Fire History and Wildfire Risk Within Rogue Source Areas

28 February 2019

Kerry Metlen, Ph.D.; Forest Ecologist

Contact: kmetlen@tnc.org

WORKING TOGETHER FOR COMMON GOOD

- Integrate across objectives
- Explicitly account for fire
- Collaborate
- Be broad-based and transparent

Resiliency

Fire Environment

Weather

Topography

What Controls Fires?

Photo credits clockwise from upper left: Web, Keith Perchemlides, Scott Harding, Marko Bey, and Keith Perchemlides.

Landscape Stewarded by Frequent Mild Fire

Vegetation and Fire Regimes of the Rogue Basin

Robust references, high certainty

Local Fire Regime Lines of Evidence

- Historical narratives
- Paleoecology
- Historical stand structures and species
 - inferred fire regime
 - Historical aerial photos
 - Historical stand structure Data or GLO
 - Fire scars recorded in trees
 - direct measure of fire periodicity and seasonality

Dendrochronology at Multiple Scales

Falk, D. A., E. K. Heyerdahl, P. M. Brown, C. Farris, P. Z. Fulé, D. McKenzie, T. W. Swetnam, A. H. Taylor, and M. L. Van Horne. 2011. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Frontiers in Ecology and the Environment **9:446-454**.

Topography + Diverse Geology + Fire = Diverse Interspersed Habitats

Photo: Keith Perchemlides

Local Fire History

Composite site fire return interval

- 8 years on a 16 acre area

Point fire return interval

13 years (at a given scarred tree)

Big Butte - Historical Fire Return Interval 5 Years (range 1-40)

Metlen, K. L., C. N. Skinner, D. R. Olson, C. Nichols, and D. Borgias. 2018. Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA. Forest Ecology and Management **430:43-58.**

Metlen et al. 2018. Forest Ecology and Management 430:43-58. .

Metlen, K. L., C. N. Skinner, D. R. Olson, C. Nichols, and D. Borgias. 2018. Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA. Forest Ecology and Management 430:43-58. .

Forest Type	Fire Return Interval	Seasonality (%)				
Dry mixed conifer	8 (1-76)					
Yellow pine	9 (1-33)					
Mixed evergreen	9 (2-52)					
Moist mixed conifer	13 (1-116)					
Red fir	14 (7-148)					
Sites and Multip Presettlement F	Fire Regime St	udies are: - Beaty & Taylor (2007); - Fry & Stephens (2006); - Moody et al. (2006);				
w Mixed	4 -	3 – Moody et al. (2006); 4 – Norman & Taylor (2005);				

- evergreen
- Moist mixed conifer
- 0 Red fir

 ∇

Yellow pine \triangle

- 5 Skinner (2003);
- 6 Skinner et al. (2009);
- 7 Stephens & Collins (2004);
- 8 Taylor & Skinner (1998);
- 9 Taylor & Skinner (2003);
- 10 Metlen et al (2018)

Metlen, K. L., C. N. Skinner, D. R. Olson, C. Nichols, and D. Borgias. 2018. Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA. Forest Ecology and Management **430:43-58.**

Forests of Today are Dramatically More Dense and Fire Sensitive

Diameter at 4.5 ft (inches)

F

Diameter at 4.5 ft (inches)

Restoration Needs in Frequent Fire Forest A collaboration of USFS R6 and TNC

Rogue Basin Forests and Woodlands

- 4.2 million acres
- Late seral forest severely deficit
- 2.1 million ac overly dense

Haugo et al. 2015. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. Forest Ecology and Management 335:37-50.

DeMeo et al. 2018. Expanding our understanding of forest structural restoration needs in the Pacific Northwest. **Northwest Science 92:18-35**.

This shameful waste WEAKENS AMERICA!

ENT THE MADNESS!

Suppressed *mild* fires aggravates future Wildfire!

Prevent Forest Fires!

NATIONWIDE COOPERATIVE FOREST FIRE PREVENTION CAMPAIGN SPONSORED BY THE ADVERTISING COUNCIL, INC. U. S. Department of Agriculture

Forest Service

State Forestry Department

Area burned will increase with climate change Even With Full Suppression

Littell et al. 2013 Supports: Cansler & McKenzie 2014, Whitlock et al. 2003, Westerling et al. 2006, Littell et al. 2009; Miller et al. 2009 & 2012

=

Best Science: Treatments work!

- Fuel treatments are highly effective at a landscape scale
- Large events can overwhelm individual treatments
- Thinning with controlled burning is most effective

Supported by: Ritchie et al. 2007, Prichard et al. 2010, Fulé et al. 2012, Safford et al. 2012, Martinson and Omi 2013, Shive et al. 2013, Lyderson et al. 2014, Prichard et al. 2014, Yocom et al. 2015; Lydersen et al 2017; Walker et al. 2018; Tubbesing et al. 2019

Thin + Rx burn then Wildfire

No treatment then Wildfire

Prichard, S., D. Peterson, and K. Jacobson. 2010. Fuel treatments reduce the severity of wildfire effects in dry mixed conifer forest, Washington, USA. Canadian Journal of Forest Research **40:1615-1626.**

The Choice: Vicious or Virtuous Cycle

Coppoletta, M., K. E. Merriam, and B. M. Collins. 2016. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecological Applications **26:686-699**.

- Supports Thompson et al. 2007, Airey Lauvaux et al. 2016, Coop et al. 2016, Lyderson et al. 2017, Liang et al. 2018, Walker et al. 2018; Tubbesing et al. 2019

The Problems

Climate Change

- Temperatures
- Drought
- Fire probability and effects

Altered Landscapes

- Elevated wildfire risk
- Diminished old growth
- Overly dense forests and altered species mix
- Endangered species

Ecosystem Services

- Water
- Jobs
- Biodiversity
- Carbon

Modern Fire Environment

Weather

Fuels Star NPS/C. B

Topography

scotthardingphoto.com

Modern Fire Environment

Weather

Fuels 🗳

Topography

Photo: Keith Perchemlides; The Nature Conservancy

Management Options

Managed Fire

- Protect communities
- Controlled burns
- Improved suppression options and safety

Protect and Promote Complex Forests

> Proactive Ecological Thinning

- Protected areas
- Thinning to accelerate old growth development
- Proximal proactive management
- Integrate fire management
- Resilient landscapes of open and closed forest
- Revenue and support to local economies

Forest Thinning (Structure and Tree Species)

Thinning + Controlled Burning

Forest composition and structure

- Species selection
- Density
- Canopy layers
- Spatial patterning

Forest function

- Fuels and future fire behavior
- Light availability
- Nutrient cycling and soils
- Seedling establishment

What are Wildfire Risk Assessments?

2015 - National Wildfire Hazard Potential = Likelihood & Intensity

2016 – Rogue Basin Risk Assessment 2018 – Pacific Northwest

Burn Probability

 Can be used as a direct measure of hazard
Foundational for calculating risk

Values and Their Susceptibility to Fire

Response Functions (Susceptibility)

Sub-HVRA	FIL1	FIL2	FIL3	FIL4	FIL5	FIL6	spark
Cell towers	-10	-20	-40	-60	-80	-90	
Electric transmission lines	20	20	0	-20	-60	-80	
FS Repeaters	-10	-20	-40	-60	-80	-90	
Wooden bridges	-40	-50	-60	-70	-80	-90	
Other comm sites	-10	-20	-40	-60	-80	-90	

Relative Importance

Burn Probabili

Assets (no benefits from fire)

		Fire Intensity Level*						
HVRA Sub-HVRA			2	3	4	5	6	
Infrastructure	Comm Sites/Cell Towers	0	0	-10	-20	-30	-30	
lillastructure	Electric Trans-Line/Sub	0	0	-20	-20	-20	-20	
	Fire Lookouts	0	-10	-30	-60	-100	-100	
Non-residential	National Park Structures	-10	-20	-40	-80	-100	-100	
	Ski Area Buildings	-10	-20	-40	-80	-100	-100	
	USFS Cabins/Structures	-10	-20	-40	-80	-100	-100	
	Recreation Sites	-10	-20	-40	-80	-100	-100	
Recreation	Ski Area (Mt. Ashland)	0	0	0	-10	-20	-40	
	Pacific Crest Trail	0	-20 -40 -80 -100 -1 0 0 -10 -20 - 0 -10 -10 -20 - 0 0 -10 -10 -20 -	-20				
Mator Accotc	Canals-Irrigation	0	0	0	-10	-10	-10	
Water Assets	Reservoirs - Drinking	0	0	0	-10	-20	-40	
	Residences <1 / 40 ac	-10	-20	-40	-80	-100	-100	
	Residences 1/10 - 1/5	-10	-20	-40	-80	-100	-100	
Where People Live	Residences 1/2 to 3/ac	-10	-40	-80	-100	-100	-100	
	Residences 1/20 - 1/10	-10	-20	-40	-80	-100	-100	
	Residences 1/40 - 1/20	-10	-20	-40	-80	-100	-100	
	Residences 1/5 - 1/2	-10	-40	-60	-100	-100	-100	
	Residences 3+/ac	-20	-60	-80	-100	-100	-100	

*Fire Intensity Level: 1 = 0-2 foot flame lengths, 2 = 2-4 foot flame lengths, 3 = 4-6 foot flame lengths, 4 = 6-8 foot flame lengths, 5 = 8-12 foot flame lengths, 6 = >12 foot flame lengths

				Fire Intensity Level*						
	HVRA	Sub-HVRA	Covariate	1	2	3	4	5	6	
		Aspen		20	50	100	100	50	0	
	Vegetation	Late Seral Forest	Dry, (D)	80	90	10	-10	-90	-100	
		Late Seral Forest	Dry, (E)	70	30	-10	-50	-90	-100	
		Late Seral Forest	Wet, (D)	80	90	10	-10	-90	-100	
		Late Seral Forest	Wet, (E)	40	10	-30	-60	-100	-100	
		Oak Woodlands		100	100	30	-40	-80	-100	
		Tan Oak		100	100	100	80	10	-20	
		Unique/Endemic	Fire dependent	30	50	100	100	60	30	
Resources		Unique/Endemic	Fire resilient	60	70	60	60	-10	-40	
nesearces		Unique/Endemic	Fire sensitive	0	20	40	60	- 80	100	
		Municipal	Constant	10	20	20	0	10	20	
Μαν		Watersheds Municipal	Ground water	10	20	30	0	-10	-20	
May benefit from fire	Water	Watersheds	Spring source	10	20	0	-10	-30	-50	
, <u>.</u>	Resources	Municipal	0							
henetit		Watersheds	Surface	10	20	-10	-40	-60	-90	
Seriejie		Riparian Zones		20	10	-5	-40	-80	-100	
		Deer and Lik Winter								
trom tire		Range		10	50	50	30	10	-40	
		Dispersal NSO **		20 10	0	-30	-60	-80	-100	
		NRF NSO ***			-10	-40	-80	-100	-100	
	Wildlife	Wildlife Marbled Murrelet Mardon Skipper		20	10	-10	-80	-100	-100	
				-50	-100	-100	-100	-100	-100	
		Oregon Spotted Frog Siskiyou Mountain			-10	-30	-40	-60	-80	
	* -:	Salamander	and law at he 2 2	20	10	0	-40	-70	-90	
	*Fire Intensity Level: $1 = 0.2$ foot flame lengths, $2 = 2.4$ foot flame lengths, $3 = 4.6$ foot flame									

lengths, 4 = 6-8 foot flame lengths, 5 = 8-12 foot flame lengths, 6 = >12 foot flame lengths **NSO=Northern Spotted Owl

***NRF NSO=Nesting, Roosting, and Foraging Northern Spotted Owl Habitat

Oregon Explorer

https://tools.oregonexplorer.info/OE HtmlViewer/Index.html?viewer=wildfireplanning

Oregon Explorer Teresa Alcock (Teresa.ALCOCK@oregon.gov) – Water Intake Brian Fulfrost (Brian.FULFROST@state.or.us)

Oregon Explorer

https://tools.oregonexplorer.info/OE HtmlViewer/Index.html?viewer=wildfireplanning

Oregon Explorer Teresa Alcock (Teresa.ALCOCK@oregon.gov) – Water Intake Brian Fulfrost (Brian.FULFROST@state.or.us)

Spatial Summaries Matter

12th Field Watershed

Potential Wildfire Operational Delineates (PODs)

We will be reviewing PODs for the Rogue Basin March 16 and 17, stay tuned

Point of Risk and Risk Source

Red Dot= Point of Risk

Blue Shade= Fire source

https://tools.oregonexplorer.info/OE_HtmlViewer/Index.html?viewer=wildfireplanning

Rogue Basin Cohesive Forest Restoration Strategy: A Collaborative Vision for Resilient Landscapes and Fire Adapted Communities

Identify Tradeoffs for Nature and People

Identify Climate Trends and Stressors

Prioritize Resources Across the Landscape

Implement Initial and Maintenance Treatments

Refine Approaches Monitor Implementation

Monitor Longterm Trends Evaluate Outcomes

Halofsky, J. E., D. L. Peterson, K. L. Metlen, M. G. Myer, and V. A. Sample. 2016. Developing and implementing climate change adaptation options in forest ecosystems: A case study in southwestern Oregon, USA. Forests 7:1-18. Available online at https://tnc.box.com/s/qy4cssywmvay6kn1vbxqad46ys2thjsb

Transformative Land Management NOT Business As Usual

Rogue Forest Restoration Initiative

Klamath Bird Observatory

The Nature Conservancy

ner BLM NPS USFS

Fire History and Wildfire Risk Within Rogue Source Areas

28 February 2019

Kerry Metlen, Ph.D.; Forest Ecologist

Contact: kmetlen@tnc.org