZZZ	05/15/12	1226	15191454	2.860	8670927	9.367
42	ZZZZZ	ZZZZZ	05/15/12	1244	13054071	2.858	8248045	9.363
43	ZZZZZ	ZZZZZ	05/15/12	1302	14491951	2.857		
44	ZZZZZ	ZZZZZ	05/15/12	1320	11956120	2.856	39573*	9.428
45		ZZZZZ	05/15/12	1338	12305396	2.856	8343175	9.363
46		ZZZZZ	05/15/12	1355	15384286	2.857	9297258	9.363
47	401A/DP	UU16A	05/15/12	1413	13404345	2.858	7226903	9.362
48	401B/DP	UU16B	05/15/12	1431	13593652	2.858	7461001	9.362
49	401C/DP	UU16C	05/15/12	1449	14216723	2.858	7608987	9.363
50	401A/NSM	UU16D	05/15/12	1507	13657042	2.858	7065453	9.362
51	ZZZZZ	ZZZZZ	05/15/12	1524	14780629	2.857	7518939	9.364
52	ZZZZZ	ZZZZZ	05/15/12	1542	9514127	2.859	5323305	9.365
53	ZZZZZ	ZZZZZ	05/15/12	1600	9335272	2.860	5144350	9.365
54		DS	05/15/12	1618	9619855	2.860	5089015	9.366
55		INDAE	05/15/12	1636	8930655	2.859	4802188	9.366
56		TOXAPH 2500	05/15/12	1653	10467810	2.859	5691236	9.367
57		WNDE	05/15/12	1711	9573829	2.859	5478025	9.366
58	401B/NSM	UU16E	05/15/12	1729	15690635	2.858	8811381	9.364
59	401C/NSM	UU16F	05/15/12	1747	13983322	2.858	7611564	9.363
60	410A/DP	UU16G	05/15/12	1805	14466312	2.858	8011472	9.362
61	410B/DP	UU16H	05/15/12	1822	14620446	2.858	7912679	9.362
62	410C/DP	UU16I	05/15/12	1840	14232973	2.858	7591209	9.363
63	410A/NSM	UU16J	05/15/12	1858	14069438	2.857	7500712	9.362
64	410B/NSM	UU16K	05/15/12	1916	14559218	2.858	7630023	9.361
65	410B/NSM MS	UU16KMS	05/15/12	1934	14242553	2.858	7541144	9.362
	410B/NSM MSD	UU16KMSD	05/15/12	1952	14301938	2.858	7566756	9.361
	410C/NSM	UU16L	05/15/12	2009	13768846	2.858	7356992	9.363
	ZZZZZ	ZZZZZ	05/15/12	2027	14667306	2.857	8043782	9.365
	ZZZZZ	ZZZZZ	05/15/12	2045	9533507	2.859	5217002	9.365
	ZZZZZ	ZZZZZ	05/15/12	2103	9949741	2.860	5622618	9.365
			,				2022010	2.205
		I		·	!			

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min

IS2 = Hexabromobiphenyl

UU16:00184

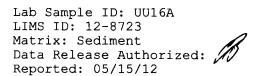
PESTICIDE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P. T4 MAINTENANCE
GC Column: STX-CLP2 ID: 0.53(mm)	Instrument ID: ECD6

Init. Calib. Date: 04/09/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					ISI		IS2	
					AREA	RT	AREA	RT
			=======	======	======================================	======	=======================================	=======
				MIDPT	13489775	2.879	7611062	9.411
			UPPER	LIMIT	26979550	2.929	15222124	9.461
			LOWER	LIMIT	6744888	2.829	3805531	9.361
			l					
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	=======================================	=======================================	=============	======	========	======	========	=======
71		DS	05/15/12	2121	9792308	2.859	5265201	9.366
72		INDAE	05/15/12	2138	9052430	2.860	5041751	9.366
73		DS	05/16/12	0521	11111023	2.859	5603202	9.365
74		INDAE	05/16/12	0539	9567049	2.859	5488413	9.365
75		TOXAPH 2500	05/16/12	0557	10889874	2.859	6008204	9.365
76		WNDE	05/16/12	0615	10543859	2.858	6114002	9.365
77	401A/DP	UU16A	05/16/12	0633	12875682	2.855	5264415	9.366
78	401B/DP	UU16B	05/16/12	0650	13032888	2.855	5522993	9.364
79	401C/DP	UU16C	05/16/12	0708	12484561	2.855	5211462	9.365
80	401A/NSM	UU16D	05/16/12	0726	11983227	2.854	4714681	9.366
81	401C/NSM	UU16F	05/16/12	0744	13808327	2.855	5439832	9.365
82	410A/DP	UU16G	05/16/12	0802	13085021	2.855	5563209	9.365
83	410B/DP	UU16H	05/16/12	0819	12659337	2.855	5559256	9.363
84	410C/DP	UU16I	05/16/12	0837	12139963	2.855	5040030	9.365
85	410A/NSM	UU16J	05/16/12	0855	13334813	2.855	5658035	9.365
86	410B/NSM	UU16K	05/16/12	0913	12315212	2.855	5105113	9.363
87	ZZZZZ	ZZZZZ	05/16/12	0931	14039783	2.856	5809474	9.364
88	ZZZZZ	ZZZZZ	05/16/12	0948	10304486	2.857	4701857	9.363
89		DS	05/16/12	1006	10041581	2.857	4456828	9.362
90		INDAE	05/16/12	1024	9909454	2.857	4731776	9.363
91	410B/NSM MS	UU16KMS	05/16/12	1042	12529765	2.855	5503928	9.363


IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- .05 min IS2 = Hexabromobiphenyl

* Indicates value outside QC Limits

PCB Analysis Report and Summary QC Forms

ARI Job ID: UU16

.

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 15:24 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 45.1%

CAS Number	Analyte	MDL	RL	Result	
12674-11-2	Aroclor 1016	1.0	3.9	< 3.9 U	
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U	
12672-29-6	Aroclor 1248	1.3	3.9	12 P	
11097-69-1	Aroclor 1254	1.3	12	< 12 Y	
11096-82-5	Aroclor 1260	1.3	3.9	10	
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U	
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U	
3732 4- 23-5	Aroclor 1262	1.3	3.9	< 3.9 U	
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U	

Reported in µg/kg (ppb)

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	86.0%

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: M Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 15:45 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 35.0%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.97	3.8	< 3.8 U
53469-21-9	Aroclor 1242	1.3	3.8	< 3.8 U
12672-29-6	Aroclor 1248	1.3	19	< 19 Y
11097-69-1	Aroclor 1254	1.3	19	< 19 Y
11096-82-5	Aroclor 1260	1.3	3.8	16
11104-28-2	Aroclor 1221	1.3	3.8	< 3.8 U
11141-16-5	Aroclor 1232	1.3	3.8	< 3.8 U
37324-23-5	Aroclor 1262	1.3	3.8	< 3.8 U
11100-14-4	Aroclor 1268	1.3	3.8	< 3.8 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	89.0%
Tetrachlorometaxylene	87.0%

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:06 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 52.4%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.99	3.9	< 3.9 U
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U
12672-29-6	Aroclor 1248	1.3	5.8	< 5.8 Y
11097-69-1	Aroclor 1254	1.3	5.8	< 5.8 Y
11096-82-5	Aroclor 1260	1.3	3.9	5.5
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	83.2%
Tetrachlorometaxylene	93.2%

Page 1 of 1

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:27 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401A/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 24.8%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.99	3.9	< 3.9 U
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U
12672-29-6	Aroclor 1248	1.3	3.9	7.9
11097-69-1	Aroclor 1254	1.3	9.7	< 9.7 Y
11096-82-5	Aroclor 1260	1.3	3.9	9.1
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	99.0%
Tetrachlorometaxylene	91.8%

Page 1 of 1

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 16:48 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401B/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.1 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 19.6%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.97	3.8	< 3.8 U
53469-21-9	Aroclor 1242	1.3	3.8	< 3.8 U
12672-29-6	Aroclor 1248	1.3	3.8	< 3.8 U
11097-69-1	Aroclor 1254	1.3	3.8	< 3.8 U
11096-82-5	Aroclor 1260	1.3	3.8	< 3.8 U
11104-28-2	Aroclor 1221	1.3	3.8	< 3.8 U
11141-16-5	Aroclor 1232	1.3	3.8	< 3.8 U
37324-23-5	Aroclor 1262	1.3	3.8	< 3.8 U
11100-14-4	Aroclor 1268	1.3	3.8	< 3.8 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	102%
Tetrachlorometaxylene	100%

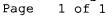
Page 1 of 1

Lab Sample ID: UU16F LIMS ID: 12-8728 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 17:50 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 401C/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12


Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 44.8%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	1.0	3.9	< 3.9 U
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U
12672-29-6	Aroclor 1248	1.3	6.8	< 6.8 Y
11097-69-1	Aroclor 1254	1.3	9.8	< 9.8 Y
11096-82-5	Aroclor 1260	1.3	3.9	6.6
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.2%
Tetrachlorometaxylene	90.5%

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:11 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410A/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.9 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 44.1%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.99	3.9	< 3.9 U
53469-21-9	Aroclor 1242	1.3	9.7	< 9.7 Y
12672-29-6	Aroclor 1248	1.3	3.9	< 3.9 U
11097-69-1	Aroclor 1254	1.3	5.8	< 5.8 Y
11096-82-5	Aroclor 1260	1.3	3.9	5.7
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	91.0%
Tetrachlorometaxylene	94.0%

Page 1 of 1

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:32 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410B/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.3 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 27.4%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.96	3.8	< 3.8 U
53469-21-9	Aroclor 1242	1.3	5.6	< 5.6 Y
12672-29-6	Aroclor 1248	1.3	3.8	< 3.8 U
11097-69-1	Aroclor 1254	1.3	3.8	< 3.8 U
11096-82-5	Aroclor 1260	1.3	3.8	3.8
11104-28-2	Aroclor 1221	1.3	3.8	< 3.8 U
11141-16-5	Aroclor 1232	1.3	3.8	< 3.8 U
37324-23-5	Aroclor 1262	1.3	3.8	< 3.8 U
11100-14-4	Aroclor 1268	1.3	3.8	< 3.8 U

Reported in µg/kg (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	98.8%
Tetrachlorometaxylene	105%

FORM I

Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 18:53 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Sample ID: 410C/DP SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.6 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	1.0	4.0	< 4.0 U
53469-21-9	Aroclor 1242	1.3	4.0	< 4.0 U
12672-29-6	Aroclor 1248	1.3	20	< 20 Y
11097-69-1	Aroclor 1254	1.3	20	< 20 Y
11096-82-5	Aroclor 1260	1.3	4.0	16
11104-28-2	Aroclor 1221	1.3	4.0	< 4.0 U
11141-16-5	Aroclor 1232	1.3	4.0	< 4.0 U
37324-23-5	Aroclor 1262	1.3	4.0	< 4.0 U
11100-14-4	Aroclor 1268	1.3	4.0	< 4.0 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	95.8%
Tetrachlorometaxylene	93.5%

Page 1 of 1

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized: A Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 19:56 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410A/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.6 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 40.4%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	1.0	4.0	< 4.0 U
53469-21-9	Aroclor 1242	1.3	4.0	< 4.0 U
12672-29-6	Aroclor 1248	1.3	9.9	< 9.9 Y
11097-69-1	Aroclor 1254	1.3	9.9	< 9.9 Y
11096-82-5	Aroclor 1260	1.3	4.0	9.3
11104-28-2	Aroclor 1221	1.3	4.0	< 4.0 U
11141-16-5	Aroclor 1232	1.3	4.0	< 4.0 U
37324-23-5	Aroclor 1262	1.3	4.0	< 4.0 U
11100-14-4	Aroclor 1268	1.3	4.0	< 4.0 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	82.0%
Tetrachlorometaxylene	85.5%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

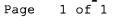
Page 1 of 1

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 20:17 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410B/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12


Sample Amount: 12.8 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 25.7%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	0.99	3.9	< 3.9 U
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U
12672-29-6	Aroclor 1248	1.3	5.8	< 5.8 Y
11097-69-1	Aroclor 1254	1.3	5.8	< 5,8 Y
11096-82-5	Aroclor 1260	1.3	3.9	4.9
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	99.5%
Tetrachlorometaxylene	98.8%

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized:

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 14:00 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410C/NSM SAMPLE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 13.0 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 10.0 Silica Gel: No

Percent Moisture: 31.7%

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	9.8	38	< 38 U
53469-21-9	Aroclor 1242	13	38	< 38 U
12672-29-6	Aroclor 1248	13	38	160 P
11097-69-1	Aroclor 1254	13	38	180
11096-82-5	Aroclor 1260	13	38	95
11104-28-2	Aroclor 1221	13	38	< 38 U
11141-16-5	Aroclor 1232	13	38	< 38 U
37324-23-5	Aroclor 1262	13	38	< 38 U
11100-14-4	Aroclor 1268	13	38	< 38 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	132%
Tetrachlorometaxylene	116%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

	DCBP	DCBP	TCMX	TCMX	
Client ID	% REC	LCL-UCL	% REC	LCL-UCL	TOT OUT
401A/DP	83.5%	24-127	86.0%	34-109	0
401B/DP	89.0%	24-127	87.0%	34-109	0
401C/DP	83.2%	24-127	93.2%	34-109	0
401A/NSM	99.0%	24-127	91.8%	34-109	0
401B/NSM	102%	24-127	100%	34-109	0
401C/NSM	88.2%	24-127	90.5%	34-109	0
410A/DP	91.0%	24-127	94.0%	34-109	0
410B/DP	98.8%	24-127	105%	34-109	0
MB-051212	98.2%	48-123	97.8%	43-107	0
LCS-051212	103%	48-123	100%	43-107	0
LCSD-051212	102%	48-123	96.8%	43-107	0
410C/DP	95.8%	24-127	93.5%	34-109	0
410C/DP MS	99.8%	24-127	95.5%	34-109	0
410C/DP MSD	108%	24-127	95.5%	34-109	0
410A/NSM	82.0%	24-127	85.5%	34-109	0
410B/NSM	99.5%	24-127	98.8%	34-109	0
410C/NSM	132%*	24-127	116%*	34-109	2

Microwave (MARS) Control Limits PCBSMM Prep Method: SW3546 Log Number Range: 12-8723 to 12-8734

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted MS/MSD: 05/12/12

Date Analyzed MS: 05/14/12 19:14 MSD: 05/14/12 19:35 Instrument/Analyst MS: ECD7/JGR MSD: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: 410C/DP MS/MSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount MS: 12.7 g-dry-wt MSD: 12.7 g-dry-wt Final Extract Volume MS: 2.5 mL MSD: 2.5 mL Dilution Factor MS: 1.00 MSD: 1.00 Silica Gel: No

Percent Moisture: 33.9%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 4.0 U	83.1	99.4	83.6%	82.5	99.2	83.2%	0.7%
Aroclor 1260	15.9	84.9	99.4	69.4%	94.8	99.2	79.5%	11.0%

Results reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 19:14 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410C/DP MATRIX SPIKE

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result	
12674-11-2	Aroclor 1016	1.0	4.0		
53469-21-9	Aroclor 1242	1.3	4.0	< 4.0 U	
12672-29-6	Aroclor 1248	1.3	69	< 69 Y	
11097-69-1	Aroclor 1254	1.3	49	< 49 Y	
11096-82-5	Aroclor 1260	1.3	4.0		
11104-28-2	Aroclor 1221	1.3	4.0	< 4.0 U	
11141-16-5	Aroclor 1232	1.3	4.0	< 4.0 U	
37324-23-5	Aroclor 1262	1.3	4.0	< 4.0 U	
11100-14-4	Aroclor 1268	1.3	4.0	< 4.0 U	

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	99.8%
Tetrachlorometaxylene	95.5%

Page 1 of 1

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 19:35 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: 410C/DP MATRIX SPIKE DUP

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Sample Amount: 12.7 g-dry-wt Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 33.9%

CAS Number	Analyte	MDL	RL	Result	
12674-11-2	Aroclor 1016	1.0	3.9		
53469-21-9	Aroclor 1242	1.3	3.9	< 3.9 U	
12672-29-6	Aroclor 1248	1.3	69	< 69 Y	
11097-69-1	Aroclor 1254	1.3	49	< 49 Y	
11096-82-5	Aroclor 1260	1.3	3.9		
11104-28-2	Aroclor 1221	1.3	3.9	< 3.9 U	
11141-16-5	Aroclor 1232	1.3	3.9	< 3.9 U	
37324-23-5	Aroclor 1262	1.3	3.9	< 3.9 U	
11100-14-4	Aroclor 1268	1.3	3.9	< 3.9 U	

Reported in µg/kg (ppb)

Decachlorobiphenyl	108%
Tetrachlorometaxylene	95.5%

Page 1 of 1

Lab Sample ID: LCS-051212 LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted LCS/LCSD: 05/12/12

Date Analyzed LCS: 05/14/12 14:42 LCSD: 05/14/12 15:03 Instrument/Analyst LCS: ECD7/JGR LCSD: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: LCS-051212 LCS/LCSD

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.5 g-dry-wt LCSD: 12.5 g-dry-wt Final Extract Volume LCS: 2.50 mL LCSD: 2.50 mL Dilution Factor LCS: 1.00 LCSD: 1.00 Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	87.3	101	86.4%	83.5	101	82.7%	4.4%
Aroclor 1260	82.9	101	82.1%	78.6	101	77.8%	

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	103%	102%
Tetrachlorometaxylene	100%	96.8%

Results reported in µg/kg (ppb) RPD calculated using sample concentrations per SW846. 4 PCB METHOD BLANK SUMMARY BLANK NO.

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC

ARI Job No.: UU16

Lab Sample ID: UU16MBS1

Date Extracted: 05/12/12

Date Analyzed: 05/14/12

Time Analyzed: 1421

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANC

Lab File ID: 0514A016

Matrix: SOLID

Instrument ID: ECD7

GC Columns: ZB5/ZB35

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED
	SAMPLE NO.		
	410C/NSM	UU16L	05/14/12
02	UU16LCSS1	UU16LCSS1	05/14/12
03	UU16LCSDS1	UU16LCSDS1	05/14/12
04	401A/DP	UU16A	05/14/12
05	401B/DP	UU16B	05/14/12
06	401C/DP	UU16C	05/14/12
07	401A/NSM	UU16D	05/14/12
08	401B/NSM	UU16E	05/14/12
09	401C/NSM	UU16F	05/14/12
10	410A/DP	UU16G	05/14/12
11	410B/DP	UU16H	05/14/12
12	410C/DP	UU16I	05/14/12
13	410C/DP MS	UU16IMS	05/14/12
14	410C/DP MSD	UU16IMSD	05/14/12
15	410A/NSM	UU16J	05/14/12
16	· · ·	UU16K	05/14/12

ALL RUNS ARE DUAL COLUMN

page 1 of 1

FORM IV PCB

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MB-051212 LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

Date Extracted: 05/12/12 Date Analyzed: 05/14/12 14:21 Instrument/Analyst: ECD7/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Sample ID: MB-051212 METHOD BLANK

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Sample Amount: 12.5 g Final Extract Volume: 2.5 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
12674-11-2	Aroclor 1016	1.0	4.0	< 4.0 U
53469-21-9	Aroclor 1242	1.4	4.0	< 4.0 U
12672-29-6	Aroclor 1248	1.4	4.0	< 4.0 U
11097-69-1	Aroclor 1254	1.4	4.0	< 4.0 U
11096-82-5	Aroclor 1260	1.4	4.0	< 4.0 U
11104-28-2	Aroclor 1221	1.4	4.0	< 4.0 U
11141-16-5	Aroclor 1232	1.4	4.0	< 4.0 U
37324-23-5	Aroclor 1262	1.4	4.0	< 4.0 U
11100-14-4	Aroclor 1268	1.4	4.0	< 4.0 U

Reported in µg/kg (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	98.2%
Tetrachlorometaxylene	97.8%

6F

8082 INITIAL CALIBRATION OF AROCLOR 1016/1260

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI JOD NO.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	Instrument ID: ECD7
Calibration Date: 05/05/12	

SURROGATES

 RT	win	LVL1		LVL2		LVL3	 LVL4	 LVL5	 LVL6	 MEAN	 %RSD
TCX 6.18- DCB 14.76-											

Aroclor-1016	LVL1	LVL2	LVL3	LVL4	LVL5	LVL6	MEAN	%RSD
Peak RT WIN	.02	0.05	0.1	.25	0.5	1.0		R^2
1 8.19- 8.39	0.0245	0.0234	0.0248	0.0231	0.0227	0.0217	0.0234	4.9
2 8.67- 8.87	0.0826	0.0799	0.0852	0.0798	0.0787	0.0752	0.0802	4.2
3 8.85- 9.05	0.0329	0.0317	0.0334	0.0309	0.0302	0.0288	0.0313	5.5
4 8.98- 9.18	0.0227	0.0227	0.0228	0.0213	0.0208	0.0201	0.0217	5.3

AROCLOR AVERAGE %RSD = 5.0

Aroclor-1260 Peak RT WIN	LVL1 .02		LVL2 0.05	 	LVL3 0.1		LVL4 .25		LVL5 0.5		LVL6 1.0	 	MEAN		%RSD R^2
1 11.73-11.93 2 12.33-12.53			0.0714		0.0740	1	0.0684		0.0661		0.0637		0.0700		7.0
2 12.55 12.55 3 12.65-12.85 4 13.38-13.58	0.0486		0.0461		0.0483		0.0441		0.0436	1	0.0418		0.0454	ļ	5.9 5.0
4 13.38-13.58 5 13.48-13.68			0.0573		0.0602		0.0557		0.0548		0.0203		0.0228		5.0

AROCLOR AVERAGE %RSD = 6.6

6F 8082 INITIAL CALIBRATION OF AROCLOR 1016/1260

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Instrument ID: ECD7
Calibration Date: 05/05/12	

SURROGATES

RT WIN LVL1	LVL2	LVL3	LVL4	LVL5	LVL6	MEAN	 %RSD
TCX 6.31- 6.51 1.0436 DCB 15.09-15.29 1.0035							

rocl	or-10	16	LVL1		LVL2		LVL3		LVL4		LVL5		LVL6		MEAN		%RSD
eak	RT	WIN	.02	Ι	0.05	1	0.1	ļ	.25		0.5	ł	1.0	I		I	R^2
1	8.44-	8.64	0.0488		0.0436		0.0436	1	0.0376		0.0358		0.0335		0.0405		14.3
2	9.17-	9.37	0.0967		0.0850		0.0871	1	0.0766		0.0750	1	0.0724		0.0821		11.2
3	9.59-	9.79	0.0251		0.0227	1	0.0230		0.0198		0.0190		0.0180		0.0213	1	12.9
4	9.70-	9.90	0.0308		0.0272		0.0269		0.0225	1	0.0211	1	0.0197	1	0.0247	1	17.2

AROCLOR AVERAGE %RSD = 13.9

Aroclor-1260	LVL1	LVL2	LVL3	LVL4	LVL5	LVL6	MEAN	%RSD
Peak RT WIN	.02	0.05	0.1	.25	0.5	1.0	1	R^2
1 12.63-12.83	 0.0878	0.0764	0.0754	0.0664	0.0635	0.0610	0.0718	14.0
2 13.40-13.60		0.1131	0.1149	0.1043	0.1021	0.1009	0.1105	9.3
3 13.90-14.10		0.0768	0.0772	0.0686	0.0662	0.0643	0.0734	11.7
4 14.46-14.66	0.0317	0.0277	0.0283	0.0261	0.0244	0.0229	0.0269	11.6

AROCLOR AVERAGE %RSD = 11.6

6G

Lab Name: ANALYTICAL RESOURCES INC

Client: HART CROWSER

ARI Job No.: UU16

Project: P.O.P T4 MAINTENANCE

GC Column: ZB5

Instrument ID: ECD7

Calibration Date: 05/05/12

Aroclor-1221 Peak RT RT WIN | Cal Factor Cal ------16.7436.64-6.840.0092526.9546.85-7.050.0069237.0776.98-7.180.02309 _____ Aroclor-1232 Peak RT RT WIN Factor

 1
 8.298
 8.20-8.40
 0.00924

 2
 8.784
 8.68-8.88
 0.03144

 3
 8.959
 8.86-9.06
 0.01240

 4
 10.328
 10.23-10.43
 0.01402

 Aroclor-1242 Peak RT RT WIN Factor ----**-**

 1
 8.291
 8.19 8.39
 0.01773

 2
 8.778
 8.68 8.88
 0.06072

 3
 8.951
 8.85 9.05
 0.02366

 4
 10.567
 10.47-10.67
 0.02161

 _ _ _ _ _ _ _ _ _ . _____ Aroclor-1248 Peak RT RT WIN Factor 19.3519.25-9.450.0243229.6819.58-9.780.02973310.32410.22-10.420.04424410.56910.47-10.670.03425 ------

FORM VI PCB-2A

page 1 of 2

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE

GC Column: ZB5

Instrument ID: ECD7

Calibration Date: 05/05/12

	Aroclo	Cal	
Peak	RT	RT WIN	Factor
3 4	10.327 10.648 11.032 11.170 11.887	10.55-10.75 10.93-11.13	0.03773 0.05204 0.03280 0.06214 0.04145
	Aroclo	r-1262	
Peak		RT WIN	Cal Factor
2 3 4	13.591		0.07165 0.05175 0.13578 0.04564 0.04827
	Aroclo	r-1268	
Peak	RT	RT WIN	Cal Factor
2 3			0.14082 0.12785 0.10801 0.33215

FORM VI PCB-2B

page 2 of 2

6G

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Instrument ID: ECD7

Calibration Date: 05/05/12

-----Aroclor-1221 Peak RT RT WIN Factor -----------17.2417.14-7.340.0115027.5427.44-7.640.0070937.6807.58-7.780.0211547.7677.67-7.870.00403 . **.** Aroclor-1232 Peak RT RT WIN Factor 18.5488.45-8.650.0174129.2789.18-9.380.0324239.7049.60-9.800.00873410.25710.16-10.360.01310 Aroclor-1242 Cal Peak RT RT WIN Factor 18.5388.44-8.640.0297029.2679.17-9.370.0607139.6959.59-9.790.01605411.15711.06-11.260.02494 -----Aroclor-1248 Peak RT RT WIN Factor 19.8059.71-9.910.02817210.24910.15-10.350.03101310.79910.70-10.900.03150411.15811.06-11.260.04057

FORM VI PCB-2A

page 1 of 2

6G

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE

GC Column: ZB35

Instrument ID: ECD7

Calibration Date: 05/05/12

	Aroclo	r-1254	Cal
Peak	RT	RT WIN	Factor
2 3 4	10.862 11.032 11.568 11.720 12.504	10.93-11.13 11.47-11.67	0.02995 0.03823 0.03044 0.06468 0.03899
	Aroclo	 r-1262	
Peak	RT RT	RT WIN	Cal Factor
2 3 4	13.513	13.17-13.37 13.41-13.61 13.86-14.06	0.06891 0.05805 0.13025 0.04951 0.07946
	Aroclo	r-1268	
Peak	K RT	RT WIN	Cal Factor
	13.955 14.010 14.322 14.912	13.91-14.11 14.22-14.42	0.13235 0.12424 0.09837 0.30876

FORM VI PCB-2B

page 2 of 2

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 Project: P.O.P T4 MAINTENANCE GC Column: ZB5 Intrument: ECD7 Init. Calib. Date: 05/05/12

Lab Standard ID: AR1242

Date Analyzed :05/14/12

Time Analyzed :1209

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
Aroclor-1242-1	8.29	8.19	8.39	========	=======	=====
				257.0	250.0	2.8
Aroclor-1242-2	8.78	8.68	8.88	255.2	250.0	2.1
Aroclor-1242-3	8.95	8.85	9.05	257.1	250.0	2.8
Aroclor-1242-4	10.57	10.47	10.67	263.6	250.0	5.4

AVERAGE %D = 3.3

FORM VII PCB

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1242

Date Analyzed :05/14/12

Time Analyzed :1209

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	۶D
Aroclor-1242-1 Aroclor-1242-2 Aroclor-1242-3 Aroclor-1242-4	===== 8.54 9.27 9.69 11.16	===== 8.44 9.17 9.59 11.06	8.64 9.37 9.79 11.26	======= 256.9 257.9 260.4 262.1	250.0 250.0 250.0 250.0 250.0	===== 2.8 3.2 4.1 4.8

AVERAGE D = 3.7

FORM VII PCB

7F

PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :1230

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	=====	=====	========	=======	====
Aroclor-1016-1	8.29	8.19	8.39	254.9	250.0	2.0
Aroclor-1016-2	8.78	8.67	8.87	254.5	250.0	1.8
Aroclor-1016-3	8.95	8.85	9.05	254.0	250.0	1.6
Aroclor-1016-4	9.08	8.98	9.18	250.8	250.0	0.3
					•	•

AVERAGE D = 1.4

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :1230

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	TO	AMOUNT (ng)	AMOUNT (ng)	%D
=======================================	=====	====== '	======	========	=========	====
Aroclor-1260-1	11.83	11.73	11.93	243.8	250.0	-2.5
Aroclor-1260-2	12.43	12.33	12.53	247.1	250.0	-1.2
Aroclor-1260-3	12.75	12.65	12.85	250.2	250.0	0.1
Aroclor-1260-4	13.48	13.38	13.58	253.7	250.0	1.5
Aroclor-1260-5	13.58	13.48	13.68	252.9	250.0	1.1
	•	•		•	•	

AVERAGE %D = 1.3

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :1230

		RT W	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	=====	=====	=====	========	=======	=====
Aroclor-1016-1	8.54	8.44	8.64	247.5	250.0	-1.0
Aroclor-1016-2	9.27	9.17	9.37	252.3	250.0	0.9
Aroclor-1016-3	9.69	9.59	9.79	258.1	250.0	3.2
Aroclor-1016-4	9.80	9.70	9.90	254.0	250.0	1.6

AVERAGE D = 1.7

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :1230

		RT W	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	۶D
				(ng)	(ng)	
=======================================	======	=====	======	=======	=======	====
Aroclor-1260-1	12.73	12.63	12.83	234.7	250.0	-6.1
Aroclor-1260-2	13.50	13.40	13.60	238.2	250.0	-4.7
Aroclor-1260-3	14.00	13.90	14.10	246.8	250.0	-1.3
Aroclor-1260-4	14.56	14.46	14.66	254.2	250.0	1.7
	•	•	•			

AVERAGE D = 3.5

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1248

Date Analyzed :05/14/12

Time Analyzed :1708

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	۶D
Aroclor-1248-1 Aroclor-1248-2 Aroclor-1248-3 Aroclor-1248-4	9.35 9.68 10.32 10.57	9.25 9.58 10.22 10.47	===== 9.45 9.78 10.42 10.67	255.7 255.6 256.4 258.9	250.0 250.0 250.0 250.0 250.0	===== 2.3 2.2 2.6 3.6

AVERAGE D = 2.7

FORM VII PCB

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1248

Date Analyzed :05/14/12

Time Analyzed :1708

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
	=====	=====	======	=======	=======	=====
Aroclor-1248-1	9.81	9.71	9.91	259.4	250.0	3.8
Aroclor-1248-2	10.25	10.15	10.35	222.8	250.0	-10.9
Aroclor-1248-3	10.80	10.70	10.90	257.8	250.0	3.1
Aroclor-1248-4	11.16	11.06	11.26	259.1	250.0	3.6

AVERAGE %D = 5.4

FORM VII PCB

7F

PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI JOD NO.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :1729

		RT WI	ENDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	=====	======	========	=======	=====
Aroclor-1016-1	8.29	8.19	8.39	259.6	250.0	3.8
Aroclor-1016-2	8.78	8.67	8.87	258.7	250.0	3.5
Aroclor-1016-3	8.95	8.85	9.05	259.0	250.0	3.6
Aroclor-1016-4	9.08	8.98	9.18	257.1	250.0	2.8
	•		•		•	•

AVERAGE %D = 3.4

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :1729

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
=======================================	======	======	=====	=======	=======	====
Aroclor-1260-1	11.83	11.73	11.93	243.9	250.0	-2.4
Aroclor-1260-2	12.43	12.33	12.53	245.3	250.0	-1.9
Aroclor-1260-3	12.75	12.65	12.85	248.0	250.0	-0.8
Aroclor-1260-4	13.48	13.38	13.58	251.7	250.0	0.7
Aroclor-1260-5	13.58	13.48	13.68	247.6	250.0	-1.0
		•				,

AVERAGE D = 1.4

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :1729

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	TO	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
======================================	======	======	======	=========	=======	=====
Aroclor-1016-1	8.54	8.44	8.64	244.5	250.0	-2.2
Aroclor-1016-2	9.27	9.17	9.37	249.4	250.0	-0.2
Aroclor-1016-3	9.69	9.59	9.79	254.8	250.0	1.9
Aroclor-1016-4	9.80	9.70	9.90	249.5	250.0	-0.2
			•			•

AVERAGE %D = 1.1

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :1729

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	%D
		:		(ng)	(ng)	
=======================================	======	=====	=====	========	=======	====
Aroclor-1260-1	12.73	12.63	12.83	233.9	250.0	-6.4
Aroclor-1260-2	13.50	13.40	13.60	236.6	250.0	-5.4
Aroclor-1260-3	14.00	13.90	14.10	242.3	250.0	-3.1
Aroclor-1260-4	14.56	14.46	14.66	243.2	250.0	-2.7
	•					•

AVERAGE %D = 4.4

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER ARI Job No.: UU16 Project: P.O.P T4 MAINTENANCE GC Column: ZB5 Intrument: ECD7 Init. Calib. Date: 05/05/12

Lab Standard ID: AR1254

Date Analyzed :05/14/12

Time Analyzed :2038

=======================================	====			(ng)	(ng)	
			======	=======	========	=====
Aroclor-1254-1 1	.0.33	10.23	10.43	246.9	250.0	-1.2
Aroclor-1254-2 1	0.65	10.55	10.75	246.9	250.0	-1.2
Aroclor-1254-3 1	1.03	10.93	11.13	246.9	250.0	-1.2
Aroclor-1254-4 1	.1.17	11.07	11.27	246.8	250.0	-1.3
Aroclor-1254-5 1	.1.89	11.79	11.99	244.7	250.0	-2.1

AVERAGE D = 1.4

FORM VII PCB

7F

PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1254

Date Analyzed :05/14/12

Time Analyzed :2038

		RT W	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	======	======	======	=======	========	=====
Aroclor-1254-1	10.86	10.76	10.96	246.4	250.0	-1.4
Aroclor-1254-2	11.03	10.93	11.13	248.9	250.0	-0.4
Aroclor-1254-3	11.57	11.47	11.67	240.2	250.0	-3.9
Aroclor-1254-4	11.72	11.62	11.82	248.4	250.0	-0.6
Aroclor-1254-5	12.50	12.40	12.60	243.8	250.0	-2.5
	•	•	•	•	1	

AVERAGE D = 1.8

FORM VII PCB

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :2059

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
Aroclor-1016-1 Aroclor-1016-2 Aroclor-1016-3 Aroclor-1016-4	===== 8.29 8.77 8.95 9.08	8.19 8.67 8.85 8.98	===== 8.39 8.87 9.05 9.18	255.1 255.0 254.1 252.6	250.0 250.0 250.0 250.0 250.0	2.0 2.0 1.6 1.0

AVERAGE D = 1.6

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :2059

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	ТО	AMOUNT	AMOUNT	۶D
				(ng)	(ng)	
=======================================	======	=====	=====	=======	=======	=====
Aroclor-1260-1	11.83	11.73	11.93	246.3	250.0	-1.5
Aroclor-1260-2	12.43	12.33	12.53	246.3	250.0	-1.5
Aroclor-1260-3	12.75	12.65	12.85	248.4	250.0	-0.6
Aroclor-1260-4	13.48	13.38	13.58	252.0	250.0	0.8
Aroclor-1260-5	13.58	13.48	13.68	246.1	250.0	-1.6

AVERAGE D = 1.2

7F

PCB CALIBRATION VERIFICATION SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER
ARI JOD NO.: UU16	Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	Intrument: ECD7
Init. Calib. Date: 05/05/12	

Lab Standard ID: AR1660

Date Analyzed :05/14/12

Time Analyzed :2059

		RT WI	INDOW	CALC	NOM	
COMPOUND/PEAK NO.	RT	FROM	то	AMOUNT	AMOUNT	%D
				(ng)	(ng)	
=======================================	=====	======	======	=========	=======	=====
Aroclor-1016-1	8.54	8.44	8.64	242.9	250.0	-2.8
Aroclor-1016-2	9.27	9.17	9.37	247.1	250.0	-1.2
Aroclor-1016-3	9.69	9.59	9.79	250.3	250.0	0.1
Aroclor-1016-4	9.80	9.70	9.90	244.5	250.0	-2.2

AVERAGE %D = 1.6

Date Analyzed :05/14/12

Lab Standard ID: AR1660

Time Analyzed :2059

COMPOUND/PEAK NO.	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	۶D
Aroclor-1260-1 Aroclor-1260-2 Aroclor-1260-3 Aroclor-1260-4	===== 12.73 13.50 14.00 14.56	13.40 13.90	13.60 14.10	234.4 238.2 238.9 240.3	250.0 250.0 250.0 250.0 250.0	===== -6.2 -4.7 -4.4 -3.9

AVERAGE D = 4.8

FORM 8

Lab Name: ANALYTICA	AL RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16		Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	ID: 0.53(mm)	Instrument ID: ECD7

Init. Calib. Date: 05/05/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

			1		IS1		IS2	
					AREA	RT	AREA	RT
			======		==========		AREA =========	KI =======
				MIDPT	5841740	3.323	4847662	
				UPPER LIMIT		3.423	9695324	
			LOWER		11683480 2920870	3.223	2423831	
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	============	============	===========	======	========	=======	========	=======
01	ZZZZZ	ZZZZZ	05/05/12	1422	5670267	3.321	4775962	15.124
02		0.25 PPM AR1	05/05/12	1443	5841740	3.323	4847662	15.125
03		0.02 PPM AR1	05/05/12	1504	5821073	3.323	4777383	15.125
04		0.05 PPM AR1	05/05/12	1525	5746462	3.319	4750609	15.125
05		1 PPM AR1660	05/05/12	1546	5789041	3.325	4842531	15.125
06		0.1 PPM AR16	05/05/12	1607	5827040	3.324	4857527	15.125
07		0.5 PPM AR16	05/05/12	1628	5722910	3.322	4807520	15.124
08		AR1242	05/05/12	1649	5675100	3.321	4740399	15.125
09		AR1248	05/05/12	1709	5828769	3.320	4895491	15.124
10		AR1254	05/05/12	1730	5816856	3.320	4905256	15.124
11		AR2162	05/05/12	1751	5876832	3.320	4941004	15.124
12		AR3268	05/05/12	1812	5840399	3.320	4930920	15.123
13	ZZZZZ	ZZZZZ	05/05/12	1833	5792855	3.317	4886943	15.125
14	ZZZZZ	ZZZZZ	05/05/12	1854	5881762	3.319	4969703	15.124
15	ZZZZZ	ZZZZZ	05/05/12	1915	5801335	3.318	4888022	15.124
16	ZZZZZ	ZZZZZ	05/05/12	1936	5892179	3.322	4967896	15.125
17	ZZZZZ	ZZZZZ	05/05/12	1957	5836839	3.319	4954937	15.125
18	ZZZZZ	ZZZZZ	05/05/12	2018	5864354	3.320	4993833	15.124
19		AR1242	05/14/12	1209	5341280	3.318	4660861	15.118
20		AR1660	05/14/12	1230	4371788	3.316	3928537	15.119
21	ZZZZZ	ZZZZZ	05/14/12	1251	15878325*	3.316	14895615*	15.119
22	ZZZZZ	ZZZZZ	05/14/12	1312	15996592*	3.314	15006907*	15.118
23	410C/NSM	UU16L	05/14/12	1400	5100486	3.282	4679008	15.116
24	UU16MBS1	UU16MBS1	05/14/12	1421	5691490	3.301	5430027	15.117
25	UU16LCSS1	UU16LCSS1	05/14/12	1442	5763494	3.309	5500717	15.119
26	UU16LCSDS1	UU16LCSDS1	05/14/12	1503	5773985	3.314	5556818	15.120
27	401A/DP	UU16A	05/14/12	1524	5421234	3.312	4860842	15.119
28	401B/DP	UU16B	05/14/12	1545	5570710	3.315	4931091	15.118
	401C/DP	UU16C	05/14/12	1606	5484224	3.312	4747451	15.119
30	401A/NSM	UU16D	05/14/12	1627	5461428	3.317	4733769	15.119
31	401B/NSM	UU16E	05/14/12	1648	5586686	3.316	5056856	15.120
32		AR1248	05/14/12	1708	5311700	3.315	4681312	15.120
					l		l	

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- 0.1 min IS2 = Hexabromobiphenyl

FORM 8 PCB INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL	RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16		Project: P.O.P T4 MAINTENANCE
GC Column: ZB5	ID: 0.53(mm)	Instrument ID: ECD7

Init. Calib. Date: 05/05/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
					AREA	RT	AREA	RT
			=======		========	======	=========	======
			ICAL	MIDPT	5841740	3.323	4847662	15.125
			UPPER	LIMIT	11683480	3.423	9695324	15.225
			LOWER	LIMIT	2920870	3.223	2423831	15.025
								İ İ
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	===========	==========	==========	======	========		==========	======
33		AR1660	05/14/12	1729	4456309	3.314	3980283	15.118
34	401C/NSM	UU16F	05/14/12	1750	5574103	3.315	4823691	15.118
35	410A/DP	UU16G	05/14/12	1811	5687770	3.314	4924783	15.118
36	410B/DP	ии16н	05/14/12	1832	5336108	3.311	4946562	15.118
37	410C/DP	UU16I	05/14/12	1853	5259463	3.315	4648333	15.118
38	410C/DP MS	UU16IMS	05/14/12	1914	5248083	3.313	4729637	15.117
39	410C/DP MSD	UU16IMSD	05/14/12	1935	5249735	3.312	4550277	15.117
40	410A/NSM	UU16J	05/14/12	1956	5294836	3.314	4599245	15.118
41	410B/NSM	UU16K	05/14/12	2017	5515464	3.313	4873587	15.118
42		AR1254	05/14/12	2038	5719374	3.314	4798340	15.118
43		AR1660	05/14/12	2059	4538113	3.314	3913783	15.118
			, .,					
		· ·		·	· /			I I

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- 0.1 min IS2 = Hexabromobiphenyl

FORM 8

PCB INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ANALYTICAL RESOURCES INC	Client: HART CROWSER				
ARI Job No.: UU16	Project: P.O.P T4 MAINTENANCE				
GC Column: ZB35 ID: 0.53(mm)	Instrument ID: ECD7				
Init. Calib. Date: 05/05/12					

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
					AREA	RT	AREA	RT
			=======		============	=======		=======
				MIDPT	9156558	4.174	6845779	15.782
			UPPER	LIMIT	18313116	4.274	13691558	15.882
			LOWER		4578279	4.074	3422890	15.682
			ĺ					
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	===========	===========	==========	======	========	=======	============	=======
01	ZZZZZ	ZZZZZ	05/05/12	1422	8788529	4.174	6633649	15.783
02		0.25 PPM AR1	05/05/12	1443	9156558	4.174	6845779	15.782
03		0.02 PPM AR1	05/05/12	1504	9090803	4.174	6809435	15.782
04		0.05 PPM AR1	05/05/12	1525	9058816	4.173	6784358	15.783
05		1 PPM AR1660	05/05/12	1546	8875438	4.175	6866104	15.782
06		0.1 PPM AR16	05/05/12	1607	9078945	4.174	6921355	15.782
07		0.5 PPM AR16	05/05/12	1628	8943986	4.175	6823780	15.783
08		AR1242	05/05/12	1649	8736979	4.173	6696727	15.783
09		AR1248	05/05/12	1709	9041877	4.173	6930163	15.781
10		AR1254	05/05/12	1730	8969858	4.173	6933460	15.782
11		AR2162	05/05/12	1751	8970246	4.172	7017153	15.781
12		AR3268	05/05/12	1812	9076587	4.173	6967699	15.780
13	ZZZZZ	ZZZZZ	05/05/12	1833	9038755	4.169	6967518	15.782
14	ZZZZZ	ZZZZZ	05/05/12	1854	9156078	4.170	7050442	15.782
	ZZZZZ	ZZZZZ	05/05/12	1915	8986504	4.171	6937342	15.781
16	ZZZZZ	ZZZZZ	05/05/12	1936	9187197	4.173	7034723	15.782
17	ZZZZZ	ZZZZZ	05/05/12	1957	9050043	4.172	7038220	15.782
18	ZZZZZ	ZZZZZ	05/05/12	2018	9155686	4.173	7046106	15.781
19		AR1242	05/14/12	1209	8447584	4.168	6946093	15.775
20		AR1660	05/14/12	1230	7041855	4.165	5831874	15.775
21	ZZZZZ	ZZZZZ	05/14/12	1251	24732276*	4.164	21715326*	15.774
22		ZZZZZ	05/14/12	1312	24932308*	4.164	21954650*	15.775
23	410C/NSM	UU16L	05/14/12	1400	7900017	4.114	6837096	15.770
24	UU16MBS1	UU16MBS1	05/14/12	1421	8947260	4.149	7622609	15.774
25	UU16LCSS1	UU16LCSS1	05/14/12	1442	9053355	4.158	7781260	15.775
26	UU16LCSDS1	UU16LCSDS1	05/14/12	1503	9298612	4.163	7909474	15.775
27	401A/DP	UU16A	05/14/12	1524	8777800	4.161	7522983	15.775
28	, ,	UU16B	05/14/12	1545	8898985	4.164	7587798	15.775
29	/	UU16C	05/14/12	1606	9092704	4.161	7532210	15.776
30	401A/NSM	UU16D	05/14/12	1627	8752083	4.166	7267635	15.776
31	401B/NSM	UU16E	05/14/12	1648	8931361	4.165	7277036	15.776
32		AR1248	05/14/12	1708	8594973	4.164	6920550	15.776
				_ <u></u>				

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- 0.1 min IS2 = Hexabromobiphenyl

		FORM	8			
PCB	INTERNAL	STANDARD	AREA	AND	RT	SUMMARY

Lab Name: ANALYTICAL	RESOURCES INC	Client: HART CROWSER
ARI Job No.: UU16		Project: P.O.P T4 MAINTENANCE
GC Column: ZB35	ID: 0.53(mm)	Instrument ID: ECD7

Init. Calib. Date: 05/05/12

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

					IS1		IS2	
					AREA	RT	AREA	RT
			======	=======	=========	======	========	=======
			ICAL	MIDPT	9156558	4.174	6845779	15.782
			UPPER	LIMIT	18313116	4.274	13691558	15.882
			LOWER	LIMIT	4578279	4.074	3422890	15.682
	CLIENT	LAB	DATE		IS1		IS2	
	SAMPLE NO.	SAMPLE ID	ANALYZED	TIME	AREA	RT	AREA	RT
	===================	===============	==========	======	========	=======	=========	=======
33		AR1660	05/14/12	1729	7329389	4.163	5881567	15.774
34	401C/NSM	UU16F	05/14/12	1750	8619324	4.163	7339524	15.774
35	410A/DP	UU16G	05/14/12	1811	9044355	4.163	7491316	15.774
36	410B/DP	UU16Н	05/14/12	1832	8568499	4.161	7194097	15.774
37	410C/DP	UU16I	05/14/12	1853	8367132	4.163	7010938	15.774
38	410C/DP MS	UU16IMS	05/14/12	1914	8286286	4.162	7083840	15.773
39	410C/DP MSD	UU16IMSD	05/14/12	1935	8141751	4.162	6817923	15.774
40	410A/NSM	UU16J	05/14/12	1956	8177140	4.163	7147415	15.773
41	410B/NSM	UU16K	05/14/12	2017	8863343	4.163	7335191	15.774
42		AR1254	05/14/12	2038	8973555	4.162	6941796	15.774
43		AR1660	05/14/12	2059	7327936	4.163	5738586	15.775
								ĺ
		1		·	۱ ۱ ۱		I	I I

IS1 = 1-Bromo-2-Nitrobenzene RT Window = RT +/- 0.1 min
IS2 = Hexabromobiphenyl

TPHD Analysis Report and Summary QC Forms

ARI Job ID: UU16

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1 Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Data Release Authorized:

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	MDL	RL	Result
MB-051112 12-8723	Method Blank HC ID:	05/11/12	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	1.3 1.6	5.0 10	< 5.0 U < 10 U 92.6%
UU16A 12-8723	401A/DP HC ID:	05/11/12	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	2.3 2.8	8.9 18	< 8.9 U < 18 U 63.6%
UU16B 12-8724	401B/DP HC ID: DRO/MOI	05/11/12 FOR OIL	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	1.9 2.4	7.5 15	21 32 73.8%
UU16C 12-8725	401C/DP HC ID: DIESEL/	05/11/12 'MOTOR OIL	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	2.5 3.1	9.8 20	11 32 73.9%
UU16G 12-8729	410A/DP HC ID : DRO/MO1	05/11/12 COR OIL	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	2.1 2.6	8.2 16	10 150 65.6%
UU16H 12-8730	410B/DP HC ID:	05/11/12	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	1.7 2.1	6.7 13	< 6.7 U < 13 U 63.9%
UU16I 12-8731	410C/DP HC ID: DRO/MOI	05/11/12 COR OIL	05/12/12 FID4A	1.00 1.0	Diesel Motor Oil o-Terphenyl	1.9 2.3	7.3 15	20 33 56.5%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00

Client ID	OTER	TOT OUT
MB-051112	92.6%	0
LCS-051112	95.3%	0
LCSD-051112	86.6%	0
401A/DP	63.6%	0
401A/DP MS	76.1%	0
401A/DP MSD	74.0%	0
401B/DP	73.8%	0
401C/DP	73.9%	0
410A/DP	65.6%	0
410B/DP	63.9%	0
410C/DP	56.5%	0

	LCS/MB LIMITS	QC LIMITS	
R) = o-Terphenyl	(50-150)	(50-150)	
	Drop Mathad, CHI2EAC		

Prep Method: SW3546 Log Number Range: 12-8723 to 12-8731

(OTER

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Clear Page 1 of 1		RES INCC
Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: <i>B</i> Reported: 05/16/12	<pre>QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12</pre>	
Date Extracted MS/MSD: 05/11/12	Sample Amount MS: 5.68 g-dry- MSD: 5.62 g-dry-	
Date Analyzed MS: 05/12/12 16:32 MSD: 05/12/12 16:56	Final Extract Volume MS: 1.0 mL MSD: 1.0 mL	
Instrument/Analyst MS: FID/MH MSD: FID/MH	Dilution Factor MS: 1.0 MSD: 1.0	

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 8.9	192	264	72.78	187	267	70.0%	2.6%

Percent Moisture: 45.1%

TPHD	Surrogate Recovery	
	MS	MSD
o-Terphenyl	76.1%	74.0%

Results reported in mg/kg

RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-051112 LCS/LCSD

Lab Sample ID: LCS-051112 LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: Reported: 05/16/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Date Extracted LCS/LCSD: 05/11/12

Date Analyzed LCS: 05/12/12 15:19 LCSD: 05/12/12 15:44 Instrument/Analyst LCS: FID/MH LCSD: FID/MH

Sample	Amount LCS:	10.0 g
	LCSD:	10.0 g
Final Extract	Volume LCS:	1.0 mL
	LCSD:	1.0 mL
Dilution	Factor LCS:	1.0
	LCSD:	1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	118	150	78.7%	117	150	78.0%	0.9%

TPHD Surrogate Recovery

			LCS	LCSD
0-1	erphenyl		95.3%	86.6%

Results reported in mg/kg

RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

	ARI Job:	UU16
Matrix: Sediment	Project:	P.O.P. T4 Maintenance
Date Received: 05/11/12		15753-00

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
12-8723-051112MB1	Method Blank	10.0 g	1.00 mL	-	05/11/12
12-8723-051112LCS1	Lab Control	10.0 g	1.00 mL	-	05/11/12
12-8723-051112LCSD1	Lab Control Dup	10.0 g	1.00 mL	D	05/11/12
12-8723-UU16A	401A/DP	5.59 g	1.00 mL	D	05/11/12
12-8723-UU16AMS	401A/DP	5.68 g	1.00 mL	D	05/11/12
12-8723-UU16AMSD	401A/DP	5.62 g	1.00 mL	D	05/11/12
12-8723-UU16B	401B/DP	6.68 g	1.00 mL	D	05/11/12
12-8725-UU16C	401C/DP	5.12 g	1.00 mL	D	05/11/12
12-8729-UU16G	410A/DP	6.06 g	1.00 mL	D	05/11/12
12-8730-UU16H	410B/DP	7.51 g	1.00 mL	D	05/11/12
12-8731-UU16I	410C/DP	6.84 g	1.00 mL	D	05/11/12

UU16MBS1

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER

SDG No.: UU16

Project No.: P.O.P T4 MAINTENANCE

: 0016

Matrix: SOLID

Instrument ID : FID4A

Time Analyzed : 1455

Date Extracted: 05/11/12

Date Analyzed : 05/12/12

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	שתגם
			DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=================	=================	==========
01	UU16LCSS1	UU16LCSS1	05/12/12
02	UU16LCSDS1	UU16LCSDS1	05/12/12
03	401A/DP	UU16A	05/12/12
04	401A/DP MS	UU16AMS	05/12/12
05	401A/DP MSD	UU16AMSD	05/12/12
06	401B/DP	UU16B	05/12/12
07	401C/DP	UU16C	05/12/12
08	410A/DP	UU16G	
09			05/12/12
	410B/DP	UU16H	05/12/12
10	410C/DP	UU16I	05/12/12
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24		· · · ·	
25			
26			
27	·		
28			
29			
30	i		

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Instrument: FID4A.I

Calibration Date: 08-FEB-2012

Client: HART CROWSER

Project: P.O.P. T4 MAINTENANCE

SDG No.: UU16

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel	14949	15145	15065	15164	14702	15451	15079	1.6
AK Diesel	17627	17893	17841	17989	17500	18388	17873	1.7
OR Diesel	17897	18055	17928	18068	17586	18468	18000	1.6
Cal Diesel	17603	17864	17799	17951	17467	18344	17838	1.7
o-Terph	19594	19585	19531	19489	19354	20804	19726	2.7
								I

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant	Ranges	:	WA	Diesel	C12-C24	(4.212 - 7.837)
	-		AK	Diesel	C10-C25	(3.212 - 8.084)
			OR	Diesel	C10-C28	(3.212-8.776)
			Cal	Diesel	C10-C24	(3.212 - 7.837)

Calibration Files Analysis Time

0208a009.d	08-FEB-2012	08:33
0208a008.d	08-FEB-2012	08:09
0208a007.d	08-FEB-2012	07:46
0208a006.d	08-FEB-2012	07:22
0208a005.d	08-FEB-2012	06:59
0208a004.d	08-FEB-2012	06:35

pl of 1

FORM VI-Diesel

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Instrument: FID4A.I

Calibration Date: 19-APR-2012

Client: HART CROWSER Project: P.O.P. T4 MAINTANANCE SDG No.: UU16

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	12890	11264	11615	11821	10866	11025	11580	6.3
Triac Surr	13307	14068	15103	15717	15129	****	14665	6.57

<- Indicates %RSD outside limits Surrogate areas are not included in Motor Oil RF calculation.

Calibration Files	Analysis Time
0419a037.d	19-APR-2012 21:02
0419a036.d	19-APR-2012 20:38
0419a035.d	19-APR-2012 20:14
0419a034.d	19-APR-2012 19:50
0419a033.d	19-APR-2012 19:26
0419a032.d	19-APR-2012 19:01

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: 20120512 ICal Date: 08-FEB-2012 Project: CCal Date: 12-MAY-2012 SDG No.: 20120512 Analysis Time: 13:42 Lab ID: DIESEL #2 Instrument: FID4A.I Lab File Name: 0512a018.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3893395	258.2	250	3.3
AK102 (C10-C25)	4641859	259.7	250	3.9
Terphenyl	829109	42.0	45	-6.6

* Surrogate areas are subtracted from range areas
 <- Indicates a %D outside QC limits

Quant Ranges : WA Diesel C12-C24 AK Diesel C10-C25

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: 20120512 ICal Date: 19-APR-2012 Project: CCal Date: 12-MAY-2012 SDG No.: 20120512 Analysis Time: 14:07 Lab ID: MOIL #2 Instrument: FID4A.I Lab File Name: 0512a019.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D	
WAMoil(C24-C38) AK103 (C25-C36) CRUDE(Tol-C40) n-Triacontane	5667127 5005495 6691951 786999	488.7 645.1 886.0 53.7	500 500 500 45	-2.3 29.0 77.2 19.3	< - < -

* Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

Quant Ranges	:	WA M.Oil	C24-C38
_		AK M.Oil	C25-C36

7a

DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 08-FEB-2012 CCal Date: 12-MAY-2012 Analysis Time: 19:21

Instrument: FID4A.I

Client: 20120512 Project: SDG No.: 20120512 Lab ID: DIESEL #3 Lab File Name: 0512a032.d

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24)	3724168	247.0	250	-1.2
AK102 (C10-C25)	4413508	246.9	250	-1.2
Terphenyl	795062	40.3	45	-10.4

* Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

Quant	Ranges	:	WA	Diesel	C12-C24
	_		AK	Diesel	C10-C25

7a

MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. ICal Date: 19-APR-2012 CCal Date: 12-MAY-2012 Analysis Time: 19:45

Instrument: FID4A.I

Client: 20120512 Project: SDG No.: 20120512 Lab ID: MOIL #3 Lab File Name: 0512a033.d

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	5393358	465.1	500	-7.0
AK103 (C25-C36)	4826777	622.1	500	24.4
CRUDE(Tol-C40)	6456751	854.9	500	71.0
n-Triacontane	744989	50.8	45	12.9

- Surrogate areas are subtracted from range areas Indicates a %D outside QC limits *
- < -

Quant	Ranges	:	WA M.Oil	C24-C38
	_		AK M.Oil	C25-C36

8 TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER SDG No.: UU16 Project: P.O.P. T4 MAINTANANCE Instrument ID: FID4A GC Column: RTX-1 Run Date: 02/08/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE I TERPH: 6.3					
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	== == =========	=======================================	===========	==========	=======	=======
01		RINSE	02/08/12	0525	6.38	9.25
02		RT	02/08/12	0548	6.38	9.25
03		IB	02/08/12	0612	6.38	9.25
04		DIESEL 2500	02/08/12	0635	6.43*	9.24
05		DIESEL 1000	02/08/12	0659	6.40	9.25
06		DIESEL 500	02/08/12	0722	6.39	9.24
07		DIESEL 250	02/08/12	0746	6.38	9.26
08		DIESEL 100	02/08/12	0809	6.37	9.26
09		DIESEL 50	02/08/12	0833	6.38	9.27
10		DIESEL ICV	02/08/12	0857	6.38	9.25

TERPH = o-terph TRIAC = Triacon Surr QC LIMITS

(+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

page 1 of 1

FORM VIII TPH

8 TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC SDG No.: UU16 Instrument ID: FID4A Run Date: 04/19/12 Client: HART CROWSER Project: P.O.P. T4 MAINTANANCE GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE H TERPH: 6.3					
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=================		==========	===== == ====	=========	=======
01		RINSE	04/19/12	1724	6.32	9.18
02		RT	04/19/12	1748	6.32	9.18
03		IB	04/19/12	1813	6.32	9.18
04		DIESEL #1	04/19/12	1837	6.32	9.19
05		MOIL 5000	04/19/12	1901	6.32	9.27*
06		MOIL 2500	04/19/12	1926	6.32	9.23
07		MOIL 1000	04/19/12	1950	6.32	9.20
08		MOIL 500	04/19/12	2014	6.32	9.18
09		MOIL 250	04/19/12	2038	6.32	9.17
10		MOIL 100	04/19/12	2102	6.34	9.17
11		MOIL ICV	04/19/12	2126	6.33	9.18

TERPH = o-terph TRIAC = Triacon Surr QC LIMITS

(+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

8 TPH ANALYTICAL SEQUENCE

Lab Name: ANALYTICAL RESOURCES INC Client: HART CROWSER SDG No.: UU16 Project: P.O.P T4 MAINTENANCE Instrument ID: FID4A GC Column: RTX-1 Run Date: 05/12/12

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE I TERPH: 6.3	RT FROM DAILY STA 31 TRIAC:				
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=================	=======================================	===============	===============	=========	========
01	RT	RT	05/12/12	0711	6.31	9.20
02	IB	IB	05/12/12	0734	6.31	9.19
03	ZZZZZ	DIESEL #1	05/12/12	0758	6.31	9.21
04	ZZZZZ	MOIL #1	05/12/12	0822	6.31	9.20
05	ZZZZZ	MINERALOIL #	05/12/12	0845	6.31	9.20
06	ZZZZZ	ZZZZZ	05/12/12	0914	6.31	9.19
07	ZZZZZ	ZZZZZ	05/12/12	0938	6.31	9.19
80	ZZZZZ	ZZZZZ	05/12/12	1002	6.31	9.19
09	ZZZZZ	ZZZZZ	05/12/12	1027	6.31	9.18
10	ZZZZZ	ZZZZZ	05/12/12	1051	6.31	9.19
11	ZZZZZ	ZZZZZ	05/12/12	1116	6.32	9.19
12		ZZZZZ	05/12/12	1141	6.32	9.19
13	ZZZZZ	ZZZZZ	05/12/12	1205	6.31	9.19
14	ZZZZZ	ZZZZZ	05/12/12	1230	6.31	9.23
15	ZZZZZ	ZZZZZ	05/12/12	1254	6.31	9.25
16	ZZZZZ	ZZZZZ	05/12/12	1318	6.31	9.20
17	DIESEL #2	DIESEL #2	05/12/12	1342	6.31	9.21
18	MOIL #2	MOIL #2	05/12/12	1407	6.34	9.20
19		MINERALOIL #	05/12/12	1431	6.32	9.21
20	UU16MBS1	UU16MBS1	05/12/12	1455	6.31	9.19
21	UU16LCSS1	UU16LCSS1	05/12/12	1519	6.32	9.19
22	UU16LCSDS1	UU16LCSDS1	05/12/12	1544	6.32	9.19
23	401A/DP	UU16A	05/12/12	1608	6.31	9.19
24	401A/DP MS	UU16AMS	05/12/12	1632	6.31	9.20
25	401A/DP MSD	UU16AMSD	05/12/12	1656	6.31	9.19
26	401B/DP	UU16B	05/12/12	1720	6.31	9.19
27	401C/DP	UU16C	05/12/12	1745	6.31	9.19
28	410A/DP	UU16G	05/12/12	1809	6.31	9.22
29	410B/DP	UU16H	05/12/12	1833	6.31	9.19
30	410C/DP	UU16I	05/12/12	1857	6.31	9.19
31	DIESEL #3	DIESEL #3	05/12/12	1921	6.31	9.19
32	MOIL #3	MOIL #3	05/12/12	1945	6.29	9.20

TERPH = o-terph TRIAC = Triacon Surr QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

* Values outside of QC limits.

Metals Analysis Report and Summary QC Forms

ARI Job ID: UU16

•

,

.

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Hart Crowser PROJECT: P.O.P. T4 Maintenanc SDG: UU16

 CLIENT ID	ARI ID	ARI LIMS ID REPREP	
			-
401A/DP	UU16A	12-8723	
401A/DPD	UU16ADUP	12-8723	
401A/DPS	UU16ASPK	12-8723	
401B/DP	UU16B	12-8724	
PBS	UU16MB1	12-8724	
LCSS	UU16MB1SPK	12-8724	
401C/DP	UU16C	12-8725	
401A/NSM	UU16D	12-8726	
401B/NSM	UU16E	12-8727	
401C/NSM	UU16F	12-8728	
410A/DP	UU16G	12-8729	
410B/DP	UU16H	12-8730	
410C/DP	UU16I	12-8731	
410A/NSM	UU16J	12-8732	
410B/NSM	UU16K	12-8733	
410C/NSM	UU16L	12-8734	

Were ICP interelement corrections applied ?	Yes/No	YES
Were ICP background corrections applied ? If yes - were raw data generated before	Yes/No	YES
application of background corrections ?	Yes/No	NO
Comments:		

THIS DATA	PACKAGE HAS BEEN	J REVIEWED	AND	AUTH	ORIZED	FOR	RELEASE	BY:
Signature	: Mullet	ζ	_	Name:	: Jay K	uhn		
Date	:	h	_ Ti	tle:	Inorga	nics	Directo	r

Page 1 of 1

Sample ID: 401A/DP SAMPLE

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Percent Total Solids: 52.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.024	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.16	0.4	4.1	Ŭ
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.022	0.2	0.3	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.35	5	27	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.066	0.9	39.4	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.087	0.2	15.6	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0018	0.03	0.07	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.090	0.9	25.6	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.015	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.63	7	115	

Page 1 of 1

Sample ID: 401B/DP SAMPLE

Lab Sample ID: UU16B LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 63.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.019	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.13	0.3	3.7	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.018	0.1	0.4	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.28	4	24	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.053	0.7	31.4	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.069	0.1	18.5	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0017	0.03	0.09	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.072	0.7	24.8	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.012	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.50	6	132	

Page 1 of 1

Sample ID: 401C/DP SAMPLE

Lab Sample ID: UU16C LIMS ID: 12-8725 Matrix: Sediment Data Release Authorized Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Percent Total Solids: 45.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.027	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.18	0.4	4.6	U
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.025	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.39	5	31	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.074	1	47	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.096	0.2	14.1	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0023	0.05	0.07	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.10	1	31	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.016	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.69	8	111	

Page 1 of 1

Sample ID: 401A/NSM SAMPLE

Lab Sample ID: UU16D LIMS ID: 12-8726 Matrix: Sediment Data Release Authorized Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Percent Total Solids: 78.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.016	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.11	0.2	3.3	·
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.015	0.1	0.2	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.23	3	16	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.044	0.6	20.5	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.057	0.1	9.5	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0015	0.03	0.08	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.059	0.6	20.1	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.0097	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.41	5	78	

Page 1 of 1

Sample ID: 401B/NSM SAMPLE

Lab Sample ID: UU16E LIMS ID: 12-8727 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 83.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.015	0.2	0.2	
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.099	0.2	2.4	Ŭ
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.014	0.1	0.1	U
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.22	3	13	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.041	0.6	15.2	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.054	0.1	2.4	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0014	0.03	0.03	U
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.056	0.6	18.5	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.0091	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.39	5	46	

Page 1 of 1

Sample ID: 401C/NSM SAMPLE

Lab Sample ID: UU16F LIMS ID: 12-8728 Matrix: Sediment Data Release Authorize Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Percent Total Solids: 56.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.021	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.14	0.3	3.7	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.020	0.2	0.2	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.31	4	28	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.059	0.8	42.0	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.076	0.2	14.2	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0022	0.04	0.06	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.080	0.8	27.5	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.013	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.55	7	98	

Page 1 of 1

Sample ID: 410A/DP SAMPLE

Lab Sample ID: UU16G LIMS ID: 12-8729 Matrix: Sediment Data Release Authorize Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 54.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.023	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.16	0.4	3.6	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.021	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.34	4	22	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.064	0.9	31.7	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.084	0.2	9.5	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0018	0.04	0.04	U
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.087	0.9	23.7	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.014	0.4	0.4	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.61	7	85	

Page 1 of 1

Sample ID: 410B/DP SAMPLE

Lab Sample ID: UU16H LIMS ID: 12-8730 Matrix: Sediment Data Release Authorized Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 67.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.018	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.12	0.3	2.9	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.017	0.1	0.1	U
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.27	4	16	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.051	0.7	24.5	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.066	0.1	8.3	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0013	0.03	0.03	
3050B	05/11/12	200.8	05/14/12	7440-02-0	- Nickel	0.069	0.7	19.8	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.011	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.48	6	67	

Page 1 of 1

Sample ID: 410C/DP SAMPLE

Lab Sample ID: UU16I LIMS ID: 12-8731 Matrix: Sediment Data Release Authorized: Reported: 05/15/12

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 63.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.020	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.13	0.3	3.8	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.018	0.2	0.6	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.29	4	18	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.055	0.8	35.9	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.072	0.2	53.7	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0014	0.03	0.05	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.075	0.8	22.7	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.012	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.52	6	146	

Page 1 of 1

Sample ID: 410A/NSM SAMPLE

Lab Sample ID: UU16J LIMS ID: 12-8732 Matrix: Sediment Data Release Authorized Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 59.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.021	0.3	0.3	
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.14	0.3	3.4	Ū
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.020	0.2	0.2	U
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.31	4	22	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.059	0.8	31.4	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.077	0.2	13.7	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0018	0.03	0.07	
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.081	0.8	24.5	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.013	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.56	7	93	

Page 1 of 1

Sample ID: 410B/NSM SAMPLE

Lab Sample ID: UU16K LIMS ID: 12-8733 Matrix: Sediment Data Release Authorized: Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Percent Total Solids: 71.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
3050B	05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.018	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.12	0.3	3.0	
3050B	05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.017	0.1	0.1	
3050B	05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.27	4	18	
3050B	05/11/12	200.8	05/14/12	7440-50-8	Copper	0.050	0.7	26.8	
3050B	05/11/12	200.8	05/14/12	7439-92-1	Lead	0.066	0.1	19.1	
CLP	05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0018	0.03	0.03	U
3050B	05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.069	0.7	20.0	
3050B	05/11/12	200.8	05/14/12	7440-22-4	Silver	0.011	0.3	0.3	U
3050B	05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.47	6	79	

Page 1 of 1

Sample ID: 410C/NSM SAMPLE

Project: P.O.P. T4 Maintenance

15753-00

QC Report No: UU16-Hart Crowser

Date Sampled: 05/08/12 Date Received: 05/11/12

Lab Sample ID: UU16L LIMS ID: 12-8734 Matrix: Sediment Data Release Authorized Reported: 05/15/12

Percent Total Solids: 71.0%

Prep Prep Analysis Analysis Result Q Meth Date Method Date CAS Number Analyte MDL RL 3050B 200.8 05/11/12 05/14/12 7440-36-0 Antimony 0.017 0.3 0.3 U 3050B 05/11/12 200.8 05/14/12 7440-38-2 Arsenic 0.11 0.3 5.2 3050B 200.8 05/11/12 05/14/12 7440-43-9 Cadmium 0.015 0.1 1.4 3050B 05/11/12 200.8 05/14/12 7440-47-3 Chromium 0.24 3 21 3050B 05/11/12 200.8 05/14/12 7440-50-8 0.046 0.6 Copper 43.5 3050B 05/11/12 200.8 05/14/12 7439-92-1 0.060 0.1 Lead 201 CLP 7471A 05/11/12 05/14/12 7439-97-6 Mercury 0.0015 0.03 0.06 3050B 05/11/12 200.8 05/14/12 7440-02-0 Nickel 0.063 0.6 23.2 05/14/12 3050B 05/11/12 200.8 7440-22-4 Silver 0.010 0.3 0.5 3050B 05/11/12 200.8 05/14/12 7440-66-6 Zinc 0.44 5 265

Sample ID: 401A/DP MATRIX SPIKE

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Antimony	200.8	0.4 U	0.4 U	4.61	0.0%	N
Arsenic	200.8	4.1	46.1	46.1	91.1%	
Cadmium	200.8	0.3	46.6	46.1	100%	
Chromium	200.8	27	67	46.1	86.8%	
Copper	200.8	39.4	85.2	46.1	99.3%	
Lead	200.8	15.6	61.7	46.1	100%	
Mercury	7471A	0.07	0.44	0.346	107%	
Nickel	200.8	25.6	73.5	46.1	104%	
Silver	200.8	0.4 U	44.9	46.1	97.4%	
Zinc	200.8	115	240	147	85.0%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Sample ID: 401A/DP DUPLICATE

Lab Sample ID: UU16A LIMS ID: 12-8723 Matrix: Sediment Data Release Authorized: Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Antimony	200.8	0.4 U	0.4 U	0.0%	+/- 0.4	${f L}$
Arsenic	200.8	4.1	3.7	10.3%	+/- 20%	
Cadmium	200.8	0.3	0.2	40.0%	+/- 0.2	L
Chromium	200.8	27	26	3.8%	+/- 20%	
Copper	200.8	39.4	36.2	8.5%	+/- 20%	
Lead	200.8	15.6	13.1	17.4%	+/- 20%	
Mercury	7471A	0.07	0.09	25.0%	+/- 0.03	L
Nickel	200.8	25.6	25.1	2.0%	+/- 20%	
Silver	200.8	0.4 U	0.4 U	0.0%	+/- 0.4	L
Zinc	200.8	115	103	11.0%	+/- 20%	

Reported in mg/kg-dry

*-Control Limit Not Met L-RPD Invalid, Limit = Detection Limit

Sample ID: LAB CONTROL

Lab Sample ID: UU16LCS LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized: Reported: 05/15/12 QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	۶ Recovery	Q
			Audeu	Kecovery	¥
Antimony	200.8	2.5	2.5	100%	
Arsenic	200.8	25.8	25.0	103%	
Cadmium	200.8	24.9	25.0	99.6%	
Chromium	200.8	25.4	25.0	102%	
Copper	200.8	27.0	25.0	108%	
Lead	200.8	26.2	25.0	105%	
Mercury	7471A	0.48	0.50	96.0%	
Nickel	200.8	26.4	25.0	106%	
Silver	200.8	26.0	25.0	1048	
Zinc	200.8	82	80	102%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: UU16MB LIMS ID: 12-8724 Matrix: Sediment Data Release Authorized Reported: 05/15/12

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: UU16-Hart Crowser Project: P.O.P. T4 Maintenance 15753-00 Date Sampled: NA Date Received: NA

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
·			·····					
05/11/12	200.8	05/14/12	7440-36-0	Antimony	0.013	0.2	0.2	U
05/11/12	200.8	05/14/12	7440-38-2	Arsenic	0.087	0.2	0.2	U
05/11/12	200.8	05/14/12	7440-43-9	Cadmium	0.012	0.1	0.1	U
05/11/12	200.8	05/14/12	7440-47-3	Chromium	0.038	0.5	0.5	U
05/11/12	200.8	05/14/12	7440-50-8	Copper	0.036	0.5	0.5	U
05/11/12	200.8	05/14/12	7439-92-1	Lead	0.047	0.1	0.1	U
05/11/12	7471A	05/14/12	7439-97-6	Mercury	0.0013	0.02	0.02	U
05/11/12	200.8	05/14/12	7440-02-0	Nickel	0.049	0.5	0.5	U
05/11/12	200.8	05/14/12	7440-22-4	Silver	0.0080	0.2	0.2	U
05/11/12	200.8	05/14/12	7440-66-6	Zinc	0.34	4	4	U
	Date 05/11/12 05/11/12 05/11/12 05/11/12 05/11/12 05/11/12 05/11/12 05/11/12	DateMethod05/11/12200.805/11/12200.805/11/12200.805/11/12200.805/11/12200.805/11/12200.805/11/12200.805/11/127471A05/11/12200.805/11/12200.805/11/12200.805/11/12200.8	DateMethodDate05/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/127471A05/14/1205/11/12200.805/14/1205/11/12200.805/14/1205/11/12200.805/14/12	DateMethodDateCAS Number05/11/12200.805/14/127440-36-005/11/12200.805/14/127440-38-205/11/12200.805/14/127440-43-905/11/12200.805/14/127440-47-305/11/12200.805/14/127440-50-805/11/12200.805/14/127439-92-105/11/12200.805/14/127439-92-105/11/12200.805/14/127440-02-005/11/12200.805/14/127440-02-005/11/12200.805/14/127440-22-4	DateMethodDateCAS NumberAnalyte05/11/12200.805/14/127440-36-0Antimony05/11/12200.805/14/127440-38-2Arsenic05/11/12200.805/14/127440-43-9Cadmium05/11/12200.805/14/127440-47-3Chromium05/11/12200.805/14/127440-50-8Copper05/11/12200.805/14/127439-92-1Lead05/11/12200.805/14/127439-97-6Mercury05/11/12200.805/14/127440-02-0Nickel05/11/12200.805/14/127440-22-4Silver	DateMethodDateCAS NumberAnalyteMDL05/11/12200.805/14/127440-36-0Antimony0.01305/11/12200.805/14/127440-38-2Arsenic0.08705/11/12200.805/14/127440-43-9Cadmium0.01205/11/12200.805/14/127440-47-3Chromium0.03805/11/12200.805/14/127440-50-8Copper0.03605/11/12200.805/14/127439-92-1Lead0.04705/11/12200.805/14/127439-97-6Mercury0.001305/11/12200.805/14/127440-02-0Nickel0.04905/11/12200.805/14/127440-22-4Silver0.0080	DateMethodDateCAS NumberAnalyteMDLRL05/11/12200.805/14/127440-36-0Antimony0.0130.205/11/12200.805/14/127440-38-2Arsenic0.0870.205/11/12200.805/14/127440-43-9Cadmium0.0120.105/11/12200.805/14/127440-47-3Chromium0.0380.505/11/12200.805/14/127440-50-8Copper0.0360.505/11/12200.805/14/127439-92-1Lead0.0470.105/11/12200.805/14/127439-97-6Mercury0.00130.0205/11/12200.805/14/127440-02-0Nickel0.0490.505/11/12200.805/14/127440-22-4Silver0.00800.2	DateMethodDateCAS NumberAnalyteMDLRLResult05/11/12200.805/14/127440-36-0Antimony0.0130.20.205/11/12200.805/14/127440-38-2Arsenic0.0870.20.205/11/12200.805/14/127440-43-9Cadmium0.0120.10.105/11/12200.805/14/127440-47-3Chromium0.0380.50.505/11/12200.805/14/127440-50-8Copper0.0360.50.505/11/12200.805/14/127439-92-1Lead0.0470.10.105/11/12200.805/14/127439-97-6Mercury0.00130.020.0205/11/12200.805/14/127440-02-0Nickel0.0490.50.505/11/12200.805/14/127440-22-4Silver0.00800.20.2

Calibration Verification

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

UNITS:ug/L

ANALYTE	EL	М	RUN	ICVTV	ICV	۶R	CCVTV	CCV1 &R	CCV2 %R	CCV3 %R	CCV4 &R	CCV5 %R
Antimony	SB	PMS	MS051481	50.0	48.76	97.5	50.0	49.37 98.7	49.68 99.4	49.60 99.2	49.97 99.9	49.70 99.4
Arsenic	AS	PMS	MS051481	50.0	49.40	98.8	50.0	50.48 101.0	50.35 100.7	50.91 101.8	50.55 101.1	50.69 101.4
Cadmium	CD	PMS	MS051481	50.0	48.45	96.9	50.0	49.41 98.8	50.16 100.3	50.83 101.7	50.52 101.0	50.11 100.2
Chromium	CR	PMS	MS051481	50.0	49.32	98.6	50.0	50.48 101.0	50.63 101.3	50.26 100.5	50.46 100.9	50.06 100.1
Copper	CU	PMS	MS051481	50.0	50.50	101.0	50.0	51.18 102.4	51.84 103.7	51.84 103.7	51.55 103.1	51.46 102.9
Lead	PB	PMS	MS051481	50.0	50.26	100.5	50.0	51.07 102.1	51.91 103.8	51.60 103.2	50.54 101.1	51.84 103.7
Mercury	HG	CVA	HG051402	8.0	8.22	102.8	4.0	4.11 102.8	4.17 104.3	4.18 104.5		
Nickel	NI	PMS	MS051481	50.0	49.97	99.9	50.0	51.19 102.4	51.39 102.8	51.78 103.6	51.43 102.9	51.45 102.9
Silver	AG	PMS	MS051481	50.0	49.71	99.4	50.0	51.05 102.1	50.63 101.3	51.33 102.7	51.26 102.5	50.85 101.7
Zinc	ZN	PMS	MS051481	50.0	49.11	98.2	50.0	50.74 101.5	51.05 102.1	50.99 102.0	51.68 103.4	51.47 102.9

Calibration Verification

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

UNITS:ug/L

ANALYTE	EL	M	RUN	CCVTV	CCV6 %R	CCV7 %R	CCV8 %R	CCV9 %R	CCV10 %R	CCV11 %R
Antimony	SB	PMS	MS051481	50.0	49.46 98.9	50.07 100.1	50.26 100.5	50.65 101.3	50.76 101.5	51.17 102.3
Arsenic	AS	PMS	MS051481	50.0	50.26 100.5	49.94 99.9	50.02 100.0	49.86 99.7	49.48 99.0	49.52 99.0
Cadmium	CD	PMS	MS051481	50.0	50.24 100.5	49.53 99.1	49.83 99.7	49.68 99.4	50.06 100.1	48.56 97.1
Chromium	CR	PMS	MS051481	50.0	51.07 102.1	50.12 100.2	50.38 100.8	48.27 96.5	48.46 96.9	46.47 92.9
Copper	CU	PMS	MS051481	50.0	51.57 103.1	50.94 101.9	51.45 102.9	50.96 101.9	50.87 101.7	50.56 101.1
Lead	PB	PMS	MS051481	50.0	51.95 103.9	51.73 103.5	51.05 102.1	50.84 101.7	50.48 101 .0	50.18 100.4
Mercury	HG	CVA	HG051402	4.0						
Nickel	NI	PMS	MS051481	50.0	51.66 103.3	51.20 102.4	50.71 101.4	50.13 100.3	50.01 100.0	49.40 98.8
Silver	AG	PMS	MS051481	50.0	50.20 100.4	50.36 100.7	50.75 101.5	51.23 102.5	50.90 101.8	50.35 100.7
Zinc	ZN	PMS	MS051481	50.0	52.10 104.2	51.92 103.8	51.21 102.4	50.87 101.7	50.27 100.5	49.73 99.5

CRDL Standard

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

UNITS:ug/L

ANALYTE	EL	M	RUN	CRA/I TV	CR-1	%R	CR-2	ŧR	CR-3	۶R	CR-4	ŧR	CR-5	ŧR	CR-6	ŧR
Antimony	SB	PMS	MS051481	. 0.2	0.20	100.0										
Arsenic	AS	PMS	MS051481	0.2	0.28	140.0										
Cadmium	CD	PMS	MS051481	0.1	0.11	110.0										
Chromium	CR	PMS	MS051481	0.5	0.52	104.0										
Copper	CU	PMS	MS051481	0.5	0.59	118.0										
Lead	PB	PMS	MS051481	0.1	0.13	130.0										
Mercury	HG	CVA	HG051402	0.1	0.11	110.0										
Nickel	NI	PMS	MS051481	0.5	0.56	112.0										
Silver	AG	PMS	MS051481	0.2	0.19	95.0										
Zinc	ZN	PMS	MS051481	4.0	4.39	109.8										

Control Limits: no control limits have been established by the EPA at this time.

Calibration Blanks

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	С	CCB1	С	CCB2	С	CCB3	С	CCB4	С	CCB5	С
Antimony	SB	PMS	MS051481	60.0	0.2	0.2	U	0.2	U	0.2	υ	0.2	U	0.2	υ	0.2	U
Arsenic	AS	PMS	MS051481	10.0	0.2	0.2	υ	0.2	U	0.2	U	0.2	U	0.2	U	0.2	υ
Cadmium	CD	PMS	MS051481	5.0	0.1	0.1	υ	0.1	U	0.1	υ	0.1	U	0.1	U	0.1	υ
Chromium	CR	PMS	MS051481	10.0	0.5	0.5	υ	0.5	υ	0.5	U	0.5	U	0.5	U	0.5	U
Copper	CU	PMS	MS051481	25.0	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Lead	PB	PMS	MS051481	3.0	0.1	0.1	U	0.1	U	0.1	U	0.1	υ	0.1	U	0.1	υ
Mercury	HG	CVA	HG051402	0.2	0.1	0.1	U	0.1	U	0.1	U	0.1	U				
Nickel	NI	PMS	MS051481	40.0	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Silver	AG	PMS	MS051481	10.0	0.2	0.2	υ	0.2	U	0.2	U	0.2	υ	0.2	U	0.2	υ
Zinc	ZN	PMS	MS051481	20.0	4.0	4.0	υ	4.0	υ	4.0	U	4.0	U	4.0	U	4.0	U

Calibration Blanks

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	CCB6	С	CCB7	С	CCB8	С	ССВ9	С	CCB10	С	CCB11	C
Antimony	SB	PMS	MS051481	60.0	0.2	0.2	υ	0.2	U	0.2	υ	0.2	υ	0.2	U	0.2	τ
Arsenic	AS	PMS	MS051481	10.0	0.2	0.2	U	0.2	U	0.2	U	0.2	U	0.2	υ	0.2	1
Cadmium	CD	PMS	MS051481	5.0	0.1	0.1	U	0.1	U	0.1	υ	0.1	U	0.1	υ	0.1	τ
Chromium	CR	PMS	MS051481	10.0	0.5	0.5	U	0.5	U	0.5	υ	0.5	U	0.5	U	0.5	1
Copper	CU	PMS	MS051481	25.0	0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	1
Lead	PB	PMS	MS051481	3.0	0.1	0.1	U	0.1	U	0.1	υ	0.1	υ	0.1	U	0.1	1
fercury	HG	CVA	HG051402	0.2	0.1												
Nickel	NI	PMS	MS051481	40.0	0.5	0.5	U	0.5	U	0.5	υ	0.5	U	0.5	U	0.5	t
Silver	AG	PMS	MS051481	10.0	0.2	0.2	U	0.2	υ	0.2	U	0.2	U	0.2	U	0.2	τ
Zinc	ZN	PMS	MS051481	20.0	4.0	4.0	U	4.0	υ	4.0	U	4.0	U	4.0	U	4.0	1

ICP Interference Check Sample

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc

SDG: UU16

ICS SOURCE: I.V.

RUNID: MS051481

INSTRUMENT ID: PE ELAN 6000

UNITS: ug/L

ANALYTE	ICSA TV	ICSAB TV	ICSA1	ICSAB1 %R	ICSA2	ICSAB2	%R	ICSA3	ICSAB3	%R
Cadmium		20	0.0	19.8 99.0						
Chromium		20	0.7	19.9 99.5						
Cobalt		20	0.0	18.7 93.5						
Copper		20	0.6	20.5 102.5						
Manganese		20	0.1	19.0 95.0						
Molybdenum	400	400	417.3	406.3 101.6						
Nickel		20	0.7	19.9 99.5						
Selenium			-0.1	0.1						
Silver		20	0.0	19.6 98.0						
Thorium			0.2	0.1						
Vanadium			0.1	-0.2						
Zinc		20	1.6	20.0 100.0						

Post Digest Spike Sample Recovery

CLIENT: Hart Crowser PROJECT: P.O.P. T4 Maintenanc SDG: UU16

ANALYSIS METHOD: PMS

UNITS:ug/L

ANALYTE	CLIENT ID	ARI ID	RUNID	SPIKED Sample Result C	SAMPLE RESULT C	SPIKE ADDED	MATRIX	%R
Antimony	401A/DPA	UU16APOST	MS051481	509.04 B	4.00 u	500	Sediment	101.8

•

ICP Serial Dilutions

CLIENT: Hart Crowser PROJECT: P.O.P. T4 Maintenanc SDG: UU16

ANALYSIS METHOD: PMS

UNITS:ug/L

ANALYTE	CLIENT ID	ARI ID	MATRIX RUNID	INITIAL SAMPLE RESULT (I) C	SERIAL DILUTION RESULT (S) _C	% DIFFER- ENCE Q
Antimony	401A/DPL	UU16A-L	Sediment MS051481	-0.02 U	-0.10 E	1
Arsenic	401A/DPL	UU16A-L	Sediment MS051481	2.21 B	2.70 E	22.2
Cadmium	401A/DPL	UU16A-L	Sediment MS051481	0.16 B	0.80 E	400.0
Chromium	401A/DPL	UU16A-L	Sediment MS051481	2.96 B	2.90 E	2.0
Copper	401A/DPL	UU16A-L	Sediment MS051481	21.36 B	23.95 E	12.1
Lead	401A/DPL	UU16A-L	Sediment MS051481	8.47	9.20 E	8.6
Nickel	401A/DPL	UU16A-L	Sediment MS051481	13.85 B	15.80 E	14.1
Silver	401A/DPL	UU16A-L	Sediment MS051481	0.17 U	0.20 E	i i
Zinc	401A/DPL	UU16A-L	Sediment MS051481	62.20	68.10 E	9.5

IDLs and ICP Linear Ranges

CLIENT: Hart Crowser PROJECT: P.O.P. T4 Maintenanc SDG: UU16

UNITS: ug/L

ANALYTE	EL	Meth	INSTRUMENT	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL DATE	ICP LINEAR RANGE (ug/L)	ICP LR DATE
Antimony	SB	PMS	PE ELAN 6000 MS	0.00		60	0.2	4/1/201	L	
Arsenic	AS	PMS	PE ELAN 6000 MS	0.00		10	0.2	4/1/2013	L	
Cadmium	CD	PMS	PE ELAN 6000 MS	0.00		5	0.1	4/1/2013	L	
Chromium	CR	PMS	PE ELAN 6000 MS	0.00		10	0.5	4/1/2013	L	
Copper	CU	PMS	PE ELAN 6000 MS	0.00		25	0.5	4/1/2013	L	
Lead	PB	PMS	PE ELAN 6000 MS	0.00		3	0.1	4/1/2013	L	
Mercury	HG	CVA	CETAC MERCURY	253.70		0.2	0.1	4/1/2013	L	
Nickel	NI	PMS	PE ELAN 6000 MS	0.00		40	0.5	4/1/2013	L	
Silver	AG	PMS	PE ELAN 6000 MS	0.00		10	0.2	4/1/2011	L	
Zinc	ZN	PMS	PE ELAN 6000 MS	0.00		20	4.0	4/1/2013	L	

Preparation Log

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc **SDG:** UU16

ANALYSIS METHOD: PMS

ARI PREP CODE: SWN PREPDATE: 5/11/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
401A/DP	UU16A	1.035	0.0	50.0
401A/DPD	UU16ADUP	1.038	0.0	50.0
401A/DPS	UU16ASPK	1.037	0.0	50.0
401B/DP	UU16B	1.078	0.0	50.0
401C/DP	UU16C	1.067	0.0	50.0
401A/NSM	UU16D	1.053	0.0	50.0
401B/NSM	UU16E	1.048	0.0	50.0
401C/NSM	UU16F	1.087	0.0	50.0
410A/DP	UU16G	1.027	0.0	50.0
410B/DP	UU16H	1.059	0.0	50.0
410C/DP	UU16I	1.031	0.0	50.0
410A/NSM	UU16J	1.028	0.0	50.0
410B/NSM	UU16K	1.000	0.0	50.0
410C/NSM	UU16L	1.097	0.0	50.0
PBS	UU16MB1	1.000	0.0	50.0
LCSS	UU16MB1SPK	1.000	0.0	50.0

Preparation Log

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc **SDG:** UU16

ANALYSIS METHOD: CVA

ARI PREP CODE: SMM PREPDATE: 5/11/2012

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
401A/DP	UU16A	0.281	0.0	50.0
401A/DPD	UU16ADUP	0.282	0.0	50.0
401A/DPS	UU16ASPK	0.276	0.0	50.0
401B/DP	UU16B	0.245	0.0	50.0
401C/DP	UU16C	0.242	0.0	50.0
401A/NSM	UU16D	0.222	0.0	50.0
401B/NSM	UU16E	0.228	0.0	50.0
401C/NSM	UU16F	0.206	0.0	50.0
410A/DP	UU16G	0.261	0.0	50.0
410B/DP	UU16H	0.291	0.0	50.0
410C/DP	UU16I	0.291	0.0	50.0
410A/NSM	UU16J	0,249	0.0	50.0
410B/NSM	UU16K	0.206	0.0	50.0
410C/NSM	UU16L	0.246	0.0	50.0
PBS	UU16MB1	0.200	0.0	50.0
LCSW	UU16MB1SPK	0.200	0.0	50.0

Analysis Run Log

CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc **SDG:** UU16

RUNID: MS051481 METHOD: PMS END DA

START DATE: 5/14/2012 END DATE: 5/14/2012

ANALYTICAL

CLIENT ID	ARI ID	DIL. TIME	ŧR	AG AI	L AS	з в	BA	A BE	CAC	Ð	co d	CR	CU	fe	HG	ĸ	MG 1	MN 1	MO 1	i ai	NI I	PB	SB	SE	SI	SN	TI	TL	U	v	ZN
ZZZZZZ	ZZZZZZ	1.00 09160					Τ																					Ι		Γ	\square
ZZZZZ	ZZZZZ	1.00 09220										Í																			
S0	S0	1.00 09290		x	2	C				x		x	х								х	х	х								x
S1	S1	1.00 09350		x	2	x				x		x	х								х	х	x								x
S2	S 2	1.00 09410		x	>	۲				x		x	х								x	х	х								x
S3	S 3	1.00 09470		x	X	x				x		x	x								x	х	х								x
S4	S4	1.00 09530		x	X					x		x	х								x	х	х								x
ZZZZZZ	Rinse Sampl	1.00 10000															Ì										-				
S0	S0	1.00 10090		x	X	r				x	ĺ	x	х								x	х	х								x
ICV	MICV	1.00 10150		x	X	(x		x	x								x	х	х								x
ICB	ICB	1.00 10220		x	X	:				x		x	x								x	х	х								x
ccv	MCCV1	1.00 10280		x	X					x		x	x								x	х	х								x
CCB	CCB1	1.00 10340		x	X					x		x	x								x	х	х								x
CRI	MCRI	1.00 10410		x	X	:				x		x	x								x	x	х								x
ICSA	ICSAI	1.00 10460		x	X	:				x		x	x								x	х	х								x
ICSAB	ICSABI	1.00 10530		x	X	:				x		x	x								x	х	х								x
ZZZZZZ	LR200	1.00 10590																													
ZZZZZZ	LR300	1.00 11060																									ĺ				
222222	В1	1.00 11120																													
CCV	MCCV2	1.00 11190		x	X	:				x		x	x								x	x	х								x
CCB	CCB2	1.00 11250		x	x	:				x		x	x								x	x	х								x
ZZZZZZ	UU17MB	20.00 11320									Ì																				
PBS	UU16MB1	20.00 11380		x	x	:				x		x	x								x	x	х								x
ZZZZZZ	DI CHECK	1.00 11440										[
ZZZZZZ	ERAP197	10.00 11510																		ĺ							ł				
LCSS	UU16MB1SPK	20.00 11570		x	X	:				x		x	x								x	x	х								x
222222	UU17MBSPK	20.00 12030										1																		1	
ZZZZZZ	UU17A	500.00 12100																												1	
ZZZZZZ	UU17B	500.00 12160													ł																
ZZZZZZ	UU17C	500.00 12220																												1	
ZZZZZZ	UU17D	500.00 12290																													
CCV	MCCV3	1.00 12350		x	x	:				x		x	x								x	x	х								x
ССВ	CCB3	1.00 12420		x	x	:				x		x	x								x	x	х								x
S0	SO	1.00 12470		x	x	:				x			x								x	x	х								x
CCV	MCCV4	1.00 12540		x	x					x			x								x	x	х								x

INSTRUMENT ID: PE ELAN 6000 MS

Analysis Run Log

CLIENT: Hart Crowser

ANALYTICAL RESOURCES

PROJECT: P.C	D.P. T4 Maint	enanc	INSTRU	JMENI	'I	D:	ΡE	ELA	N 6	500	0 1	MS						S	ΓAI	RТ	DÆ	TE	:	5,	14	/2	012	:	
SDG: UU16			RUNID	MS()51	481		ME	тнс	D:	Pl	MS							El	ND	DA	ΔTE	:	5,	/14	/2	012	;	
CLIENT ID	ARI ID	DIL. TIME	%R A0	AL A	S B	BA	BE	CA CD	со	CR	CU	FE	ĦG	ĸ	MG	MN	мо	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	V Z	ZN
ССВ	CCB4	1.00 13000	X	: :	<			X		X	X								Х	X	X	Γ							Х
ZZZZZZ	ZZZZZZ	100.00 13060																											
401A/DP	UU16A	20.00 13120											Ì																
401A/DPD	UU16ADUP	20.00 13190	x	: :	۲.			x			x								х	x	x								х
401A/DPS	UU16ASPK	20.00 13250	X	: :	ζ			x			x								х	x	x								х
401A/DPA	UU16APOST	20.00 13310																			x								
401B/DP	UU16B	20.00 13370	x		٢			x			x								х	x	x								х
401C/DP	UU16C	20.00 13440	x		<			x			x								x	x	x								х
401A/NSM	UU16D	20.00 13500	x		c			x			x								х	x	x								x
401B/NSM	UU16E	20.00 13560	x		<			x			x								х	x	x								x
401C/NSM	UU16F	20.00 14030	х		٢			x			x								х	x	x								x
ccv	MCCV5	1.00 14090	x		c			x	1	x	x								х	x	x								x
CCB	CCB5	1.00 14160	x					x		x	x								х	x	x			1					х
S0	SO	1.00 14230	x					x		x	x								х	x	x								x
CCV	MCCV6	1.00 14290	x					x		x	x								х	x	x								x
CCB	CCB6	1.00 14360	x					x		x	x								х	x	x								x
410A/DP	UU16G	20.00 14410	x					x	1		x								x	x									x
410B/DP	UU16H	20.00 14480	x	1 1				x		İ.	x								x	x	x								x
410C/DP	UU16I	20.00 14540	x					x			x								x	x	x								x
410A/NSM	UU16J	20.00 15000	x					x			x								x	x	x								 х
410B/NSM	UU16K	20.00 15070	x					x			x								x	x								1	x
410C/NSM	UU16L	20.00 15130	x					x			x								x	x	x								x
ZZZZZZ	UT17A	2.00 15190			-					ŀ											, n								~
ZZZZZZ	UT17B	2.00 15250																											
ZZZZZZ	UT17C	2.00 15320																											
ZZZZZZ	UT17D	2.00 15380																											
CCV	MCCV7	1.00 15440	x	2	-			x		x	x								x	x	x								x
ССВ	CCB7	1.00 15510	x		1			X		x	x								x	x	x								x
s0	S0	1.00 15580	X					X		x	X								x	x	x								x
CCV	MCCV8	1.00 16060	x					X		x	x								x	x	x								x x
CCB	CCB8	1.00 16120	x					x		x	x								x	x	x								x x
401A/DPL	UU16A-L	500.00 16180	^							X	~								^	^	^								Λ
401A/DP	UU16A	100.00 16180																											
401A/DPD	UU16ADUP									X																			
401A/DPD 401A/DPS		100.00 16310								X																			
HOTA/DED	UU16ASPK	100.00 16370								Х																			

Analysis Run Log

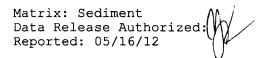
CLIENT: Hart Crowser

PROJECT: P.O.P. T4 Maintenanc SDG: UU16			INSTRUMENT ID: PE ELAN 6000 MS RUNID: MS051481 METHOD: PMS									START					DATE:			5/14/2012								
												ENI					ND	DATE:			5/14/2012				2			
CLIENT ID	ARI ID	DIL. TIME	ŧR	AG A	L AS	в	BA BI	e ca cd	со	CR	CU	fe i	IG I	ĸ	ig mi	N MC) NA	NI	PB	SB	se	SI	SN	TI	TL	υ	v	ZN
401A/DPL	UU16A-L	100.00 16430		x	X			X	1	1	X						1	X	x	X	1	Τ	Γ		Γ			X
401A/DP	UU16A	20.00 16500		x	x			x			x							x	x	x								x
401B/DP	UU16B	100.00 16560								х																		
401C/DP	UU16C	100.00 17020								x																		
401A/NSM	UU16D	100.00 17080								x										ľ								
401B/NSM	UU16E	100.00 17150								x																		
CCV	MCCV9	1.00 17210		x	x			x		x	x							x	x	x								x
CCB	CCB9	1.00 17280		x	x			x		x	х							x	x	x								x
S0	S0	1.00 17330		x	x			x		x	x							x	x	x								x
CCV	MCCV10	1.00 17400		x	x			x		x	x		ļ					x	x	x								x
CCB	CCB10	1.00 17460		x	x			x		x	x							x	x	x								x
ZZZZZZ	UU11MB	2.00 17520																										
ZZZZZZ	UU11MBSPK	2.00 17580																										
ZZZZZZ	UU11A	2.00 18050																										
401C/NSM	UU16F	100.00 18110		İ						x												ĺ.						
410A/DP	UU16G	100.00 18170								x																		
410B/DP	UU16H	100.00 18240								x																		
410C/DP	UU16I	100.00 18300								x																		
410A/NSM	UU16J	100.00 18360								x																		
410B/NSM	UU16K	100.00 18420								x																	ļ	
410C/NSM	UU16L	100.00 18490								x																		
CCV	MCCV11	1.00 18550		x	x			x		x	x							x	x	x								x
ССВ	CCB11	1.00 19020		x	x			x		x	x							x	x	x						il		x

Analysis Run Log

CLIENT: Hart Crowser

PROJECT: P.	O.P. T4 Mainte	enanc	INS	TRUM	ENT	ID	:	C	CET	AC	MI	ERC	CUF	۲Y						S	TAI	RТ	DF	ΔTE	:	5,	/14	1/2	01	2	
SDG: UU16			RUN	ID:	HG0.	514	02		Μ	ET.	HOI	D:	CV	ľΑ							El	ND	DÆ	TE	:	5,	/14	/2	01	2	
CLIENT ID	ARI ID	DIL. TIME	%R	AG A	l as	в	BA	BE (CA	CD	co	CR (CU	fe	ĦG	ĸ	MG	MN	MO	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	v	' ZN
S0	S0	1.00 12462				1									X			<u> </u>							1	Τ		Τ			Τ
S0.1	S0.1	1.00 12480													x																
S0. 5	S0.5	1.00 12493													x																
S1	S 1	1.00 12511													x																
S2	S2	1.00 12525													x													1			
S5	S5	1.00 12542									ĺ				x																
S10	S10	1.00 12560													x											1					
ICV	AICV	1.00 12581													x]													
ICB	ICB	1.00 12595													x												}				
CCV	ACCV1	1.00 13012										ł			x																
CCB	CCB1	1.00 13030				1									x																
CRA	CRA	1.00 13044									[x													1			
PBW	UU16MB1	1.00 13062													x													1			
LCSW	UU16MB1SPK	1.00 13075													x																
401A/DP	UU16A	1.00 13093													x																
401A/DPD	UU16ADUP	1.00 13111											1		x								ĺ								
401A/DPS	UU16ASPK	1.00 13124													x																
401B/DP	UU16B	1.00 13142													x												İ.				
401C/DP	UU16C	1.00 13160													x																
401A/NSM	UU16D	1.00 13173													x																
401B/NSM	UU16E	1.00 13191													x																
CCV	ACCV2	1.00 13205													x																
ССВ	CCB2	1.00 13223													x																
401C/NSM	UU16F	1.00 13241													x										Ì						
410A/DP	UU16G	1.00 13255													x																
410B/DP	UU16H	1.00 13272													x																
410C/DP	UU16I	1.00 13290													x	1															
410A/NSM	UU16J	1.00 13303													x																
410B/NSM	UU16K	1.00 13321													x					ĺ			-								
410C/NSM	UU16L	1.00 13335													x																
ccv	ACCV3	1.00 13352													x																
CCB	CCB3	1.00 13370				ł									x																

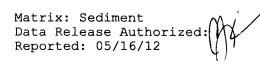

General Chemistry Analysis Report and Summary QC Forms

•

ARI Job ID: UU16

·

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12


Client ID: 401A/DP ARI ID: 12-8723 UU16A

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	54.00
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	45.40
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.83	137
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	2.18	10.9
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.70

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Client ID: 401B/DP ARI ID: 12-8724 UU16B

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/14/12 051412#1	SM2540B	Percent	0.01	65.40
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	64.60
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.49	128
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.33	9.36
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.49

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Client ID: 401C/DP ARI ID: 12-8725 UU16C

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	48.70
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	51.40
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	4.31	229
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.76	18.3
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.80

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Client ID: 401A/NSM ARI ID: 12-8726 UU16D

Analyte	Date	Method	Units	_ RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	78.90
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	71.80
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	0.60	28.0
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	2.66	33.8
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.36

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

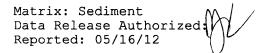
Client ID: 401B/NSM ARI ID: 12-8727 UU16E

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	82.50
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	79.50
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	0.24	16.0
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.20	< 1.20 U
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	0.116

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

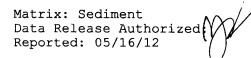

Client ID: 401C/NSM ARI ID: 12-8728 UU16F

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	56.50
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	52.00
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	3.43	293
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.69	5.35
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.68

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12


Client ID: 410A/DP ARI ID: 12-8729 UU16G

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	55.30
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	47.00
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.80	105
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	2.00	28.6
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.84

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Client ID: 410B/DP ARI ID: 12-8730 UU16H

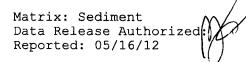
Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	71.10
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	65.40
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.41	81.9
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.51	18.3
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.18

RL Analytical reporting limit

1

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12


Client ID: 410C/DP ARI ID: 12-8731 UU16I

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	65.50
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	69.50
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.55	85.8
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	13.1	94.2
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.86

RL Analytical reporting limit

U Undetected at reported detection limit

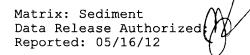
Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Client ID: 410A/NSM ARI ID: 12-8732 UU16J

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	60.60
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	59.70
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	3.17	152
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.58	22.4
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.84

RL Analytical reporting limit

U Undetected at reported detection limit


Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Client ID: 410B/NSM ARI ID: 12-8733 UU16K

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	72.70
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	58.40
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	1.37	96.2
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.65	32.9
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.19

RL Analytical reporting limit

U Undetected at reported detection limit

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/08/12 Date Received: 05/11/12

Client ID: 410C/NSM ARI ID: 12-8734 UU16L

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	69.40
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	68.60
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	2.76	140
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	13.6	150
Total Organic Carbon	05/15/12 051512#1	Plumb,1981	Percent	0.020	1.39

RL Analytical reporting limit

U Undetected at reported detection limit

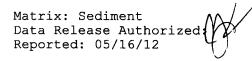
Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Client ID: Reference ARI ID: 12-8735 UU16M

Analyte	Date	Method	Units	RL	Sample
Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	51.70
Preserved Total Solids	05/11/12 051112#1	SM2540B	Percent	0.01	52.40
N-Ammonia	05/14/12 051412#1	EPA 350.1M	mg-N/kg	0.95	29.9
Sulfide	05/11/12 051112#1	EPA 376.2	mg/kg	1.87	2.51

RL Analytical reporting limit
U Undetected at reported detection limit

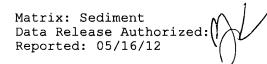
Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12


Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: UU16A Client ID:	401A/DP					
N-Ammonia	05/14/12	mg-N/kg	137	307	177	95.9%
Sulfide	05/11/12	mg/kg	10.9	346	329	101.9%
Total Organic Carbon	05/15/12	Percent	1.70	4.04	2.28	102.7%

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: 05/09/12 Date Received: 05/11/12

Analyte	Date	Units	Sample	Replicate (s)	RPD/RSD
ARI ID: UU16A Client ID	: 401A/DP			· · · · · · · · · · · · · · · · · · ·	
Total Solids	05/11/12	Percent	54.00	54.00 54.30	0.3%
Preserved Total Solids	05/11/12	Percent	45.40	45.60	0.4%
N-Ammonia	05/14/12	mg-N/kg	137	138	0.7%
Sulfide	05/11/12	mg/kg	10.9	14.0	24.9%
Total Organic Carbon	05/15/12	Percent	1.70	1.70 1.23	17.6%

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: NA Date Received: NA


Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Sulfide EPA 376.2	PREP	05/11/12	mg/kg	155	151	102.8%
Total Organic Carbon Plumb,1981	ICVL	05/15/12	Percent	0.098	0.100	98.0%

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	05/11/12 05/14/12	Percent	< 0.01 U < 0.01 U
Preserved Total Solids	05/11/12	Percent	< 0.01 U
N-Ammonia	05/14/12	mg-N/kg	< 0.10 U
Sulfide	05/11/12	mg/kg	< 1.00 U
Total Organic Carbon	05/15/12	Percent	< 0.020 U

Project: P.O.P. T4 Maintenance Event: 15753-00 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
N-Ammonia ERA 160510	05/14/12	mg-N/kg	102	100	102.0%
Total Organic Carbon NIST 1941B	05/15/12	Percent	2.63	2.99	88.0%

Geotechnical Analysis Report and Summary QC Forms

ARI Job ID: UU16

.

Hart Crowser 15753-00 P O P T4 Maintenance

Percent Finer (Passing) Than the Indicated Size

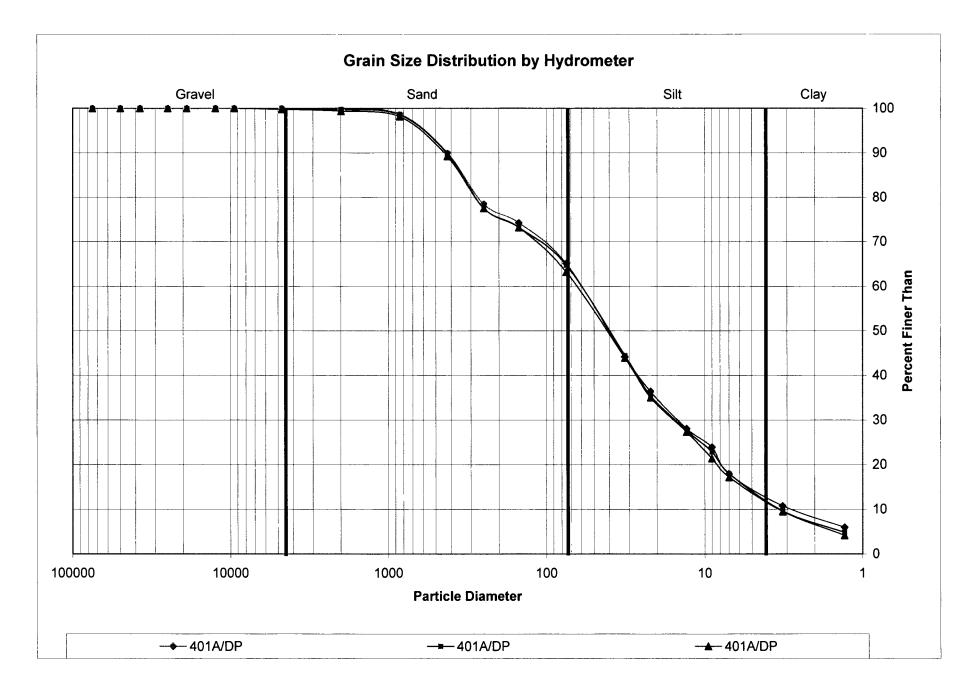
Sieve Size (microns)	3"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	13	9	7	32	1.3
	100 0	100.0	100 0	100.0	100 0	100 0	100 0	100 0	99.8	98.7	90 0	78 4	74.2	65 1	44 1	36 4	28 0	23.8	17 9	10 7	6.0
401A/DP	100.0	100.0	100.0	100.0	100 0	100.0	100 0	100 0	99 8	98.5	89 8	77 5	73.1	64 8	44 4	35 4	27 6	22 8	18 0	96	4.8
	100 0	100 0	100 0	100 0	100 0	100.0	100 0	99.8	99 4	98 1	89.2	77 5	73 1	63 2	43 9	35 0	27 3	21.4	17 2	9.5	4 2
401B/DP	100 0	100.0	100 0	100.0	100.0	100 0	100 0	100.0	99 9	98 6	81.3	56.0	49 3	43.2	316	23.7	18.1	14.7	11 3	4.5	28
401C/DP	100 0	100.0	100 0	100 0	100 0	100 0	100 0	100.0	100 0	99 7	99.3	99.1	98 3	90.8	60 3	47.4	34 4	28 0	215	10.8	57
401A/NSM	100.0	100 0	100.0	100 0	100.0	100 0	100 0	99 5	99.0	96.7	74 3	29 0	15 0	12.1	8.4	64	5.9	4.5	3.0	00	00
401B/NSM	100 0	100.0	100.0	100.0	100 0	100 0	100 0	100 0	100 0	98.9	64 0	14 4	4.1	30	00	00	00	0.0	00	00	00
401C/NSM	100 0	100.0	100 0	100.0	100 0	100 0	100.0	100.0	99 9	99 7	97.5	94 4	92 1	83.1	55 6	43.4	33 2	27.8	23 0	10 8	6.8
410A/DP	100 0	100 0	100 0	100.0	100.0	100.0	100 0	100.0	99 9	98 9	84 3	59 8	54.5	50.6	36 1	28.6	21 1	16.8	12 4	50	19
410B/DP	100 0	100 0	100 0	100 0	100 0	100 0	100 0	99 8	99.8	99 3	81 5	35.0	25.1	22 4	16.6	12 3	9.5	76	5.7	1.9	00
410C/DP	100.0	100 0	100.0	100.0	100.0	100 0	100.0	99 8	99 7	99 3	86.1	49 0	36 6	32 2	24.4	19 5	14.6	117	8.8	2.9	10
410A/NSM	100.0	100 0	100.0	100.0	100.0	99 6	99.2	99 2	99.0	98 4	87.5	64.3	57.3	50.4	35.6	29 7	20 2	15.4	10 7	3.6	00
410B/NSM	100 0	100.0	100 0	100.0	100 0	99.2	99 2	99 2	99 1	98.4	77 4	36.9	28 5	25.4	17.5	13.6	97	7.8	5.8	10	0.0
410C/NSM	100 0	100 0	100.0	100 0	100.0	100 0	100.0	99 9	99 8	99.3	84 2	51 2	42.6	39 6	31.2	24.9	17.6	13 6	96	23	00

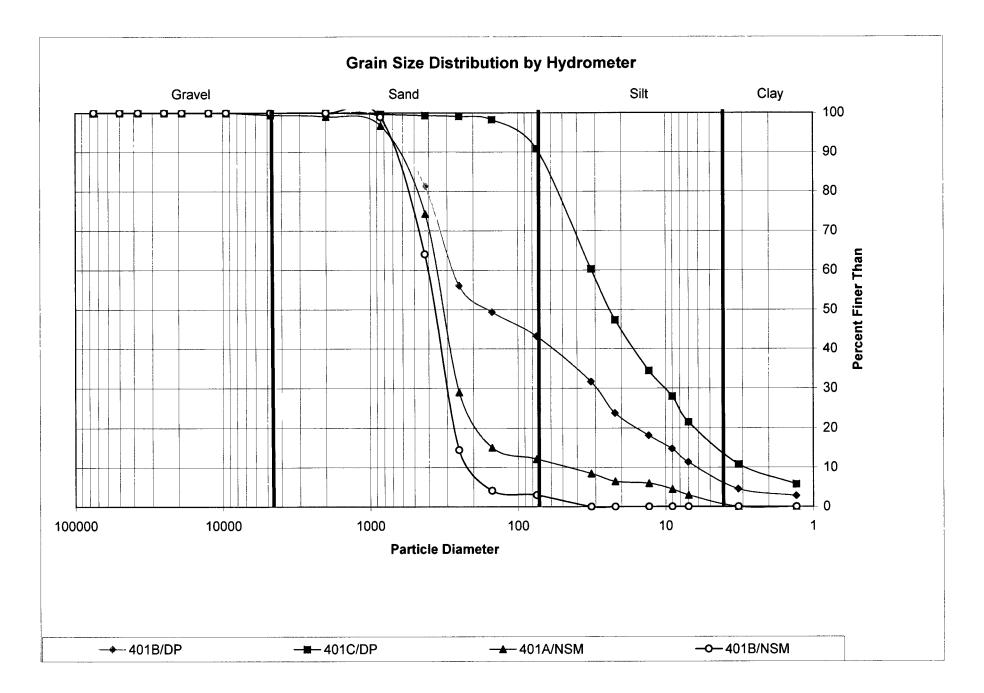
Testing performed according to ASTM D421/D422

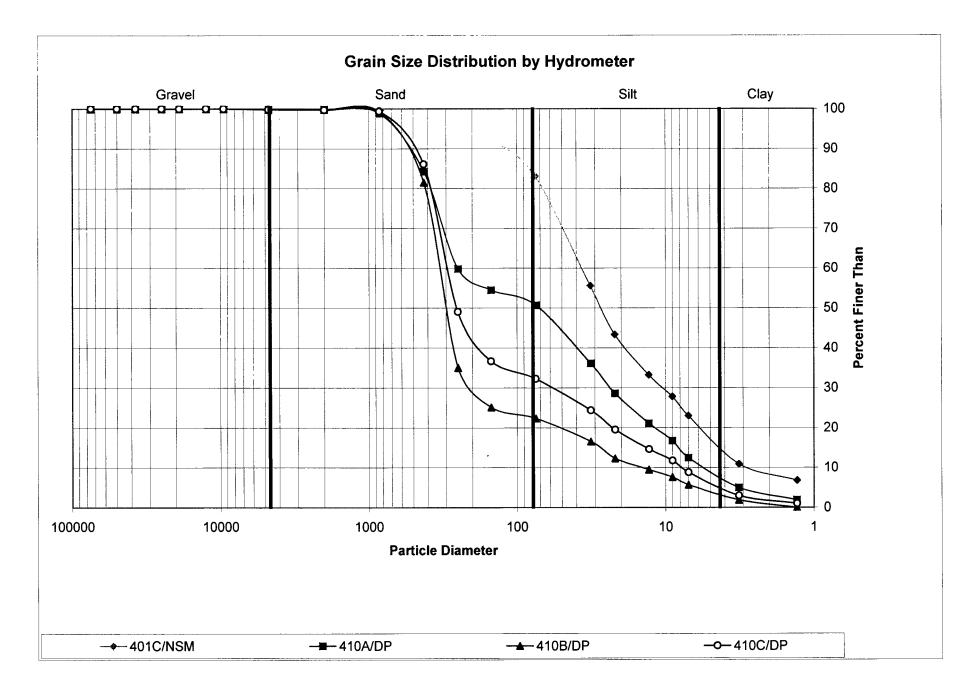
UU16

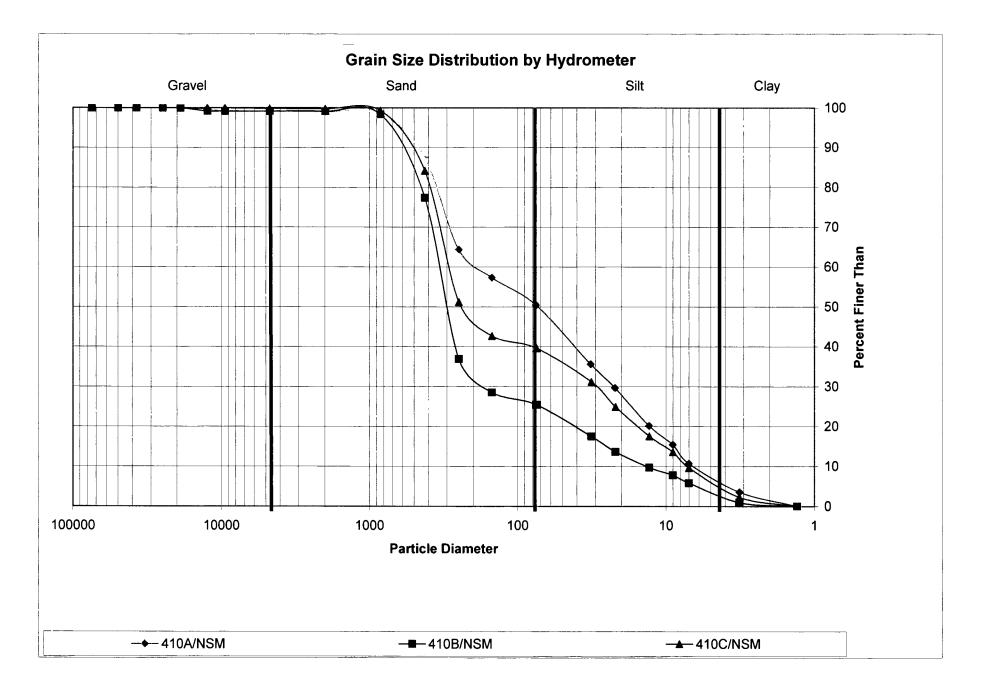
Hart Crowser 15753-00 P O P T4 Maintenance

Percent Retailed in Each offer Proceeding																					
Description		%Coars	e Gravel			% Gravel		% Coarse Sand	% Medu	um Sand	%	Fine Sar	nd	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Sılt	% Very Fine Sılt	%	Clay
Particle Size (microns)	3-2"	2-1 1/2"	1 1/2"-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	4750- 2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	9-7	7-3 2	3 2-1 3	<1 3
	0.0	00	00	00	00	00	00	02	1.1	88	11.6	4.3	9.1	20 9	78	83	4.2	60	72	48	60
401A/DP	00	0.0	00	0.0	0.0	00	0.0	02	12	87	12.3	4.4	83	20 3	9.0	7.8	4.8	48	84	48	4.8
ſ	0.0	00	00	00	00	00	0.2	0.4	1.3	8.9	11.7	4 3	9.9	19 3	8.9	7.7	59	4.2	77	5.3	4.2
401B/DP	00	00	00	00	0.0	0.0	00	01	1.2	17 3	25 3	67	62	11 5	79	57	34	3.4	68	17	2.8
401C/DP	0 0	00	0.0	0.0	0.0	0.0	0.0	00	03	0.3	03	08	74	30.6	12 9	12.9	65	65	10 8	50	5.7
401A/NSM	0.0	0.0	00	0.0	00	00	0.5	04	23	22.4	45 3	14 0	2.9	37	20	05	15	15	3.0	0.0	00
401B/NSM	0.0	0.0	0.0	0.0	00	00	0.0	0.0	10	34.9	496	10 3	1.1	30	0.0	00	0.0	00	0.0	0.0	0.0
401C/NSM	0.0	00	00	0.0	00	0.0	00	01	0.2	22	3.1	2.3	9.1	27.5	12 2	10 2	54	47	12.2	4.1	68
410A/DP	0.0	00	0.0	00	0.0	0.0	00	0.1	10	14 6	24.5	53	38	14 6	7.5	7.5	4.4	44	75	31	1.9
410B/DP	0.0	0.0	0.0	0.0	00	0.0	02	00	0.5	17 8	46.5	98	2.8	58	4.3	2.8	19	1.9	38	19	00
410C/DP	0.0	00	0.0	0.0	00	0.0	02	01	0.4	13 3	37 1	12 4	44	7.8	4.9	4.9	29	2.9	58	19	10
410A/NSM	0.0	00	0.0	0.0	04	05	00	01	07	10 8	23 3	70	69	14 8	59	95	47	4.7	71	36	00
410B/NSM	0.0	00	0.0	0.0	0.8	00	0.0	00	08	21.0	40 5	84	31	7.9	3.9	39	1.9	1.9	49	1.0	0.0
410C/NSM	0.0	0.0	00	0.0	0.0	00	01	0.1	05	15 1	33 0	86	3.0	84	62	74	40	40	7.4	23	0.0


UU16


Client	Hart Crowser	Project No Project	15753-00 P O P T4 Maintenance	
ARI Triplicate Sample ID	UU16A	Batch No	UU16-01	
Client Triplicate Sample ID	401A/DP	Page	1 of 1	


	Relative Standard Deviation, By Size																				
Sample ID	75000	50000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	32	22	13	9	7	32	13
401A/DP	100 0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	998	98 7	90 0	78 4	74 2	65 1	44 1	36.4	28 0	23 8	17 9	10 7	60
401A/DP	100.0	100 0	100 0	100 0	100 0	100 0	100 0	100 0	99 8	98 5	89 8	77 5	73 1	64 8	44 4	35 4	27 6	22 8	18 0	96	48
401A/DP	100 0	100 0	100 0	100 0	100 0	100 0	100 0	99 8	99 4	98 1	89 2	77 5	73 1	63 2	43 9	35 0	27 3	21.4	17 2	95	42
AVE	100 00	100 00	100 00	100 00	100 00	100 00	100 00	99 93	99 66	98 46	89 67	77 80	73 48	64 35	44 15	35 60	27 64	22 67	17 70	9 94	4 97
STDEV	0.00	0.00	0 00	0 00	0 00	0 00	0 00	0 13	0 26	0 32	0 41	0 55	0.61	0 98	0 27	0 70	0 37	1 25	0 44	0 68	0 92
%RSD	0.00	0 00	0.00	0 00	0 00	0 00	0 00	0 13	0 26	0 33	0 46	071	0 83	1 53	0 62	1 97	1 33	5 53	2 47	6 89	18 43


This Triplicate applies to the Batch Containing the Following Samples

Sample ID	Date Sampled	Date Set up	Date Started	Date Complete	Data Qualifiers
	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
401A/DP	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
401B/DP	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
401C/DP	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
401A/NSM	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
401B/NSM	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
401C/NSM	5/9/2012	5/11/2012	5/14/2012	5/16/2012	
410A/DP	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
410B/DP	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
410C/DP	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
410A/NSM	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
410B/NSM	5/8/2012	5/11/2012	5/14/2012	5/16/2012	
410C/NSM	5/8/2012	5/11/2012	5/14/2012	5/16/2012	

Sample Number Test Temperature Specific Gravity	401A/DP 22 2.65		100 00 75000 3" 2	100 00 50000	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	99 85 2000 10	98 74 850 20	89 99 425 40	78 44 250 60	74 18 150 100	65 07 75 200	44 12 28 1	36 37 18 8	28 02 11 4	23 85 8 3	17 89 6 1	10 73 3 1	5 96 1 3
							Sieve Analy	sis Portior	1				Hyd	drometer Ar	nalysis Por	tion							
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
			-		5"	10.01	0 00		0 00	100 00													
					3"	10.01	0 00		0 00	100 00											i i		
					2"	10.01	0 00		0 00	100 00											.		1
Wet Wt & Tare	18.06				1 5"	10.01	0 00		0 00	100 00	1	50	8.0	50 08		37 8195				1		ļ	1
Dry Wt & Tare	17.53		1		1	10.01	0.00		0 00	100 00	2	45	80	44 12		28 06216				1			- i
Wt Moisture	0 53				3/4	10.01	0 00		0 00	100 00	5	38.5	8.0	36 37		18 77776						-	,
Wt Tare	1.53				1/2	10.01	0 00		0 00	100 00	15	31.5	8.0	28 02		11 44709 8 300198						L	1
Dry Soil	16	1 :			3/8	10 01	0 00		0 00	100 00		28	8.0	23 85		6 071043						1	
Moisture Content	0 033125				4	10.01	0 00		0 00	100 00	60	23	8.0	17 89		3 069925							
Air Dry Total Sample					10	10.2	0 19		0 15	99 85	250	18	9.0	10 73 5 96		3 069925							
Oven Dry Total Samp					20	11.13	0 93	1 11	1 26	98 74	1440	14	9.0	596	14 0	1 3101/2	0013200	1 001305			1		
Air Dry Hydro Sample			1		40	18.48	8 28	9 86	10 01	89 99									l				
Oven Dry Wt Hydro	83 85238959				60	28.18	17 98	21 41	21 56	78 44													
Amount Plus #10	0 19				100	31.76	21 56	25 67	25 82	74 18													
W (14 2) =	83 97984584				200	39.41	29 21	34 78	34 93	65 07										1			-

Sample Number Test Temperature Specific Gravity	401A/DP 22 : 2.65	100 00 125000 5"	100 (750(3"			100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	99 76 2000 10	98 54 850 20	89 81 425 40	77 49 250 60	73 11 150 100	64 77 75 200	44 44 28 1	35 43 18 9	27 62 11 5	22 82 8 4	1801	961 31	4 80 1 3
,,							Sieve Analy	sis Portior	1														
	, ,				Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	" L "	D	к	а					
					5" 3" 2"	10.41 10.41 10.41	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00		• .					· · · ·						
Net Wt & Tare	22.02			•	1 5"	10.41 10.41	0 00 0 00		0 00 0 00	100 00 100 00	1	51.5 45	8	52 24 44 44		37 24135 28 06216							ļ
Dry Wt & Tare Nt Moisture	21.33 0 69				3/4	10.41	0.00		0 00	100 00	5	37.5	8	35 43		18 93121							
Nt Tare	1.53				1/2	10.41	0 00		0 00	100 00	15	31	8	27 62		11 48914							
Dry Soil	19.8				3/8	10.41	0 00		0 00	100 00	30	27	8	22 82	11 9	8 358089	0 013286	1 001385					
Voisture Content	0 034848485				4	10.41	0 00		0 00	100 00	60	23	8	18 01		6 071043							
Air Dry Total Sample	126.35				10	10.7	0 29		0 24	99 76	250	17	9	9 61		3 088715							
Oven Dry Total Samp					20	11.72	1 02	1 22	1 46	98 54	1440	13	9	4 80	14 2	1 317817	0 013286	1 001385					
Air Dry Hydro Sample					40	19	8 30	9 95	10 19	89 81													
Oven Dry Wt Hydro	83 18125915				60	29.27	18 57	22 27	22 51	77 49													
Amount Plus #10	0 29				100	32.92	22 22	26 65	26 89	73 11													
W (14 2) =	83 37928549			_	200	39.88	29 18	35 00	35 23	64 77												(-

	401A/DP		00 00 125000	100 00 75000 3"	100 00 50000		100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	99 78 4750	99 37 2000 10	98 11 850 20	89 20 425 40	77 49 250 60	73 14 150 100	63 23 75 200	43 90 28 1	35 00 18 9	27 29 11 5	21 36 8 4	9 49 3 1	13
est Temperature pecific Gravity		22 <u>5"</u> 2 65		<u> </u>	2	10		3/4				10	20	40	00		200						
specific Gravity		205			ſ			Sieve Analy	ysis Portic	n			-	Hyd	drometer Ar	alysis Port	ion						
	<u> </u>					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а				
						5" 3" 2"	10.23 10.23 10.23	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00												
Vet Wt & Tare		20 53				1 1/2"	10.23	0 00		0 00	100 00	1	51	8	51 01	79	37 43506	0 013286	1 001385				1
Dry Wt & Tare		19.9				1	10.23	0 00		0 00	100 00	2	45	8	43 90			0 013286					
Nt Moisture		0 63				3/4	10.23	0 00		0 00	100 00	5	37.5	8	35 00	10 2	18 93121	0 013286	1 001385				
Vt Tare		1.54	ĺ			1/2	10.23	0 00		0 00	100 00	15	31	8	27 29			0 013286					
Dry Soil		18 36			1	3/8	10.23	0 00		0 00	100 00	30	26	8	21 36			0 013286					
Adusture Content	0 03431	3725			1	4	10.51	0 28		0 22	99 78	60	22.5	8	17 20	12 6	6 090867	0 013286	1 001385				
ur Dry Total Sample	12	29.19				10	11.02	0 79		0 63	99 37	250	17	9	9 49	13 5	3 088715	0 013286	1 001385				
oven Dry Total Samp						20	12.08	1 06	1 26	1 89	98 11	1440	12.5	9	4 15	14 2	1 321623	0 013286	1 001385				
ur Dry Hydro Sample		86.75	1	1		40	19.6	8 58	10 17	10 80	89 20												
oven Dry Wt Hydro	83 8720	3791	1			60	29.49	18 47	21 88	22 51	77 49												
mount Plus #10		0 79	1	1		100	33.16	22 14	26 23	26 86	73 14												
W (14 2) =	84 4057	8013		1		200	41.52	30 50	36 13	36 77	63 23												

ample Number est Temperature pecific Gravity	4018/DP 22 2.65	100 00 125000 5"	100 00 75000 3"	100 00 50000 2"	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	99 85 2000 10	98 62 850 20	81 34 425 40	56 05 250 60	49 33 150 100	43 18 75 200	31 65 30 3	23 73 20 2	18 08 12 1	14 69 8 7	11 30 6 3	4 52 3 2	2 83 1 3
							Sieve Analy	sis Portion	1				Hyd	drometer An	alysis Port	ion							
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"נ"	D	к	а					
					5"	10.55	0 00		0 00	100 00													
					3"	10.55	0 00		0 00	100 00													i
					2"	10.55	0 00		0 00	100 00		-	~		~ ~	** *****		4 004005					
Wet Wt & Tare	22 87				1 5"	10 55	0 00		0 00	100 00		39 36	8	35 04 31 65		41 81575 30 29315							1
Dry Wt & Tare	22 3		-	1	1	10.55	0 00		0 00	100 00	2	29	~	23 73		20 18845							1
Vt Moisture	0 57				3/4	10.55	0.00		0 00	100 00	5	29 24		23 73		12 0624							
Vt Tare	1.54				1/2 3/8	10.55 10.55	0 00		0 00 0 00	100 00 100 00	15 30	24	0	14 69		8 697348							
Dry Soil	20 76		-		3/0	10.55	0 00		0.00	100 00	60	18	0 a	14 09		6 266457							1
Noisture Content	0 027456647				4	10.55	0 25		0 15	99 85	250	13	ŝ	4 52		3 162761							1
ur Dry Total Sample			-		20	10.8	1 09	1 23	138	99 65 98 62	250 1440	11.5	9	2 83		1 329202							1
Oven Dry Total Samp			-	;	20	27.2	16 40	18 51	18 66	90 02 81 34	1440	11.5	9	2 03	14 4	1 329202	0 013200	1 001305				,	
Air Dry Hydro Sample			ŀ	1	40	49.61	38 81	43 80	43 95	56 05				*					l				
Oven Dry Wt Hydro	88 47088608			1	100	49.01 55.56	44 76	43 60	43 95 50 67	49 33													
Amount Plus #10	0 25 88 60224446				200	55.56 61.01	44 /6 50 21	50 52 56 67	56 82	49 33 43 18												1	
W (14 2) =	68 60224446				200	01.01	50 Z I	30.07	30.02	4010													

в

est Temperature	401C/DP	22 5 2.65	100 00 125000	2"	100 00 50000	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	100 00 2000 10	99 66 850 20	99 34 425 40	99 08 250 60	98 27 150 100	90 83 75 200	60 27 26 7	47 36 18 4	34 44 11 4	27 98 8 3	21 53 6 1	10 76 3 1	574 13
Specific Gravity		2.05		;	Г			Sieve Analy	sis Portion					Hyd	frometer An	nalysis Por	ion							
			-			Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
						5" 3" 2"	10.28 10 28 10.28	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00								4 004000					
Vet Wt & Tare		19.3				1 5"	10.28 10.28	0 00 0 00		0 00	100 00 100 00	1	56 50	8	68 88 60 27			0 013286					!	
Dry Wt & Tare		8.58 0 72				3/4	10.28	0.00		0 00	100 00	5	41	8	47 36			0 013286				1		
∕∕t Moistur e ∕∕t Tare		1.54	i			1/2	10 28	0 00		0 00	100 00	15	32	8	34 44			0 013286						
Dry Soil		7 04				3/8	10.28	0 00		0 00	100 00	30	27.5	8	27 98			0 013286					1	
Moisture Content	0 04225		1			4	10.28	0 00		0 00	100 00	60	23	8	21 53			0 013286					۰ ,	
Air Dry Total Sample		9.77	1			10	10.28	0 00		0 00	100 00	250	16.5	9	10 76			0 013286						
Oven Dry Total Samp	114 914	4595				20	10.52	0 24	0 34	0 34	99 66	1440	13	9	5 74	14 2	1 317817	0 013286	1 001385					
Air Dry Hydro Sample		2.73	[1	40	10.74	046	0 66	0 66	99 34									I				
Oven Dry Wt Hydro	69 7814					60	10.92	0 64	0 92	0 92	99 08													Í
mount Plus #10		0 00				100	11.49	1 21	173	173	98 27											1		
W (14 2) =	69 7814	8649	_	 		200	16.68	6 40	9 17	9 17	90 83												1 1	-

с

imple Number est Temperature ecific Gravity	401A/NSM 22 2.65	100 00 125000 5" 3	100 00 75000 "		100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	99 45 4750 4	99 03 2000 10	96 74 850 20	74 32 425 40	29 03 250 60	15 02 150 100	12 15 75 200	8 41 34 6	6 43 22 2	5 94 12 8	92	65	32	13
,							Sieve Analy	sis Portion					Hy	drometer Ar	nalysis Por	tion							
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
				1	5" 3"	10 09 10.09	0 00 0 00		0 00	100 00 100 00				<u>.</u>					·				
					2"	10.09	0 00		0 00	100 00			-										
Vet Wt & Tare	22.27				1 5"	10.09	0 00		0 00	100 00	1	18 16.5	8	9 90 8 41			0 013286						
Dry Wt & Tare	21.93			1	1	10.09	0 00		0 00 0 00	100 00 100 00	2	10.5	2	643			0 013286						
Vt Moisture	0 34			· •	3/4 1/2	10 0 9 10.09	0 00		0 00	100 00	15	14	ě	5 94			0 013286						
Vt Tare	1.54 20 39				3/8	10.09	0 00		0 00	100 00	30	12.5	Ř	4 45			0 013286						
Ory Soil Noisture Content	0 016674841				4	11.15	1 06		0 55	99 45	60	11	8	2 97			0 013286					. 1	1
					10	11.97	1 88		0 97	99 03	250	9	9	0 00			0 013286						1
Air Dry Total Sample Oven Dry Total Samp		'			20	14.29	2 32	2 29	3 26	96 74	1440	9	9	0 00	14 8	1 347964	0 013286	1 001385					
Air Dry Hydro Sample		i			40	36.97	25 00	24 71	25 68	74 32		-									1		
Oven Dry Wt Hydro	100 1991944			1	60	82.8	70 83	70 00	70 97	29 03									-				i
Amount Plus #10	1 88				100	96.97	85 00	84 01	84 98	15 02													
W (14 2) =	101 1801686				200	99.88	87 91	86 88	87 85	12 15													1

ample Number est Temperature	401B/NSM22				100 00 50000	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	99 97 2000 10	98 92 850 20	64 01 425 40	14 40 250 60	4 10 150 100	2 99 75 200	0 00 36 4	0 00 23 0	0 00 13 3	0 00 9 4	0 00 6 6	0 00 3 3	0 00 1 4
pecific Gravity	2 65	1	ł	İ	Г			Sieve Analy	sis Portion					Hy	drometer Ar	nalysis Por	tion							i
						Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"["	D	к	а					
		1				5 3 2	10.36 10.36 10.36	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00													
Wet Wt & Tare	27.79				1	15	10.36	0 00		0 00	100 00	1	8	8	0 00			0 013286						
Dry Wt & Tare	27.49					1	10.36	0 00		0 00	100 00	2	8	8	0 00			0 013286						
Wt Moisture	03					3/4	10.36	0 00		0 00	100 00	5	8	ð	0 00 0 00			0 013286 0 013286				i r		
Nt Tare	1.55					1/2	10.36	0 00 0 00		0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 00 100 00	15 30	0	6	0 00			0 013286						
Dry Soil	25 94					3/8	10.36 10.36	0.00				50 60	0	0 0	0.00			0 013286					1	
Aoisture Content	0 01156515		1		- 1	4				0 00	100 00		0		0.00			0 013286				i į		
Air Dry Total Sample						10	10.42	0 06 1 08	4.05	0 03 1 08	99 97 98 92	250 1440	• •		0 00			0 013286				1 1		
Oven Dry Total Samp						20	11.5 47 43	1 08 37 01	1 05 35 96	35 99	98 92 64 01	1440	0	đ	0.00	15.0	1 222380	0 013200	1 00 1363					
Air Dry Hydro Sample				-	-	40	4/43 98,49	88 07	35 90 85 57	35 99 85 60	14 40													
Oven Dry Wt Hydro	102 890061					60	98.49 109.09	98 67	85 57 95 87	95 90	4 10													
Amount Plus #10	0.06			-		100	109.09	98 67 99 81	95 87 96 98	95 90	2 99									-				
W (14 2) =	102 9200121		- i			200	110/23	99.81	90,98	9/01	7 99									;		i		

ample Number est Temperature specific Gravity	401C/NSM	22 5 2.65	100 00 125000	100 (750(3"		00 00 50000	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	100 00 4750 4	99 93 2000 10	99 70 850 20	97 55 425 40	94 43 250 60	92 12 150 100	83 06 75 200	55 55 27 0	43 36 18 5	33 20 11 4	27 78 8 3	23 03 6 0	10 84 3 1	6 77 1 3
specific Gravity	1					ſ			Sieve Analy	sis Portion					Hyd	drometer An	alysis Port								
			-				Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
	1						5 3 2	10.27 10.27 10.27	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00													
Wet Wt & Tare		18.22					15	10.27	0 00		0 00	100 00	1	55	8	63 68		35 85609							
Dry Wt & Tare		17.62					1	10.27	0 00		0 00	100 00	2	49	8	55 55		27 01153 18 54522							
Wt Moisture		06					3/4	10.27	0 00		0 00	100 00	5	40 32.5	8	43 36 33 20		11 36254							
Wt Tare		1.55					1/2	10.27 10.27	0 00 0 00		0 00 0 00	100 00 100 00	30	32.5	0 2	27 78			0 013286						
Dry Soil		16 07					3/8	10.27	0.00		0.00	100 00	50 60	25	8	23 03		5 991093					i		
Moisture Content	0 0373	15.57	-			- 1	+ 10	10.27	0 08		0 07	99 93	250	17	9	10 84		3 088715							
Air Dry Total Sample					1		20	10.55	0 17	0 23	0 30	99 70	1440	14	9	6 77		1 310172						[]	
Oven Dry Total Samı Aır Dry Hydro Sampl		76.61					40	12 11	1 76	2 38	2 45	97 55			,										
Oven Dry Wt Hydro	73 852						60	14.41	4 06	5 49	5 57	94 43									-			1 1	
Amount Plus #10	13 002	0 08					100	16.12	5 77	7 81	7 88	92 12													
W (14 2) =	73 905		1			1	200	22.82	12 47	16 87	16 94	83 06													

Sample Number	410A/DP	100 00	100 00	100 00	100 00 37500	100 00 25000	100 00 19000	100 00 12500	100 00 9500	100 00 4750	99 88 2000	98 85 850	84 25 425	59 78 250	54 46 150	50 65 75	36 08 30 1	28 61 19 9	21 15 12 0	16 79 8 7	12 44 6 3	498 32	187 13
est Temperature	22	125000	75000	50000	1 5"	25000	3/4"	1/2"	3/8"	4/50	10	20	40	60	100	200		13.5	12.0		00		
specific Gravity	2.65	· ·	,	<u>-</u>		··			0.0														
pecilic Glavity	1						Sieve Analy	sis Portion	1	·····			Hyd	drometer Ar	nalysis Por	tion							
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	ŗ	D	к	æ					
					5 3 2	9.75 9.75 9.75	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00													
Vet Wt & Tare	18.2				15	9 75	0 00		0 00	100 00	1	41	8	41 05			0 013286						
Dry Wt & Tare	17.7				1	9 75	0 00		0 00	100 00	2	37	8	36 08			0 013286						
Wt Moisture	05				3/4	9.75	0 00		0 00	100 00	5	31	8	28 61			0 013286					1	i
Nt Tare	1 57				1/2	9.75	0 00		0 00	100 00	15	25	8	21 15			0 013286						
Dry Soil	16 13	[3/8	9 75	0 00		0 00	100 00	30	21.5	8	16 79			0 013286						
Moisture Content	0 03099814			1	4	9.75	0 00		0 00	100 00	60	18	8	12 44			0 013286				1		-
Air Dry Total Sample	140.16				10	9.91	0 16		0 12	99 88	250	13	9	4 98			0 013286				-	l.	
Oven Dry Total Sam	p 135 9507396	1		· ·	20	10.74	0 83	1 03	1 15	98 85	1440	10.5	9	1 87	146	1 336738	0 013286	1 001385			1		
Air Dry Hydro Sample	e 82.89				40	22.49	12 58	15 63	15 75	84 25													
Oven Dry Wt Hydro	80 3978172				60	42.19	32 28	40 10	40 22	59 78													
Amount Plus #10	0 16				100	46.47	36 56	45 42	45 54	54 46													
W (14 2) =	80 49254863			[200	49.54	39 63	49 23	49 35	50 65												i	

G

est Temperature	410B/DP 22 2.65	100 00 125000 5"	100 00 75000 3"		100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	99 81 4750 4	99 79 2000 10	99 29 850 20	81 45 425 40	34 97 250 60	25 14 150 100	22 37 75 200	16 56 32 7	12 31 21 3	9 47 12 5	757 90	5 68 6 4	189 32	0 00 1 3
pecific Gravity	2.00			1			Sieve Analy	sis Portion	1				Hyo	drometer Ar	nalysis Por	tion					ļ		1
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
	- -				5 3 2	10 89 10 89 10.89	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00		****											
Vet Wt & Tare	21.82	1 1			15	10.89	0 00		0 00	100 00	1	27 25.5	8	17 98 16 56			0 013286 0 013286						
Dry Wt & Tare	21.37				1 3/4	10.89 10.89	0 00 0 00		0 00 0 00	100 00 100 00	5	25.5 21	8	12 31			0 013286				•		
Wt Moisture Wt Tare	0 45 1.57				1/2	10.89	0 00		0 00	100 00	15	18	8	9 47			0 013286						
Dry Soli	19.8				3/8	10.89	0 00		0 00	100 00	30	16	8	7 57			0 013286						
Aoisture Content	0 022727273				4	11.22	0 33		0 19	99 81	60	14	8	5 68			0 013286						
ur Dry Total Sample	181.56				10	11.26	0 37		0 21	99 79	250	11	9	1 89			0 013286						
Oven Dry Total Samp	177 5335556				20	11.79	0 53	0 50	071	99 29	1440	9	9	0 00	14 8	1 34/964	0 013286	1 001385					
Air Dry Hydro Sample					40	30.66	19 40	18 34	18 55	81 45						-			1				
Oven Dry Wt Hydro	105 5706667			1	60	79.84	68 58	64 83	65 03	34 97												1	1
Amount Plus #10 W (14 2) =	0 37 105 7911474				100 200	90.24 93.16	78 98 81 90	74 66 77 42	74 86 77 63	25 14 22 37											l		1

н

ample Number est Temperature specific Gravity	410C/DP 22 5 2.65	100 00 125000 5"	100 00 75000 3"	100 00 50000 2"	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	100 00 12500 1/2"	100 00 9500 3/8"	99 83 4750 4	99 71 2000 10	99 34 850 20	86 08 425 40	49 01 250 60	36 60 150 100	32 19 75 200	24 37 31 0	19 50 20 3	14 62 12 1	11 70 8 8	877 63	2 92 3 1	097 13
pecilic Gravity	1						Sieve Analy	sis Portion)				Hy	drometer Ar	nalysis Por	tion							
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					1
					5" 3"	10.6 10.6 10.6	0 00 0 00 0 00		0 00 0 00 0 00	100 00 100 00 100 00													
Wet Wt & Tare	21.09				2" 1.5"	10.6	0 00		0 00	100 00	1	37	8	28 27	10 2	42 50199	0 013286	1 001385					
Dry Wt & Tare	20.55				1"	10.6	0 00		0.00	100 00	2	33	8	24 37		31 00115						:	
Wt Moisture	0 54	1		1	3/4"	106	0 00		0 00	100 00	5	28	8	19 50		20 33125							
Vt Tare	1.57	1			1/2"	10.6	0 00		0 00	100 00	15	23	8	14 62		12 14209							
Dry Soil	18 98				3/8"	10.6	0 00		0 00	100 00	30	20	8	11 70		8 752613						i	
Moisture Content	0 028451001				4	10.85	0 25		0 17	99 83	60	17	8	8 77		6 304814							
Air Dry Total Sample	147.23	1			10	11.01	0 41		0 29	99 71	267	12	9	2 92		3 07807							
Oven Dry Total Samp					20	11.39	0 38	0 37	0 66	99 34	1440	10	9	0 97	14 7	1 340491	0 013286	1 001385					
Air Dry Hydro Sample	e 105.35				40	25 02	14 01	13 64	13 92	86 08													
Oven Dry Wt Hydro	102 4356045	1			60	63.1	52 09	50 71	50 99	49 01										ļ			
Amount Plus #10	0 41				100	75 85	64 84	63 12	63 40	36 60										ļ			
W (14 2) =	102 7297981				200	80.38	69 37	67 53	67 81	32 19										t			

I.

ample Number est Temperature pecific Gravity	410A/NSM 22 5 2.65	100 00 125000 5" 3	100 00 75000	100 00 50000 2"	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	99 63 12500 1/2"	99 15 9500 3/8"	99 15 4750 4	99 04 2000 10	98 36 850 20	87 54 425 40	64 27 250 60	57 29 150 100	50 41 75 200	35 59 29 8	29 66 19 6	20 17 12 0	15 4 2 7 7	10 68 5 8	3 56 3 1	0 00
				[Sieve Analy	sis Portion	i i														
			1	-	Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а					
					5"	9.76	0 00		0 00	100 00													
		[3"	9.76	0 00		0 00	100 00													ļ
		1			2"	9.76	0 00		0 00	100 00			_			40 04874						1	
Vet Wt & Tare	26.45		1		1 5"	9.76	0 00		0 00	100 00	1	44	8	42 71		40 04874 29 81181							ĺ
Dry Wt & Tare	25.67				1"	9.76	0 00		0 00	100 00	2	38	8	35 59							1		
Vt Moisture	0 78				3/4"	9.76	0 00		0 00	100 00	5	33	8	29 66		19 60685 11 98219							-
Vt Tare	1.57				1/2"	10.32	0 56		0 37	99 63	15	25	8	20 17									
Iry Soil	24 1				3/8"	11.06	1 30		0 85	99 15	38	21	8	15 42		7 727797							
Aoisture Content	0 032365145	ļ			4	11.06	1 30		0 85	99 15	70	17	8	10 68		5 837123							
ur Dry Total Sample	157.93	ł			10	11.23	1 47		0 96	99 04	259	12	9	3 56		3 125246							
Oven Dry Total Samp			l		20	11.8	0 57	0 68	1 64	98 36	1440	8	9	0 00	14 8	1 347964	0 013286	1 001385					
Air Dry Hydro Sample					40	20.94	9 71	11 50	12 46	87 54													-
Oven Dry Wt Hydro	83 60413987				60	40.58	29 35	34 77	35 73	64 27													
mount Plus #10	1 47				100	46.47	35 24	41 75	42 71	57 29													
W (14 2) =	84 41505448				200	52.28	41 05	48 63	49 59	50 41											1		

J

ample Number est Temperature specific Gravity	410B/NSM 22 5 2.85	100 00 125000 5"	100 00 75000 3"	100 00 50000 2"	100 00 37500 1 5"	100 00 25000 1"	100 00 19000 3/4"	99 18 12500 1/2"	99 18 9500 3/8"	99 18 4750 4	99 14 2000 10	98 36 850 20	77 39 425 40	36 90 250 60	28 52 150 100	25 44 75 200	17 52 32 6	13 62 21 2	9 73 12 5	779 90	584 64	097 32	0 00 1 3
pecilic Gravity			1]			Sieve Analy	sis Portior	1				Hyd	drometer Ar	alysis Por	tion		ļ			1		
					Sieve Size	Weight of Soil + Tare	Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	"L"	D	к	а			1		
					5	10.1 10.1	0 00 0 00		0 00	100 00 100 00													1
					3	10.1	0.00		0 00	100 00													
Wet Wt & Tare	22.59				15	10.1	0 00		0 00	100 00	1	28	8	19 46			0 013286						
Dry Wt & Tare	22 14				1	10.1	0 00		0 00	100 00	2	26	8	17 52			0 013286						
Wt Moisture	0 45				3/4	10.1	0 00		0 00	100 00	5	22	8	13 62			0 013286						
Wt Tare	1 56				1/2	11.61	1 51		0 82	99 18	15	18	8	973			0 013286				· }		
Dry Soil	20 58				3/8	11.81	1 51		0 82	99 18	30	16	8	779 584			0 013286				1		
Moisture Content	0 021865889				4	11.61	1 51		0 82	99 18	60	14		0.97			0 013286						
Air Dry Total Sample					10	11.68	1 58	0.70	0.86	99 14 98 36	250 1440	10	8	0 00			0 013286						
Oven Dry Total Samp					20	12.48 34.06	0 80 22 38	0 78 21 75	22 61	96 36 77 39	1440	9	9	0.00	140	1 34/ 304	0 013200	1 00 1505					
Air Dry Hydro Sample					40			62 24	63 10	36 90		-							l				
Oven Dry Wt Hydro	102 0094722				60	75.72 84.34	64 04 72 66	62 24 70 61	71 48	28 52													
Amount Plus #10	1 58 102 89643				100 200	84.34 87,51	72 66	70 61	74 56	26 52													
W (14 2) =	102 89643				200	01.91	/3 63	1370	14.00	23 44	I												

κ

Sample Number	410C/NSM	100 00 125000	100 00 75000	100 00 50000	37500	100 00 25000	100 00 19000	100 00 12500	100 00 9500	99 86 4750	99 77 2000	99 29 850 20	84 18 425 40	51 19 250 60	42 64 150 100	39 59 75 200	31 17 30 4	24 94 20 0	17 57 12 1	13 60 8 8	963 63	2 27 3 2	0 00 1 3
est Temperature pecific Gravity	22 2 65	5" 3	8"	2"	1 5"	1"	3/4"	1/2"	3/8"	4	10	20	40	60	100	200				I I	1	ĺ	
pecilie Gravity		Ì		1		S	Sieve Anal	sis Portion					Hy	drometer An	alysis Por								
					Sieve	Weight of	Total		Percent	Percent	Time	Hydro	Comp	Percent	"L"	D	K	а					
					5"	10 4	0 00		0 00	100 00													
					3"	10.4	0 00		0 00	100 00													
		.			2"	10 4	0 00		0 00	100 00		27	8	32 87	10.2	47 50100	0 013286	1 001385					
Vet Wt & Tare	16.77				15"	10.4	0 00		0 00 0 00	100 00 100 00	1	37 35.5	8	32 87			0 013286						
ory Wt & Tare	16.4				1	10.4 10.4	0 00 0		0 00	100 00	5	30.5	8	24 94			0 013286						
Vt Moisture	0 37				3/4 1/2	10.4	0.00		0.00	100 00	15	23.5	ě	17 57			0 013286				1		
Vt Tare	1.57 14 83				3/8	10.4	0 00		0 00	100 00	30	20	8	13 60	13 0	8 752613	0 013286	1 001385					
Dry Soil	0 024949427				4	10.61	0 21		0 14	99 86	60	16.5	8	9 63	136	6 323904	0 013286	1 001385					
Advisture Content	148.92				10	10.73	0 33		0 23	99 77	250	11	9	2 27	14 5	3 199142	0 013286	1 001385					
Air Dry Total Sample Oven Dry Total Samp					20	11.16	0 43	0 49	071	99 29	1440	9	9	0 00	14 8	1 347964	0 013286	1 001385					
Air Dry Hydro Sample					40	24.51	13 78	15 60	15 82	84 18													1
Oven Dry Wt Hydro	88 15069079				60	53.65	42 92	48 58	48 81	51 19													
Amount Plus #10	0 33				100	61.21	50 48	57 14	57.36	42 64											1		
W (14 2) =	88 35134696			1	200	63.9	53 17	60 18	60 41	39 59													

L

Total Solids

ARI Job ID: UU16

•

-

Extractions Total Solids-extts Worklist: 9987 Data By: Tarry Hawk Analyst: TH Created: 5/11/12 Comments: Balance ID: Oven ID: Date: Time: Temp: Analyst: Samples In: Date:_____ Time:_____ Temp:_____ Analyst:_____ Samples Out: Tare Wt Wet Wt Dry Wt ARI ID CLIENT ID (g) % Solids (g) (g) рΗ 1.18 12.29 7.28 54.9 1. UU16A NR 12-8723 401A/DP 7.98 65.0 2. UU16B 1.18 11.64 NR 12-8724 401B/DP 3. UU16C 1.17 12.24 6.44 47.6 NR 12-8725 401C/DP 10.75 8.37 75.2 4. UU16D 1.17 NR 12-8726 401A/NSM 11.49 9.46 80.4 5. UU16E 1.15 NR 12-8727 401B/NSM 12.51 7.43 55.2 NR 6. UU16F 1.18 12-8728 401C/NSM 7. UU16G 1.17 11.86 7.15 55.9 NR 12-8729 410A/DP 72.6 8. UU16H 1.16 11.47 8.64 NR 12-8730 410B/DP 13.54 9.35 66.1 NR 9. UU16I 1.18 12-8731 410C/DP 10. UU16J 10.17 6.53 59.6 NR 1.17 12-8732 410A/NSM 11. UU16K 1.17 12.70 9.74 74.3 NR 12-8733 410B/NSM 12. UU16L 1.17 10.26 7.38 68.3 NR 12-8734 410C/NSM

	ions Total 7: Tarry Haw 1: 5/11/12		tts		Worklist: Analyst: 2 Comments:		
Oven IE	: <u>015</u>				Balance II	: <u>Bi464 - 261</u>	4
Samples	s In:	Date:	5/11/12 Tim	e: <u>14:30</u>	Temp: 05	Analyst: <u>TH</u> Analyst: 5 P	
Samples	out:	Date:	5/12/12 Tim	e: 0630	Temp: 99	Analyst: 5P	
	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рH	
1.	UU16A 12-8723 401A/DP	1.18	12.29	7.28		NR	
2.	UU16B 12-8724 401B/DP	1.18	11.64	7.98		NR	
3.	UU16C 12-8725 401C/DP	1.17	12,24	6.44		NR	
4.	UU16D 12-8726 401A/NSM	1,17	10.75	8,37		NR	
5.	UU16E 12-8727 401B/NSM	i.IS	11.49	9.46		NR	
6.	UU16F 12-8728 401C/NSM	1.18	12,51	7.43		NR	
7.	UU16G 12-8729 410A/DP	1,17	11.86	7.15		NR	
8.	UU16H 12-8730 410B/DP	1.16	11.47	8.69	4	NR	
9.	UU16I 12-8731 410C/DP	1.15	13,54	9.34	5	NR	
10.	UU16J 12-8732 410A/NSM	1.17	10,17	6.5	3	NR	
11.	UU16K 12-8733 410B/NSM	<u>i</u> .17	12.79	9.7	4	NR	
12.	UU16L 12-8734 410C/NSM	1.17	19.26	7.3	8	NR	

Solids Data Entry Report Date: 05/15/12

. .

Solids Determination performed on 05/14/12 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
UU16	A	401A/DP	0.958	10.142	5.766	52.35
UU16	В	401A/DP	1.030	10.457	6.986	63.18
UU16	С	401A/DP	1.001	10.841	5.514	45.86
UU16	D	401A/DP	0.990	10.160	8.179	78.40
UU16	Е	401A/DP	0.957	10.668	9.077	83.62
UU16	F	401A/DP	0.984	10.364	6.293	56.60
UU16	G	401A/DP	0.986	10.579	6.219	54.55
UU16	Н	401A/DP	1.012	10.508	7.403	67.30
UU16	I	401A/DP	1.002	10.421	6.969	63.35
UU16	J	401A/DP	1.017	10.684	6.727	59.07
UU16	K	401A/DP	1.017	10.612	7.869	71.41
UU16	L	401A/DP	0.992	10.376	7.652	70.97

Analytical Resources, Incorporated Analytical Chemists and Consultants

Total Solids Bench Sheet

A. LAM

and the second

Í

Analytical Che	emists and Consulta	ints	Lab	oratory Section _	metals
Oven Identification:	67		Balance ID:	068755	
Samples in Oven:	Date: 5-14-12	Time:	0925	Temp: 103°2	Analyst: 👁 🔨
Removed from Oven:		Time:	0655	Temp:	Analyst:_Or

AF Samp	1	Tare Weight (g)	Tare + Sample Wet (g)	Tare + Sample Dry (g)	Date & Time Last Weight	Final Weighting >12 hrs ¹
21216	A	0.958	10.142	5.766	_	1
0016	B	1.030	10.457	6.986	-	1
0016	c	1.001	10.841	5.514	-	1
0016	D	0.990	10.160	8.179	-	1
0016	E	0.957	10.668	9.077		1
1016	F	0.984	10.364	L.293	-	1
0016	G	0.986	10.579	6.219	-	1
حادي	H	1.012	10.508	7.403	-	1
2/00	I	1.002	10.421	6.969	_	J
0016	ত	1.017	10.024	6.727	-	1
UUIL	ĸ	1.017	10.612	7.869	-	1
2016	 L	0.992	10.376	7.652	-	1
			5-14-12	Dm		
·	····					
 						

1) Place a check mark in this column if samples have dried > 12 but < 24 hours. When samples have been at $104^{\circ}C < 12$ hours, constant weight must be verified as described in SOP 10023S. Use a 2nd bench sheet for additional weightings.

Revision 003 11/20/09