ODEQ Prevention of Significant Deterioration/Air Contaminant Discharge Permit Application

Appendix D - Air Quality Impact Assessment

Intel Corporation Gordon Moore Park at Ronler Acres/Aloha Project

intel

Submitted to
Oregon Department of Environmental Quality
Submitted by

Prepared by
Atmospheric Dynamics, Inc.

July 2023

AIR QUALITY IMPACT ASSESSMENT

Introduction and Project Description

Intel Corporation (Intel) operates the Gordon Moore Park at Ronler Acres (also referred to as Ronler and Ronler Acres in this document) and Aloha semiconductor manufacturing facilities (together, the Facility) in Washington County, Oregon. The Gordon Moore Park at Ronler Acres campus is located at 2501 NE Century Boulevard, Hillsboro, Oregon, which has a Universal Transverse Mercator (UTM) North American Datum (NAD) 83 coordinate of 506601.5 meters Easting, 5043404.5 meters Northing (Zone 10). The Aloha campus is located at 3585 SW 198th Avenue, Aloha Oregon, and has a UTM NAD 83 coordinate of 509003.2 meters Easting, 5037811.5 meters Northing (Zone 10) latitude /longitude of $122.8851359^{\circ} \mathrm{W}$, $45.4937841^{\circ} \mathrm{N}$. The Aloha campus has been operating since 1976 while the Gordon Moore Park at Ronler Acres campus began operation in 1994. Both campuses are engaged in the production of semiconductor products and are considered co-located for permitting purposes because their production activities are interrelated. Both campuses are regulated under a single Standard Air Contaminant Discharge Permit (ACDP), 34-2681-ST-01, issued by the Oregon Department of Environmental Quality (ODEQ) in 2016 and most recently modified in 2022.

The modeling report is part of the Type 4 Maintenance Area New Source Review (NSR) and Prevention of Significant Deterioration (PSD) permit application. The application is in support of the proposed changes at the Facility which meet the definition of "major modification" in OAR 340-224-0025 (the "Project"). Changes at the Facility include additional fabrication (fab) cleanroom space and increased emissions at the existing fabs due to advances in technology manufacturing and additional manufacturing support operations. The proposed major modification triggers the Maintenance Area NSR requirements in OAR 340-224-0060 and the PSD requirements in OAR 340-224-0070. A common requirement of both sets of requirements is the need to demonstrate that the proposed changes will not cause or contribute to an exceedance of the National Ambient Air Quality Standards (NAAQS) and PSD increments. Modifications subject to Division 224 requirements must be permitted as Type 4 construction approvals.

This modeling supplement describes the modeling steps, methods and assumptions that were performed to support the Type 4 construction approval permit application. The modeling presented in this report is based on the modeling protocol that was submitted and then approved by the ODEQ on June $15^{\text {th }}, 2023$. The modeling protocol was also reviewed by the United States Environmental Protection Agency (EPA) Region 10, the United States Forest Service (USFS) and the United States Park Service (USPS). The modeling followed the methods presented in the ODEQ "Recommended Procedures for Air Quality Dispersion Modeling" (March 2022). Table 1 summarizes the proposed analyses on a pollutant specific basis. The modeling also followed procedures as summarized by the EPA Appendix W modeling guidelines. Additional guidance procedures are summarized below and throughout the text: EPA in its "Guideline on Air Quality Models" (including supplements), EPA Memorandum "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2} National Ambient Air Quality Standard" (March 2011), EPA Memorandum "Clarification on the Use of AERMOD Dispersion Modeling for Demonstrating Compliance with the NO_{2} NAAQS" (September 2014) " EPA Memorandum "Guidance for Ozone and Fine Particulate Matter Permit Modeling" (July 2022), EPA Memorandum "Modeling Procedures for Demonstrating Compliance with PM-2.5 NAAQS (March 2010) and the California Air Pollution Control Officers Association (CAPCOA) "Modeling Compliance of the Federal 1-Hour NO_{2} NAAQS" (October 2011).

Table 1 Air Quality Modeling Criteria					
	NO_{x}	PM-10	PM-2.5	CO	SO_{2}
PSD Significant Impact Levels for Class I And Class II Areas	x	x	x	x	
Ambient Air Quality Standards	x	x	x	x	x
Class I and Class II Visibility and Deposition	x	x	x		
Impacts to Soils and Vegetation	x	x	x	x	
Class I and Class II Area Increment	x	X	x		

A copy of the modeling protocol and the ODEQ protocol approval letter is included in Attachment A. All input and output modeling files will be provided to the ODEQ using an on-line share drive.

Permit Applicability

The locations of the Gordon Moore Park at Ronler Acres and Aloha campuses are shown in Figure 1. The detailed site plans are presented in Figures 2 and 3, respectively. The Gordon Moore Park at Ronler Acres and Aloha campuses are located in Washington County, Oregon. The area in which the campuses are located is designated as attainment or unclassified for all criteria pollutants except carbon monoxide (CO) and ozone, for which the area is designated as maintenance.

The Facility is an existing source that will become a Federal Major Source as a result of the proposed changes because emissions of one or more regulated pollutants will increase above the Federal Major Source levels. A major modification at a facility that will become a Federal Major Source triggers the requirements of Oregon's PSD permitting program for each pollutant for which the area is designated attainment or unclassified (OAR 340-224-0070(3)(a)(A)). These requirements include the obligation to conduct an air quality analysis for each regulated pollutant for which emissions will exceed the netting basis by a Significant Emission Rate (SER) or more. Based on the proposed Plant Site Emission Limits, the Facility is required to perform a PSD air quality impacts analysis in accordance with OAR 340-225-0070(3) for $\mathrm{NO}_{x}, \mathrm{PM}-10$ and PM-2.5.

The proposed modifications also trigger requirements of Oregon's Maintenance Area NSR program because it is located within the Oregon portion of the Portland-Vancouver Interstate Maintenance Area for ozone and the Portland Maintenance Area for CO, and the proposal constitutes a major modification for CO and ozone precursors (VOC and NO_{x}). Maintenance area NSR requirements are triggered for each major modification of a maintenance pollutant. Major modifications for ozone precursors (NO_{x} and VOC) constitute major modifications for ozone. A major modification of a maintenance pollutant must comply with the maintenance area NSR requirements at OAR 340-224-0060, including the requirement to demonstrate that it will not cause or contribute to an exceedance of the NAAQS. The Facility will meet its NAAQS compliance obligation in part by ensuring a net air quality benefit in compliance with OAR 340-224-0060(2) by offsetting its $\mathrm{CO}, \mathrm{NO}_{\mathrm{x}}$ and VOC emissions via an allocation from the growth allowance
program. In addition, the Facility modeled its CO emissions and evaluated ozone impacts, which are independent of the net air quality benefit resulting from offsetting those emissions.

ODEQ requires sources ${ }^{1}$ to demonstrate compliance with the short-term NAAQS (specifically, 24-hr PM10 and PM-2.5, 1-hr SO_{2} and 1-hr NO_{2}) if the Facility's Project triggers NSR for any pollutant and the Facility-wide short-term emissions are greater than the Significant Emission Threshold (SETs). This project triggers those requirements for short-term NAAQS. Thus, the short-term NAAQS evaluation for NO $2, \mathrm{PM}-$ 10 and PM-2.5 as required by the PSD and Maintenance Area NSR regulations described above was performed. Although the project SO_{2} emissions do not require an air quality assessment under the PSD regulations, the short-term Facility wide SO_{2} emissions are over the $\mathrm{SO}_{2} \mathrm{SET}$ of three (3) pounds per hour (lbs/hr) and SO_{2} NAAQS compliance was evaluated for 1-hr, 24-hr and annual averaging periods.

Project Description and Source Emissions Data

The manufacturing process occurs in a cleanroom environment to avoid micro contamination of the product. Semiconductors are fabricated in batches of silicon wafers and can take anywhere from one to two months to manufacture. Semiconductor manufacturing begins with a silicon wafer substrate. The semiconductor is then built up as a series of layers, with material added or removed in each step. Steps include:

- Oxidation: Involves the generation of a silicon dioxide layer on the wafer surface to provide a base for the photolithography process. This layer also insulates and protects the wafer during subsequent processing.
- Lithography: Starts with the application of a photo sensitive layer onto the wafer. Then, a photomask is placed over the wafer and light is projected onto the wafer to form patterns of exposed and unexposed photoresist (e.g., the electrical pattern). After exposure, the wafer is developed in a solution that dissolves the exposed photoresist, leaving those areas exposed for subsequent processing steps. The unexposed photo-resistant coating remains on the water, thus protecting the surface.
- Ion Implant: Doping the wafer with ions to make it conductive or insulating at selected locations.
- Etching: Wet or dry etching techniques are used to remove unwanted material on certain areas on the wafer. After etching, photoresist is removed using dry or liquid stripping compounds.
- Deposition: Applies additional layers of silicon, silicon dioxide, or other materials to the wafer
- Planar: A surface treatment process which prepares the wafer for subsequent processing steps. A mildly corrosive chemical slurry is used as a polishing compound.

During the fabrication process, many of these steps are repeated multiple times in various sequences with variations in each step. Once the manufacturing is completed, the wafers are tested and cut into individual chips. The semiconductor chips are then sorted, assembled, tested, and packaged.
Manufacturing operations occur 24 hours a day and 365 days a year. However, production output varies with consumer demand and stage of process development.

[^0]Figure 1
Project Locations

Figure 2
Gordon Moore Park at Ronler Acres General Arrangement

AIR QUALITY IMPACT ASSESSMENT

Figure 3
Aloha General Arrangement

There are a number of utility support systems that support Fab manufacturing operations. These include:

- Natural gas-fired rotor concentrator thermal oxidizers (RCTOs) are used to control volatile organic compounds (VOC) emissions from the Fabs.
- Packed-Bed Wet Chemical Scrubbers for controlling acid gases used in the Fab.
- Trimix Ammonia Treatment Systems are used to treat ammonia wastewater.
- Large natural gas-fired boilers (>2.0 million BTU per hour).
- \quad Small natural gas-fired heating units and boilers (<2.0 million BTU per hour).
- Diesel-fired emergency generators and fire pumps.
- Wet cell cooling towers.
- Bulk Chemical Distribution including bulk and specialty gases.

Below is a summary description of the emission points that were used in the modeling analyses. Unless noted below, the sources operate 24 hours per day, 365 days per year.

Rotor Concentrator Thermal Oxidizers (RCTOs)

RCTOs consist of two main components: a concentrator that uses zeolite wheels to adsorb VOCs from the Fab exhaust and a thermal oxidizer that oxidizes the VOCs into water and carbon dioxide. The RCTOs are a source of natural gas combustion byproducts, CO_{2}, and VOCs that are not adsorbed by the zeolite concentrator. Each RCTO stack was included in the model as a point source. Some of the newer RCTOs exhaust to the acid scrubbers that then pass through a wet electrostatic precipitator (WESP) for additional PM control. A WESP works by charging particles as they enter the unit and collecting them on electrodes within the WESP body. Assumptions used in estimating RCTO air emissions include the following:

- Hourly emissions assume the RCTOs are operating at maximum rated capacity.
- Annual emissions are based on an annual operating capacity of 100% of the maximum rated capacity.
- All PM emissions are assumed to be PM-10 and PM-2.5.

Packed-Bed Wet Chemical Scrubbers (Scrubbers)

Each Fab has several scrubbers that treat acid or ammonia-containing Fab process exhaust. The exhaust passes through a packed bed with reagent flowing through the bed. A substantial portion of the acid or ammonia gases in the exhaust are transferred out of the air stream into the reagent stream. The treated exhaust streams are then sent out to the atmosphere via a manifold with between one (1) and five (5) stacks.

Trimix Ammonia Treatment System (TMXW)

The TMXW system is an ammonia wastewater treatment system that includes gas-phase ammonia abatement. Ammonia wastewater is pH adjusted and fed to an ammonia stripper. The ammonia stripper is a desorption process that removes ammonium ions out of the water to produce gas-phase ammonia. The gas-phase ammonia is exhausted to a two-stage thermal catalytic oxidation/reduction system. The first catalyst converts ammonia to NO_{x} and CO to carbon dioxide. The second catalyst converts NO_{x} to nitrogen and water. Air emissions from this system include natural gas combustion byproducts and ammonia. The air emissions exit to ambient air via a stack. Each emission point was modeled separately.

Boilers

The boilers supply hot water to the various buildings and manufacturing processes. All of Intel's boilers are natural gas fired. Air emissions from the boilers are those associated with natural gas combustion. As a result of natural gas combustion, the boilers are a source of criteria pollutant emissions. Assumptions used in calculating boiler air emissions include the following:

AIR QUALITY IMPACT ASSESSMENT

- Hourly emissions assume the boilers are operating at maximum rated capacity.
- Annual emissions are based on an annual operating capacity of 30\%.

Emergency Generators and Fire Pumps

In addition to backing up all critical Life Safety Systems, emergency generator back-up systems required by code and business continuity needs at the Facility, are located onsite, in the event of an unplanned primary power outage. The generators combust ultra-low-sulfur diesel and are routinely tested to ensure proper operation. For permitting purposes, air emissions are limited to periods when the emergency equipment is tested and maintained. The current permit specifies that no more than ten generators may be run in any single day and the generators can only be run during daylight hours, which is defined as the hours between 8 am and 6 pm . The emergency generators and fire pumps were modeled as described later in this report.

- Hourly emissions assume the engines are operated at full load.
- Annual emissions are based on the emergency generators operating for 25 hours per year.
- Annual emission for the fire pumps are all based on 50 hours per year.

Cooling Towers

The Facility has mechanically induced (i.e., fan-driven) wet-cell cooling towers that are open to the atmosphere. The cooling towers are used to dissipate the large heat loads generated by the factory and the chilled water is used to condition the incoming air to the correct temperature required by the factory. The cooling towers are a source of particulate matter. The total dissolved solids (TDS) entrained in drift droplets emitted from the cooling towers are a source of PM emissions. Cooling towers were modeled in two specific ways:

- Cooling towers with a single fan were modeled using one stack located in the fan center and the maximum design flow and actual fan diameter were used for the stack parameters.
- Some of the multiple fans that are part of a single cooling tower assembly were modeled using a single stack located in the center of the assembly. The maximum design flow from the cooling tower assembly will was divided by the number of fans to get the representative flow. The diameter for the representative stack was assigned the diameter of a single fan.

Lime Silos

Dry lime (calcium hydroxide) used in wastewater treatment operations is delivered to and stored in lime silos. There are five (5) lime silos on site. During filling, the silos are a source of PM emissions as air is displaced by the lime being loaded. Each silo is equipped with an exhaust vent, which is controlled by a fabric filter dust collector. For the five lime silo bin vents, PM-10 and PM-2.5 emissions from all five sources were modeled as a single volume source that was located midpoint between the existing lime silo bin vents. Assumptions used in the modeling include:

- Lime silos will only emit during loading operations which will occur no more than 1 hour per day with only one silo being loaded on any given hour or day. On an annual basis, there will be no more than 52 loading operations per year per silo.
- All emissions of particulate matter are assumed to be PM-10 and PM-2.5 in accordance with ODEQ guidance.

AIR QUALITY IMPACT ASSESSMENT

Paved Road Sources

Area source emissions, primarily associated with paved road emissions of particulate matter, created from the on-site road/vehicle travel was also included in the modeling assessments.

- Fugitive dust emissions are assumed to occur 24-hours per day and 8,760 hours per year.

Stack Parameters

The stack parameters (flow rates, temperatures, stack heights, velocities) used in modeling were determined from source testing, manufacturing specification guarantees, or worst-case assumptions. These are listed in Attachment B.

Emissions Summary

Based on the potential to emit emission summary provided in Table 2, the following pollutants are subject to air quality assessments as described in this report: Nitrogen Dioxide (NO_{x}), Carbon Monoxide (CO), Sulfur Dioxide (SO_{2}), Particulate Matter with an aerodynamic diameter of 10 microns or less (PM-10), Particulate Matter with an aerodynamics diameter of 2.5 microns or less (PM-2.5 and Volatile Organic Compounds (VOCs). NO_{x} and SO_{2} will also be treated as a precursor to PM-2.5 while NO_{x} and VOC will be treated as an Ozone precursor.

Table 2 Ronler and Aloha Potential to Emit Summary							
Ronler and Aloha Plant Site Emission Limit	$\mathrm{NO}^{\text {x }}$	CO	VOC	TSP as PM	PM-10	PM-2.5	SO_{2}
Summary	tpy						
Boilers	19.69	58.64	8.55	3.89	0.81	0.67	4.04
EGENS/Fire Pumps	52.45	4.29	0.96	0.48	0.48	0.48	0.05
RCTOs	80.73	106.28	150.01	19.05	19.05	19.05	2.10
EXSC Scrubbers	192.68	327.92	36.92	28.25	27.25	25.65	26.77
EXAM Scrubbers	43.45	81.51	86.51	13.55	8.54	8.27	0.77
PSSS Scrubbers	0	0	0	0.71	0.44	0.001	0
Fugitive VOCs	0	0	65.82	0	0	0	0
Heaters	10.41	17.13	0.57	0.26	0.26	0.26	0.27
TMXW	12.23	1.10	0.20	0.09	0.09	0.09	0.09
Lime Silos	0	0	0	0.44	0.44	0.44	0
Cooling Towers	0	0	0	8.81	7.19	0.03	0
Aggregate insignificant activities	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Paved Road Emissions	0	0	0	0.75	0.15	0.04	0
Total	412.6	597.9	350.5	77.3	65.7	56.0	35.1
Current PSEL	197.0	229.0	178.0	41.0	35.0	31.0	39.0

D-9

Requested PSEL	a	402	580	349	67	57	55
Increase	205	351	171	26	24	25	0
SER	40	100	40	--	15	10	40
Major Modification	Yes	Yes	Yes	Yes	Yes	Yes	No
Modeling Required	Yes	Yes	NA	NA	Yes	Yes	Yes

${ }^{a}$ Requested PSEL not to include categorically insignificant Activities including Heaters, Paved Roads, and Cooling Towers

Proposed Air Quality Dispersion Models

Air Quality Models/Version: The primary EPA dispersion model that was used is the AERMOD modeling system (AERMOD version 22112) with the associated meteorological and receptor processing programs AERSURFACE (version 20060), AERMET (version 22112), AERMINUTE (version 15272), and AERMAP (version 18081). AERMOD was used to quantify pollutant impacts on the surrounding environment based on the emission sources operating parameters and their locations and was used for modeling most Facility operational impacts in both simple and complex terrain. In addition, the Building Profile Input Program for PRIME (BPIP-PRIME version 04274) was used for determining building dimensions for downwash calculations in AERMOD. These models, along with options for their use and how they are used, are discussed below. These models were used for the following:

- Comparison of Facility impacts to Class I and Class II significant impact levels (SILs)
- Significant Monitoring Concentrations (SMCs)
- National Ambient Air Quality Standards (NAAQS)
- PSD Increments for 24-hour PM-2.5, PM-10 and annual NO_{2}
- Cumulative impacts analyses in accordance with ODEQ and EPA modeling requirements, if required (project impacts greater than SILs)

Existing Meteorological and Air Quality Data

Hourly observations of certain meteorological parameters are used to define the area's dispersion characteristics. This data is used in EPA approved air dispersion models for defining a project's impact on air quality. These data must meet certain criteria established by the EPA and the following discussion details the proposed data and its applicability to this Project.

Project Location/Topography: Both the Gordon Moore Park at Ronler Acres and Aloha Project sites are located in the Tualatin Valley which is a relatively flat river bottom area that is surrounded by terrain to the north, west and east. Very little variation in terrain exists in the valley until the area abuts the mountain ranges surrounding it on three sides.

Nearby Surface Meteorological Stations: The Gordon Moore Park at Ronler Acres site is located in the northeastern portion of the Tualatin Valley, approximately 2.25 kilometers (km) east of the Hillsboro Airport. The Aloha site is located approximately 6.5 km southeast of the Hillsboro Airport. The Hillsboro Airport (WBAN 94261) collects ASOS (Automated Surface Observing System) surface meteorological data such as wind speed and direction, temperature, pressure, cloud heights, and sky cover. ASOS surface D-10

AIR QUALITY IMPACT ASSESSMENT

meteorological data are generally selected for processing for AERMOD because ASOS hourly data are routinely recorded and archived, generally meet EPA data completeness criteria, instruments are located in unobstructed areas meeting EPA siting criteria, and instrument heights and sensor sensitivities meet EPA instrument specifications. Also, short-term (1-minute) wind direction and speed data are generally available that can be processed by EPA programs to eliminate excessive calm observations and to give hourly averages consistent with EPA modeling requirements. The ASOS surface data, when processed with AERMET as described below, result in data recovery greater than 90 percent for every quarter in the five-year period in accordance with EPA requirements "Meteorological Monitoring Guidance for Regulatory Modeling Applications," (EPA-454/R-99-005). Generally, surface data parameters of wind speed, wind direction, and temperature must individually exceed 90% both by quarter and year, as well as wind speed, direction, and stability (turbulence) parameters combined, before any substitutions. These criteria are equaled for all quarterly/annual periods of the surface data selected for use, which covers the years 2016 through 2020.

Selection of Surface Meteorological Data: As noted above, the Project vicinity and immediate areas of Tualatin Valley are relatively flat, an important consideration in the selection of surface meteorological data for use in assessing the Project's impacts on regional air quality. Under these circumstances (large expanses of relatively flat terrain), the nearest meteorological data meeting EPA siting and instrument criteria would be expected to be the most representative of the Project location. The ASOS data fulfills both criteria, being located in the immediate Project vicinity and meeting EPA siting and instrument criteria. Thus, the Hillsboro Airport ASOS data are proposed as the surface meteorological data for modeling Facility emissions. The close proximity of the ASOS station to the Project sites virtually assures that it could be considered representative, if not the equivalent of onsite data.

Both the ASOS and Ronler Acres/Aloha sites are located in the relatively flat Tualatin Valley at nearly identical distances and orientations from the relatively distant mountains which define the valley boundaries. There are no intervening terrain features between the ASOS location and project site to adversely affect the relative synoptic-scale wind patterns at either location (compared to each other). The current ASOS location from the NCDC Historical Observing Metadata Repository (HOMR) was verified and then refined to its exact location based on Google Earth photos (location is shown below).

Selection of Upper Air Meteorological Data: The most representative radiosonde observations nearest to the Project sites is the Salem Airport (McNary Field), located approximately 65 km south of the Project sites. Climatologically, Salem is similar to the Intel Project sites. Twice daily radiosonde data were available for the proposed modeled years of 2016 through 2020.

Meteorological Data Surface Characteristics: AERMET requires input summaries of the surface characteristics for the area surrounding the Hillsboro ASOS monitoring site. These surface characteristics were calculated with the EPA-program AERSURFACE program based on EPA guidance. AERSURFACE used the 2016 National Land Cover Data (NLCD) from the United States Geological Survey (USGS) to determine land use based on standardized land cover categories. AERSURFACE was executed in accordance with the EPA guidance documents "AERMOD Implementation Guide," (March 19, 2009), and "AERSURFACE User's Guide," (EPA-454/B-20-008, revised February 2020). AERSURFACE determines the midday albedo, daytime Bowen ratio, and surface roughness length representative of the surface meteorological station. The Bowen ratio is based on a simple unweighted geometric mean while albedo is based on a simple unweighted arithmetic mean for the $10 \times 10 \mathrm{~km}$ square area centered on the selected location (i.e., no

AIR QUALITY IMPACT ASSESSMENT

direction or distance dependence for either parameter). Surface roughness length is based on an inverse distance-weighted geometric mean for upwind distances up to the EPA-recommended one (1) km radius from the selected location. The circular surface roughness length area ($1-\mathrm{km}$ radius) can be divided into any number of sectors as appropriate (EPA guidance recommends that no sector be less than 300 in width).

Twelve 30° sectors were processed to calculate the roughness lengths due to the homogeneity of the area within the EPA-recommended radius of one (1) km . Months were assigned to seasons as follows:

- Late autumn after frost and harvest, or winter with no snow: December, January, February
- Transitional spring (partial green coverage, short annuals): March-June
- Midsummer with lush vegetation: July-August
- Autumn with unharvested cropland: September-November

Temporal variations of monthly precipitation were considered in order to calculate the albedo for AERMET processing in accordance with EPA recommendations. Precipitation data should be measured at the nearest representative location to the surface data with the most complete precipitation record, particularly for the years of meteorology being modeled. Historical precipitation data are measured in the Hillsboro area (at Hillsboro Airport) and the monthly periods between 1991 to 2020 were used as input AERSURFACE and are presented in Table 3.

Site Urban/Rural Classification: Land use surrounding the Intel sites must be determined in order to assess if rural or urban dispersion characteristics should be used. Following Auer (1977) and as summarized in the EPA's "Guideline on Air Quality Models", if the land use within an area circumscribed by a three (3) km radius around each facility is industrial, commercial, or developed residential, then these areas are designated as urban. All other types of land use are considered rural.

The most objective approach is to use the 2016 land cover classification data (the same data set as used in AERSURFACE) and designate the "Developed Intensity" areas (IDs 22, $23 \& 24$) as urban based on Auer's classification. These classes are:

- Developed, Low Intensity (NLDC Code 22) - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20 to 49 percent of total cover. These areas most commonly include single-family housing units.
- Developed, Medium Intensity (NLCD Code 23) - This classification includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50 to 79 percent of the total cover.
- Developed, High Intensity (NLCD Code 24) - This classification includes highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80 to 100 percent of the total cover.

AIR QUALITY IMPACT ASSESSMENT

Table 3 Hillsboro Airport 30-year Precipitation Climatology Summary														
Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN	SMC
1991	3.01	3.84	3.67	4.88	2.34	1.7	0.25	0.65	0.39	1.66	5.66	4.76	32.81	
1992	4.65	3.7	1.17	4.06	0.13	0.36	0.77	0.31	1.21	2.47	4.54	6.44	29.81	
1993	4.27	0.87	3.77	5.03	3.52	2.68	1.49	0.16	0	1.08	1.26	7.54	31.67	
1994	4.42	5.06	2.85	1.18	1.15	0.94	0	0.42	0.6	6.48	6.32	6	35.42	
1995	8.63	3.47	5.37	3.96	1.35	1.8	0.98	0.39	1.57	2.91	8.32	7.82	46.57	
1996	7.56	10.23	2.93	4.63	4.34	0.97	0.58	0.13	2.96	4.22	9.21	14.83	62.59	
1997	7.67	2.03	6.33	2.18	2.01	2.07	0.73	1.59	3.15	5.45	5.91	3.34	42.46	
1998	8.36	6.64	4.07	1.3	4.77	1.41	0.32	0	0.87	6.4	9.03	7.07	50.24	
1999	7.48	9.78	4.29	1.5	1.74	1.55	0.66	0.84	0.14	2.49	6.91	3.91	41.29	
2000	6.92	4.35	3.02	1.36	1.91	1.04	0.08	0.75	1.27	3	2.16	3.24	29.1	
2001	1.94	1.58	2.33	1.86	0.85	1.2	0.45	0.79	0.79	3.13	8.54	6.98	30.44	
2002	7.31	3.13	3.49	1.71	1.44	1.3	0.32	0.05	0.83	0.43	2.61	9.88	32.5	
2003	8.29	2.93	5.16	5.91	0.75	0.15	0	0.55	0.94	3.07	4.43	7.93	40.11	
2004	5.9	4.27	1.68	1.79	1.24	0.82	0	2.31	1.37	3.55	2.61	3.72	29.26	
2005	2.27	0.68	4.42	2.56	4.35	1.55	0.24	0.32	1.36	3.68	6.09	9.09	36.61	
2006	11.9	1.99	3.57	2.02	2.7	1.08	0.14	0.08	0.59	0.9	12.88	7.49	45.34	
2007	3.24	3.8	2.39	1.96	1.29	0.97	0.4	0.53	1.73	3.12	3.9	8.94	32.27	
2008	5.38	1.49	3.31	1.94	0.97	0.36	0.09	1.37	0.22	1.69	4.51	7.57	28.9	
2009	4.36	1.08	2.4	1.24	2.92	1.34	0.13	0.72	1.51	3.32	5.72	3.96	28.7	
2010	5.14	4.06	3.76	3.22	3.16	3.52	0.45	0.17	2.21	3.98	5.23	8.16	43.06	
2011	3.59	3.83	5.39	3.42	4.68	0.59	1.23	0	0.26	1.88	5.38	2.33	32.58	
2012	5.79	2.48	6.59	2.38	2.34	2.42	0.09	0.02	0.04	5.45	7.59	7.5	42.69	
2013	1.47	1.87	1.81	2.33	3.98	1.31	0	0.85	6.27	0.87	2.73	1.08	24.57	
2014	2.41	5.06	6.07	3.42	1.7	0.92	0.52	0.14	1.1	6.12	2.83	5.88	36.17	
2015	3.01	4.57	4.68	1.41	0.44	0.54	0.32	0.55	0.86	3.42	4	14.6	38.4	
2016	7.53	3.96	5.31	1.88	0.8	1.33	0.33	0.25	0.93	8.66	6.25	4.77	42.0	Wet
2017	4.11	10.06	6.96	3.56	1.82	1.05	0	0.13	1.39	4.04	7.38	2.92	43.42	Wet
2018	5.17	2.15	2.79	3.32	0.11	0.65	0	0	0.79	3.33	2.61	4.74	25.66	Dry
2019	3.12	4.96	1.36	3.23	1.45	0.64	0.49	0.21	3.08	1.51	1.16	5.22	26.43	Dry
2020	7.18	1.49	2.12	0.88	1.86	2.04	0.07	0.25	1.28	1.38	5.34	5.27	29.16	Dry

Sorted Data - The 30-years of climatology were SORTED to determine DRY/AVG/WET months. Generally, the driest and wettest years were used to delineate DRY/WET (AVG was anything in-between). Years which had precipitation less than the $30^{\text {th }}$ percentile were designated dry, years which had precipitation greater than the $70^{\text {th }}$ percentile were designated wet and all other years were designated as average.

Table 4 and Figure 4 shows the land use determination for the Aloha and Gordon Moore Park at Ronler Acres sites. Both sites are over 70 percent urban. Because the area within 3 km is more than 50 percent classified as urban land use, the URBAN option was used for AERMOD in the modeling of the project.

In reviewing the AERMOD Implementation Guide (June 2022), it provides the following recommendations for assigning an urban population number in AERMOD:

AIR QUALITY IMPACT ASSESSMENT

Figure 4
Land Use Surrounding the Intel Sites (3 km Radius in Blue)

AIR QUALITY IMPACT ASSESSMENT

Abstract

"For urban areas adjacent to or near other urban areas, or part of urban corridors, the user should attempt to identify that part of the urban area that will contribute to the urban heat island plume affecting the source(s). If this approach results in the identification of clearly defined MSAs, then census data may be used as above to determine the appropriate population for input to AERMOD. Use of population based on the Consolidated MSA (CMSA) for applications within urban corridors is not recommended, since this may tend to overstate the urban heat island effect. Similarly, for application sites that are in isolated areas of dense population but are not representative of the larger MSA, care should be taken to determine the extent of the area the urban area that will contribute to the urban heat island plume affecting the source(s).

For situations where MSAs cannot be clearly identified, the user may determine the extent of the area, including the source(s) of interest, where the population density exceeds 750 people per square kilometer. The combined population within this identified area may then be used for input to the AERMOD model. "

Table 4Land Use Summaries						
ID	Description	Class	Ronler	Percent	Aloha	Percent
11	Open Water:	Rural	16	0.1\%	3	0.0\%
21	Developed, Open Space:	Rural	2892	9.2\%	1895	6.0\%
22	Developed, Low Intensity:	Urban	6287	20.0\%	8781	27.9\%
23	Developed, Medium Intensity:	Urban	9523	30.3\%	12530	39.9\%
24	Developed, High Intensity:	Urban	6855	21.8\%	2673	8.5\%
31	Barren Land (Rock/Sand/Clay):	Rural	21	0.1\%	0	0.0\%
41	Deciduous Forest:	Rural	0	0.0\%	73	0.2\%
42	Evergreen Forest:	Rural	86	0.3\%	500	1.6\%
43	Mixed Forest:	Rural	35	0.1\%	56	0.2\%
52	Shrub/Scrub:	Rural	14	0.0\%	4	0.0\%
71	Grasslands/Herbaceous:	Rural	105	0.3\%	95	0.3\%
81	Pasture/Hay:	Rural	1825	5.8\%	1801	5.7\%
82	Cultivated Crops:	Rural	3203	10.2\%	2207	7.0\%
90	Woody Wetlands:	Rural	339	1.1\%	518	1.6\%
95	Emergent Herbaceous Wetland:	Rural	222	0.7\%	282	0.9\%
	Total:		31423		31418	
	Percent Urban			72\%		76\%
	Percent Rural			28\%		24\%

Dispersion within urban environments has different characteristics than that occurring in a rural environment. The urban boundary layer will behave in a more convective, turbulent manner during the hours just after sunset due to the urban heat island effect. Using the Aloha Project site as general center point, Figure 5 presents the Project locations relative to the city boundaries in the region. The Aloha site is approximately 10 kilometers from the northwestern edge of the Hillsboro city boundary and nine (9) kilometers from the southeastern edge of the Beaverton city boundary. The three (3) cities used for identifying the population are Hillsboro, Aloha and Beaverton. Each of the three (3) cities vastly exceeds the 750 people per square kilometer EPA threshold for identifying the area as urban. The three (3) cities also represent a continuous urban/developed corridor which is aligned with the predominant wind D-15
direction. The use of the 2022 census derived population data and population density data are summarized in Table 5.

	Table 5 Existing Populations and population density	
	Population*	Population Density/ $\mathbf{k m}^{\mathbf{2 *}}$
Hillsboro	107,299	1,601.3
Aloha	58,828	2,825.3
Beaverton	97,053	1,920.2
Total	263,180	
* 2020 /2022 Unit	ureau Data	

Based on the combined population of 263,180 , this value was used for the population input into AERMOD. This combined population presents a conservative and appropriate magnitude of the urban heat island effects within the impact areas surrounding both sites.

Meteorological Data Representativeness: The ODEQ approved use of the five (5) years of Hillsboro Airport ASOS surface meteorological data satisfies the need for site-representative data. EPA defines the term "site-representative data" to mean data that would be similar to atmospheric dispersion conditions at the source and at locations where the source may have a significant impact on air quality. Specifically, the meteorological data requirement originates from the Clean Air Act in Section 165(e)(1), which requires an analysis "of the ambient air quality at the facility and in areas which may be affected by emissions from such facility for each pollutant subject to regulation under [the Act] which will be emitted from such facility." This requirement and EPA's guidance on the use of site-representative data are also discussed in Section 8.4.4 of Appendix W to 40 CFR Part 51. The representativeness of meteorological data is dependent upon a determination that the data are free from inappropriate local or microscale influences.: (a) the proximity of the meteorological monitoring site to the area under consideration; (b) the complexity of the topography of the area; (c) the exposure of the meteorological sensors; and (d) the period of time during which the data are collected.

The Hillsboro Airport ASOS surface meteorological monitoring station qualifies as site-representative data for several reasons. First, the Hillsboro Airport meteorological monitoring site is the closest ASOS site and located in very close proximity to the Intel locations, with nearly identical elevations above mean sea level (amsl). Second, both locations are located in the same area of the broad and relatively flat Tualatin Valley. Third, the ASOS monitoring location at the airport was selected to be far enough from wind flow perturbations caused by buildings and other features. Fourth, the period of meteorological data selected at the time of the modeling analyses (2016-2020) would be expected to be the most representative of current conditions, with the same general land uses surrounding the current ASOS location and airport as well as the proposed Project sites. A review of current Google Earth photo-aerials shows that nearby land uses at both locations are similar to the land uses reflected in the 2016 and 2020 NLCD sets. Additionally, these data meet the EPA data recovery requirements for air quality modeling as described earlier.

Figure 5
City Boundaries Used for Developing Urban Population in AERMOD

D-17

AIR QUALITY IMPACT ASSESSMENT

Representativeness is defined in the document "Workshop on the Representativeness of Meteorological Observations" (Nappo et. Al., 1982) as "the extent to which a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain taken on a scale appropriate for a specific application." Judgments of representativeness should be made only when sites are climatologically similar, as is the case with the meteorological monitoring site and the proposed Project location. In determining the representativeness of the meteorological data set for use in the dispersion models at the Project sites, the consideration of the correlation of terrain features to prevailing meteorological conditions, as discussed earlier, would be nearly identical to both locations since the orientation and aspect of terrain at the proposed Project locations correlates well with the prevailing wind fields as measured by and contained in the meteorological dataset. In other words, the same mesoscale and localized geographic and topographic features that influence wind flow patterns at the meteorological monitoring site also influence the wind flow patterns at the proposed Project sites.

For these reasons, the Hillsboro Airport meteorological data was selected and approved by ODEQ for use in modeling emissions from the proposed Project. This data also satisfied the EPA definition of representative data which is similar to the meteorological and dispersion conditions at the Project sites and the regional area. An annual windrose for the five-year modeling period is shown in Figure 6.

Existing Baseline Air Quality Data: The nearest air quality monitoring sites to the proposed Project are listed in Table 6 which also lists the monitored pollutants and distances to the Project.

Table 6 Ambient Monitoring Site Information				
Monitors	Distance from Ronler Acres (km)	Distance from Aloha (km)	Pollutants Monitored	Monitoring Objective
SE Lafayette (SEL) 5824 SE Lafayette St. (EPA\# 41-051-0080)	25	22	$\mathrm{CO}, \mathrm{NO}_{2}$, Ozone, PM-10, PM-2.5, SO_{2}	Population/NAAQS
Tualatin at I-5 (TBC) (EPA\# 41-067-0005)	21	15	$\mathrm{CO}, \mathrm{NO}_{2}$, Ozone, PM-2.5	Source/NAAQS
Hare Field (HHF) Grant Street (EPA\# 41-067-0004)	5	8	PM-2.5	Population/NAAQS

In addition to the monitoring site data, the ODEQ allows for the use of the Northwest International Air Quality Environmental Science and Technology Consortium (NW-AIRQUEST) data for the 2014-2017 period which is considered design data for the 2023 period and can be considered representative of the impact areas. These data sets are summarized in Table 7.

AIR QUALITY IMPACT ASSESSMENT

Figure 6
Hillsboro Annual Wind Rose (2016-2020)

D-19

Table 7 Background Monitoring Data									
Pollutant	Units	Avg Time	Stations	2018	2019	2020	2021	2022	NW AIRQUEST Design Value
PM-2.5	$\mathrm{ug} / \mathrm{m}^{3}$	$\begin{gathered} 24 \mathrm{Hr} 1^{\text {st }} \\ \mathrm{High} \end{gathered}$	Hare Field	28	36	28	24	47	NA
			Tualatin	19	32	28	20	66	
			S. Lafayette	20	30	31	23	75	
		$24 \mathrm{Hr} 98^{\text {th }}$ percentile	Hare Field	18	24	18	15	29	19.6
			Tualatin	17	21	18	18	28	
			S. Lafayette	17	20	23	16	27	
		Annual Mean	Hare Field	6.1	6.7	6.1	5.8	7.9	6.3
			Tualatin	7.1	6.8	6.8	6.7	8.5	
			S. Lafayette	6.8	6.5	7.1	6.4	7.9	
PM-10	$\mathrm{ug} / \mathrm{m}^{3}$	$24 \mathrm{Hr}^{\text {st }}$ High	S. Lafayette	54	33	35	31	83	55
		$\begin{gathered} 24 \mathrm{Hr}^{\text {2nd }} \\ \text { High } \\ \hline \end{gathered}$	S. Lafayette	27	29	35	29	39	
		$24 \mathrm{Hr} 1^{\text {st }}$ High	Hare Field	ND	35	ND	ND	ND	
		$24 \mathrm{Hr} 2^{\text {nd }}$ High	Hare Field	ND	32	ND	ND	ND	
CO	$\mathrm{ug} / \mathrm{m}^{3}$	$8 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	1145	1145	1145	1145	1260	1306
			S. Lafayette	1832	1832	1718	1947	1947	
		$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	1603	1489	**	1603	2061	1744
			S. Lafayette	2405	2176	**	2978	2405	
NO_{2}	$\mathrm{ug} / \mathrm{m}^{3}$	$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	83	77	79	71	64	NA
			S. Lafayette	88	81	66	68	68	
		$1 \mathrm{Hr} 98^{\text {th }}$ percentile	Tualatin	72	62	56	56	58	65.7
			S. Lafayette	66	60	55	58	56	
		Annual Mean	Tualatin	23	21	19	17	19	14.2
			S. Lafayette	17	15	12	12	13	
SO_{2}	$\mathrm{ug} / \mathrm{m}^{3}$	$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	S. Lafayette	9	8	8	8	8	NA
		$24 \mathrm{Hr} 1^{\text {st }}$ High	S. Lafayette	3	3	4	5	5	6.0
		$1 \mathrm{Hr} 9 \mathrm{~g}^{\text {th }}$ percentile	S. Lafayette	8	8	5	8	8	12.6
		Annual Mean	S. Lafayette	1.2	0.6	0.6	1.3	1.5	1.20
Notes: Data for 2021-2022 was derived from EPA AIRS Monitored Values Reports. NA = not applicable ND = no data ODEQ data for 2018-2020 was also supplemented by EPA AIRS data as necessary. ** ODEQ fire data not removed by EPA.									

Federal regulations, specifically 40 CFR Part 58 Appendix D, require that a State and Local Air Monitoring (SLAMS) network be designed to meet a minimum of three basic monitoring objectives: Provide air pollution data to the public in a timely manner, support compliance with the National Ambient Air Quality Standards (NAAQS), and support air pollution research. A variety of site types are needed to support these basic objectives, including six (6) general types listed below:

1. Sites are located to determine the highest concentrations expected to occur in the area covered by the network.

AIR QUALITY IMPACT ASSESSMENT

2. Sites are located to measure typical concentrations in areas of high population density.
3. Sites are located to determine the impact of significant sources or source categories on air quality.
4. Sites are located to determine general background concentration levels.
5. Sites are located to determine the extent of regional pollutant transport among populated areas.
6. Sites are located to measure air pollution impacts on visibility, vegetation damage, or other welfarebased impacts.

The physical siting of an air monitoring station must conform to 40 CFR Part 58 and its location must achieve a spatial scale of representativeness that is consistent with the monitoring objective and site type.

The spatial scale results from the physical location of the site with respect to the pollutant sources and categories. It estimates the size of the area surrounding the monitoring site that experiences uniform pollutant concentrations. The categories of spatial scale are:

1. Microscale-Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
2. Middle scale-Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
3. Neighborhood scale-Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range.
4. Urban scale-Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers.
5. Regional scale-Defines usually a rural area of reasonably homogeneous geography without large sources and extends from tens to hundreds of kilometers.
6. National and global scales-These measurement scales represent concentrations characterizing the nation and the globe as a whole.

The selection of these monitoring sites is also based on the monitoring stations' objective, which is NAAQS and population exposure for measuring background air quality. These monitoring objectives can be used to support the demonstration of compliance with the NAAQS when coupled with dispersion modeling.

Along with the monitoring objective is the spatial scale of the monitoring site which is used to represent high concentration locations, population and background exposure. The spatial scale of the SE Lafayette monitoring station is summarized below by pollutant:

- NO_{2} - Urban which represents highest concentration, population exposure and general background.
- Ozone - Urban which represents highest concentration, population exposure and general background.
- CO - Micro scale which represents highest concentration.
- SO_{2} - Urban which represents highest concentration, population exposure and general background.
- PM-10 - Neighborhood which represents highest concentration, population exposure and general background.

AIR QUALITY IMPACT ASSESSMENT

- PM-2.5 - Neighborhood which represents highest concentration, population exposure and general background.

The spatial scale for Hare Field is:

- PM-2.5 - Neighborhood scale which is used for highest concentration, population exposure and general background.

The spatial scale for the Tualatin monitoring station is microscale whose primary purpose is to monitor freeway-based concentration data for $\mathrm{NO}_{2}, \mathrm{CO}, \mathrm{Ozone}$, and $\mathrm{PM}-2.5$. While microscale is useful for determining highest concentration data, the immediate proximity to Interstate Route 5 (I-5) make this monitoring data better suited to identifying temporal (freeway-based impacts) to air quality based on time of day rather than measuring a true background data set that is not influenced by any one source or source type. As such, the further use of this data set was not considered.

As referenced above, there is also gridded background air quality data based on the NW AIRQUEST data set that covers the Project area. This data set (2014-2017) can also be used as representative background if demonstrated to be appropriate and applicable to a particular Project area. And while the use of the NW AIRQUEST data can be considered conservative for some pollutants and averaging periods, as noted below, this data set does not track the current background air quality trends over the last five (5) years as discussed below.

Based on the goals and objectives of the specific monitors listed in Table 6, the selection of the SE Lafayette and Hare Field monitoring sites were chosen to represent background for use in the dispersion modeling analyses.

In order to select the applicable background monitored data set to use in the modeling analyses, a trend analysis of the background air quality data based on the last five (5) years is summarized below which is based, in part, on the data in Table 7. Background trends for CO and SO_{2} are not summarized below as the Project impacts are expected to be less than the applicable significant impact levels (SILs). Additionally, the SE Lafayette monitoring station represents the highest (design value) concentration for CO and the NW AIRQUEST represents the highest design value for SO_{2}. These locations were used to represent background concentrations as needed for the Project modeling analyses.

The overall trend in background NO_{2} for the last five (5) years (2018-2022) at the SE Lafayette monitoring station has been downward for both 1 hour ($98^{\text {th }}$ percentile) and annual averages. A similar trend is noted at the Tualatin monitoring site. Note the NW AIRQUEST data is consistent with the 2018 monitoring data and does not reflect the decrease in background over time.

This trend for PM-2.5 is not duplicated as the background concentrations at SE Lafayette, Tualatin and Hare Field have shown a small increase in background monitored concentrations since 2018. While the PM-2.5 trend decreased during the 2021 time period, overall, the trend has been upward. As noted with the NO_{2} trends, the NW AIRQUEST data best represents the year 2018 and does not reflect the increase in background over time.

PM-10 trends at the SE Lafayette site show similar increases between the years 2018 and 2022.

AIR QUALITY IMPACT ASSESSMENT

Seasonal Background NO_{2} Data

For 1-hour NO_{2}, seasonal hourly background for the 2019-2021 data period was used, in accordance with the procedures found in "Guidance Concerning the Implementation of the 1-hour NO_{2} NAAQS for the PSD Program" (6/29/10) and "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2} NAAQS" (3/01/11). Complete hourly data from the 2022 data period is not yet available for use so the seasonal hourly background NO_{2} for modeling will be the 2019-2021 data period. In accordance with EPA procedures, the third highest value for each hour and season was used to calculate the three-year average of each time period.

Seasonal Hour-Of-Day is determined by organizing all of the NO_{2} concentrations by hour of day (1AM, $2 A M, 3 A M$, etc.) for each season of the year in descending order and selecting the $3^{\text {rd }}$ highest NO_{2} concentrations for each hour of the day and season.

For example, (1AM)

1. First take all the 1 AM values (maximum of 90-92 numbers) for each Season
a. Winter = December of Previous Year, January, February
b. Spring = March, April, May
c. Summer = June, July, August
d. Autumn = September, October, November
2. Sorting the NO_{2} concentrations in descending order (highest to lowest)
3. Take the $3^{\text {rd }}$ highest NO_{2} concentrations.
4. This value was used to represent the $1 \mathrm{AM} 3^{\text {rd }}$ highest or $98^{\text {th }}$ - percentile of available data.
5. The above process is repeated for each hour of the day and season.
6. Repeat steps 1 through 5 for each of the three years under review.
7. Average the three $1 \mathrm{AM} \mathrm{NO}{ }_{2}$ concentrations.
8. This value was used in AERMOD as the NO_{2} background concentrations (3yr average of the $98^{\text {th }}$ percentile) for the 1 AM hour and season.
9. Repeat step 7 and 8 for each of the hours in the day and season.

This produced the following data in Table 8 which was used as input in the AERMOD analysis for the 1hour NO_{2} NAAQS.

Table 8						
	Ambient NO_{2} Seasonal Hour by Day Concentrations					
Hour	Winter	Spring	Summer	Fall	Units	
$\mathbf{1}$	21.40	23.50	14.70	19.10	PPB	
$\mathbf{2}$	20.50	22.70	13.50	18.40	PPB	
$\mathbf{3}$	19.60	22.20	15.20	17.90	PPB	
$\mathbf{4}$	20.30	21.70	15.50	17.10	PPB	
$\mathbf{5}$	20.00	23.10	17.90	17.30	PPB	
$\mathbf{6}$	21.40	22.70	17.90	19.20	PPB	
$\mathbf{7}$	23.60	26.50	19.90	21.00	PPB	

AIR QUALITY IMPACT ASSESSMENT

$\mathbf{8}$	27.50	25.90	17.20	21.30	PPB
$\mathbf{9}$	23.90	22.50	15.50	20.30	PPB
$\mathbf{1 0}$	22.70	18.90	12.00	17.00	PPB
$\mathbf{1 1}$	21.60	16.40	13.50	16.70	PPB
$\mathbf{1 2}$	20.40	14.30	11.10	16.80	PPB
$\mathbf{1 3}$	18.50	15.00	11.20	18.00	PPB
$\mathbf{1 4}$	18.10	14.60	12.50	17.80	PPB
$\mathbf{1 5}$	18.80	13.50	9.20	18.40	PPB
$\mathbf{1 6}$	19.10	13.60	8.00	20.10	PPB
$\mathbf{1 7}$	22.30	13.70	10.30	21.10	PPB
$\mathbf{1 8}$	24.80	15.40	8.40	26.50	PPB
$\mathbf{1 9}$	28.20	18.30	10.20	30.10	PPB
$\mathbf{2 0}$	30.00	26.60	14.10	29.80	PPB
$\mathbf{2 1}$	28.80	30.10	15.50	27.10	PPB
$\mathbf{2 2}$	28.30	27.90	17.80	25.10	PPB
$\mathbf{2 3}$	26.90	26.50	16.80	23.70	PPB
$\mathbf{2 4}$	24.10	24.50	15.10	20.80	PPB

Summary of Selected Data: Based on the monitoring objectives (NAAQS), the spatial scales (Urban and Neighborhood) of the Hare Field and SE Lafayette monitoring stations and the last five (5) years of background trends, these sites were selected as being the most representative for determining the background concentrations to be used in the modeling analyses in place of the NW AIRQUEST design values. For NO_{2}, Ozone and PM-10 background data, SE Lafayette was used with PM-2.5 background based on Hare Field, which is also the closest PM- 2.5 monitoring station to the Project sites. For background CO and SO_{2}, the SE Lafayette data was also used in the modeling analyses.

The background concentrations used in the modeling analyses are the highest values over the last three (3) year period for 1 -and 8 -hour $\mathrm{CO}, 24$-hour $\mathrm{PM}-10$, annual NO_{2} and 1-hour, 24 -hour and annual SO_{2}. 24hour and annual PM-2.5 background concentrations are based on the 3-year average in accordance with "Guidance for Ozone and Fine Particulate Matter Permit Modeling" (07/29/22). Table 9 presents the background concentration data used in the dispersion modeling assessments.

Table 9 Background Air Quality Data Summary	
Pollutant and Averaging Time	Background Value ($\mu \mathrm{g} / \mathrm{m}^{3}$)
PM-10-24-hour 3-year $2^{\text {nd }}$ High NAAQS	39.0
PM-2.55-3-Year Average of Annual 24-hour $98^{\text {th }}$ Percentiles NAAQS	20.7
PM-2.55-3-Year Average of Annual Values NAAQS	6.6
CO - 1-hour High NAAQS	2,978

CO-8-hour High NAAQS	1,947
$\mathrm{NO}_{2}-3$-Year Average of Annual $98^{\text {th }}$ Percentile 1-hour Daily Maximum NAAQS	56.3*
NO_{2} - Annual Maximum NAAQS	18.3
SO_{2} - 3-Year Average of Annual 99 ${ }^{\text {th }}$ Percentile 1-hour Daily Maxima NAAQS	7.0
SO_{2} - 24-hour Maximum NAAQS 24-hour High, $2^{\text {nd }}$ High NAAQS	4.7
SO_{2} - Annual Maximum NAAQS	1.1

Notes * Seasonal hourly background concurrent with the 2016-2020 meteorology was used for modeling. Reference value only.
Conversion of $\mathrm{ppm} / \mathrm{ppb}$ measurements to $\mu \mathrm{g} / \mathrm{m}^{3}$ concentrations based on: $\mu \mathrm{g} / \mathrm{m}^{3}=\mathrm{ppm} \times 40.9 \times \mathrm{MW}$, where $\mathrm{MW}=48,28,46$, and 64 for ozone, $\mathrm{CO}, \mathrm{NO}_{2}$, and SO_{2}, respectively.

Air Quality Modeling Procedures

The AERMOD dispersion model was used to quantify pollutant impacts on the surrounding environment based on the emission sources and operating parameters. AERMOD was used to determine Facility impacts on Class II areas in the immediate Project vicinity in simple, intermediate, and complex terrain areas during Project operations. AERMOD was also used to assess the Class I significant impact levels (SILs) as discussed later in the summary report. AERMOD was the primary model used for comparison of Project impacts to SILs and demonstration of compliance with NAAQS. Modeling of operational impacts are described below.

AERMOD Model, Options, and Procedures: AERMOD is a steady-state plume dispersion model that simulates transport and dispersion from multiple point, area, or volume sources based on updated characterizations of the atmospheric boundary layer. AERMOD uses Gaussian distributions in the vertical and horizontal for stable conditions, and in the horizontal for convective conditions; the vertical distribution for convective conditions is based on a bi-Gaussian probability density function of the vertical velocity. For elevated terrain AERMOD incorporates the concept of the critical dividing streamline height, in which flow below this height remains horizontal, and flow above this height tends to rise up and over terrain. AERMOD also uses the advanced PRIME algorithm to account for building wake effects. AERMOD input data options are listed below following these EPA modeling guidance documents.

- Final plume rise
- Stack tip downwash
- Regulatory default option (i.e., calm and missing meteorological data processing and elevated terrain heights option)

Flagpole receptors were not used (ground level concentrations only). AERMAP was used to calculate receptor elevations and hill height scales for all receptors from National Elevation Data (NED) data in accordance with EPA guidance. Selection of the receptor grids is discussed below.

AIR QUALITY IMPACT ASSESSMENT

GEP Stack Height and Downwash: Stack locations and heights and building locations and dimensions were input to BPIP-PRIME. The first part of BPIP-PRIME determines and reports on whether a stack is being subjected to wake effects from a structure or structures. The second part calculates directiondependent "equivalent building dimensions" if a stack is being influenced by structure wake effects. The BPIP-PRIME output is formatted for use in AERMOD input files. BPIP-PRIME included all of the point source locations. Figures 7 and 8 present the buildings and building names that were input in to BPIPPRIME. The individual building elevations can be found in the BPIP-PRIME input/output files.

Receptor Selection: Receptor and source base elevations were determined from United States Geological Survey (USGS) National Elevation Dataset (NED) data. The NED data was processed with the EPA-model AERMAP for the receptor locations selected. All coordinates (both sources and receptors) are referenced to UTM North American Datum 1983 (NAD83, Zone 10). AERMAP is capable of interpolating the elevation data in the NED data for both receptor elevations and hill height scales.

The NED data are available in $1 / 3$-arcsecond (about 10 meter) and 1 -arcsecond (about 30 meter) grid node spacing. Areas that contain receptor grids with 100 meter spacing or less between adjacent receptors used the10 meter NED data. Other areas that contain only receptor grids of greater than 100 meter spacing utilized the 30 meter NED data. For purposes of determining hill height scales, the NED datasets used were extended 5 -km past the outside of the coarse receptor grid described below for 30-meter NED data and 2 -km past the outside of the intermediate/downwash receptor grids described below for 10meter NED data.

Cartesian coordinate receptor grids were used to provide adequate spatial coverage surrounding the Project area for assessing ground-level pollution concentrations, to identify the extent of significant impacts, and to identify maximum impact locations. For the full impact analyses, a nested grid was developed to fully represent the initial location and extent of significance area(s) and maximum impact area(s). The nested grid was comprised of the following:

- Receptors were placed along the proposed Project fencelines with a spacing of about 25 meters or less between adjacent receptors.
- The downwash receptor grid with a receptor spacing of 25 meters was extended from the Project fencelines out to 300 meters from the Project.
- The first intermediate receptor grid with 50 -meter receptor spacing was extended from the downwash receptor grid out to 1000 meters from the Project fencelines.
- The second intermediate receptor grid with 100 -meter receptor spacing was extended from the first intermediate receptor grid outwards to two (2) kilometers (km) from the Project fencelines in all directions.
- The first coarse grid with 200-meter receptor spacing extended out five (5) km from the Project in all directions.
- A second course grid with 500 meters spacing extended outwards ten (10) km from the Project fencelines in all directions.
- Additional grids with 1,000 meters spacing were developed to close off the 1-hour NO2 SIL isopleth of $7.5 \mathrm{ug} / \mathrm{m}^{3}$.
- When maximum impacts occur in areas outside the 25 -meter spaced receptor grid, additional refined receptor grids with 25 -meter resolution were placed around the maximum impacts and extended as necessary to determine maximum impacts.

Figure 7
Gordon Moore Park at Ronler Acres Building Names for BPIP-PRIME

Figure 8
Aloha Building Names for BPIP-PRIME

AIR QUALITY IMPACT ASSESSMENT

Ambient concentrations within the Facility fencelines were not calculated.
Figure 9 depicts the receptor grids based on the discussion above.

Steady-State Emission Sources

Modeled concentrations from normal operations were based on continuous operation of all sources at the Project, except for the emergency diesel generators and fire pumps. For the continuous source operations, with Scrubbers, RCTOs, Boilers, Heaters, Generators, Cooling Towers and the ammonia waste TMWX, each short-term averaging period (1-,8- and 24-hour) utilized the maximum hourly emission rates. Annual emissions were based on full time operation or utilized annual capacity factors.

Figure 9
Project Receptor Grids

AIR QUALITY IMPACT ASSESSMENT

In summary:

- EXSC, EXAM, PSSS, RCTO and TMXW operate 24 hours per day and 8,760 hours per year.
- RCTOs at an annual operating capacity at 100%
- Boiler operation is up to 24 hours per day with a 30% annual capacity factor.
- Emergency generator testing occurs up to 60 minutes per day, 10 engine tests per day and 25 hours per year. Fire pump testing is up to 50 hours per year. The modeling procedures for the emergency generators are discussed below.
- Cooling towers operate 24-hours per day and 8,760 hours per year.
- Lime silos will only emit during loading operations which will occur no more than 1 hour per day with only one silo being loaded on any given hour or day. On an annual basis, there will be no more than 52 loading operations per year per silo.
- Fugitive dust emissions are assumed to occur 24 hours per day and 8,760 hours per year.

All the sources were modeled as point sources with the fugitive emissions modeled as an area source and the lime silo as a volume source. All the source coordinates are based on UTM NAD 83, Zone 10. Table 10 presents the emission source naming scheme used in AERMOD along with the modeled pollutants which were assessed in this report. This naming scheme is used in the detailed source/emissions tables provided in Attachment B as well as in the modeling input/output files that are provided to the ODEQ.

Table 10 Emission Source Names and Types		
Emission Source	Model ID	PSD Pollutants Subject to AQ Assessment
Rotary Concentrator Thermal Oxidizers (RCTOs)	TO	$\mathrm{NO}_{\times}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
RCTO with Wet Electrostatic Precipitator (WESP)	TI, TW	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Scrubbers:		
Acid Gas (EXSC) Scrubbers	SC	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
EXSC with WESP	SI, SW	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Ammonia (EXAM) Scrubbers	AM	$\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Process Specific Support System (PSSS) Scrubbers	PS, SC	PM-10, PM-2.5
Boilers	BO	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Building Heaters and Small Boilers	HE	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Emergency Generators and Fire Pumps	EG, FI	$\mathrm{NO}_{x}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Trimix Ammonia Treatment System (TMXW)	TM	$\mathrm{NO}_{\times}, \mathrm{CO}, \mathrm{PM}-10, \mathrm{PM}-2.5, \mathrm{SO}_{2}, \mathrm{VOC}$
Lime Silos	LIME	PM-10, PM-2.5
Cooling Towers	CT	PM-10, PM-2.5
Paved Road	PR	PM-10, PM-2.5

Intermittent Emission Sources

The fire pumps and emergency generators operate intermittently, for a limited number of hours in the year for maintenance and readiness testing. Intel's current air permit specifies that no more than ten (10) generators may be run in a day and the generators can only be run during daylight hours, which is defined as hours between 8:00 am and 6:00 pm. To evaluate compliance with short-term and long-term air quality standards, these sources were modeled using annualized emissions (hourly emission rate times the number of hours run per year divided by 3,650) for all hours of the day.

The emergency generators typically run up to 25 hours per year, with 50 hours for the emergency fire pumps. As explained in EPA's March 1, 2011, memorandum, "Additional Clarification Regarding

AIR QUALITY IMPACT ASSESSMENT

Application of Appendix W Modeling Guidance for the 1-hour National Ambient Air Quality Standard" ${ }^{2}$ it is unlikely that emissions from the intermittently operated emergency generators will coincide with the worst-case meteorological conditions and modeled 1-hr NO_{2} impacts can be significantly overestimated. As such, EPA also suggests in their March 1, 2011, memo that these types of intermittent sources can be excluded from compliance demonstrations for the 1-hour NO_{2} standard. Nonetheless, Intel included emergency generator emissions in the 1-hour NO_{2} standard compliance demonstration using the EPA modeling procedures (annualized emissions for NO_{2}) and the Monte Carlo methodology described below.

Since the generators only run intermittently, they pose a challenge to accurately reflect potential ambient air quality impacts. One approach recommended by EPA ${ }^{3}$ is to model impacts from intermittent sources based on an annualized hourly emission rate, rather than the maximum hourly emissions. This approach would account for potential worst-case meteorological conditions combined with continuous operation of the emergency generators at an average hourly emission rate. This approach was used for the SIL evaluation and for the 1-hour NO_{2} NAAQS. Additionally, the Monte Carlo method, which accounts for the statistical variation in intermittent operations, was also used to assess the 1-hour $\mathrm{NO}_{2} \mathrm{NAAQS}$. Both analyses are presented in the summary tables that follow.

NO_{2} Modeling Procedures

NO_{2} impacts were assessed using a conservative Tier 2 analysis using the Ambient Ratio Method Version 2 (ARM2), adopted in the Guidance Concerning the Implementation of the 1-hour $\mathrm{NO}_{2} \mathrm{NAAQS}$ for the PSD Program" (6/29/10). ARM2 adjusts the modeled NO_{x} concentrations based on an empirical relationship between ambient NOx and ambient NO_{2} concentrations. ARM2 was also used for the intermittent source operations modeling using the EPA annualized emissions methodology.

A Tier 3 analysis was additionally used to assess the intermittent source 1-hour NO_{2} concentrations using the Monte Carlo method. Here, the plume volume molar ratio method (PVRMR) was used with concurrent ambient ozone data collected at the SE Lafayette monitoring site. As the source of the background air quality data to be used in the modeling analysis, SE Lafayette has been shown above to be representative of the Project sites. The use of hourly ozone data requires that it be based on the same years as the AERMOD meteorology data. $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ ratios were based on Cummins (the engine manufacturer) supplied data for the 3,000 horsepower engines (or larger) at 0.05 . All other diesel equipment used a $0.10 \mathrm{NO}_{2} / \mathrm{NO}_{x}$ ratio from the EPA ISR database.

Intermittent Source Modeling Procedures

For the 1-hour short-term averaging times, AERMOD was used to determine the worst-case group of engines from the specific engine source groups listed in Table 11. This table represents the typical testing schedule for the different groupings of generators. As noted earlier, no more than 10 engines will be tested in any one day. For determining the 1-hour NO_{2} and SO_{2} modeled concentrations, each of the 20 groups were modeled as separate source groups with all of the engines within each source group assumed to be running. Thus, depending on the source group that is being modeled, anywhere from three (3) to

[^1]seven (7) engines could be tested in any one hour. The engines are only tested between the hours of 8:00 AM and 6:00 PM (10 hours per day).

For the 1-hour NO_{2} NAAQS using the EPA methodology, the engine emission rates were based on the maximum hourly rate which was then prorated to an annual average emission rate, assuming 25 hours per year of usage. For the Monte Carlo method, the maximum hourly emission rate was used. In both cases, the engines were at 100 percent load. For the 1-hour CO and SO_{2} averaging period, the maximum hourly emission rate was used with the source groups listed in Table 11.

Additional short-term periods of 1,8 and 24 -hours were also modeled with AERMOD, but to determine the worst-case group of engines, a different method was utilized. As noted, each of the 20 engine source groups are made up of anywhere from three (3) to seven (7) engines. Up to 10 engines can be tested during each day. Rather than trying to identify which 10 engines out of the 20 source groups would be tested for the 8 and 24-hour averaging periods, each engine was assumed to operate for up to 10 hours. Thus, each engine became a specific source group, and each engine was assumed to operate up to 10 hours a day with all the 10 hours of emissions emitted from a single stack (8:00 AM to 6:00PM) to conservatively represent up to 10 different engines operating one hour each in any one day as appropriate for 8 -hour and 24 -hour averaging times (i.e., 8 engines for 8 -hour averaging times and 10 engines for 24hour averaging times). Please note for the 8 -hr CO runs, to account for 10 engines in the 8 -hour period, the hourly CO emission rate was ratioed by $10 / 8$. Thus, the worst-case engine location could be determined from the analysis with all emissions occurring from a single engine (representative of the 8 and/or 10 engines being tested) for comparisons with the 8 -and 24 -hour short-term standards. The worstcase engine was then used for all subsequent modeling for the 1 and 8-hour CO averages and 24 -hour SO_{2} and PM-10/PM-2.5 averages.

Identifying the Combined Maximum Impact Location - Screening Modeling Procedures

While either the maximum modeled single engine or group of engines from Table 11 was identified from modeling just those 20 groups in AERMOD, the location may not correspond to the maximum location of the steady state source impact locations, which is important to identify to determine the overall maximum modeled concentrations. So, to determine the combined maximum impact for the 1,8 and 24 -hour averaging periods, where the intermittent sources would contribute the highest concentration to the steady state source impact location(s), the top 10 receptor locations where the steady state sources maximum impact occurred were input into AERMOD based on the following:

- All 20 engine source groups were input to determine the 1-hour NO_{2} concentration using the EPA 1-hour method (annual average emissions rates).
- Each individual engine input as an individual source group with the maximum 1-hour emission rate (1-hr SO_{2} and CO).
- Each individual engine input as an individual source group with the maximum 8-hour emission rate ratioed by 10/8 (8-hr CO) to account for 10 engines tested in 8 hours.
- Each individual engine input as an individual source group with 1-hours of the maximum hourly emission rate (24-hr SO 2 and PM-10, PM-2.5).

To illustrate this screening procedure, the top ten locations of the steady state 24-hour PM-2.5 concentrations, based on the form of the NAAQS, are presented in Figure 10. All engine source groups or

AIR QUALITY IMPACT ASSESSMENT

the single engines as individual source groups were then run in AERMOD at these ten receptor locations. The engine groups or single engine that resulted in the highest concentration was then selected to be used in the subsequent modeling analyses for the SILs, NAAQS, and PSD increment assessments. Note, the Monte Carlo analysis was treated as a separate modeling procedure and is not associated with this screening method.

Figure 10
Locations of the $\mathbf{1 0}$ Maximum 24-Hour PM-2.5 H8H Receptors

Using this procedure, the 1-hour NO_{2} screening results identified engine source group GO 3 (with six (6) engines tested during the same hour between 8:00 AM and 6:00 PM) as contributing the highest concentration to the steady state maximum source impact location(s). Group G03 was then used in the assessment of the project SILs, PSD increment and NAAQS analyses.

AIR QUALITY IMPACT ASSESSMENT

Table 11 Monte Carlo Generator Groups			
Group ID	Engine Count	Day	Generator IDs
G01	5	1	EGR1_01-EGR1_04, EGRB1_01
G02	7	2	EGDC_01-EGDC_05, EGRP1_01 EGRP1_02
G03	6	3	EGDD_01-EGDD_06
G04	4	4	EGRS4_01, EGRS6_01, EGRS6_02, EGDD_07
G05	6	5	EGE1_01-EGE1_06
G06	6	6	EGE1_07-EGE1_13
G07	6	7	EGE1_14-EGE1_18
G08	4	8	EGE1_19-EGE1_21, EGC5_16
G09	4	9	EGC5_17-EGC5_20
G010	4	10	EGC5_21, EGC5_01-EGC5_03
G011	4	11	EGC5_04-EGC5_07
G012	4	12	EGC5_08-EGC5_11
G013	4	13	EGC5_12-EGC5_15
G014	5	14	EGDB_01-EGDB_03, EGDA_01-EGDA_02
G015	3	15	EGDA_03, EGDA_04, EGDA_05
G016	3	1	EGDA_06-EGDA_08
G017	5	15	EGF15_01-EGF15_03, EGF5_01, EGF5_02
G018	4	4	FIPH1_01, FIPH2_01, FIRS4_01, FIC5_01
G019	2	8	EGIW_01-EGIW_02
G020	4	14	EGN2_01, EGIW_03, EGRS8_01, EGH2_01
Total Engines	90		

For the remaining pollutants and averaging periods, Table 12 presents engine groups or individual single engine (based on 10 hours of emissions) that was identified as contributing the highest concentrations.

Table 12 Identified Generator Groups from the Screening Modeling			
Group ID	Engine ID ${ }^{1}$	Pollutant	Averaging Period ${ }^{2}$
G17	-	CO	1-HR
-	EGF15_01	CO	8-HR
-	EGRS6_01	PM-10	24-HR
-	EGRS6_01	PM-2.5	24-HR
G17		SO_{2}	1-HR
-	EGF15_01	SO_{2}	24-HR
G03		NO_{2}	1-HR
${ }^{1} 1$-hr CO, SO_{2} and NO_{2} used the specific source groups in Table 11. ${ }^{2}$ Annual modeling used all 90 diesel engines for the SIL, NAAQS and Increment Analyses			

D-34

AIR QUALITY IMPACT ASSESSMENT

1-Hour NO_{2} Using the Monte Carlo Analysis

For 1-hr NO_{2}, a Monte Carlo Simulation was also used as requested by the ODEQ to estimate the NO_{2} impacts from running intermittent emergency generators. In permitting, AERMOD design values (e.g. 98 percentile) are added to background design values. In the case of generators which run infrequently ($\sim 1 \%$ of the time), the impacts of the generators are statistically likely not to occur on the high background hours. Thus, modeling the generators as continuous source greatly overestimates the occurrences of exceedances as the high modeled impacts are added to the high background under all conditions. A Monte Carlo simulation is used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables. For example, the specific hour/day that a set of generators will run is generally unknown. The operation of the generators may or may not correspond to a poor dispersion period, as the occurrence of these events is essentially random.

For this approach, continuous sources were run with the seasonal diurnal NO_{2} background to calculate the continuous high-eighth-high ($98^{\text {th }}$ percentile) NO_{2} concentration at each receptor, which provides a conservative estimate for the continuous source contribution. Next, the model is run without background for the 20 groups of generators, for the 10-hour daylight period. It is assumed that all generators within each source group are running at the same time. The groups are shown in Table 11. The output is hourly NO_{2} concentrations for the 20 generator groups for a 5-year period. It is assumed that the 20 groups are tested over 15 days. Thus, five of the days will have two generator groups run on different hours.

For a Monte Carlo Simulation, fifteen randomly selected days for each month are pulled from the 5-year block for that month. The days correspond to the generator groups (e.g. day $1=$ group 1 , day $2=$ group 2, etc.). For each day, an hour is randomly selected between 8:00 AM and 6: 00 PM that generators will run. For days with a second group, another different hour is selected for the second generator group (same day though). The higher of the two concentrations is saved.

The above process is repeated for each month for all of the years of meteorology. Once the selection process is completed, the highest eight daily concentrations in each year are found and ranked from highest to lowest. The three year highest-eighth-high values are averaged on a receptor basis and saved.

This process is repeated 1000 more times (giving 1001 iterations). To demonstrate, Figure 11 shows the convergence of the median value as more iterations are added to the median for the receptor with the higher generator impact. Within a couple hundred iterations, the median stabilizes and is near the final value. After about 400 iterations, the running median value is within 99% of the final value. Thus, the use of 1001 iterations should provide a stable median value.

The results are tabulated and then the median value is determined at each receptor. The median values are then added to the continuous source modeled contributions, on a receptor-by-receptor basis to provide the design values at each receptor. The seasonal hour by day background NO_{2} is added in with the steady state sources in AERMOD.

The Monte Carlo Simulation calculations were executed in an Excel macro-enabled spreadsheet which was provided to the ODEQ. The combined concentration spreadsheet calculations will be provided to the ODEQ.

AIR QUALITY IMPACT ASSESSMENT

Figure 11 Convergence Criteria

MERP Analysis for Secondary PM-2.5 and Ozone Formation

The EPA developed a Tier 1 demonstration tool for ozone and PM-2.5 precursor emissions called Modeled Emission Rates for Precursors (MERPs). The development of the tool and related guidance is summarized in a memorandum from EPA dated April 30, 2019, with a subject, "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for ozone (O_{3}) and PM2.5 under the PSD Permitting Program." The basic idea behind the MERPs is to use technically credible air quality modeling to relate precursor emissions and peak secondary pollutant impacts from specific or hypothetical sources. The ODEQ used the air quality modeling results presented in EPA MERPs memorandum to derive MERPs for hypothetical sources located in the Western U.S.

MERPs can be used to demonstrate that projected impacts from a proposed source are less than the applicable SILs or when included with the modeling results, would not cause or contribute to a violation of a NAAQS or PSD increment for that pollutant.

AIR QUALITY IMPACT ASSESSMENT

The MERP is based on a hypothetical source emission rate, the modeled concentration from that emission rate, and the relevant SILs for O_{3} and PM-2.5 (1 ppb for $\mathrm{O}_{3}, 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $24-\mathrm{hr}$ PM-2.5, and $0.2 \mu \mathrm{~g} / \mathrm{m}^{3}$ for annual PM-2.5). The lowest MERP value for each precursor identifies the most conservative condition. EPA provides a lookup table (MERPs View Qlik) which contains MERP data for the United States, from which, for the Tier I analysis, the smallest MERP values were used for the 8-hour O_{3} impact assessment and the 24 -hour and annual PM- 2.5 assessments. ODEQ recommends the use of the Morrow, Oregon site, which is located near Arlington on the Columbia River. For the Tier I analysis, the smallest MERP values were used for the 8 -hour O_{3} impact assessment and the 24 and annual PM-2.5 assessment.

The MERP analysis used the following emissions data as input which is based on the project total PSEL:

- $\mathrm{NO}_{x}-402$ tpy
- VOC-349 tpy
- PM-2.5-55 tpy
- $\mathrm{SO}_{x}-39.0$ tpy

The basic form of the equations for PM-2.5 is:

$$
S=S I L\left[\frac{Q_{N O X}}{M E R P_{N O X}}+\frac{Q_{S O X}}{M E R P_{S O x}}\right]
$$

For O_{3}, the equation takes the form of:

$$
S=S I L\left[\frac{Q_{N O x}}{M E R P_{N O X}}+\frac{Q_{V O C}}{M E R P_{V O C}}\right]
$$

where:
$S=$ final concentration
SIL = significant impact level

- 24-hr PM-2.5 = $1.2 \mathrm{ug} / \mathrm{m}^{3}$
- Annual PM-2.5 $=0.2 \mathrm{ug} / \mathrm{m}^{3}$
- $8-\mathrm{hr} \mathrm{O}=1 \mathrm{ppb}$
$Q=$ mass emissions in tons per year
MERP = MERP in tons per year from Table 13 for each applicable precursor

Table 13 provides the MERPs View Qlik data for Morrow, Oregon based on a hypothetical 500 ton per year source with a stack height of 10 meters. This data along with the project specific PSEL data and applicable SILs were used in the equations to determine secondary PM-2.5 and ozone formation. A copy of the MERP data from View Qlik is also provided in Attachment B.

| State | County | Metric | Precursor | Table 13
 Emissions
 TPY | Stack
 Height | MERP
 TPY | Max Concentration
 ug/m $\mathbf{3}^{3}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Oregon | Morrow | 8-hr Ozone | NO $_{x}$ | 500 | 10 | 258 | 1.939569 |
| Oregon | Morrow | 8-hr Ozone | VOC | 500 | 10 | 1,087 | 0.46018 |
| Oregon | Morrow | Annual PM-2.5 | NO_{x} | 500 | 10 | 7,942 | 0.012591 |
| Oregon | Morrow | Annual PM-2.5 | SO_{2} | 500 | 10 | 11,877 | 0.008419 |
| Oregon | Morrow | Daily PM-2.5 | NO_{x} | 500 | 10 | 3,003 | 0.19979 |
| Oregon | Morrow | Daily PM-2.5 | SO_{2} | 500 | 10 | 2,314 | 0.259274 |
| Stack height in meters | | | | | | | |

PM-2.5 24-hr avg. analysis

- For NO_{x} the lowest MERP is 3,003 for a hypothetical 500 tpy source and a concentration of 0.19979 ug/m ${ }^{3}$
- For SO_{x} the lowest MERP is 2,314 for a hypothetical 500 tpy source and a concentration of 0.25927 $u g / \mathrm{m}^{3}$
Secondary 24-hr PM-2.5 formation $=0.181 \mu \mathrm{~g} / \mathrm{m}^{3}$

Annual PM-2.5

- For NO_{x} the lowest MERP is 7,942 for a hypothetical 500 tpy source and a concentration of $0.01259 \mathrm{ug} / \mathrm{m}^{3}$
- For SO_{x} the lowest MERP is 11,877 for a hypothetical 500 tpy source and a concentration of 0.00842 ug $/ \mathrm{m}^{3}$

Secondary annual PM-2.5 formation $=0.0108 \mu \mathrm{~g} / \mathrm{m}^{3}$

O_{3} 8-hr avg. analysis

- For NO_{x} the lowest MERP is 258 for a hypothetical 500 tpy source and a concentration of 1.9396 ppb
- For VOC the lowest MERP is 1,087 for a hypothetical 500 tpy source and a concentration of 0.46018 ppb

Primary 8-hr O_{3} formation $=1.88 \mathrm{ppb}$

Table 14 below compares the results of the MERP analysis to the applicable SILs, and only the 8 -hr O_{3} resultant concentration is significant. This significant concentration was then added to the background O_{3} concentration of 61.3 ppb to produce a Project total of 63.18 ppb , which is below the $8-\mathrm{hr}_{3}$ standard of 70 ppb . Thus, any additional impacts to the background ozone concentration will comply with the NAAQS.

Based on the results of the MERP analysis, the calculated secondary PM-2.5 concentrations were added to all modeled PM-2.5 results from AERMOD for both $24-\mathrm{hr}$ and annual averaging periods.

AIR QUALITY IMPACT ASSESSMENT

Table 14 Results of MERP Analyses with Comparison to PSD SILs					
Pollutant	Avg. Period	MERP Concentration	Class II PSD SILs		
O_{3}	8-Hour	1.88 ppb	$1(\mathrm{ppb})$		
PM-2.5	$24-\mathrm{hr}$ Max	$0.181 \mu \mathrm{~g} / \mathrm{m}^{3}$	$1.2\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$		
	Annual Max	$0.0108 \mu \mathrm{~g} / \mathrm{m}^{3}$	$0.2\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$		

Modeled Impacts on Class II Areas

The following sections present the analyses for determining the changes to ambient air quality concentrations in the region of the Project. These analyses are based on the requirements in OAR 340-225-0050. The modeling includes the results of the diesel engine screening assessment to determine the worst-case emergency engine impacts during routine reliability testing which were combined with the project SIL modeling and refined modeling assessments used to calculate the proposed Project changes to ambient air quality, and increment/cumulative assessments.

Federal major source baseline and minor source baseline dates for $\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{PM}-10, \mathrm{PM}-2.5$ and CO have already been triggered in the Project region. For determining the Project modeled concentrations which are then compared to the applicable SILs, NAAQS and PSD increments, all sources at the Gordon Moore Park at Ronler Acres and Aloha campuses were used, which includes both existing sources and the proposed new sources. No sources were excluded in any of the subsequent modeling analyses.

Emissions and stack parameters for all of the sources at Gordon Moore Park at Ronler Acres and Aloha are listed in Attachment B. These were used in all of the modeling inputs. Stack parameters (e.g., stack height, exit temperature, stack diameter, and stack exit velocity) were based on the parameters provided by Intel. Stack locations for the existing and proposed sources were matched to show their actual location based on the proposed Facility plot plan and the most recent aerial imagery.

Class II SILs and SMC Analyses

OAR 340-200-0020 and 340-225-0050 prescribes the use of the Significant Impact Levels (SILs) to establish the "significant impact area" (SIA), which is used to identify the appropriate geographic area in which a multi-source NAAQS and increment impacts analysis should be conducted. The "impact area" is identified by drawing a circle around the site with a radius equal to the distance to the farthest location where an exceedance of the SIL is modeled to occur. The impact area is the geographical area for which the required air quality analyses for the NAAQS and PSD increments are carried out. This area includes all locations where the significant increase in the potential emission of a pollutant from a new or modified source, or significant net emission increase from a modification, will cause a significant ambient impact (i.e., equal or exceed the applicable SIL). This impact area is then also used in a multi-source cumulative impacts analysis to "guide the identification of other sources to be included in the modeling analyses."

To assess the Class II significance levels of the modeled concentrations, the following averaging periods were used:

- 1-hour NO_{2} and $\mathrm{SO}_{2} \mathrm{SIL}$ was based on the 5-year average of the maximum daily 1-hour NO_{2} concentrations modeled each year at each receptor.
- Annual NO_{2} and SO_{2} SIL was based on the maximum annual average concentration for the five (5) year period modeled for each receptor.
- 1-hour and 8-hour CO SILs were assessed based on the maximum modeled concentration at each receptor over the five (5) year period modeled for each receptor.
- Annual SO_{2} SIL was based on the maximum annual average concentration over the five (5) year period modeled for each receptor.
- 24-hour PM-2.5 SIL was based on the 5-year average of the maximum 24-hour PM-2.5 concentrations modeled each year at each receptor.
- 24-hour PM-10 SIL was based on the maximum 24-hour concentration over the five (5) years modeled for each receptor.
- Annual PM-2.5 SIL was based on the 5-year average of the annual average concentration modeled each year at each receptor.

Proposed PM-2.5 SIL

The proposed Class I and Class II PM-2.5 SILs for this project are identical to the EPA established SILs. With respect to reliance on the PM-2.5 SILs, EPA has cautioned that reliance on the SILs alone to demonstrate that a source will not cause or contribute to a violation of the PM-2.5 NAAQS is inadequate. However, EPA stated that permitting authorities have the discretion to select and utilize a PM- 2.5 SIL value if there is sufficient justification for the selected SIL value and justification in the manner in which it will be used. The SIL values for PM-2.5 in EPA regulations can also continue to be used if the permitting authority also takes background concentrations of PM-2.5 into account. For this Project, the difference between the PM-2.5 NAAQS and the monitored PM-2.5 background concentrations in the area is greater than the SILs. Based on the data in Table 17, over 41 percent of the available standard is still available. Thus, given the amount of available PM-2.5 standard in the Project region, the applicant with ODEQ approval used the EPA PM-2.5 SILs for both Class I and Class II modeling assessments.

SIL Results

Following the requirements of OAR 340-225-0050, the maximum concentrations from the SIL analyses are summarized in Table 15 . Only the 1 and 8 -hr CO modeled CO concentrations were less than the applicable SILs and no further analyses of CO is required. All other criteria pollutants exceeded the Class II SILs. For SO_{2}, the Project does not trigger the requirements of PSD and the modeling analyses for this pollutant was not taken any further other than to add in the background SO_{2} concentration data from the ambient monitors identified in the previous section.

To calculate the size of the combined "impact area" from both campuses, the center point between the Gordon Moore Park at Ronler Acres and Aloha sites was used to measure maximum distance from the Project for the furthest significant impact for each significant pollutant. It's noted that for the 1-hour NO_{2} SIL, the modeling results extended outward by 18.7 km . Based on EPA modeling guidelines which focus on the 10 km distances for cumulative 1-hour NO_{2} assessments, the use of the 18.7 km radius significant impact area (SIA) for the multisource NAAQS and increment assessments would be considered conservative. Table 15 lists the areal extent of the SIAs for each pollutant and averaging period. Attachment C includes figures that display the areal extent of the SIA for each pollutant and averaging period.

Table 15 Air Quality Impact Results for Significant Impact Levels*				
Pollutant	Averaging Period	Maximum Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\begin{gathered} \text { Class II } \\ \text { SIL } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	Significant Impact Area Radius (km)
Steady State and Intermittent Source Operating Conditions*				
$\mathrm{NO}_{2}{ }^{\text {a }}$	1-hr 5-year Avg of Max's	116.15	7.5	18.71
	Annual Max	13.25	1.0	8.53
CO	1-hour Max	708.80	2,000	N/A
	8-hour Max	199.60	500	N/A
PM-10	24-hour Max	9.28	1	6.35
	Annual Max	2.09	0.2	6.39
PM-2.5 ${ }^{\text {b }}$	24-hr 5-yr Avg of Max's	7.59	1.2	6.94
	5-yr Avg of Annual Concentrations	1.74	0.2	6.95
NO_{2} 1-hour and annual impacts evaluated using ARM2. Emergency generators included using EPA modeling procedure. PM-2.5 modeled concentrations were adjusted by the MERP results to account for secondary PM-2.5 formation. * All sources (new and existing)				

ODEQ regulation (OAR 340-224-0070(1)(a) also requires an applicant to provide preconstruction monitoring data for purposes of use in the Source Impacts Analysis. However, a source is exempt from this requirement if its modeled impact for each applicable pollutant in any area is less than the pollutantspecific SMC, which EPA has generally established as five times the lowest detectable concentration of a pollutant that could be measured by available instrumentation. As noted in OAR 340-224-0070(1)(a)(B), "DEQ may exempt the owner or operator of a source from preconstruction monitoring for a specific regulated pollutant if the owner or operator demonstrates that the air quality impact from the emissions increase would be less than the amounts listed below, or that modeled competing source concentrations plus the general background concentration of the regulated pollutant within the source impact area, as defined in OAR 340 division 225, are less than the following significant monitoring concentrations....". Table 16 lists the SMCs for each applicable pollutant. The maximum Project modeled concentration of $7.59 \mathrm{ug} / \mathrm{m}^{3}$ exceeds the SMC for the 24-hour PM-2.5 averaging period. As noted, the Project is not subject to PSD for SO_{2}.

Even if a source's potential impact exceeds the corresponding SMC, that does not necessarily mean the applicant must install and operate a new monitor at the Project. Rather, according to EPA guidance, an applicant may satisfy the preconstruction monitoring obligation in one of two ways: (i) Where existing ambient monitoring data is available from representative monitoring sites, the permitting agency may deem it acceptable for use in the Source Impacts Analysis; or (ii) where existing, representative data are not available, then the applicant must obtain site-specific data.

Table 16 Significant Monitoring Concentrations*	
CO: 8-hr average	$575 \mu \mathrm{~g} / \mathrm{m}^{3}$
PM-10: 24-hr average	$10 \mu \mathrm{~g} / \mathrm{m}^{3}$
PM-2.5 24-hr average*	$4 \mu \mathrm{~g} / \mathrm{m}^{3}$
NO $_{2}$: annual average	$14 \mu \mathrm{~g} / \mathrm{m}^{3}$
SO $_{2}$: 24-hr average	$13 \mu \mathrm{~g} / \mathrm{m}^{3}$
Note: The $24-h o u r ~ P M-2.5 ~ S M C ~ h a s ~ b e e n ~ v a c a t e d . ~$ $* O n l y$ the proposed new sources were assessed for the SMC	

As a general matter, the permitting agency has substantial discretion "to allow representative data submissions (as opposed to conducting new monitoring) on a case-by-case basis." OAR 340-2240070(1)(a)(vii) states "With DEQ's approval, the owner or operator may use representative or conservative background concentration data in lieu of conducting preconstruction air quality monitoring if the source demonstrates that such data is adequate to determine that the source would not cause or contribute to a violation of an ambient air quality standard or any applicable PSD increment." In determining whether existing data are representative, EPA guidance has emphasized consideration of three factors: monitor location, data quality and currentness of the data. The permitting agency also may approve use of data from a representative "regional" monitoring site for purposes of the NAAQS compliance demonstration.

As noted in Table 16, the PM-2.5 SMC has been vacated. Nevertheless, Intel has proposed utilizing existing monitoring data from the nearby Hare Field as a current and representative estimate of background concentrations. The spatial scale for Hare Field is neighborhood scale which is used for highest concentration, population exposure and general background. Additionally, for PM-2.5 the spatial coverage, currentness and representative conditions to the Project of the existing monitoring stations would satisfy the ODEQ and EPA requirements for waiving the preconstruction monitoring requirements for this pollutant. Intel has utilized representative existing monitoring data as the basis for its preconstruction air quality analyses.

In addition to the SILs and SMC's, a preliminary analysis was performed to determine if the SIL is protective of the NAAQS for applicable pollutants and averaging periods, consistent with the ODEQ Recommended Procedures document. This analysis is done by subtracting the ambient background from the NAAQS to determine if the SIL, as a significance threshold, is protective. As shown in Table 17, the preliminary NAAQS review values are significantly greater than the SILs, which indicates there is sufficient headroom between ambient background and the NAAQS for the SILs to be an appropriate test.

AIR QUALITY IMPACT ASSESSMENT

Table 17 Comparison of SILs to Background					
Pollutant	Ave Time.	Background ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\begin{gathered} \text { Class II SIL } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	Background + SIL $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	NAAQS ($\mu \mathrm{g} / \mathrm{m}^{3}$)
PM-2.5	24	20.7	1.2	21.9	35
PM-2.5	Annual	6.6	0.2	6.9	12
PM-10	24	39.0	1	40.0	150
NO_{2}	1	56.3	7.5	63.7	188
NO_{2}	Annual	18.1	1	19.1	100
CO was modeled to be less than the 1 and 8-hr SILs. SO_{2} not subject to PSD.					

Project Only National Ambient Air Quality Impact Analyses

In evaluating the impacts of the proposed Project on ambient air quality, the modeled concentrations of the Project were added to the monitored background concentrations and compared to national ambient standards for $\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{PM}-10$ and PM-2.5. These results are summarized in Table 18 and only represent the Intel sources plus background. For the 1-hour NO_{2} NAAQS analyses which include the intermittent sources, both the EPA modeling methodology and Monte Carlo results are presented.

All of the maximum concentrations occurred in the immediate vicinity of proposed Project, either on the Facility fencelines or on the downwash receptor grid. Figure 8 presents the locations of the maximum impacts by pollutant. These maximum concentrations for all five (5) years of meteorological data modeled were used for comparison to the NAAQS. The form of the NAAQS includes the High Sixth-High (H6H) values for the 24-hour PM-10; the 5-year average of the annual $98^{\text {th }}$ percentile 1-hour daily maxima for the 1hour NO_{2} NAAQS and, for PM-2.5, the 5 -year average of the annual $98^{\text {th }}$ percentile 24 -hour impacts and the 5-year average of the annual impacts. Sources of fugitive dust (PM-10 and PM-2.5) were included and modeled as area sources. Compliance with the NAAQS was demonstrated for all pollutants and averaging times.

Table 18Intel Facility Sources (New+Existing) Modeling Results					
Pollutant	Averaging Period	Modeled Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Background $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\begin{aligned} & \text { Total } \\ & \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{aligned}$	National Ambient Air Quality Standards $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
NO_{2}	1-hr 5-yr Avg of 98 ${ }^{\text {th }} \%$	EPA Method $163.54^{\text {a }}$	-	163.54	188
	1-hr 5-yr Avg of 98 ${ }^{\text {th\% }}$	Monte Carlo 170.89^{b}	-	170.89	188
	Annual Max	13.25	35.6	48.85	100
SO_{2}	1-hr 5-yr Avg of 99th\%	39.97	7.0	46.97	196

AIR QUALITY IMPACT ASSESSMENT

	24-hr Avg	18.38	4.7	23.08	1,300
	Annual Max	3.83	1.1	4.93	80
PM-10	24-hour H6H	7.78	39.0	46.78	150
PM-2.5c	24-hr 5-yr Avg of $988^{\text {th }} \ldots$	4.50	20.7	25.38	35
	5-yr Avg of Ann Conc's	1.73	6.6	8.35	12.0

Multisource Increment and NAAQS Modeling Analyses

The multisource increment and cumulative NAAQS analysis was prepared by using the following basic methodology:

- Establish the radial extent of the SIA based upon the modeled impacts for each pollutant standard. The distance from the source to the furthest impact that is equal to or above an applicable SIL establishes the radius of the area to evaluate. These are summarized in Tables 15 and Table 19
- Obtain from the local air agencies, emission inventories and stack parameters of significant and competing sources within the area to be evaluated. This inventory was provided by the ODEQ based on a radial distance from the source of 50 kilometers.
- Include an additional screening area beyond the furthest distance of the SIA to include significant sources that could contribute to modeled background.
- Model all the sources together to determine the air quality impacts within the SIA for comparison with the increment.
- Add in a monitored background for the NAAQS analyses and if the sum is below the standard, the Project does not contribute to exceedances of the standard.
- If the sum is above the increment or standard, perform a culpability analysis to determine if the Project's emissions contribute a significant impact (in both time and/or space) to the modeled exceedances.

Under EPA's PSD regulations and OAR 340-225-0050, an applicant must conduct a "source impact analysis", which demonstrates that "allowable emission increases from the source in conjunction with all other applicable emissions increases or reductions (including secondary emissions), would not cause or contribute to air pollution in violation of: (1) Any NAAQS in any region; or (2) Any applicable maximum allowable increase (increment) over the baseline concentration in any area."

If a source's modeled impact at any offsite location exceeds the relevant SIL, the source owner must then conduct a "multi-source" (or "cumulative") air quality analysis to determine whether or not the source's emissions will cause or contribute to a violation of the relevant NAAQS or applicable PSD increment. The PSD increment consumption analysis assures that, in those locations currently meeting the federal NAAQS
(i.e., those deemed "attainment" or "unclassifiable"), the concentration of a given pollutant cannot increase by an amount greater than the "maximum allowable increase" specified by the Clean Air Act and/or the PSD regulations for the particular pollutant since the baseline date.

EPA in the 2003 Appendix W to 40 CFR part 51 (68 FR 18439/18440) Modeling guidance prescribes the use of the SILs to establish the SIA, which is used to identify the appropriate geographic area in which a multi-source NAAQS and increment impacts analysis should be conducted. The impact area is the geographical area for which the required air quality analyses for the NAAQS and PSD increments are carried out. Per EPA Appendix W guidance, the larger impact area was then surveyed to identify other "nearby sources", which also should be included in the cumulative impact's analysis. Both Appendix W and the EPA Draft NSR Workshop Manual (October 1990) require that the cumulative and increment impacts analysis to include "nearby sources", which includes "[a]ll sources expected to cause a significant concentration gradient in the vicinity of the source or sources under consideration." Appendix W further instructs that the "impact of nearby sources should be examined at locations where interactions between the plume of the point source under consideration and those of nearby sources (plus natural background) can occur". Emphasizing that "[t]he number of sources is expected to be small except in unusual situations".

This area additionally included all sources out to a 50 km distance from the edge of the SIA (called the screening area or Range of Influence (ROI)) where the significant increase in the potential emission of a pollutant from a new source, or significant net emission increase from a modification, will cause a significant ambient impact (i.e., equal or exceed the applicable SIL). This impact area is then also used in a multi-source cumulative impacts analysis to "guide the identification of other sources to be included in the modeling analyses."

The center point between the Gordon Moore Park at Ronler Acres and Aloha campus was chosen as the center point for each of the SIAs. For NO_{2}, the maximum extent of receptors with modeled 1-hour NO_{2} impacts greater than or equal to the SIL of $7.5 \mu \mathrm{~g} / \mathrm{m}^{3}$ (based on the five-year average of maximum annual 1-hour impacts) extended outwards to 18.7 kilometers (km). For the other pollutant SILs, the SIA extended outwards from 6.3 to 8.5 km . For each pollutant and averaging period, for both the increment and NAAQS analyses, all receptors within the maximum radius of each of the SIAs were included in the modeling analysis. Thus, each SIA receptor grid used in the modeling for the significant impacts contains both the significant receptor locations as well as those receptors that are within the maximum radius of the SIA. These receptor grids are summarized in Table 19 and are also included in Attachment C which contains a listing of the receptor file names that were used within each of the SIAs.

AIR QUALITY IMPACT ASSESSMENT

Table 19 Listing of SIA Receptor Grids								
Pollutant	Averaging Period	$\begin{gathered} \text { Class II } \\ \text { SIL } \\ (\mathrm{ug} / \mathrm{m} 3) \end{gathered}$	$\begin{aligned} & \text { Significant } \\ & (Y / N) \end{aligned}$	Max Distance (m)	Number of Receptors within SIL Radius	Receptors Falling Within SIL Radius File Name	Number of Receptors Exceeding SIL	Receptors Exceeding SIL File Name
CO	1-HR	2000	N	-	-	-	-	-
	8-HR	500	N	-	-	-	-	-
SO_{2}	1-HR	7.8	Y	-	-	-	-	-
	24-HR	5	Y	-	-	-	-	-
	Annual	1	Y	-	-	-	-	-
PM-10	24-HR	1	Y	10,224	19,936	Intel-Hillsboro-24HR-PM10Radius.ROU	16,594	Intel- Hillsboro-24HR-PM10Exceed.ROU
PM-10	Annual	0.3	Y	8,233	18,644	Intel-Hillsboro- ANNUAL- PM10- Radius.ROU	12,690	Intel- Hillsboro- ANNUAL-PM10- Exceed.ROU
PM-2.5	24-HR	1.2	Y	6,941.5	19,874	Intel-Hillsboro-24HR-PM25Radius.ROU	10,475	Intel-Hillsboro-24HR-PM25Exceed.ROU
PM-2.5	Annual	0.2	Y	6,952.0	16,892	Intel-Hillsboro-ANNUAL-PM25Radius.ROU	6,451	Intel- Hillsboro- ANNUAL- PM25- Exceed.ROU
NO_{2}	1-HR	7.5	Y	18,709.2	21,662	$\begin{aligned} & \text { INTEL-1STSIL- } \\ & \text { 1HR-NO2- } \\ & \text { Radius.ROU } \end{aligned}$	21,599	$\begin{aligned} & \text { INTEL-1STSIL- } \\ & \text { 1HR-NO2- } \\ & \text { Exceed.ROU } \end{aligned}$
	Annual	1	Y	8,531.5	18,899	Intel-Hillsboro-ANNUAL-NO2Radius.ROU	13,709	Intel- Hillsboro-ANNUAL-NO2Exceed.ROU

Based on the previous results of the SIL analyses as summarized in Table 15, increment consumption for 24-hour and annual PM-2.5, 24 -hour and annual PM-10 and annual NO_{2} were assessed. There are no PSD increments for 1-hour NO_{2} and SO_{2} was not emitted at the major (PSD) source levels. It should be noted that the annual PM-10 NAAQS has been revoked but the annual increment remains in place. Table 20 presents the Class II PSD increment limits used in the modeling analyses.

The major and minor source baseline dates for $\mathrm{NO}_{2}, \mathrm{PM}-10$ and PM- 2.5 have already been triggered, so the increment modeling analyses included developing an initial list of increment consuming sources in the airshed. ODEQ provided an emission inventory of all NO_{2} sources within 50 km and 20 km for the PM-10 and PM-2.5 sources of the Project. The inventory listed 221 individual sources and contained the source locations, PSEL emission rates and stack parameters. A complete copy of this inventory is provided in Attachment C .
D-46

Table 20 PSD Class II Increments		
Pollutant/Avg. Period		Class II Increment ($\mu \mathrm{g} / \mathrm{m}^{3}$)
NO_{2}	1-hour Annual	25
PM-10	24-hour Annual	$\begin{gathered} 30^{\mathrm{a}} \\ 17 \end{gathered}$
PM-2.5	24-hour Annual	$\begin{gathered} 9^{a} \\ 4 \end{gathered}$

${ }^{\text {a }}$ Not to be exceeded more than once per year

The ODEQ emissions inventory is based on the source's permitted emission limits and does not include any information on the source's actual emissions. PSD increment modeling is based on actual emissions so as to establish the actual expansion or contraction of the available increment. As such, it was assumed that in the absence of a distinct increment (actual emission) inventory, all provided background sources were to be considered as increment consuming sources using the permitted PSEL's from each source. This results in an overestimate of the increment consumption in the air basin.

To limit the total number of sources used in the increment and cumulative NAAQS analyses, sources were excluded from the ODEQ lists if their emissions of $\mathrm{NO}_{\mathrm{x}}, \mathrm{PM}-10$ and $\mathrm{PM}-2.5$ were less than one (1) ton per year. Sources with Basic or General permits were also excluded from the inventory as these permit types reflect small or insignificant source activities that do not require dispersion modeling. These small sources would not be expected to cause a significant concentration gradient within the SIA nor would they be expected to significantly contribute to the modeled concentrations within the SIA. The removal of these sources will still result in conservative modeling results. Sources where the primary emissions were VOCs were also excluded from the multisource analyses. Sources with emissions based primarily on CO were also excluded from consideration as the Project impacts are all less than the CO 1-hour and 8-hour SILs. Additionally, sources in Multnomah and North Clackamas Counties were excluded due to the blocking effect of the West Hills and would not be expected to impact the areas near the Project locations. This resulted in a list of 26 facilities as shown in Table 21.

Several adjustments were made to the competing source lists. If a combustion source had PM-10 emissions but no PM- 2.5 emissions (or vis versa), it was assumed the PM- 2.5 emissions were the same as the PM-10 emissions. For non-combustion sources like road dust, material handling, and storage piles, the missing PM-2.5 emissions were scaled from the PM-10 emission using the appropriate EPA AP-42 PM2.5 and PM-10 particle size multipliers. The coordinates provided by DEQ represent an approximate facility location which, in some cases, did not represent the actual stack location. Adjustments to the facility coordinates were made using Google maps to better identify actual stack locations. These 26 facilities represent 33 individual stacks which were modeled for both increment consumption and for the NAAQS. The 33 individual stacks are presented in Table 22.

The ODEQ emissions inventory included multiple emission points for many of the sources, with emissions and either actual or default stack parameters. Where appropriate, emission points with common stack parameters were merged into a single emission point. Aggregate Insignificant Activities emissions were merged into one of the other source's emission points. All emission points were modeled as point sources
using the stack parameters provided by ODEQ. Short term emission rates were based on an annualized hourly emission rate. Table 22 shows the final list of competing source emission points used in the increment and NAAQS analyses. Additional details of the sources as input into AERMOD are presented in Attachment C.

Table 21 Increment and NAAQS Source List								
Permit Number	Model ID	X(m)	$\mathrm{Y}(\mathrm{m})$	$\begin{gathered} \text { D } \\ (\mathrm{km}) \end{gathered}$	$\begin{aligned} & \mathrm{NO}_{\mathrm{x}} \\ & \text { (TPY) } \end{aligned}$	$\begin{gathered} \text { PM-2.5 } \\ \text { (TPY) } \end{gathered}$	$\begin{gathered} \text { PM-10 } \\ \text { (TPY) } \end{gathered}$	Source Name
34-2813	1	505425.8	5043934	1.00	1.15	0.00	0.00	"Jireh Semiconductor Incorporated"
34-0241	2	506473.2	5044990	1.38	1.97	0.03	0.03	"Flexential Colorado Corp"
34-0183	3	508014	5043820	1.45	20.90	0.70	0.70	"STACK Infrastructure, Inc."
34-2790	4	505870.9	5044457	1.50	1.99	0.00	0.00	"Tokyo Ohka Kogyo America, Inc."
34-0222	5	505596.5	5045037	1.52	2.05	0.00	0.00	"QTS Investment Properties Hillsboro, LLC"
34-0055	6	504994.8	5042902	1.57	2.50	0.06	0.06	"Qorvo US, Inc."
34-9507	7	505463.5	5044497	1.91	2.62	0.35	0.35	"Genentech, Inc."
34-0186	8	506407	5046058	2.34	21.63	1.50	1.50	"Beaver Ventures LLC"
34-0235	9	504885	5043965	4.30	1.07	0.00	0.00	"NTT Global Data Centers HI, LLC"
34-2639	10	510829	5045802	5.31	1.11	0.03	0.03	"Portland Community College"
34-2753	11	504242.9	5037930	5.59	42.80	0.87	0.87	"Clean Water Services"
34-0004	12	502344	5037386	7.34	19.12	2.78	5.95	"Hillsboro Landfill Inc."
34-2804	13	513703	5038745	8.71	1.69	0.17	0.17	"Analog Devices, Inc."
34-2638	14	514063	5038512	9.14	2.54	0.06	0.06	"Tektronix, Inc."
34-2783	15	516615	5036641	12.30	3.40	0.58	0.58	"Bimbo Bakeries USA, Inc."
34-2756	16	493752	5040722	12.95	0.00	1.87	1.87	"DMH, Inc."
34-0009	17	517194	5036298	12.98	2.08	0.00	0.00	"International Paper Company"
34-2678	18	493642	5039988	13.23	1.70	0.00	0.00	"TTM Technologies North America, LLC"
34-9514	19	518751	5030570	17.88	1.33	0.00	0.00	"Regenyx LLC"
34-0007	20	519559	5029639	19.11	0.00	4.48	4.48	"Fought \& Company, Inc."
34-0063	21	516283	5025853	20.23	2.97	0.00	0.00	"Lam Research Corporation"
34-2623	22	518784	5027415	20.30	29.51	0.00	0.00	"Clean Water Services"
34-2066	23	485113.2	5034818	22.82	36.70	0.00	0.00	"Stimson Lumber Company"
36-9504	24	503921	5015168	28.44	1.32	0.00	0.00	"City of Newberg"
36-5034	25	487440	5008513	39.79	170.67	0.00	0.00	"Cascade Steel Rolling Mills, Inc."
36-0011	26	481137	5000753	49.65	51.70	0.00	0.00	"Riverbend Landfill Co."
Total TPY					424.5	13.5	16.6	
D=distance from the Ronler Campus Coordinates are UTM NAD 83, Zone 10								

Based on the radial distances of the SIAs, the competing source list provided by the ODEQ was input into each model run for the multisource NAAQS and increment analyses, based on the specific SIA receptor grids listed in Table 19. The inventory contained sources that were based on the maximum potential D-48
emissions (PTE) with the total modeled tons provided in Table 21. While increment analyses use actual emissions, the use of PTE is considered conservative and will overestimate the increment consumption in the area.

Figure 12 presents the locations and names of the cumulative sources from Table 21 used in the increment and NAAQS modeling assessments. The 1-hr NO_{2} isopleth of $7.5 \mathrm{ug} / \mathrm{m}^{3}$ represents the largest SIA with an 18.71 km radius which was used in the figure for reference.

Figure 12
Cumulative Source Inventory Location

Table 22 Modeled NAAOS/Increment Source Emission Points and Stack Parameters											
Permit Number	Model ID	X (m)	$Y(m)$	Z(m)	H(m)	Temp (K)	$\begin{aligned} & \mathrm{Vel} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	Diam (m)	$\begin{aligned} & \text { NOX } \\ & \text { (TPY) } \end{aligned}$	$\begin{aligned} & \text { PM-10 } \\ & \text { (TPY) } \end{aligned}$	$\begin{gathered} \text { PM-2.5 } \\ \text { (TPY) } \end{gathered}$
34-2813	CS01x01	505426	5043934	65.21	18.29	422.04	11.28	2.44	1.15	0.00	0.00
34-0241	CS02x01	506473	5044990	63.83	18.29	422.04	11.28	2.44	1.97	0.03	0.03
34-0183	CS03x01	508014	5043820	67.58	18.29	422.04	11.28	2.44	20.90	0.70	0.70
34-2790	CS04x01	505871	5044457	65.68	18.29	422.04	11.28	2.44	1.99	0.00	0.00
34-0222	CS05x01	505596	5045037	60	18.29	422.04	11.28	2.44	2.05	0.00	0.00
34-0055	CS06x01	504995	5042902	56.95	18.29	422.04	11.28	2.44	2.50	0.06	0.06
34-9507	CS07x01	505463	5044497	64.3	18.29	422.04	11.28	2.44	2.62	0.35	0.35
34-0186	CS08x01	506407	5046058	66.99	18.29	422.04	11.28	2.44	21.63	1.50	1.50
34-0235	CS09x01	504885	5043965	65.08	18.29	422.04	11.28	2.44	1.07	0.00	0.00
34-2639	CS10x01	510829	5045802	79.95	18.29	422.04	11.28	2.44	1.11	0.03	0.03
34-2753	CS11x01	504243	5037930	48.41	18.29	422.04	11.28	2.44	42.80	0.87	0.87
34-0004	CS12x01	502344	5037386	56.28	6.10	295.37	2.13	15.24	0.00	3.62	0.46
34-0004	CS12x02	502344	5037386	56.28	18.29	422.04	11.28	2.44	19.12	2.32	2.32
34-2804	CS13x01	513703	5038745	62.28	18.29	422.04	11.28	2.44	1.69	0.17	0.17
34-2638	CS14x01	514063	5038512	59.64	18.29	422.04	11.28	2.44	2.54	0.06	0.06
34-2783	CS15x01	516615	5036641	60.64	18.29	422.04	11.28	2.44	3.40	0.58	0.58
34-2756	CS16x01	493752	5040722	55.09	18.29	422.04	11.28	2.44	0.00	1.87	1.87
34-0009	CS17x01	517194	5036298	67.27	18.29	422.04	11.28	2.44	2.08	0.00	0.00
34-2678	CS18x01	493642	5039988	52.86	18.29	422.04	11.28	2.44	1.70	0.00	0.00
34-9514	CS19x01	518751	5030570	48.41	12.19	295.37	12.19	1.52	1.33	0.00	0.00
34-0007	CS20x01	519559	5029639	70.81	12.19	295.37	12.19	1.52	0.00	4.48	4.48
34-0063	CS21x01	516283	5025853	44.25	18.29	422.04	11.28	2.44	2.97	0.00	0.00
34-2623	CS22x01	518784	5027415	41.71	18.29	422.04	11.28	2.44	29.51	0.00	0.00
34-2066	CS23x01	485113	5034818	65.06	34.99	453.71	11.80	1.71	36.70	0.00	0.00
36-9504	CS24x01	503921	5015168	51.15	18.29	422.04	11.28	2.44	1.16	0.00	0.00
36-9504	CS24x02	503921	5015168	51.15	12.19	295.37	12.19	1.52	0.16	0.00	0.00
36-5034	CS25x01	487440	5008513	45.63	18.29	422.04	11.28	2.44	7.51	0.00	0.00
36-5034	CS25x02	487440	5008513	45.63	12.19	295.37	12.19	1.52	0.76	0.00	0.00
36-5034	CS25x03	487440	5008513	45.63	15.24	322.59	31.70	3.75	115.00	0.00	0.00
36-5034	CS25x04	487440	5008513	45.63	22.86	307.04	3.05	3.75	16.50	0.00	0.00
36-5034	CS25x05	487440	5008513	45.63	22.86	645.54	7.53	1.74	30.90	0.00	0.00
36-0011	CS26x01	481137	5000753	37.27	9.14	611.26	8.38	1.92	11.30	0.00	0.00
36-0011	CS26x02	481137	5000753	37.27	9.75	922.04	7.55	1.52	40.40	0.00	0.00

The results of the increment consumption analysis are presented in Table 23 and demonstrate that the Project will not exceed the allowed PSD increments.

Table 23 PSD Class II Increment Results			
Pollutant	Avg. Period	Modeled Concentration ($\mu \mathrm{g} / \mathrm{m}^{3}$)	PSD Class II Increment $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
NO_{2}	Annual	13.37	25
PM-10	$\begin{aligned} & 24-h r \\ & (\mathrm{H} 2 \mathrm{H}) \end{aligned}$	8.63	30
	Annual	2.10	17
PM-2.5	$\begin{aligned} & 24-\mathrm{hr} \\ & (\mathrm{H} 2 \mathrm{H}) \end{aligned}$	7.25	9
	Annual	1.92	4
high seco .5 includes	sis. Incre	d more than once	

While the cumulative source inventory is the same for both the increment and NAAQS analyses, the averaging period for the NAAQS is different than the PSD increment. The results of the cumulative modeling analysis, with all existing and proposed Intel Facility sources combined with the sources listed in Table 22 were then added to the applicable background monitored data to calculate a total cumulative modeled concentration(s). Table 23 presents the multisource NAAQS analysis which demonstrates that the Project will not exceed the applicable ambient air quality standards for any pollutant.

Table 23 Air Quality Impact Results for Cumulative Modeling Analysis - National Ambient Air Quality Standards					
Pollutant	Avg. Period	Modeled Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Background ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\begin{aligned} & \text { Total } \\ & \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{aligned}$	National Ambient Air Quality Standard ($\mu \mathrm{g} / \mathrm{m}^{3}$)
NO_{2}	1-hr 5-yr Avg of 98 ${ }^{\text {th }} \%$	N/A	--	184.54	188
	Annual	13.37	35.60	48.97	100
PM-10	24-hr H6H	7.8	39.0	46.80	150
	Annual	-	-	-	-
PM-2.5	24-hr 98 ${ }^{\text {th }} \%$	4.68	20.7	25.39	35
	Annual	1.74	6.6	8.34	12

NO_{2} impacts were evaluated using the ARM2 with hourly seasonal background values added consistent with EPA modeling guidelines (so separate modeled and background values not available). Monte Carlo results are not required for multisource NAAQS.
Secondary PM-2.5 formation from MERPs included in PM-2.5 results.

AIR QUALITY IMPACT ASSESSMENT

Soils and Vegetation

Regulatory Overview and Background

OAR 340-225-0050 requires that an analysis of the impact to soils and vegetation of significant commercial or recreational value that would occur as a result of the Project be conducted. The regulation indicates that the owner or operator need not provide an analysis of the impact on vegetation having no significant commercial or recreational value. EPA has also requested on past PSD permit applications that the analysis of soils and vegetation impacts be supplemented pursuant to the following Environmental Appeals Board case: In re: Indeck-Elwood, LLC; PSD Appeal No. 03-04; PSD Permit No. 197035AAJ (decided September 27, 2006) ("Indeck"). The Indeck case contemplates the need for additional analysis beyond a "screening analysis" with respect to soil and vegetation for a PSD application. Accordingly, the Indeck case was reviewed for applicability to this Project. As an initial matter, key aspects of the Indeck case are not directly applicable. For example, the Project utilizes clean, state-of-the-art, gas-fired sources located within developed city limits, while the Indeck facility is a proposed large-scale coal-fired power plant located approximate to a prairie reserve of national importance.

Although a more rigorous analysis is provided herein, we note that the Project will have substantially lower air quality impacts than would a coal-fired power plant. The key holding of Indeck is that an agency should consider requiring more than a "screening analysis" to evaluate soil and vegetation impacts to the extent that the 1990 New Source Review (NSR) Manual would result in a different significance conclusion. In particular, the Indeck case contemplates an inventory of applicable soils and vegetation and consideration of site-specific effects where appropriate to identify potential impacts. See, e.g., Indeck, pp. D.4-5 and D.11-12.

Following the review of Indeck, ADI prepared a soils and vegetation analysis to ensure the analysis reflected the methodology in the 1990 NSR Manual (EPA, 1990). The guidance in the 1990 NSR Manual, Section II.C Soils and Vegetation Analysis, is brief, less than one page long. The key components of the analysis are to develop an inventory of the soils and vegetation types with commercial or recreational value found in the area, and to analyze the impacts from regulated pollutants that are proposed to be emitted by the Facility. This requirement only applies to regulated pollutants that are to be emitted from the Facility in significant amounts. While an example related to fluorides is provided in Section II.C, an additional example analysis provided in Section III.C of the NSR Manual clearly states "...the sensitivity of the various soils and vegetation types to each of the applicable pollutants that will be emitted by the facility in significant amounts." (pg D.11, emphasis added).

Extent of the Analysis

The maximum modeled CO 1-hour and 8-hour concentrations for the Project impacts did not exceed the EPA SILs and are thus, not expected to impact any type of plant species. The maximum modeled NO_{2} impacts for 1-hour and annual did exceed the EPA SILs with the SIL radius extending outwards to 8.5 km for the annual NO_{2} averaging period and 18.7 km for the 1-hour extent. The maximum 1-hour and annual NO_{2} impact locations all fell within 150 meters of the Gordon Moore Park at Ronler Acres fenceline. Because pollutant concentrations associated with the Project are highest within the immediate area of the Project and rapidly drops off with distance, the analysis for the SIA provide conservative pollutant concentration values in regard to the regional Project impact. In addition, the SIA includes land use,

AIR QUALITY IMPACT ASSESSMENT

terrain, soil type, and flora that is typical of Washington and Multnomah Counties. The SIA area in Figure 12 and those presented in Attachment C encompasses industrial land, undeveloped land, the Hillsboro airport, agriculture and commercial/light industrial properties.

Vegetation Types

Several agricultural crops are grown within the vicinity of each of the Project sites. These crops include primarily commercial corn and wheat (summer and winter) production. Agricultural lands are adjacent to the Project sites towards the east, west and south. Agricultural lands extending outwards within the NO_{2} SIA also include barley, alfalfa, hops, grapes, blueberries, etc.

Within the defined 1-hour and annual NO_{2} SIA, the non-commercial vegetation communities in the immediate surrounding areas can generally be classified as mixed forest, developed land and shrubland. No known federal or state sensitive plant species were identified. No designated critical habitat areas for federally listed species were identified.

The document developed by the U.S. Department of Agriculture (USDA) entitled, A Screening Procedure to Evaluate Air Pollution Effects in Region 1 Wilderness Areas, 1991 was utilized for this assessment to determine the potential impacts of the modeled NO_{2} concentrations. The 1991 document includes plant species specific pollutant concentration thresholds for western U.S. species, as well as other information that complements the 1980 EPA guidance. The two referenced guidance documents have been reviewed to identify the most appropriate threshold values (if available) for this region based upon the species identified that have significant commercial or recreational value.

Although the reference documents do not provide values for all of the identified species or pollutants, they do provide information about the alfalfa and barley field crops which are two of the lesser secondary crops in the vicinity of the Project area. Based upon the information provided in Appendix B in A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils and Animals, the alfalfa and barley crops were found to be rated as "sensitive" to NO_{2}. The "sensitive" rating means that the lowest damage threshold is applied. Based upon this information, the proposed impact analysis was based upon compliance with the threshold levels for "sensitive" vegetation that are identified in Table 3.1 of A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils and Animals. In that table, the total modeled air concentrations for the proposed Project plus ambient background concentrations are compared to the criteria to evaluate impacts. The total concentrations for both 1-hour and annual NO_{2} are well below the significance criteria of $3,760 \mathrm{ug} / \mathrm{m}^{3}$ and $94 \mathrm{ug} / \mathrm{m}^{3}$ respectively. Since no thresholds were exceeded, there is no potential for adverse impact on vegetation. This approach uses the most stringent level of damage threshold to assure conservative results, thus additional evaluation of impacts of air pollutants to vegetation is unnecessary.

Attachment D contains a listing of the commercial and non-commercial plant species in the Project area.

Soil Types

Soils on and around the two Project sites are primarily loams, silt loams, and silty clay loams which include Aloha silt loam, Willamette silt loam, Woodburn silt loam, Amity silt loam, and Verboort silty clay loam. Attachment D contains a complete listing of the soil types found in the vicinity of the Project.

AIR QUALITY IMPACT ASSESSMENT

Nitrogen Deposition

In addition to the ambient pollutant exposure levels, plants have the potential to be affected by intake of air pollutants that have deposited and subsequently accumulated in the soil. Compared to the amount of published information on the effects of atmospheric pollution on plants and animals, relatively little has been reported on their effects on soils. Often the effect on soils can be seen in plants and animals such that the impacts to soil are secondary. For instance, if contaminated soil causes vegetative damage, the result could be increased erosion, increase in solar radiation reaching the ground, higher soil temperature and moisture stress. In agricultural and populated areas, intentional human actions taken to improve soils and assist vegetation growth, such as fertilization and application of insecticides, tend to have a much more direct and profound effect on soils than airborne pollutants. Nitrogen can be added to soil as a result of atmospheric deposition. Nitrogen deposition in soil can have beneficial effects to vegetation if they are currently lacking these elements. At levels above plant requirements, gaseous emission impacts on soils can cause acidic conditions to develop. Soil acidification and eutrophication can occur as a result of atmospheric deposition of nitrogen.

To calculate nitrogen depositional impacts from operation of the Project, the Near Field Nitrogen Deposition Modeling Guidance (November 2013) was followed. The primary purpose of any screening analysis is to produce a preliminary or conservative estimate of potential impacts (EPA, 2005). Using nonreactive (no chemistry) dispersion models such as AERMOD to complete a deposition analysis by assuming all NO_{x} emissions are converted into depositional nitrogen provides a conservative methodology.

A threshold at which harmful effects from nitrogen deposition on plant communities has not been firmly established. Research conducted in the South San Francisco Bay Area indicates that intensified annual grass invasions can occur in areas with nitrogen deposition levels of $11-20 \mathrm{~kg} / \mathrm{ha} / \mathrm{yr}$. A Nitric Acid depositional value of $0.05 \mathrm{~m} / \mathrm{s}$ was applied to the average of the SIA annual NO_{2} concentrations, in order to calculate the rate of deposition. The use of $0.05 \mathrm{~m} / \mathrm{s}$ deposition velocity is consistent with Class I nitrogen deposition analysis. The levels of nitrogen deposition in the area around the Project are estimated at $5.89 \mathrm{~kg} / \mathrm{ha}-\mathrm{yr}$, far below levels necessary to cause adverse effects.

Furthermore, the level of nitrogen deposition from the Project on plant-available nitrogen would actually be less than the calculated amount because the deposition will be distributed in small amounts during the year and not all of the nitrogen added to the soil during each deposition event is available for plant use because of losses associated with soil processes. Therefore, it is unlikely that there would be significant impacts to biological resources from nitrogen deposition.

Soil Acidification

As noted above, nitrogen deposition acts as a plant nutrient that can benefit soils, especially soils such as the sandy loam that exists in the Project area. However, this soil amendment can also be detrimental where it benefits non-native plants competing with native vegetation. No sensitive vegetative communities have been identified in the vicinity of Project that would be expected to be negatively impacted by nitrogen deposition.

AIR QUALITY IMPACT ASSESSMENT

Soil Eutrophication

Eutrophication is an increase in the concentration of chemical nutrients in an ecosystem to an extent that increases the primary productivity of the ecosystem. Atmospheric deposition of nitrogen can facilitate eutrophication of the soil and vegetation community.

A measure of the existing ambient deposition (wet + dry) in the area was obtained from the closest representative monitors in the National Atmospheric Deposition Program (NADP) monitoring network (https://nadp.slh.wisc.edu/) at the Columbia River Gorge monitoring site (WA98) in Skamania County, Washington. This monitor is operated by the USFS. The most recent background deposition is based on dry plus wet deposition data $1.894 \mathrm{~kg} / \mathrm{ha} / \mathrm{yr}$ for 2021. Since the Project incremental annual nitrogen is was calculated at $5.89 \mathrm{~kg} / \mathrm{ha}-\mathrm{y}$, the addition of the background for a total deposition rate of $7.79 \mathrm{~kg} / \mathrm{ha}-\mathrm{yr}$ is still below the threshold needed for adverse effects. Thus, the effects of deposition on eutrophication are considered to be insignificant.

Class I Impact Assessment

OAR 340-225-0070 requires PSD sources to assess compliance with Air Quality Related Values (AQRVs) if the source could impact visibility or deposition. This requirement is also summarized in EPA's Draft NSR Workshop Manual, where an impact analysis must be performed for any PSD source which "may affect" a Class I area. Thee AQRV requirement includes any PSD source located within 100 km of a Class I area. However, Class I areas typically within 300 km are included in this type of analysis. OAR 340-225-0700 requires the ODEQ to provide notice of PSD permit applications to the EPA and Federal Land Managers. This notification was completed by the ODEQ and was incorporated into the ODEQ comments on the modeling protocol.

Intel is now a major source for criteria pollutant emissions and is therefore automatically subject to PSD permitting requirements. The nearest Class I area is Mount Hood, located 80 km from the Gordon Moore Park at Ronler Acres (see Figure 13). Eight (8) additional Class I areas are identified within 300 km of the Project. The Class I coordinates are based on the National Park Service (NPS) Class I receptor list converted from latitude/longitude to UTM NAD83 coordinates.

Following OAR 340 division 25 and the FLAG Workshop procedures (June 2010) for PSD sources greater than 50 km from a Class I area, the use of the Screening Procedure O / D was utilized to determine if the Project could screen out of a formal AQRV assessment for visibility and nitrogen deposition (Q is the total emissions in tons per year and D is the distance in kilometers to the Class I area). Following these procedures in, Q is calculated as the sum (in tons/year) of emissions of NO_{x} and $\mathrm{PM}-10$ based on the maximum 24-hour net emissions increase for each pollutant from the proposed Project. The actual baseline emissions were not included in the proposed increase, as per FLAG with ODEQ concurrence. There will be no increase in SO_{2} emissions over the existing PSEL so this pollutant was not included in the calculation of Q. The existing PSEL emissions and the proposed hourly increases converted to tons are summarized in Table 24.

The screening calculation takes the form of:

$$
Q=\operatorname{sum}\left(N O_{x}+P M-10\right) \text { in Ibs/hr (for 24-hours) for the worst-case day * } 365 \text { days/year }
$$

| Existing and Proposed Emissions Profiles |
| :---: | :---: | :---: | :---: | (24

All the non-emergency sources are steady state and operate almost continuously 24 -hours per day. The emergency diesel generators are limited to 25 hours per year, with no more than 10 engines being tested during any day. To determine the worst-case daily emissions for the emergency generators, the 10 highest emitting engines' emissions were summed to calculate a pound per day (lb/day) emission rate. This was then multiplied by 365 days and converted to tons per year (tpy) to calculate the engines contribution to the total emissions (Q). As an example, for NO_{x} :

Each emergency generators at $68 \mathrm{lb} / \mathrm{hr}$ each or 10 engines on a daily basis at $680 \mathrm{lb} /$ day $680 \mathrm{lb} /$ day * 365 day/yr * 1 ton/2000 lb = 124.1 tpy

This is repeated for PM-10 but with a different set of 10 engines which have a higher PM-10 emission rate.

Each emergency generators at $0.641 \mathrm{lb} / \mathrm{hr}$ each or 10 engines on a daily basis at $6.41 \mathrm{lb} / \mathrm{day}$ $6.41 \mathrm{lb} /$ day * 365 day/yr * 1 ton/2000 lb $=1.17 \mathrm{tpy}$

Using this procedure on the emergency generators which is then added to the steady state Q , the total Facility Q based on the increase in NO_{x} and $\mathrm{PM}-10$ is:
$\mathrm{Q}=\operatorname{sum}\left(\mathrm{NO}_{\mathrm{x}}+\mathrm{PM}-10\right)$ in maximum lbs/day (for the worst-case day including emergency generators) * 365 days/year * 1 ton/2000 lbs $=333.27$ tons

The results of the Q / D scenarios are presented in Table 25. If Q / D is less than 10 , then the $A Q R V$ analysis can be waived as a requirement. All of the Class I areas have a Q / D ratio less than threshold of 10 . In accordance with OAR 340-225-0070, the Federal Land Managers (FLMs) of Class I areas potentially affected by the project were notified by ODEQ of the pending permit application. In the FLM responses, the U.S Forest Service and the National Park Service, as FLMs, have both stated that an analysis of AQRVs is not required for their respective Class I areas and the Columbia River Gorge National Scenic Area.

In addition to the above AQRV analysis, OAR 340-225-0060 requires Class I SILs modeling to be performed to determine if a Class I increment and NAAQS analyses would be required for the major source pollutants.

TABLE 25		
NEARBY CLASS I AREAS AND Q/D SCREENING RESULTS		
Class I Areas	Minimum Distance (km)	Q/D*
Mt Hood OR (MOHO)	80	4.2
Mt Jefferson OR (MOJE)	116	2.9
Mt Adams WA (MOAD)	121	2.8
Goat Rocks WA (GORO)	145	2.3
Mt Washington WA (MOWA)	150	2.2
Mt Rainier WA (MORA)	153	2.2
Three Sisters OR (THSI)	167	2.0
Diamond Creek (DC)	223	1.5
Crater Lake (CR)	279	1.2
*O/D based on worst case day.		

PSD Class I SILs AERMOD Analyses

OAR 340-225-0060 requires that the Project must demonstrate compliance with the NAAQS and increments in PSD Class I areas. This requirement is only applicable if the Project exceeds the Class I SILs. Therefore, Class I SILs modeling were assessed for the Class I areas listed in Table 25 using the procedures in OAR 340-225-0030 (Procedures) and 340-225-0040 (Air Quality Models). Modeling was performed for the Project emissions only and then compared to the applicable Class I SILs in OAR 340-200-0020. The Class I receptor grid and elevations given by the National Park Service Air Resources Division on the webpage were used:

http://www.nature.nps.gov/air/Maps/Receptors/index.cfm

These receptors were converted to UTM NAD83 coordinates by the US Army Corps of Engineers CORPSCON program for Class I areas within 50 km of the Project site(s).

The EPA Modeling Guidelines suggest that the use of AERMOD be limited to distances of less than approximately 50 km , beyond which the CALPUFF dispersion model is typically used to assess the longrange transport of pollutants. Since the requirement to assess AQRVs for each of these areas was waived, an alternative modeling approach with AERMOD was used for assessing Class I SILs for each Class I area that is located at a distance greater than 50 km . The proposed approach utilizes a ring of receptors at 50 km distance from the Project, with receptors placed at two (2) degree intervals over the entire 360-degree circle of receptors. For each of these receptors, the receptor heights were based on a range of elevations that correlate with each of the nine (9) Class I areas listed in Table 25. 100-meter elevation intervals were used starting at the lowest elevation up to the highest. Using this grid, the Class I SILs listed in Table 26 were assessed. If any of the Class I areas have impacts that exceed the SILs, then the CALPUFF modeling will be used to reassess these SILs and, if needed, would also be used to assess PSD Class I area increments and NAAQS. Figure 13 presents the AERMOD receptor grids developed used in the Class I SIL analysis.

Single source impacts on secondary PM-2.5 tend to decrease as distance from the source increases (Baker et al., 2016), which means peak source impacts presented as PM-2.5 in the NAAQS air quality assessment

AIR QUALITY IMPACT ASSESSMENT

may not provide relevant information for the spatial scales involved between Project sources and Class I areas. Given that Project source impacts will be lower at greater distances, the MERPs listed in Table 14 would overestimate the secondary PM- 2.5 formation as the source and Class I areas are not in close proximity.

Using the distance correction outlined in the memorandum from EPA dated April 2019, "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone $\left(\mathrm{O}_{3}\right)$ and PM2.5 under the PSD Permitting Program.", the hypothetical source concentrations from MERPs View Qlik were selected based on the distance to the nearest Class I area, Mount Hood, at 80 km . Using the Morrow, Oregon site, this produced the following secondary PM- 2.5 formations based on the modeled hypothetical source and resultant MERP concentration from the MERP View Qlik output:

- $24-\mathrm{hr}=0.0903 \mathrm{ug} / \mathrm{m}^{3}$
- Annual $=0.0039 \mathrm{ug} / \mathrm{m}^{3}$

Attachment C contains the MERP View Qlik distance dependent concentrations for the 80 km distance. These were added to the Class I SIL modeling results for comparisons with the Class I SILs. Additional distance dependent MERP analyses were not made as the closest Class I area used in the analysis would be considered conservative.

Using the Class I modeling grid, the Class I SILs were assessed with the maximum results listed in Table 26. These are the maximum 24 -hour and annual impacts over the 5 -years modeled at all of the receptors. The results of the Class I SIL analysis demonstrate that all modeled impacts, including secondary PM- 2.5 formation, will be less than the applicable Class I SIL. Thus, no Class I increment, or NAAQS analysis is required at any of the areas.

AIR QUALITY IMPACT ASSESSMENT

Figure 13
Class I Areas and the AERMOD Receptors

- 50 km Receptor Arc
$\square 50 \mathrm{~km}$ Buffer Around Intel
\square CALPUFF Domain
Mandatory Class 1 Federal Areas Agency

D-59

AIR QUALITY IMPACT ASSESSMENT

Pollutant	TABLE 26			
	Criteria Pollutant Class I SILs and Increments			
	Averaging Interval	Maximum Modeled Impact on Receptor Ring (50 km) $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Class I Significant Impact Level ($\mu \mathrm{g} / \mathrm{m}^{3}$)	Class I PSD Increment $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
NO_{2}	Annual	0.00308	0.1	2.5
PM-10	24-Hour	0.0619	0.3	25
	Annual	0.0062	0.2	5
PM-2.5	24-Hour	0.128	0.27	2
	Annual	0.009	0.05	1
Secondary PM- 2.5 were added to the primary PM- 2.5 modeled concentrations.				

Conclusion

In summary, the dispersion modeling assessment used all the existing and new source emissions in the SILs, PSD increment and NAAQS analyses. Based on these modeling results which utilized the data presented in this Air Quality Impact Assessment, the project will comply with all NAAQS and PSD increments and will not cause or contribute to exceedances of any ambient standard or limit. The applicable requirements of OAR 340 divisions 224 and 225 addressed herein have been completed.

Attachment A

ODEQ Modeling Protocol and Approval Letter

ODEQ Air Contaminant Discharge Permit Application

Air Quality Modeling Protocol

Intel Corporation Ronler Acres/Aloha Project

Submitted to
Oregon Department of Environmental Quality
Submitted by

ATMOSPHERIC DYNAMICS,INC
Meteorological \& Air Quality Modeling

Prepared by
Atmospheric Dynamics, Inc.

April 2023

AIR QUALITY MODELING PROTOCOL

Introduction and Project Description

Intel Corporation (Intel) operates the Ronler Acres and Aloha semiconductor manufacturing facilities (Facility) in Washington County, Oregon. The Ronler Acres campus is located at 2501 NE Century Boulevard, Hillsboro, Oregon, which has a Universal Transverse Mercator (UTM) North American Datum (NAD) 83 coordinate of 506601.5 meters Easting, 5043404.5 meters Northing (Zone 10). The Aloha campus is located at 3585 SW 198th Avenue, Aloha Oregon, and has a UTM NAD 83 coordinate of 509003.2 meters Easting, 5037811.5 meters Northing (Zone 10) latitude /longitude of $122.8851359^{\circ} \mathrm{W}$, $45.4937841^{\circ} \mathrm{N}$. The Aloha campus has been operating since 1976 while the Ronler Acres campus began operation in 1994. Both campuses are engaged in the production of semiconductor products and are considered co-located for permitting purposes because their production activities are interrelated. Both campuses are regulated under a single Standard Air Contaminant Discharge Permit (ACDP), 34-2681-SI02, issued by the Oregon Department of Environmental Quality (DEQ) in 2016 and most recently modified in 2022.

Intel is submitting a Type 4 Maintenance Area New Source Review (NSR) and Prevention of Significant Deterioration (PSD) permit application due to proposed changes at the Facility meeting the definition of "major modification" in OAR 340-224-0025. Changes at the Facility include additional fabrication (fab) cleanroom space (D1X MOD4 and D1A expansion), and increased emissions at the existing fabs due to advances in technology manufacturing and additional manufacturing support operations. The proposed major modification will trigger the Maintenance Area NSR requirements in OAR 340-224-0060 and the Prevention of Significant Deterioration (PSD) requirements in OAR 340-224-0070. A common requirement of both sets of requirements is the need to demonstrate that the proposed changes will not cause or contribute to an exceedance of the National Ambient Air Quality Standards. Modifications subject to Division 224 requirements must be permitted as Type 4 construction approvals.

This modeling protocol describes the Class I and Class II modeling steps, methods and assumptions that will be performed to support the Type 4 construction approval permit application. The modeling will be based on the ODEQ "Recommended Procedures for Air Quality Dispersion Modeling" (March 2022). Table 1 summarizes the proposed analyses on a pollutant specific basis. The modeling will follow procedures as summarized by the United States Environmental Protection Agency (EPA) Appendix W modeling guidelines. Additional guidance procedures are summarized below and throughout the text: U.S. Environmental Protection Agency (EPA) in its "Guideline on Air Quality Models" (including supplements), EPA Memorandum "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2} National Ambient Air Quality Standard" (March 2011), EPA Memorandum "Clarification on the Use of AERMOD Dispersion Modeling for Demonstrating Compliance with the $\mathrm{NO}_{2} \mathrm{NAAQS}^{\prime}$ (September 2014) " EPA Memorandum "Guidance for Ozone and Fine Particulate Matter Permit Modeling" (July 2022), EPA Memorandum "Modeling Procedures for Demonstrating Compliance with PM2.5 NAAQS (March 2010) and the California Air Pollution Control Officers Association (CAPCOA) "Modeling Compliance of the Federal 1-Hour NO_{2} NAAQS"(October 2011).

$\begin{gathered} \text { TABLE } 1 \\ \text { AIR QUALITY CRITERIA } \end{gathered}$					
	$\mathrm{NO}_{\mathbf{x}}$	PM10	PM2.5	CO	SO_{2}
PSD Significant Impact Levels for Class I And Class II Areas	X	X	X	X	
Ambient Air Quality Standards	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
Class I and Class II Visibility and Deposition	X	\mathbf{x}	x		
Impacts to Soils and Vegetation	X	X	x	\mathbf{x}	
Class I and Class II Area Increment	\mathbf{x}	\mathbf{x}	x		
The project will also be major for VOCs and will include an analysis of ozone impacts from emissions of NOx and VOCs. Secondary PM2.5 and Ozone will also be assessed with MERPS.					

Permit Applicability

The locations of the Ronler Acres and Aloha campuses are shown in Figure 1. The site plans are presented in Figures 2 and 3, respectively. The Ronler Acres and Aloha campuses are located in Washington County, Oregon. The area in which the campuses are located is designated as attainment or unclassified for all criteria pollutants except carbon monoxide (CO) and ozone, for which the area is designated as maintenance.

The current Facility is an existing source that will become a Federal Major Source as a result of the proposed changes because emissions of one or more regulated pollutants will increase above the Federal Major Source level. A major modification at a facility that will become a Federal Major Source triggers the requirements of Oregon's PSD permitting program for each pollutant for which the area is designated attainment or unclassified. OAR 340-224-0070(3)(a)(A). These requirements include the obligation to conduct an air quality analysis for each regulated pollutant for which emissions will exceed the netting basis by a Significant Emission Rate (SER) or more. Based on the proposed Plant Site Emission Limits, the Facility is required to perform a PSD air quality analysis for $\mathrm{NO}_{x}, \mathrm{PM} 10$ and PM2.5.

The proposed modifications also trigger requirements of Oregon's Maintenance Area New Source Review (NSR) program because it is located within the Oregon portion of the Portland-Vancouver Interstate Maintenance Area for ozone and the Portland Maintenance Area for CO, and the proposal constitutes a major modification for CO and ozone precursors (VOC and NO_{x}). Maintenance area NSR requirements are triggered for each major modification of a maintenance pollutant. Major modifications for ozone precursors (NO_{x} and VOC) constitute major modifications for ozone. A major modification of a maintenance pollutant must comply with the maintenance area NSR requirements at OAR 340-224-0060, including the requirement to demonstrate that it will not cause or contribute to an exceedance of the NAAQS.. The Facility will meet its NAAQS compliance obligation in part by ensuring a net air quality benefit in compliance with OAR $340-224-0060(2)$ by fully offsetting its $\mathrm{CO}, \mathrm{NO}_{x}$ and VOC emissions via an allocation of growth allowance. In addition, the Facility will model its CO emissions and evaluate ozone impacts independent of the net air quality benefit resulting from offsetting those emissions.

Oregon DEQ is requiring sources ${ }^{1}$ to demonstrate compliance with the short-term NAAQS (specifically, 24$\mathrm{hr} \mathrm{PM}_{2.5}, 1-\mathrm{hr} \mathrm{SO} \mathrm{O}_{2}$ and 1-hr NO_{2}) if the facility's project triggers NSR for any pollutant and the facility-wide short-term emissions are greater than the Significant Emission Threshold (SETs). Intel will be conducting a short-term NAAQS evaluation for NO_{2} and $\mathrm{PM}_{2.5}$ as required by the PSD \& Maintenance Area NSR regulations described above. Although the project SO_{2} emissions do not require an air quality assessment under the PSD regulations, the short-term facility wide SOs emissions will be over the SO_{2} significant emissions threshold (SET) of three (3) pounds per hour (lbs/hr) and SO_{2} NAAQS compliance will be evaluated.

Project Description

The manufacturing process occurs in a cleanroom environment to avoid micro contamination of the product. Semiconductors are fabricated in batches of silicon wafers and can take anywhere from one to two months to manufacture. Semiconductor manufacturing begins with a silicon wafer substrate. The semiconductor is then built up as a series of layers, with material added or removed in each step. Steps include:

- Oxidation: Involves the generation of a silicon dioxide layer on the wafer surface to provide a base for the photolithography process. This layer also insulates and protects the wafer during subsequent processing.
- Lithography: Starts with the application of a photo sensitive layer onto the wafer. Then, a photomask is placed over the wafer and light is projected onto the wafer to form patterns of exposed and unexposed photoresist (e.g., the electrical pattern). After exposure, the wafer is developed in a solution that dissolves the exposed photoresist, leaving those areas exposed for subsequent processing steps. The unexposed photo-resistant coating remains on the water, thus protecting the surface.
- Ion Implant: Doping the wafer with ions to making it conductive or insulating at selected locations.
- Etching: Wet or dry etching techniques are used to remove unwanted material on certain areas on the wafer. After etching, photoresist is removed using dry or liquid stripping compounds.
- Deposition: Applies additional layers of silicon, silicon dioxide, or other materials to the wafer
- Planar: A surface treatment process which prepares the wafer for subsequent processing steps. A mildly corrosive chemical slurry is used as a polishing compound.

During the fabrication process, many of these steps are repeated multiple times in various sequences with variations in each step. Once the manufacturing is completed, the wafers are tested and cut into individual chips. The semiconductor chips are then sorted, assembled, tested, and packaged.

Manufacturing operations occur 24 hours a day and 365 days a year. However, production output varies with consumer demand and stage of process development. Significant technology revisions occur approximately every 2 years.

There are a number of utility support systems that support fab manufacturing operations. These include:

- Natural gas-fired rotor concentrator thermal oxidizers (RCTOs) are used to control volatile organic compounds (VOC) emissions from the Fabs.

[^2]
AIR QUALITY MODELING PROTOCOL

- Packed-Bed Wet Chemical Scrubbers for controlling acid gases used in the Fab.
- Trimix Ammonia Treatment Systems are used to treat ammonia wastewater.
- Large natural gas-fired boilers (>2.0 million BTU per hour)
- Small natural gas-fired heating units and boilers (<2.0 million BTU per hour)
- Diesel-fired emergency generators and fire pumps
- Wet cell cooling towers
- Bulk Chemical Distribution including bulk and specialty gases.

Below is a summary description of the emission points that will be used in the modeling analyses.
Rotor Concentrator Thermal Oxidizers (RCTOs)
RCTOs consist of two main components: a concentrator that uses zeolite wheels to adsorb VOCs from the Fab exhaust and a thermal oxidizer that oxidizes the VOCs into water and carbon dioxide. The RCTOs are a source of natural gas combustion byproducts, CO_{2}, and VOCs that are not adsorbed by the zeolite concentrator. Each RCTO stack will be included in the model as a point source.

Some of the newer RCTOs exhaust to the acid scrubbers that then pass through a wet electrostatic precipitator (WESP) for additional PM control. A WESP works by charging particles as they enter the unit and collecting them on electrodes within the WESP body.

Packed-Bed Wet Chemical Scrubbers (Scrubbers)

Each Fab has several scrubbers that treat acid or ammonia-containing Fab process exhaust. The exhaust passes through a packed bed with reagent flowing through the bed. A substantial portion of the acid or ammonia gases in the exhaust are transferred out of the air stream into the reagent stream. The treated exhaust streams are then sent out to the atmosphere via a manifold with between one and five stacks.

Boilers

The boilers supply hot water to the various buildings and manufacturing processes. All of Intel's boilers are natural gas fired. Air emissions from the boilers are those associated with natural gas combustion.

Emergency Generators and Fire Pumps

In addition to backing up all critical Life Safety Systems, emergency generators back-up systems required by code and business continuity needs at the Facility in the event of an unplanned primary power outage. The generators combust ultra-low-sulfur diesel and are routinely tested to ensure proper operation. For permitting purposes, air emissions are limited to periods when the emergency equipment is tested and maintained. Readiness testing is limited to 25 hours per year for the emergency generators and 50 hours per year for the emergency fire pumps. The permit specifies that no more than ten generators may be run in a day and the generators can only be run during daylight hours, which is defined as the hours between 8 am and 6 pm .

Ammonia Treatment System (TMXW)

The TMXW system is an ammonia wastewater treatment system that includes gas-phase ammonia abatement. Ammonia wastewater is pH adjusted and fed to an ammonia stripper. The ammonia stripper is a desorption process that removes ammonium ions out of the water to produce gas-phase ammonia. The gas-phase ammonia is exhausted to a two-stage thermal catalytic oxidation/reduction system. The first catalyst converts ammonia to NOx and CO to carbon dioxide. The second catalyst converts NOx to
nitrogen and water. Air emissions from this system include natural gas combustion byproducts and ammonia. The air emissions exit to ambient air via a stack. Each emission point will be modeled separately.

Lime Silos

Dry lime (calcium hydroxide) used in wastewater treatment operations is delivered to and stored in lime silos. There are five lime silos on site. During filling, the silos are a source of PM emissions as air is displaced by the lime being loaded. Each silo is equipped with a vent controlled by a fabric filter dust collector. For the five lime silo bin vents, PM10 and PM2.5 emissions from all five sources will be modeled as a single volume source that will be located midpoint between the existing lime silo bin vents.

Cooling Towers

The Facility has mechanically-induced (i.e., fan-driven) wet-cell cooling towers that are open to the atmosphere. The cooling towers are used to dissipate the large heat loads generated by the factory and the chilled water is used to condition the incoming air to the correct temperature required by the factory. The cooling towers are a source of particulate matter. Cooling towers will be modeled in two specific ways:

1. Cooling towers with a single fan will be modeled using one stack located in the fan center and the maximum design flow and actual fan diameter will be used for the stack parameters.
2. Multiple fans that are part of a single cooling tower assembly will be modeled using a single stack located in the center of the assembly. The maximum design flow from the cooling tower assembly will be divided by the number of fans to get the representative flow. The diameter for the representative stack will be the diameter of a single fan.

Proposed Air Quality Dispersion Models

Air Quality Models/Version: The primary EPA dispersion model proposed for use is the AERMOD modeling system (AERMOD version 22112) with the associated meteorological and receptor processing programs AERSURFACE (version 20060), AERMET (version 22112), AERMINUTE (version 15272), and AERMAP (version 18081). AERMOD will be used to quantify pollutant impacts on the surrounding environment based on the emission sources operating parameters and their locations and will be used for modeling most facility operational impacts in both simple and complex terrain. In addition, the Building Profile Input Program for PRIME (BPIP-PRIME version 04274) will be used for determining building dimensions for downwash calculations in AERMOD. These models, along with options for their use and how they are used, are discussed below. These models will be used for the following:

- Comparison of facility impacts to significant impact levels (SILs), Significant Monitoring Concentrations (SMCs), and the National Ambient Air Quality Standards (NAAQS) and
- Cumulative impacts analyses in accordance with EPA modeling requirements, if required (project impacts greater than SILs), for NAAQS and PSD Class I and Class II increments.

Existing Meteorological and Air Quality Data

Hourly observations of certain meteorological parameters are used to define the area's dispersion characteristics. This data is used in EPA approved air dispersion models for defining a project's impact on air quality. These data must meet certain criteria established by the EPA and the following discussion details the proposed data and its applicability to this project.

AIR QUALITY MODELING PROTOCOL

Project Location/Topography: Both the Ronler Acres and Aloha project sites are located in the Tualatin Valley which is a relatively flat river bottom area that is surrounded by terrain to the north, west and east. Very little variation in terrain exists in the valley until the area abuts the mountain ranges surrounding it on three sides.

Nearby Surface Meteorological Stations: The proposed Ronler Acres project is located in the northeastern portion of the Tualatin Valley, approximately 2.25 kilometers (km) east of the Hillsboro Airport. The Aloha site is located approximately 6.5 km southeast of the Hillsboro Airport. The Hillsboro Airport (WBAN 94261) collects ASOS (Automated Surface Observing System) surface meteorological data such as wind speed and direction, temperature, pressure, cloud heights, and sky cover. ASOS surface meteorological data are generally selected for processing for AERMOD because ASOS hourly data are routinely recorded and archived, generally meet EPA data completeness criteria, instruments are located in unobstructed areas meeting EPA siting criteria, and instrument heights and sensor sensitivities meet EPA instrument specifications. Also, short-term (1-minute) wind direction and speed data are generally available that can be processed by EPA programs to eliminate excessive calm observations and to give hourly averages consistent with EPA modeling requirements. The ASOS surface data, when processed with AERMET as described below, result in data recovery greater than 90 percent for every quarter in the five-year period in accordance with EPA requirements "Meteorological Monitoring Guidance for Regulatory Modeling Applications," (EPA-454/R-99-005). Generally, surface data parameters of wind speed, wind direction, and temperature must individually exceed 90% both by quarter and year, as well as wind speed, direction, and stability (turbulence) parameters combined, before any substitutions. These criteria are equaled for all quarterly/annual periods of the surface data selected for use, which covers the years 2016 through 2020.

Selection of Surface Meteorological Data: As noted above, the project vicinity and immediate areas of Tualatin Valley are relatively flat, an important consideration in the selection of surface meteorological data for use in assessing the projects impacts on regional air quality. Under these circumstances (large expanses of relatively flat terrain), the nearest meteorological data meeting EPA siting and instrument criteria would be expected to be the most representative of the project location. The ASOS data fulfills both criteria, being located in the immediate project vicinity and meeting EPA siting and instrument criteria. Thus, the Hillsboro Airport ASOS data are proposed as the surface meteorological data for modeling facility emissions. The close proximity of the ASOS station to the project site virtually assures that it could be considered representative, if not the equivalent of onsite data.

Both the ASOS and Ronler Acres/Aloha sites are located in the relatively flat Tualatin Valley at nearly identical distances and orientations from the relatively distant mountains which define the valley boundaries. There are no intervening terrain features between the ASOS location and project site to adversely affect the relative synoptic-scale wind patterns at either location (compared to each other). The current ASOS location from the NCDC Historical Observing Metadata Repository (HOMR) was verified and then refined to its exact location based on Google Earth photos (location is shown below).

Selection of Upper Air Meteorological Data: The most representative radiosonde observations nearest to the project site is the Salem Airport (McNary Field), located approximately 65 km south of the Intel project sites. Climatologically, Salem is similar to the Intel project sites. Twice daily radiosonde data were available for the proposed modeled years of 2016 through 2020.

Meteorological Data Surface Characteristics: AERMET requires input summaries of the surface characteristics for the area surrounding the Hillsboro ASOS monitoring site. These surface characteristics

AIR QUALITY MODELING PROTOCOL

were calculated with the EPA-program AERSURFACE program based on EPA guidance. AERSURFACE uses 2016 National Land Cover Data (NLCD) from the United States Geological Survey (USGS) to determine land use based on standardized land cover categories. AERSURFACE was executed in accordance with the EPA guidance documents "AERMOD Implementation Guide," (March 19, 2009), and "AERSURFACE User's Guide," (EPA-454/B-20-008, revised February 2020). AERSURFACE determines the midday albedo, daytime Bowen ratio, and surface roughness length representative of the surface meteorological station. The Bowen ratio is based on a simple unweighted geometric mean while albedo is based on a simple unweighted arithmetic mean for the $10 \times 10 \mathrm{~km}$ square area centered on the selected location (i.e., no direction or distance dependence for either parameter). Surface roughness length is based on an inverse distance-weighted geometric mean for upwind distances up to the EPA-recommended one (1) km radius from the selected location. The circular surface roughness length area (1-km radius) can be divided into any number of sectors as appropriate (EPA guidance recommends that no sector be less than 300 in width).

Twelve 30° sectors were processed to calculate the roughness lengths due to the homogeneity of the area within the EPA-recommended radius of one (1) km. Months were assigned to seasons as follows:

- Late autumn after frost and harvest, or winter with no snow: December, January, February
- Transitional spring (partial green coverage, short annuals): March-June
- Midsummer with lush vegetation: July-August
- Autumn with unharvested cropland: September-November

Temporal variations of monthly precipitation must be considered to calculate the albedo for AERMET processing in accordance with EPA recommendations. Precipitation data should be measured at the nearest representative location to the surface data with the most complete precipitation record, particularly for the years of meteorology being modeled. Historical precipitation data are measured in the Hillsboro area (at Hillsboro Airport) and the monthly periods between 1991 to 2020 were used as input AERSURFACE and are presented in Table 2.

Site Urban/Rural Classification: Land use surrounding the Intel sites must be determined in order to assess if rural or urban dispersion characteristics should be used. Following Auer (1977) and as summarized in the EPA's "Guideline on Air Quality Models", if the land use within an area circumscribed by a three (3) km radius around each facility is industrial, commercial, or developed residential, then these areas are designated as urban. All other types of land use are considered rural.

AIR QUALITY MODELING PROTOCOL

Table 2 Hillsboro Airport 30-year Precipitation Climatology Summary														
Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN	SMC
1991	3.01	3.84	3.67	4.88	2.34	1.7	0.25	0.65	0.39	1.66	5.66	4.76	32.81	
1992	4.65	3.7	1.17	4.06	0.13	0.36	0.77	0.31	1.21	2.47	4.54	6.44	29.81	
1993	4.27	0.87	3.77	5.03	3.52	2.68	1.49	0.16	0	1.08	1.26	7.54	31.67	
1994	4.42	5.06	2.85	1.18	1.15	0.94	0	0.42	0.6	6.48	6.32	6	35.42	
1995	8.63	3.47	5.37	3.96	1.35	1.8	0.98	0.39	1.57	2.91	8.32	7.82	46.57	
1996	7.56	10.23	2.93	4.63	4.34	0.97	0.58	0.13	2.96	4.22	9.21	14.83	62.59	
1997	7.67	2.03	6.33	2.18	2.01	2.07	0.73	1.59	3.15	5.45	5.91	3.34	42.46	
1998	8.36	6.64	4.07	1.3	4.77	1.41	0.32	0	0.87	6.4	9.03	7.07	50.24	
1999	7.48	9.78	4.29	1.5	1.74	1.55	0.66	0.84	0.14	2.49	6.91	3.91	41.29	
2000	6.92	4.35	3.02	1.36	1.91	1.04	0.08	0.75	1.27	3	2.16	3.24	29.1	
2001	1.94	1.58	2.33	1.86	0.85	1.2	0.45	0.79	0.79	3.13	8.54	6.98	30.44	
2002	7.31	3.13	3.49	1.71	1.44	1.3	0.32	0.05	0.83	0.43	2.61	9.88	32.5	
2003	8.29	2.93	5.16	5.91	0.75	0.15	0	0.55	0.94	3.07	4.43	7.93	40.11	
2004	5.9	4.27	1.68	1.79	1.24	0.82	0	2.31	1.37	3.55	2.61	3.72	29.26	
2005	2.27	0.68	4.42	2.56	4.35	1.55	0.24	0.32	1.36	3.68	6.09	9.09	36.61	
2006	11.9	1.99	3.57	2.02	2.7	1.08	0.14	0.08	0.59	0.9	12.88	7.49	45.34	
2007	3.24	3.8	2.39	1.96	1.29	0.97	0.4	0.53	1.73	3.12	3.9	8.94	32.27	
2008	5.38	1.49	3.31	1.94	0.97	0.36	0.09	1.37	0.22	1.69	4.51	7.57	28.9	
2009	4.36	1.08	2.4	1.24	2.92	1.34	0.13	0.72	1.51	3.32	5.72	3.96	28.7	
2010	5.14	4.06	3.76	3.22	3.16	3.52	0.45	0.17	2.21	3.98	5.23	8.16	43.06	
2011	3.59	3.83	5.39	3.42	4.68	0.59	1.23	0	0.26	1.88	5.38	2.33	32.58	
2012	5.79	2.48	6.59	2.38	2.34	2.42	0.09	0.02	0.04	5.45	7.59	7.5	42.69	
2013	1.47	1.87	1.81	2.33	3.98	1.31	0	0.85	6.27	0.87	2.73	1.08	24.57	
2014	2.41	5.06	6.07	3.42	1.7	0.92	0.52	0.14	1.1	6.12	2.83	5.88	36.17	
2015	3.01	4.57	4.68	1.41	0.44	0.54	0.32	0.55	0.86	3.42	4	14.6	38.4	
2016	7.53	3.96	5.31	1.88	0.8	1.33	0.33	0.25	0.93	8.66	6.25	4.77	42.0	Wet
2017	4.11	10.06	6.96	3.56	1.82	1.05	0	0.13	1.39	4.04	7.38	2.92	43.42	Wet
2018	5.17	2.15	2.79	3.32	0.11	0.65	0	0	0.79	3.33	2.61	4.74	25.66	Dry
2019	3.12	4.96	1.36	3.23	1.45	0.64	0.49	0.21	3.08	1.51	1.16	5.22	26.43	Dry
2020	7.18	1.49	2.12	0.88	1.86	2.04	0.07	0.25	1.28	1.38	5.34	5.27	29.16	Dry

Sorted Data - The 30-years of climatology were SORTED to determine DRY/AVG/WET months. Generally, the driest and wettest years were used to delineate DRY/WET (AVG was anything in-between). Years which had precipitation less than the $30^{\text {th }}$ percentile were designated dry, years which had precipitation greater than the $70^{\text {th }}$ percentile were designated wet and all other years were designated as average.

The most objective approach is to use the 2016 land cover classification data (the same data set as used in AERSURFACE) and designate the "Developed Intensity" areas (IDs 22, $23 \& 24$) as urban based on Auer's classification. These classes are:

- Developed, Low Intensity (NLDC Code 22) - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20 to 49 percent of total cover. These areas most commonly include single-family housing units.
- Developed, Medium Intensity (NLCD Code 23) - This classification includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50 to 79 percent of the total cover.
- Developed, High Intensity (NLCD Code 24) - This classification includes highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row

AIR QUALITY MODELING PROTOCOL

houses and commercial/industrial. Impervious surfaces account for 80 to 100 percent of the total cover.

Table 3 and Figure 4 shows the land use determination for the Aloha and Ronler sites. Both sites are over 70 percent urban. Because the area within 3 km is more than 50 percent classified as urban land use, the URBAN option will be used for AERMOD modeling of the Facility and the urban population of the modeling domain should be used within the model as well. Typically, the population value should be equal to the population of the counties contained within the modeling domain. The modeling domain includes receptors in Washington, Clackamas, Yamhill, and Multnomah counties. Since the grid does not cover the complete area of each of these counties, only the populations of Washington, Clackamas, and Multnomah counties were considered. Using the latest U.S. Census Bureau estimates of population (2020), the total population for these three counties is 1.8 million; this population will be input to AERMOD for use in the urban modeling of the Facility.

Table 3 Land Use Summaries						
ID	Description	Class	Ronler	Percent	Aloha	Percent
11	Open Water:	Rural	16	0.1\%	3	0.0\%
21	Developed, Open Space:	Rural	2892	9.2\%	1895	6.0\%
22	Developed, Low Intensity:	Urban	6287	20.0\%	8781	27.9\%
23	Developed, Medium Intensity:	Urban	9523	30.3\%	12530	39.9\%
24	Developed, High Intensity:	Urban	6855	21.8\%	2673	8.5\%
31	Barren Land (Rock/Sand/Clay):	Rural	21	0.1\%	0	0.0\%
41	Deciduous Forest:	Rural	0	0.0\%	73	0.2\%
42	Evergreen Forest:	Rural	86	0.3\%	500	1.6\%
43	Mixed Forest:	Rural	35	0.1\%	56	0.2\%
52	Shrub/Scrub:	Rural	14	0.0\%	4	0.0\%
71	Grasslands/Herbaceous:	Rural	105	0.3\%	95	0.3\%
81	Pasture/Hay:	Rural	1825	5.8\%	1801	5.7\%
82	Cultivated Crops:	Rural	3203	10.2\%	2207	7.0\%
90	Woody Wetlands:	Rural	339	1.1\%	518	1.6\%
95	Emergent Herbaceous Wetland:	Rural	222	0.7\%	282	0.9\%
	Total:		31423		31418	
	Percent Urban			72\%		76\%
	Percent Rural			28\%		24\%

Meteorological Data Representativeness: The proposed use of the five (5) years of Hillsboro Airport ASOS surface meteorological data would satisfy the need for site-specific data. EPA defines the term "sitespecific data" to mean data that would be representative of atmospheric dispersion conditions at the source and at locations where the source may have a significant impact on air quality. Specifically, the meteorological data requirement originates from the Clean Air Act in Section 165(e)(1), which requires an analysis "of the ambient air quality at the facility and in areas which may be affected by emissions from such facility for each pollutant subject to regulation under [the Act] which will be emitted from such facility." This requirement and EPA's guidance on the use of site-specific data are also discussed in Section 8.4.4 of Appendix W to 40 CFR Part 51. The representativeness of meteorological data is dependent upon a determination that the data are free from inappropriate local or microscale influences.: (a) the proximity
of the meteorological monitoring site to the area under consideration; (b) the complexity of the topography of the area; (c) the exposure of the meteorological sensors; and (d) the period of time during which the data are collected.

The Hillsboro Airport ASOS surface meteorological monitoring station qualifies as site-specific data for several reasons. First, the Hillsboro Airport meteorological monitoring site is the closest ASOS site and located in very close proximity to the Intel locations, with nearly identical elevations above mean sea level (amsl). Second, both locations are located in the same area of the broad and relatively flat Tualatin Valley. Third, the ASOS monitoring location at the airport was selected to be far enough from wind flow perturbations caused by buildings and other features. Fourth, the period of meteorological data selected at the time of the modeling analyses (2016-2020) would be expected to be the most representative of current conditions, with the same general land uses surrounding the current ASOS location and airport as well as the proposed project site. A review of current Google Earth photo-aerials shows that nearby land uses now at both locations are similar to the land uses reflected in the 2016 and 2020 NLCD sets. Additionally, these data meet the EPA data recovery requirements for air quality modeling as described earlier.

Representativeness is defined in the document "Workshop on the Representativeness of Meteorological Observations" (Nappo et. al., 1982) as "the extent to which a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain taken on a scale appropriate for a specific application." Judgments of representativeness should be made only when sites are climatologically similar, as is the case with the meteorological monitoring site and the proposed project location. In determining the representativeness of the meteorological data set for use in the dispersion models at the project site, the consideration of the correlation of terrain features to prevailing meteorological conditions, as discussed earlier, would be nearly identical to both locations since the orientation and aspect of terrain at the proposed project location correlates well with the prevailing wind fields as measured by and contained in the meteorological dataset. In other words, the same mesoscale and localized geographic and topographic features that influence wind flow patterns at the meteorological monitoring site also influence the wind flow patterns at the proposed project site.

For these reasons, the Hillsboro Airport meteorological data selected for use in modeling emissions from the proposed project are expected to satisfy the definition of representative, and therefore site-specific, meteorological data and are similar to the dispersion conditions at the project site and to the regional area. An annual wind rose for the five-year modeling period is shown in Figure 5.

Existing Baseline Air Quality Data: The nearest air quality monitoring sites to the proposed project are listed in Table 4 which also lists the monitored pollutants and distances to the project.

In addition to the monitoring site data, the ODEQ allows for the use of the Northwest International Air Quality Environmental Science and Technology Consortium (NW-AIRQUEST) data for the 2014-2017 period which is considered design data for the 2023 period and can be considered representative of the impact areas. These data sets are summarized in Table 5.

Table 4 Ambient Monitoring Site Information				
Monitors	Distance from Ronler Acres (km)	Distance from Aloha (km)	Pollutants Monitored	Monitoring Objective
SE Lafayette (SEL) 5824 SE Lafayette St. (EPA\# 41-051-0080)	25	22	$\begin{aligned} & \mathrm{CO}, \mathrm{NO}_{2}, \text { Ozone, } \\ & \mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{SO}_{2} \end{aligned}$	Population/NAAQS
Tualatin at I-5 (TBC) (EPA\# 41-067-0005)	21	15	$\begin{gathered} \mathrm{CO}, \mathrm{NO}_{2} \text {, Ozone, } \\ \mathrm{PM}_{2.5} \end{gathered}$	Source/NAAQS
Hare Field (HHF) Grant Street (EPA\# 41-067-0004)	5	8	PM ${ }_{2.5}$	Population/NAAQS

Table 5 Background Monitoring Data									
Pollutant	Units	Avg Time	Stations	2018	2019	2020	2021	2022	NW AIRQUEST Design Value
PM2.5	$\mathrm{ug} / \mathrm{m}^{3}$	$24 \mathrm{Hr}^{\text {st }}$ High	Hare Field	28	36	28	24	47	NA
			Tualatin	19	32	28	20	66	
			S. Lafayette	20	30	31	23	75	
		$24 \mathrm{Hr} 98^{\text {th }}$ percentile	Hare Field	18	24	18	15	29	19.6
			Tualatin	17	21	18	18	28	
			S. Lafayette	17	20	23	16	27	
		Annual Mean	Hare Field	6.1	6.7	6.1	5.8	7.9	6.3
			Tualatin	7.1	6.8	6.8	6.7	8.5	
			S. Lafayette	6.8	6.5	7.1	6.4	7.9	
PM10	$\mathrm{ug} / \mathrm{m}^{3}$	$24 \mathrm{Hr} 1^{\text {st }}$ High	S. Lafayette	54	33	35	31	83	55
		$24 \mathrm{Hr} 2^{\text {nd }}$ High	S. Lafayette	27	29	35	29	39	
		$24 \mathrm{Hr}^{\text {st }}$ High	Hare Field	ND	35	ND	ND	ND	
		$24 \mathrm{Hr}^{\text {nd }}$ High	Hare Field	ND	32	ND	ND	ND	
CO	$\mathrm{ug} / \mathrm{m}^{3}$	$8 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	1145	1145	1145	1145	1260	1306
			S. Lafayette	1832	1832	1718	1947	1947	
		$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	1603	1489	**	1603	2061	1744
			S. Lafayette	2405	2176	**	2978	2405	
NO_{2}	$\mathrm{ug} / \mathrm{m}^{3}$	$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	Tualatin	83	77	79	71	64	NA
			S. Lafayette	88	81	66	68	68	
		1 Hr 98 ${ }^{\text {th }}$ percentile	Tualatin	72	62	56	56	58	65.7
			S. Lafayette	66	60	55	58	56	
		Annual Mean	Tualatin	23	21	19	17	19	14.2
			S. Lafayette	17	15	12	12	13	
SO2	$\mathrm{ug} / \mathrm{m}^{3}$	$1 \mathrm{Hr} 1^{\text {st }} \mathrm{High}$	S. Lafayette	9	8	8	8	8	NA
		$24 \mathrm{Hr}^{\text {st }}$ High	S. Lafayette	3	3	4	5	5	6.0
		$1 \mathrm{Hr} 99^{\text {th }}$ percentile	S. Lafayette	8	8	5	8	8	12.6
		Annual Mean	S. Lafayette	1.2	0.6	0.6	1.3	1.5	1.20
Notes: Data for 2021-2022 was derived from EPA AIRS Monitored Values Reports. NA = not applicable ND=no data ODEQ data for 2018-2020 was also supplemented by EPA AIRS data as necessary. ** ODEQ fire data not removed by EPA.									

Federal regulations, specifically 40 CFR Part 58 Appendix D, require that a State and Local Air Monitoring (SLAMS) network be designed to meet a minimum of three basic monitoring objectives: Provide air pollution data to the public in a timely manner, support compliance with the National Ambient Air Quality Standards (NAAQS), and support air pollution research. A variety of site types are needed to support these basic objectives, including six (6) general types listed below:

1. Sites are located to determine the highest concentrations expected to occur in the area covered by the network.
2. Sites are located to measure typical concentrations in areas of high population density.
3. Sites are located to determine the impact of significant sources or source categories on air quality.
4. Sites are located to determine general background concentration levels.
5. Sites are located to determine the extent of regional pollutant transport among populated areas.
6. Sites are located to measure air pollution impacts on visibility, vegetation damage, or other welfarebased impacts.

The physical sitting of an air monitoring station must conform to 40 CFR Part 58 and its location must achieve a spatial scale of representativeness that is consistent with the monitoring objective and site type. The spatial scale results from the physical location of the site with respect to the pollutant sources and categories. It estimates the size of the area surrounding the monitoring site that experiences uniform pollutant concentrations. The categories of spatial scale are:

1. Microscale-Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
2. Middle scale-Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
3. Neighborhood scale-Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range.
4. Urban scale-Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers.
5. Regional scale-Defines usually a rural area of reasonably homogeneous geography without large sources and extends from tens to hundreds of kilometers.
6. National and global scales-These measurement scales represent concentrations characterizing the nation and the globe as a whole.

The selection of these monitoring sites is also based on the monitoring stations' objective, which is NAAQS and population exposure for measuring background air quality. These monitoring objectives can be used to support the demonstration of compliance with the NAAQS when coupled with dispersion modeling.

Along with the monitoring objective is the spatial scale of the monitoring site which is used to represent high concentration locations, population and background exposure. The spatial scale of the SE Lafayette monitoring station is summarized below by pollutant:

- NO_{2} - Urban which represents highest concentration, population exposure and general background.
- Ozone - Urban which represents highest concentration, population exposure and general background.
- CO - Micro scale which represents highest concentration.
- SO_{2} - Urban which represents highest concentration, population exposure and general background.

AIR QUALITY MODELING PROTOCOL

- PM10 - Neighborhood which represents highest concentration, population exposure and general background.
- PM2.5 - Neighborhood which represents highest concentration, population exposure and general background.

The spatial scale for Hare Field is:

- PM2.5 - Neighborhood scale which is used for highest concentration, population exposure and general background.

The spatial scale for the Tualatin monitoring station is microscale whose primary purpose is to monitor freeway-based concentration data for $\mathrm{NO}_{2}, \mathrm{CO}$, Ozone, and PM2.5. While microscale is useful for determining highest concentration data, the immediate proximity to Interstate Route 5 (I-5) make this monitoring data better suited to identifying temporal (freeway-based impacts) to air quality based on time of day rather than measuring a true background data set that is not influenced by any one source or source type. As such, the further use of this data set was not considered.

As referenced above, there is also gridded background air quality data based on the NW AIRQUEST data set that covers the project area. This data set (2014-2017) can also be used as representative background if demonstrated to be appropriate and applicable to a particular project area. And while the use of the NW AIRQUEST data can be considered conservative for some pollutants and averaging periods, as noted below, this data set does not track the current background air quality trends over the last five (5) years as discussed below.

Based on the goals and objectives of the specific monitors listed in Table 4, the selection of the SE Lafayette and Hare Field monitoring sites were chosen to represent background for use in the dispersion modeling analyses.

In order to select the applicable background monitored data set to use in the modeling analyses, a trend analysis of the background air quality data based on the last five (5) years is summarized below which is based on the data in Table 5. Background trends for CO and SO_{2} are not summarized below as the project impacts are expected to be less than the applicable significant impact levels (SILs). Additionally, the SE Lafayette monitoring station represents the highest (design value) concentration for CO and the NW AIRQUEST represents the highest design value for SO_{2}. These locations will be used to represent background as needed for the project modeling analyses.

The overall trend in background NO_{2} for the last five (5) years (2018-2022) at the SE Lafayette monitoring station has been downward for both 1 hour ($98^{\text {th }}$ percentile) and annual averages. A similar trend is noted at the Tualatin monitoring site. Note the NW AIRQUEST data is consistent with the 2018 monitoring data and does not reflect the decrease in background over time.

This trend for PM2.5 is not duplicated as the background concentrations at SE Lafayette, Tualatin and Hare Field have shown a small increase in background monitored concentrations since 2018. While the PM2.5 trend decreased during the 2021 time period, overall, the trend has been upward. As noted with the NO_{2} trends, the NW AIRQUEST data best represents the year 2018 and does not reflect the increase in background over time.

PM10 trends at the SE Lafayette site show similar increases between the years 2018 and 2022.

AIR QUALITY MODELING PROTOCOL

Summary of Selected Data: Based on the monitoring objectives (NAAQS), the spatial scales (Urban and Neighborhood) of the Hare Field and SE Lafayette monitoring stations and the last five (5) years of background trends, these sites were selected as being the most representative for determining the background concentrations to be used in the modeling analyses in place of the NW AIRQUEST design values. For NO_{2}, Ozone and PM10 background data, SE Lafayette is proposed with PM2.5 background based on Hare Field, which is also the closest PM2.5 monitoring station to the project site. For background CO and SO_{2}, the SE Lafayette is proposed for use in the modeling analyses.

The proposed background concentrations will be the highest values over the last three (3) year period for 1-and 8-hour CO, 24-hour PM10, annual NO_{2} and 1, 24 -hour and annual SO_{2}. 24 -hour and annual PM2.5 background concentrations will be based on the 3-year average in accordance with "Guidance for PM2.5 Permit Modeling" (05/25/14). Table 6 presents the proposed background concentration data for use in the dispersion modeling assessments.

For 1-hour NO_{2}, seasonal hourly background NO_{2} for the 2019-2021 data period will be used, in accordance with the procedures found in "Guidance Concerning the Implementation of the 1-hour NO_{2} NAAQS for the PSD Program" (6/29/10) and "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2} NAAQS" (3/01/11). Complete hourly data from the 2022 data period is not yet available for use so the seasonal hourly background NO2 for modeling will be the 20192021 data period. In accordance with EPA procedures, the third highest value for each hour and season will be used to calculate the three-year average of each time period.

Seasonal Hour-Of-Day is determined by organizing all of the NO_{2} concentrations by hour of day (1AM, $2 A M, 3 A M$, etc.) for each season of the year in descending order and selecting the $3^{\text {rd }}$ highest NO_{2} concentrations for each hour of the day and season.

For example, (1AM)

1. First take all the 1AM values (maximum of 90-92 numbers) for each Season
a. Winter = December of Previous Year, January, February
b. Spring = March, April, May
C. Summer = June, July, August
d. Autumn = September, October, November
2. Organizing the NO_{2} concentrations in descending order (highest to lowest)
3. Take the $3^{\text {rd }}$ highest NO_{2} concentrations.
4. This value will be used to represent the $1 \mathrm{AM} 3^{\text {rd }}$ highest or $98^{\text {th }}$ - percentile of available data.
5. The above process is repeated for each hour of the day and season.
6. Repeat steps 1 thru 5 for each of the three years under review.
7. Average the three $1 \mathrm{AM} \mathrm{NO}{ }_{2}$ concentrations.
8. This value will be used in AERMOD as the NO_{2} background concentrations (3yr average of the $98^{\text {th }}$ percentile) for the 1AM hour and season.
9. Repeat step 7 and 8 for each of the hours in the day and season.

Table 6 Background Air Quality Data Summary	
Pollutant and Averaging Time	Background Value ($\mu \mathrm{g} / \mathrm{m}^{3}$)
PM10-24-hour 3-year $2^{\text {nd }}$ High NAAQS	39.0
PM2.55-3-Year Average of Annual 24-hour $98^{\text {th }}$ Percentiles NAAQS	20.7
PM2.55-3-Year Average of Annual Values NAAQS	6.6
CO - 1-hour High NAAQS	2,978
CO - 8-hour High NAAQS	1,947
$\mathrm{NO}_{2}-3$-Year Average of Annual $98^{\text {th }}$ Percentile 1-hour Daily Maximum NAAQS	56.3*
NO_{2} - Annual Maximum NAAQS	18.3
$\mathrm{SO}_{2}-3$-Year Average of Annual 99 ${ }^{\text {th }}$ Percentile 1-hour Daily Maxima NAAQS	7.0
SO_{2} - 24-hour Maximum CAAQS 24-hour High, $2^{\text {nd }}$ High NAAQS	4.7
SO_{2} - Annual Maximum NAAQS	1.1
Notes: * Hourly background concurrent with the 2016-2020 meteorology will be used for modeling. This reference. Conversion of $\mathrm{ppm} / \mathrm{ppb}$ measurements to $\mu \mathrm{g} / \mathrm{m}^{3}$ concentrations based on: $\mu \mathrm{g} / \mathrm{m}^{3}=\mathrm{ppm} \times 40.9 \times \mathrm{MW}$, where $\mathrm{MW}=48,28,46$, and 64 for ozone, $\mathrm{CO}, \mathrm{NO}_{2}$, and SO_{2}, respectively.	

Air Quality Modeling Procedures

Several dispersion models are proposed for use to quantify pollutant impacts on the surrounding environment based on the emission sources and operating parameters. AERMOD will be used to determine facility impacts on Class II areas in the immediate project vicinity in simple, intermediate, and complex terrain areas during project operations. AERMOD will be the primary model used for comparison of project impacts to SILs and demonstration of compliance with AAQS. Modeling of operational impacts are described below.

For modeling the project's operational concentrations due to emissions from the proposed sources on nearby simple and complex terrain, the AERMOD model will be used with the entire hourly meteorological data (described above).

AERMOD Model, Options, and Procedures: AERMOD is a steady-state plume dispersion model that simulates transport and dispersion from multiple point, area, or volume sources based on updated characterizations of the atmospheric boundary layer. AERMOD uses Gaussian distributions in the vertical and horizontal for stable conditions, and in the horizontal for convective conditions; the vertical distribution for convective conditions is based on a bi-Gaussian probability density function of the vertical velocity. For elevated terrain AERMOD incorporates the concept of the critical dividing streamline height, in which flow below this height remains horizontal, and flow above this height tends to rise up and over

AIR QUALITY MODELING PROTOCOL

terrain. AERMOD also uses the advanced PRIME algorithm to account for building wake effects. AERMOD input data options are listed below following these EPA modeling guidance documents.

- Final plume rise
- Stack tip downwash
- Regulatory default option (i.e., calm and missing meteorological data processing and elevated terrain heights option)

Flagpole receptors are not proposed to be used (ground level concentrations will be calculated). AERMAP will be used to calculate receptor elevations and hill height scales for all receptors from NED data in accordance with EPA guidance. Selection of the receptor grids is discussed below.
NO_{2} Modeling Procedures: NO_{2} impacts will first be assessed using a conservative Tier 2 analysis using the Ambient Ratio Method Version 2 (ARM2), adopted in the Guidance Concerning the Implementation of the 1-hour NO_{2} NAAQS for the PSD Program" (6/29/10). The Guideline allows a nationwide default conversion rate of 75% for annual $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ ratios and 80% for 1-hour $\mathrm{NO}_{2} / \mathrm{NOx}$ ratios for the current Tier 2 Method. A Tier 2 analysis is expected to be sufficient for modeling annual NO_{2} impacts for the steady state sources to demonstrate compliance with the NAAQS.

A Tier 3 analysis is proposed to assess the 1-hour NO_{2} concentrations from the intermittent sources (emergency generators) for comparison with the 1-hour NAAQS. For the Tier 3 analysis, the plume volume molar ratio method (PVRMR) is proposed. This analysis will use ambient ozone measured at the SE Lafayette monitoring site. As the source of the background air quality data to be used in the modeling analysis, SE Lafayette has been shown above to be representative of the project site. As proposed, the Tier 3 analysis will be used along with the temporal pairing of modeled NO_{x} concentrations with concurrent hourly background ozone data from the SE Lafayette monitoring site to determine NO_{2} concentrations based on PVMRM. The ozone data will be based on the same years as the AERMOD meteorology data. $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ ratios will be based on equipment specific data contained in the EPA ISR database. $\mathrm{A} \mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratio of 0.10 is proposed for use on the emergency generators.

The fire pumps and emergency generators operate intermittently, for a limited number of hours in the year for maintenance and readiness testing. Intel's current air permit specifies that no more than ten (10) generators may be run in a day and the generators can only be run during daylight hours, which is defined as hours between 8 am and 6 pm . To evaluate compliance with long-term air quality standards, these sources will be modeled using annualized emissions (hourly emission rate times the number of hours run per year divided by 3,650) for all hours of the day.

The emergency generators typically run up to 25 hours per year, with 50 hours for the emergency fire pumps. As explained in EPA's March 1, 2011, memorandum, "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour National Ambient Air Quality Standard" ${ }^{2}$ it is unlikely that emissions from the intermittently operated emergency generators will coincide with the worst-case meteorological conditions and modeled 1-hr NO_{2} impacts can be significantly overestimated. As such, EPA also suggests in their March 1, 2011, memo that these types of intermittent sources can be excluded from compliance demonstrations for the 1-hour NO_{2} standard. Nonetheless, Intel is proposing to include emergency generator emissions in the 1-hour NO_{2} standard compliance demonstration using the methodology described below.

[^3]Since the generators only run intermittently, they pose a challenge to accurately reflect potential ambient air quality impacts. One approach suggested by EPA ${ }^{3}$ is to model impacts from intermittent sources based on an annualized hourly emission rate, rather than the maximum hourly emissions. This approach would account for potential worst-case meteorological conditions combined with essentially continuous operation of the emergency generators at an average hourly emission rate. This approach will be used for the SIL evaluations but for the 1-hour NO_{2} NAAQS, a Monte Carlo method, as discussed below, will be used. This method accounts for the statistical variation in intermittent operation occurrences.

Additional Modeling Procedures: For the other pollutants and averaging times, AERMOD will be used to determine the worst-case group of engines from the source groups used in the Monte Carlos analysis as identified in Table 7. For the 24-hour PM2.5 and PM10 standards, each one (1) hour of testing emissions will be prorated over 10 hours, which represents the 10 -hour operating day, in order to calculate the 24hour impacts. The worst-case daily operation of the groups of the emergency generators will be identified in AERMOD by assuming that each major group of engines in Table 7 are operated for the 10-hour day. From this, the applicable engine group will be added to the non-intermittent sources at the site to determine increment and/or NAAQS. This will also be done for 1 and 8 -hour CO and 1 and 24 -hour SO_{2}.

For short-term SO_{2}, the worst-case groups will be modeled with the sum of the hourly emission rate (10x) for 10 hours per day using the maximum hourly emission rate for the group. This will provide a very conservative estimate as all groups will be run every day with all generators running at the same time, rather than on separate days.

AERMOD will be run on the Intel facility for $\mathrm{NO}_{\mathrm{x}}, \mathrm{PM} 10, \mathrm{PM} 2.5, \mathrm{SO}_{2}$, and CO emissions and the results compared to the appropriate SIL. If the project impacts are less than the SIL, then the evaluation of that pollutant is considered complete. If the impacts exceed the SILs, then a full cumulative and applicable increment impact analyses will be conducted as described below. Preliminary results indicate that the project CO emissions will be less than the SILs while the other pollutant impacts will be over the SILs.

Monte Carlo Simulation: For 1-hr NO_{2}, a Monte Carlo Simulation was used to estimate the NO_{2} impacts from running intermittently operated emergency generators. In permitting, typically AERMOD design values (e.g. 98 percentile) are added to background design values. In the case of generators which run infrequently ($\sim 1 \%$ of the time), the impacts of the generators are statistically likely not to occur on the high background hours. Thus, modeling the generators as continuous sources greatly overestimates the occurrences of exceedances as the high modeled impacts are added to the high background under all conditions. A Monte Carlo simulation is used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables. For example, the specific hour/day that a set of generators will run is generally unknown. The operation of the generators may or may not correspond to a poor dispersion period, as the occurrence of these events is essentially random. This Monte Carlo approach accounts for the random nature of both the generator operation and the underlaying meteorological conditions.

A Monte Carlo Simulation involves the following steps. First, hourly NO_{2} background as assembled for each day in a five (5) year period and grouped by month. Next, the model is run (without background) with 15 separate source groups of generators, identified in Table 7.

[^4]
AIR QUALITY MODELING PROTOCOL

The operating scenario is that no more than seven (7) generators will be run in one (1) hour (8 engines in source group 8,6 engines in source groups 4 through 6 and source group 9) and that all 17 source groups will be run over 15 days per month, with each engine limited to 25 hours per year for testing and maintenance. The generators groups are shown in Table 7.

		Table 7	
Group ID	Count	Generator IDs	
1	7	EGE1_01-07	
2	7	EGE1_08-14	
3	7	EGE1_15-21	
4	6	EGC5_01-06	
5	6	EGC5_07-12	
6	6	EGC5_13-18	
7	3	EGC5_19-21	
8	7	EGDD_01-07	
9	2	EGDA_01-06	
10	5	EGDA_07-08	
11	3	EGR1_01-04	
12	3	EGDC_01-05	
13	3	EGRB1_01, EGRP1_01-02	
14	4	EGR4_01, EGRS6_01-02	
15	7	EGDB_01-03	
16	86		
17			
Total			
Engines			

The generators are only modeled for the 10 -hour period as noted above. The AERMOD output is hourly NO_{2} concentrations for the continuous sources and the 17 generator groups. The data are assembled by day for five (5) years and organized by month (operational up to 152 days per year). Thus, a modeled day includes 15 generator groups run for each day. Once the data is assembled, the Monte Carlo simulation is run using the following iteration process which is also summarized in Figure 6.

For each iteration:
For each month,

- Randomly select model days for each day of the month from the 5 -year block for that month
- Assume days one (1) through 15 correspond to generator days (e.g. day 1 = group 1, day 2 = group 2, etc.) and randomly select hour between 8:00 AM and 6:00 PM in which the generators will run.
- On hourly basis, find the total concentration $(C(h))$ by taking the model values $\mathrm{CM}(\mathrm{h})$ for EG(h) for the generators. Specifically:

$$
\begin{array}{ll}
C(h)=C M(h) & \text { for } h<>\text { hour picked for generators } \\
C(h)=C M(h)+E G(h) & \text { for } h=\text { hour picked for generators }
\end{array}
$$

AIR QUALITY MODELING PROTOCOL

Note that the generators are run on the same day as the continuous sources for consistency.

- Find highest $\mathrm{C}(\mathrm{h})$ for that day and save (also record month and day)

Repeat above steps for each month for 3 years:

- For each year, rank maximum daily concentrations from highest to lowest.
- Find and average the high eighth high $(\mathrm{H} 8 \mathrm{H})$ values and save.

Repeat above steps one thousand $(1,000)$ more times then take median of all runs to get design value for comparison against the 1-hour NO_{2} standard. The results will also be summed across all years of meteorology and receptors in order to add these results to the steady state source impacts at the same receptor(s). Background will be added to the steady state source impact prior to the summation of the results with emergency generators for comparison with the $98^{\text {th }}$ percentile 1-hour $\mathrm{NO}_{2} \mathrm{NAAQS}$. While the results will be paired in space, they will not be able to be paired in time as the steady state source analyses do not use the Monte Carlo method for determining the $98^{\text {th }}$ percentile impacts. However, the results, paired in space only, will be larger than if paired in both space and time.

GEP Stack Height and Downwash: Stack locations and heights and building locations and dimensions will be input to BPIP-PRIME. The first part of BPIP-PRIME determines and reports on whether a stack is being subjected to wake effects from a structure or structures. The second part calculates direction-dependent "equivalent building dimensions" if a stack is being influenced by structure wake effects. The BPIP-PRIME output is formatted for use in AERMOD input files.

Receptor Selection: Receptor and source base elevations will be determined from United States Geological Survey (USGS) National Elevation Dataset (NED) data. The NED data will be processed with the EPA-model AERMAP for the receptor locations selected. All coordinates (both sources and receptors) will be referenced to UTM North American Datum 1983 (NAD83, Zone 11). AERMAP is capable of interpolating the elevation data in the NED data for both receptor elevations and hill height scales.

The NED data are available in 1/3-arcsecond (about 10 meter) and 1-arcsecond (about 30 meter) grid node spacing. Areas that contain receptor grids with 100 meter spacing or less between adjacent receptors will use 10 meter NED data. Other areas that contain only receptor grids of greater than 100 meter spacing may utilize 30 meter NED data. For purposes of determining hill height scales, the NED datasets used will extend $5-\mathrm{km}$ past the outside of the coarse receptor grid described below for 30-meter NED data and 2km past the outside of the intermediate/downwash receptor grids described below for 10-meter NED data.

Cartesian coordinate receptor grids will be used to provide adequate spatial coverage surrounding the project area for assessing ground-level pollution concentrations, to identify the extent of significant impacts, and to identify maximum impact locations. For the full impact analyses, a nested grid will be developed to fully represent the initial location and extent of significance area(s) and maximum impact area(s). The nested grid will be comprised of the following:

- Receptors will be placed along the proposed project fenceline with a spacing of about 25 meters or less between adjacent receptors.
- The downwash receptor grid with a receptor spacing of 25 meters will extend from the project fence line out to 300 meters from the project.
- An intermediate receptor grid with 50-meter receptor spacing will extend from the downwash receptor grid out to 1000 meters from the project fenceline.

AIR QUALITY MODELING PROTOCOL

- The second intermediate receptor grid with 100-meter receptor spacing will extend from the first intermediate receptor grid outwards to two (2) kilometers (km) from the project fenceline in all directions.
- A coarse grid with 200-meter receptor spacing will extend out five (5) km from the project in all directions.
- A second course grid with 500 meters spacing will extend outwards ten (10) km from the project fenceline in all directions.
- Extended grids with 1,000 meters spacing will be used to close off the applicable modeled SIL's as needed.
- When maximum impacts occur in areas outside the 25 -meter spaced receptor grid, additional refined receptor grids with 25-meter resolution will be placed around the maximum impacts and extended as necessary to determine maximum impacts.

Ambient concentrations within the facility fenceline will not be calculated.
Figure 7 presents the receptor grids based on the discussion above.
Ambient Air Quality Impact Analyses: In evaluating the impacts of the proposed project on ambient air quality, the ambient impacts of the project will be added to background concentrations and compared to the state and national ambient standards for $\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{PM}_{10}, \mathrm{PM} \mathrm{P}_{2.5}$, and CO . The project impacts will also be compared to the EPA modeling significance impact levels (SILs). The NAAQS and EPA SILs are shown in Table 9.

	Table 9 SILS and NAAQS	
Pollutant and Averaging Time	EPA SILs	National AAQS
PM10 - 24-Hour	$5 \mu \mathrm{~g} / \mathrm{m}^{3}$	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{PM} 2.5-24$-Hour	$1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$	$35 \mu \mathrm{~g} / \mathrm{m}^{3}$
PM 2.5 - Annual	$0.3 \mu \mathrm{~g} / \mathrm{m}^{3}$	Average of Ann.98

Overall maximum impacts will generally be used for pollutants and averaging times where other types of statistical averages are not specified.

Significant Impact Areas: Modeled concentrations that exceed the applicable SILs will be used to determine the extent of the Significant Impact Areas (SIAs), which are circular areas with radii equal to the distance of the furthest significant receptor from the project for the NAAQS and PSD increment. SILs and the associated SIAs will be based on the following:

AIR QUALITY MODELING PROTOCOL

- 1-hour NO_{2} and SO_{2} based on the 5-year average of the maximum 1-hour concentrations each year at each receptor due to normal facility operations using ARM2. Intermittent sources such as the emergency generators will be included in the SILs analysis but will use the EPA method for modeling which is based on the annualized emissions.
- 24-hour PM2.5 based on the five (5)-year average of the maximum 24-hour concentrations each year at each receptor
- Annual PM2.5 is based on the five (5)-year average of the annual concentrations for all years at each receptor.
- 24-hour PM10 and SO_{2} based on the over maximum 24-hour concentration during any of the five (5) years at each receptor.
- 1 and 8 -hour CO will be based on the maximum concentration for each receptor overall five (5) years.
- Annual SO_{2} based on the maximum annual concentration for each year and at each receptor.

Proposed PM2.5 SIL: The proposed Class I and Class II PM2.5 SILs for this project are identical to the EPA established SILs, which were vacated by the courts. With respect to reliance on the PM2.5 SILs, EPA cautioned that reliance on the SILs alone to demonstrate that a source will not cause or contribute to a violation of the PM2.5 NAAQS is inadequate. However, EPA stated that permitting authorities have the discretion to select and utilize a PM2.5 SIL value if there is sufficient justification for the selected SIL value and justification in the manner in which it will be used. The SIL values for PM 2.5 in EPA regulations can also continue to be used if the permitting authority also takes background concentrations of PM2.5 into account. For this project, the difference between the PM2.5 NAAQS and the monitored PM2.5 background concentrations in the area is greater than the SILs. Based on the data in Table 7, over 41 percent of the available standard is still available. Thus, given the amount of available PM 2.5 standard in the project region, the applicant proposes to use the previously vacated PM2.5 SILs for both Class I and Class II modeling assessment, for the NAAQS. If any of the modeling demonstrates an existing violation to the NAAQS, it is proposed that the applicant may continue to show that the proposed source does not contribute to an existing violation of the PM2.5 NAAQS by demonstrating that the proposed source's PM2.5 impact does not significantly contribute to an existing violation of the PM2.5 NAAQS. Comparison to the SILs for PSD Class I and Class II increments will be based on the maximum short-term or annual project impacts. For these analyses, the EPA SILs for PM2.5 of 1.2 and $0.3 \mu \mathrm{~g} / \mathrm{m}^{3}$ for PSD Class II areas and 0.07 and $0.06 \mu \mathrm{~g} / \mathrm{m}^{3}$ for PSD Class I areas are proposed for evaluating project impacts for 24 -hour and annual averaging times, respectively.

NAAQS/Increment Multisource Inventory Request: Based on results of the SILs analyses performed for the project and for those pollutants above the applicable SILs, a request of a multisource inventory of all facilities with either PM10, PM2.5, CO and NO_{x} emissions will be made to the ODEQ. Intel will also request that the PSD-increment sources be identified for PM10, PM2.5 and NO_{x}.

NAAQS and Increment Modeling Procedures: Per EPA guidance, Appendix W and the Draft NSR Workshop Manual require that the cumulative and increment impacts analysis to include "nearby sources", which includes "[a]ll sources expected to cause a significant concentration gradient in the vicinity of the source or sources under consideration." This is performed for sources within the SIA plus the 50 km screening area beyond the maximum radial distance of the SIA. Appendix W further instructs that the "impact of nearby sources should be examined at locations where interactions between the plume of the point source under consideration and those of nearby sources (plus natural background) can occur". Emphasizing that " $[t]$ he number of sources is expected to be small except in unusual situations". Thus, only sources with a significant concentration gradient in the vicinity of the source need to be included.

To limit the total number of sources used in the cumulative NAAQS analysis, a O / D assessment will be made on the ODEQ supplied inventory. The existing facilities in the NAAQS cumulative multisource inventory will be screened with the Q / D analysis ${ }^{4}$, where Q is the equivalent ton/year emission rate (appropriately accounting for emergency equipment) and D is the shortest distance in km from the multisource facility to the nearest SIA boundary for PM2.5/PM10 and the $10-\mathrm{km}$ area that is the focus of the NO_{2} analyses. Those facilities with a Q / D value greater than $20 \mathrm{tpy} / \mathrm{km}$ will be included in the cumulative NAAQS.

For assessing increment, the major and minor source baseline dates have already been triggered. As such, it will be assumed that in the absence of a distinct increment consumption inventory that all cumulative sources used in the NAAQS analysis will also be increment consumers. Based on the results of the SIL analyses, increment for 24 -hour and annual PM2.5, 24 -hour PM10 and annual NO_{2} will be assessed. There are no PSD increments for $\mathrm{CO} . \mathrm{SO}_{2}$ will not be emitted at the major (PSD) source levels.

Ozone and Secondary PM2.5 Formation: The EPA developed a Tier 1 demonstration tool for ozone and PM2.5 precursor emissions called Modeled Emission Rates for Precursors (MERPs). The development of the tool and related guidance is summarized in a memorandum from EPA dated April 2019, with a subject, "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone (O_{3}) and PM2.5 under the PSD Permitting Program." The basic idea behind the MERPs is to use technically credible air quality modeling to relate precursor emissions and peak secondary pollutant impacts from specific or hypothetical sources. The ODEQ AQDM Recommended Procedures will be used the air quality modeling results presented in EPA MERPs memorandum to derive MERPs for hypothetical sources located in the Western U.S.

MERPs can be used to demonstrate that projected impacts from a proposed source are less than the applicable SILs or when included with the modeling results, would not cause or contribute to a violation of a NAAQS or PSD increment for that pollutant.

The MERP is based on a hypothetical source emission rate, the modeled concentration from that emission rate, and the relevant SILs for O_{3} and PM2.5 $\left(1 \mathrm{ppb}\right.$ for $\mathrm{O}_{3}, 1.2 \mu \mathrm{~g} / \mathrm{m}^{3}$ for $24-\mathrm{hr} \mathrm{PM} 2.5$, and $0.2 \mu \mathrm{~g} / \mathrm{m}^{3}$ for annual PM2.5). The lowest MERP value for each precursor identifies the most conservative condition. ODEQ recommends the use of the Morrow, Oregon site, which is located near Arlington on the Columbia River. For the Tier I analysis, the smallest MERP values will be used for the 8 -hour O_{3} impact assessment and the 24 and annual PM2.5 assessment.

[^5]
AIR QUALITY MODELING PROTOCOL

O_{3} 8-hr avg. analysis

- For NO_{x} the lowest MERP is 258 for a hypothetical 500 tpy source and a concentration of 1.9396 ppb
- For VOC the lowest MERP is 1087 for a hypothetical 500 tpy source and a concentration of 0.46018 ppb

PM2.5 24-hr avg. analysis

- For NO_{x} the lowest MERP is 3003 for a hypothetical 500 tpy source and a concentration of 0.19979 $u g / m^{3}$
- For SO_{x} the lowest MERP is 2314 for a hypothetical 500 tpy source and a concentration of 0.25927 $u g / m^{3}$

Annual PM2.5

- For NO_{x} the lowest MERP is 7942 for a hypothetical 500 tpy source and a concentration of 0.01259 $u g / m^{3}$
- For SO_{x} the lowest MERP is 11877 for a hypothetical 500 tpy source and a concentration of 0.00842 ug $/ \mathrm{m}^{3}$

PSD Class I AQRV Analyses: The Facility will be a federal major source for criteria pollutant emissions subject to PSD permitting requirements. PSD Class I Air Quality Related Value (AQRV) analyses, including visibility and nitrogen deposition may also be required. The nearest Class I area is the Mount Hood National Forrest, operated by the U.S. Forest Service, located approximately 80 km to the east. Seven (7) additional Class I areas are located within 200 km of the facility. The range of distances to each Class I area is listed in Table 10 below and are also presented in Figure 8.

Following the most recent FLAG Workshop procedures (June 2010), the use of the Screening Procedure (Q/D) to determine if the project could screen out of a formal AQRV assessment for visibility and nitrogen deposition was made. Following the screening procedures in FLAG, Q is calculated as the sum (in tons/year) of emissions of $\mathrm{NO}_{x}, \mathrm{SO}_{x}$, and PM2.5 based on the worst-case hour on the worst-case day and adjusted to reflect 365 days of operation. The screening calculation takes the form of:

$$
\begin{aligned}
& \mathrm{Q}=\operatorname{sum}\left(\mathrm{NO}_{x}+\mathrm{PM} 2.5+\mathrm{SOx}\right) \text { in maximum } \mathrm{lbs} / \mathrm{hr} \text { (for } 24 \text {-hours) for the worst-case day } * 365 \\
& \text { days/year }
\end{aligned}
$$

The results of the O/D scenarios are presented in Table 10.
If Q / D is less than 10, then no $A Q R V$ analysis is required, as shown above for the nearest Class I area. Based on the ratio of Q / D, none of the Class I areas have a Q / D of greater than 10. Therefore, it is proposed that no further analyses of AQRVs for visibility or nitrogen deposition are required for those areas. The applicant will coordinate with the FLM's on the Q/D results as well as providing a copy of this modeling protocol.

AIR QUALITY MODELING PROTOCOL

| TABLE 10 | |
| :--- | :---: | :---: |
| NEARBY CLASS I AREAS AND Q/D SCREENING RESULTS | | \left\lvert\, \(\left.\begin{array}{ccc|}\hline Minimum Distance

(km)\end{array} \quad $$
\begin{array}{c}\text { Q/D } \\
\text { (Worst } \\
\text { Case) }\end{array}
$$\right.\right]\)

PSD Class I SILs AERMOD Screening Analyses: The AQRV exemption does not apply to modeling compliance with the PSD Class I increments or NAAQS, which are required if the Class I SILs are exceeded. Therefore, Class I SILs modeling will be assessed for the Class I areas listed in Table 10. Modeling will first be performed for the Intel project emissions only and then compared to the applicable Class I SILs. The Class I receptor grid and elevations given by the National Park Service Air Resources Division on the webpage will be used:

http://www.nature.nps.gov/air/Maps/Receptors/index.cfm

These receptors will be converted to UTM NAD83 coordinates by the US Army Corps of Engineers CORPSCON program for Class I areas within 50 km of the Intel project site(s).

The EPA Modeling Guidelines suggest that the use of AERMOD be limited to distances of less than approximately 50 km , beyond which the CALPUFF dispersion model is typically used to assess the longrange transport of pollutants. Since the requirement to assess AQRVs for each of these areas may not be required, based on the Q / D results, an alternative modeling approach with AERMOD is proposed for assessing Class I SILs for each Class I area that is located at a distance greater than 50 km . The proposed approach would utilize a ring of receptors at 50 km distance from the Intel project, with receptors placed at two (2) degree intervals over the entire 360-degree circle of receptors. For each of these receptors, the receptor heights would be based on the lowest elevation to the maximum elevation for each of the 15 Class I areas, at 100-meter elevation intervals. Using this grid, the Class I SILs listed in Table 11 would be assessed. If any of the Class I areas have impacts that exceed the SILs, then the CALPUFF modeling will be used to reassess these SILs and, if needed, would also be used to assess PSD Class I area increments and NAAQS. Figure 7 also presents the AERMOD receptor grids.

AIR QUALITY MODELING PROTOCOL

\left.	Table 11	
Class I SILs		$\right]$
:---:	:---:	
Pollutant	Averaging Time $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	

Analyses of the Columbia River Gorge Scenic Area (CRGSA): A separate nitrogen deposition and regional haze modeling analyses for the CRGSA may be requested by the ODEQ and the Forest Service. This request would be to address concerns on the background impacts in this area regarding visibility and deposition. The CRGSA is located approximately 40 km east of the Intel project site(s). If requested, AERMOD would be used to assess nitrogen deposition. The AERMOD model calculates atmospheric deposition of nitrogen by calculating the wet and dry fluxes of total nitrogen. This deposition is accomplished by using a resistance model for the dry deposition part, and by assigning particle phase washout coefficients for the wet removal process from rainout. The depositional parameters are input into the model in order to calculate the deposition of nitrogen. The depositional parameters will be based on nitric acid $\left(\mathrm{HNO}_{3}\right)$, which is consistent with the USFS modeling assumptions that can be used to calculate the amounts of nitrogen deposition from the Intel project. Nitric acid tends to deposit more readily than most other compounds.

In addition to deposition, a nearfield coherent plume visibility assessment may be requested. The most recent version of VISCREEN (13190) would be used to conduct the plume blight analysis with a $98^{\text {th }}$ percentile background visual range as recommended by the FLM Guidance.
Additional Impact Assessments: Additional impact assessments will be made with regards to socioeconomics and biology. The impacts to sensitive species and plants will be included with regards to pollutant concentrations and possible depositional effects. The PSD permit application package will include these additional studies. Table 12 presents the summary of the EPA SILs, NAAQS and increments that will be used throughout the modeling assessments.

Final Modeling Submittal

As part of the final modeling analyses, the ODEQ will be supplied with the following materials which will be submitted in electronic format:

- AERMAP, BPIP-PRIME, and AERMOD input and output files
- Raw and processed meteorological data and background air quality data
- AERMET and AERSURFACE input and output files
- Data from the Monte Carlo Simulations
- Other data as needed to support the dispersion modeling assessments

Table 12
Significant Impact Levels (SILs), National Ambient Air Quality Standards (NAAQS), PSD Class II Increments, and Significant Monitoring Concentrations
for Criteria Pollutants

Pollutant	Averaging Period	$\begin{gathered} \mathrm{SIL}^{1} \\ \mathrm{ug} / \mathrm{m}^{3} \end{gathered}$	NAAQS $\mathrm{ug} / \mathrm{m}^{3} \quad(\mathrm{ppb})$	Form of NAAQS with Respect to M odeling ${ }^{2}$		$\begin{gathered} \text { PSD } \\ \text { Class II } \\ \text { Increment } \\ \text { (ug/ } / \mathrm{m}^{3} \text {) } \end{gathered}$	Form of Class II Increment		Significant Monitoring Concentration ${ }^{4}$ (ug/m ${ }^{3}$)
NO_{2}	1 hour	7.5^{5}	188 (100)	Average $8^{\text {th }}$ Highest ${ }^{\text {6 }}$	$\begin{gathered} \text { EPA/OAQPS } \\ \text { memos; } 6 / 29 / 10 \& \\ 3 / 01 / 11 \end{gathered}$	---	---	---	---
	Annual	1	100 (53)	Max. annual arithmetic mean	$\begin{gathered} \text { Section 7.2.1.1 } \\ \text { App. W } \end{gathered}$	25	NTBE (Max. annual arith. mean)	Section 7.2.1.1 App. W	14
SO_{2}	1 hour	7.8^{5}	196 (75)	Average $4^{\text {th}} \mathrm{Highest}^{\text {6 }}$	S. Page memo; $8 / 23 / 10^{8}$	---	----	---	---
	3 hour	25	1300 (500)	NTBE >once/year (H2H)	$\begin{gathered} \text { Section 7.2.1.1 } \\ \text { App. W } \end{gathered}$	512	NTBE >once/year (H 2 H)	Section 7.2.1.1 App. W	---
	24 hour	5	$365(140){ }^{9}$	NTBE >once/year (H 2 H) $^{\text {a }}$	$\begin{gathered} \text { Section 7.2.1.1 } \\ \text { App. W } \end{gathered}$	91	NTBE >once/year (H 2 H)	Section 7.2.1.1 App. W	13
	Annual	1	$80(30)^{9}$	Max. annual arithmetic mean	$\begin{aligned} & \text { Section 7.2.1.1 } \\ & \text { App. W } \end{aligned}$	20	NTBE (Max. annual arith. mean)	Section 7.2.1.1 App. W	---
PM $2.5{ }^{10}$	24 hour	1.2	35	Average $1^{\text {sthighest }}{ }^{\text {11 }}$	S. Page memo; $3 / 23 / 10^{11}$	9	NTBE >once/year (H 2 H)	Section 7.2.1.1 App. W	4
	Annual	0.3	12	Average $1^{\text {stHighest }}{ }^{11}$		4	NTBE (Max. annual arith. mean)	Section 7.2.1.1 App. W	---
PM 10	24 hour	5	150	NTBE >once/year on average over 5 years $(\mathrm{H} 6 \mathrm{H})^{12}$	$\begin{gathered} \text { Section 7.2.1.1 } \\ \text { App. W } \end{gathered}$	30	NTBE >once/year (H 2 H)	Section 7.2.1.1 App. W	10
	Annual	1	REVOKED ${ }^{13}$			17	NTBE (Max. annual arith. mean)	Section 7.2.1.1 App. W	---
co	1 hour	2000	$\begin{gathered} 40,000 \\ (35,000) \end{gathered}$	NTBE >once/year (${ }^{(2 \mathrm{H}}$)	Section 7.2.1.1 App. W	---	---	---	---
	8 hour	500	$\begin{aligned} & 10,000 \\ & (9000) \end{aligned}$	NTBE >once/year (H 2 H)	Section 7.2.1.1 App. W	---	---	---	575
Pb	Rolling 3-month Avg.	---	0.15	NTBE		---	---	---	0.1

[^6]All short-term increments are based on the $\mathrm{H}-2$-H regardless of the form of its respective NAAQS.
While the implication to other SMCS is not stated, it is prudent to obtain representative data. [See S. Page memo (03/04/13) \& draft PM2.5 5vidance (EPA-454/D-13-001; 180pp.] While no SMC is provided for

'The 1-hour NO and 1-hour SO values are EPA interim SILS until EPA undergoes rulemaking. A State may adopt its own SIL but usually relies on EPA's suggested SIL. The form of the SIL follow
PM2.5) the SII analysis is based on the maximum concentrations at each receptor averaged over the number of meteorological years modeled rather than the maximum at any receptor.
sFor NO2, based on 5 year average of the 98 th percentile of the annual distribution of the daily maximum1-hour values at each receptor. (For SO2 it it the $99 t h$ percentile). Concentrations ${ }^{\text {FF }}$ For $\mathrm{NO2}$, based on 5 year average of the 98th percentile of the annual distribution of the daily maximum 1 -hour val
1 year of site specific data (up to 5 years), the averaging is based on the number of years of meteorological data.
'Guidance Concerning the Implementation of the 1 -hour NO2 NAAQS for the Prevention of Significant Deterioration Program ($6 / 29 / 10$): http: $/ / / \mathrm{www}$. epa.gov/region $07 /$ air $/$ /ns//nsrmemos/appwno2.pdf
Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO2 NAAQS (3/01/11): http://www.epa.gov/ttn/scram/Additional_Clarification__AppendixW_Hourly-NO2-NAAQS_FINAL_03-01-2011.pdf
Guidance Concerning the Implementation of the 1 -hour SO2 NAAQS for the Prevention of Significant Deterioration Program ($08 / 23 / 10$): http: $/ / / \mathrm{www}$.epa.gov/region07/air/ss//ssrmemos/appwso2.pdf (See also $3 / 01 / 11$ memo for SO2; Note 7 .)
${ }^{\text {STHen }}$ e existing annual \& 24 -hour SO2 NAAQS will be revoked one year after the effective date in areas with a designated status for the revised SO2 NAAQS, Per 40 CFR $50.4(\mathrm{e})$. Their respective increments will remain in effect.
The PM2.5 Increment, SIL s and SMC values may be found in http:// edocket.access.gpo.gov/2010/pdf/2010-25132 pdf
shown using the average $\mathrm{H}-1$ - H rather than the design value of 98 th percentile (http://www.epa.gov/region07/air/nsr/nstmemos/pm25memo.pdf). Compliance with the annual

${ }^{2}$ Form of PM10 NAAQS allows the standard to be exceeded once/year on average using the $\mathrm{H}-6$ - H value over 5 years. See Section 7.2 .1 .1 of App . $\mathrm{W} \& \mathrm{p}$. 4 of S . Page memo ($03 / 23 / 10$).
The annual PM10 NAAQS of 50 ig/m' was revoked 17 October 2006 but the annual PM10 PSD increment remains in effect. See NFR ($10 / 17 / 06$): http://www.gpo.gov/fddsys pk kg FR-2006-10-17/pdf/06-8477. pdf

AIR QUALITY MODELING PROTOCOL

AIR QUALITY MODELING PROTOCOL

Figure 2
Ronler Acres Site Plan

AIR QUALITY MODELING PROTOCOL

Figure 3
Aloha Site Plan

AIR QUALITY MODELING PROTOCOL

Figure 4
Land Use Surrounding the Intel Sites ($\mathbf{3} \mathbf{~ k m}$ Radius in Blue)

AIR QUALITY MODELING PROTOCOL

Figure 5
Hillsboro Annual Wind Rose (2016-2020)

Figure 6
Monte Carlo Simulation Flow

Figure 7
Project Receptor Grids

AIR QUALITY MODELING PROTOCOL

Figure 8
Class I Areas and AERMOD Receptors used for Modeling

AIR QUALITY MODELING PROTOCOL

Figure 9
NO_{2} Monitoring Data Trends 2018-2022

AIR QUALITY MODELING PROTOCOL

Figure 10
PM2.5 Monitoring Data Trends 2018-2022

AIR QUALITY MODELING PROTOCOL

Figure 11
PM10 Monitoring Data Trends 2018-2022

Memorandum

To: Phil Allen/ Kristin Martin: ODEQ
From: Greg Darvin: Atmospheric Dynamics
Date: May 24, 2023

Subject: Clarification on the Urban Population Value Used in AERMOD

Reviewing the AERMOD Implementation Guide (June 2022) provides the following recommendations for assigning an urban population number in AERMOD.

For urban areas adjacent to or near other urban areas, or part of urban corridors, the user should attempt to identify that part of the urban area that will contribute to the urban heat island plume affecting the source(s). If this approach results in the identification of clearly defined MSAs, then census data may be used as above to determine the appropriate population for input to AERMOD. Use of population based on the Consolidated MSA (CMSA) for applications within urban corridors is not recommended, since this may tend to overstate the urban heat island effect. Similarly, for application sites that are in isolated areas of dense population but are not representative of the larger MSA, care should be taken to determine the extent of the area the urban area that will contribute to the urban heat island plume affecting the source(s).

For situations where MSAs cannot be clearly identified, the user may determine the extent of the area, including the source(s) of interest, where the population density exceeds 750 people per square kilometer. The combined population within this identified area may then be used for input to the AERMOD model.

As you know, dispersion within urban environments has different characteristics than that occurring in a rural environment. The urban boundary layer will behave in a more convective, turbulent manner during the hours just after sunset due to the urban heat island effect.

I believe the use of the Hillsboro population of 107,299 (based on the 2020 US Census data) underrepresents the magnitude of the urban-rural temperature difference and urban heat island effect(s) within the impact areas near both project sites. For reference, the main Ronler campus is within the city of Hillsboro and the Aloha campus in the city of Aloha.

Using the Aloha project site as general center point, Figure 1 presents a map showing the project locations relative to the city boundaries in the region. The Aloha site is approximately 10 kilometers from the northwestern edge of the Hillsboro city boundary and nine (9) kilometers from the southeastern edge of the Beaverton city boundary. The three cities proposed for identifying the population are Hillsboro, Aloha and Beaverton. Each of the proposed cities vastly exceeds the 750 people per square kilometer threshold for identifying the area as urban. The three (3) cities also represent a continuous urban/developed
corridor which is aligned with the predominant wind direction. The use of the 2022 census derived population data and population density data are summarized in Table 1.

TABLE 1		
EXISTING POPULATIONS AND POPULATION DENSITY		
	Population*	Population Density/km ${ }^{\text {2 }}$
Hillsboro	107,299	1,601.3
Aloha	58,828	2,825.3
Beaverton	97,053	1,920.2
Total	263,180	
* 2020 /2022 United States Census Bureau Data		

Based on the combined population of 263,180 , this value is proposed to be used for the population input into AERMOD. This combined population would present a conservative and appropriate magnitude of the urban heat island effects within the impact areas surrounding both sites.

Figure 1 City Boundaries

500000

ATMOSPHERIC DYNAMICS,INC Meteorological \& Air Quality Modeling

Memorandum

To: Phil Allen/ Kristin Martin: ODEQ, Rick Graw: USFS
From: Greg Darvin: Atmospheric Dynamics
Date: June 2, 2023

Subject: Clarification on the Q/D calculation procedures for the Class I Areas

PSD Class I AQRV Analyses: The Facility will be a federal major source for criteria pollutant emissions subject to PSD permitting requirements. PSD Class I Air Quality Related Value (AQRV) analyses, including visibility and nitrogen deposition may be required if determined from the screening procedure summarized below. The nearest Class I area is the Mount Hood National Forrest, operated by the U.S. Forest Service and is located approximately 80 kilometers (km) to the east. In total, nine (9) Class I areas are located within 300 km of the project.

Following the FLAG Workshop procedures (June 2010), the use of the Screening Procedure Q / D (Q is the total emissions in tons per year and D is the distance in kilometers to the Class I area) to determine if the project could screen out of a formal AQRV assessment for visibility and nitrogen deposition was made. Following these procedures in FLAG, Q is calculated as the sum (in tons/year) of emissions of $\mathrm{NO}_{\mathrm{x}}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and PM10 based on the maximum 24-hour net emissions increase for each pollutant from the proposed project. The actual baseline emissions were not included in the in the proposed increase, as per FLAG. There will be no increase in SO_{2} emissions over the existing PSEL so this pollutant was not included in the calculation of Q . The existing PSEL emissions and the proposed hourly increases converted to tons are summarized in Table 1.

	TABLE 1 EXISTING AND PROPOSED EMISSIONS PROFILES			
	NO_{x} tpy	PM10 Tpy	$\begin{gathered} \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { tpy } \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \text { tons } \end{gathered}$
Current PSEL	197.0	35.0	0	-
Proposed Increase without Emergency Generators	226.0*	27.5*	0.93*	-
Proposed Increase Emergency Generators Only (worst-case day)	124.1*	10.24*	-	-
Total for Q/D Calculation	350.10	37.74	0.93	388.77
Total PTE	423.0	62.5	0.93	
* Based on worst case day multiplied by 365 days and converted to tons per year				

While most of the sources are steady state and operate almost continuously 24-hours per day, the emergency diesel generators are limited to 30 hours per year, with no more than 10 engines being tested during any day. To determine the worst-case daily emissions for the emergency generators, the 10 highest emitting engines' emissions were summed to calculate a pound per day (lb/day) emission rate. This was then multiplied by 365 days and converted to tons per year (tpy) to calculate the engines contribution to the total emissions (Q). The emergency diesel generators do not emit $\mathrm{H}_{2} \mathrm{SO}_{4}$. As an example, for NO_{x} :

Each emergency generators at $68 \mathrm{lb} / \mathrm{hr}$ each or 10 engines on a daily basis at $680 \mathrm{lb} /$ day $680 \mathrm{lb} /$ day * 365 day/yr * 1 ton/2000 lb = 124.1 tpy

This is repeated for PM10 but with a different set of 10 engines which have a higher PM10 emission rate.

Each emergency generators at $5.61 \mathrm{lb} / \mathrm{hr}$ each or 10 engines on a daily basis at $56.1 \mathrm{lb} /$ day $56.1 \mathrm{lb} /$ day * 365 day/yr * 1 ton/2000 lb = 10.24 tpy

Using this procedure on the emergency generators which is then added to the steady state Q , the total facility Q based on the increase in $\mathrm{NO}_{\mathrm{x}}, \mathrm{PM} 10$ and $\mathrm{H}_{2} \mathrm{O}_{4}$ is:
$\mathrm{Q}=\operatorname{sum}\left(\mathrm{NO}_{x}+\mathrm{PM} 10+\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ in maximum lbs/day (for the worst-case day including emergency generators) * 365 days/year * 1 ton/2000 lbs $=388.77$ tons

The results of the Q / D scenarios are presented in Table 2. If Q / D is less than 10 , then no $A Q R V$ analysis is required, as shown above for the nearest Class I area. Based on the ratio of Q / D, there are no Class I areas that have a Q/D of greater than 10. Therefore, the FLM's can exempt the projects impacts on AQRVs for visibility or nitrogen deposition in these areas. There are no exemptions for Class I SILs and NAAQS, which will be assessed as applicable.

TABLE 2			
Class I Areas	Minimum Distance (km)		
Mt Hood OR (MOHO)	80	Q/D*	
Mt Jefferson OR (MOJE)	116	4.9	
Mt Adams WA (MOAD)	121	3.4	
Goat Rocks WA (GORO)	145	3.2	
Mt Washington WA (MOWA)	150	2.7	
Mt Rainier WA (MORA)	153	2.6	
Three Sisters OR (THSI)	167	2.5	
Diamond Creek (DC)	223	2.3	
Crater Lake (CR)	279	1.7	
(O/D based on worst case day.		1.4	

Memorandum

To: Phil Allen/ Kristin Martin: ODEQ
From: Greg Darvin: Atmospheric Dynamics, Inc.
Date: June 14, 2023

Subject: Clarification on the 1-Hour NO_{2} Intermittent Source Modeling Approach

As outlined in USEPA guidance documents (March 1, 2011, USEPA memorandum "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2} National Ambient Air Quality Standard"), the project will also include intermittent sources comprised of emergency diesel generators and fire pumps in the 1-hour NO_{2} modeling assessments. Since the engines would each be tested far less than 100 hours/year (limited to 25 hours per year per engine, except for the fire pump engines which are tested 50 hours per year), the annual average emission rate was modeled for the 1-hour NO_{2} NAAQS modeling analyses per EPA guidance due to the statistical nature of these standards. For CO, PM10, and PM2.5, the maximum hourly emission rates will be used.

The current permit limits the testing to no more than 10 engines per day. In order to determine which group of engines would present the worst-case potential 1-hour NO_{2} impact, an air quality screening analysis will be performed to determine which group of engines would produce the maximum $98^{\text {th }}$ percentile concentration. This screening assessment will use the NO_{2} annualized emission rates. All the engine emissions will be based upon 100% load, with specific source groups identified for each group of engines that are tested during any one (1) hour. The engines can only be tested between 8 AM to 6 PM (controlled using the EMISFACT/HROFDY model option).

The results of the engine screening analysis will be used to input the appropriate groups of diesel engines into the final modeling assessments. The use of the EPA methodology is in addition to the use of the Monte Carlo approach for determining 1-hour NO_{2} project-based concentrations.

June 16, 2023

Wes Lund
RS5 M/S 115
Intel Corporation
5200 NE Elam Young Parkway
Hillsboro, OR 97124

Mr. Lund,
DEQ has completed the review of the modeling protocols (the Protocol) for the proposed expansion of operations at the Intel Corporation Ronler Acres and Aloha facilities located near Hillsboro, Oregon. These protocols, which were submitted by the modeling consultant Atmospheric Dynamics, Inc. on behalf of the Intel, include 1) the modeling protocol (4/26/2023), 2) the memorandum "Clarification on the Q / d calculation procedures for the Class I Areas" ($6 / 2 / 2023$), and 3) the memorandum "Modeling intermittent sources using annual emission rates" (6/14/2023).

DEQ approves the Protocol with the following comments that can be addressed, as necessary, in the final modeling report.

1. The modeling protocol as submitted did not include specific emissions units, emission estimates, or stack parameters. DEQ understands this information will be provided in the modeling report. When emission estimates, units, and stack parameters are provided in the report, DEQ may have additional comments that could affect the modeling results, and DEQ's approval of the air quality analysis.
2. For the NO_{2} model employing ARM2, the default upper and lower limits on the ambient ratio should be 0.9 and 0.5 , respectively, as outlined in section 3.3.6.3 of the AERMOD User's Guide. The original protocol (4/26/2023) incorrectly notes the national default conversion rate of 75% for annual and 80% for 1-hour.
3. For the 1-hour NO_{2} modeling of nearby competing sources, annualize emissions based on the emission inventory previously provided by DEQ, should be used where specified by DEQ in this letter.
4. As confirmed in a discussion with the modeling consultant, AERSURFACE version 20060, utilizing the 2016 National Land Cover Dataset, including tree canopy and impervious geotiff files, will be used.
5. In order to meet the EPA requirements for modeling 1-hour NO_{2} intermittent emission sources, the method as described in the modeling memorandum ($6 / 14 / 2023$) will be followed. Specifically, this method uses annualized emissions from a "worst case" group of engines, previously identified in a screening analysis. Additionally, the ARM2 method should be used for all sources and a competing source inventory should be included, as noted in items 2 and 3, respectively. The description of the modeling and the results using these annualized emissions will be presented in the body of the modeling report.
6. In order to meet DEQ requirements for modeling 1-hour NO_{2} intermittent emission sources, the Monte Carlo method, as described in the original modeling protocol (4/26/2023), will be followed. As noted in
the original protocol, this method may utilize the PVMRM method for intermittent sources and does not need to include a competing source inventory. The description of the analysis and results using the Monte Carlo approach will be included in an addendum to the modeling report that will be submitted along with the report.
7. Regarding the 1 -hour NO_{2} Monte Carlo addendum, DEQ recommends adding a convergence discussion showing the number of iterations needed to achieve convergence of the maximum median 98th percentile of max daily values.
8. In accordance with OAR 340-225-0070, the Federal Land Managers (FLMs) of Class I areas potentially affected by the project have been notified by DEQ of the pending permit application. In their responses, the U.S Forest Service and the National Park Service, as FLMs, have both stated that a detailed analysis of Air Quality Related Values (AQRVs) is not required for their respective Class I areas and the Columbia River Gorge Scenic Area.
9. Although an analysis of AQRV impacts is not required at this time, additional analysis of contributions to regional haze from the Intel project will be required when DEQ conducts a comprehensive revision of the State Regional Haze Plan that is required by EPA no later than 2028 (Round 3 of Regional Haze). The details of this analysis are not yet fully developed, but in anticipation of future emission reduction requirements as part of the Regional Haze Plan, DEQ strongly encourages that NOx emissions be reduced for this proposed permitting action to the greatest extent feasible.
10. A copy of the modeling protocol (4/26/2023) and the Q / d clarification memorandum ($6 / 2 / 2023$) were provided to Jay McAlpine, EPA Region 10 Modeling Coordinator. His comments, and additional input from the EPA Office of Air Quality Planning and Standards (OAQPS), are addressed in this approval letter.
11. If during the modeling and preparation for the final Modeling Report, Intel proposes to make changes in the procedures or data as described in the Protocol, please notify DEQ as soon as practicable. This will facilitate timely review of the Modeling Report.

If you have questions about this approval letter, please contact us.

Sincerely,
Philip Allen
DEQ Air Quality Modeler
Kristen Martin
DEQ Senior Air Quality Modeler

Cc: Ali Mirzakhalili
Nina DeConcini
George Davis
Josh Alexander
Gregory Darvin, Atmospheric Dynamics, Inc.

Attachment B

Source Data Used in the Modeling Assessment

\begin{tabular}{|c|}
\hline \multicolumn{29}{|c|}{Stack Height Stack Diameter Adiuste Stack Flow Rate} \\
\hline Equipment Type \& Equipment ID \& \multirow[t]{2}{*}{Stack 10} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { UTTM } \\
\text { Easting } \\
\hline 05674.17
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { UTM M } \\
\text { Nothing }
\end{gathered}
\]} \& Elevation
\((\mathrm{m})\) \& （tt） \& （m） \& （t） \& （m） \& \(\left(\begin{array}{l}\text { 3 } \\ \text { 3／min）}\end{array}\right.\) \& \(\left(\mathrm{m}^{3} \mathrm{~s}\right)\) \& （tt／min） \& （tis） \& （ms） \& （F） \& （k） \& （Ibhr） \& （ppy） \& （bhr） \& （py） \& （blhr） \& （tp） \& （blhr） \& （tp） \& （bbhr） \& （py） \& （blhr） \& （tpy） \\
\hline Boiler \& \({ }^{\text {F20－ELR1 } 151-1200}\) \& \& \& \& \({ }^{62.70}\) \& 99.00 \& 30.18 \& 2.67 \& 0.81 \& 6，266．76 \& 2.96 \& \({ }^{1,122.06}\) \& 18.70 \& 5.70 \& \({ }^{210.00}\) \& 372.04 \& 3．40E－01 \& 4．47－01 \& \(1.155+00\) \& 1．51E＋00 \& 7．72E－02 \& 1．011－01 \& 1．61－．02 \& 2．11E．02 \& 1．338－02 \& 1．74－02 \& 8．03E－02 \& 1．06E－0 \\
\hline Boie \& F20－BLR115－2－200 \& \& \& \& 62.70 \& 99.00 \& \& 2.67 \& 0.81 \& \(6^{6} 268\) \& \({ }^{2.96}\) \& \({ }^{1,122.06}\) \& 18.70 \& 5.70 \& \({ }^{210.00}\) \& 372 \& 3．40E－01 \& 4．47E－01 \& \(1.15 \mathrm{EF}+0\) \& \(1.51 \mathrm{E}+00\) \& 7．72E－02 \& 1．011－01 \& 1.161 E－02 \& 2．11E－02 \& 1．33E－02 \& 1．74E－02 \& 8．038－02 \& 1.06 E－ \\
\hline Boiler \& \({ }^{\text {F20－ELR 1115－3－200 }}\) \& BOC1－03 \& 506748.17 \& 5039097 \& \& 99.00 \& 18 \& 2.67 \& 0.81 \& \({ }^{6,266.76}\) \& 2.96 \& \({ }^{1,122.06}\) \& 18.70 \& 5.70 \& 210 \& \({ }^{372}\) \& 3．40E－01 \& 4．47E－01 \& 1.1515 \& 1.51 \& 7．72E－02 \& 1．01E－01 \& 1．61－02 \& \(2.11 \mathrm{E}-02\) \& 1．33E－02 \& 1．744－．02 \& 8．03E－02 \& （106e－1 \\
\hline \& \& BoCl 104
BOC1 105 \& 506750．67 \& \({ }^{5043380067.7}\) \& \({ }^{62270} 6\) \& \({ }_{99.00}^{99900}\) \& \begin{tabular}{l}
30.18 \\
30.18 \\
\hline
\end{tabular} \& 2.00
2.00 \& \({ }_{0.61}^{0.61}\) \& \& \begin{tabular}{l}
2.95 \\
2.95 \\
\hline
\end{tabular} \& \({ }^{1,9866.57}{ }^{1,9865}\) \& \({ }_{33,11}^{33.11}\) \& 10.09
10.09 \& \& \({ }_{4}^{372.04}\) \& \& 4．35－01 \& \& 1．4．41 \& li．j0E－02 \& 9．86E－02 \& 1．56E－02 \& 2．09E－02 \& 21．2EE－02 \& 1．63E－02 \& 7．80E－02 \& \\
\hline Boile \& RA1－MECH－B01 \& BOR1－01 \& 506843.5 \& 5043630.5 \& 62.70 \& 95.00 \& 28.96 \& 0.67 \& 0.20 \& \({ }_{223} 2.81\) \& 0.11 \& 64 \& 10.69 \& 3.26 \& 210.00 \& 372.04 \& 7．06E－02 \& 9．28E－02 \& 5．93E \& 7.79 \& \({ }_{1}^{1.76 E-03}\) \& 2．32E－03 \& 3．67 \& 4．82E－04 \& 3．04E－04 \& 3．99E－04 \& 1．84E－03 \& \\
\hline Boiler \& RA1－MECH－B02 \& BoR1 \& 508804.48 \& 5043762.9 \& 62.70 \& 95.00 \& 28.96 \& 0.50 \& 0.15 \& 223.81 \& 0.11 \& 1，139．87 \& 19.00 \& 5.79 \& 210.00 \& 372.04 \& 9．80E－02 \& 1．29E－01 \& \({ }_{8} 8.24\) E－02 \& 1.08 E－01 \& \(2.45 \mathrm{E}-03\) \& 3．22E－03 \& 5．10－04 \& 6．70E．04 \& 4．22E－04 \& 5．54－04 \& 2．55－03 \& 3，35E－03 \\
\hline Boiler \& CUB2－ELR115－1－210 \& Bocz \({ }^{\text {Boi }}\) \& 506679．98 \& \({ }^{5043355582.7}\) \& 62.70
6270 \& 45.00
4500 \& \({ }_{13,72}^{13.72}\) \& 2．67 \& 0.81
0.81 \& \(2,57.86\)
2.55786
2， \& － 1.21 \& 457.98
457.98 \& （7．63 \& \begin{tabular}{l}
2.33 \\
\({ }_{23}{ }^{2} \mathbf{3}\) \\
\hline
\end{tabular} \& 210.00
21000 \& 377204
37204 \& 3 \(3.47 \mathrm{E}-01\) \& 4．56E－01 \& 1．1717 \& \({ }_{1}^{1.54}\) \& \％ \(7.87 \mathrm{~F}-02\) \& － 1.035 E．01 \& \& 2．15E－02 \& － \(1.355 \mathrm{E}-02\) \& \& ci．19E．02 \& － \(1.008 \mathrm{E}-011\) \\
\hline \(\underset{\substack{\text { Boier } \\ \text { Boiler }}}{\text { ceid }}\) \& \& \& 50659721 \& \({ }_{5} 50435558.8\) \& \({ }^{62270}\)\begin{tabular}{l}
6270 \\
\hline
\end{tabular} \& \({ }_{45.00}^{4500}\) \& \({ }_{13.72}^{13.72}\) \& \({ }_{2.67}^{2.67}\) \& \({ }_{0.81}^{0.81}\) \& \& － 1.21 \& \& 7.63
7.63 \& 2.33
2.33 \& \({ }_{210.00}^{210.00}\) \& \begin{tabular}{l}
372.04 \\
372.04 \\
\hline
\end{tabular} \& 3．4．4E－01 \& \({ }_{4}^{4.56 E-01}\) \& 1.1 .17 \& l \(\begin{aligned} \& 1.544+\text {＋0 } \\ \& 1.54++00\end{aligned}\) \& li．87E－02 \& 1．03E－01 \& li．64E－02 \& 2．155－02 \& － \(1.35 \mathrm{E}-02\) \& 1．78E－02 \& \& 1．08E－01 \\
\hline Boiler \& CUB2－BLR115－4－210 \& Boc2 204 \& 506575 \& 5043575.9 \& 62.70 \& 45.00 \& 13．72 \& 2.67 \& 0.81 \& \({ }_{2}^{2,557.86}\) \& 1.21 \& \({ }_{457.98}\) \& 7.63 \& \({ }_{2.33}^{2.35}\) \& \({ }_{210.00}^{21000}\) \& 372.04 \& 3．53E－01 \& 4．64－01 \& \(1.19 \mathrm{~F}++00\) \& 1．57E＋00 \& 8．00－02 \& 1．05E－01 \& \({ }_{\text {1．} 1.66 \text { E－02 }}\) \& 2．190－02 \& 1．38E－02 \& 1．81－02 \& 8．32－－02 \& － \\
\hline Boier \& CUB2－BRR115－5．210 \& Bocz \({ }^{\text {BoO }}\) \& 506533．08 \& 5003603．2 \& 62.70
6270 \& \({ }_{4500}^{4500}\) \& \({ }_{1372}^{13.72}\) \& \({ }_{2}^{2.00}\) \& 0.61 \& \& \begin{tabular}{l}
2.95 \\
2.95 \\
\hline
\end{tabular} \& \({ }^{1,988.575}\) \& \({ }^{33.11}\) \& 10．09 \& \({ }^{2110.00}\) \& \({ }_{3}^{372.04}\) \& cincer 3 \& 4．17－01 \& \& 1．41E＋00 \& 7．20E－02 \& 9，47E－02 \& 1．50E－02 \& 1，1．7E－02 \& 1．24E－02 \& cose \& \({ }_{\text {7 }} 7.48 \mathrm{E}-02\) \& 9， 9.845 .02 \\
\hline \& \& Boct \& 50655.51 \& 504360．4 \& （ \({ }^{62270}\) \& \({ }_{12500}^{42100}\) \& 13.72
36.90 \& 2.00
0.07 \& － 0.61 \& \begin{tabular}{l}
6，241．00 \\
\(\substack{270.58}\) \\
\hline
\end{tabular} \& （2．13 \& \({ }^{1,9865.57}\) \& （ \& \begin{tabular}{l}
10.09 \\
\(\substack{394}\) \\
\hline
\end{tabular} \& cren
210．00
3500 \& \({ }_{4}^{3720.04}\) \& \& cisele \& \& \& 7．00－E02 \& （exteen \& － \(1.502-03\) \& \& \& \& \& （1．03E－01 \\
\hline \({ }_{\text {coiler }}^{\text {Boier }}\) \& \& BOR4402 \& 506500 \& 5043103 \& 62.70 \& 121.06 \& 36.90 \& 0.67 \& 0.20 \& \({ }^{270.58}\) \& 0.13 \& \& \({ }_{12,92}\) \& \({ }_{3.94}\) \& \({ }_{35000}\) \& 449.82 \& 1．96E－01 \& 2.58 －01 \& 1.655 －01 \& 2.16 E－01 \& 4．90E－03 \& 6．44E－03 \& 1．022－03 \& 1．34E－03 \& \& \& \& c．ive－03 \\
\hline Boier \& RA4－BLR117－2－30 \& 804 \& 506524 \& 5043114.7 \& 62.70 \& 132.00 \& 40.23 \& 1.00 \& 0.30 \& 1.771 .91 \& 0.84 \& \& \({ }^{37}{ }^{3200}\) \& \({ }^{11.46}\) \& \({ }^{355000}\) \& 449.82 \& 1．96E－01 \& 2．58E－01 \& 1.655 E01 \& 2.16 E－01 \& 4.900 －03 \& 6．44E－03 \& \(1.1020-03\) \& 1．34－03 \& 8．43E－04 \& 1．111－03 \& 5．10E－03 \& 6．70E－03 \\
\hline Boiler \& RA4－BLR117－1－30 \& \& 506526．12 \& \({ }_{\text {5043063．7 }}\) \& 62.70
6270 \& 1323.00
132.00 \& \({ }_{40.23}^{40.23}\) \& 2.00 \& 0.30
0.61 \& \(1,7.71 .91\)
6,59441 \& 0．844 \& 2，255．07 \& \& 11.46
10.66
1 \& 350.00
3500 \& \({ }_{44989}^{44922}\) \& ci．ase－01 \& 2．58－01 \& 1．65E－01 \& 2．16E－01 \& \& 6．44－03 \& \& 1．34E－．03 \& \& \& \& \\
\hline Boier \& \({ }^{\text {RAAALEP117．3．30 }}\) \& Borta \& 506460.94 \& 5043063．7 \& \({ }_{6}^{6270}\) \& \({ }_{132.00}^{13200}\) \& \({ }^{4023}\) \& 200 \& 0.61 \& \& 311 \& \({ }_{2}^{2}\) \& \({ }_{34,98}\) \& 10.66 \& \({ }_{\text {3 }}^{355000}\) \& \({ }_{4}^{449.82}\) \& 3．318E－01 \& 4．17－01 \& 1.07 10＋00 \& \& 7．20E－02 \& 9．77－02 \& 1．500．－02 \& 1．97－02 \& 1．24－－2 \& \& 7．49E－02 \& （9，84E－02 \\
\hline \& \& Boc3－01 \& 508360.1 \& 50 \& \({ }_{6270}\) \& \({ }_{51.00}\) \& 54 \& 1.50 \& 0.46 \& 44 \& 0.41 \& 57 \& \({ }_{8.21}\) \& \({ }_{2.50}\) \& \({ }_{30000}\) \& \({ }_{42204}^{49202}\) \& 4．90E－01 \& 6．44－01 \& 2．98E－01 \& 3．92E－01 \& 2．00E－02 \& \(2.635-02\) \& 4．16E－03 \& 5．47－03 \& 3．44－03 \& \& 2．08E－02 \& \\
\hline Boier \& BLR－115－2－210 \& 3－02 \& \& \& 62.70 \& 51.00 \& \& 2.67 \& 0.81 \& \& 1.64 \& \& 10.39 \& 3.17 \& 00 \& 2204 \& 3．18E－01 \& 4．17－01 \& \& \& －02 \& \& 1．50－．02 \& －02 \& \& E－02 \& 7．49E－02 \& （1．84E－02 \\
\hline Boiler \& BLR－115－3．210 \& C3 \& \& 504342 \& 62.70 \& 51.00 \& 54 \& 2.67 \& 0.81 \& ． 75 \& 1.64 \& \& 10.39 \& 3.17 \& \& ． 04 \& 3．18E－01 \& 4．17－01 \& \& \& E－02 \& \(9.47 \mathrm{E}-02\) \& 1.50 E \& \& E－02 \& 1．83E－02 \& \(7.498-02\) \& 9．84E－02 \\
\hline Boiler \& BLR－115－4－210 \& воС3＿04 \& 506359．8 \& 5043418.4 \& \({ }^{62.70}\) \& 51.00 \& 15.54 \& 2.67 \& 0.81 \& 1523．26 \& 0.72 \& 74 \& 4.55 \& 1.39 \& \({ }^{300.00}\) \& 2204 \& 3．53E－01 \& 4．64－．0 \& \(1.19 E+00\) \& \& 8．00E－02 \& \& 1．66E－02 \& 2．19E－02 \& 88－02 \& \& \(8.32 \mathrm{E}-02\) \& 1．09E－01 \\
\hline Boiler \& BLR－115－5－210 \& Boç \({ }^{\text {a }}\) \& 506360.1 \& 504341 \& \& 51.00 \& 54 \& 2.00 \& 0.61 \& \& 1.04 \& \& 11.68 \& \({ }^{3.56}\) \& \& \& 5．15E－01 \& 6．76－01 \& 5．22E－01 \& 6．86E－01 \& \({ }^{\text {3，50E－02 }}\) \& 4．60E－02 \& 7．28E－03 \& 9．57－03 \& 6．02E－03 \& 7．91－03 \& 3．64E－02 \& 边 \\
\hline Boiler \& －115 \& Bocs \({ }^{\text {a }}\) \& 50334．9 \& 50 \& 62270 \& 51.00 \& 迷 \& 2．00 \& 0.51 \& \& 1.04 \& \& 1．68 \& 3．56 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline （soier \& \& \& 50762 \& \({ }_{5}^{504333111.1}\) \& \({ }_{6}^{62270}\) \& \({ }_{42}^{42.00}\) \& 12.80
12.80 \& 1.67 \& 0.51 \& 1，303．38 \& － \& 597．43 \& \({ }_{99.96}^{9.96}\) \& （ \({ }_{3.03}^{3.03}\) \& \({ }^{294900}\) \& \({ }_{4}^{4188.71}\) \& li．tee－01 \& li．1．74－01 \& \& c．abe－01 \& \& \begin{tabular}{l}
\(4.48 E-02\) \\
\(3.94-02\) \\
\hline 1
\end{tabular} \& \& \& 5．8．6E－03 \& ci．70E－03 \& －\({ }^{3.545-02}\) \& － 4.6 E－02 \\
\hline Boiler \& RP1－ELR115－3－210 \& BORP1 103 \& 50878 \& 5043307 \& 62.70 \& 42.00 \& 12.80 \& 1.67 \& 0.51 \& 1，303．38 \& 0.62 \& 597.43 \& 9.96 \& 3.03 \& 294.00 \& 71 \& 1.32 －01 \& 1.74 \& 4．48－01 \& 5.88 E－01 \& 3．00－02 \& 3．94E－02 \& 6．24－03 \& 8．20－．03 \& 5．16E－03 \& 6．788－03 \& 3．12E－02 \& 4．10－－22 \\
\hline Boiler \& RP1－GLR115－4－210 \& BORP1 104 \& 506 \& 5043302．8 \& 62 \& 42.00 \& 12.80 \& 1.67 \& 0.51 \& \({ }^{454.57}\) \& 0.21 \& \({ }^{208.36}\) \& 3.47 \& 1.06 \& \& \& 1．27－01 \& 1．66E－01 \& 4．28E－01 \& 5．63－01 \& 2．87E－02 \& 3．77E－02 \& 5．97E－03 \& 7．85E－03 \& 4．94－－03 \& 6．49E－03 \& 2．99E－02 \& \\
\hline \& \& \({ }_{\text {BoCl4 }}\) \& 506418．4．4 \& 5043527．6 \& \({ }^{62270}\) \& 86.50
86.50 \& \(\underbrace{26.37}_{26.37}\) \& \begin{tabular}{l}
1.07 \\
2.00 \\
\hline 1
\end{tabular} \& \({ }_{0}^{0.61}\) \& \({ }^{4.5530 .00}\) \& 2.19
4.03 \& \& \({ }_{45525}^{3549}\) \& 10.82
13.79 \& \({ }^{3550.00}\) \& \({ }_{4}^{4499.82}\) \& \& 2．35E－01 \& \& \& li．fee－02 \& 4．60E－02
\(9.86 E-22\) \& li．28E－03 \& 2．055－02 \& － \& li．91－．03 \& \& \\
\hline Boiler \& CUB4－BLR115－3－10 \& Boca \& 506429.87 \& 5043517.1 \& 62.70 \& 86.50 \& 26.37 \& \({ }^{2} .00\) \& 0.61 \& 8，533．00 \& 4.03 \& 2，715．18 \& 45.25 \& 13.79 \& \& 449.82 \& 3．31E－01 \& 4．35－01 \& \& 1.47 \& 7．50－．02 \& 9．86E－02 \& 1.56 E－02 \& 2．055－02 \& 1．29E－02 \& 1．70E－02 \& 7．800－02 \& 1．03E－01 \\
\hline Boiler \& CUB4－BLR115－4．10 \& BOC4 \& 506429.87 \& 504352 \& 62.70 \& 86.50 \& 26.37 \& 2.00 \& 0.61 \& 8，530．00 \& 4.03 \& 2．715．18 \& 45.25 \& 13.79 \& 350.00 \& 449.82 \& 3．31－－01 \& －01 \& \(1.12 \mathrm{~L}+00\) \& 1.47 \& －02 \& －02 \& 1.56 E－02 \& 2．05E－02 \& 1．298－02 \& E－02 \& \(7.800-02\) \& 1．03E－01 \\
\hline Boier \& CUB4－SLR115 5－5．10 \& \({ }^{\text {B00C4 }}\)－05 \& 50642987 \& 5043537．8 \& \({ }^{62270}\) \& 86．50 \& \({ }_{26,37}^{26.37}\) \& 2.00
200 \& \({ }_{0}^{0.61}\) \& 8.530 .00
8.5300 \& \({ }_{4.03}^{4.03}\) \& 2， 27151.18 \& （ 4.25 \& 1379
1379
139 \& 55．00 \& \({ }_{4}^{449.82}\) \& \& 4．17－01 \& \& 年．41E＋00 \& \& 9，947E－02 \& 1．50 \& 1．97E－02 \& － \(1.245=02\) \& \({ }_{\text {coseme }}^{1.635-02}\) \& 7－49E－02 \& 9， \(9.884=02\) \\
\hline Boier \& \& Boctac \& 50643744 \& 50334836． \& \({ }_{6}^{62270}\) \& 86.50
86.50 \& \({ }_{26,37}^{26.37}\) \& \begin{tabular}{l}
2.00 \\
200 \\
\\
\hline
\end{tabular} \& \({ }_{0.61}^{0.61}\) \& \({ }_{\text {8，53300 }}^{8.53000}\) \& \begin{tabular}{l}
4.03 \\
4.03 \\
\hline
\end{tabular} \& \& \({ }_{4525}\) \& 1379
1379 \& \({ }_{35500}^{35000}\) \& 4 \& 3， \(318 \mathrm{E}=01\) \& \& 1.07 F＋00 \& \& 720－02 \& － \& \& －02 \& \& Steon \& 2， \& \\
\hline Soier \& RAC5－BLR 1 15－1 \& вос5 \& 505876.9 \& 504355 \& 62.70 \& 70.00 \& \& 2.00 \& 0.61 \& 8，5530．00 \& 4.03 \& 2.715 .18 \& \& \& ． 00 \& \& 3．18E－01 \& \& \(1.07 \mathrm{E}+00\) \& ＋00 \& 7．20E－02 \& 7－02 \& 1．50－．02 \& 1．97E－02 \& 1．24－02 \& 1．63E－02 \& 7．49E－02 \& \\
\hline Boiler \& RAC5－BLR115－2 \& BOC5－02 \& \& 504 \& 62.70 \& 70.00 \& 34 \& 2.00 \& 61 \& 8，530．00 \& 4.03 \& \& 45.25 \& 13.79 \& 350.00 \& ．82 \& 3．18－．0 \& 4．17E－0 \& \& \& \& \(9.47 \mathrm{E}-02\) \& \& －02 \& \& E－02 \& \& E－02 \\
\hline Boier \& RAC5－bLR1115－3 \& Boc5 \({ }^{3}\) \& \({ }_{505872.15}\) \& 50435551．4 \& \({ }^{62270}\) \& 70.00 \& \({ }_{21.34}^{21.34}\) \& 2.00 \& 0.61 \& 8．530．00 \& \({ }^{4.03}\) \& \({ }^{2.775 .18}\) \& 45．25 \& 1379
1379 \& \({ }^{355000}\) \& 82 \& 3．18E－01 \& 4．17E－0 \& 1.07 \& 1．41E＋0 \& 7．20E－02 \& 9．47E－02 \& 1．500 \& －02 \& \& 1．63E－02 \& \(7.498-02\) \& 9．84－02 \\
\hline Boiler \& RAC5－bLR115－4 \& Boc5 04 \& 505683931 \& \& 62 \& 70.00
9500 \& 21.34
2896 \& 2.00
117 \& 0.61
0.36
0.06 \& \({ }_{\text {8，230．00 }}\) \& \({ }_{0}^{4.03}\) \& \({ }^{2}\) \& － \& －1379 \& 350.00
18800 \& 82 \& 3．18E－01 \& 4．17－01 \& 1．07t＋00 \& 1．41e＋00 \& 7．20E－02 \& 9．47E－02 \& 1．50E－02 \& 1．97E－02 \& 1．24E－02 \& 1－63E－02 \& 7．4EE－02 \& － \(9.84 \pm\) E－02 \\
\hline Boier \& \& Bor2 02 \& 508833 \& 504 \& 62.70 \& 95.00 \& \({ }_{28.96}^{20.96}\) \& 1.17 \& 0．36 \& \({ }_{\text {216．46 }}\) \& 0.10 \& 49 \& \({ }_{3.37}\) \& 1.03 \& 1188.00 \& \({ }_{359} 59.82\) \& 4．545－02 \& 5．96E－02 \& 1．54E－01 \& \& － \& 1．35－－2 \& 2．14E－03 \& \& 1．77E－03 \& \& 1．07－：02 \& 1．415－02 \\
\hline Boier \& \& BORS4 \& 50 \& \& 62.70 \& 54.00 \& 16.46 \& 1.00 \& \({ }_{0} .30\) \& 1，771．91 \& 0.84 \& 2，256．07 \& 37.60 \& 11.46 \& 350.00 \& 449.82 \& 7．20E－02 \& 9．46E－02 \& 7．31－．02 \& 9．61－．02 \& 4．90E－03 \& 6．44E－03 \& 1．02E－03 \& 1．34－03 \& 8．43E－04 \& 1．111－03 \& 5．10E－03 \& （e．03 \\
\hline Boier \& RS44－BLR115－2 \& Borst \& 505917.6 \& 5043851.9 \& 62.70 \& 54.00 \& 16.46 \& 1.00 \& 0.30 \& 1.771 .91 \& 0.84 \& 2，256．07 \& 37.60 \& 11.46 \& \({ }^{350.00}\) \& 449.82 \& 7．20E－02 \& 9.466 －02 \& 7．31－．02 \& 9．61E．02 \& 4．90．－03 \& 4 E－03 \& 1.02 E \& 1．34－03 \& E－04 \& 1．11－03 \& 5.10 E \& 㖪－03 \\
\hline Boiler \& RS4－6LR115－3 \& Borst \& 50597.6 \& 5043849．4 \& 62.70 \& 54.00 \& 16.46 \& 0.67 \& \({ }^{0.20}\) \& \({ }^{277.58}\) \& \({ }^{0.13}\) \& 775.15 \& 12.92 \& 3.94 \& \({ }^{355000}\) \& 449.82 \& 1．80E－02 \& 2．37－02 \& 1．83E－02 \& \(2.40 \mathrm{E}-02\) \& 1．23E－03 \& 1．61－03 \& 2．55－04 \& 3．35－04 \& 2．11－04 \& \(2.77 \pm\) E． 4 \& 1．27E－03 \& 年E－03 \\
\hline Boiler \& \({ }^{\text {RS6－BLR115－1 }}\) \& Bors6 01 \& 505906.8 \& 5043587．5 \& \({ }^{627270}\) \& （ 54.00 \& 16.46 \& 1.00 \& 0．30 \& 1，7771．91 \& \({ }^{0.84}\) \& 2，256．07 \& \& \({ }^{11146}\) \& 5900 \& 82 \& \({ }^{\text {Pr }}\) \& 9．46E－02 \& \& 9．61－02 \& 4．900－03 \& 6．44E－03 \& 1．02E－03 \& 1．34E－03 \& \& \& \& \\
\hline \& RS66－LLR115－3 \& Borscou \& \({ }_{505900.8}^{5050.8}\) \& 50458 \& \({ }_{6}^{62270}\) \& 54.00
54.00 \& \({ }^{16.46}\) \& \({ }_{0} 1.67\) \& － \& \({ }^{1} 277.58\) \& －0．43 \& ， 7 T5， 15 \& \({ }^{3} 12.92\) \& － 11.94 \& \({ }_{35500}^{35000}\) \& 82 \& \& ceint－02 \& 1．83E－02 \& 2．400－02 \& ， \& － 1.461 E－03 \& 2．55－04 \& ， \& ces \& 2．77－0．04 \& 1．27－03 \& － \\
\hline Boiler \& F15－ELR28－1－1 \& BoF15 \& 50893288 \& 5037867 \& 69.40 \& 66.00 \& 20.12 \& 2.50 \& 0.76 \& 4，754．49 \& 2.24 \& 988.58 \& 16.14 \& 4.92 \& 124.00 \& 26 \& 2．26E－01 \& \(2.977-01\) \& 7．65－01 \& \& 5．13E－02 \& 6．74E－02 \& 1．07－02 \& 1.40 －．02 \& 8．82E－03 \& 1．166－02 \& 5．33E－02 \& 7．01E－02 \\
\hline Boier \& \& 15－02 \& 508934．61 \& \({ }^{50378666.7}\) \& \& 66000
47700 \& \({ }_{1433}^{20.12}\) \& 2．50 \& － 0.76 \& \(4,754.49\)
4.7549 \& 2,24

2
2 \& －968．58 \& 16．14 \& 4.92 \& ${ }^{124.00}$ \& 26 \& 2， 2 26E－01 \& 2．97－01 \& 7．65E－01 \& \& \& 6．74E．02 \& 1．07－02 \& 1．40E－02 \& ${ }^{8.882-03}$ \& 1．16E－02 \& ${ }_{5}^{5.33 E-02}$ \& 7．00E－02

\hline Soier \& \& \& 509007．08 \& \& 69.40 \& 75.53 \& ${ }_{23.02}$ \& 0.50 \& 0.15 \& ${ }^{195.08}$ \& （2．09 \& －9093．56 \& －16．14 \& 4．925 \& \& 324.26
324
326 \& ${ }_{5}^{2} 888$－02 \& \& \& \& 1．47E－03 \& 1．93E－03 \& \& 4．022－04 \& \& 3．32－－04 \& ${ }_{\text {l }}$ \&

\hline Boier \& ${ }_{\text {F15 }}$（HW 35.4 \& \& \& \& 69.40 \& \& 1 \& 0.50 \& 0.15 \& 156.45 \& 0.07 \& 78 \& \& 4.05 \& 150.00 \& \& 5．88E－02 \& 7．73E－02 \& 4．94－02 \& E－02 \& 1．47－03 \& －03 \& SE－04 \& E－04 \& Ste－ \& E－04 \& ${ }_{\text {1．53E－03 }}$ \& E－03

\hline Boiler \& RAC5－SLR115－5 \& во \& \& 51.4 \& 62.70 \& 70.00 \& 21.34 \& 2.00 \& 0.61 \& 6，59441 \& 3.11 \& 2，099．07 \& 34.98 \& 10.66 \& ．00 \& 449.82 \& 3．18E－01 \& E－0 \& $1.07 \mathrm{E}+00$ \& F＋0 \& 7．20－02 \& －02 \& 1．50E．02 \& ．97E．02 \& E．02 \& 3－02 \& 7．99－02 \&

\hline Boier \& ${ }_{\text {RAC5－biR115－6 }}$ \& Boc5 ${ }^{\text {Boi }}$ \& ${ }_{5}^{50585553.4}$ \& 50043551．4 \& （62．70 \& ${ }_{70}^{70.00}$ \& ${ }_{\substack{21.34 \\ 21,34}}$ \& | 2.00 |
| :--- |
| 200 | \& ${ }_{0}^{0.61}$ \& c． 6.59441 \& 3.11 \& ${ }^{2}, 2099.07$ \& $\begin{array}{r}34.98 \\ \hline\end{array}$ \& ${ }^{10.66}$ \& ${ }^{355000}$ \& 449.82 \& 3．18E－0 \& 4．17E－0 \& 1．07E＋0 \& 1．41E＋0 \& 7，20E－02 \& 9．47E－02 \& 1．506－02 \& 1．97E－02 \& 1．24E－02 \& ．63E－02 \& $7.498-02$ \& ，9．84E－02

\hline （soier \& \& Boc5 \& 5058551．5 \& \& ${ }_{6270}$ \& 70.00 \& ${ }_{21.34}$ \& ${ }_{2.00}^{200}$ \& ${ }_{0.61}$ \& \& ${ }_{3.11}$ \& ${ }_{2.099 .07}$ \& ${ }_{\text {344，}}^{34.98}$ \& 10．66 \& 350.00
35000 \& ${ }_{44992}^{494.82}$ \& ci．1．e－01 \& 4．17E－01 \& \& \& （1200－02 \& 9，47E－02 \& 1．50E－02 \& －1．97E－02 \& 21．24E－02 \& 1．63E－02 \& 7．99E－02 \&

\hline Soier \& N2－8LR1R17－1A－30 \& Bon \& \& \& 62 \& 23.00 \& 7.01 \& 2.30 \& 0.70 \& \& ${ }^{1.22}$ \& ${ }_{623}{ }^{23.40}$ \& 10.39 \& 3.17 \& 30000 \& ${ }_{42204}^{4920}$ \& 4．935－01 \& 6．47－01 \& \& 边 \& 1．12E－01 \& 1．47E－01 \& 2．32－．02 \& E－02 \& 2－02 \& 2.55 E －02 \& －01 \& E－01

\hline Boier \& N2－ELR171－18－30 \& \& 5062 \& 5043924．4 \& 62 \& 23.0 \& 7.01 \& 2.30 \& 0.70 \& \& 1.22 \& ${ }^{623.40}$ \& 10.39 \& 3.17 \& 300.00 \& ． 04 \& 4．93E－0 \& \& \& 19E＋00 \& Ex－01 \& 砍－01 \& $2.32 \mathrm{E}-02$ \& E．－02 \& （1）－02 \& 退－02 \& 1．16E－01 \&

\hline \& mbined Modeling Sta \& TODB \& 506639.16 \& 5043778.1 \& 62.70 \& 80.00 \& 24.38 \& 3.00 \& 0.91 \& 16，125．00 \& 7.61 \& 2，281．22 \& 38.02 \& 11.59 \& ${ }^{650.00}$ \& ． 48 \& $2.16 \mathrm{E}+0$ \& $9.45 \mathrm{E}+0$ \& 1．49E＋0 \& 6．52E＋0 \& 6．44－01 \& $2.36 E+0$ \& 6．44－0．0 \& $2.39 \mathrm{~F}+0$ \& 6．44E－ \& $2.39 \mathrm{E}+00$ \& 5．61－02 \&

\hline RCTo \& C－VOC $138.1-120$ \& ToDC ${ }^{\text {co }}$ \& 50674279 \& 5004333 \& \& ${ }^{120000}$ \& ${ }^{36.58}$ \& ${ }^{1.00}$ \& 0．30 \& \& 1.60
1.60

1 \& ${ }_{4}^{4} 3239.91$ \& | 72.15 |
| :--- |
| 7215 | \& 21．99 \& ${ }^{655000}$ \& 48 \& 1．96E－01 \& 8．99－01 \& 1．51E＋00 \& \& － $5.40 \mathrm{E}-22$ \& 2．01E－01 \& 5．40E－02 \& 20， \& 5i40E．02 \& 2．01E－01 \& 5．10－．03 \& 边

\hline RCto \& D1C－vocisis－3－120 \& TODC \& 5067 \& 5043322．3 \& 62.70 \& 120.00 \& 58 \& 1.100 \& 0.30 \& ${ }^{3.4000 .00}$ \& | 1.00 |
| :--- |
| 1.60 |
| 1 | \& ${ }_{4}^{4}, 329.91$ \& ${ }_{72.15}$ \& ${ }_{21.99}^{21.99}$ \& ${ }_{655000}^{605000}$ \& ${ }_{6161648}^{6648}$ \& ${ }^{1.966-01}$ \& 8．59E－01 \& 1.51 .51 Lit＋o0 \& \& \& E－01 \& 5.4 \& 2．01E－0 \& \& 2.01 E－01 \& 5．10E－03 \& 退

\hline RCто \& voc－ \& \& \& \& 62.70 \& \& 3 \& 1.50 \& 0.46 \& \& 1.60 \& ${ }_{1}^{1,924.01}$ \& 32.07 \& 9.77 \& \& \& $1.96 E-01$ \& \& \& \& E－0 \& －01 \& 1．46E－0 \& －01 \& \& Se－01 \& 5．10－03 \&

\hline Rсто \& OC－138－2－120 \& TOOD＿02 \& 506847.03 \& 403 \& 62.70 \& 89.00 \& 27.13 \& 1.50 \& 0.46 \& \& 1.60 \& \& 32.07 \& 9．77 \& 50.00 \& \& $1.96 \mathrm{E}-01$ \& $8.599-0$ \& 1．12E＋ \& 4.92 \& A6E－0 \& 5．36E－02 \& 1.486 E．0 \& $5.36 \mathrm{E}-1$ \& 1.46 E －0 \& 5．36－01 \& 5．10E－03 \& ．23E－02

\hline RCTO \& voc－138－3－120 \& Toob－0 \& 506467.03 \& 5043403 \& ${ }^{62270}$ \& 89.00 \& ${ }^{27.13}$ \& 1.50 \& 0.46 \& ${ }^{3,400.00}$ \& ${ }^{1.60}$ \& ${ }^{1,9224.01}$ \& ${ }^{32.07}$ \& 9.77 \& ${ }^{6550.00}$ \& \& $1.96 \mathrm{E}-01$ \& 8．59－01 \& \& 4．92E＋00 \& 1．46E－01 \& ${ }_{\text {coseme }}^{5}$ \& 1．46E－01 \& 5－36E－01 \& $1.46 \mathrm{E}-01$ \& ${ }_{\text {5 }}^{5} 5$ \& ${ }_{\text {5 }}^{51.10-03}$ \&

\hline ${ }_{\text {RCTO }}$ \& voc－138 \& Tooi \& 506467．03 \& 5043403．9 \& ${ }_{62270}$ \& 89.00 \& 27．13
27.13 \& 1.50
3.00 \& 0．91 \& \& ${ }^{1.06}$ \& ${ }_{\text {li，}}^{1,2824.22}$ \& － \& ${ }^{11.59}$ \& 655000
65000 \& \& \& \& 5．41－－01 \& \& 1．61E－0 \& \& \& 6.011 －01 \& \& \& 2．04E－02 \&

\hline \& C－13 \& TOOD－06 \& \& \& 62.70 \& \& 13 \& 3.00 \& 0.91 \& \& 7.61 \& ${ }_{2,281.22}$ \& \& 11.59 \& ${ }_{650.00}^{6500}$ \& ${ }_{616.48}^{616.48}$ \& $7.84 \mathrm{E}-01$ \& ．44E＋0 \& 5．41－－01 \& 2，37E＋00 \& \& \& 1.111 1－01 \& \& \& 6．01E－01 \& －02 \& E－02

\hline RCто \& D1XM1－VOC138－120 \& \& 50637.39 \& 399.8 \& 62.70 \& 122.00 \& 8 \& 2.00 \& 0.61 \& \& 3.02 \& \& 33.95 \& 10.35 \& ${ }_{650.00}$ \& 616.48 \& 3．43－－01 \& ． $505+0$ \& 2．37－01 \& Eto \& 2．75－02 \& 1．07E－01 \& $2.755-02$ \& 1．07－．0 \& 2．75E－02 \& 1．07－01 \& 8.92 E －03 \& 3．91E－02

\hline RCTO \& D1XM1－VOC $138.2-20$ \& Tomi \& 506330.48 \& 5043377.1 \& ${ }^{6270}$ \& ${ }^{122000}$ \& 36．58 \& ${ }^{2.00}$ \& 0.61 \& ． 00 \& ${ }^{3.02}$ \& \& ${ }_{33,95}$ \& 10.35
1035
105 \& ${ }^{6550.00}$ \& ${ }_{6}^{616.48}$ \& 3，43E－0 \& 1.50 F＋00 \& 2．37E－0 \& 1．04E＋ \& ${ }^{2}$ \& 1．076－0 \& ${ }^{2} 7.75$－02 \& 1.07 － \& ${ }^{2}$ \& 1．077－01 \& 8．92E－03 \& 3，

\hline ${ }_{\text {R }}$ \& － \& Tomi－03 \& 5003327．28 \& 50433 \& ${ }_{6}^{62270}$ \& ${ }^{1220000}$ \& ${ }^{36.58}$ \& 2.00
200 \& 0.61 \& \& － 3022 \& \& ${ }_{3}^{33.95}$ \& 10．35 \& ${ }_{655000}^{65000}$ \& \& 3．33－01 \& ${ }^{\text {a }} 1.500+$＋00 \& 2，37－01 \& 1.045 \& 2．75E－02 \& 1，07－01 \& 2．755－02 \& 1.07 E－01 \& 75E－02 \& \& \& （ente－02

\hline RCto \& C138－5－20 Anguil RCT \& TWMT1－0 \& 5247.98 \& 5043260.6 \& 62.70 \& \& 5 \& ${ }_{3.00}^{2000}$ \& 0.91 \& 5.00 \& ${ }_{6.41}$ \& ${ }_{1}^{1,920.47}$ \& 32.01 \& 9.76 \& \& \& 7．84E－01 \& 3．44E＋00 \& \& t＋00 \& －01 \& －01 \& 1．61E－01 \& 5．92E－01 \& \& E－01 \& －02 \& Et－02

\hline RCто \& DIXM1－VOC133－6－20（Anguil RCTO D1X－2） \& \& 50825. \& 5043221．9 \& 62.70 \& 120.00 \& 36.58 \& 3.00 \& 0.91 \& 13，575．00 \& 6.41 \& 1，92 \& 32.01 \& 9.76 \& \& \& 7．84－01 \& ．44E＋00 \& 5．41－－01 \& 237E＋00 \& 4．27E－01 \& ＋00 \& 4．27E－01 \& ＋00 \& （2E－O \& 57E＋00 \& 22 \& 迷

\hline Rсто \& D1XM1－VOC138－7－20（Anguil RCTO D1X－3） \& \& \& \& 62.70 \& 120.00 \& 36.58 \& 3.00 \& 0.91 \& 5.00 \& 6.41 \& \& 32.01 \& 9.76 \& ${ }_{650.00}$ \& \& $7.84 \mathrm{E}-11$ \& ．44E＋00 \& 5．41E－01 \& 237E＋00 \& \& \& \& \& \& ＋00 \& 2．04－－22 \& 8．93E－02

\hline Rсто \& D1XM1－VOC133－8－20（Anguil RCTO D1－4） \& \& \& \& 62.70 \& 120.00 \& 58 \& 3.00 \& 0.91 \& 13，575．00 \& 6.41 \& 1,92 \& 32.01 \& 9.76 \& 00 \& \& \& \& 5．41－－01 \& E＋0 \& 1．61E－01 \& 5．92E－01 \& 181E－C \& 5.92 －01 \& \& 5．922－01 \& 2．044－02 \& ．93E－02

\hline ${ }_{\text {Rcio }}$ \& ${ }^{\text {Anguil RCco }}$ D1 1 M 2 2－1 \& TM2 \& 50616．5 \& 5043258 \& ${ }^{62270}$ \& ${ }^{122000}$ \& 36.58

3658 \& 3．00 \& 0．91 \& | $13,555.00$ |
| :--- |
| 1,57500 | \& ${ }_{6}^{6.41}$ \& ${ }^{1,920.477}$ \& ${ }^{32001}$ \& ${ }^{9.766}$ \& ${ }^{6650.00}$ \& \& －0．0e 0 \& － \& 0．00E＋＋00 \& \& \& － \& － $0.00 \mathrm{C}+00$ \& O．0．0e＋00 \& O．00E＋00 \& 0．00E＋00 \& － \& ．OOE +0

\hline Rcto \& Anguil RCTo－ $11 \times$ M2 2 －3 \& TM2 ${ }^{\text {TM }}$ \& 506180．17 \& ${ }_{\text {5043264．1 }}$ \& － 62.70 \& ${ }^{1220000}$ \& ${ }^{36.58}$ \& 3.00
3.00 \& ${ }_{0.91}$ \& ${ }^{133,555.00} 1$ \& 6.41
6.4 \& \& ${ }_{32.01}^{3201}$ \& ${ }_{9.76}^{9.76}$ \& ${ }_{655000}^{65000}$ \& $\underset{\substack{616.48 \\ 616.48}}{604}$ \& \& $0.00 E+00$ \& \& \& \& \& \& $1.66 E+00$ \& \& $1.66 \mathrm{t}+00$ \& \&

\hline Rсто \& 12CTO 1 1／M2－4 \& TM2 ${ }^{\text {2－09 }}$ \& 88.76 \& 432267 \& 62.70 \& \& 36.58 \& 3.00 \& 0.91 \& 13，575．00 \& 6.41 \& ${ }_{\text {i，920．47 }}$ \& 32.01 \& 9.76 \& ${ }_{650.00}$ \& 616.48 \& OEF＋00 \& OOE＋00 \& ．00E＋00 \& \& E＋0 \& \& \& \& \& E＋00 \& \&

\hline RCTo \& Anguir Rcto D1x ${ }^{\text {2 }}$ 2－5 \& TMM ${ }_{\text {TM }}$ \& 506060.52 \& ${ }^{504332595.2}$ \& 62780

6270 \& | 120．00 |
| :--- |
| 120.00 | \& ${ }^{36.58} 36$ \& 3.00

3.00 \& 0.99

0.91 \& | $13,555.00$ |
| :--- |
| $13,57.00$ |
| | \& 6．41

6.41 \& $1,920.47$
$1,920.47$

1 \& \begin{tabular}{|}
3201

3201

3201

 \&

$9.76{ }^{9.76}$

\hline
\end{tabular} \& 655000

65000 \& 616.48
616.48
6 \& － 0 \& 0．000 \& \& \& \& \& \& 0．00e＋00 \& \& \& $0.00 \mathrm{E}+00$
$0.005+00$ \&

\hline Rcto \& D1XM3－VOC $1388-2.20$ \& Tin3 3 －2 \& 118．88 \& \& ${ }_{62270}^{627}$ \& 20．00 \& 36．58 \& 3.00 \& 0.91 \& \& ${ }_{6.41}^{6.41}$ \& \& 32.01 \& ${ }_{9.76}$ \& 50．00 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline RCTo \& 43－VOC 1383.320 \& TM3－ 03 \& 023．5 \& 5043200 \& ${ }_{6}^{6270}$ \& 200 \& \& 3.00
3 \& 0.91 \& ．00 \& 6.41 \& 1.1920 .47 \& 32.01 \& 9.76 \& ${ }^{6550.00}$ \& ${ }^{616.48}$ \& ＋00 \& $0.00 E+00$ \& 0．00E＋00 \& \& \& \& \& \& \& \& \&

\hline \& O1XM33VOCCI38．4．20 \& \& 32.72 \& 5043203．8 \& ${ }^{62.70}$ \& \& ${ }_{\text {cose }}^{56.58}$ \& 3.00

3.00 \& ${ }^{\text {a }}$ ．91 \& 575．00 \& ${ }_{\text {c }}^{6.41}$ \& （120．47 \& | 32.01 |
| :---: |
| 32.01 | \& ${ }_{9.76}$ \& 655000 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Equipment Type	Equipment ID	Stack ID	${ }_{\text {UTM }}^{\text {U－sing }}$	UTM	Elevation	Stack Height		Stack Diameter		Adiusted Stack Fow Rate		Stack velocity			Stack Temperature		Nox		co		PM		PM_{10}		PM_{25}		SO_{2}	
						（t）	（m）	（ti）	（m）	（tismin）	（ms）	（ttmin）	（tis）	（ms）	（F）	（k）	（blhr）	（tp）	（blhr）	（tp）	（blhr）	（py）	（blhr）	（pp）	（blhr）	（py）	（blhr）	（tp）
	F15－VOC－138－2－10			5037747.4	69.40	68.00	${ }^{20.73}$	1.25	0.38	3，400．00	${ }^{1.60}$	${ }^{2,770.57}$	${ }^{46.18}$	$\stackrel{14.07}{1.97}$	${ }^{655000}$	${ }^{616.48}$	1．98E01	8．59E01	1.86 ＋500	8．16E＋00	1．69E－02	6．51－02	1．69E－02	${ }^{6.51 E-02}$	1.698 .02	6．55］－02	5．10E－03	2，238－02
\％	F15－VOC－138．3．30		508886．63	5037732．4	cose $\begin{gathered}69.40 \\ 690\end{gathered}$	68.00 68.00	${ }_{2073}^{20.73}$	－1．50	0．42	（00．00	${ }^{1.60}$	${ }_{\text {2，}}^{2,290.82}$	38．18		555000	－616．48												
RCto	F15－VOC－138－1－10	TOFF5－01	508898.87	${ }_{5037746.7} 5$	${ }_{69.40}$	688．00	${ }_{20.73}^{20.73}$	${ }_{1.17}$	${ }^{0.36}$	${ }^{3} \mathbf{3 , 4 0 0 . 0 0}$	${ }_{1.60}^{11.60}$	－	${ }_{52.89}$	${ }^{16.12}$	${ }^{6550.00}$	${ }_{6}^{616.48}$	1．96－－01	8．595－01	${ }^{1.35 E-01}$	ci．ceetoo	li．69E－02		－ $1.695-0.02$	c．e．5E－02	li．69E－02	C．51E－02	5．10－：03	$2.235-02$
Rсто	F15－VOC－138－4．10	TOFF1504	508988.04	5037707．5	69.40	68.00	${ }^{20.73}$	1.50	0.46	${ }^{3,400.00}$	1.60	1，924．0	32.07	${ }^{9.77}$	${ }^{650.00}$	616.48	1．96E	8．59－01	$1.35 \mathrm{E}-01$	5．93E－01	1．69E－02	6．51E－02	$1.96 \mathrm{E}-22$	6.51	1．69E－02		5．10E－03	
（exsc	${ }_{\text {F20－Scli }}$	SCOB 01	506735．04	5043699．3 5043878.6	62.70 62.70	99.00 96.00	${ }_{29.26}^{29.26}$	${ }_{\text {l }}^{\text {3．50 }}$	1.07 1.07	35.750 .00 35.75000	16.87 16.87		－61．93 ${ }_{6}^{61.93}$	18.88 18.88 18	（64．99	${ }_{291.48}^{298}$	1．29E＋＋00	4．711＋00	2，${ }_{2}^{2.425+\text {＋00 }}$	8．855＋00	${ }_{2.55 \mathrm{E}-1}^{2.51}$	9，36E－01	2．515－01	${ }_{\text {a }}^{9.2115-01}$	2．46E－01		${ }^{1.09 E} 1.001$	3．99E－01
Exsc	Scli33－3．111	SCDBEO3	506729.16	504370.8	62.70	96.00	${ }_{29} 2.26$	${ }_{3.50}$	1.07	35，750．00	16.87	${ }_{3,717.78}$	61.93	18.88	64.99	291.48	1．29E＋00	4.71	${ }_{2.422+00}$		2．55E－01	9．36E－01	2.51 1－01	9.21 E－01	2.46 E－01	${ }_{8.98 E-01}$	1.095 －01	
ExSC	Combined Modeling Stack	SCDA 01	508882.28	5043833．3	62.70	96.00	29.26	${ }^{3.50}$	1.07	16，500．00	7.79	1，714．98	28.58	8.71	64.99	291.48	8．611－01	$3.14 \mathrm{E}+00$	$1.622+00$	$5.90 \mathrm{E}+0$	1．70E－01	6．24－01	1.68 E－01	6．14－01	1.64 －01	$5.98 \mathrm{E}-01$	7．298－02	2.66 －01
Exsc	mbined Modeling Stack	SCDA＿02	506882.28	5043821.7	62.70	96.00	29.26	${ }^{3.50}$	1.07	16，500．00	${ }^{7} 779$	1，714．98	${ }^{28.58}$	${ }^{8.71}$	${ }^{64} 499$	291.	8．61－01	3．14E	$1.622+00$		1．70E－01	6．24－01	1.68 E．01	6．14E－01	1．64－01		7.298 .02	$2.66 \mathrm{E}-01$
Exsc		SCDA 03	506882.36	${ }_{\text {50438432．2 }}^{5043}$	62.70 62.70	99000 70.00	${ }_{21,34}^{29.26}$	3．50 4.00	1.07 1.22 1.12	16.5000 .00 32.50000	7.79 15.34	$1,17414.98$ 2．58627	${ }_{4}^{28.158}$	8.71 13.14	析64．99	${ }_{2}^{2991.48}$		3．14E＋00	－ 1.1 .22 ＋00		1．77EE．01	－ $\begin{aligned} & \text { 6．24－01 } \\ & 6.677-01\end{aligned}$	li．68－01	c．ine－01	li．fer－01	5．98E－01	li．2eE．02	2．66E－01
ExSC	DiCoscli33－2－100	${ }_{\text {scocico }}$	506697.17	5033427.4	62.70	70.00	${ }_{21.34}$	4.00	${ }_{1.22}$	${ }_{32,500.00}$	15.34	${ }_{2,586.27}$	43.10	13.14	64.99	291.48	9．10E－01	3.32 E＋00	1.711 ＋00	${ }_{6.235+00}$	1．81E－01	6．67－01	1.78 1－01	6．54E－01	1．73E－01	6．32E－01	7．70E－02	2，
Exsc	D1C－SC133．3．100	scoc＿03	506733．15	5043227.6	62.70	70.00	21.34	4.00	1.22	$3^{22,5000.00}$	15.34	2，586．27	43.10	13.14	64.99	291.48	9．10－01	3．32E＋00	$1.711+00$	${ }^{6} 23 \mathrm{EF+00}$	1．81E－01	6．67－01	1.78 E－01	$6.54 \mathrm{E}-01$	$1.735-01$	6．32－．01	7．708－02	2．81E－0
Exsc	D1C．SC133．4．100	ScDC 04	506788.15	5043427.6	62.70	70.00	21.34	4.00	1.22	${ }^{32,5000.00}$	15.34	${ }^{2,5886.27}$	43.10	13.14	64.99	291.48	9．10E－01	$3.32 \mathrm{E}+00$	$1.711+00$	6．23E＋00	1．81E－01	6．67－01	$1.78 \mathrm{E}-01$	6．54－01	1．73E－01	6．32－．01	7．70E－02	2．81E－01
Exsc		${ }_{\substack{\text { SCRB } \\ \text { SCRE } 10102}}$	506726．97	${ }_{\text {5043654．8 }}^{504363}$	62.70 6270	95.00 9500	${ }_{28.96}^{28.96}$	${ }_{2.67}^{4.00}$	1.22 0.81	${ }_{\text {20，}}^{29,250.000}$	$\begin{array}{r}13.80 \\ 13.80 \\ \hline\end{array}$		38.79 88.79	11.82 26.60		2991．48	4．09E－01	1．49E＋＋00	7．68E－01	$2.80 ¢+00$ $2806+00$	8．51E．02			${ }^{3.004 E-01}$	7．799－02	2．88E－01		（1．27E．0．
ExSC	R81－SC－133－8．100	scrBi－03	506734.66	5043654.5	62.70	${ }_{95.00}$	${ }_{28.96}$	4.00	1.22	35，750．00	16.87	${ }_{\text {2，844，}}$	47.41	14.45	64.99	291.48	4．09E－01	$1.49 E+00$	7．68E－01	$2.806+00$	1．17E－01	4．55E－01	1.02 －01	${ }_{3}^{3} .90 \mathrm{E}-01$	7．800－02	2.85 －01	${ }_{\text {3．47－02 }}$	（1．27－0．
Exsc	R1－SC－133．4．100	SCRB1－04	506834.89	5043630.8	62.70	95.00	28.96	4.00	1.22	${ }^{29,250.00}$	13.80	${ }^{2}, 327.64$	38.79	11.82	64.99	291.48	4．09－01	$1.49 E+00$	$7.68 \mathrm{E}-01$	$2.80 \mathrm{EF}+0$	8．51E－02	3．16E－01	8.24 －02	3．04E－01	7．799－02	2．84－01	3．477－02	1．277－01
ExSC	R11－SC－133．6－100	SCRB1－06	506632.54	5043628．8	62.70	95.00	28.96	2.67	0.81	${ }^{29,2950.00}$	13.80	5，237．19	87.29	26.60	64.99	291.48	4．09－01	$1.49 E+00$	7．88E－01	$2.800+00$	8．511－02	3．16E－01	8.24 －02	3．04E－01	7．79E－02	2．84E－01	3．47E－02	1．27E－01
Exsc		ScRB1－05	5063357．12	5043282899		95000 85.00	${ }_{25.91}^{28.96}$	${ }_{\text {2，33 }}^{2.67}$	0.81 1.02 1	29，250．00 13,00000	13.80 6.14	5，237．19 li，48969	${ }_{2}^{87.83}$	${ }_{7.57}^{26.60}$		2991．48	4．09E－01		7．．88E－01	2．80E＋00	ctiskE．02			－ $3.045-01$	7．799－02	2．84E－01	3．47E－02	1．27E－0．1
ExSc	4 －5C133－2	SWR44 02	500369.56	5043022.8	62.70	${ }_{85} 5$	25.91	${ }_{3.33}$	1.02	13，000．00	6.14	1,48969	${ }_{24.83}^{24,}$	7.57	64．99	291.48	1．75E－01	${ }_{6}$ 600－01	1．75E－02	6．40－02	5．98E－03	2．622－02	4．76E－03	5．32E－02	2．79E－03	4．455－02	1．12E－01	4．08E－01
Exsc	RP1－SC133－1－100	SCRP1 ${ }^{\text {a }}$	508778.15	504358	62.70	85.00	25.91	4.63	1.41	26，000．00	12.27	1，547．60	25.79	7.86	64.99	291.48	1．23E－01	4．50－01	2.32 E－01	8．45－01	2．99E－02	1．14－01	2．74－02	1．03E－01	2．35E－02	8．58E－02	1．055－02	3．82－02
Exsc	RPT－SCCI33－2－100	SCRP1 1 O2	506747.35	5043387.1	${ }^{62270}$	85.00 8500	${ }_{2591}^{2599}$	${ }^{4.63}$	${ }^{1.41}$	${ }^{26.0000 .00}$	${ }_{12}^{12.27}$	${ }^{1,5477.60}$	${ }_{2}^{25779}$	7.86 8.85	${ }^{64.99}$	2991．48	1．23E－01	4．50E－01	2， $2.32 \mathrm{E}-01$	8．455－01	2，99E－02	1．14－01	2．74E－02	1．03E－01	2，355－02	8．58E－02	1．055－02	cese
cexsc		SCOCD 01	506493．92	5043319．7		85000 8900	${ }_{27.13}^{25.91}$	${ }_{\text {a }}^{3.3} \mathbf{4 . 6 3}$	＋1．02	27，300．00 32.50000		（1，64．4．488	${ }_{\substack{27.08 \\ 6207}}$	8.25 18.92	64．99	299.48 29148 1	le	4．50－01	2．32E－01	8．44E－．1 $6.235+00$	li．15E－02	－ 1.2150 .01	li．	6．54E－01	2，	le．	7．70E－02	
Exs	－133－2－100	SCOD－02	506494.8	${ }_{5043323}$	62.70	89.00	27.13	${ }_{3.33}$	1.02	32，500．00	15.34	3，724．23	62.07	18.92	64.99	291.48	9．10－01	3．32E＋00	$1.7115+00$	6．23E 23	1．811－01	6．67E－01	1.178 E－01	6.54 E－01	1．73E－01	6．32－01	7．70E－02	2．81＝01
Exs	Sc．${ }_{\text {Sc－13－3．1．100 }}$	SCOD ${ }_{\text {O3 }}$	506998．02	5043421．2	62.70 62.70	89.00 89.00	${ }_{27.13}^{27.13}$	${ }_{\text {c．}}^{\text {3，33 }}$	${ }_{1}^{1.02}$		15.34 15.34			（18．92	64．99	${ }^{291.48}$	9．10E－01	－ 3.32 ¢	1．71F＋00		1．81E－01	6．67－01	1．78E－01	6．54E－01	， 1.73501	${ }_{\text {coser }}^{6.32 \mathrm{E}-01}$	7．78E－02	
exxc	Sc－133－5．5100	SCDD－05	505503.96	504324	${ }_{62270}$	${ }_{89} 9.00$	${ }_{27.13}^{27.15}$	${ }_{3.33}$	1.02	32，500．00	${ }^{15.54}$	－	${ }_{62.07}^{6207}$	${ }^{10.92}$	64.99	${ }^{291.48}$	9．10－0．	3．32E＋00	1．7111＋000	ciele	1．81E－01	－ 6.67 ¢7－01	${ }^{1.785-01}$	${ }_{6}^{6.545-01}$	1．73E－01	${ }_{\text {a }}$	7．70E－02	2．81－01
c	SCC－135－6．100	Scodoob	506508.76	50432326.4	${ }^{62270}$	89.00	${ }^{27.13}$	${ }_{3}^{3.33}$	${ }_{1}^{1.02}$		${ }^{153.34}$		${ }^{62.07}$	18．92	64．99		9．10E－01	${ }^{3.32 E+00}$	1．71E＋00		1．815－01	6．67－01	1.1785	6．54E－01	1	${ }^{6.322-01}$	7．70E－02	2．81E．01
	（ex	SWMIT－02	506307．36	${ }_{5043325.1}^{504328}$	${ }^{622.70}$	122000 12000	${ }_{\text {cher }}$	${ }_{6}^{6.17}$	＋1．888	${ }_{71,250.00}$	${ }_{3}^{33.63}$		${ }_{\text {cke }}^{39.76}$	${ }_{\text {l }}^{12.12}$	64.99 64.99	${ }^{2991.48}$	1．90E＋＋00			li．14t＋01	li．70E－01		li．65－01	${ }_{\text {coseme }}^{6.005-01}$	li．fe－01	S．09E－01	${ }^{1.36 E-01}$	
Exsc	D1X－SC 133.3 .300	SCM1－01	5002922.25	5043318.6	62.70	120.00	36.58	6.17	1.88	71，250．00	33.63	2，365．58	${ }^{39} 76$	12.12	64.99	291.48	$1.90 \mathrm{E}+00$	$7.26 E+00$	3．06E＋00	1.14 E＋01	$3.60 \mathrm{E}-01$	$1.82 \mathrm{~F}+00$	3．54－01	$1.795+00$	3．45E－01		$1.368-01$	5．05E－01
Exsc	D1X－SC133．4．00	SCM1－02	506288.58	5043313.5	${ }^{62.70}$	${ }^{120.00}$	36.58	${ }^{6.17}$	1.88	71，250．00	${ }^{33.63}$	2，385．58	${ }^{39976}$	12.12	64.99	291.48	1．90E＋00	$7.26 E+00$	$3.066+00$	$1.14 E+01$	3．60E－01	$1.82 \mathrm{E}+00$	3．54E－01	$1.79{ }^{\text {P }}$	3．455－01	$1.756+00$	1．36E－01	$5.055-01$
		${ }^{\text {SNM }}$ S 203	506153．88	5003255．6	${ }^{622.70}$	120.00 12000	${ }_{36.58}^{36.58}$	${ }_{6}^{6.17}$	1.888 1.88	71，250．00	${ }_{33.63}^{33,63}$	（e，${ }_{\text {2，385．58 }}^{2,3658}$	${ }_{\substack{39.76 \\ 39.76}}$	（12．12	64.99 64.99	${ }^{2991.48}$	1．906＋＋00		3．10E＋00	l $1.14+5+0$		－	－ $1.685-0.01$	${ }_{\text {a }}^{688 \mathrm{e}-01}$	2．59e－01		${ }_{\text {l }}^{1.375-01}$	5．37－0．01
Exsc	D1XM2－SC133－3．300	SIMZ－02	508147	5043252．9	62.70	120.00	36.58	6.17	1.88	71，250，	33.63	2，385．58	39.76	12.12	64.99	291.48	3．17E＋00	1．21E＋01	5．100＋00	1.190 E＋01	$2.74 E-01$	$1.01 \mathrm{E}+00$	2．68－01	$9.88 \mathrm{E}-01$	2．59－01	$9.48 \mathrm{E}-01$	2．277－01	8．41－01
Exsc	D1XM2－SC133－4．00	SIM2－03	506133.96	5043247．2	62.70	120.00	36.58	6.17	1.88	71，250．00	33.63	2，385．58	39.76	12.12	64.99		3．17E＋00	1．211＋0		E＋0	44－01	1.01 E＋00	2.688 －0	$9.88 \mathrm{E}-1$	$2.599-01$		$2.27 \mathrm{E}-01$	8.41 －01
Exsc	D1XM2－SC133－5．00	SIIM2 04	50612235	5043242．5	62.70 6270	120.00 12000 1		${ }_{6}^{6.17}$	（1．88	$71,250.00$ 71,25000	－ $\begin{aligned} & 33.63 \\ & 3363\end{aligned}$	（2，385．58		－ 12.12	64．99	2991．48	3．17E＋00	1．211＋01	5．10¢＋00	1．90E＋01	${ }^{2} 2745$	1．011 1	2．685－01	${ }^{9.888-01}$	2．59E－0		2．27E－01	8．41E．01
	－	SIM3 02	505991.04	5043188.6	62.70	120.00	36．58	${ }_{6}^{6.17}$	＋1．88	71.250 .00		2，385．58	${ }^{76}$	12.12	64．999	${ }_{2} 29.148$	$2.545+00$	9．68E＋00	－ 4.08 ebtoo		${ }_{2}^{2} 222 \mathrm{E}-1$	8．24－01	2．16E－01	7．999－01	2．07E－01	7.588 .01	${ }_{\text {1．81－01 }}^{1.81}$	ceme
Exsc	D1XM3 3 －SC133－3．00	SIM3－03	5059884.47	5043185.6	62.70	120.00	36.58	6.17	1.88	71，250．00	33.63	${ }_{2}^{2,385.58}$	39.76	12.12	64.99	291.48	$2.544+00$	${ }_{9} .68 \mathrm{E}+00$	4．88E＋00	$1.52 \mathrm{E}+01$	$2.22 \mathrm{E}-01$	${ }_{8.24-01}$	2．16－01	$7.99 \mathrm{E}-01$	2．07E－01	7.58 E－01	1．811－01	6．73E－01
Exxc		Silm ${ }^{\text {S }}$	505977．82	5043183 504388	－6270	129.99 12999	${ }_{\text {39，}}^{392}$	${ }_{6}^{6.17}$	1.88 1.88 1	${ }^{71,250.00}$		（2，385．58	${ }_{\substack{3976 \\ \text { 3，76 }}}$	－ 12.12	64.99 6.499	2991．48	2．54t＋o0	9，68E＋＋00	4．088＋500	1．152＋001		8．24－01		7，99E－01	2．07－01	7．58E－01	1．817－01	ci．73E．01
		$\mathrm{SCM}^{\text {S }}$	505977．18 500688.7	50429892．4	${ }^{622.70}$	${ }_{\text {129，99 }}$	${ }_{39,62}^{39.62}$	${ }_{6}^{6.17}$	1.888 1.88	71，250．00	${ }_{33.63}^{33,63}$	（2，385．58	${ }_{\text {chers }}^{39.76}$	12	64．999	${ }_{29148}^{29148}$	2．544＋000	2，	4， $4.387+00$	$1.22+0+1$ 5．00 +00		－	2．1．18E－01					
Exsc	D1XM4．5C133．2－20	SCM4＿02	508069.8	5042969.6	62.70	129.99	39.62	6.17	1.88	71，250．00	${ }_{33.63}$	${ }_{2}^{2,385.58}$	${ }^{39} 9.76$	12.12	64.99	291.48	7．30E－01	$2.66 E+00$	$1.37 \mathrm{E}+00$	5.00 F＋00	$1.545=01$	5．74－01	$1.188 \mathrm{E}-01$	$5.48 \mathrm{E}-01$	$1.398-01$	$5.07 \mathrm{E}-01$	6．188－02	2， $2.26 E-0.1$
	MSSBCSC133－1	SCM4 ${ }^{\text {SCMET }}$	506070.9 506419.14	${ }_{\text {5043153．3 }}^{5042966}$		$\begin{array}{r}129.99 \\ 144.00 \\ \hline 1\end{array}$	${ }_{43.89}^{39.62}$	${ }_{5.83}^{6.17}$	1.88 1.78 1	71，250．00	33.63 33.63	${ }_{\text {l }}^{2,666.01}$	${ }_{4}^{39.76}$	（12．12	64.99 64.99	${ }^{2991.48}$	7．30－01	${ }_{\text {2，}}^{2.66 E+0}$	－	5．005．00 $4.27-02$	－ $4.505 \mathrm{E}-02$	－	－	S．	${ }_{\text {2，50－02 }}^{1.30-01}$	S．		2．28E－01
Exsc	MSB－SC133－2	SCMB1－02	506420.41	5043143	62.70	144.00	43.89	${ }^{5.83}$	1.78	71，250．00	33.63	2，660．01	44.43	13.54	64.99	291.48	1．177－01	4．27－01	$1.17 \mathrm{~F}-02$	4．27－02	4．05E－02	1．59E－01	${ }^{3.46 E-02}$	$1.33 \mathrm{E}-01$	2．50E－02	9．15E－02	7.468 －02	$2.72 E-01$
Exsc	MSB－SC133－3	SCMB103	506425.25	5043133．9	${ }^{62.70}$	144.00 73	${ }^{43.89}$	${ }_{5}^{5.83}$	${ }_{1}^{1.78}$	71，250．00	${ }_{33.63}$	${ }^{2,666.01}$	${ }^{44.43}$	${ }_{1}^{13.54}$	64.99	291.48	1177E－01	4．27－01	$1.17 \mathrm{~F}-.02$		4．05E－02	1．595－01	3．46E－02	1．33E－01	2．50E－02	$9.15 \mathrm{E}-02$	7.468 －02	2，72E．01
（exsc			508970．09	5037706．6	69．40 69.40	73000 73.00	${ }_{2225}^{22.25}$	5．00 5.00	1.52 1.52	39,000000 39.00000	18.41 18.41 18	$1,996.25$ $1,986.25$	${ }_{\substack{33.10 \\ 33.10}}$	10.09 10.09	64.99 64.99	${ }_{291.48}^{291.48}$	l．7．46E－01 $7.46 \mathrm{E}-01$	2，	li．teeon	${ }_{\text {2，72e－01 }}^{2.71}$	${ }^{1.695-01}$	c．e．e5－01	li．66E－01	cole 6	－ $1.600-01$	5．8．83E－01	4．76EE－01	－ $1.7445+00$
Exsc	F15－SC7－1－3	SCF15－03	50894.71	503772.6	69.40	73.00	22.25	5.00	1.52	55，250．00	26.08	${ }_{2}^{2,813,86}$	46.90	14.29	64.99	291.48		2．72E＋00	7．46E－02	2．72E－01		6．42－01	1.88 E－01	6．19E－01	$1.600-01$	5．83E－01	4．76E－01	1．74E＋0
Exsc	F15－SC7－1－4	SCFF1504	508924.01	5037732.8	69.40	73.00	22.25	5.00	1.52	55，250．00	26.08	${ }^{2,813.86}$	46.90	14.29	64.99	291.48	7．46E－01	2．72E＋00	$7.46 \mathrm{E}-02$	2．72E－01	$1.735-01$	6．42－01	$1.68 \mathrm{E}-01$	6．19E－01	$1.60 \mathrm{E}-01$	5．83－01	4．76E－01	$1.74 \mathrm{E}+\mathrm{C}^{\text {a }}$
cexsc			508911．28	5037740．1		73000 7300	${ }_{2225}^{2225}$	5．00 5.00	1.52 1.52	$39,000.00$ 39.000000 3	18.41 18.41 1	1，986．25 $\substack{1,98625}$	33.10 3.10	10.09 10.09 109	64.99 64.99	${ }_{2}^{291.48}$	7．46E－01		7．46E－02	2，77E－01	${ }^{1.69 E-01}$		1．66E－01	${ }_{\text {cole }}^{6.005-01}$		5．8．3E－01	${ }^{4.76 E-01}$	－ $1.74 \mathrm{CaF+00}$
EXAM	ined Modeling	AMDC－01	506695.47	503341.2	62.70	65.00	19.81	2.17	0.66	11，70000	${ }_{5.52}$	－	52.89	16.12	${ }_{64.99}$	291.48	${ }^{1.44-01}$	5．25E－01	2．70E－01	$9.855-01$	3．76E－02	1．65E－01	$2.811-.02$	$1.03 \mathrm{E}-01$	2．74－02	1.00 E－01	2.57 －03	（1．66－03
Exam	bined Modesing	AMDC＿02	506898.1	504341.1	62.70	65.00	19.81	2.17	0.66	11，700．00	5.52	3，17，30	52.89	16.12	64.99	291.48	1．44－01	5．25－01	2.70 E．01	9．85E－01	${ }^{3.76 E-02}$	1．65－01	2.81 －．02	1．03E－01	2．74－02	1．00－－01	2.577 －03	9．66－03
${ }_{\text {EXXA }}$	mbined Mootilin Stack	${ }^{\text {AMMCCO }}$	506701．33	${ }_{\text {5043411．4 }}^{5043111}$		6500 6500	${ }_{1981}^{1981}$	2.17 2 2	${ }_{0}^{0.66}$	11，700．00	（5．52	（3，173．30	52.89 528	${ }_{\text {16，}}^{16.12}$	64.99 6499	${ }_{29}^{291.48}$	${ }^{1.44 E-01}$	5．25E－01	2， 270 E．01	9．855－01	${ }^{3} .76 E_{\text {E－02 }}$	1．655－01	2．81E－02	1．03E－01	2．74－02	1．00E－01	${ }_{2}^{2.577-03}$	9， 9 96E．03
$\underset{\substack{\text { EXXAM } \\ \text { EXAM }}}{\text { end }}$	Cominee Wodeting stack	AMDC 05	506707．26	504311.2	${ }^{62270}$	65500	19.81	${ }_{2}^{2}, 17$	0.66	11，700000	${ }_{5.52}$	${ }_{3,173.30}$	${ }_{52} 528$	16．12	64．99	291.48	1．44E－01	5．25E－01	${ }_{2}^{2} 700$－01	${ }_{9.855-01}^{\text {abe }}$	${ }_{\text {3，76E－22 }}$	1．65E－01		1．03E－01	2．74－02	$1.1005 \cdot 01$	${ }_{2.57-03}$	9．36－－3
Exam	Combined Modeting Stack	AMRR1－AM	506629．8	5043628.4	62.70	95.00	28.96	3.00	0.91	40，955000	${ }^{19.33}$	5，793．24	96.55	29.43	${ }^{64.99}$	29.48	8．63－01	Sele		5．911 +00	2．20E－01	－963－01	1．99002	6．18E－01	ci．fe－01	6．00E－01	${ }^{1.545-02}$	5．62－02
$\substack{\text { EXAM } \\ \text { EXAM }}_{\text {exam }}$		${ }^{\text {AMRPP }}$ AMDO 01	506690.2 506455.7	${ }_{\text {5043308．8 }}^{504332.6}$	－ 62.70	8501 10300	${ }_{3}^{25.99}$		1.91 0.91		4．390	4283.39 1,2439	${ }^{2.19}$	¢， 2.32 18	64．99	${ }^{2991.48}$	9．08E－01	cese	li．65－01				li．86－02		li．76E－02	cisele	l． $7.72 \mathrm{E}-03$	（esme．en
EXAM	Combined Modeling Stack	AMDD＿02	506881.52	5043406．8	62.70	103.00	${ }^{31.39}$	2.98	0.91	${ }^{8,666.66}$	4.09	$1,243.29$	${ }^{20.72}$	${ }^{6.32}$	64.99	291.48	1．36E－01	4．96E－01	2.55 －01	9.30 －01	2．81E－02	1．23E－01	2.622^{-02}	9．59E－02	2．59E－02	$9.44 \mathrm{E}-02$	2.42 E －03	8．844－03
EXAM	bined Mooding Stack	${ }^{\text {AMMDD }}$ O3	506477．28	5043304．9	${ }^{62270}$	103．00	39	2．988	0.91	${ }^{8.666 .66}$	4．09	－1，24329	${ }_{\text {cken }}^{20.72}$	－6．32	64．99	2991．48	1．36－01	4．96E－01	2． $2.55 \mathrm{E}-01$	${ }^{9.305-01}$	2，81E－22	1．23E－01	， $2.627-02$	9．598－02	2，598－02		2．42E－03	
$\underset{\substack{\text { EXAAM } \\ \text { EXAM }}}{\text { end }}$		AMDD 05	506602．26	5003281．5	${ }^{622.70}$	110300	${ }_{31.39}$	${ }_{2.98}^{2.98}$	0.91	${ }_{21,125.00}^{21,15000}$	9.97	（e，	${ }_{50.51}^{50.51}$	（15．40	64．99	${ }^{2991.48}$	1．70e－01	C．20－01		1．16e＋00	l $7.345=02$	cole		${ }^{1.288-01}$	（ex	1．188－01	${ }^{3}$	
Exam	bined Modeling sia	AMDD－06	506603.37	50432798	62.70	103.00	31.39	2.98	0.91	21，125．00	9.97	3，030．52	50.51	15.40	64.99	291.48	1．70－01	6．20－01	3．19E－01	．16E＋00	7．34E－02	3．21－01	3.47 －02	28E－01	3．24－02		3．035－03	1．111E－02
EXA	bined Modeding	AMDD＿07	506604.53	504327.9	62.70	103.00	31.39	2.98	0.91	21，125．00	9.97	3，030．52	50.51	15.40	64.99	29.48	1．70EE01	6．20E．01	3．19E－01	$1.166+00$	7．34E－02	3．21－01	3．47－02	1．28E－01	3．24E－02	1．18－01	3．038－03	1．1112－02
	（1x－SCCI42－1．11	AMM11－01	506346．36	5043324．1	62.70 62.70	120.00 120.00	－36.58 36.58	4．50 4.50	1.37 1.37	$30,000.00$ 30.00000	14.16 14.16	$1,886.28$ 1.886 .28	31.44 31.44 31	${ }_{9.58}^{9.58}$	析64．99	${ }_{2}^{2991.48}$	5．41E－01	1.977 1．900	1	$3.70+00$ $3.70 E+$ ¢	1．19E－01	5．19E－01	1．055－01	li．tere－01	$\xrightarrow{1.035-01}$	li．76E－01	9．64E－03	
EXAM	D1X－SCC122－3－11	AMM1－03	506343.08	5043332.1	62.70	120.00	${ }_{36.58}$	4.50	${ }_{1.37}$	30，000．00	14.16	${ }_{1}^{1,886.28}$	31.44	${ }_{9.58}$	64．99	291.48	5．411－01	$1.975+00$	$1.015+00$	3．70¢＋00	1．19E－01	5．19E－01	$1.055-01$	${ }_{\text {3，83E－01 }}$	1．03E－01	${ }_{3}^{3} 768$－01	${ }_{9}^{9.64 E-03}$	（enceen
Exam		AMM12	508360.5	330．8	62.70	120.00	36.58	4.50	1.37	30，000．00	14.16	1，886．28	31.44	9.58	64.99	291.48	5．41－01	$1.97 \mathrm{E}+00$	11＋00		E－01	． 195 －01	1.05 －01	．83E－01	．033－01	－01	${ }^{64 E-03}$	3．552－02
	Scila－5．00	AMM1－20	50635.3	5043335.7	${ }^{62270}$	${ }_{122000}^{12000}$	36.58 3658 3.58	4．50	${ }_{1}^{1.37}$	$71,250.00$ 3000000 30	${ }^{33.63}$	4，479．928	74.67	－22．76	${ }^{64.99}$	291.48		$1.977+00$			1．6EE－01	7．25E－01		${ }^{\text {3，933－01 }}$		3，76E－01	${ }^{9} .648503$	3．52E－2
$\substack{\text { EXXAM } \\ \text { EXAM }}$	（1xM2－SC142－1．00	AMM2 ${ }^{\text {AMM2 }}$	506187．92	50432256．9		120.00 120.00	${ }_{\text {36．58 }}^{36.58}$	4.50 4.50	1.37 1.37 1	30,000000 30.000000	14.16 14.16	$1,886.28$ 1.886 .28 1，	隹 31.44	¢9．58 ${ }_{9}^{9.58}$	㐌64．99	${ }^{2991.48}$	4．111－01	1．506＋＋00	T．771E－01	${ }_{2}^{2.811} \times+$＋00	9．8．8EE－02	4．29E－01	7．99E－02	2．03E－01	（ $\begin{aligned} & 7.828-02 \\ & 7.822\end{aligned}$	2， $2.86 \mathrm{E}-01$	${ }_{\text {l }}^{\text {7．32E－03 }}$	2，67－：02
Exam	D14M2－SC1 122.3 .200	AMM2 203	506185.06	5043254.2	62.70	${ }^{122000}$	${ }^{36.58}$	4.50	1.37	30，000．00	14.16	1，1，886．28	31.44	${ }^{9.58}$	${ }^{64.99}$	29.48	4．111－01	$1.50 E++0$	7．71E－01		9．80E－02	4．29E－01	7．99E－02	2．93E－01	7．822－02	$2.86 \mathrm{E}-1$	${ }^{7.322-03}$	2，
（exam		${ }_{\text {AMM }}$ AMM ${ }^{\text {a }}$	505959．16	${ }_{5043172}^{504358}$	${ }^{622.70}$	${ }_{\substack{120.00 \\ 12000}}$	${ }_{\text {36．58 }}$	${ }_{6}^{4.54}$	1.197 1.99	${ }_{71,250.00}$	33.63 33.63	${ }_{\text {l }}^{\text {2，119．96 }}$	${ }_{35.33}^{74.67}$	${ }_{10.77}^{22.76}$	64．99	${ }_{29148}^{291.48}$			込			1.20						
Exam		AMM3 02	505952.13	5043169.5	62.70	120.00	36．58	6．54	1.99	71，250．00	${ }_{33.63}$	${ }_{2}$	${ }_{35.33}$	10.77	64.99	291.48	$1.01 \mathrm{E}++00$		${ }^{\text {li．gectoo }}$	6．9EE＋00	2．40E－01	1.055	${ }_{\text {l }}$	7．17E－01		7．00－0．	li．80－02	6．55E
EXXA	D1XM3－5C124－3．00	AMM3 ${ }^{\text {a }}$		退167	${ }^{62270}$	${ }^{122999}$	3，62	${ }^{6.54}$	${ }^{1.99}$	${ }^{71,2,250.00}$	33．63	${ }^{2} 2.119 .968$		10.77	${ }_{\text {c }}^{64.99}$	29.48	1．011 1.00					1．05E＋00	1．96E－01	，17E－01			cise－02	6．555－0
$\underset{\text { exam }}{\text { EXAM }}$		－	19		${ }_{62.70}$	${ }_{12999}$	22	${ }_{6.17}^{6.54}$	1.89 1.98	（e，	${ }_{13,45}$			（	${ }_{66499}^{64.99}$	${ }_{291.48}^{291.48}$			1．810e－01						．15E－02			
ExAM	mbined Modeting Stack	MM4＿02	506072.9	5042962.1	62.70	129.99	39.62	6.17	1.88	28，500．00	13.45	${ }^{954.23}$	15.90	4.85	64.99	291.48	1．65－01	6．03E－01	3．10E－01		7．94E－02	．48E－01	41E－02	1．27－．01	3．15－02	．15E－01	2．94E－03	1．07E－02

\begin{tabular}{|c|}
\hline \multicolumn{29}{|l|}{}

\hline Equipment Type \& Equipment ID \& \multirow[t]{2}{*}{$$
\begin{array}{|l|}
\hline \text { Stack ID } \\
\hline \text { AMMA_O3 } \\
\hline
\end{array}
$$} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\text { UTMM } \\
\text { ETasting } \\
\hline 05067.19
\end{gathered}
$$} \& \multirow[t]{2}{*}{UTM
Northing} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\text { Elevation } \\
(m) \\
\hline 6.70
\end{gathered}
$$} \& （ti） \& （m） \& （ti） \& （m） \& （titmin） \& （m³） \& in） \& （tIS） \& （ms） \& （F） \& （k） \& （Ibhr） \& （tp） \& （blhr） \& （tp） \& （blhr） \& （py） \& \multicolumn{2}{|l|}{（16h）（ty）} \& \multicolumn{2}{|l|}{（thar）（tov）} \& \multicolumn{2}{|l|}{（blbr）（tpy）}

\hline EXAM \& Combined Modeding Stack \& \& \& \& \& 129.99 \& 39.62 \& 6.17 \& 1.88 \& 28，500．00 \& ${ }^{13.45}$ \& ${ }^{954.23}$ \& 15.90 \& 4.85 \& 64.99 \& ${ }^{291.48}$ \& 1．65E－01 \& 6．03E－01 \& 3．10E－01 \& $1.13 \mathrm{~F}+00$ \& 7．94E－02 \& 3．48E－01 \& 3．41E．02 \& $1.27 \mathrm{E}-01$ \& 3，15E－02 \& 1．15E－01 \& 2．944－03 \& 1．07E－02

\hline heater \& RA3 Combined Modeling Stack \& \& \& \& \& 82.00 \& \& 0.50 \& 0.15 \& 193.2 \& 0.09 \& \& 16. \& 5.00 \& 300.00 \& 42204 \& $1.566+00$ \& 3．42E＋00 \& 1.31 F＋00 \& 5.38 \& 3．90E－02 \& 8．55E－02 \& 3．90E－02 \& 8．55－．02 \& 3．90E．02 \& 8．55E．02 \& 4．06E－02 \& 8．89E－02

\hline HEATER \& RS4 Combined Modeling Stack \& RS4－M \& 509591 \& 5043852．3 \& ${ }^{62.70}$ \& 60.00 \& ${ }^{18.29}$ \& 0．50 \& 0.15 \& 193.25

1935 \& 0.09 \& ${ }^{984.23}$ \& 16.40 \& ${ }^{5.00}$ \& \& \& 4.036 \& 8.82 \& \& \& \& \& \& \& \& 2．217－02 \& \& 2，29E－02

\hline Heater \& RSS Combined Modeding Stack \& $\underset{\substack{\text { Herss－M } \\ \text { Hersom }}}{ }$ \& 5059399．9 \& ${ }_{\text {5043588．1 }}$ \& ${ }_{6}^{62270}$ \& $c60006000$ \& 18.29

18.29 \& － 0.50 \& 0．15 \& | 193.25 |
| :---: |
| 193.25 |
| 1925 | \& 0.09

0.09 \& ${ }_{9}^{9844.23}$ \& （16．40 \& 5.00
5.00 \& 300.00
30000 \& ${ }_{4}^{4222.04}$ \& li．209－01 \& 1．596＋00 \& ${ }_{\text {2．59E－01 }}^{\text {6，0e－01 }}$ \& ${ }_{1.14}^{2.67}$ \& li．81－02 \& 3， \& li．81－02 \& 3．97E－02 \& li．12－02 \& － 1.969 E－02 \& － 1.985 \& 4．176E－02

\hline HEATER \& Lunch Tent Combined Modeding Stack \& HELT4－M \& 506443.2 \& 5043884 \& 62.70 \& 41.00 \& 12.50 \& 0.50 \& 0.15 \& 193.25 \& 0.99 \& \& 16.40 \& 5.00 \& 300.00 \& 422.04 \& 2815 －01 \& 6．15E－01 \& $2.36 \mathrm{E}-01$ \& 1.03 \& 7．02－03 \& 1．544－02 \& 7．02－03 \& 1.54 \& 7．02E．03 \& 1．54E－02 \& 7．300－03 \& 1．1．00

\hline HEATER \& Combined Modeling Stack \& HEALM \& 509091.1 \& 5037839 \& 69.40 \& 46.00 \& 14.02 \& ${ }^{0.50}$ \& 0.15 \& 193.25 \& 0.09 \& 984.23 \& 16.40 \& 5.00 \& ${ }^{300.00}$ \& 42204 \& 2.88 E－01 \& 6．31－01 \& $2.42 \mathrm{E}-01$ \& \& 7．21E－03 \& 1．58E－02 \& 7．21－03 \& $1.58 \mathrm{E}-02$ \& 7．21E－03 \& 1．58E－02 \& 7．50E－03 \& 1．64－0，

\hline Heater
HEATER \& Combined Modeding Stack \& $\underset{\substack{\text { Herss } \\ \text { HERA } \\ \text { M }}}{\text { M }}$ \& 506991.4
508859.9 \& 504377 \& ${ }_{6}^{62.70}$ \& 43.00
54.00 \& 11 \& 0.50
0.50
0 \& 0.15
0.15 \& $\begin{array}{r}193.25 \\ 193.25 \\ \hline 1925\end{array}$ \& 0.09
0.09 \& ${ }_{23}$ \& \(1640

c1640\) \& 5.00
5.00 \& 300.00

30000 \& ${ }_{4}^{422204}$ \& 3， \& \& （2，${ }_{\text {2，4EE－01 }}^{1}$ \& l \begin{tabular}{l}
1．155＋00

$5.411-02$

\hline

 \& \& 8．05E－04 \& li．84－03 \& li．72E－02 \&

$7.84 E-03$

$3.685-04$

\hline
\end{tabular} \& li．7eE．02 \& cine－．3 \&

\hline HEATTER \& B 4 Heater \& HEC4M \& 506404 \& 504346 \& 62.70 \& ${ }_{79} 7400$ \& ${ }^{10.408}$ \& ${ }_{0.50}$ \& 0.15 \& ${ }_{193.25}$ \& 0．09 \& \& － 16.40 \& 5.00 \& 300.00 \& ${ }_{4}^{422204}$ \& 2．94E－02 \& 6．44E－02 \& 2．72－02 \& 1.085 \& 7，35E－04 \& － \& ， \& ${ }_{1.611}^{10.03}$ \& 7，35－04 \& \& 7．65－－4 \& （1．67t．03

\hline heater \& PUB1 Heater \& HEPB1－M \& 506212.9 \& 5043427.9 \& 62.70 \& 104.00 \& 31.70 \& 0.50 \& 0.15 \& 193.25 \& 0.99 \& \& 16.40 \& 5.00 \& 300.00 \& 42.04 \& 1．47－01 \& 3．22－．01 \& $1.24 E-01$ \& 5．41－01 \& 3．88－03 \& 8．055－03 \& 3．88E－03 \& 8．05－03 \& 3．68E－03 \& 8．05E－03 \& 3．82E－03 \& 8．37－03

\hline Heater \& CUB 5 Heater \& HEC5M \& 505882 \& 5033464．8 \& ${ }^{62.70}$ \& ${ }^{73.50}$ \& ${ }^{22.40}$ \& 0．50 \& 0.15 \& 193.25 \& 0．09 \& \& ${ }^{16.40}$ \& ${ }^{5.00}$ \& ${ }^{300.00}$ \& 2．04 \& 1，47E－01 \& 3，22E－01 \& 1．24E－01 \& 5．41E－01 \& \& 8．05E－03 \& － 3.885 \& 8．005－．03 \& cose \& 8．0．05－03 \& \&

\hline ${ }_{\text {TM }}^{\text {TMXW }}$ \& \& \& 506829.12 \& 504353 \& ${ }_{\text {cher }}^{62.70}$ \& 28.00

28.00 \& ${ }_{8.53}^{8.53}$ \& ${ }_{1.25}^{1.25}$ \& \& ${ }_{4}^{4,0904.17}$ \& | 1.93 |
| :--- |
| 1.93 |
| 1.1 | \& \& ${ }_{555.60}^{55.60}$ \& 16.95

16.95
168 \& ${ }^{2550.00}$ \& \& 3．40E－01 \& 1．49E＋00 \& \& \& 2．57－03 \& － $1.13 \mathrm{E}-02$ \& 2．57－03 \& \& $2{ }_{2}^{2.577-03}$ \& \& \&

\hline TMxW \& Pub13－0x2930．0．70 \& \& 506100 \& 50433 \& 70 \& 28.00 \& ${ }^{8.53}$ \& 1.25 \& 0.38 \& 4，094．17 \& 1.93 \& \& 55. \& 16.95 \& ${ }^{2550.00}$ \& 394.26 \& 3，40E－01 \& $1.49 E+00$ \& 3．15E－02 \& \& $2.577-03$ \& 1．13E－02 \& $2.577-03$ \& 1．13E－02 \& 2．57－03 \& 1．13E－02 \& 2.577 －03 \& 込 $1.1135-02$

\hline TMXW \& PUB1C．022939．0．70 \& \& | 50611.6 |
| :--- |
| 506025.2 | \& ${ }_{\text {5043301．6 }}$ \& 62.70 \& 28.00

28.00 \& ${ }_{8.53}^{8.53}$ \& 1.25
1.25

1.25 \& | 0.38 |
| :--- |
| 0.38 | \& ${ }_{4}^{4.094 .17}$ \& 193 \& ${ }_{\substack{3 \\ 3,3366.23 \\ 3,3623}}$ \& （ $\begin{aligned} & 55.60 \\ & 5560\end{aligned}$ \& 16.95

16.95
109 \& 255000
25000 \& 39426 \& ${ }^{3} \mathbf{3} 40$ \& 1.49 \& ci．15E．02 \& 1．388－01 \& 2．577－03 \& － $1.13 \mathrm{E}-02$ \& 2．57－03 \& 1．13E－02 \& 2．577－03 \& －1．13E－02 \& ${ }_{2}^{2.57-.03}$ \&

\hline TMxW \& \& TMXW ${ }^{\text {O6 }}$ \& ${ }_{5060335.3}^{50020}$ \& 5043233．6 \& ${ }_{62270}$ \& ${ }_{28.00}^{2800}$ \& ${ }_{8.53}^{8.53}$ \& ${ }^{1.25}$ \& 0．38 \& 4．0994．17 \& ${ }_{1}^{1.93}$ \& \& ${ }_{555.60}$ \& 16．95 \& ${ }_{25000}^{25000}$ \& ${ }_{394.26}$ \& 3， 3 30E－0 \& 1.95 E＋00 \& － \& 1．38E－0 \& 2．57－03 \& 1．13E－02 \& 2．57－03 \& 1．13E－02 \& 2．57－03 \& \& 2．57－03 \&

\hline TMXW \& PUB1F－0x293－0．70 \& WW 07 \& \& 5043284，9 \& 62.70 \& 28.00 \& ${ }_{8.53}$ \& ${ }_{1.25}$ \& ${ }_{0.38}$ \& 909，17 \& 1.93 \& \& 60 \& 95 \& \& \& 3．40－．0 \& \& 3，155－02 \& 1．38E－0 \& 2．57E－03 \& 1．13E－02 \& 2．57－03 \& E－02 \& 257E－03 \& 1．13E－02 \& 2．57－03 \&

\hline TM \times W \& 2－0x2 \& \& \& \& \& 38.29 \& ${ }_{11.67}$ \& ${ }_{1}^{1.25}$ \& \& \& ${ }_{9} 93$ \& \& 60 \& 16.95 \& 5．00 \& \& \& 19EE＋00 \& （e－02 \& 38E－01 \& \& \& \& E－02 \& \& \& \&

\hline TMxW \& СВ 3 － 0×29 \& TMC3＿02 \& 506300.9 \& 50435 \& 62.70 \& 28.00 \& \& 1.25 \& 0．38 \& 1994．17 \& 93 \& \& 55.60 \& 16.95 \& 00 \& \& 即E－22 \& $155-01$ \& ． 00 E＋00 \& Et＋0 \& 0．00E＋00 \& 0．00E＋00 \& 0．00E＋00 \& 0．00E＋0 \& 0．00E＋00 \& OOE＋00 \& D．00E＋00 \& 0．00E＋+0

\hline cool \& 4－CT114 \& $\mathrm{CTCC4}_{4} 0$ \& 508401 \& ${ }^{5043365}$ \& （6270 \& ${ }_{5}^{51.00}$ \& | 15.54 |
| :--- |
| 1.54 | \& ${ }_{28}^{28.00}$ \& ${ }_{8}^{8.53}$ \& 588,154

588
5，154， \& 277．58
27758 \& ${ }_{9}^{95}$ \& （15．92 \& 4.85
4.85 \& （ $\begin{aligned} & 68.00 \\ & 6800\end{aligned}$ \& ${ }_{2935}^{29315}$ \& E＋0 \& O．OOE＋00 \& O．OOEF＋00 \& Etoo \& 1．42E－02 \& \& 4．30E－02 \& 5．07E－02 \& 1．53E－04 \& 2．24－04 \& ${ }^{\text {a }}$－00EF＋00 \&

\hline cootrow \& RAC4．CTI14－2 \& ${ }_{\text {CTC4 } 403}$ \& 5064144 \& 5043561.5 \& ${ }^{62270}$ \& 51.00
51.100 \& 54 \& 28．00 \& －8．53 \& － $5888,1547.79$ \& ${ }^{27} 77.58$ \& ${ }_{9} 955.18$ \& （1592 \& ${ }_{4.85}^{4.85}$ \& （68．00 \& \& \& \& －00etoo \& \& \& 边 \& \& 507－02 \& \& \& OOOE＋00 \&

\hline cooutow \& \& cta4 \& 506414 \& 504357 \& 62.70 \& \& 54 \& 28.00 \& ${ }_{8.53}$ \& 588，154．79 \& \& \& 15．92 \& 4.85 \& ${ }_{68.00}$ \& ${ }_{293}^{20315}$ \& 0．00E＋00 \& 0．00E＋00 \& 0．00 + ＋00 \& 0．00E＋00 \& ${ }_{1.42 \mathrm{E}-02}$ \& 6．211－02 \& 4．30－．02 \& 5．07E－02 \& 1．53E－04 \& 2．24E－04 \& ：00E＋00 \& ＋00

\hline coootrow \& RAC4．CTCT114．5 \& \& \& 5043 \& ${ }_{6}^{6270}$ \& 51.00
5 \& 析 \& ${ }^{28.00}$ \& ${ }_{8}^{8.53}$ \& ${ }_{5}^{588}$ \& ${ }^{277.58}$ \& 18 \& ＋1592 \& 4.85 \& 00 \& 2931 \& OOO \& \& \& \& ${ }^{1.422-02}$ \& 6．211－02 \& 4．30E－02 \& 5．07－02 \& 1．53E－04 \& 2．24－04 \& \&

\hline coolrow \& ${ }^{\text {RACCCCTTT14．6 }}$ \& ${ }^{\text {CrC4 } 406}$ \& 506627．31 \& 5043376．2 \& ${ }^{62270}$ \& 51.00
5

5 \& | 15.54 |
| :--- |
| 15.54 |
| 154 | \& 28．00 \& －8．53 \& － $5888,154.79$ \& $\begin{array}{r}27.58 \\ 27758 \\ \hline 2758\end{array}$ \& ${ }_{\substack{955.18 \\ 95518}}$ \& （15．92 \& 4.85

4.85 \& ${ }^{68.00}$ \& ${ }_{2035}^{29315}$ \& 0 \& 0．00e +00 \& O．OOE＋00 \& O．OOEF＋00
OOLF＋00 \& \& 退 6.211 le－02 \& len \& 507E－02 \& 1．53E－04 \& 2， 2 24E－004 \& ．00EF00 \& （eatere

\hline coourow \& \& cTC4 \& 506439.99 \& 504357 \& ${ }_{62270}$ \& 51.00 \& 15．54 \& 28.00 \& ${ }_{8.53}$ \& 588，154．79 \& ${ }^{277.58}$ \& ${ }_{9} 9551818$ \& － 15.592 \& ${ }_{4}^{4.85}$ \& （6800 \& 15 \& －000 +00 \& － \& －000＋+0 \& ．000 \& ${ }_{\text {l }}^{1.42 \mathrm{E}-02}$ \& 6．21E－02 \& 4．300．－02 \& 5．07－02 \& 1．53E－04 \& \& \&

\hline cooctow \& ${ }_{\text {RAC4C－CTT14．9 }}$ \& \& \& 504356 \& \& \& \& \& \& 588，154．79 \& \& \& 15.92 \& ${ }_{4.85}$ \& ${ }_{6800}^{60.00}$ \& ${ }_{2}^{293.15}$ \& \& 0.00 E＋00 \& \& \& 1．42E－02 \& 6．211 \& 4．30－-02 \& 5．07E－02 \& \& 224E－04 \& \&

\hline cooltow \& RAC4－CT144－10 \& CTC4 10 \& 76 \& 504357 \& \& \& \& \& \& 588，154．79 \& \& 18 \& 15.92 \& 4.85 \& 68.00 \& 293.15 \& 0.0 \& OOE \& 0．00E \& \& 1．42E－02 \& 6．211－．02 \& Se－02 \& 5．07－02 \& E－04 \& E－04 \& $0.00 E+00$ \& E＋00

\hline cool \& RAC4－CT114 \& CTC4 \& 508465 \& 5043561.8 \& 62.70 \& 51.00 \& 15.54 \& 28.00 \& 8.53 \& 58，154．79 \& 277 \& 955.18 \& 15.92 \& 4.85 \& 68.00 \& 15 \& $0.00 \mathrm{E}+0$ \& 0.00 \& 0.00 E＋00 \& \& 1．42E－02 \& 6．21E－02 \& 4．30－．02 \& 5．07E－ \& 1．53E－04 \& 2．24E－04 \& \&

\hline cooctow \& ${ }^{\text {RACCACCTT }}$（14－12 \& CrC4 \& 506656．78 \& 5043376．5 \& ${ }^{62270}$ \& ${ }_{51}^{51.00}$ \& $\begin{array}{r}15.54 \\ 15.54 \\ \hline\end{array}$ \& ${ }_{2800}^{28.00}$ \& 8．53 \& ${ }_{588,154.79}$ \& ${ }^{277.58}$ \& ${ }_{1955.18}$ \& 15．92 \& 4.85 \& 68.00 \& 293.15 \& $0.00 \mathrm{E}+0$ \& O．OOEF＋00 \& 0 \& 0．00 \& 1．42E－02 \& 6．21－02 \& 4．30E－02 \& 5．07－02 \& \& 224E－04 \& －000F＋00 \& －

\hline cooutow \& ${ }_{\text {RAC4－CTT14．13 }}$ \& CTC4 14 \& 506396.92 \& 50043620．5 \& ${ }_{6220}^{627}$ \& 51.00
51.00 \& ${ }_{15.54}$ \& 28.00 \& ${ }_{8.53}^{8.58}$ \& ＋1，059，922000 \& 500．09 \& 1，720．86 \& ${ }_{28,88}^{28.68}$ \& 8．74 \& （68．00 \& ${ }_{2}^{2933,15}$ \& \& O．OOEF＋00 \& －． \& － 0 \& ${ }_{\text {a }}^{1.422-02}$ \& \& 4．30E．02 \& 5．07E－02 \& 1．53E－04 \& \& \&

\hline cooltow \& RAC4－CT14．415 \& CTC4＿15 \& 506499.43 \& 5043625.2 \& 62.70 \& 51.00 \& 4 \& 28.00 \& 8.53 \& 1，059，622．00 \& \& $1,720.86$ \& ${ }^{28.68}$ \& 8.74 \& ${ }^{68.00}$ \& 2233.15 \& 0．00E +00 \& 0．OOE＋+0 \& O．OOE＋00 \& 0．00E＋+0 \& 1．122－02 \& e．21E－02 \& 4．30－．02 \& 5．07－02 \& 1．53E－04 \& 2．24E－04 \& $0.00+$＋0 \& O．OOEF＋00

\hline cootiow \& \& \& 506422．09 \& 50436256．2 \& ${ }^{62270}$ \& 51.00

5 \& | 15.54 |
| :--- |
| 15.54 | \& 28.00

28.00 \& ${ }_{8.53}^{8.53}$ \& ${ }^{1,0595,62.00}$ \& ${ }^{500.09} 5$ \& （1，722．86 \& ${ }_{28.88}^{28.68}$ \& ${ }_{8.74}^{8.74}$ \& 68.00
68.00 \& ${ }_{293,15}^{29315}$ \& 0．000 0 \& \& － \& 0．00E＋00 \& － \& \& 4．30－．02 \& 5．072－02 \& 1．53E－04 \& 2．24－04 \& 0．00E＋00 \& 0．00E＋

\hline cooltow \& RAC4－CT14－18 \& CTC4＿18 \& 506422.44 \& 5043610.5 \& ${ }^{62.70}$ \& 51.00 \& 15.54 \& 28.00 \& 8.53 \& 1，059，622．00 \& 500．09 \& $1,720.86$ \& 28.68 \& 8.74 \& 68.00 \& 293.15 \& $0.00 E+00$ \& 0．00E＋00 \& 0.00 E＋00 \& 0．00E＋00 \& $1.42 \mathrm{E}-02$ \& 6．21E－02 \& 4．30E－02 \& 5．07－02 \& 1．53E－04 \& $2.245-04$ \& 0.00 ¢ +00 \& $0.00 \mathrm{E}+00$

\hline coootrow \& ${ }^{\text {RAC4C－CT14－19 }}$ \& CTC4－19 \& 5062 \& 504362 \& ${ }^{6270}$ \& \& \& \& \& 1，0599622．00 \& \& \& \& \& 8.00 \& 15 \& \& 0．00E＋00 \& ．00EF＋00 \& 0．00E＋00 \& ${ }^{1.422-02}$ \& 6．21E－02 \& 4．30E－02 \& 5．07E－02 \& 1．55E－04 \& 2．24E－04 \& 0．00E +0 \&

\hline cooltow \& RAC5－CT115－1 \& CTC5501 \& 505911.75 \& 5043470.7 \& ${ }_{6270}$ \& 51.00 \& ${ }_{15.54}$ \& 28.00 \& ${ }_{8.53}$ \& 1，059．622．00 \& 500.09 \& ${ }^{1,720.86}$ \& ${ }_{28.68}^{20.68}$ \& ${ }_{8.74}^{8.74}$ \& ¢8000 \& ${ }_{2}^{293.15}$ \& 0．00E＋00 \& 0．00E＋+0 \& －00E＋00 \& 0．00E＋ \& ${ }_{\text {a }}^{1.42 \text { 2－02 }}$ \& \& 4，300．02 \& 5．07E－02 \& 1．53E－04 \& 2， 2 24－04 \& －00e + ＋0 \& ＋

\hline cooltow \& RAC5－CT115－2 \& CTC5 \& 505911.42 \& 5043886 \& 62.70 \& 51.00 \& 15.54 \& 28.00 \& 8.53 \& 1，059，622．00 \& 500 \& 1，720．8 \& 28.68 \& 8.74 \& 68.00 \& 293.15 \& 0．00E＋00 \& 0．OOE＋0 \& 0．00E＋0 \& \& 1．42E－02 \& 6．21E．02 \& 4．30E－02 \& 5．07－02 \& \& \& \& 㖪

\hline coocrow \& ${ }_{\text {Reach }}$ \& $\mathrm{CrC5} 5^{\text {O }}$ \& 509924．57 \& 5003470．7 \& － 62.200 \& ${ }_{5}^{551.00}$ \& | 15.54 |
| :--- |
| 15.54 |
| 154 | \& 28.00

2800 \& －8．53 \& －1，099．622．00 \& 500.09
50009 \& ＋1，720．86 \& （28．68 \& 8．74 \& 200 \& \& － \& 0．OOE 0 \& －00¢Foc \& 0．000 \& 1．42E－02 \& \& 4．30－02 \& 5．07－02 \& \& \& \&

\hline coil \& ${ }_{\text {RAC5．CT115．5 }}^{\text {Rec．ctile }}$ \& C505 \& 505 \& 5043 \& ${ }_{62}^{62}$ \& 51．00 \& 54 \& ${ }_{28.00}^{28.00}$ \& －8．53 \& \& 500.09
5009 \& \& 28.68
28.68 \& ${ }_{8.74}^{8.74}$ \& cris．00 \& ${ }_{293}^{29315}$ \& \& O．OOEF＋00 \& － \& － $0.000++00$ \& li．42E－02 \& \& 4．30E－．02 \& 5．07E－02 \& 1．53E－04 \& 2．24－－4 \& \& （eatere

\hline cooltow \& RAC5－CT115－6 \& ${ }^{\text {CTC5－06 }}$ \& 505937．06 \& 5043486 \& 62.70 \& 51.00 \& 54 \& 00 \& 8.53 \& 1，055，622．00 \& 50 \& ${ }^{1,722.86}$ \& ${ }^{28.68}$ \& 8.74 \& ${ }^{68.00}$ \& ${ }_{2}^{23,15}$ \& 0．00E＋+0 \& 0．00E + OO \& O．OOF＋00 \& O．OOE＋＋0 \& 1．422－02 \& 6．21E－02 \& 4．30－02 \& 5．07－02 \& 1．53E－04 \& 2．24E－04 \& O．OOF＋00 \& －

\hline cooltow \& ${ }_{\text {RAC5 } 5 \text { C－CT111 }}$ \& CTC5 \& \& \& \& \& 54 \& ${ }_{28.00}^{28.00}$ \& －8．53 \& （1，059．622．00 \& 50 \& （1，720．86 \& 28．68 \& 8.74
8.74 \& （68．00 \& ${ }_{293}^{29315}$ \& \& \& \& \& \& \& \& \& \& \& \&

\hline cooltow \& RAC5－CT115－9 \& CTC5 509 \& 505963.03 \& 5043470.7 \& ${ }_{6}^{6272}$ \& 51.00 \& | 15．54 |
| :--- |
| 154 | \& ${ }_{28.00}^{2800}$ \& ${ }_{8}^{8.53}$ \& ${ }^{1,1,559,622.0200}$ \& 500．09 \& 1，720．86 \& ${ }_{\substack{28.68 \\ 28.808}}^{20.08}$ \& ${ }_{8.74}$ \& ${ }_{68.00}^{60.0}$ \& ${ }_{2}^{293.15}$ \& 0．00E＋+0 \& 0．00E＋+0 \& O．OOE＋+0 \& 0．00E＋ \& 1．122－02 \& 6．211－02 \& 4．30E－02 \& 5．07－02 \& 1．53E－04 \& 2．24E－04 \& 0.00 E＋0 \& $0.00 E+00$

\hline cooutow \& ${ }^{\text {RACSC．CT1 }}$ \& $\mathrm{COCC5}^{\text {CTC }}$ \& ${ }_{\text {cosemer }}^{5059}$ \& ${ }^{50433486}$ \& ${ }^{62270}$ \& \& \& \& \& 1，055，6，22．00 \& 500．09 \& ${ }^{1,7272.86}$ \& ${ }^{28.68}$ \& \& \& 293．15 \& \& \& \& \& ${ }^{1.422-02}$ \& \& \& 5．07E－02 \& \& \& ．00E＋00 \&

\hline cooutow \& RAC5－CT115－12 \& CTCT5－12 \& 505975.52 \& 5043488 \& ${ }_{6220}^{627}$ \& ${ }_{5} 51.00$ \& ${ }_{15.54}$ \& ${ }_{28.00}$ \& ${ }_{8.53}$ \& ${ }_{1}^{1,059,622.00}$ \& 500．09 \& ${ }^{1,1720.86}$ \& ${ }_{28.68}^{28.68}$ \& ${ }_{8.74}^{8.74}$ \& ${ }_{6}^{68.00}$ \& ${ }_{2}^{293,15}$ \& 0．00et＋00 \& O． \& － \& 0，00E＋ \& ${ }_{\text {a }}^{1.42 E-02}$ \& \& 4．30－．02 \& 5．072－02 \& 1．53E－04 \& 2， 242 \& － \& －

\hline cooltow \& RAC5－CT115－13 \& CTC5＿13 \& 505988.67 \& 5043470.7 \& 62.70 \& 51.00 \& 15.54 \& 28.00 \& 8.53 \& 1，059，622．00 \& 500.09 \& 1，720．86 \& 28.68 \& 8.74 \& 68.00 \& 293.15 \& $0.00 E+00$ \& $0.00 \mathrm{E}+0$ \& 0．00E \& \& 1．42－02 \& 6.211 \& 4．30E－02 \& 5.77 \& 1．53E－04 \& －04 \& $0.00 E+0$ \& D．00E＋+0

\hline cootrow \& ${ }_{\text {RAC5－CT15－14 }}$ \& ${ }_{\text {CTC5 }}$ \& 50998．34 \& 5043437 \& ${ }_{6}^{62}$ \& 51.00
5100 \& 54 \& 28.00

2800 \& －8．53 \& ${ }^{1,059,622}$ \& 500 \& ${ }_{1}^{1,122}$ \& \begin{tabular}{l}
28.68

2888

\hline 8

 \&

8.74

8.74

\hline
\end{tabular} \& （68．00 \& ${ }_{2}^{233,15}$ \& O．OOE＋00 \& 0．00e +00 \& － \& 0．00E＋ \& ， 1.42 E－02 \& \& 4，30－．02 \& 5．07－0 \& \& 边 2.24504 \& － \&

\hline cooutow \& ${ }_{\text {RAC5．CTT155－16 }}^{\text {Rec－CTI }}$ \& ${ }_{\text {cTC5 }}^{16}$ \& 506001.16 \& 5003488 \& 62.70 \& \& 15.54 \& ${ }_{28.00}$ \& ${ }_{8.53}$ \& ${ }^{1,0599,622}$ \& 500 \& 1,7 \& ${ }_{28.68} 20.68$ \& ${ }_{8.74}$ \& ${ }_{68.00}$ \& 293.15 \& 0．00E＋00 \& 0．00E＋00 \& O．OOE＋+0 \& 0．00E＋00 \& ${ }_{\text {1．42E－02 }}$ \& 退 $6.2121-02$ \& 4．30E－．02 \& 5．077－02 \& 1．535－04 \& 2．24－04 \& － $0.00+$＋0 \&

\hline cooutow \& RAC5．CT15－17 \& CTC5 ${ }^{\text {17 }}$ \& 500614.31 \& 5043470.7 \& ${ }_{6220}^{627}$ \& ${ }^{51.00}$ \& ${ }^{15.54}$ \& ${ }^{28.00}$ \& 8.53 \& 1，059，622 \& 500 \& ＋1，720．762 \& ${ }^{28.68}$ \& 8.74 \& ${ }^{68.00}$ \& ${ }_{2}^{23,15}$ \& 0．00E +00 \& 0．00E + OO \& 0.00 E＋00 \& OOEF＋00 \& 1.422 －02 \& 6．211－02 \& 4．30E－02 \& 5．07－02 \& \& 2．24－04 \& ．OOE＋00 \& O．OOE＋+0

\hline cooltow \& ${ }_{\text {cT－}}^{\text {CT－114－2－210 }}$ \& ${ }_{\text {ctc3 }}$ \& 506306．48 \& 504353 \& ${ }_{\text {cke }}^{62.70}$ \& 17.700 \& 5.18 \& 11.67 \& ${ }_{3.56}$ \& ${ }_{\text {cke }}$ \& 170.90
170.90 \& ci， \& \& 17.21
17.21 \& \& ${ }_{2}^{2933,15}$ \& － $0.000++00$ \& － $0.000+$＋00 \& \& － 0 OOEF＋00 \& \& \& \& 7．28E－02 \& 2．19E－04 \& cole \& \&

\hline coourow \& ${ }^{\text {C－T－114．3－210 }}$ \& CTO \& ${ }_{5}^{5063}$ \& 550435 \& －6270 \& 17.00 \& ${ }_{5}^{5.18}$ \& ${ }^{111.67}$ \& ${ }^{3.56}$ \& 362，108．9 \& 170.9 \& \& 55．46 \& 17.21 \& 68．00 \& ${ }_{2}^{233.15}$ \& ${ }^{0.00 E F+00}$ \& O．OOE +00 \& ${ }^{\text {O．OOFF＋00 }}$ \& 0．00E＋00 \& 1．42E－02 \& 6．21E \& 6．17E－02 \& 7 7288.02 \& \& \& D．00E＋700 \&

\hline cooutow \& \& CTC3 305 \& 506342.15 \& 5043535．2 \& ${ }_{62270}^{627}$ \& 17.00 \& 5.18 \& ${ }^{11.67}$ \& ${ }_{3.56}$ \& 362,108 \& 170.90 \& \& ${ }_{56.46}^{50.46}$ \& 17.21 \& ¢80．00 \& ${ }_{2}^{293.15}$ \& 0．00E＋00 \& 0．00E＋+0 \& O． \& 0．00E＋ \& 1．42E－02 \& er．21－．02 \& － $6.17 \mathrm{~T}-02$ \& 7．288－02 \& 2．190．04 \& 3．21－．04 \& －00e +0 \& －00

\hline \& Сив3－Ст114－21－10 \& стс3 \& 506355.08 \& 5043550.7 \& 62.70 \& 17.00 \& 5.18 \& 11.67 \& 3.56 \& 362，108．2 \& 170.90 \& 3，387，32 \& 56.46 \& 17.21 \& 68.00 \& 293.15 \& 0．00E＋00 \& 0．00E＋10 \& 0．00E＋0 \& －0E＋ \& 1．42E－02 \& 6．21E－02 \& 6．17－02 \& 7．28E－02 \& 2．19E－04 \& 3．21E．04 \& 0．00E \&

\hline cooutow \& CUB3－CTI114－22－10 \& $\mathrm{CTC3}^{\text {COP }}$ \& 506316．29 \& 5043559 \& － 62.70 \& 17．00 \& ${ }_{5}^{518}$ \& ${ }^{11167}$ \& ${ }^{3.56}$ \& － 362.108 \& 170.90
17009 \& ${ }_{\substack{3,3877 . \\ 3,387}}$ \& \& 17．21 \& （ $\begin{aligned} & 68.00 \\ & 6800\end{aligned}$ \& ${ }_{20315}^{293,15}$ \& －0．00 +00 \& － 0 \& －000＋00 \& － \& 1．42E－02 \& \& \& 7．28E－02 \& \& \& \& O．00

\hline cooutow \& \& ${ }^{\text {ctc3 }} 009$ \& 6． 29 \& 5043550．5 \& 62.70 \& 17.00 \& 5.18 \& ${ }_{11167}$ \& 3．56 \& ${ }_{362,108.87}$ \& 170 \& \& ${ }_{5}^{56.46}$ \& 17.21 \& ${ }_{6} 6.000$ \& 293.15 \& 0．00E＋00 \& －00 $5+00$ \& O．OOF＋00 \& \& 1．42E－02 \& 6．21－．02 \& S．17－02 \& 7．288－02 \& 2．1900－04 \& 3．21－．04 \& 0．00E＋00 \&

\hline cooutow \& CUB33－CT114－25－10 \& ${ }^{\text {CTC3－10 }}$ \& 506327.66 \& 50335595 \& ${ }^{6270}$ \& ${ }^{17.00}$ \& 518 \& ${ }_{11167}^{11.67}$ \& ${ }^{3.56}$ \& ${ }_{362,108.87}$ \& 1770.90 \& \& \& 17.21 \& ¢ 68.00 \& ${ }_{2}^{233,15}$ \& 0．00E +00 \& O．OOE＋+0 \& O．00 + ＋00 \& O．OOE＋+0 \& 1．422－02 \& 6．211－02 \& 6．17－02 \& 7，28E－02 \& 2．19E－04 \& 发3．21－04 \& 0．0et＋oo \& －006＋00

\hline cootrow \& \& CTRP \& ${ }_{5066}^{5063}$ \& \& 62.70 \& ${ }_{4}^{45.00}$ \& ${ }_{\text {ckis }}^{\text {ci．72 }}$ \& 10.00 \& | 3.05 |
| :--- |
| 3.05 | \& $\xrightarrow{3687,464}$ \& ${ }_{88.47}$ \& ${ }_{\substack{3,386.87}}^{\text {2，37．32 }}$ \& ${ }_{\text {chers }}^{\text {56．46 }}$ \& ${ }_{12.13}$ \& \& ${ }_{293.15}^{293.15}$ \& 0．000 0 \& － \& \& \& ， \& \& － \& \& \& （i．60－．04 \& 0.00 \& （eatere

\hline cootro \& RP1－CT114－2－200 \& CTRP1 102 \& 506658 \& 504332 \& ${ }^{6270}$ \& 45.00 \& ${ }^{13.72}$ \& 10.00 \& 3.05 \& 187,464 \& 88.47 \& 2，386．87 \& 39.78 \& ${ }^{12.13}$ \& 68.00 \& 233.15 \& 0．00E＋00 \& 0．00E＋00 \& 0.00 E＋00 \& 0．00E＋ \& $1.42 \mathrm{E}-02$ \& 6．21E－02 \& 3．08E－02 \& 3．63E－02 \& 1．10E－04 \& 1．60E－04 \& 0．00E＋ \& 0.00

\hline cootrow \& \& ${ }_{\text {cher }}$ CTR4 0103 \& 5066557.82 \& 504305 \& ${ }^{62270}$ \& 45.00

73.00 \& ${ }_{22.25}^{13.72}$ \& | 10.00 |
| :--- |
| 12.00 |
| 100 | \& 3.05

3.66 \& － \& 88.47
156.97 \& \& ${ }^{39.781}$ \& ＋12，${ }^{12194}$ \& cris．00 \& ${ }_{203}^{29315}$ \& \& O．OOEF＋00 \& － \& － \& li．42E－02 \& \& 3 4.496 E－02 \& 5．29e－02 \& －1．10E－04 \& \& \& 年．00

\hline cootrow \& RAACCT1 13－2－10 \& CTR4 \& 506359.29 \& 50430559．7 \& 62.70 \& 73.00 \& 22.25 \& 12.00 \& 3.66 \& ${ }_{\text {332，598．33 }}$ \& ${ }_{156.97}$ \& ${ }_{\substack{2,940.81}}^{2,908}$ \& 49.01 \& 14.94 \& 68.00 \& 293.15 \& 0．00E +00 \& $0.00 \mathrm{E}+00$ \& ．00E＋00 \& 0．00E＋ \& 142E－02 \& 6．211－02 \& 499－02 \& 5．29E－02 \& ，60E－04 \& 34E－04 \& \&

\hline тow \& CT113．3．10 \& CTR4＿03 \& 6363.54 \& 961．7 \& 62.70 \& ${ }^{73.00}$ \& 25 \& 12.00 \& 3.66 \& 32，598．33 \& 156 \& 2,96 \& 49.01 \& 14.94 \& ． 00 \& 293.15 \& $0.00 E+00$ \& OE＋ \& \& \& ．422－02 \& 6．21E－02 \& 4．99E－22 \& 5．29E \& 60E－24 \& 234E－04 \& \&

\hline tow \& RAACTCT113．4．10 \& CTR44－04 \& 506364．93 \& 5043058．1 \& ${ }^{62270}$ \& 73 \& ${ }_{2225}^{22,25}$ \& 12．00 \& 退366 \& ${ }^{332,598.3}$ \& 156．97 \& 2，940 \& 49.01 \& ${ }_{14}^{14.94}$ \& 68．00 \& ${ }_{2}^{293.15}$ \& $0.000+00$ \& 0．00e +00 \& \& \& li．te－02 \& \& 4．49E－02 \& 5．29E－02 \& 1．60E－．04 \& 2， 2 2， 3 －04 \& \&

\hline cooutow \& ${ }_{\text {a }}$ \& CTR4－06 \& \& ${ }_{50430}$ \& 70 \& ${ }_{7}^{7.00}$ \& ${ }_{22.25}^{22.25}$ \& 䢔 \& \& －3325989 \& 155.97

156.97 \& 2，940 \& 49.91 \& | 14.94 |
| :--- |
| 14.94 |
| | \& ${ }_{6}^{68.00}$ \& ${ }_{2}^{293,15}$ \& \& \& \& \& ${ }_{1.42 E-02}^{1.2}$ \& \& \& \& \& \& \&

\hline cooltow \& CUB2－CT114－1－210 \& CTC2 21 \& 506518.07 \& 5043561．1 \& ${ }^{62770}$ \& 29.00 \& ${ }^{8.84}$ \& ${ }^{11100}$ \& ${ }_{3}^{3.35}$ \& ${ }^{141,1807.83}$ \& ${ }_{66.93}$ \& ${ }^{1,492.19}$ \& ${ }^{24.87}$ \& 7.58 \& ${ }^{68.00}$ \& ${ }_{2}^{239.15}$ \& $0.00 E+00$ \& 0．00E＋00 \& 0．00 +00 \& 0．00E \& ${ }^{1.422-02}$ \& 6．211－02 \& 1．011－01 \& 7.56 E．02 \& 3．59E－04 \& 3．34E－04 \& 0．00 \& SOEE

\hline cootrow \& COB2－CT114．2－210 \& \& 14.79 \& \& ${ }_{6220}^{627}$ \& ${ }_{29.00}$ \& ${ }_{8.84}$ \& 111.00 \& ${ }_{3.35}$ \& ${ }_{141,807}$ \& ${ }_{66.93}$ \& ${ }_{1,492}^{1,1}$ \& ${ }_{24,87}^{24.47}$ \& 758 \& ${ }_{6880}^{6800}$ \& \& \& \& \& \& 1．42－：02 \& \& \& \& \& \& \&

\hline Tow \& CUB2－CT114．4－210 \& \& \& 575.7 \& 62.70 \& 29.00 \& ${ }_{8.84}$ \& 11.00 \& ${ }_{3.35}$ \& 141，007 \& 66.93 \& ， \& ${ }_{24.87}$ \& 7.58 \& ${ }_{68.00}$ \& 293.15 \& \& \& \& \& \& \& \& \& \& \& \&

\hline cooltow \& CuB2－CT114－5－21 \& ${ }^{\text {CTC2 } 205}$ \& 506506.05 \& 5043 \& ${ }^{62.70}$ \& 29.00 \& ${ }^{8.84}$ \& 11.00 \& 3.35 \& 141，807．83 \& 66.93 \& 1，992．19 \& 24.87 \& ${ }^{7.58}$ \& 68.00 \& 293.15 \& 0．00E＋ \& 0．00E＋00 \& 0．00E＋ 0 \& 0．00E \& $1.42 \mathrm{E}-02$ \& 6．21E－02 \& 1．01E－01 \& 7.56 E．02 \& 3．59E－04 \& 3．34E－04 \& ． $00 \mathrm{E}+$＋00 \& D．00E＋700

\hline \& \& \& （e265 \& \& ${ }^{622.70}$ \& ${ }_{29.00}^{2900}$ \& （ ${ }_{\text {8，844 }}^{8.84}$ \& | 111.00 |
| :--- |
| 11.00 |
| 1100 | \& ${ }_{\substack{3.35 \\ 3.35}}$ \& $144,767.83$

141.87783 \& ${ }_{\text {cheren }}^{66.93}$ \& \& 24.87 \& 7.58
7.58
7 \& \& ${ }_{2}^{2933.15}$ \& \& \& \& \& \& \& \& \& \& \& \&

\hline \&

\hline ow \& Tr11 \& \& \& 543560．9 \& \& \& \& \& \& \& 66.93 \& ，492．19 \& \& \& \& \& \& ．00E＋ \& $0.00 E+00$ \& 0．00E＋00 \& \& 6．21－．02 \& \& $7.56 \mathrm{E}-02$ \& \& \& \&

\hline
\end{tabular}

Equipment type	Equipment 10	Stack 10	UTM	UTM	Elevation	（tt）	（m）	（t）	（m）	（tismin）	$\left(\mathrm{m}^{3} \mathrm{~s}\right)$	（ttmin）	（tts）	（ms）	（F）	（k）	（blhr）	（tpy）	（blhr）	（tpy）	（blhr）	（tp）	（thar）	（tpy）	（blhr）	（tpy）	（lbhr）	（py）
cooltow	CUB2－CT144－10－210	CTC2＿10	506494.34	5043575.6	62.70	31.00	9.45	11.00	3.35	191，818．53	90.53	2.018 .44	33.64	10.25	${ }^{68.00}$	293．15	0．00E＋00	0.00 E＋00	0．00E＋00	0．00E＋00	1．42E－02	6．21E－02	1．01E－01	7.56 E．02	3．59E－04	3，34E－04	0.00 E＋00	0．00E＋00
${ }_{\text {coill }}^{\text {cooortow }}$	COBE－CT114．11－10		Soctis		cier $\begin{gathered}62.70 \\ 620\end{gathered}$	$\substack{31.00 \\ 3 \\ 3 \\ 3}$	9．945	11000 1100 100	（3．35		$\xrightarrow{181808}$	${ }_{\text {a }}^{4.037 .71}$	（	20.51 102 105	（ $\begin{gathered}68.00 \\ 6800\end{gathered}$	${ }_{2}^{239.15}$	O．OOE＋+0		0．00E＋+00	O．	－1．42E－02		1．04－01	7．56E－02			－ 0 OOFF＋00	
cootrow	CUB2－CT114－12－10	${ }_{\text {CTC2 } 212}{ }^{\text {CTC }}$	50654．87	${ }_{50433990.1}^{50}$	62.70 6270	31.00 3100 3	9．955 ${ }_{9}^{9.45}$	11.00 1100 1100	－${ }_{3,35}^{3.35}$	191，97．58	${ }_{\text {co．}}^{\substack{90.47 \\ 905}}$	2.017 .16 $\substack{201844 \\ \text { 2，}}$	${ }_{3}^{33.62}$	10.25 1025 1025	（ $\begin{gathered}68.00 \\ 6800\end{gathered}$	${ }_{29315}^{293.15}$	－ $0.00 \mathrm{C}+00$		0，000 0	0．00E + O0 $0.00 E+00$	li．42E－02			7．56E－02 7.56 －02	ci．tee．04			（enter
cooltow	CCB2－CT114－13－10		${ }_{5064994.34}^{5065}$		62.70 62.70	31.00 31000	${ }_{9.45}^{9.45}$	11.00 11.00	－3.35 3.35	$1919,18.53$ 191888.53	${ }_{90.53}^{90.53}$		（ ${ }_{33.64}^{33.64}$	10.25 10.25 1025	cor $\begin{gathered}68.00 \\ 68.00\end{gathered}$	${ }_{203}^{293.15}$	－ $0.00 \mathrm{C}+00$		0，000	0．00E +00 $0.00 E+$ O	－ $1.42 \mathrm{E}-02$			7．56E－02	ci．ee－04	${ }_{\text {a }}^{\text {a }}$	－．00E＋00	
cootrow	${ }_{\text {CuB2－CT11－14－10 }}^{\text {C20．CT14－210 }}$		506694．34	5004390．4	${ }^{62270}$		${ }_{8.84}^{9.45}$	111.00 11.00	（3．35	$191,1978.53$ 191，848．76	${ }_{9}^{90.54}$	${ }_{\substack{2 \\ 2.01818 .76}}^{2.017}$		1025 10.26 1026	come $\begin{gathered}68.00 \\ 68.00\end{gathered}$	${ }_{2}^{293.15}$	0．0．00 0	O．OOE＋00 $0.00 E+50$	0．000 0	0， 0	－ $1.42 \mathrm{E}-02$			7．56E－02	cole			
cooltow	${ }_{\text {F20 C－CT14．2－210 }}$	CTCC1．02	50688.59	5043904	${ }^{62.70}$	29.00	${ }_{8}^{8.84}$	100	3.35	，1．848，76	${ }^{90.54}$	${ }^{2} 2.018 .76$	${ }_{33,65}$	10.26	${ }_{68.00}$	293.15	0．00E +00	0．00¢ +00	O．OOE＋＋00	0．00E＋+00	1．12E－02	6．21E－02	1．01－01	${ }_{\text {7，56E－02 }}$	cispe．	3， 3 Se5－00	O．OOEF＋00	－00
cooutow	${ }_{\text {Fe20．CT114．3－210 }}$	$\mathrm{CTCCT}^{1} \mathbf{1 0 3}$	5068859．56	5043904	62.70 6270	2900	c．8．84	11.00 1100	3.35	$191,848.76$ 19188876	${ }_{\substack{\text { c．} \\ 0.54 \\ 0.54}}$		33.65 3365	10.26 1026 1020	（ $\begin{gathered}68.00 \\ 6800\end{gathered}$	15	O．OOE＋00	O．OOF＋00		a $\begin{aligned} & \text { 0．00E }+00 \\ & 0.00 E+00\end{aligned}$	－ $1.42 \mathrm{E}-02$	coincole		${ }_{\text {7．56E－02 }}^{7}$				
cootrow		CTC11 104 CTCC1 Cos	50692.61	${ }_{\text {cole }}^{5043904}$	62.70 6270	29000		11.00 11.00	3.35 3.35	$1991,848.76$ $19,884.76$	${ }_{9}^{90.54}$		－${ }_{33.65}^{33.65}$	10.26 10.26		${ }_{293}^{293.15}$	－ $0.00 \mathrm{C}+00$	O．OOE＋00 $0.00 E+50$	0．000 0	0， 0	． $1.42 \mathrm{E}-02$	co．enE．02		${ }_{\text {7．56E－02 }}^{\text {7．56－02 }}$			－ $\begin{aligned} & \text { O．OOE＋00 } \\ & 0.00 E+50\end{aligned}$	
cooltow	${ }_{\text {F20－CT114．－210 }}$	CTC1－1－06	5006703.62	5043904	${ }_{62} 280$	${ }_{29.00}$	${ }_{8.84}$	111.00	${ }_{3.35}$	${ }_{191,848.76}$	${ }_{90.54}$	${ }_{2,018.76}$	${ }_{33.65}$	10.26	${ }_{68.00}^{6000}$	293，15	0．00E＋00	0．00E＋+0	0．00E +00	0．00E +00	1．422－02	6．21－－02	1．01－．01	${ }_{7.566-02}$	3．590．04	3， 3 Se－04	0	0．00E＋00
cooutow	${ }^{\text {F20－CT1 }}$－ 14.7 －210		506777.59	5043904	62.70	29.00	8.84	11.00	3.35	191，8487．76	${ }^{90.54}$	2.01	－ 33.65	10．26	cris．${ }_{6}^{680}$	2393 2395 23	0．OOE＋+0	OOEF＋00	0．00E＋+00	0．OOE + O	1．42E－02	6．21E－02	1．011－01	${ }_{\text {7．}}^{7 \text { 56E－02 }}$	${ }^{\text {3．59E－04 }}$	${ }_{\text {3，34t－04 }}$	0．00 + ＋00	（e）
cootrow	${ }_{\text {F }}$	$\xrightarrow{\text { CTCC1－108 }}$	506714．32	5043904	62.70 6270	29.00 2900	－${ }_{8}^{8.84}$	11.00 1100	3.35 3.35	$191,848.76$ 19188876	${ }_{\substack{\text { 90．54 } \\ 0.54}}$	${ }_{\substack{2 \\ 2.019876 \\ 201876}}$	33.65 3365	10.26 1026 1020	${ }_{6}^{68.00}$	${ }_{2}^{293.15}$	O．OOE＋00	O．OOF＋00	0		li．ane－02			${ }_{7}^{7.566-02}$	ceseme	${ }_{\text {a }}^{\text {a }}$ 3，34E－．04		（enter
cooutow		${ }_{\text {ctcc }}{ }^{\text {ctiol }}$	506724.66	${ }_{5043904}$	${ }_{62270}^{6270}$	29.0	${ }_{884}^{8.84}$	11100	3，35	${ }_{1918}$	54		${ }_{33,65}^{3365}$	10.26 1026	${ }_{68.00}^{60.0}$	${ }_{2}^{293.15}$	0．00E＋00	O．00E＋+0	O．OOE＋+00	O．OEE＋ 0	1，122－02	6212－02	1.01 1－01	${ }_{7} 7560.02$		3，34E－04	，	－
cooltow	F20－CT1 14－11－1－210	CTCC－11	5007788.63	50439		29.00	－	11.00	${ }_{3} 3.35$				${ }_{3}^{33.65}$	10.26	${ }_{68.00}$	293.15	0．00E +00	$0.000++0$	0．00E＋＋00	O．OOE +00	1．42E－02	6．21E－02	1．01－01	7．56E－02	3．59E－04	3，34E－04	0	O．OOE＋ 0
cooltow	$\mathrm{N}^{\mathrm{N} 2 . \mathrm{CT} 114.1}$	$\mathrm{CTNL}^{\text {c／}}$	50633．46	${ }^{5043379.9}$	${ }^{6270}$	${ }^{17.00}$	${ }_{5}^{5.18}$	${ }_{\substack{11.67 \\ 1167}}^{118}$			63.79 6.39	$1,264.30$ 1,26430	． 07	${ }_{6}^{6.42}$	${ }_{6}^{68.00}$	293， 235	O．OOE +00	$0.000+50$	0．00E +00	0．00E +00	$1.142 \mathrm{E}-02$	6．21E－02	8．59－02	1．015－01		4．47E－00	0	－0．00 +00
coil	${ }_{\text {N－}}$	${ }_{\text {cTN } 203}$	506247214	50404080．6	${ }^{62270}$	17.700	${ }_{5}^{5.18}$	${ }_{11167}^{1167}$	3.56 3.56	${ }^{1} 135.15 .507$	${ }_{6}^{6379}$		207	${ }_{\text {6．}}^{6.42}$	${ }_{6}^{68.00}$	${ }_{2}^{29315}$	－ 0.000 ＋+00	dioleto	－		， 1.422 －02		8．59e－02	1．01E－01	－	4．47］－04	－	
cooltow	RACB3－CT－1141－35	CTCEB－01	506297	50436	${ }_{62270}$	17.00	5．18	${ }_{1187}^{67}$	${ }_{3.56}$	${ }^{\text {362，108．87 }}$	${ }^{1770} 9$	${ }_{3,387.32}$	56.46	21	${ }_{68.00}$	293.15	$0.00 \mathrm{E}+00$	0.00 E＋00	$0.00 E+00$	$0.00 E+00$	1．122－02	6．21E－02	6．177－02	7．28－02	2．19E－04	3.21 －04	0.00 E＋00	0．00E＋00
cootrow	${ }^{\text {RACCB3－CT－114－2－35 }}$	$\mathrm{CTCB}^{\text {CTCO2 }}$	${ }_{5}^{500298}$	${ }_{5043639}$	${ }^{62270}$	$\begin{array}{r}17.00 \\ 1700 \\ \hline\end{array}$	${ }_{\text {c }}^{5.18}$	${ }_{11167}^{11.67}$	3.56 3.56		${ }^{170.90}$	${ }^{3,387.32}$	${ }_{56}^{56.46}$	${ }_{1721}^{1721}$	68.00	293，15	$0.000+00$	0	0．00E +00	0．00e +00	${ }^{1.422-02}$	6．21E－02	6．17－02	7．288－02	2．19E－04	3．211－04	0	O．OEF＋00
coil cooltow		CTWTR	5062393699 50039	50436472．	62270 62.70	${ }^{17.00}$	${ }_{22.18}^{52}$	111.67 12.00	退3．66		${ }^{1756.97}$	2.94	（ ${ }_{49.46}$	17.21 14.94 14		${ }_{2}^{293.15}$	－ 0.000 ＋ 0 ＋00	－ 0	0，		－ $1.42 \mathrm{E}-02$			l．28E－02		lele	－ $0.00 \mathrm{C}+00$	
cooltow	RAWTR1－CH918－2－11	CTWTR＿o	506041.55	5043917.6	62.70	73.00	22.25	12.00	3.66	${ }^{332,598.33}$	156.97	2,940	49.01	14.94	68.00	293.15	$0.00 \mathrm{E}+00$	0．00E＋00	0．00E＋00	0．00E＋00	1.42 E．02	6.21 E－02	8．59－02	1．01E－01	3．06E．04	4．47－04	0.00 E＋00	0．00E＋00
cootrow		CTWTR 03	506049．25	50433917．6	62.70 6270	73.00 73.00	${ }_{2225}^{2225}$	（1200 $\begin{aligned} & 12.00 \\ & 1200\end{aligned}$	3.66 3.66	${ }_{33225}^{332,5}$	${ }_{15}^{15}$	2．940．81	${ }_{49.01}^{49.01}$	14．94	咝68．00	${ }_{23,15}^{293.15}$	－ $0.00 \mathrm{C}+00$	－ 0		0．OOE + O0 $0.00 E+00$	－ 1.42 Ca －02		8．599－02	－ $1.01 \mathrm{E}-01$		4．47E－00	－．00E＋00	
cooltow	RAWTR1－CH918－5．－11	WTR	500637．1	5043904	${ }_{62.70}$	73.00	${ }_{2225}$	12.00	3.66	${ }_{\text {332，598．33 }}$	156.97	${ }_{2,294.81}$	49.01	14.94	${ }_{68.00}$	293.15	0．00E +00	0．00E＋00	$0.00 E+00$	0．00E＋00	1.122 －．02	6．21E－02	8．599－02	1011－01	3．06E－04	4．47E－04	0．00 + ＋00	0．00E＋00
cooltow	RAWTR1－CH918－6－11	CTWTR－06	500041	5043904.3	62.70	73.00	22.25	12.00	3.66	332，598．33			49.01	14.94	${ }_{68.00}$	退 15	0．00E＋00	0.00 E＋00	0．00E＋00	0．00E＋00	142E－02	6．21－－02	8．599－02	1．01－－01		4．47E－04	0.00 E＋00	0．00E＋00
cooutow	RAWWRT－CH918．7－711	CTWTR－0	506048．6	${ }^{5043904.5}$	62．70	73.00	${ }_{2225}^{2225}$	12．00	${ }^{3.66}$	${ }_{\text {cke }}^{332.599 .33}$	156.97 15697	2，94	49.01	14.94	ci6．00	15	$0.000+00$	0.000	0．00e + ＋00	0．00E +00	1．42E－02	6．21E－02		．01E－01			0	－0．00 +00
cooutow	RAWTR1－CH9 $18.9-11$	CTWTR	50063636．74	50438923	${ }^{62270}$	${ }_{7}^{7.000}$	${ }_{2225}^{2225}$	12000 1200 1200	3．66			${ }_{\text {2，}}^{2.940 .81}$	${ }_{4901}$	${ }_{14}^{14.94}$	${ }_{68.00}^{68.00}$	${ }_{2}^{293.15}$	－ 0.00 Ot＋00	Dioctoo	－000 + ＋00		， 1.422 －02	eneme	8．59E－02	1．01E－01	3．06－04	4．47－04	－	（emeto
cooltow	RAW TR1－CH918－10	CTWTR	506042.65	5048392.3	62.70	73.00	22	12.00	3.66	332．598．33			49.01	14.94	68.00	15	0．00E＋00	$0.00 E+0$	0．00E＋00	0．00E＋00	1．42－．02	6．21E－02	8．599－02	1．01－－01	3．06E－04	4．47E－04	0.00 E＋00	O．00 + ＋00
cooltow	${ }_{\text {Rel }}^{\text {RAWTRT－CH01－1－11－11 }}$	CTWTR	${ }_{\text {506099．21 }}^{509}$	${ }^{50433892926}$	${ }_{\text {cher }}^{62.70}$	73.00 73.00	${ }_{22.25}^{22.25}$	12.00 12.00 1	3.66 3.66	${ }_{\text {3 }}^{332.5999 .338}$	${ }_{1}^{156}$	$\underset{2}{2,990}$	${ }_{49.01}^{49.01}$	14.94 14.94	ce $\begin{gathered}68.00 \\ 68.00\end{gathered}$	${ }_{2}^{293.15}$	${ }^{0.000}+000$		0，000＋＋00	0， 0		c．e．2E－02	8．599－02	li．01－01		4．47E－04	－ 0.00 E +00	
cooutow	AL4．CHW－CT2	ctas	508833.13	${ }^{5037822.4}$	69.40	${ }_{2}^{23.28}$	7.10	8.00	2.44	${ }^{81,918,566}$	${ }_{38.66}$	1，622．88	${ }_{2} 27.16$	8.28	${ }_{68.00}^{60.0}$	233.15	0．00E +00	0．00¢ +00	0．00E＋+00	0．00E＋+0	1．42E－02	6．21E－02	6．01E－03	1.422 －02	2.14 －05	6．26E－05	$0.00 \pm+00$	0.00 E＋00
cooltow		CTA4．022	508850．11	${ }^{50378877.2}{ }_{503839.6}$	69.40	23，28 37.50	${ }_{11}^{1143}$	${ }_{9} .33$	2.84	${ }_{111.511 .15}$	（ ${ }_{\text {cher }}^{38.66}$	$1,629.98$ 1.6298	（27．16	（ $\begin{aligned} & 8.28 \\ & 8.28 \\ & 8.8\end{aligned}$		${ }_{23,15}^{293.15}$	－ $0.00 \mathrm{C}+00$	－．00E＋00	0，000＋700	0．000 + ＋00 $0.00 E+00$				literem	2．14E－05			
cooltow	F15－CT29－1－2	CTF1502	508958.95	5037844.1	69.40	37.50	${ }^{11.43}$	${ }_{9.33}$	2.84	111，511．15	${ }_{52.23}$	${ }_{1}^{1,629.88}$	${ }_{27.16}$	－${ }_{8.28}$	${ }_{68.00}$	293.15	0．00E＋00	0.00 E＋00	0．00E +00	0．00E＋50	1．42E－02	6．21E－02	$2.88 \mathrm{E}-02$	4．42E－02	1．03E－04	$1.955-04$	0.00 ¢＋00	－．00 + ＋00
cooltow	F15－CT291－3	CTF15	508999.3	503784	69.40	${ }^{37.50}$	11.43	11.00	3.35	178，575．0	84.28	$1,879.08$	31.32	9.95	${ }_{68.00}$	293.15	$0.005+00$	．00	0.00		1．142－－02	6．21E－02	4．90－02	4．42－－02	1．74E－04	$1.95 E-04$	$0.00 \mathrm{E}+$	0.00 E＋00
cooltow		CTF	508937．84	5037856．2	699．40	－37．50	${ }^{11143}$	${ }^{11.100}$	3，35	178，575．07		$\begin{array}{r}1,879.08 \\ 18708 \\ \hline\end{array}$	－	${ }_{\text {9，555 }}$	${ }_{6}^{68.00}$	15	0．00E 0	．00 + ＋0	0．00E	0．000 + ＋00	1．142－02	6．212－02	4．900．02	4．42－－02		1，95E－04	0	－0，
coile coutow		CTF1505	508941．56	${ }_{\text {che }}^{503788882.4}$	－ 69.40	${ }^{377.50}$	（11．43	111.00 7.00	退 $\begin{aligned} & 3.35 \\ & 2.13\end{aligned}$	${ }^{34.408 .81}$	84.28 16.24 1	$1,879.08$ 894 84，10	（31.32 14.90	${ }_{4.54}^{9.55}$	ce $\begin{gathered}68.00 \\ 68.00\end{gathered}$	${ }_{2}^{293.15}$	0．000 0		0，000＋＋00	－ $\begin{aligned} & \text { 0．00E＋}+00 \\ & 0.00 E+00\end{aligned}$	－ $1.42 \mathrm{E}-02$		4．900－02		colite．	－ 1.95050 .04	$0.00+5+00$ $0.00++00$	coiote
psss	F20－SC－134－1－100		506665.95	5043736	62.70	95.00	28.96	${ }_{3.50}$	1.07	10，362．20	4.89	${ }_{1}^{1.077 .03}$	17.95	5.47	57.00	287.04	0．00E＋00	0.00 E＋00	0．00E＋00	$0.00 \mathrm{E}+00$	8．78E－03		5．42E－03	2．38E－02		7．82E－05	0.00 E＋00	O．OOE＋+0
Psss		－	506677．31	${ }_{5}^{50434788.3}$	${ }_{\text {coin }}^{6270}$	77．00	${ }_{\substack{23.47 \\ 273}}^{11}$	3.00 300	0.91	2.98	$\begin{array}{r}1.40 \\ 1.45 \\ \hline\end{array}$	＋418．84	－6．98	2．13	00	$\xrightarrow{287.04}$	O．OOE + O0	0	0．00E＋+00	O．OOEF＋00	9．58E－03	4．19E－02	5．928－03	2．590－02		8．53E－05	－000 +0	O．OOE + O
${ }_{\text {Pssss }}$	－	$\stackrel{\text { ScCi } 200}{ }$	${ }_{5065388.3}^{5045}$	5043883．1	${ }^{622.70}$	89.00 46.00	${ }_{14.02}^{27.13}$	${ }^{3.00} 0$	0．91	${ }_{2,96}^{9,8}$	4．65	l．394．75 5.428 .21	${ }_{\substack{23.25 \\ 0.47}}^{17}$	7．09 27.58 1708	57．700	2887.04 28704	－0．00E＋00	－ 0 OEF＋00	O．OOEF＋00	－ $0.000+$＋00	cole	－	8．8．83E－04	S．16E－03				
Pssss	RP1－SC1 $1341 / 1-100$	PSRP1－01	506799.16	504335	62.70	85.00	25.97	${ }^{3.50}$	1.07	${ }^{12,4}$	5.87	${ }^{1,2929243}$	${ }^{21.54}$	6.57	${ }^{57.00}$	${ }^{2877.04}$	0．00E +00	0．00¢ +00	0．00E＋+0	0．00E +00	6．70－03	2．94E－02	4．144－03	1.81 E－02	${ }^{1.366-05}$	5.97 －05	$0.00++00$	0.00 F＋00
Pssss	133－1－200		506289.27	5043482.1	${ }^{62270}$	${ }^{45.00}$	－ 13.72	${ }^{1.50}$	0．46		${ }^{2.79}$	${ }_{\text {3，355．75 }}$	${ }_{5}^{51.85}$	17．02	${ }_{5}^{57.00}$	28．04	0．00e +00	D．OOE + ＋00	0．00e + ＋00	O．OOE＋00	－ $1.650-03$	－	．86E－04	4．32E－03	3，24E－06	1．42E－05	0	coiole
${ }_{\text {Pssss }}$	M2 Combined Modeling Slack	${ }^{\text {PSMM }}$－M ${ }^{\text {P／}}$	50602309	50433250．6	${ }^{62270}$	${ }^{120.00}$	${ }^{36.58}$	4.17	${ }_{1}^{1.27}$	${ }_{8,881}^{8.881}$	4.19	${ }_{651.39}$	10.06 10.86	${ }_{3.31}$	57．00	${ }_{287}^{287.04}$	－．00E＋00	0	0．00E＋＋00	$0.00 E+00$	2．55－02	1．12E－01	1.588 .02	6.91 －02	5．19E－05	2.27 E－04	$0.00 \pm+0$	$0.00 \in+00$
psss	M3 Combined Modeding Stack	PSM3＿M	505977.	5043186.3	62.70	120.00	36.58	4.17	1.27	8.88	4.19	651.39	10.86	${ }^{3.31}$	57.00	287.04	0．00E＋00	0．00¢ +00	0．00E＋00	0．00E＋+0	2．55－02	1．12－01	$1.58 \mathrm{E}-02$	6．91－．02	5．19E－05	2.27 E．04	0.00 F＋00	$0.00 E+00$
Pssss	O1XM4．5C134．－00	${ }^{\text {PSSM4 }}$ PS 01	${ }_{5060075}^{50.34}$	50429597．5	62.70 6270	${ }_{98.50}^{98.50}$	30.02 30.02	${ }_{6}^{6.17} 6$	1.88 1.88 1	${ }_{\text {22，}}^{22.500 .78}$	10.62 10.62 1	${ }_{75537}^{75.37}$	＋12．56	（ $\begin{aligned} & 3.83 \\ & 3.83\end{aligned}$	57.00 57.00	288704 287.04 2	－ $0.00 \mathrm{C}+00$		0，000	O．OOE＋00 $0.00 E+00$	${ }^{\text {a }} 1.52 \mathrm{E}$ E－02		9， 9.37 Cl	4．10E－02		li．35E．00		
psss	PUB - －SC133－1－00	SCPB1］ 01	506190.72	5043383.6	62.70	119.00	36．27	3.00	0.91	${ }_{\text {9，000．00 }}$	4.25	${ }_{1,273.24}$	${ }_{21.22}$	${ }_{6.47}$	57.00	287.04	0．00E＋00	0．00E＋00	$0.005+00$	0．00E＋00	3．19E－03	$1.400-02$	1．97－03	8．64－－03	6．99E－06	2．84－－05	0．00 + ＋00	－．
Pssss	PUB1－5CS133－2．200	$\mathrm{Sc}_{\text {ScP1 } 1-02}^{\text {PST1 }}$	S06694．51	5043388，7	${ }^{627} 70$	${ }^{191900}$		3.00 3 3	0.91	${ }^{9} 9.000$	${ }^{4.25}$	${ }^{1,273}$	21．22	${ }_{6.47}^{6.47}$	$\underset{\substack{57.00 \\ 5700}}{ }$	287.04 280 28	$\xrightarrow{0.00 E+00}$	O．OOEF＋00	O．OOEF＋00	O．OOEF＋00	3．19E－03	1．40E－02	1．976－03	8，8．4－5．03	6．49E－06	2．84－05	O．OOEF＋00	－00¢F＋00
Pssss	${ }_{\text {F15 Scicz－}}$							${ }_{2} 200$	${ }_{0.61}$		2.79			${ }_{9.97}$	57.00	04					4．63E－03							coiole
psss	F15－Sc7－2	PSF15 1503			69.40	50.00	15.24	3.50	1.07		8.10		29.75	． 07	7．00	04	0．00E＋		0.00		K－03	2．03E－02		．25E－02	－．06	．12－．05		
egen		4－01	59596．52	50437	62	65.00	19.81	0.42	0.13		0.48	7,4	124.2	3．88	${ }^{918.00}$	765.37	$1.31 \mathrm{E}+00$	3．28E－02	$7.45 \mathrm{E}-01$	$1.86 \mathrm{E}-02$	3．27－02	8．16E－04	3．27－02	8.16 E－04	3．27－02	8．16E－04	1．58E－03	3．944－05
EGEN	${ }_{\text {PH \＃}}^{\text {PH }}$		${ }_{\text {5008314．91 }}^{501}$	5003633	62.70 6270	15.00 1500 1	${ }_{4.57}^{4.57}$	－ 0.42	0．13		1.08 0.55	$\underset{\substack{16,7 \\ 132 \\ 13}}{1}$	${ }_{2}^{278.18}$	${ }_{8451}^{84.90}$	－ 987.00	${ }_{708.15}^{803.71}$		li．3E－02	－3.422 6.36	li．55－．03	3，	8．19E－．04 3．73－03	－	ci．16E－04		8，16e－．04		
${ }_{\text {cosen }}^{\text {EGGN }}$	${ }_{\text {PH }{ }^{\text {\＃}} \text {＋4 }}$	${ }_{\text {FICS }}$	505849．77	保923	62.70	${ }_{8}^{15.00}$	${ }_{25.30}^{4.5}$		${ }_{0} 0.15$	－	${ }_{0.73}^{0.55}$	${ }_{7}^{17,84}$	${ }_{1}^{220.72}$	${ }_{39} 684$	${ }^{8153.00}$	${ }_{7} 70.37$	${ }_{2.844}^{2.95}$	7．102		${ }_{\text {l }}^{1.544-02}$	7．89E－03	1．97E－04		i．97－．04		1．97E－04		
EGEN	－Elec．as				62.70	${ }_{95500}$	28.96	${ }_{0.83}$	0.25	4，143．92	1.96	7，5997．74		${ }_{38.60}$	878.00		$2.825+01$	3．52－．01	$1.29 E+01$	1.622 －01	＋00	E－02	＋00		$1.28 E+00$	¢－02	－02	（te．04
EGEN	ELLC				62.70	95.00		${ }_{0.83}$	0.25	4，143．92	${ }_{1}^{1.96}$	${ }_{7}$ 7．597．74	122.63	38.60	876.00		2.82 E＋	3．52E	1.29	1.622 －01	$1.28 \mathrm{E}+0$	1．60E－02	$1.288+00$	1．60E－02	$1.288+00$	（00．－02		
egen	RA1－ELECC．CPS－GENO3				62.70	95.00	28.96	0.83	0.25	4.143 .92	1.96	7，597．74	122.63	38.60	876.00		2．82E	3.52		1.62 E．01	$1.28 E+00$	$1.60 \mathrm{E}-02$	1．28E＋0	1．60－02	1.288 E＋00	．600－．02	2．622－02	27E－04
	－Elec．Cps－GEN04	EGR1＿04		632．9	62.70	95.00	28.96	0.83	0.25	4，14．92	1.96	7，597．74	126.63	33.60	87.00		282			1.122 －01	．28E＋00	1．60E－02	E＋0	1．00－．02	SE＋OO	1．00E－02	822－02	－
EGEN	DTC－CPs－GENO1	EGDC 01	506673．31	50033393．3	－ 62.70	67.00 67700	${ }_{20.42}^{20.42}$	－	0.25 0.25 0.25		1.50 1.50		－ 97.288	${ }_{\text {29，}}^{295}$		961．48	3．94E＋01	4．93E－01	1．088＋01	－ 1.36 Cb －01	1．1．60 +00	2．00e－02	1．600 + ＋00	2．00E－02	1．60¢＋00	2000－02	2．14E－02	2．88E－04
Cocen		EGDC		50433437.6	62.70	67.00	20.42	0.83	0.25	3，183．44	${ }_{1.50}$	${ }_{\text {5．836．73 }}$	97.28	29.65	${ }_{1}^{1,271.00}$	961.48	3．944＋01	4．93－－01	1．08E＋01		$1.1 .60 E+00$	2.	1．60Et＋00	2．00E－02				（e．68E－04
EGEN	DIC－EPSSGEN01	EGDC－04		513.9	62.70	67.00	20.42	0.83	0.25		3.05	11，848．54	197.48	60.19	889.00	15	$2.345+01$	2．92E－01	3．29E＋00	4．11－－02	$8.00 \mathrm{E}-01$	$1.00 \mathrm{E}-22$	8．00E－01			0E－02	－02	3．88－04
	D1C－EPSSGEN02			5043512	62.70	67.00	20.42	0.83	0.25	6，462．38	3.05	${ }^{11,848.54}$	197.48	60.19	69.00		$2.34 \mathrm{E}+01$	2.22 E	E＋0	4．11－．02	8．00E	1.00 －．02	$8.00 \mathrm{E} \cdot 0$	1.00 E－02	8．00E－0	1．00E－02	11－．02	3．88E－04
EGEN	RB61－EPSGEENO	EGBB1－01	506383.99	5043338.1	${ }^{62270}$	95.00	${ }^{28.96}$	1.00	0．30	${ }_{\text {l }}^{1.933 .960}$	0．91	${ }^{2.4682 .40}$	41.04	12．51	${ }^{1,2344.00}$	${ }_{7}^{940.93}$	7．10¢＋01	$8.888-01$	4．88E＋700	6．10E－02	6．27E－01			l	6．27－－01	年．844－03	3．49E－02	4．36－04
（egen			506651.54	5043267．2	${ }^{62270}$	${ }_{4}^{42.00}$	12.80 12.80 10	${ }_{1}^{1.00}$	－	${ }_{5}^{5.5514 .40}$	${ }_{2.60}^{2.60}$	${ }_{\text {l }}^{\text {li，021．15 }}$	${ }^{1117.02}$	${ }_{35.67}^{33.67}$	－963．00	${ }_{7}^{790.37}$	3．7．0E＋01	4．63E－01		1．96E－01		5．00E－03		－03		－03		
EGEN	EPSSGEN01			5043352.3	62.70	115.00	35.05	${ }_{0} 0.67$	0.20	${ }_{4,325.62}$	2.04	12，391．98	200.53	${ }_{62} 52.95$	814.10	707.65	3．58E＋01	4．47E－01	5．311＋00			${ }_{\text {1．38E－02 }}$	1．10E					E．－04
				5043352.3	62.70	115.00	35.05	0.67	0.20	4，325．62	2.04	12,39	206	62.95								1．38E－02		$1.38 \mathrm{E}-02$		1．38E－02	－02	－04
EGEN		－ $\mathrm{D}_{1} \mathbf{0}$	99．98	退352．3	62.70	${ }^{115500}$	${ }^{35.05}$	0.67	0.20	4，325．62	${ }^{2} 204$	${ }^{12,391}$	${ }_{206.53}^{2085}$	62.95	814.10	707.65	3．58	4．47－	5．31E＋0	6．64－02	1．10E	1．38－02	1.10 E＋00			，38－02	3．50－02	
（egen			506669．98	5043352523	－ 62.70	${ }_{115000}^{11500}$	${ }_{\text {3505 }}^{3505}$	${ }_{0}^{0.67} 0$	－	${ }_{4}^{4.3525 .62}$	2.04 204 204	（12．391．98	${ }_{20653}^{200.53}$	－ 62.95	814.10 88410	${ }_{7}^{70765}$		4．47E－01	5．31E＋00		即1．10¢＋00	${ }_{\text {a }}^{1.388-.02}$		li．38E－02	即1．10¢＋00	－ $1.38 \mathrm{BE}-.02$	coseme	
en	GENo6	EGODD 06	5569.98	5043352.3	62.70	115.00	35.05	0.67	0.20	${ }_{4,325.62}$	2.04	12，391．98	${ }_{206.53}$	62.95	814.10	707.65	3．55E＋0	4．47E－0		6．64E－02	1．10E＋00	$1.38 \mathrm{E}-02$	1．10E＋00	$1.38 \mathrm{E}-02$	1．10E＋00	38E－02	50E－02	（t3E－04
Sen			569.98	5043352．3	${ }^{627} \mathbf{6}$	${ }^{115.00}$	${ }^{35.05}$	0.67	0.20	4，325．62	2.04	12，391．98	${ }^{200.53}$	${ }^{62.95}$	814.10	707.65	3．588＋01	4．47E－01	ci．3F＝00	6．64E－02	1．10¢＋00	$1.38 \mathrm{E}-02$		${ }^{1.388-02}$		1．38－．02	3．50－02	4．38E－04
		EGRS4．01	506001．58 505987.76		${ }^{62270}$	18.00 18.00	5．49 5.49	0．422	－1．13		0.14		35.81 35.81	＋10．92	（1，234．00	－940．93	8．888E＋00	即－01						－03				
EGEN	RS6－GEN－2	EGRRE02	\％ 7	558．8	62.70	18.00	5.49	${ }_{0.67}$	0.20		2.04	12，391．98	200.53	62.95	814.10	． 65	3．58E＋01	4．47E－01		6．64E－02	$1.110+00$	$1.38 \mathrm{E}-02$	$1.10 \mathrm{E}+00$	1．38E－02	1．10E＋00	1．38E－02	．50E－02	
			55．26		－ 62.70	1．00	${ }_{15}^{15.54}$	1.67 1.67	${ }_{0}^{0.51}$		＋1．69		${ }_{\text {cher }}^{59.67}$	18.19 18.19		${ }_{7}^{715.93}$	边											
EGEN	O1X－GEN－1C	CE1－03	506160	5043825.7	62.70	51.00	15.54	1.67	0.51	（10．35	${ }_{3} .69$	3，580．00	${ }_{59.67}$	${ }_{18.19}$	${ }_{829.00}$	715.93	4．78E＋01	5．98E－01	5.611 E＋+0	7.01 E－02	6.41	8.01	6．41－01	8.01 E－03	${ }_{6.41}^{6}$	8．01E－03	4．411－02	何

\begin{tabular}{|c|}
\hline \multicolumn{29}{|c|}{} \\
\hline Equipment Type \& Equipment ID \& Stack 10 \& \begin{tabular}{l}
UTM \\
Easing \\
\hline
\end{tabular} \& \(\mathrm{UTM}_{\text {UTM }}^{\text {Norting }}\) \& Elevation \& （t） \& （m） \& （t） \& （m） \& （tremin） \& \(\left(\mathrm{m}^{3} \mathrm{~s}\right)\) \& \multicolumn{3}{|l|}{\({ }_{\text {（tumin）}} \begin{gathered}\text { Stack Velocity } \\ \text {（tus）} \\ \text {（tas）}\end{gathered}\)} \& （F） \& （k） \& （blhr） \& （tp） \& （bbln \& （tpy） \& （blhr） \& （py） \& （blhr） \& （py） \& （blhr） \& （tpy） \& （lbhr） \& （pp） \\
\hline EGEN \& DIX－GEN－2A \& EGE1．04 \& 506158.66 \& 5043827.6 \& \({ }^{62270}\) \& 51.00 \& \({ }^{15.54}\) \& 1.67 \& 0.51 \& \({ }^{7,810,35}\) \& 3.69 \& 3，580．00 \& 59.67 \& 18.19 \& 829.00 \& 715.93 \& 4．78E＋01 \& 5．98E－01 \& \(5.611+00\) \& \({ }^{7}\) \& 6．41－01 \& 8．011－03 \& 6．41E－01 \& \({ }^{8.015-03}\) \& 6．41E－01 \& 8．01E－03 \& 4．41E－02 \& 5．51］－04 \\
\hline EGEN \& D1X－GEN－2B \& EGE1－05 \& 506164.13 \& 5043832939 \& \({ }^{62270}\) \& \({ }_{51}^{51.00}\) \& 54 \& \({ }_{1}^{1.67}\) \& \({ }_{0}^{0.51}\) \& \({ }_{7}^{7,810.35}\) \& 3．69 \& 558000 \& \& \({ }^{18.19}\) \& \({ }^{822900}\) \& \({ }_{7}^{715.93}\) \& 4．78E＋01 \& 5．988－01 \& \(5.611++00\) \& 7．01－02 \& 6．414－01 \& 8．011－03 \& \({ }^{6.441}\) E－01 \& \({ }^{8.015-03}\) \& 6．411－01 \& 8．01E－03 \& 4．41E－02 \& 5．51E．04 \\
\hline EGEN \& －\({ }^{\text {dix－GEN－3A }}\) \& EGEET－07 \& 506168.77 \& 50438343， \& \({ }_{6}^{62.70}\) \& 51．00 \& \({ }_{15.54}\) \& 1.67 \& 0.51 \& \({ }_{7}^{7,810.35}\) \& \({ }_{3.69}\) \& \({ }^{\text {3，5580．00 }}\) \& \({ }_{59.67}\) \& 18.19 \& \({ }_{8}^{829.00}\) \& 715.93 \& 4．78E＋01 \& 5．98E－01 \& 5.61 Etoo \& 7．01－．02 \& \& \({ }_{\text {8．01－03 }}\) \& 6．41－01 \& \({ }_{8.011-03}^{8.005}\) \& c．aye－01 \& \({ }_{\text {8，}}^{\text {8，01E－03 }}\) \& 4．41－－02 \& 5，51－0． \\
\hline egen \& d1x－GEN3B \& EGE1－08 \& 506185.64 \& 5043852.6 \& 62.70 \& 51.00 \& 15.54 \& 1.67 \& 0.51 \& \({ }^{7,810.35}\) \& 3.69 \& 3，580．00 \& 59.67 \& 18.19 \& 829.00 \& 715.93 \& 4．78E＋01 \& \(5.98 \mathrm{E}-1\) \& \(5.61 \mathrm{1}+00\) \& 7．011－02 \& 6．41－01 \& 8．01E－03 \& 6．41－．01 \& 8.01 E．03 \& 6．41－－01 \& 8．01E－03 \& 4．41E－02 \& 5．51E－04 \\
\hline EGEN \& \& EGE1－09 \& 506183．92 \& 5043885 \& － \(\begin{aligned} \& 62270 \\ \& 620\end{aligned}\) \& 51.00
5100 \& 54 \& \({ }_{1}^{1.67}\) \& 0.51
0.51
0.51 \& \& 退3．69 \& a
3.5850 .000
3.50 .00 \& \& \& 829.00
89.00 \& \& 4．78E＋01 \& cispe－01 \& 5．61E＋00 \& coly \& \& \& \& \({ }_{\text {l }}^{8.0015-03}\) \& ciale \& － 8 8．01E－03 \& 4．41E－02 \& 5.51 \\
\hline （egen \& （ix） \& \({ }_{\text {EGET－10 }}^{\text {EGEET－11 }}\) \& 506199．85 \& 50438585 \& \({ }_{\text {che }}^{62270}\) \& 51.00
51.00 \& \({ }_{15.54}^{15.54}\) \& \(\stackrel{1.67}{1.67}\) \& \({ }_{0.51}^{0.51}\) \& （7，810．35 \& 3.69
3.69 \& \begin{tabular}{l}
3，58．00 \\
3.580 .00 \\
\hline
\end{tabular} \& \({ }_{599.67}^{5997}\) \& 1819
18.19 \& \({ }_{8}^{829.000}\) \& \({ }_{7151593}^{71593}\) \& 4．7．78E＋01 \& S． \(5.988 \mathrm{E}-01\) \& 5.616 \& \& \& \(\xrightarrow{8.011} 8\) \& \& \& （eateme \& \& － 4.415 E－02 \& 5．51－．4 \\
\hline Egen \& DIX－GEN－5C \& EGE1－12 \& 506194.66 \& 5043882 \& 62.70 \& 51.00 \& 15.54 \& 2.00 \& 0.61 \& 22，779．74 \& 10.75 \& 7，251．02 \& 120.85 \& 36.84 \& 829.00 \& \& 4．78E＋01 \& \(5.98 \mathrm{E}-01\) \& 1．12E＋00 \& 1．40E－02 \& 9．61－02 \& 1．20E－03 \& 9．61－．02 \& 1.20 E－03 \& 9.61 E－02 \& 1．20E－03 \& 4.41 \& 5.5 \\
\hline EGEN \& DIX－GEN－4C \& EGE1－13 \& 506192．64 \& 50438836．1 \& 62．70 \& \({ }_{51}^{51.00}\) \& 15．54 \& 1.67
1.200 \& 0.51 \& \& 3.69
1075
1 \& \& \({ }_{\text {che }}^{59.67}\) \& \begin{tabular}{l}
18.19 \\
3684 \\
\hline
\end{tabular} \& \& \& 4．78E－ \& 5．98E－0 \& 5ibletoo \& 7．01E．02 \& 6．41E \& 8．210．03 \& 6．44E－01 \& 8， \& 6．44－．01 \& 1．01E－．3 \& 4．41－02 \& 5．51E．04 \\
\hline \& X－GEN \& －EGE1－14 \& 50619906 \& 50438686．4．4 \& 62．70 \& 51.00
51.00 \& \begin{tabular}{l}
15.54 \\
15.54 \\
\hline
\end{tabular} \& 2.00
2.00 \& \({ }_{0.61}^{0.61}\) \& 22，797944
22，79．74 \& 10.75
10.75
1075 \& \begin{tabular}{l}
\(7,25.102\) \\
\(7,251.02\) \\
\hline
\end{tabular} \& 120.85
120.85
\({ }^{120}\) \& 36.84
36.84 \& \({ }_{8}^{829.00}\) \& \({ }_{7159.93}^{715.93}\) \& 4．888＋01 \& ¢， \begin{tabular}{l}
6．10E－01 \\
\(6.10-01\) \\
\hline
\end{tabular} \& li．76E－01 \& 4．700－03 \& 1．01E－01 \& li．26－03 \& － 1.015 E．01 \& \& － \& li．2ee． \& 5．18E－02 \& ceate \begin{tabular}{c}
\(6.47 E-0.4\) \\
\(6.47-04\) \\
\hline
\end{tabular} \\
\hline \& （ix） \& \& \({ }_{50620267}\) \& 5043887．4．6 \& \({ }_{622070}^{627}\) \& 51.00
51.00 \& \begin{tabular}{l}
15.54 \\
15.54 \\
\hline
\end{tabular} \& \({ }_{2.00}^{200}\) \& \({ }_{0.61}^{0.61}\) \& 22，7974
22，79．74 \& \begin{tabular}{l}
10.75 \\
10.75 \\
\hline
\end{tabular} \& \& \({ }^{120285}\) \& \({ }_{3}^{36.84}\) \& 829.00
82900 \& \({ }_{7151593}^{715.93}\) \& \({ }_{\text {a }}^{4.888 E+01}\) \& c．ine－01 \& \& 4．70e－03 \& lenti．fe－02 \& － 1.889 －04 1.804 \& － 1.5151 E－02 \& － 1.8980 E－04 \& － \& \& \({ }_{\text {5．18－－20 }}^{5}\) \& \begin{tabular}{c}
6．47E．04 \\
6.47 Ea \\
\hline
\end{tabular} \\
\hline EGEN \& D1x－GEN6B \& \& 506201．1 \& 5043871．7 \& －6270 \& 51.00
5100 \& \begin{tabular}{l}
15.54 \\
154 \\
\hline 15
\end{tabular} \& 2.00
200 \& \({ }^{0.61}\) \& 22,7974
2277974
27 \& 10．75 \& \& （120．85 \& 36．84 \& － 822.90 \& \& 4．88E＋ \& 6．10－．01 \& 3．76E－01 \& 4．70－03 \& 1．515－02 \& 1．89E－04 \& 1.51 E－02 \& \(1.89 \mathrm{E}-04\) \& 1．51E－02 \& 1．89E－04 \& 5．18E－02 \& 6．47E－04 \\
\hline EGEN \& Dix－GEN－6C \& GGE19 \& 506206828 \& 50438776 \& 6270 \& 51.00 \& \({ }_{15.54}\) \& ＋1．07 \& 0．51 \& \begin{tabular}{l}
\(22,79.7\) \\
780.35 \\
\hline
\end{tabular} \& 3．79 \& 7，558000 \& － 120.85 \& \({ }^{36.84}\) \& \& \& \({ }^{4.888+01}\) \& \& 3， \& 4．70－03 \& 速 \& Hege－04 \& \& 1．89E－04 \& 1．51E－02 \& \& 5．18E－02 \& \\
\hline \& （ix） \& EGEE 120 \& \& \& 62.70 \& \& \& 1.67 \& 0.51 \& \& \({ }_{3.69}\) \& （3．580．00 \& \({ }_{59967}^{59.67}\) \& 18.19
18.19 \& \({ }_{829.00}^{82900}\) \& \({ }_{7151593}^{71593}\) \& 4．788E＋01 \& 5．98E－01 \& \(1.12 \mathrm{E}+00\) \& 1.40 －．02 \& 9．61E－02 \& \({ }^{1.200-03}\) \& 9．611－02 \& 1．20E－03 \& 9．61E－02 \& \& 4．411－02 \& \\
\hline EGEN \& \(x\) xen－7c \& \& \& 5043880.9 \& \& \& \& 167 \& 0.51 \& ． 35 \& \& 58800 \& 59.67 \& 18.19 \& 829.00 \& 715.93 \& 4．78E＋01 \& \(5.98 \mathrm{E}-01\) \& 1.12 2F＋00 \& \({ }^{1.400-02}\) \& 9．61E－02 \& 1.200 .03 \& 9．61E－02 \& 20E－03 \& 9．61E－02 \& 1．20E－03 \& 4．41E－02 \& 5．51E－04 \\
\hline EGEN \& \& \({ }_{\text {EGC5 }}\) \& 505880．6 \& \({ }_{\text {5043410．9 }}\) \& －6270 \& 85.04
8504 \& \({ }_{2592}^{2592}\) \& 1.67
1.67 \& \({ }_{0}^{0.51}\) \& \({ }^{22,778.73}\) \& \(\begin{array}{r}10.75 \\ 1075 \\ \hline 1\end{array}\) \& 10.441 .00
10.04100 \& \({ }^{177.02}\) \& \({ }_{53}^{5304}\) \& 哏833000 \& \({ }_{716}^{716.48}\) \& \& 8， 8 8，49E－01 \& 即887－01 \& \& 8．86E－02 \& 边 \(1.111-03\) \& 8．886－02 \& － \(1.111-03\) \& \({ }^{8.886-.02}\) \& \& colice．o2 \& 7．63E－04 \\
\hline EOEN \& － \& \& \& \& \& \& \& \& \& \& 10.75 \& \& \& \& \& \& \& \& \(8.87 \mathrm{~F}-1\) \& \({ }^{1.111-02}\) \& 8.86 E－02 \& 1.111 －03 \& \& 1．111－03 \& 886－02 \& \& 610．02 \& \\
\hline （egen \& \& \& 505880．6 \& 5043323.3 \& \({ }_{6220}^{627}\) \& \({ }_{85} 8.04\) \& \({ }_{25.92}\) \& 1.1 .67 \& 0.51 \& 22，778．73

22， \& 10.75
10.75 \& 10．441．100
10，4100 \& 174.02 \& 53．04 \& ${ }_{83000}$ \& 716.48 \& 6．80E＋01 \& ${ }_{\text {8，}}^{\text {8，9e－01 }}$ \& ${ }_{8}^{8.877-01}$ \& \& 8．86E－02 \& 1．11－03 \& 8， \& 1．111－03 \& 8．86－02 \& \& \& （7．635－04

\hline Egen \& D112．GEN－2B \& EGC5 505 \& 505880.6 \& 5043445.1 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& 22，778．73 \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.0 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-01$ \& 8．87－01 \& $1.1111-02$ \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 6．10E－02 \& 7．63E－04

\hline EGEN \& D122－GEN－ \& EGC5 ${ }_{\text {cog }}$ \& ${ }^{5058880.6}$ \& 5043451.2 \& ${ }^{62.70}$ \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& ${ }^{22,778.73}$ \& 75 \& ${ }^{10,441.00}$ \& 174.02 \& 3．04 \& ${ }^{830.00}$ \& 48 \& 6．80E＋01 \& 8．49E－01 \& $8.877-01$ \& $1{ }^{1.1111-02}$ \& 8.886 .02 \& 1．111－03 \& $8.86 \mathrm{E}-22$ \& 1．11E．03 \& 8．86E－02 \& 1．11E－03 \& 6．10E－02 \& 7－635－04

\hline \& Dxx2－6EN－3A \& ${ }_{\text {EGC5 }}$ \& 505880．6 \& 5043479．5 \& －62．70 \& 8504
8504 \& 25.92
2592 \& 1.67
1.67
1 \& 0.51
0.51
0.51 \& \& 1075 \& 10.441 .00
10.44100
10， \& ${ }^{174.02}$ \& －5304 \& ${ }^{833000}$ \& 716．48 \& \& 8， \& 8．87E－01 \& 1．111－02 \& 8860.02 \& \& \& \& 8．86－02 \& \& 即 \& －7．63E－04

\hline \& \& \& 5098880．6
505800.6 \& 5043885．6． \& ${ }^{62270}$ \& ${ }_{85}^{85.04}$ \& ${ }_{25.92}^{25.92}$ \& $\stackrel{1}{1.67}$ \& 0.51 \& 22，778．73

22， \& 10．75 \& 10．441．100 \& 174.02 \& 53．04 \& ${ }_{833000}^{83000}$ \& | 716.48 |
| :--- |
| 716.48 |
| 104 | \& 年．80E＋01 \& 8．99－01 \& 8．877－01 \& 1．111－02 \& －8．86－．02 \& 1．111－03 \& 8．86－02 \& 1．111－03 \& 8．66－02 \& \& \& （7．635－04

\hline Egen \& D1X2－GEN－4A \& EGC5－10 \& 505880.6 \& 5043491.7 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& ${ }^{22,778.73}$ \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.0 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-01$ \& 8．87－01 \& $1.1111-02$ \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& \& 6．10E－02 \& 7．63E－04

\hline Egen \& D1X2－GEN－4B \& EGC5＿11 \& 5880.6 \& 5043497.8 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& 22，778．73 \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.00 \& 48 \& 6．80E＋01 \& $8.49 \mathrm{E}-1$ \& 8.87 －01 \& $1 \mathrm{E}-02$ \& $8.88 \mathrm{E}-02$ \& 1．111－03 \& $8.86 \mathrm{E}-22$ \& 1．11E．03 \& 8．86E－02 \& 1 E．03 \& 6．10E－02 \& $7.635-04$

\hline EGEN \& \& ${ }_{\text {EGC5 }}$ \& 505880．6 \& 5004395．2． \& ${ }^{62270}$ \& ${ }_{85}^{8504}$ \& 25.92
2592 \& ${ }_{1}^{1.67}$ \& ${ }^{0.51}$ \& \& 10．75 \& 10，441．00 \& ${ }^{174.02}$ \& 53．04 \& ${ }^{833000}$ \& \& － 6.80 Co \& ${ }^{8.496-01}$ \& 8．87E－01 \& \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& － $1.111-03$ \& 8．86E－02 \& \& coline．02 \& 7－635－04

\hline \& （1x \& \& 5055880．6 \& ${ }^{\text {50433221．3 }}$ \& ${ }^{62270}$ \& 85.04
8504 \& 25.92

25.92 \& \begin{tabular}{l}
1.67

1.67

\hline

 \& ${ }_{0}^{0.51}$ \& \&

10.75

10.75

\hline 10
\end{tabular} \& 10，441．00

10.441 .100 \& \begin{tabular}{l}
174.02

174.02

\hline

 \& ${ }_{53}^{53.04}$ \& ${ }_{8}^{833000}$ \&

716.48

716.48

\hline
\end{tabular} \& 年．800 6 ＋01 \& cose \& 哏8．87E－01 \& \& 即8．86E－02 \& － \& cose \& － 1.1111 E－03 \& \& \& coleme \& －7．6EE－04

\hline Egen \& D1X2－GEN－5C \& EGC5 15 \& 505880.6 \& 5043332．8 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& ${ }^{22,778.73}$ \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.00 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-01$ \& 8．87－01 \& $1.1111-02$ \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 6．10E－02 \& 7．63－54

\hline Egen \& D1X2－GEN \& EGC5－16 \& 505880.6 \& 5043527．4 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& 22，778．73 \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.00 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-1$ \& $8.87-01$ \& 1．111－02 \& $8.88 \mathrm{E}-02$ \& 1．111－03 \& $8.86 \mathrm{E}-22$ \& 1．11E－03 \& 8．86E－02 \& 1．11E－03 \& 6．10E－02 \& $7.635-04$

\hline EGEN \& ${ }^{\text {D } 1 \times 2.6 E N-6}$ \& ${ }_{\text {EGC5 }}$ \& 505880．6 \& 5004322．3 \& ${ }^{62270}$ \& ${ }_{85}^{8504}$ \& 25.92
2592 \& ${ }_{1}^{1.67}$ \& ${ }^{0.51}$ \& \& 1075 \& 10，441．00 \& ${ }^{174.02}$ \& 53．04 \& ${ }_{830} 8$ \& 716 \& 6．80¢＋01 \& ${ }^{8.495-01}$ \& 8．87\％－01 \& 1．11E－02 \& 8．86E－02 \& 1．111－03 \& \& \& 8．86E－02 \& \& 6．10E－02 \& 7．63E－04

\hline \& \& \& S058880．6 \& 5043759．2． \& cer 62.70 \& 85.04
8504 \& 25.92
25.92 \& ${ }_{1}^{1.67}$ \& ${ }_{0}^{0.51}$ \& \& 10.75
10.75
1075 \& lo，441．00

1044100 \& | 174.02 |
| :--- |
| 174.02 | \& ¢ ${ }_{53.04}^{5304}$ \& 830.00

83000 \& | 716.48 |
| :--- |
| 716.48 |
| 1048 | \& \& ${ }_{\text {cose }}^{8.495-01}$ \& 8．87\％－01 \& \& 即8．86－02 \& － 1.11111503 \& 号8．86E－02 \& ，1111－0．03 \& \& \& colileme \&

\hline Egen \& D112－GEN－78 \& EGCC5 20 \& 505880.6 \& 5043491.7 \& 62.70 \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& ${ }^{22,778.73}$ \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.00 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-01$ \& 8．87－01 \& $1.1111-02$ \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& 1．111－03 \& 8．86E－02 \& \& 6．10E－02 \& ，7．63E－54

\hline EGEN \& D112－GEN \& EGC5 21 \& 505888.6 \& 50438878 \& ${ }^{62.70}$ \& 85.04 \& 25.92 \& 1.67 \& 0.51 \& ${ }^{22,778.73}$ \& ${ }^{10.75}$ \& ${ }^{10,441.00}$ \& 174.02 \& 53.04 \& ${ }^{833000}$ \& 716.48 \& 6．80E＋01 \& ${ }^{8.495-01}$ \& 8．87－01 \& $1{ }^{1.111-02}$ \& 8．86E02 \& 1．111－03 \& $8.86 \mathrm{E}-22$ \& 1．11－03 \& 8．86E－02 \& 1．11E－03 \& 6．10E－02 \& 7． 835 E－04

\hline \& ${ }_{\text {Fen }}^{\text {F20－EPS－2 }}$ \& $\xrightarrow{\text { EGOB }}$ EGOB 0 \& 50672．14 \& 5043875．1 \& ${ }^{62270}$ \& 35.00
3500 \& 10.67

10.67 \& | 0.88 |
| :--- |
| 0.83 | \& － \& ${ }_{4}^{4.434 .92}$ \& ＋1．96 \& ${ }_{7,597.74}^{7,597}$ \& 126.63

126.63 \& 38.60
38.60 \& － \& ${ }_{9}^{955371}$ \& 4．888E＋01 \& \& 3．76E－01 \& 4．70E－03 \& li．51－02 \& 1．89E－04 \& － 1.515 \& － 1.898 E－04 \& ${ }^{\text {Preme－02 }}$ \& \& 5．18E－02 \&

\hline EGEN \& \& EGEDB 03 \& 50671991 \& \& ${ }_{6270}$ \& 45.00 \& 13．72 \& 0.83 \& \& ${ }_{4,143.92}$ \& 1.96 \& 7，597．74 \& ${ }_{126.63}$ \& 38．60 \& ${ }^{1,257.00}$ \& 95371 \& \& \& \& $1.38 \mathrm{E}-01$ \& \& \& SE－01 \& E．03 \& E5－01 \& \& \&

\hline egen \& ${ }_{\text {F15 }}$ EG601 \& EGFI5 01 \& 508927 \& 5037859．6． \& ${ }^{69.40}$ \& 64．50 \& ${ }^{19.66}$ \& 1.00 \& ${ }^{0.30}$ \& 3．628．43 \& 1.71 \& 4．619．86 \& 77.00 \& ${ }^{23.47}$ \& ${ }^{944.00}$ \& 9.82 \& $2.622+01$ \& $3.27 \mathrm{E}-01$ \& 1.11 E＋01 \& $1.38 \mathrm{E}-01$ \& 5．05E－01 \& 6．31E－03 \& 5．05E－01 \& 6.31 E－03 \& 5．05E－01 \& 6．31E－03 \& $2.445-02$ \& 3．055－04

\hline EGEN \& \& EGF1502 \& 508928．16 \& ${ }_{\text {5037850．5 }}$ \& ${ }_{\substack{69.40 \\ 690}}^{\text {a }}$ \& 64．50 \& 19.66
19.66 \& 1.00
100
1 \& 0.30
0.30
0.30 \& \& 2.20
220
20 \& \& －98．73 \& 33009 \& ${ }_{923}^{923}$ \& ${ }_{7}^{788.15}$ \& \& \& 1．11E＋0 \& \& 50．05－01 \& \& 5i．0．0．01 \& \& 5i．05－．01 \& ciskE．03 \& $2.44 \mathrm{E}-02$ \& 3．05E－04

\hline EGGN \& F15，5－6601 \& EGF5－01 \& 5099104.57 \& 5037792.7 \& 69.40 \& 67.00 \& 20.42 \& 1.00 \& 0.30 \& ${ }_{4,652.41}$ \& 2.20
2 \& ${ }_{\text {c，}}^{5}$ \& ${ }_{98.73}$ \& 30.09 \& ${ }_{923,00}$ \& 768.15 \& 5．49E＋01 \& 6．87E－01 \& $1.388+01$ \& 1．73E－01 \& 5．80E－01 \& ${ }_{7}^{7.255-03}$ \& 5．80－－01 \& 7，25－03 \& 5．80E－01 \& 7．255－03 \& 2.61 －02 \& ceine

\hline EGEN \& F15．5．E602 \& EGF5＿02 \& 129.67 \& 5037797．5 \& 69.40 \& 67.00 \& ${ }^{20.42}$ \& 1.100 \& 0.30 \& 4，652．41 \& 2.20 \& 5．923．64 \& 98.73 \& 30.09 \& 923.00 \& 788.15 \& 7．02E＋01 \& 8．788－01 \& 1．02E＋01 \& 1．27－01 \& 5．40E－01 \& 6．75E－03 \& 5．40－－01 \& 6．75E－03 \& 5．40E－01 \& 6．75E－03 \& ${ }^{2} \mathbf{2}$ 26－022 \&

\hline \& \& COH201 \& 506437．39 \& 5044073．8 \& ${ }_{62.70}^{627}$ \& ${ }_{26.02}^{20.00}$ \& ${ }_{7}^{6} .193$ \& ${ }_{0}^{1.73}$ \& －0．32 \& \& 3.06
1.07 \& \& ${ }_{\substack{120.83 \\ 9000}}^{198}$ \& 36.83
27.43 \& ${ }_{9}^{1,026.600}$ \& 892.82
770.15 \& \& \& ci．6．0．－01 \& 8，8．35－0．－03 \& \& 5．911－04 \& 2．511－02 \& \& ${ }_{\text {2．51］－02 }}^{\text {4．7．0．02 }}$ \& cose \& \&

\hline egen \& IWW \& EGIW－01 \& 506152.98 \& 5044046.4 \& 62.70 \& 21.98 \& 6.70 \& 0.73 \& 0.22 \& 7，565．45 \& 3.57 \& 18，075．86 \& 301.26 \& 91.83 \& ${ }^{836.80}$ \& 720.26 \& 4．88E＋01 \& 6．10－．01 \& 3．76E \& 4．70 \& 1．51－2 \& 1.89 E \& 1.51 \& 1．89E．04 \& 1E．02 \& E．04 \& 5．18－02 \& 677－04

\hline \& WW－GEN－1 \& － \& 505881．34 \& 500404364．5 \& －${ }^{62270}$ \& 19.99
21.98 \& 5.91
6.70 \& ${ }^{0.73}$ \& － \& ${ }^{7,565.45}$ \& 3.57
3.57 \& \& \& － 91.83 \& 836.80
83680 \& ${ }_{7}^{720.26}$ \& 4．88E＋01 \& \& 3，76E－01 \& 4．70－03 \& － \& 1．899－04 \& \& 1．89E－04 \& \& 1．89E－00 \& \& ceinte．

\hline EGEN \& MAXEEGEN \& EGR \& \& 383 \& 62.70 \& 8.00 \& 2.44 \& \& \& 79 \& 0．37 \& 9，082：11 \& 151.37 \& 46.14 \& 1，234，00 \& ${ }_{940.93}^{20.26}$ \& 7．16E＋00 \& 8．955－02 \& 2．24E＋00 \& 2．800．02 \& ${ }_{8.42 \mathrm{E}-02}$ \& 1．05－03 \& \& 1．055－03 \& ${ }_{8.42-02}^{2002}$ \& 1．055－03 \& 4．07－．03 \& （1．15E－04

\hline EGEN \& diagen－1 \& dDA 01 \& 54，32 \& 5043977 \& 62.70 \& 76. \& 23.29 \& 1.67 \& 0.51 \& 22，778．73 \& 10.75 \& 10，441．00 \& 74.02 \& 53.04 \& 33.00 \& 716.48 \& 6．80E＋01 \& $8.49 \mathrm{E}-01$ \& 8.87 －01 \& 1．111－02 \& 8．86E－02 \& 1．111－03 \& ${ }_{8.86 E-02}$ \& 1．11E－03 \& 8．86E－02 \& 1．111－03 \& 6．10E－02 \&

\hline EGEN \& \& EGDA 02 \& 506757．32 \& \& 62.70
6270 \& ${ }_{7}^{76.41}$ \& ${ }_{23}^{23.29}$ \& 1.67

1.67 \& ${ }_{0}^{0.51}$ \& | $22,787.73$ |
| :--- |
| ${ }_{2} 277873$ | \& 10.75

1075

10 \& $\begin{array}{r}10.411 .00 \\ 1044100 \\ \hline\end{array}$ \& ${ }^{174.02}$ \& ${ }_{53}^{53.04}$ \& 833000
83000 \& ${ }_{7}^{716.48}$ \& 6．80＋01 \& ${ }_{\text {coser }}^{8.498-01}$ \& 8．87－01 \& \& 8．86E－02 \& 1．111－03 \& 8，886－02 \& ，1．11－．03 \& \& 1．11E．03 \& 6．10E．02 \& 7．63E－0．

\hline \& DIA GEN－4 \& EGEAA 04 \& 757．32 \& 5043970 \& 62.70 \& 76.41 \& ${ }^{23.29}$ \& 1.67 \& 0.51 \& ${ }_{22,778.73}$ \& 10.75 \& 10．441．00 \& 174.02 \& 53.04 \& 830.00 \& 716.48 \& \& 8.495 －01 \& \& \& \& $1.111-03$ \& \& \& \& \& \& 7．63E－1

\hline EGEN \& DIAGEES 5 \& EGDA 05 \& 506754.32 \& ${ }^{5043983}$ \& ${ }^{62.70}$ \& 7.41 \& ${ }^{23.29}$ \& 1.67 \& 0.51 \& 22，787．73 \& ${ }^{10.75}$ \& ${ }^{10,441.00}$ \& 174.02 \& 53.04 \& ${ }^{830.00}$ \& 716.48 \& 6．80E＋01 \& ${ }^{8.495-01}$ \& $8.87 \mathrm{E}-01$ \& 1.1111 －02 \& 8.886 .02 \& 1．111－03 \& $8.86 \mathrm{E}-02$ \& 1．11E－03 \& 8．88E－02 \& 1．11E－03 \& 6．10E－02 \&

\hline \& A－GEN－7 \& EGEDA ${ }^{\text {EO7 }}$ \& 54．32 \& 963 \& ${ }_{6}^{62270}$ \& \％6．41 \& ${ }_{29}$ \& $\stackrel{1.67}{1.67}$ \& ${ }_{0}^{0.51}$ \& \& | 10.75 |
| :--- |
| 10.75 | \& \& ${ }_{174.02}^{17402}$ \& ${ }_{5}^{53.04}$ \& － 8330.000 \& \& \& ¢ \& \& \& \& \& \& \& \& \& \&

\hline EGEN \& A－GEN－8 \& \& \& \& 62.70
6270 \& 76.41 \& 29 \& 1.67 \& 0.51 \& 22，778．73 \& 10.75 \& 10，441．00 \& 174.02 \& 53.04 \& 830.00 \& 716.48 \& \& \& \& \& \& \& \& \& \& \& \&

\hline \&

\hline
\end{tabular}

Equipment Type	Building	Equipment ID	Stack ID	$\underset{\text { Easting }}{\text { ETM }}$	UTMNorthing	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Stack Height （m）	Stack Diameter （m）	Stack Velocity （ m / s ）	Stack Temperature （K）	Nox		CO PM10				PM25		so2	
											Hourly Emissions $(9 / 5)$	$\underset{(g \mid t)}{\text { Annua } \text { Imsions }}$	$\underset{\substack{\text {（glss }}}{\text { Hourly Emisions }}$	Hourly 8－HR Emissions （g／s）	Hourly Emissions （g／s）	Annual Emissions	Hourly Emissions	Annual Emissions Emissions	Hourly Emissions	$\underset{\substack{\text { Annual Emissions } \\(9 / 5)}}{ }$
Boier	CUB1	F20－BLR115－1－200	BOC1＿01	506773.17	5043806．7	62.70	30.18	0.81	5.70	372.04	4．28824E－02	1．28647E－02	${ }^{1.45066 E-01}$	1.455066 －01	2.02341 －03	6．07024E－04	1．67321E－03	5．01962E－04	1．01771E－02	3．03512－03
	CuB1	F20－BLR115－2－200		50674		62.70	30.18	0.81	5.70		02	－02	源		2．02341E－03	6．07224E－04	1．67321－．03	5．01962E－04	1．01171E－02	3．03512－03
Boiler	${ }^{\text {cu81 }}$	F20－BLR1115－3－200	C1＿03	506748.17	5043806．7	62.70	30.18	${ }^{0.81}$	5.70	仿．04		退28677－02	（eabe－o	退．55066－01	2．023411－03	07024E－04	－03	E－04	1.01171	${ }^{3.03512}$
Soier	Cusi	F20－BIR115－5－200	${ }^{\text {BoCli－}}$	506753.17	5043806．7	${ }_{62.70} 62.70$	${ }_{30.18}^{30.18}$	${ }_{0.61}^{0.61}$	10.09 10.99	342.04 4492	4．00140E－02	（1．2004E－02	${ }^{\text {l }}$ 1．35635E－01	1．155365－01	1．188807－03	5．，6620E－04	${ }_{\text {1．56129E－03 }}^{1.62620-03}$	4．68386E－04	9．44034E－03	2．83210E－03
Boiler	RA1	RA1－MECH－B01	Bori－ 01	506843.5	5043630.5	62.70	28.96	0.20	${ }_{3.26}$	372.04	8．89412E－03	2．66824E－03	${ }^{7} .477106 E-03$	7．47106E－03	4．62494E－05	1．38748E－05	${ }_{\text {3．82447－05 }}^{1.51203}$	1．14734E－05	2．31247E－04	6．93741－－05
Boiler	RA1	RA1－MECH－B02	BOR1－02	506804．48	5043762.9	62.70	28.96	0.15	5.79	372.04	1．23529E－02	3．70588E－03	1．03765E－02	$1.03765 E-2$	6．42353E－05	1．92706E－05	5．31176E－05	1．59353E－05	3．2176E－04	${ }_{9.63529}$
Boiler	CUB2	CUB2－BLR115－1210	BOC2＿01	506579.98	5043557．1	62.70	13.72	0.81	2.33	372.04	$4.37155 \mathrm{E}-\mathrm{O2}$	${ }^{1.31146 E-02}$	1.47884 －02			6.188	1．70571E－03	5．11714E－04		
Boiler	${ }^{\text {CuB2 }}$	CUB2－BLR115－2－210	BoC2＿02	506579.22	50433852．7	${ }^{62.70}$	${ }_{1372}^{13.72}$	${ }^{0.81}$	${ }_{2}^{2.33}$	${ }^{372.04}$	${ }^{4.3771555-02}$	1．31146E－02	1．1．78884－01		2．06272E－03	6．188177－04	${ }_{\text {d }}^{1.7705711-03}$	5．11714－04	－ $1.031366-02$	3．09409E－03 3．0940E－03
Boiler Boier	Cu82	CUB2－ELR115－3210 CuB2－bLR11－4－210		506574.1 506575	5043555．8 504555.9	${ }^{622.70} 6$	13372 13.72	${ }^{0.81}$	2.33 2.33	372.04 372.04	＋${ }_{\text {4．445955E－02 }}$	（1．33378E－02	（1．750001E－01	1．578804E－01	2．0978EE－03	6．29349E－04	1.	5．2042E－04	1．04891E－02	
Bo	CUB2	CUB2－BLR115－5－210	BoC2－05	506536.08	5043603.2	62.70	13.72	0.61	10.09	372.04	4．00126E－02	1．20038E－02	$1.35358 \mathrm{E}-01$	1．35358E－01	1．88800E－03	5．66401E－04	1．56123E－03	4．68370E－04	9．44002E－03	2．83201E－03
Boiler	CUB2	CUB2－ELR115－6－210	BoC2＿06	506556.51	5043600.4	62.70	13.72	0.61	10.09	372.04	$4.16816 \mathrm{E}-02$	1．25045E－02	1．41004E－01	1．41004E－01	1．96776E－03	5．90027E．04	1．62636E－03	4．87907E－04	9．83378E－03	$2.95013 \mathrm{E}-33$
Boiler	RA4	RA44BLR152－2－30	Bor4＿01	5064997．72	50431022．2	${ }^{62.70}$	${ }^{36.90}$	${ }^{0.20}$	3.94	${ }^{449.82}$	${ }^{2.469355-122}$	7.408068 －0	${ }^{2.07426 E-02}$	${ }^{2.074266-02}$	$1.288006-04$	3．85219E－05	1．061822－04	3．185477－05	6．42332E－04	1．929610E－04
Boiler	${ }^{\text {RA4 }}$	RA4－BLR $152-1.30$	BOR4＿02	506500.12	5043113	62.70	36.90	0.20	${ }_{3.94}$	${ }^{449.82}$	${ }^{2}$ 2．469355－02	7．40806E－0	${ }^{2} .0742666-02$	2．074266－02	1．28006E－04	3．852199－05	1．061822－04	3．185477－05	6．42032E－04	1．926100－04
${ }_{\text {Boier }}$	${ }_{\text {RAA }}$	RAABLRIIIT－2－30	Reliou	506524．09	50433114．7	${ }^{62270}$	${ }_{40}^{40.23}$	0．30	－11．46	${ }_{4}^{499.82}$	2．46935－02		（entere	207426E－02	128806E－04	－	－ 1.0018182 －04	－	C．42032E－04	边
	${ }_{\text {RA4 }}^{\text {RAA }}$			5065660．12	${ }^{50433116.1}$	${ }_{62.70}^{62.70}$	${ }_{40.23}^{40.23}$	${ }_{0}^{0.31}$	11.46 10.66	${ }_{449.82}^{499.82}$		－ 1.200042 E －02	（1．5563E－01	2．35563E－01	1．88807－03	5．6642EE－04	1．5612EE－03	4．68386－04	C．44034E－03	
Boiler	RA4	RAA－BLR117－430	BOR4＿06	506460.94	5043063．7	62.70	40	0.61	10.66	449	4．00140E－02	1．20042E－02	${ }^{1.353638-01}$	1．35363E－01	1．88807E－03	5．66420E．04	${ }^{\text {1．565129E－03 }}$	4．68386E－04	9．44034E－03	2．832100－03
Boiler	сивз	－${ }^{\text {R－115－1－210 }}$	c3＿01	506360.1	5043421.3	62.70	${ }_{1554}^{15.54}$	${ }^{0.46}$	${ }_{2}^{2.50}$	${ }^{422.04}$	6．17521E－02	${ }^{1.852566-02}$	（1．75020E－02	3．76020E－02	5．24881E－04	1．573444－04	4．33706E－04	1．30112E－04	－03	7．88722
Boier	CUB3 CuB ald	BLR－115－2－210	边	506360．1	50033432．2	62.70	${ }_{\text {l }}^{15.54}$	0.81 0.81	－ 3.17	${ }_{4}^{422.04}$	4．00140E	（12042E－2，	－	${ }_{1}^{1.35363}$		5.66422		4．68386E－04		2.8321
	в3	BLR－115－3－210	速		${ }^{5043343218.4}$	62.70			3.17 1.39		${ }_{\text {4，}}^{4.44602 E-02}$		（1．5363E－01	1．55003EE－01	2．09786E－03	6．29358E	1．173477E－03	5． 5.2033151504		
Boiler	${ }_{\text {CuB3 }}$	BLR－115－4．210	BOC3＿04	506359.8	5043418．4	${ }^{62.70}$	${ }^{15.54}$	0.81	1.39	${ }^{422.04}$	${ }^{4.446022-02}$	${ }^{1.333800 E-02}$	1．50403E－01	1．558003E－01	${ }_{\text {2，}}^{2.0977796 E-03}$			5．204315－04	1．008933－02	3．146799－03
	${ }_{\text {CuB3 }}$	${ }_{\text {Ble }}^{\text {BLR－11－5－210 }}$	BoC3 05	506630．1	${ }^{5043435959.4}$	62270 68.70	$\begin{array}{r}15.54 \\ 1554 \\ \hline 15\end{array}$	${ }_{0}^{0.61}$	3.56 3.56	422.04 422.04	6．48363E－02 4.001265 4	（1．200359E－02		6．${ }^{6.585000}$－02	1．88800E－03	（5．6601E－04	1．565123E－03	${ }_{\text {a }}^{\text {L．8837EE－04 }}$	－${ }_{\text {9．44002E－03 }}$	
	${ }_{\text {Clib3 }}$	${ }_{\text {RP1－BLR1515－1－210 }}^{\text {Re－}}$	${ }^{\text {BOCC306 }}$	50633．9	${ }^{504333515.3}$	${ }^{622.70}$	15.54 12.80	${ }_{0.51}^{0.61}$		${ }_{4}^{422.04}$		（e）	¢．	－ 1.400856 E－02	${ }_{8}^{1.98888006-04}$		$\xrightarrow{1.53828222-04}$	${ }_{2}$	4.4603 E	2．83201E－03
	${ }_{\text {RP1 }}^{\text {RP1 }}$		BORPIT1－02	500762		${ }_{62.70}$	12.80 12.80	${ }_{0.51}$	${ }_{3.03}$	${ }_{418.71}^{418.71}$	－	5.	（e）	5．64007E－02	7．86690E－04	2．36007E－04	6．50532E－04	，	4．93345	（1．3921－03
Boier	${ }_{\text {RP1 }}^{\text {RP1 }}$		BoRP1＿03		${ }_{504307}$	${ }_{622}^{62.70}$	12.80	0.51			${ }^{1.666724 E-02}$	5．00172－03		5．64007E－02	7.866900 －04	2．36007E－0．	6．50322E－04	1．95160E－04	－	1．1．8003E－03
${ }^{\text {Boiler }}$	${ }_{\text {RP1 }}^{\text {RP1 }}$		Borpil	506762		${ }^{622.70}$	12.80 12.80	${ }_{0}^{0.51}$	3.03 1.06	${ }_{449.82}^{418.71}$	（1．67244－02	${ }_{\text {4．78455－03 }}$	5．3．39007E－02	5．39507E－02	${ }_{7}^{7.856560 E-04}$	2．2575E－04	¢6．52273E－04	1．961600－04	3．76258	${ }^{1.1212877}$
	${ }_{\text {R }}^{\text {R }}$（184 4	${ }_{\text {CuB4 }}^{\text {RPLRLR115－1－10 }}$	Brat	506418.13	${ }_{\text {col }}^{5043302828}$	${ }^{622.70}$	12.80 26.37	${ }_{0}^{0.51}$	1.06 10.82 		（1．94495E－02	4．7．74455－03 5．8386E－03	6．57954－02	6．57954E－02	9．17730E－04	2．75319E－04	${ }_{7}^{\text {．} 7 \text { 88892E－04 }}$	${ }_{2}^{1276668 E-04}$	4．58885E－03	li．12875－03
			BOC4－02	506418.4	5043527．6	${ }^{62.70}$	${ }_{26.37}^{26.37}$	${ }_{0}^{0.61}$	10.82 13.79 1	449.82	4．16776E－02	1．2503E－02	1．40990E－01	1．40990 -01	1.96656 －03	5．89996E	${ }_{1.1626220-03}$	4．87859E－04	9．8328E－03	迷
Soier	${ }_{\text {Cub4 }}$		BoC4	506429.87	5043517.1	62.70	26.37		${ }_{13.79}$	${ }_{44992}^{49.82}$	${ }_{4}^{4.16776 E-02}$	${ }^{1.25033 E-02}$	${ }_{1}^{1.409900 E-01}$	1．409050，		${ }_{5}^{5} 5999695-.04$	1．622020．03	487590－04	， 322328	退4985－03
${ }_{\text {cole }}^{\text {Boier }}$	${ }_{\text {cous }}$	CUB44BRR115－4－10	${ }^{\text {BoCl－03 }}$	50642987	50435224	6270	${ }_{2637}$	${ }_{0.61}^{0.01}$		449982	${ }^{4.16766-02}$	（1．25033E－02	${ }^{1} 1.4099900$ E－01	1．140990 1	1．96656E－03	5．899969－．0．		559	E－03	
${ }_{\text {Bremer }}$ Boier	Cub4	CUB4 ${ }^{\text {a }}$（R115－5－10	${ }^{\text {BoC4－05 }}$	506429.87	5043527．8	${ }_{62.70}$	${ }_{26.37}^{26,37}$	${ }_{0.61}$	${ }_{13.79}^{13.79}$	449.82	${ }_{4}^{4.00140 E-02}$	1．20042E－02	－	${ }_{1.355385 E-01}^{1}$	1.888007 E－03	5．66420	${ }_{1.56129 E-03}^{1.05203}$	4．68386E－04		2．83210E－03
Boiler	CUB4	CUB4－BLR115－6．10	BOC4 06	506417.92	5043516.1	${ }_{62.70}$	26.37	0.61	13.79	449.82	${ }^{4} .00140 \mathrm{E}-02$	1．20042E－02	${ }^{1.353633-01}$	${ }^{1.355363 E-01}$	1．88807E－03	5.66420	1．56129E－03	4．68386E－04		283210
Boiler	CUB4x	CUB4－BLR115－7－10	－ 0	506437.44	504348	62.70	26	0.61	1379		4．00140E－02	1．20042E－02	${ }^{1.35363 E}$	1．353635－01	8077－03	5.66420 E	－03	6E－04	03	2．83210E－03
Boiler	cubs	RAC5－BLRR115－1	Boc5 01	505876.9	5043551.4	62.70	21.34	0.61	13.79	449.82	00999E－02	1．20030E－02	1.35349 E	1．35349E－01	1．88788E－03		1．56113E－03	－04	03	31812－03
Boiler	CUB5	RAC5－BLR115－2	OC5 02	505874.6	5043551.4	62.70	21.34	0.61	13.79	449.82	（0099－02	1．20030－02	1．35349E－01	1．35349E－01	1．88788E－03	66363E－04	1．56113E－03	－04	8E－03	3181E－03
Boiler	CUB5	RAC5－BLR115－3	BоС5 03	505872.1	5043551．4	62.70	21.34	0.61	13.79	449.82	4．00099E－02	1．20030E－02	1．35349E－01	1．35349E－01	1．88788E－03	5．66363E－04	1．56113E－03	4．68338E－04	03	811－03
Boiler	CUB5	RAC5－BLR115－4	BOC5 04	505869.5	5043551.4	62.70	21.34	0.61	13.79	499.82	4．00099E－02	1．200308－02	1．35349E－01	1．35349E－01	1．88788E－03	5．66333E－04	1．56113E－03	4．68338E－04	9．43938E－03	311－03
Boiler	RA2	RA2－－ELR115－1－300	BOR2＿01	506833.31	5043555．2	62.70	28.96	${ }^{0.36}$	1.03	${ }^{359.82}$	5．717755－03	$1.71529 \mathrm{E}-03$	1.93421 E－02	1．93421E－02	2．69788E－04	${ }^{8.093655}$	2．23094E－04	6．69282E－05	1．34894－03	4．04682－．04
Boiler	${ }^{\text {RA2 }}$	RA2－SLR115－2－300	Bor2 02	506833.31	5043558．3	${ }^{622.70}$	${ }^{28.96}$	${ }^{0.36}$	${ }_{1.103}^{1.06}$	${ }^{359.82}$	5．71765E－03	1．771599－03	1．93421E－02	1．934212－02	2．1．97888－04	8．09365E－05	2．23094－04	6．69282E－05	1．34894E－03	4．04682E－04
Boier	${ }_{\text {RS4 }}$	${ }_{\text {RSS4－BLRL15－2 }}$	${ }^{\text {Bors4 }}$	5059917．6	${ }^{50438551.9}$	62.70 62.70	16.46 16.46	0.30 0.30	11.46 11.46 11	449.82 4992				9．21053E－03	li．284715－04	cose	1．06235E－04	3．18706E－05		1．927706E－04
	${ }_{\text {RS4 }}^{\text {RS4 }}$		BoRS4403	505917．6	5043849.4	${ }_{62270}^{62.70}$	${ }_{\text {10．46 }}$			${ }_{4}^{4499.82}$			2．30263E－03	2．30263E－03	${ }_{3.21176 E-05}^{1.2841}$	9．35229	${ }_{2.655888-05}^{1.05}$	7.967 75E－06	1．65588E－04	4．81765E－05
Boier Boier	${ }_{\text {RS6 }}$	${ }_{\text {RSS6－ELR115－1 }}^{\text {RS4 }}$	Borstoil	505900．8	5043587.5	${ }_{62.70}^{627}$	16.46 16.46	（e．30	${ }_{\text {3 }} \begin{aligned} & \text { 3．1．46 } \\ & 11.46\end{aligned}$	${ }_{449.82}^{49.82}$	${ }_{\text {a }}^{\text {a }}$（207563E－03		9．21053E－03	2．921053E－03	1．28471E－04	${ }^{3} 85412 \mathrm{E}$	1．062355－04	3．18706E－05	6．42353E－04	04
${ }_{\text {Boiler }}$ Boier	${ }_{\text {RS6 }}$	RS6－ELR115－2	Bors6 02	555906.8	5043586.1	62.70	16．46	${ }_{0} .30$	11.46	${ }_{449.82}^{449.82}$	$9.075635-03$	${ }_{2} 2.722695-.03$	${ }_{9.21053 E-03}$	${ }^{9.2120535-03}$		3．85412E－05	1．06235－04	3．18706E－05	6．42353E－04	${ }^{1.927066-04}$
Boiler	${ }_{\text {RS6 }}$	RS6－ELR115－3	BORSGOO	505906．8	5043584.7	62.70	16.46	0.20	3.94	${ }_{499.82}$	${ }^{\text {2 } 2268991-03}$	6．80672E－04	2．30263E－03	2．30263E－03	3．21176E－05	${ }_{9.63529 E}$	2．65588E－05	7．96765E－06	1．60588E－04	4．81765E－05
Boiler	${ }_{\text {F15 }}$	${ }_{\text {F15－bLR2 } 2-1-1}^{\text {R }}$	BOF15	50893288	503786	69.40	20.12	0.76	4.92		${ }_{2}^{288821-02}$	8．54462	${ }_{9.63513 E-0}$	${ }_{9.63513}$	1.3439	4.0317	1133E－03	E－04	671965－03	
Boier	${ }_{\text {F15 }}$	F15－BLR238－1－2	BOF1502	508934.61	503786	69.40	20.12	0.76	4.92	${ }_{32426}$	${ }_{\text {2．84821－－02 }}$	${ }_{8.54462}$	${ }_{9.63513 E-02}$	9．63513E	1．34393E－03	40317	1．11133E－03	E－04	6．71965－03	
Boier	${ }_{\text {F15 }}$	F15－BLR28－1－3	BOF1503	508933．22	503786	69.40	14.33	0.76	4.92	${ }_{324.26}$	${ }_{2}^{2.848211-02}$	${ }_{8.54462 \mathrm{E}-03}$	9．63513E－02	9．63513E－0	1.34393	03179E	$1133 \mathrm{E}-03$	3－04	6．71965E－03	2．01590E－03
Boiler	F15	F15－HW35－3	BOF15 04		503775	69.40	23.02	0.15	5.05	${ }^{324.26}$	7．41176E－03	2.22353 E	6.22588	6．22588E－03	5412E－05	1．15624	－05	118E－06		5．78118E－．05
Boiler	F15	F15－HW35－4	BOF15－05	508958．08	503779	69.40	23.01	0.15	4.05	338.71	7．41176E－03	2．22353－03	6.225888 －03	6．22588E－03	3．85412E－05	1．15624－	3．18706E－05	$9.56118 \mathrm{E}-06$	1．92706E－04	淮118E－05
Boier		RAC5－BLR115－5	BoC5 05	5058557．7	\％ 50043551.4	（62．70	${ }_{\substack{21.34 \\ 21.34}}^{2}$	0.61 0.61	10.66 10.66	449.82 44982	4．00099E－02		（1．3539E－01	li．3539E－01	li．887888－03	5．66333E－04	（1．56113E－03	li．6338－04		
Boier		${ }_{\text {RACLS－bLRR115－7 }}^{\text {RAS }}$		5058553．3	${ }^{504335551.4}$	${ }^{622.70}$	${ }_{21,34}^{21.34}$	${ }_{0}^{0.61}$	10.66 10.66	449.82 4992		（1．2003E－02	（1．3539E－01			5．66363E－04	${ }_{1}^{1.561135-03}$	4．68388E－04		
	CUB5 Cubs		Boc5 08	${ }_{\text {cossmi．5 }}$	${ }^{5} 5043551.4$	${ }_{6220}^{62.70}$	${ }_{21.34}^{21.34}$	${ }_{0}^{0.61}$	10.66 10.66	499.82 49922	4．0009EE－02	（1．20030E－02		1．3539EE－01		5．66363E－04	${ }_{1.56113 E-03}^{1.5131303}$	4．68388E－04		
（Boier	${ }_{\text {N } 2 \text { Plant }}$	$\underset{\substack{\text { RAC5－BLRL1115－8 } \\ \text { N2－BRR117－1A－30 }}}{ }$	BoN202	506247．36	5043924．4	${ }_{6220}^{62.70}$	${ }_{7.01}$		${ }_{3}^{10.66}$	${ }_{422.04}^{499.82}$	4．00097E－02	（ex	（1．3539E－01	${ }_{\text {2．10000E－01 }}^{1.3539501}$	${ }_{2.29213 E-03}^{1.803}$	8．78739E－04	${ }_{2}^{1.422166-03}$	7．26649E－04	1.46	${ }_{\text {4．39369E－03 }}$
Boier	${ }_{\text {N2 P Plant }}$		BON2－03	506247.36	5043924．4	${ }_{62.70}$	7.01	${ }_{0} 0.70$	${ }_{3.17}$	${ }_{422204}^{422.04}$		1．8623E－02		2．10000E－01	$2.92913 \mathrm{E}-03$	8．78739E－04	${ }_{2} .242166^{-03}$	7．26649E－04	1.166456 E－02	行
RCTo	${ }_{\text {dis }}$	Combined Modeling Stack	TODEM	506639.16	504378.1	62.70	24.38	${ }_{0.91}$	${ }_{11.59}$	${ }_{616.48}^{4204}$		${ }_{2.717655-01}^{1.60230 .02}$	1．87518E－01		8．10812－02	$6.877000-02$	8．10812－．02	6．87000－02	${ }_{7} .1 .65888-03$	\％ 6588
RCto	${ }_{\text {D1C }}$		Tooc－01	506742．79	5043430．5	${ }^{62} 270$	36.58	${ }_{0} 0.30$	11.59 21.99				${ }^{1.90878 E-01}$	1．90878E－01	6．88824－03	5．776477	6．80824－－03	5．77647－03	${ }_{6.42}$	6．423
RCto	${ }_{\text {dic }}$	D1C－Vociser－2－120	Tooc＇02	506742.68		62.70	${ }^{36.58}$	${ }_{0.30}$	${ }_{21.99}$	${ }_{616.48}^{610.48}$				1.90878 E －01	． 600224	5．77647－13	60022－03	5．77647－03		
RCto	${ }_{\text {dic }}$	D1C－Voct $138-3-120$	Tooc＿0	506744.57	退 34332.3	62.70	36.58	0.30	21.99		2．47059E	2．47059E		${ }^{1.908788 E-01}$	6．80824E－	5．77647E－03	． $8.808244-03$	5．77647E－03	．42353E－04	
RCTo	D10	Voc－138－1－120	TodD－01	506467.03	4340	62.70	27.13	0.46	9.77	616.48			1.141491 －01	1.414911 －－01	$1.83888 \mathrm{E}-12$	1.54269	88E－02	1．54269E－02		
RCTo		voc－138－2－120	TOED－	03	5043403.9	62.70	27.13	46	9.77	616．48				1.41491	1．83888E－02	．5426	${ }_{1} 1.83888 E-02$	E－02		
RCTo	${ }^{\text {D1D }}$	voc－138－3－120		506467．03	5043403.9	70	27.13	0.46	77		599	0596	${ }_{1.41491}$	1．41491E－01	${ }^{1.83888 E-02}$	1．54269E－02	1．83888E－02	1．54269E－02		
RCTO	D1D	voc－138－4．120	－04	67．03	3403.9	62.70	27.13	0.46	9.77	616	059E－02	2.47059 E	1.41491 E	1．41491E－01	1．83888E－02	1.54269 E	8888－02	1．54269E－02	6．42353E－2	6．42353E－04
RCTO	D1D	voc－138－5－120	D＿05	6467．03	5043403.9	62.70	27.13	0.91	11.59	616.48	355－02	35E－02	1882E	8822－02	$2.22417 \mathrm{E}-02$	1．72799E－02	2．02417E－02	1．72799E－02	2．56941E－03	2．56941－03
RCTO RCTO	${ }_{\text {D10 }}^{\text {D10 }}$	Voc－133－6－120		50666737．03	504333493．9	62.70 6270	27．13 3658	${ }_{0}^{0.91}$	11.59 10.35 105		${ }^{\text {9，}}$ 4，823235E－02	9．8．88235E－02 ${ }_{\text {a }}$			${ }_{\text {2 }}^{2.20410575-02}$		${ }_{\text {2．46105E－03 }}^{2.02475-02}$	${ }_{3}^{1.7269395 E-02}$	2．56941E－03	${ }_{1}^{2.56941}$
RCTO RCTO		${ }_{\text {D1XM1－VOCC138－2－20 }}$	TOM1－02	506330．48	${ }^{50433347.1}$	${ }_{62.70} 62.70$	${ }_{36.58}^{36.58}$	${ }_{0.61}^{0.01}$	${ }_{10.35}^{10.35}$	616．48	${ }_{4.32355 E-02}^{4.3535-02}$	${ }_{4.32355 E-02}^{4}$	2．98324E－02	2．98324E－02	3．46105E－03	3．06435－03	${ }_{\text {3．4605E－03 }}$	3．06435－03	1．12412E－03	12412
	${ }_{\text {dixM }}$	${ }_{\text {D1XM1－VOC1383－320 }}$	ToM1－03	506323．67	5043344.1	${ }_{62.70}$	${ }_{36.58}^{36.58}$	${ }_{0.61}$	${ }_{10.35}$	${ }_{616.48}^{66148}$	${ }_{4.32355 E-02}^{4.3535-02}$	${ }_{4.32355 E-02}^{4.3535}$	2．98324E－02	2．98324E－02	3．46105－03	3．06435E－03	3．46105E－03	3．06435－03		退124122
RCTo	D1XM1	D1XM1－VOC138－4－20	TOM1＿04	506317.28	5043340.9	62.70	36.58	0.61	10.35	${ }_{616.48}$	4．32353E－02	4．32353E－02	2．98324E－02	2．98324E－02	3．46105E－03	3．06435E－03	3．46105E－03	3．06435E－03	1．12412E－03	1．12412E－03
Rсто	D1XM1	D1XM1－VOC138－5－20（Anguil RCTO D1X－1）	TWM1＿01	506247.98	5043260.6	62.70	36.58	0.91	9.76	616.48	9．88235－02	$9.88235 \mathrm{E}-02$	6．81882E－02	6．81882－02	2．02384E－02	1．70204E－02	2．02384E－02	1．70204E－02	$2.56941 \mathrm{E}-03$	2．56941E－03
RCTO	D1XM1	M1－VOC1338－202（Anguil RCTO D1X－2）	TWM1＿02	506255.54	5043261.9	62.70	36.58	0.91	9.76	616.48	9．88235－02	$9.88235-02$	6．81882E－02	6．81882－02	5．37720E－02	4．52218E－02	5．37720E－02	4．52218E－02	2．56941E－03	$2.56941 \mathrm{E}-03$
RCTO	${ }^{\text {D1XM1 }}$	D1XM1－VOC1383－7－20（Anguil RCTO D1X－3）	TWM1＿－03	509262.23	5043264.7	${ }^{62.70}$	－36．58	0.91	${ }^{9.76}$	${ }^{616.48}$	${ }^{9.8882355-02}$	${ }^{9.8882355-02}$	6．8．1882E－02	6．8．1882E－02	5．37720E－02	4．52218E－02	5．37720E－02	4．52218－02	${ }^{2.559411-03}$	2．56941E－03
${ }_{\text {RCTo }}$			TWM1－04	502681.15	${ }^{504343258}$	${ }^{622.70}$	36.58 36.58	0.91 0.91	${ }_{9}^{9.76}$	${ }_{\substack{616.48 \\ 616.48}}^{618}$	－ $\begin{aligned} & \text { 9．88235E－02 } \\ & 0.00000 E+00\end{aligned}$	－ 9.8882355 －02		${ }^{\text {coser }}$	2．00000E＋00		2．00000E＋00	$1.772044-02$ $0.00000 E+00$		2．00000E＋00
RСто	D1XM2	Anguil RCTO D1XM2－2	TIM2－07	506173.37	5043260.9	62.70	36.58	0.91	9.76	616.48	0．00000EE＋00	0．00000EE＋00	0．00000E＋+0	0．00000E + ＋0	0．00000E＋ 00	0．00000E＋+0	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	0.00000 E	0．00000
RCTO RCTO	${ }^{\text {D1XM2 }}$	Anguil RCTo $11 \times$ M2－3		506180．17	${ }^{5043364.1}$	62.70 6270	36.58 3658 6.5	${ }^{0.91}$	9．766				－ 0	${ }^{\text {0，}} 0$	S． 5	4．77483E－02	5．68039－02	li．7743E－02	0．00000E + ＋0 OOOOOE＋	
RCTo	${ }_{\text {D11 M } 2}$		TIM 2 － 01	506160.52	5043255.2	62.70	36.58	0.91	${ }_{9}^{9.76}$	${ }_{616.48}^{610.48}$	0．00000EE＋00	0．00000EE＋00	0．00000EE＋00	0．00000EE＋00	． $000000 \mathrm{E}+00$	0．00000EE＋00	$0.00000 E+00$			0.00000
RCTO RCTO	${ }_{\text {D11 }}^{\text {D1X }}$		$\mathrm{TIM3}^{\text {TM }}$	506014.27 50601888	5003196．1 5043198	62.70 62.70	36．58 36.58	${ }_{0.91}^{0.91}$	${ }_{9}^{9.76}$	¢16．48	${ }_{\substack{0 \\ 0.0000 \\ 0.0000}}^{0}$	${ }^{0.0000}$	${ }^{0} 0.000000000$	${ }^{\text {a }}$	5．680	${ }_{0}^{4.77483}$	5．60039－02	4．77483E－02 0．0000E＋00	0.000	年000
RCTo	D11M3	D1XМ3－VOC138－3－20	тім3＿03	506023.5	5043200	62.70	36.58	0.91	9.76	616.48	0．00000E +00	0．00000E＋＋00	0．00000E＋＋00	0．00000E＋＋00	0．00000 ++0	0．00000 ++0	0．00000E＋00	$0.00000 \mathrm{E}+00$	0．00000E＋00	0．00000E＋＋00

家

Attachment C

Modeling Support Data

Combined SIA

Combined SIA														
	Averaging	Class ISIL				Averaging	Class II SIL			Max Distance	Number of Receptors	Receptors Falling Within SIL	Number of Receptors	Receptors Exceeding SIL
Pollutant	Period	(ug/m3)	Modeled	Significant (Y/N)	Pollutant	Period	(ug/m3)	Modeled	Significant (Y/N)	(m)	within SIL Radius	Radius File Name	Exceeding SIL	File Name
co	1-HR	-	-	-	co	1-HR	2000	708.8	N	-	-	-	-	-
co	8 -HR	-	-	-	co	8 -HR	500	199.6	N	-	-	-	-	-
SO2	1-HR	-	-	-	SO2	1-HR	7.8	46.1	Y	-	-	-	-	-
SO2	24-HR	0.2	0.0164	N	SO2	24-HR	5	20.1	Y	-	-	-	-	-
SO2	Annual	0.1	0.0016	N	SO2	Annual	1	3.8	r	-	-	-	-	-
PM10	24-HR	0.3	0.0619	N	PM10	24-HR	1	9.3	Y	10224.2	19936	Intel--Hillsboro-24HR-PM10-Radius.ROU	16594	Intel-Hillsboro-24HR-PM10-Exceed.ROU
PM10	Annual	0.2	0.0062	N	PM10	Annual	0.2	2.1	Y	8233.0	18644	Intel-Hillsboro-ANNUAL-PM10-Radius.ROU	12690	Intel-Hillsboro-ANNUAL-PM10-Exceed.ROU
PM25	24-HR	0.27	0.0374	N	PM25	24-HR	1.2	7.4	Y	6941.5	19874	Intel--Hillsboro-24HR-PM25-Radius.ROU	10475	Intel-Hillsboro-24HR-PM25-Exceed.ROU
PM25	Annual	0.05	0.0049	N	PM25	Annual	0.3	1.7	Y	6952.0	16892	Intel-Hillsboro-ANNUAL-PM25-Radius.ROU	6451	Intel-Hillsboro-ANNUAL-PM25-Exceed.ROU
NO2	1-HR	-	-	-	NO2	1-HR	7.5	128.2	Y	18709.2	21662	INTEL-1STSIL-1HR-NO2-Radius.ROU	21599	INTEL-1STSIL-1HR-NO2-Exceed.ROU
NO2	Annual	0.1	0.0376	N	NO2	Annual	1	13.3	Y	8531.5	18899	Intel-Hillsboro-ANNUAL-NO2-Radius.ROU	13709	Intel-Hillsboro-ANNUAL-NO2-Exceed.ROU

Page 1

Criteria Pollutant
Isopleth and Significant Impact Areas

MERP Qlik Data

State	County	Metric	Precursor	Emissions	Stack	MERP	MaxConc
Oregon	Morrow	8-hr Ozone	NOx	500	10	258	1.939568996
Oregon	Morrow	8-hr Ozone	VOC	500	10	1087	0.460180402
Oregon	Morrow	Annual PM2.5	NOx	500	10	7942	0.012590836
Oregon	Morrow	Annual PM2.5	SO2	500	10	11877	0.008419393
Oregon	Morrow	Daily PM2.5	NOx	500	10	3003	0.199790135
Oregon	Morrow	Daily PM2.5	SO2	500	10	2314	0.259274006

MERP Qlik Distance Corrected Data

State	County	Distance Metric Precursor	Emissions Stack		Concentration
Oregon	Morrow	10 Daily PM2.! NOx	500	10	0.19979
Oregon	Morrow	10 Daily PM2.! SO2	500	10	0.259274
Oregon	Morrow	20 Daily PM2.! NOx	500	10	0.169711
Oregon	Morrow	20 Daily PM2.! SO2	500	10	0.258138
Oregon	Morrow	40 Daily PM2.! NOx	500	10	0.143349
Oregon	Morrow	40 Daily PM2.! SO2	500	10	0.183953
Oregon	Morrow	60 Daily PM2.! NOx	500	10	0.132754
Oregon	Morrow	60 Daily PM2.! SO2	500	10	0.186308
Oregon	Morrow	80 Daily PM2.! NOx	500	10	0.096651
Oregon	Morrow	80 Daily PM2.! SO2	500	10	0.16239
Oregon	Morrow	100 Daily PM2.! NOx	500	10	0.078512
Oregon	Morrow	100 Daily PM2.. SO2	500	10	0.128952
Oregon	Morrow	120 Daily PM2.. NOx	500	10	0.05442
Oregon	Morrow	120 Daily PM2.. SO2	500	10	0.094666
Oregon	Morrow	140 Daily PM2.. NOx	500	10	0.04506
Oregon	Morrow	140 Daily PM2.. SO2	500	10	0.082554
Oregon	Morrow	160 Daily PM2.. NOx	500	10	0.03768
Oregon	Morrow	160 Daily PM2.. SO2	500	10	0.06921
Oregon	Morrow	180 Daily PM2.. NOx	500	10	0.030171
Oregon	Morrow	180 Daily PM2.. SO2	500	10	0.054444
Oregon	Morrow	200 Daily PM2.. NOx	500	10	0.025453
Oregon	Morrow	200 Daily PM2.. ${ }^{\text {SO2 }}$	500	10	0.04928
Oregon	Morrow	220 Daily PM2.. NOx	500	10	0.026368
Oregon	Morrow	220 Daily PM2.. SO2	500	10	0.049355
Oregon	Morrow	240 Daily PM2.. NOx	500	10	0.022697
Oregon	Morrow	240 Daily PM2.. SO2	500	10	0.049382
Oregon	Morrow	260 Daily PM2.. NOx	500	10	0.01716
Oregon	Morrow	260 Daily PM2.. SO2	500	10	0.046912
Oregon	Morrow	280 Daily PM2.. NOx	500	10	0.013974
Oregon	Morrow	280 Daily PM2.. SO2	500	10	0.042476
Oregon	Morrow	300 Daily PM2.. NOx	500	10	0.013349
Oregon	Morrow	300 Daily PM2.. SO2	500	10	0.039629
Oregon	Morrow	10 Annual PM NOx	500	10	0.010718
Oregon	Morrow	10 Annual PM SO2	500	10	0.005588
Oregon	Morrow	20 Annual PM NOx	500	10	0.012591
Oregon	Morrow	20 Annual PM SO2	500	10	0.008419
Oregon	Morrow	40 Annual PM NOx	500	10	0.007258
Oregon	Morrow	40 Annual PM SO2	500	10	0.004916
Oregon	Morrow	60 Annual PM NOx	500	10	0.00529
Oregon	Morrow	60 Annual PM SO2	500	10	0.00371
Oregon	Morrow	80 Annual PM NOx	500	10	0.004619
Oregon	Morrow	80 Annual PM SO2	500	10	0.003168
Oregon	Morrow	100 Annual PM NOx	500	10	0.003881
Oregon	Morrow	100 Annual PM SO2	500	10	0.00288
Oregon	Morrow	120 Annual PM NOx	500	10	0.003419

Oregon	Morrow	120 Annual PM SO2	500	10	0.002564
Oregon	Morrow	140 Annual PM NOx	500	10	0.002956
Oregon	Morrow	140 Annual PM SO2	500	10	0.0024
Oregon	Morrow	160 Annual PM NOx	500	10	0.002599
Oregon	Morrow	160 Annual PM SO2	500	10	0.002372
Oregon	Morrow	180 Annual PM NOx	500	10	0.002163
Oregon	Morrow	180 Annual PM SO2	500	10	0.002181
Oregon	Morrow	200 Annual PM NOx	500	10	0.001741
Oregon	Morrow	200 Annual PM SO2	500	10	0.002163
Oregon	Morrow	220 Annual PM NOx	500	10	0.001652
Oregon	Morrow	220 Annual PM SO2	500	10	0.002284
Oregon	Morrow	240 Annual PM NOx	500	10	0.001515
Oregon	Morrow	240 Annual PM SO2	500	10	0.002291
Oregon	Morrow	260 Annual PM NOx	500	10	0.001374
Oregon	Morrow	260 Annual PM SO2	500	10	0.002255
Oregon	Morrow	280 Annual PM NOx	500	10	0.001086
Oregon	Morrow	280 Annual PM SO2	500	10	0.002123
Oregon	Morrow	300 Annual PM NOx	500	10	0.000935
Oregon	Morrow	300 Annual PM SO2	500	10	0.001945

 \square
\square

 Kiven

$26-1876$	Eu7	p P-1	Boiler	945 RP-65F	Defaut parameters for release c	60	8	300	37	111600	45.5631	-122.5647	Owens Brockway Glass Container Inc.
26-1876	Ev7	p.2	Boiler	0 RP-GSF	Defautp parameters for relesse pc	60	8	300	37	111600	45.5631		Owens frockway Glass Container I Ic.
$26-1876$	EU4	p. 3	furnace		Furnace Astacks	71.4		336.7	50.7		45.4623		Owens Brockway Glass Container Inc.
$26-1876$	Eva	P. 1	furnace	66.3 STk-1	Furrace Astacks	71.4	3.1	336.7	50.7	22960.03	45.4623	-122.6143	Owens Brockway Glass Container I Ic.
${ }^{266.1885}$	Boller	p. 1	NG Boliter	${ }_{1.86}$ RP.65F	Deffult paramete	60	\%	300	37	111600	45.5334		Zinkower Portand UC
26-1889	по сомв	$p \cdot 1$	gas combustion	0.12 Rp. 65	Defautt parameters for release pc	40	5	72	40	47100	45.6248	-122.7852	1. R. Simplot Company
$26-1891$	Proouction	$p \cdot 1$	Production	1.41 P. 6 CS	Defaut perameters for release pc	40	5	72	40	47100	45.6229	-122,7838	Ash Grove Cement Com
26-1894	NG	p.1	natural gas	9.11 RP.6SF	Defautt prameters for release pc	60	8	300	37	111600	45.5911	-122.7001	Herbert Malarkey Roofing Company
${ }^{26-1894}$	oven	P.1	Fiberghas Mat Curing oven	2.33 Pp-65	Default parameters for release pc	40	5	72	40	47100	45.5911	-122.7001	Herbert Malarker Roofing Company
$26 \cdot 1917$													Portland Sand and Gravel Company
${ }^{26-1941}$													Ross Isand Sand \& Gravel Co.
${ }^{26-20213}$													Grain Cratt
$26-2025$	Bollfurn	P-1	Boilers and furmaes	1.94 RP.GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5607	-122.736	Zenith Energy Terminals Holdings, uc
$26-2025$	Boll/furn	P.2	Boiler sand furmaes	0 RP -GSF	Defautt prameters for release cc	60	8	300	37	111600	45.5607	-122.7369	Zenith Energy Terminals Holdings, Lic
26.2225	Boll/furn	p.3	Boilers and furraces	0 Rp-GSF	Defautt parameters for release pc	60	8	300	37	111600	45.5607	-122.7369	Zenith Energy Terminals Holdings, uc
${ }^{26-2028}$	Boller	$\mathrm{p} \cdot 1$	Boilers	0 Rp . GSF	Defaut parameters for release pe p	60	8	300	37	111600	45.5625	-122,7437	Kinder Morgan Liquids Terminals LLC
26-2028	Boller	P.2	Boilers	0 Rp . 655	Defaut prameters for release p	60	8	300	37	111600	45.5625	-122.7437	Kinder Morgan Liquids Terminas LL
$26-2043$	NG сомв	p P-1	natural gas combustion	2.43 RP-65F	Defaut parameters for release c	60	8	300	37	1116	45.5	-122.73	certainted Cora
$26-2043$	оисомв	P-1	Oll combustion	0 Rp-GSF	Defautt parameters for release pc	60	8	300	37	111600		-122.733	ceraineeeconporation
26.2050	Al	$p \cdot 1$	Agrregate Insignificant Activities	1 RP-Fs	Defautt parameters for release pc	20	50	72	7	824667.9	45.4991	. 122	Oregon Heath and Sienes Univesity
$22^{262020} 0$	Eu1	${ }^{p} .1$	Boiler 2	0.022 stk-1	Boiler 2-EU1 Exhaust ducti is rec	214	12	${ }^{385}$	22	149288,45	45.4991	-122.6853	Oregon Heath and S Siences University
26.2050	Eu1	${ }^{p .2}$	Boiler 2	0 Stik-1	Boiler 2-EU1 1 Exhaust ducti is rec	214	12	${ }^{385}$	22	149288.45	45.4991	-122.6853	Oregon Heath and S Siences University
${ }^{26-20200}$	${ }_{\text {EV2 }}^{\text {Eu2 }}$	${ }_{p \cdot 2}^{P .1}$	Boile 5	${ }^{0.594}$. 5 STK.	${ }_{\text {Braier }}$ 5-EU2	${ }_{31.3}^{31.3}$	5	539 593	20	2356.94	${ }^{4.45991}$	- -122.8883	Oregon Heath and Ssiences University
${ }^{26-25050}$	Eu2	P.2	Boiler 5	0.011 stk-2	${ }_{\text {Boiler 5-EU2 }}$	${ }^{31.3}$	5	539	${ }_{3}^{20}$	23561.94	${ }^{45.4991}$	- 122.6853	Oregon Heath and Ssiences University
${ }^{26-25050}$	EU3	$\mathrm{p}^{\mathrm{p}} 1$	Boiler 6 and 7	7.02 STK.3	Boiler 6-EV3	${ }_{31} 1$	3.5	${ }_{347}^{347}$	34	${ }^{19627.1}$	${ }^{45.4991}$	- 122.6853	Oregon Heath and Ssiences University
26.2050	Eu3	p -2	Boiler 6 and 7	0.035 5 5k-3	Bolier 6 - EU3	31	3.5	347	34	19627.1	45.4991	-122.8853	Oregon Heath and siences Univesity
26-2068	34-10	P.1	NG	2.42 RP..GS	Defaut parameters for release pr	60	8	300	37	111600	45.5374	-122.703	Esco froup, uc
${ }^{26-20068}$	30-1	P.1	MELT	8.27 5Tk-1	MU-1 Melt EAF Stack	55	7	80	32	73890.24	${ }^{45.5373}$	-122.7029	Esso froup, uc
26-2068	${ }^{30-1}$	P.2	MELT	${ }^{0.4366 ~ 5 T k-1}$	MU-1 Melt EAFstack	55	7	80	32	73890.24	45.5373	-122.7229	Esco group, uc
26-2068	30-1	p. 3	MELT	${ }^{0.133}$ stk-1	MU-1 Melt EAFs stack	55	7	${ }^{80}$	32	73890.24	45.5373	-122.7229	Es50 froup, uc
26-2068	30-1	P. 4	Melt	stk-1	MU-1 Melt EAF Stack	55	7	${ }^{80}$	32	73890.24	45.5373	22.7029	Esco froup, uc
26.2068	30.1	p. 5	MEIT	0.00214 STK-1	MU-1 Melt EAF stack	55	7	80	32	73890.24	45.5373	-122.7229	EsCOO Group, uc
26-2068	34-3	P.1	MH/SR	0.895 pr.65	Defaut prameters for release p c	40	5	72	40	47100	45.5374	-122.73	Esco group, uc
${ }_{\substack{26-2068 \\ 26.2068}}^{2.2088}$	30.2 $30 \cdot 2$	${ }_{\text {P. }}^{\text {P. }}$ -	${ }_{\text {Pcs }}^{\text {pcs }}$		Defaut pramateters for release pc Defaut parameters for reese p c	${ }_{40}^{40}$	5	${ }_{72}^{72}$	40 40	47100 47100	${ }_{4}^{45.5374}$	-122.703	Esco broup Lic
${ }^{26-20688}$	30.2	p. 3	pcs	0.00015 RP-6S	Defaut parameters for release pc	40	5	72	40	47100	${ }_{4}^{45.5374}$	${ }_{-1222.73}$	Esco frup, uc
26.2068	30.2	P. 4	PCS	0.000115 RP. 65	Defaut parameters for release pc	40	5	72	40	47100	45.5374	-122.73	Escoo grup, uc
26-2197	8.AG6	p P-1	Agregate Insignificant Activities	11 RP-FS	Defaut prameters for release pc	20	50	72	7	824667.9	45.5728	-122.7152	Daimler Trucks North America, uc
$26-2197$	5.80	$p \cdot 1$	Natural Gas Combustion Devices	3.51 RP.CSF	Defaut pearameters for release pc	60	8	300	37	111600	45.5728	-122.7152	Daimler Trucks North America, uc
$26-2197$	6. Cut	P-1	Metal Cutting	0 Rp-Gs	Defaut parameters for release c c	40	5	72	40	47100	45.5728	-122.7152	Daimler Trucks North America, LLC
26.2204	COMBustion	P.1	Natural cas External combu!	9.08 RP-6SF	Defaut parameters for release pc	60	8	300	37	111600	45.543	-122.4654	Boeing Company (The)
${ }^{26-2390}$	ng сомв	p.1	Natural gas combustion	3.69 RP-6SF	Defaut perameters for release pc	60	8	300	37	1116	45.6157	-122.7145	Supreme Peritie Company
${ }_{2}^{26-29292}$	Al	${ }^{p} .1$	Aggregite Insignificant Activities	1 RP-.fs	Defaut perameters for release pc	20	50	72	7	824667.9	45.69	-122.773	Pavid ouybas 5 Shs Bldg
${ }^{26-2942}$	5-NG	P-1	Natural Gas Combustion Devices	0.713 RP-G5F	Defautt parameters for release cc	60	8	300	37	111600	45.609	-122.734	Northwest Pipe Company
${ }^{26-2545}$													Riveriew Abbey Musoleum Co.
${ }^{26-2277}$	${ }^{\text {al }}$	p.1	Agregate Insignificant Ativities	1 RP-FS	Defaut parameters for release pc	20	50	72	7	824667.9	45.619	-122.722	Graphic Packeging hiterational , ic
26-2777	${ }^{\text {BLRS/ } / \text { Pry }}$ R	p.1	Boilers and Dopers	2.45 RP-6SF	Defaut parameters for release pc	60	8	300	37	111600	45.6119	-122.7022	Graphic Packaging nternational, Inc
26-2777	BLRS/ORYER	P.2	Boilers and Divers	0 Rp-GSF	Defaut prameters for release pc	60	8	300	37	111600	45.6119	-122.7022	Graphic Packsging Interational, inc
${ }^{26-27778}$													Lewis \& Clarat college
${ }^{26-2784}{ }_{26-2832}$			turine	0.258 sTk-1			2		25				The Reed Institue
${ }_{\text {26-2914 }}^{26-283}$	${ }_{\substack{\text { PS-2 }}}^{\text {BLRS }}$	${ }_{\text {P. }}^{\text {P. } 21}$	TURBEINE Bollers		Defaut parameters for release pc	${ }_{60}^{30}$	${ }_{8}$	350 300	${ }_{37} 25$	${ }^{411239}$	${ }_{45.55871}^{4.5081}$	${ }_{-122.5889}$	Portof fortand
$22^{26-2914}$	BRRS	P.1	Bolliers	2.78 Pr -6SF	Defaut prameters for release pc	60	8	300	37	111600	45.5871	-122.5889	Port of Portand
26-2914	FIARE	P.1	DIECING FIARE	0.07 RP.6SF	Defautt parameters for release pc	60	8	${ }^{300}$	37	111600	45.5871	-122.588	Port of Portand
${ }_{\substack{26-2914 \\ 26-2914}}^{2}$		${ }_{p}^{p .1}$		${ }^{0.000267 \text { RP-CSF }} 0$	Defaut perameters for release $p \mathrm{pc}$ Defaut parametes for ceease cc	60 60	${ }_{8}^{8}$	300 300	37 37	1111600 111600	${ }_{4555871}^{45871}$	- -122.58889	Porto for Priand
${ }_{\text {26-2926 }}^{26-294}$		${ }^{p-1}$			Defaut p parameters for release pc	60	8	300	37	111600	45.5871		Poro fop Portand Legacy
26-2944	AGG	$p \cdot 1$	Agregate insignificant emisions	1 RP -fs	Defaut parameters for release pc	20	50	72	7	824667.9	4.5538	-122.7195	Gunderson LC
26-2944	4.NG	P.1	Natural gas combustion devices	0.85 RP.6SF	Defaut prameters for release c	60	8	300	37	111600	45.5538	-122.7195	Gunderson LC
26.2944	3.т¢	P-1	Plasma/Oxy-fuel metal cutting dev	0.079 P.-6S	For 65.3 , there are atually muttil	40	5	72	40	47100	45.5538	-122.7195	Gunderson LC
26.2944	3.т¢	P.2	Plasma/Oxv.fuel metal cutting dev	0.058 RP-65	For 65.3 , there are atually mutil	40	5	72	40	47100	45.5538	-122.7195	Gunderson LIC
26-2944	3.Tc	$\mathrm{p} \cdot 3$	Plasma/Oxv-fuel metal cutting dev	0.000775 Rp.G5	For 653, there are atually mutil	40	5	72	40	47100	45.5538	-122.7195	Gunderson LC
${ }_{\text {26-2959 }}$		P.1	Natural gas for the ovens	2.58 R.-6SF	Defaut parameters for release pc	60	8	300	37	111600	45.5257		
26.2952	Boillers	p. 1	Boiler	1.19 RP. 65	Defaut parameters for relesese pc	60	8	300	37	111600	${ }^{45.55257}$	${ }_{-122.545}$	Unites States Bakery
26-2952	Bollers	P.2	Boiler	0 Rp . 655	Defautt prameters for release pc	60	8	300	37	111600			United States Bakery
${ }_{\text {l }}^{26-29288}$	OVENS Boller	${ }_{\text {P.1 }}^{\text {P.1 }}$	Ovens natrual gas boller		Defaut perameters for felease pc Defaut parameters for reeese cc	60 60	8	300 300	37 37	1111600 111600	4.55818 45.5818		Mondeler GIobal LC Mondelez Slobal IC
26.2968	Boller	$p \cdot 2$	Boller	0 RP-GSF	Defautt parameters for release pc	60	8	300	37	111600	45.5818	-122.6388	Mondelez Siobal Luc
${ }_{26,3002}^{26.302}$	${ }_{\text {colle }}^{\text {Bollers }}$	${ }_{\text {p.1 }}^{\text {P. }}$	Natural gas bollers		Defaut perameters for release pc Defaut parameters for rease pc	60 60	8	300 300	37 37	1111600 111600	${ }_{4}^{45.5775}$		siltronic Corporation sitronic Corocation
${ }^{2663002}$	no combusto	p. 1	Other bollers ano to	0.085 RP-65F	Defaut parameters for release pc	60	8	300	37	111600	45.5775		sitronic Corporation
26.3002	scrubber	p P-1	NOXSCRUBBER	0.000007 RP.CS	Defaut prameters for release c c	40	5	72	40	47100	45.5775	-122.752	siltronic Corporation
26-3009	AIE	$\mathrm{p} \cdot 1$	Agregate Insignificant Activities	1 Rp-fs	Defaut parameters for release p c	20	50	72	7	824667.9	45.5888	-122.698	Arclin Surfaes, inc.
${ }^{26-3009}$	${ }_{\text {EV-4 }}$	${ }^{p} \mathrm{P} \cdot 1$	Boilers	${ }^{3.355}$ RP.-GSE	Default prameteers for release pc	60	8	300	${ }^{37}$	111600	${ }^{45.58888}$	-122.6908	Arclin surfaes, inc.
26.3009	EU-2	P.2	Coating Line 3	${ }^{8} .61$ RP. 6 GS	Defautt parameters for release pc	40	5	72	40	47100	${ }^{45.5888}$	-122.6908	Arclin surfaces, inc.
26.3009	EU-2	p. 3	Coating Line 3	2.46 RP. 65	Defaut prameters for release c	40	5	72	40	47100	45.5888	-122.698	Arclin Surfases, Inc.
${ }^{26.3009}$	EU-2	$p \cdot 1$	Coating Line 3	1.56 RP.GS	Default parameters for release pc	40	5	72	40	47100	45.5888	-122.698	Arclin Surfaes, Inc.
${ }_{2 \text { 26-3021 }}^{263021}$	${ }_{\text {HiRes } 1-2}$	${ }_{\text {p. }}^{\text {P. }}$	$\underset{\substack{\text { Heater } \\ \text { Bollers }}}{\text { a }}$	${ }_{0}^{2.354 ~ R-12 .-S 5 F ~}$		60 60	8	300 300	37 37	1111600 111500	${ }_{4}^{45.60622}$	${ }_{-1222.6938}^{-12088}$	EEcoube Recover LIC
26.3021	T0.01	$p .1$	thermal oxiolzer	0.334 RP-.G5F	Defaut perameters for release pc	60	8	300	37	111600	45.6062	-122.638	Ecolube Recovery Lic
26.3021	HTR.4	$\mathrm{p} \cdot 1$	Heater \#4	0 Rp.GSF	Defaut parameters for release p c	60	8	300	37	111600	45.6062	-122.698	Ecolube Recover Lic
26.3021	PESCO	${ }^{p} 1$	Refinery	0.0000315 RP.GS	Defaut parameters for release pc	40	5	72	40	47100	45.6022	-122.6938	Ecolube Recover LIC
26.3021	OPS.1	P.1	OII Poushing Sysem	0 Rp.Gs	Defaut prameters for release p c	40	5	72	40	47100	45.6062		Ecolube Recover Lic
${ }^{26.3038}$	ng сомв	${ }^{p} .1$	natrual Gas combustion sou	5.45 RP. 6 SF	Defaut parameters for release pc	60		300	37	1111600	${ }^{45.5387}$	-122.4578	Cascade Corporation
${ }^{26.3038}$	${ }_{\text {EGG-1 }}^{\text {EGP1}}$	${ }_{\text {P.1 }}^{\text {P. }}$	Emergencr generator	${ }_{\text {0 }}^{0.057}$ R R-.65F	Defefult prameters for release pc	${ }_{60}^{60}$	8	300 300	37	1111600	${ }^{45.5387}$	- 122.4578	Casade Corporation
${ }^{26-3048}$	${ }_{\text {BLR }}$	P.1	BOLIER	2.18 RP.6SF	Defaut prameters for release pc	60	8	${ }^{300}$	37	111600	${ }^{45.6135}$	-122.7111	Oil re.efefining Company loc.
${ }_{\text {2 }}^{26.3048}$		${ }_{\text {p. }}^{\text {P. }}$	Cook tank heters	${ }_{\text {2, } 2.18 \text { RP.CSF }}^{0 \text { RP. } 65}$	Defaut prameteres for release pc Defaut parameters for reese p c	60 40	8	300 72	37 40	111600 47100	${ }_{45}^{45.6135}$	-122.7111 -122711	Oil Re-Refining Company lnc. Oi Re-efefing company nc.
${ }^{26-3048}$	ROCKET	$p^{\mathrm{p} .2}$	Rocket ssstem	$0{ }^{\text {RP.GS }}$	Defaut parameters for release pc	40	5	72	40	47100	45.6135	-122.7111	Oi Re-Refining Company loc.
26.3051	NG Comb	p P-1	Natural gas combustion	3.06 RP-GSF	Deffult parameters for release pc	60	8	300	37	111600	45.5346	-122.4682	Interational Paper Company
${ }_{2}^{26-36067}$	Ev2	$p \cdot 1$	Boilers Q Pre-heeters	7.8 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.6061	-122.7891	
26.3067	EU1	P.2	Asphalt Coovertors	8.14 RP.6S	Defautt parameters for release cc	40	5	72	40	47100	45.6061	-122.7891	Owens Corring Roofing and Asphalt, uC
${ }^{26,3067}$	EU1	P.1	Asphatit Convertors	0 RP-GS	Deffult parameters for release pc	40	5	72	40	47100	45.6061	-122.7891	Owens Corring foofing and Asphalt,
													Coffee Bean Internationa, 1 c.
${ }_{26 \text { 26-3131 }}^{26.391}$													Uniservice Corporation
${ }^{26 \cdot 3135}$	furnaces	P. 1	Euss, T, f Furnacts	5.78 P. 6 S	Defaut prameters for release pc	40	5	72	40	47100	45.4961	-122.647	Bulseye Class co.
26.3135	по сомв	P.1	Natural gas combustion	2.36 pp. 65	Defaut prameters for release pc	40	5	72	40	47100	45.4961	-122.647	Bulseve Class Co .
${ }^{26.3135}$	${ }_{\text {Al }}$	${ }_{\text {P.1 }}^{\text {P. }}$	AGGREGATE INSICNIFICANT EmIS:	${ }_{1}^{1} 1 \mathrm{RP}$ P-FS FS	Defaut perameters for release $p \mathrm{c}$ Defautt parameters for reeese pc	${ }_{20}^{40}$	5	72	40	47100 824679	${ }^{45.5961}$	-122.6477	Bulseye Glass Co.
26.3224	CUB	$p \cdot 1$	Boiers (2)	5.64 RP.6SF	Defaut pearameters for release pc	60	5	300	37	111600	${ }_{4}^{45.5662}$	${ }^{-1222,7218}$	Vigor Industrial, uc
26.3228	flRs	P.1	flares	0.733 Rp-G5F	Deffutt parameters for release pc	60	8	300	37	${ }^{111600}$	45.5454	-122.4587	city of Gresham
${ }_{\substack{26.3288 \\ 26.3288}}$	emgen	p p-1	Emergencr gen sets	0.172 RP-GSF	Defautt parameters for release pc	60	8	300	37	111600	45.5454	-122.4587	City f f Gesham
${ }_{2}^{26.32288}$	${ }_{\text {CEN }}^{\text {BRO2 }}$	${ }_{p-1}^{p .1}$	BoILER COGEN $3081 / E$		Defaut perameters for release pc Defaut parameers for reese pc	60 40	8 5	300 72	37 40	111600 47100	${ }_{4}^{45.5454}$	${ }_{\text {- }}^{\text {-122.4587 }}$	city Of Cresham city Of Gesham
${ }^{26 \cdot 3228}$	GEN9301	$p \cdot 1$	COGEN 3508LE	0.8 RP-65	Defautt parameters for release pc	40	5	72	40	47100	45.5454	-122.4587	city Of Gresham
22^{26320}	${ }^{\text {BLRSS } 82}$	$\mathrm{p} \cdot 1$	Bulling 2 80ILERS NG	1.7 RP-65F	Defaut prameters for release pc	60	8	300	37	111600	45.5206	-122.474	Microchip Technology Incorporated
${ }^{26 \cdot 3230}$	${ }_{\text {BlRS }} 81$	${ }^{p .1}$	bullung 1 BRes	1.09 RP.-65F	Defefult prameters for release pc	60	8	${ }^{300}$	37	1111600	${ }^{45.5206}$	-122.474	Microchip Technology Incorororated
${ }_{\text {26-3230 }}^{26.3200}$	Cen ${ }_{\text {cos }}^{\text {cos }}$	${ }_{\text {P. }}^{\text {P. }}$ -			Defaut parameters for erease $p \mathrm{pc}$ Defaut parameters for reese p c	60 60	${ }_{8}^{8}$	300 300	37 37	1111600 111600	${ }_{4}^{45.5206}$		
${ }^{2} 2.532400$	GENB1	${ }_{p-1}$	Bullong 1 Generators olisel		Defuat parameters for release pc	${ }_{60}$	8	${ }_{300}$	37	111500	${ }_{4}^{45.5206}$	${ }^{-122.4744}$	Microchip Tectrology l nocoroporated
26.3240	BRIS B2	${ }^{p} \cdot 2$	BUILIING 2 Bollers oll	0.00279 PP.-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5206	-122.4774	Microchip Technology \ Mcorporated
26.3240	FRRE PUMP	p p-1	FIRE PUMP	0.00000277 P.-GSF	Defautt prameters for release cc	60	8	${ }^{300}$	37	${ }^{111600}$	45.5206	-122.474	Microchip Technology Incorporated
${ }_{2}^{26.3230}$	BLRS 81	P.2	BUlloling 1 BLRS	0 RP-6SF	Defautt parameters for release c c	60	8	${ }^{300}$	37	111600	45.5206	-122.474	Microchip Technology Incorporated
${ }_{2}^{26.32342}$	ng comb	${ }^{p+1}$	Natural Gas fo ano other eal	2.89 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5755	-122.6082	Hydro Extusion Portand, Inc.
26.3243													Het lumber, Lic
26-3253							8						Darigild Inc.
${ }^{26 \cdot 3254}$	GEN 1145	p p.1	Emereneny Generator	5.27 RP.6SF	Defautt parameters for release pc	60	8	${ }^{300}$	37	111600	45.5749	${ }_{-122.5914}$	Oregon Air National Guard
22^{26354}	GENB252	$\mathrm{p} \cdot 1$	Emergencr Generator	2.07 RP.6SF	Defaut prameters for release c	60	8	${ }^{300}$	37	111600	45.5749	-122.5914	Orego Air National Guard
${ }^{26.35254}$	GEN8210	P. 1	Emergency Generator	2.06 RP-.SSF	Defaut parameters for release pc	60		${ }^{300}$	37	111600	45.5749	-1225914	Oregon air National Guard
${ }_{2}^{26-354}$	GEN8251	$\mathrm{p} \cdot 1$	Emergencr Generator	2.05 RP-.SSF	Defaut prameters for release pc	60	8	${ }^{300}$	37	111600	45.5749	-1225914	Orego Air National Guard
${ }_{\text {26-353 }}^{26.354}$	${ }_{\text {CeN } 234}^{\text {GEN } 155}$	${ }_{\text {P.1 }}^{\text {P.1 }}$		${ }_{1}^{1.867}$ R RP-.GSF		${ }_{60}^{60}$	8	300 300	37 37	${ }^{1116500}$	${ }_{4}^{455759}$	- 122.5974	Oregon Air National Guard
${ }_{2}^{26-35354}$	GENB1180	${ }_{p-1}^{p .1}$	${ }_{\text {Emergencry Generator }}^{\text {Emergeny Generator }}$	${ }_{1.38}^{1.78 \mathrm{RP} \text { R.csf }}$	Defiult prameterss for release pc	60	8	${ }_{300}$	${ }_{37}^{37}$	1111600	${ }_{4}^{45.5749}$	-122.5914	
26.354	ng	p p. 1	Natural Gas Combustion in heating	1.05 RP-GSF	Defaut parameters for relesese p	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
${ }^{26,3254}$	GEN8255	P.1	Emergency Senerator	0.75 RP.CSF	Defautt parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Orego Air National Guard
${ }_{\text {2 }}^{26.35254}$	EEN ${ }_{\text {ETC }}$	${ }_{\text {P. }}^{\text {P. }}$.		${ }_{\text {chen }}^{0.281}$	Defaut perameters for felease pc Defaut parameters for rease p	60 60	${ }_{8}^{8}$	300 300	37 37	1111600 111600	${ }_{45}^{45.5749}$		Oregon Air National Suard Oregon Air National Guard
${ }^{26 \cdot 3534}$	GENB302	P. 1	Emerigeny Generator	0.254 Rp.CSF	Defaut parameters for release pc	60	8	300	37	111600	45.574	-122.5914	Oregon Air National Guard
${ }_{\text {l }}^{26.35254}$	GENB098	${ }_{\text {P. }}^{\text {P. }}$	Emergency Senerator		Defaut parameters for release pc Defaut parameters for rease pc		${ }_{8}^{8}$	300 300					Oregon Ar Nataonal uard Oregon if National Guard

26-3254	ETC	P-1	Engine Test Cell	0.012 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
26-3254	Gen ne	p-1	Emergency Generator	0.000256 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
26.3254	gense	P-1	Emergency Generator	0.000256 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
26-3254	gennw	p-1	Emergency Generator	0.000226 RP.GSF	Default parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
26-3254	Gensw	P-1	Emergency Generator	0.000226 RP.GSF	Default parameters for release pc	60	8	300	37	111600	45.5749	-122.5914	Oregon Air National Guard
26-3265													Glacier Northwest, Inc.
26.3267	GENS	P-1	Gens	4.91 RP-G5F	Defaut parameters for release pc	60	8	300	37	111600	45.5465	-122.4805	U.S. Bancorp
26-3291	NG COMB	P-1	natural gas combustion	1.98 RP-G5F	Defaut parameters for release pc	60	8	300	37	111600	45.5779	-122.614	The Boeing Company
$26 \cdot 3291$	FP	P-1	FIRE PUMPS	0.917 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5779	-122.614	The Boeing Company
26-3291	GENS	$p-1$	GENERATORS	0.328 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5779	-122.614	The Boeing Company
26-3305													Lakeside Industries, inc.
26-3310	Landfill	p-1	Landifill Gas Flares	1.41 RP.GS	Defaut parameters for release pe	40	5	72	40	47100	45.6142	-122.7516	Metropolitan Service District
26-3317	NG	P-1	natrual gas combustion	0.244 RP-GSF	Defaul parameters for release pc	60	8	300	37	111600	45.574	-122.6	Silver Eagle Manufacturing co.
26-9535													Cadman Materials, Inc.
26-9537	EU3	$\mathrm{p}^{\text {-1 }}$	Space Heaters	0.364 RP-GSF	Default parameters for release pc	60	8	300	37	111589.35	45.5406	-122.4737	Owens Corring Foam Insulation, uc
26-9545													Regency Portland
26-9550	ENGS	P-1	ENGS	0.27 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.4959	-122.6483	Portand General Electric Company
34.0001													Peterkort Roses, L.L.C.
34-0002													Legacy Meridian Park Hospital
34.0004	FLARE	P-1	Flare	7.24 RP.FS	Defaut parameters for release pc	20	50	72	7	824667.9	45.493	-122.97	Hillsboro Landifll Inc.
34-0004	TUB GRIND	P-1	tub grinder	7.88 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.493	-122.97	Hillsboro Landill linc.
34.0004	TIPPER	P-1	TIPPER	4 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.493	-122.97	Hillsboro Landill Inc.
34.0005	NG	P-1	natural gas combustion	2.33 RP-G5F	Defaut parameters for release pc	60	8	300	37	111600	45.3839	-122.7779	Valmont Coating, Inc.
34.0009	NG Comb	p-1	natural gas combustion	2.08 RP-G5F	Defaut parameters for release pc	60	8	300	37	111600	45.4801	-122.7821	International Paper Company
34.0017	NG Comb	$p-1$	Natrual Gas	0.757 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5467	-122.9327	Dynic USA Corp.
34.0048													Cascade Funeral Directors
34-0055	ng comb	P-1	natural gas Combustion	2.5 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5413	-122.9374	Qorvo US, inc.
34.0063	BLRS	P-1	Bollers	2.97 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.386	-122.792	Lam Research Corporation
34.0070	CRE		CREMATORY	0.225329315 RP-G5F	Default parameters	60	8	300	37	111600	45.4901	-122.8672	Springer \& Son, Inc.
34.0079	CR		COFFEE ROASTER	0.108638862 RP-GSF	Defaut parameters	60	8	300	37	111600	45.5665	-122.8985	West Coast Coffee Company
34.0080	gen		generator	0.018112752 RP-GSF	Defaut parameters	60	8	300	37	111600	45.5413	-122.9374	Qorvo US, Inc.
34.0083	GEN		generator	0.8247771 RP.GSF	Default parameters	60	8	300	37	111600	45.5227	-122.9904	Flexential Colorado Corp.
34.0090													Finley-Sunset Hills Mortuary
34.0096	gen		generator	0.21616707 RP-GSF	Default parameters	60	8	300	37	111600	45.5323	-122.9382	Clean Water Services/ Clean Water Institute
34-0101													Landmark Ford, Inc.
${ }^{34.0134}$	NG	P-1	natural gas combustion	0.51 RP-GSF	Default parameters for release pe	60	8	300	37	111600	45.3647	-122.7849	Ardent Mills, uc
${ }^{34-142}$	Gen		Generator	0.283917388 RP-G5F	Defaul parameters	60	8	300	37	111600	45.5498	-122.9919	City of hillsboro
34.0149	eng	$p-1$	AVERY GENERATOR DSG	0.0000465 RP.GSF	Defaut parameters for release pc	60	8	300	37	111600	45.3716	-122.7879	Portland General Electric Company
34-0157	emgen	p^{p-1}	Em Gen 1-16	0.491 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5471	-122.9287	STACK Infrastructure, inc.
34.0157	LSGEN	P-1	LS GEN 1-3	0.0018 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5471	-122.9287	STACK Infrastruture, Inc.
34-0183	gen	P-1	GEN	20.9 RP-GsF	Default parameters for release pc	60	8	300	37	111600	45.5509	-122.9207	sTACK Infrastructure, Inc.
34-0186	GEN		generator	21.6274884 PP.GSF	Defaul parameters	60	8	300	37	111600	45.566	-122.916	Beaver Ventures LIC
34.0222	engs	P-1	ENGS	2.05 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.5571	-122.9272	QTS Investment Properties Hillsboro, uc
34.0235	GENS 101-111	p-1	Emergency generators	0.977 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.55	-122.9727	NTT GIobal Data Centers HI, LLC
34.0235	GEN 1H	P-1	Emergency generator 1 H	0.09 RP-G5F	Defaut parameters for release po	60	8	300	37	111600	45.55	-122.9727	NTT GIobal Data Centers HI, LIC
34.0238	NOT RUNNING			0									KoMiCo Hillsboro LLC
${ }^{34.0241}$	GEN1-3	$\mathrm{P}_{\mathrm{p}-1}$	GENERATORS 1.3	0.89 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.557	-122.9227	Flexential Colorado Corp
${ }^{34 \cdot 0241}$	GENS-10	P-1	Generators 5 -10	0.734 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.557	-122.9227	Flexential Colorado Corp
34-0241	gend	P-1	generator 4	0.348 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.557	-122.9227	Flexential Colorado Corp
34-2066	H-BLR	P-2	Hog fuel Boilers	22.8 stk-1		14.8	5.6	357	38.7	57191.05	45.4673	-123.1881	Stimson Lumber Company
34-2066	H-BLR	P-1	Hog fuel Boilers	13.9 STK-1		14.8	5.6	357	38.7	57191.05	45.4673	-123.1881	Stimson Lumber Company
34-2510	No NOX			0									Jewett-Cameron Seed Company
${ }_{34-2585}^{34-256}$													Hampton Lumber Mills - Banks Inc. Woodfold Mfg. Inc.
34-2585													Providence St. Vincent Medical Center
34-2623	gens	p-1	Genertors	29.1 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.4008	-122.7619	clean Water Serices
34.2623	HEATERS	P-1	HEATERS	0.34 RP-G5F	Defaut parameters for release pc	60	8	300	37	111600	45.4008	-122.7619	clean Water Serices
${ }^{34-2623}$	BLRS	P-1	Bollers	0.048 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.4008	-122.7619	clean Water Serices
34.2623	BLRS	P-2	Bollers	0.019 RP-GSF	Defaul parameters for release pc	60	8	300	37	111600	45.4008	-122.7619	clean Water Serices
34-2623	flares	$p-1$	flares	0.000987 RP-GS	Defaut parameters for release pc	40	5	72	40	47100	45.4008	-122.7619	clean Water Services
34-2636													Rogers Northwest, Inc.
34-2638	NG COMB	P-1	NATURAL GAS COMBustion	2.54 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.499	-122.8179	Tektronix, Inc.
34-2639	BLR		Boller	1.11	DEFAULT PARAMETERS	60	8	300	37	111600	45.567	-122.8605	Portland Community College
34-2640													Wisonville Concrete Products
34-2674													Knife River Corporation - Northwest
34.2678 34.2688	NG	p-1	natural gas combustion	1.7 RP-6SF	Default parameters for release pc	60	8	300	37	111600	45.5134	123.0814	TTM Technologies North America, LLC
$34-2688$ 34.2750													Oregon-Canadian Forest Products, Inc.
$34-2750$ $34-2753$	${ }_{\text {crabes }}$	P-1	COFFEE ROASTER	$0_{0.088678881} 0.52$ RP-GFF	Defaut parameters ${ }^{\text {Defaut parameters for release } \mathrm{pc}}$	60 20	8 50	300 72	$\begin{array}{r} 37 \\ 7 \end{array}$	$\begin{array}{r} 111600 \\ \hline 82467.9 \\ \hline \end{array}$	$\begin{aligned} & \frac{45.5556}{45.4977} \end{aligned}$	${ }_{-122.9492}$	Longbottom Coffee \& Tea Inc. Clean Water Services
34-2753	Gens	P-1	ENGINE GENERATORS DIGESTER G	40.9 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.4977	-122.9492	clean Water Services
34-2753	NG Comb	P-1	natural gas combustion	1.21 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.4977	-122.9492	clean Water Services
34-2753	BLRS	P-1	BoILERS DIGESER GAS	0.173 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.4977	-122.9492	clean Water Serices
34.2769	c		concrete	0.016933462 RP-GSF	Default parameters	60	8	300	37	111600	45.5375	-122.8969	Glacier Northwest, Inc.
34-2775													Knife River Corporation - Northwest
34-2783	Bо	P-1	NATURAL GAS Bake ovens ng cc	1.91 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.4831	-122.7874	Bimbo Bakeries USA, Inc.
34-2783	BLR	$p-1$	SUPERIOR NG BOILER	1.49 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.4831	-122.7874	Bimbo Bakeries USA, Inc.
34-2790	NG	P-1	combustion	1.99 RP-G5F	Default parameters for release pc	60	8	300		111600	45.5519	-122.9244	Tokyo Ohka Kogyo America, Inc.
34-2804	BLRS	P-2	ng boilers	1.05 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.5021	-122.8246	Analog Devices, Inc.
34-2804	BLRS	P-1	ng bollers	0.465 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5021	-122.8246	Analog Devices, Inc.
34-2804	ENG 859	P-1	ENGINE BUILIING 59	0.103 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5021	-122.8246	Analog Devices, Inc.
34-2804	ENG 857	P-1	ENGINE BUILDING 57	0.063 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5021	-122.8246	Analog Devices, Inc.
34-2804	ENG B60	p P-1	ENGINE BUILING 60	0.011 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5021	-122.8246	Analog Devices, Inc.
34-2813	BLRS	P-1	BOILERS 1-5	0.949 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5465	-122.9306	Jireh Semiconductor Incorporated
34-2813	ENG 1-3	$p_{\text {P. } 11}$	ENGINES 1-3	0.176 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.5465	-122.9306	Jireh Semiconductor Incorporated
${ }^{34-2813}$	ENG 4	P-1	ENGINE 4	0.021 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5455	-122.9306	Jireh Semiconductor Incorporated
34-9507	BLR 1-2	P-1	Bollers 1-2	2.35 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.5572	-122.9262	Genentech, Inc.
34.9507	EG2	P-2	Emergency gen 2	0.095 RP-GSF	Defaul parameters for release pc	60	8	300	37	111600	45.5572	-122.9262	Genentech, Inc.
34.9507 34.9507	${ }_{\text {ELR }}$ 3.5	${ }_{\text {P. }}^{\text {P. }}$ P	Bollers 3.5 EMERGENC GEN 1		Defaut parameters for releasepc	60	8	300 300	37	1111600	45.5572	- 1222.9262	Genentech, Inc.
34.9507 34.9507	${ }_{\text {EW1 }}^{\text {EW }}$	${ }_{\text {P. }}^{\text {P. } 2}$	EMERGENCY GEN 1	${ }_{0}^{0.052}$ RP-GSF	Defaul parameters for release pc Defaut parameters for reease pc	60 60	8	300 300	37 37	111600 111600	45.5572	${ }^{-122229262}$	Genentech, Inc.
34-9514	PO	$p-1$	PROCESS OPERATIONS	0.78 RP-GS	Default parameters for release pc	40	5	72	40	47100	45.4256	-122.7594	Regenyx Lic
34-9514	NG	p-1	Natural gas Combustion	0.55 RP.GS	Defaut parameters for release pc	40	5	72	40	47100	45.4256	-122.7594	Regenyx LLC
34-9514	PROPANE	P-1	PROPANE COMBUSTION	0 RP.GS	Default parameters for release pc	40	5	72	40	47100	45.4256	-122.7594	Regenyx Llc
${ }^{34 \cdot 9691}$													Fuiten-Rose \& Mortuary Chapels, Inc.
${ }_{\text {l }}^{\text {36-0007 }}$	Al	p-1	Agregate Insignificant	1 RP-FS	Default parameters for release pc	20	50	72	7	824667.9	45.1606	-123.2444	UFP McMinnville, LLC Riverbend Landfill Co.
36-0011	Tip	p. 1	Tipper	0 RP-FS	Defaul parameters for release pc	20	50	72	7	824667.9	45.1606	-123.2444	Riverbend Landfill $\mathrm{Co}^{\text {o }}$
36-0011	FIRN	p-1	Enclosed flare	10.3 STK-2		30	6.3	640.6	27.5	51434.54	45.1606	-123.2444	Riverbend Landill Co .
${ }^{36-0011}$	ENG	P-1	Engines (6)	40.4 STK-1		32	5	1200		29179	45.1606	-123.2444	Riverbend Landill Co.
$36 \cdot 0012$ $36-0014$													Carton Seed. L.L.C.C. Macy \& Son Co. dba Macy \& Son Funeral Directors
- $36-0014$													Macy \& Son Co. dba Macy \& Son Funeral Directors
36-0029													Providence Health System-Oregon
36-0031													City of Newberg
36-0041	NG	P-1	NATURAL GAS COMBustion	0.018 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.274	-123.0463	M \& W Fiberglass, Inc.
${ }^{36-0052}$	NG COMB	p^{p-1}	Natural gas combustion	0.525 RP-GSF	Defaut parameters for release pc	60	8	300	37	111600	45.2144	-123.1888	Ultimate RB, Inc.
${ }^{36-1033}$													TMS International, LLC
$36-5034$ $36-5034$	${ }_{\text {Al }}$	$\mathrm{P}^{\mathrm{P}-1}$	Agregate Insignificant Activities	1 RPP.fs	Defaut parameters for release pc EAF BH exhaust	20 50	50 12.3	72	104	824667.9	45.2289 452289	- -123.1627	Cascade Steel Rolling Mills, Inc.
${ }_{\text {l }}^{36-50334}$	$\mathrm{EOU}_{\mathrm{EU}-3}$	${ }_{\text {P.-1 }}^{\text {P. }}$	Melt Shop Baghouses	${ }_{1}^{115.5}$ STK-1	${ }_{\text {EAF }}$ EAF roof moxhaust	50 75	12.3 12.3	121 93	104	${ }^{741454967}$	${ }_{45}^{45.2289}$	${ }_{-1233.1627}^{-123}$	Cascade stee Roling Mils, inc.
36-5034	Other NG	P-1	Other NG Usage	6.51 RP-G5F	Default parameters for release pc	60	8	300	37	111600	45.2289	-123.1627	Cascade Steel Rolling Mills, Inc.
36-5034	Eu-7	p P-1	Rod and Bar mill	30.9 STK-3	Reheat furnace 1	75	5.7	702.3	24.7	36309	45.2289	-123.1627	Cascade steel Rolling Mills, Inc.
36-5034	Eu-6	P-1	Rolling Mill	0 ¢Tk-3	Reheat furnace 1	75	5.7	702.3	24.7	36309	45.2289	-123.1627	Cascade steel Rolling Mills, Inc.
${ }^{36-5034}$	EU-4	P.1	Melt Shop Vertical Preheater	0.759 RP.GS	Default parameters for release pc	40	5	72	40	47100	45.2289	-123.1627	Cascade steel Rolling Mils, Inc.
${ }^{36.5088}$													C.C. Meisel Co., Inc.
36.5313 36.5330													Linfield College
${ }_{3}^{36-5330}$													Knife River Corporation - Northwest
36-9504	EG	p. 1	Emergency generator	1.16 RP-GSF	Default parameters for release pc	60	8	300	37	111600	45.2858	-122.9525	Wity of Newberg
36-9504	Dehroration	p-1	WOOO DEHYORATOR	0.161 RP-GS	Defaut parameters for release pc	40	5	72	40	47100	45.2858	-122.9525	City of Newberg

Sourcenumber	iscore	Procescode	Espescrition				Reamemombestriton							
${ }^{2620268}$	${ }^{30.2}$	$\mathrm{P} \cdot 1$	pcs	50.6	1.14	1.14 P.-6s	Defaut parmetess for relesse	40	5	72	40	47100	45.5374	-122703
${ }^{26,1885}$	${ }_{\text {Eul20 }}^{\text {Eu1 }}$	${ }_{\text {P. }}^{\text {P. }}$		${ }_{40,7}^{42.1}$	${ }_{\substack{0.47 \\ 3.05}}$		Defaut prameters for	789 40	$\stackrel{4}{4}$	${ }_{7} 8$	21.8 40	$\xrightarrow{19888.54}$	${ }_{4}^{45.65661}$	2794
${ }^{263007}$	Etal	${ }_{P}^{P \cdot 2}$		40.7			Dotaut parametestor trease	${ }^{40}$	5	12	40			
${ }^{36-18055}$	Etio	${ }^{p .1}$	Reneat fumace	${ }_{39,5}$	${ }_{1}^{1.81}$			${ }_{72} 20$	57	123		${ }_{3} 82818796$	${ }_{45}^{45256}$	${ }_{\text {- }}^{\text {-122799 }}$
${ }_{26-1894}$		P.	Conererand lamia	271		${ }_{\text {S }}$		12.7	5.7	723	24.7			
${ }^{26-202088}$	${ }^{30.1}$	${ }^{\mathrm{p} .1}$	MEIT	${ }_{23,1}^{27.1}$	0.242		Defaut paraneless Sor release	${ }_{5}^{40}$	$\frac{5}{7}$	${ }_{80} 8$	40 32	${ }_{73880.24}^{47100}$	${ }_{4553973}^{45931}$	${ }^{122278001}$
			engine geneati		0.557		oe	${ }_{60}$		300	${ }^{37}$	111600		
26.1885	Eu-13	${ }^{\mathrm{p} .1}$	Other Natural ass $^{\text {a }}$	${ }^{14.1}$	1.27	1.27 P. 6 GS	Defaut parametess for relese	60	8	300	${ }^{37}$	111600	45.256	779
34.183	gen	${ }^{\mathrm{P} .1}$	gen	12.1	0.998		oefaut parameetes for retere	60	8	300	${ }^{37}$	111600	45.559	
26.3067	Eu2	${ }^{p .1}$	Bolers 8 Precheat	6.55	0.195	0.195 pr.CS5	Defaut parametes for release	60	8	300	${ }^{37}$	111600	45.6061	.122.7891
${ }^{26-1815}$	coater	${ }^{\text {P.1. }}$	Asphat Coater	${ }_{6}^{6.08}$		${ }_{\text {RPP. } 65}$	Defaut parameetes for release	${ }^{40}$	5	72	${ }^{40}$	47100	${ }_{4}^{455993}$	
${ }^{2661894}$	N6	${ }^{\text {P. } 1.1}$	Natural gas	${ }_{5.47}$			Defaut parametess tor release	60	8	300	${ }^{37}$	111600	${ }^{4559911}$	
26.309	E0,	P.2	Coating Line 3	5.37		S	Defaut parameerstorreease	${ }^{40}$	5	12	${ }^{40}$	000		
${ }^{26-1000}$	Bres	${ }^{\text {P. }}$.	BRLRS	4.96	${ }^{0.148}$		Defaut parametess sor release	60	8	300	${ }_{37}$	111600	${ }^{455965}$	22176
${ }^{3427273}$	flares	${ }^{\text {P.1 }}$	flaks olats	4.48	0.162	$0^{0.16228 .7 .55}$	Defaut parameersstor reaeze	${ }_{60}$	8	300	${ }^{37}$	111600		${ }^{1222942}$
${ }^{26.1869}$	Steit	${ }^{\mathrm{P} .1}$	Steel Act fuma	${ }_{3,35}$	0.266	0.266 Pr. 65	Sent parameers for relez	40		2	0		455996	
26.25050	EU3	${ }^{p} 1$	Bolefr fand	3.17	566	0.566 ST. 3	Boler 6 - EU3	31	3.5	347	${ }^{34}$	19827.1	45.999	683
26.2390	N $\mathrm{c}_{\text {com }}$	${ }^{p .1}$	N	${ }^{3.1}$		SsF	Defaut prameters for release	60	8	300	${ }^{37}$	500	45.615	
26.3067	EU3	${ }^{p} 1$	Storage Tanks 1.2	3.03	0.1	0.1 Rp.6s	Defaut parametest for reesese	${ }_{4}$	5	12	${ }^{40}$	47100	45.6061	
${ }^{3428284}$	${ }^{\text {birs }}$	P.2	Ng Bollers	276	0.082	0.08	Defaut paraneers for rease	${ }^{60}$	8	300	37	111600		
${ }^{2664815}$	TK18819	${ }^{p .1}$	Asphat Storage Ta	274		${ }_{\text {Rp.FS }}$	Defaut paranterss for relese	20	50	72	7	824669	45.5938	-122719
${ }^{26202088}$	${ }^{30} 2$	P.2	PCS	${ }^{2.66}$	${ }^{1.08}$	${ }_{1}^{1.0888 .6 .65}$	Defaut paraneters for relese	${ }^{40}$	5	12	${ }^{40}$	47100	45.5374	
${ }^{26,1891}$	proouction	${ }^{\text {P. } 1}$	Production	25	258		Defaut parameetes for release	40	5	12	${ }^{40}$	47120	45.5229	
${ }^{3428813}$	BRS	${ }^{\text {P. } 12}$	Bollesp 1-5	2.99		${ }_{\text {RP-GSF }}$	Oefautuprameleers tor reeas	60	8	300	${ }^{37}$	111660	4.54655	退2306
${ }^{26-1000}$	BRES	${ }^{\text {P.2 }}$	BRLRS	$2{ }^{24}$	0.071	$0^{0.071 ~ R P R-G 55}$	Defaut parameerss tor reaese	60	8	300	${ }^{37}$	111600	45.5965	${ }^{-1222,7176}$
${ }^{26.12859}$	evecon	${ }_{\text {P. }}$	${ }_{\text {Heat rearprocess }}$		0.064	O.ase proces	Dofaut parameeses or erease	${ }_{60}$	5	320	${ }_{37}$	411500	4.54598	-122,7949
34.0055	NG Comb	${ }^{p .1}$	Natural cas con	21	0.063	${ }_{0} 0.063$ Pr.CSS	Defaut pramemeers for creaee	${ }_{60}$	${ }^{8}$	-300	37	111500	455413	
26.277	BLISSORTER	${ }^{p} 1$	Boilers and dopers	206	0.061	0.0618 RP-GS5	Defaut parmeters for relese	60	8	300	${ }^{37}$	111600	45.619	.122.7022
			natural cas con	204				60	${ }^{8}$	300	37			
26.2068	30.10	${ }^{p} 1$	N6	203	0.061	0.061 P. P. SS	Defaut parameess for relesse	60	8	300	${ }^{37}$	11600	45.5374	22.73
O04	TUBGRND	P. 1	TUE GRNOLER	1.8	0.23		Defaut pramemers for release	${ }_{60}$	${ }^{8}$	300	${ }^{37}$	111600	45.493	
26.1815	NG Coms	$p \cdot 1$	Natural Gas Combi	1.66	0.15	0.15 P. P. 5 S	Defaut parameers for release	60	8	300	${ }^{37}$	111600	45.5933	12279
${ }^{26-2025}$	BOLI/FURN	${ }^{\mathrm{P} \cdot 1}$	Bolers nond turnact	1.63	0.049			60	8	300	${ }^{37}$	1116	45.5607	
${ }^{3427278}$	${ }^{80}$	${ }^{\text {P.1 }}$	Natural Gas sak	1.6	0.048	0.048 Pr-G.G5	Defaut parameers for relese	60	8	300	${ }^{37}$	111660	45.8831	.1227874
${ }^{26-1885}$	Bolur	${ }^{p .1}$	Ngbolitr	1.58		${ }_{\text {RP-Gsf }}$	Defaut parameters tor release	60	8	300	37	111	${ }^{45} 5334$	
${ }^{26-1814}$	${ }^{\text {Bolter }}$	${ }^{\text {P. } 11}$	${ }^{\text {Boiler }}$	${ }_{1}^{1.56}$	0.047	0.047 Pr-GES5	Defaut parameers for release	${ }^{60}$	8	300	${ }^{37}$	111660	${ }^{455473}$	${ }^{1222709}$
${ }^{26-2033}$	Coatier	${ }^{\text {P. }} 1$	Asphall coarter	151	0.042	0.042 PrPFS	Defaut parameers tor relesse	${ }^{20}$	50	${ }^{20}$	7	${ }_{8246679}$	${ }^{4.5568}$	22,73
${ }^{34.01268}$	${ }_{\text {GeN }}$		Generator	1.5038982	${ }^{1.5038882}$	4.65923	detault	60	8	300	${ }_{37}$	111660	45566	122966
${ }^{3426278}$	No	${ }^{\text {P. }}$	Natvoat Gaston	${ }_{1}^{1.47}$	O179		Defaut parameers tor rease	6	8	300	${ }^{37}$	${ }_{1116500}$	${ }^{4.55134}$	${ }^{12320814}$
	CUB			${ }_{1.41}$	0.101	0.101 P.-GS	Defaut	60	8	300	37	111600	45.5662	
22.0368	noc	${ }^{p} 1$	natural gas	1.37	0.124	0.124 p.-65	Defauturara	40	5	72	${ }^{40}$	47100	45.242	22,7
26.1894	Oven	p. 1	Fibergass Mat	1.34		cs	parameters for rel	${ }^{40}$	5	12	${ }^{40}$	47100	5911	
${ }^{34.9507}$	BR18.2	${ }^{p .1}$	Bolless 1.2	1.34	0.336	$0.336 \mathrm{pr.CSS}$	Defaut prameters for relea	60	8	300	37	111600	455572	
${ }^{342783}$	BlR	${ }^{p .1}$	ORNG BOII	1.25		${ }_{\text {RP. } 6 \text { SS }}$	Defaut parameers for release	60	8	300	${ }^{37}$	111650	45.4831	
${ }_{2}^{26,302028}$	Bollers	${ }^{\text {P.1 }}$	Natural Gas boil	${ }_{1}^{123}$	0.337	0.037 P.-GS5	Defaut parameers tor relesse	60	8	300	${ }^{37}$	111600	45.5775	.1227532
${ }^{26202088}$	${ }_{\text {Blips }}^{30.1}$	${ }_{p-1}^{p .2}$	NEGPollers	1.22 1.22	${ }_{0}^{2.055}$			55 60	?	80 300	${ }_{37}^{32}$	$\xrightarrow{7389024}$	${ }_{4}^{4555373}$	
26.1869	Nс сомв	${ }^{p .1}$	Natural Casas Combl	1.1	0.131	0.131 Pr.6S5	Dofault parameers for relese	60	8	${ }^{300}$	${ }^{37}$	11158935	45.599	. 1227291
26.1865	${ }^{\text {al }}$	$p \cdot 1$	Aegreate Isishfif	1	1	${ }_{\text {RpPF }}$	Defaut parameers for release	20	50	72	7	8246679	45.256	.1227794
${ }_{26-2197}^{2029}$	${ }_{8 . A 66}$	${ }^{p} \cdot 1$	Aegeegate nisgenif	1	1		Defuit parmeeres for rease	${ }_{20}^{20}$	${ }_{50}$	${ }_{72}$	7	${ }_{\substack{8246679 \\ 824679}}$	${ }_{45 \text { 45.5928 }}^{4}$	${ }^{\text {. } 1222 \text { 27833 }}$
	Al		Ageregat nsigifif	1		ders	Dofaut pearameers for release	20	50	72	7			
26.3099	${ }_{\text {AIE }}$	${ }^{p .1}$	Agereate Insignfí	1	1	${ }_{\text {R.f. }}$	Dofaut parameers for release	${ }^{20}$	so	12	7	8246679	45.5888	. 122.6098
${ }_{\text {2 }}^{26-1889}$	${ }_{\text {cir }}^{\text {Mavg }}$		${ }_{\substack{\text { Maneman } \\ \text { Bolbe }}}$					${ }_{40}$		12	${ }^{40}$	${ }^{4723,38}$		
34.0004	TTPPR		tiper	0.862	0.284		Deferut prammeters	60	8	300	37			
26.3310	Landilil	${ }^{p} 1$	Landill cas flares	0.848	0.001	0.601 RP. 65	Defaut parameers for reasese	40	5	72	${ }_{40}$	47100	45.6142	. 1227516
26.2968	воıLER	${ }^{\mathrm{p} \cdot 1}$	вolter	0.843	0.06	0.068 RP.CSF	Defaut parametes for releze	${ }_{60}$	8	300	${ }^{37}$	111600	45.5818	
${ }^{26,3009}$	Eu-4	${ }^{\text {P.1 }}$	${ }^{\text {Bolers }}$	0.836	0.06	0.06 RP. GSF	Defaut parameers for relese	60	8	300	${ }^{37}$	111660	45.5888	.1226008
${ }^{26-2,297}$	5.80	${ }^{\text {P.1 }}$	Natural Cas Combl	0.738	0.422	${ }_{\text {RP-GsF }}$	Defaut parameers sor reeese	60	8	${ }^{300}$	${ }^{37}$	111660	455572	
${ }^{3400017}$	Necoms	${ }^{P \cdot 1}$	Natrual 6 as	0.636		${ }_{\text {RP-GSF }}$	Defaut parameers for release	60	8	${ }^{300}$	${ }^{37}$	111600	${ }^{4.55467}$	
${ }^{2635098}$	${ }_{\text {ele }}^{\text {Eir }}$	${ }^{\mathrm{p} .3}$		${ }_{0}^{0.514}$	${ }_{0}^{0.0 .34}$	${ }_{0}^{0.03468 \text { Pre.c.cs }}$	Dofaut parameeres sior reease	40 60	${ }_{8}^{5}$	${ }_{300}$	${ }_{37}^{40}$	$\xrightarrow{411500}$	${ }_{4}^{45.58888}$	${ }^{\text {. } 12226988}$
26.3098	TKHEATRES	${ }^{p} 1$	Cooktank hete	0.574		${ }_{0} 0.3568$ Pr-65	Dofaut parameers for rease	6	8	300	37	111600	45.6135	. 1227111
${ }_{\text {24.3021 }}$		${ }^{p .1}$	Heatren ${ }_{\text {Natural }}^{\text {Sas }}$	${ }_{0}^{0.527}$	0.242		Defaut paraneeres for rease	${ }_{60}^{60}$	8	300	${ }^{37}$	${ }^{111660}$	${ }^{45.5062}$	${ }^{12226988}$
${ }_{26203}$	SubFACIng	${ }^{p .1}$	Sufecaina	${ }_{0}^{0.397}$	0.069		Defeut parneetes tor reease	20	50	72	${ }_{7}$	8246679	${ }_{45558}$	-122733
157	Emgen	${ }^{\mathrm{p} .1}$	em gen 1.16	0.312	0.055	0.055 pr.GS5	Defaut pearameers for rele	60	8	300	${ }^{37}$	111600		
26.3021	Bles 1.2	${ }^{p} 1$	Bollers	0.298	0.00886	0.00886 RP.6SF	Defaut p	60	8	300	${ }^{37}$	111600	45.002	. 122.6938
${ }^{26,3021}$	to.01	${ }^{p .1}$	Themanaloxioze	0.289	0.00859	0.00859 Pr. 6 St	Defaut prameters for releas	60	8	300	${ }^{37}$	111600	45.602	.1226938
${ }^{26-20688}$	${ }^{30 \cdot 3}$	${ }^{\text {P.1 }}$	MH/SR	0.254	0.094	$0.0948 \mathrm{P} \cdot 6.65$	Defaut parameers for relese	${ }^{40}$	5	72	${ }^{40}$	47100	45.5374	${ }^{1222703}$
${ }^{3427273}$		${ }^{\text {P.1 }}$	Natural cas con	0.254	0.03		Defaut parameers for relese	60	8	300	${ }^{37}$	111600	45.997	
	${ }_{\text {ctes }}^{\substack{\text { cas } \\ \text { cas }}}$	${ }^{\text {P. }}$	\pm				deter	${ }_{40}$	5	${ }_{320}$	${ }^{40}$	41100	${ }^{45.5001}$	-12278911
34.0083	Gte		GEnerator	0.17751825	0.05735205	0.05735205	defalit	60	8	${ }_{300}$	37	111600	45.527	. 1229904
${ }^{26,2028}$	${ }^{30.1}$	${ }^{\text {P. }}$. 4	MEIT	${ }_{0}^{0.17}$		0.00005ss $\mathrm{sk} \times 1$	MU-1 Melt EAF Stack	${ }_{55}$	7	${ }^{80}$	${ }^{32}$	902.24	5373	.1227029
${ }^{26,2028}$	${ }^{30.1}$	${ }^{\text {P.4 }}$		0.17		0.0000588 s Tk -1	Mu-1 Melt EAF stack	${ }_{5} 5$?	${ }_{80}$	${ }^{32}$	13890.24	455373	
${ }^{3}$		${ }^{p .1}$		${ }_{0}^{0.146}$	${ }_{0}^{0.00468}$		Defurp pareneers tor rease	${ }_{20} 20$	${ }_{50}$	300 72	${ }^{37}$	${ }_{8246679}$	${ }_{4}^{455588}$	${ }^{122292723}$
			Gas comusution	0.101	.00912	0.00912 PR.GS	Defaut prameters for relee	${ }_{40}$	5	72				
34.0079	CR		Coffer roaster	0.0912564	0.001636	0.001636	default	60	8	300	37	111600	45.565	8985
	ASSH TKS	${ }^{\text {P. } 1}$	Asphalit tanks	0.077	0.33	0.339	Defaut parameers for releas	40	5	72	${ }^{40}$	4710	${ }_{4} 5.568$	
26.2093	fuxtres	${ }^{\text {P. } 1}$	fuutanks	0.077	0.339	0.339 Pr.6S	Defaut parameers for release	${ }^{40}$	5	72	${ }^{40}$	47100	${ }_{4} 5.568$	-122743
${ }^{3427250}$	CR		Coffete foaster	0.0774926	0.0372	0.0372	defallt	60	8	300	${ }^{37}$	111600	45.5556	12299
${ }^{34.20235}$	Gens 500-111	${ }^{\text {P. } 11}$	Emergencr gent	0.071		${ }_{\text {RP-GSF }}$	Defaut parameers for relese	60	8	300	${ }^{37}$	111680	45.55	${ }^{1222927}$
${ }_{2626283}^{26203}$		${ }_{\text {p. }}^{\text {p. }}$	Verricammxer	${ }^{0.0069}$	0.177		Defaut parameers sor relesse	${ }_{30}^{20}$	${ }^{50}$	${ }_{35}$	25	8246679 47123	${ }_{4}^{4555088}$	- 12227438
${ }^{340142}$	GEN		Generator	0.06111885	0.019726	0.019726	Default	60	8	300	37	111600	45.5998	1
${ }^{26,3607}$	fua	${ }^{\mathrm{P} .1}$	Storaee Tanke 3.6			0 RP.GS	Defaut parameers for release	${ }^{40}$	5	72	${ }^{40}$	47100	45.6061	${ }^{12227899}$
26.0295	coucs	P.	orstuenes	0.0.99	0.027	0.027 RP.7	Def	${ }^{20}$	so	12	,	84.8150	Stis3	
${ }_{\text {20, }}^{20.02235}$	CNOS	P.	distunant	0.058	0.030	0.0039 RP. P . 6 St	Defaut parameeres toreeease	60	8	300	${ }^{37}$	H11000	45.5153	退2723
${ }_{20,302}$	Gen	${ }^{P} .1$	diss icenearo	0.052			Defeut paraneers tor reease	${ }_{60}^{60}$	$\stackrel{8}{8}$	300 300	${ }_{37}^{37}$	${ }_{1115000}$	${ }_{4}^{455575}$	${ }_{\text {- }} .122975752$
34.0096			Geneator	55263	5031485		defaut	60	8	300	${ }^{37}$	111600	45.533	
${ }^{36282813}$	Eng 1.3	${ }^{P .1}$	Envenes 1.3	${ }_{0}^{0.098}$		${ }_{\text {RPP GSF }}$		60	8	300	${ }^{37}$	111660	${ }^{4555465}$	${ }^{-1229396}$
26.1815	MLA USE TK	$p \cdot 1$	MLA Use Tank	0.039		RP.-5	Defaut parmeters for release	20	50	72	7	8246679	45.593	-12279
${ }^{26-26293}$	LaMAPP	${ }^{p .1}$	Lammant APllic.	0.036	234	2348 P P.fs	Defaut parmeters tor rele	20	${ }^{50}$	12	7	8246679	${ }^{455568}$	
${ }^{3427273}$	BRas	${ }^{\text {P. } 1}$	bollers olgester	0.036	0.021	0.021 Pr.6S5	Defaut parameters for relese	60	8	300	${ }^{37}$	111600	45.987	
${ }^{34.42924}$	${ }_{\text {Po }}^{\text {Gen }}$	${ }_{\text {P.1. }}^{\text {P. }}$		${ }_{0}^{0.031}$	0.012	${ }^{0.012}$ RP.C.CS5	Docaut parameeres tor release	60 40	$\stackrel{8}{5}$	300 72	37 40	${ }_{\text {l }}^{111600}$	${ }_{45 \text { a } 2556}^{45}$	${ }_{\text {- }}^{\text {- } 122292759}$
2661815	Lam Seal use	${ }^{\text {P. }} 1$	Laminate sealant	0.027		RP.-5	Defaut parmeters for release	20	50	72	7	8246679	45.5993	-122719
${ }^{26.1815}$	Steal mx Tk	${ }^{\mathrm{p} \cdot 1}$	Sealant MMx \times ank 1	0.027		${ }^{\text {RP. } 65}$	Defaut parameers for release	${ }^{40}$	5	72	${ }^{40}$	47100	45.5993	-122719
		${ }_{p .1}^{p .1}$		${ }_{0}^{0.0027}$			Dofeut parameeres for release	${ }_{60}^{20}$	${ }_{8}^{50}$	${ }_{300}^{72}$	${ }_{37}$	${ }_{\substack{8246679 \\ 11150}}$	${ }_{4}^{45.5993}$	${ }_{\text {- }}^{\text {- } 1222729}$
34.0241	GENS. 10	${ }^{p} \cdot 1$	GENEATOTos 5-10	0.022	0.01		Dofaut parameers for rease	60	8	300	37	111600	${ }^{45557}$	
${ }^{26-1815}$		${ }^{\mathrm{P} \cdot 1}$	MLA Bukt Tank 21.	0.021		${ }_{\text {Rp.Fs }}$	Defaut parameers for release	${ }^{20}$	so	72	7	${ }_{8246679}$	455993	-122719
${ }_{\substack{26.3885}}^{2685}$		${ }_{p .1}^{p .1}$		${ }_{0}^{0.02}$			Deferaut pramelers for reease	${ }_{40}^{20}$	50 5	${ }_{72}$	${ }_{40}$	${ }_{8246779}^{47100}$	${ }_{4}^{455993}$	$\begin{array}{r}\text { - } 1227179 \\ \hline 127891 \\ \hline\end{array}$
${ }^{2620293}$	Lamruntk	$\mathrm{p} \cdot 1$	laminant runte	0.018	0.0082	0.0082 RP.FS	Defaut parametes for release	20	50	72	7	824667	45.568	-122733
${ }^{26001100}$	flares	${ }^{p} 1$	Digestrerasfla	0.016	0.000201	0.0002211 PP.CS	Defaut parameers for release	40	5	72	${ }^{40}$	47100	45.5965	1222.7176
${ }^{26262050}$	EU1	P. 1	Boler 2	0.016	0.00045	0.000475 stk.15	Bolerer - EU1 1 1exhaus ductisn	214	12	385	${ }^{22}$	149288.45	45.4991	- 12226838
${ }^{26681815}$		${ }_{\text {P. }}^{\text {P. }}$	${ }_{\text {L }}$ Leminate Sealant	0		${ }_{\text {Repes }}^{\text {RP. } 6 \text { cs }}$	Deauat parameters sor reaese	40 40	5	${ }_{72}$	${ }_{40}^{40}$	${ }_{4}^{47100}$	${ }_{4}^{455993} 4$	- 1222719
26.2023	Stat runtik	p. 1	Sealant runtan	0.015	0.0099	$0.009918 \mathrm{RP}+5$	Defautt parameers for reeese	20	50	72	7	8246679	45568	-122733
		${ }^{p} \cdot 1$	Concere Bath Pa	${ }_{0}^{120414}$	${ }_{0}^{0.56792}$	${ }^{0.1673364}$ (R.02 PR.CS5		${ }_{60}^{60}$	${ }_{8}^{8}$	300 300	${ }_{37}^{37}$	111600 111600	${ }_{4}^{45.5375}$	-122889 .1228245
26.0100	GENS	${ }^{\mathrm{p} \cdot 1}$	GENS	0.012	0.00015	$0^{0.00015}$ RP.CSE	Defautit parameers or or ceease	60	8	${ }_{300}$	${ }^{37}$	111600	45.5965	${ }^{-122.7176}$
26.3002	No combustio	P.1	OTHER Bollersar	0.012	0.00125	0.00125 RP.CSE	Defaut parametess for relea	60		300	${ }^{37}$	111600	45.5775	.122.752
${ }_{\substack{262028 \\ 34.292}}^{262}$	${ }_{\substack{30-2 \\ \text { GENA }}}$	${ }_{\rho \cdot 1}^{p .1}$		${ }_{0}^{0.01}$	${ }^{0.000725}$		Defiuut pramelers for reease	${ }_{60}^{40}$	${ }_{8}^{5}$	72 300	${ }_{37}^{40}$	47100 11160	455354	$\begin{array}{r}\text { - } 122783 \\ .122927 \\ \hline\end{array}$
${ }^{3428284}$	Enceso	${ }^{\mathrm{P} \cdot 1}$	Engene buiomg	0.00935	0.00053	0.000534 Rp-65t	Defaut prameters for release	60	8	${ }^{300}$	${ }^{37}$	111600	45.5021	
${ }^{34.0222}$	Encs	${ }^{P \cdot 1}$	Encs	0.009	0.02		Defaut pramemeers for release	${ }_{60}^{60}$	8	300	${ }^{37}$	111650	45.5571	
${ }^{34.5097}$	${ }^{662}$	${ }^{\text {P.2 }}$	Emergencr gen:	${ }^{0.00889}$		R.asf	Defaut parameters sor release	${ }^{6}$	${ }^{8}$	${ }^{300}$	${ }^{37}$	${ }_{111650}$	455572	
${ }_{2}^{26252033}$	${ }_{\text {Stala }}$	${ }_{\text {P. }}^{\text {P. }}$		${ }_{0}^{0.000873}$	${ }^{0.00401}$		Boilef - . - 3 ,	${ }_{20}^{31}$	3,	${ }_{3} 37$	${ }_{7}^{34}$	${ }_{8246679}^{1967.1}$	${ }_{4}^{454991}$	${ }^{1222683}{ }^{-12773}$
${ }^{34.5957}$	fwp	P.2	fre water pump	0.00566		Rp. 6 SF	Defaut parameers for release	60	8	300	${ }^{37}$	111600	455572	.1229262
${ }^{2626250} 5$	${ }_{\text {ENG4 }}^{\text {ENS }}$	${ }_{\text {P. }}^{\text {P. }}$		${ }^{0.000989}$	0.334		Boile 5. Ev2	31.3 60	${ }_{8}^{5}$	¢	${ }_{37}^{20}$	1.94	${ }_{\text {4, }}^{4.5991}$	
${ }^{34.9507}$	E61	P.2	Emergencr gen	0.00089		${ }_{\text {RP- } 5 \text { S }}$	Defaut prameneers for retexse	60	8	${ }_{300}$	${ }_{37}$	111500	455572	${ }_{\text {- } 12293962}$
34.0080	Gen		Genearoor	O38884	0.00129996	0.002595	default	60	8	300	37	111600	455413	-1229374
${ }_{2}^{26,20088}$	${ }_{\text {lue }}^{30.2}$	${ }_{\text {P. }}^{\text {P. }}$.	${ }_{\text {Pcs }}^{\text {pcs }}$	${ }_{0}^{0.00339}$	${ }_{0}^{0.02}$	${ }_{0}^{0.022}$ Repres	Defaut prameter for release	${ }_{40}^{40}$	5	${ }_{72}^{72}$	40	${ }_{4}^{47100}$	${ }_{4}^{4553374}$	122783 -122703
22625050	Ev2	${ }^{\mathrm{P} \cdot 2}$	Bolers	0.0023	0.0013	0.000984 STK-2	Bolier 5-EU2	31.3	5	539	20	2356194	45.491	. 122.683
${ }^{26-2088}$		${ }_{\text {P. }}^{\text {P. }}$	MEIT	0.00274	${ }^{0.00071}$	${ }^{0.00071 ~ s T k T-1}$	Mu-1 Melt AF Stack	60	7	80	${ }^{32}$	13880.24	${ }^{455373}$	${ }^{12227029}$
${ }^{36010100}$	GEENS	${ }_{P .2}^{\text {P. }}$	${ }_{\text {GEENS }}$	${ }_{0}^{0.00023}$			Defeaut prameneers sor reease	${ }_{60}^{60}$	8	300 300	37 37	${ }_{\substack{11650 \\ 11500}}$	${ }_{4}^{45.5971}$	
26.2043	stal Tk	${ }^{p} .1$	sfalant tank	50082	0.0032	0.0032 RP.FS	Defaut prameters for celease	20	50	7	7	8246679	45.568	-122733
${ }^{26,29388}$	${ }_{\text {Resto }}^{\text {Resco }}$	${ }_{\text {P.1 }}^{\text {P.1 }}$	$\underbrace{}_{\substack{\text { Rro natural } \\ \text { Refiser }}}$	(0.0000963				${ }_{60} 6$	${ }_{5}^{8}$	300	${ }_{40}^{37}$	$\xrightarrow{111600}$	${ }_{4}^{455888}$	-1226638 .1226938
${ }_{\substack{263021 \\ 26.1814}}^{2620}$	${ }_{\text {PESCO }}$	${ }_{p-2}^{p .1}$	${ }_{\text {Remer }}^{\text {Reliner }}$		0		Deaurt prammeters for reease	${ }_{60}^{40}$	${ }_{8}^{5}$	${ }_{300}$	${ }_{37}^{40}$	${ }_{111600}^{4700}$	${ }_{4558973}^{45}$	${ }^{-12269789}$
${ }^{2661844}$	${ }_{\text {A }}$	${ }^{\mathrm{p} \cdot 1}$	Asphat Pouring	0		Rp.fs	Defeaut prameters for release	20	5	72	7	824667.9	45.5911	
26.2025	Bol/fukn	${ }^{\text {P. }}$.	Bolers and furmact			${ }_{\text {Rp. }}$.65	Default parameers for celease	60	8	300	37	111600	45.5607	${ }^{12273739}$

Appendix D-Attachments Pg 77

- 50 km Receptor Arc50 km Buffer Around Intel
CALPUFF Domain
Mandatory Class 1 Federal Areas
Agency

\square	BIA
\square	FS
\square	FWS
\square	NPS
\square	CRGNSA
0	Intel

Attachment D

Regional Soils and Vegetation Data

CDL2022 CDL, Washington County, Oregon

Land Cover Categories (by decreasing acreage) AGRICULTURE*Grass/PastureSod/Grass SeedClover/WildflowersOther Tree Crops
Winter WheatOther Hay/Non AlfalfaCornBlueberriesSpring WheatOats
GrapesHopsDry BeansFallow/Idle CroplandAlfalfa
\square Barle
NON-AGRICULTURE**Evergreen Forest
Mixed Forest
Developed/Low Intensity
Developed/Medium Intensity
Shrubland
Developed/Open Space

Washington County Commercial Crop Data			
Value	Category	Count	Acreage
1	Corn	49554	11020.5
4	Sorghum	297	66.1
6	Sunflowers	10	2.2
12	Sweet Corn	4528	1007
14	Mint	1801	400.5
21	Barley	2134	474.6
23	Spring Wheat	19457	4327.1
24	Winter Wheat	60858	13534.5
27	Rye	14	3.1
28	Oats	5501	1223.4
31	Canola	102	22.7
34	Rape Seed	98	21.8
35	Mustard	5	1.1
36	Alfalfa	6575	1462.2
37	Other Hay/Non Alfalfa	70294	15633
39	Buckwheat	26	5.8
41	Sugarbeets	1603	356.5
42	Dry Beans	11027	2452.3
43	Potatoes	2308	513.3
44	Other Crops	3300	733.9
47	Misc Vegs \& Fruits	103	22.9
49	Onions	605	134.5
50	Cucumbers	274	60.9
53	Peas	1521	338.3
55	Caneberries	2721	605.1
56	Hops	29541	6569.8
57	Herbs	833	185.3
58	Clover/Wildflowers	77847	17312.8
59	Sod/Grass Seed	512642	114008.8
61	Fallow/Idle Cropland	6398	1422.9
66	Cherries	3104	690.3
67	Peaches	115	25.6
68	Apples	80	17.8
69	Grapes	10894	2422.8
70	Christmas Trees	8359	1859
71	Other Tree Crops	248848	55342.5
76	Walnuts	1603	356.5
77	Pears	129	28.7
111	Open Water	234665	52188.2
121	Developed/Open Space	592579	131786.4
122	Developed/Low Intensity	730090	162368.1
123	Developed/Medium Intensity	607654	135139
124	Developed/High Intensity	242747	53985.6
131	Barren	6411	1425.8
141	Deciduous Forest	142064	31594.3

Evergreen Forest	3013886	670272.1
Mixed Forest	850605	189170
Shrubland	445984	99184.5
Grass/Pasture	1562063	347394.4
Woody Wetlands	165824	36878.4
Herbaceous Wetlands	169802	37763.1
Triticale	724	161
Carrots	5	1.1
Garlic	1167	259.5
Broccoli	829	184.4
Greens	931	207
Plums	188	41.8
Strawberries	1990	442.6
Squash	5533	1230.5
Vetch	1388	308.7
Lettuce	5	1.1
Dbl Crop Triticale/Corn	49	10.9
Pumpkins	1272	282.9
Blueberries	18108	4027.1
Cabbage	413	91.8
Cauliflower	3023	672.3
Radishes	4098	911.4
Turnips	903	200.8
Cranberries	1	0.2

CDL2022 CDL, Multnomah County, Oregon
Land Cover Categories
(by decreasing acreage)
AGRICULTURE*
\square Grass/Pasture
\square Sod/Grass Seed
\square Corn
\square Other Tree Crops
\square Other Hay/Non Alfalfa
\square Clover/Wildflowers
\square Winter Wheat
\square Potatoes
\square Spring Wheat
\square Fallow/Idle Cropland
\square Sweet Corn
\square Squash
\square Dry Beans
\square Alfalfa
\square Hops
\square Oats
NON-AGRICULTURE**
\square Evergreen Forest
\square Developed/Medium Intensity
\square Developed/Low Intensity
\square Iatered/High Intensity
\square

[^7]| Multnomah County Commercial Crop Data | | | |
| :---: | :---: | :---: | :---: |
| Value | Category | Count | Acreage |
| 1 | Corn | 9875 | 2196.1 |
| 4 | Sorghum | 16 | 3.6 |
| 12 | Sweet Corn | 781 | 173.7 |
| 14 | Mint | 131 | 29.1 |
| 21 | Barley | 83 | 18.5 |
| 23 | Spring Wheat | 1157 | 257.3 |
| 24 | Winter Wheat | 1641 | 364.9 |
| 28 | Oats | 242 | 53.8 |
| 34 | Rape Seed | 5 | 1.1 |
| 36 | Alfalfa | 446 | 99.2 |
| 37 | Other Hay/Non Alfalfa | 2034 | 452.4 |
| 39 | Buckwheat | 4 | 0.9 |
| 41 | Sugarbeets | 90 | 20 |
| 42 | Dry Beans | 674 | 149.9 |
| 43 | Potatoes | 1299 | 288.9 |
| 44 | Other Crops | 224 | 49.8 |
| 47 | Misc Vegs \& Fruits | 5 | 1.1 |
| 49 | Onions | 2 | 0.4 |
| 50 | Cucumbers | 94 | 20.9 |
| 53 | Peas | 159 | 35.4 |
| 56 | Hops | 374 | 83.2 |
| 57 | Herbs | 104 | 23.1 |
| 58 | Clover/Wildflowers | 2001 | 445 |
| 59 | Sod/Grass Seed | 13369 | 2973.2 |
| 61 | Fallow/Idle Cropland | 943 | 209.7 |
| 66 | Cherries | 79 | 17.6 |
| 67 | Peaches | 10 | 2.2 |
| 68 | Apples | 2 | 0.4 |
| 69 | Grapes | 196 | 43.6 |
| 70 | Christmas Trees | 57 | 12.7 |
| 71 | Other Tree Crops | 4376 | 973.2 |
| 76 | Walnuts | 15 | 3.3 |
| 77 | Pears | 14 | 3.1 |
| 111 | Open Water | 87600 | 19481.8 |
| 121 | Developed/Open Space | 57737 | 12840.4 |
| 122 | Developed/Low Intensity | 125231 | 27850.7 |
| 123 | Developed/Medium Intensity | 175992 | 39139.7 |
| 124 | Developed/High Intensity | 94747 | 21071.2 |
| 131 | Barren | 940 | 209.1 |
| 141 | Deciduous Forest | 13630 | 3031.2 |
| 142 | Evergreen Forest | 459848 | 102267.7 |
| 143 | Mixed Forest | 89109 | 19817.4 |
| 152 | Shrubland | 28677 | 6377.6 |
| 176 | Grass/Pasture | 113900 | 25330.8 |
| 190 | Woody Wetlands | 18360 | 4083.2 |
| 195 | Herbaceous Wetlands | 31615 | 7031 |
| 205 | Triticale | 7 | 1.6 |
| 206 | Carrots | 5 | 1.1 |
| 208 | Garlic | 22 | 4.9 |
| 214 | Broccoli | 80 | 17.8 |
| 219 | Greens | 15 | 3.3 |
| 220 | Plums | 1 | 0.2 |
| 221 | Strawberries | 148 | 32.9 |
| 222 | Squash | 711 | 158.1 |
| 224 | Vetch | 60 | 13.3 |
| 228 | Dbl Crop Triticale/Corn | 3 | 0.7 |

229	Pumpkins	101	22.5
242	Blueberries	149	33.1
243	Cabbage	105	23.4
244	Cauliflower	122	27.1
246	Radishes	151	33.6
247	Turnips	71	15.8

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
模 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
2 Landfill
A Lava Flow
Marsh or swamp
令 Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
S Severely Eroded Spot
- Sinkhole

2) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Washington County, Oregon Survey Area Data: Version 22, Sep 14, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 16, 2021—Apr 18, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Aloha silt loam	1,353.7	19.0\%
2	Amity silt loam	937.6	13.2\%
13	Cove silty clay loam	61.9	0.9\%
14	Cove clay	16.5	0.2\%
15	Dayton silt loam	540.3	7.6\%
19B	Helvetia silt loam, 2 to 7 percent slopes	47.1	0.7\%
19D	Helvetia silt loam, 12 to 20 percent slopes	2.5	0.0\%
30	McBee silty clay loam	21.4	0.3\%
37A	Quatama loam, 0 to 3 percent slopes	126.4	1.8\%
37B	Quatama loam, 3 to 7 percent slopes	232.7	3.3\%
37C	Quatama loam, 7 to 12 percent slopes	38.6	0.5\%
37D	Quatama loam, 12 to 20 percent slopes	6.4	0.1\%
41	Urban land	325.1	4.6\%
43	Wapato silty clay loam	96.9	1.4\%
44A	Willamette silt loam, 0 to 3 percent slopes	626.2	8.8\%
44B	Willamette silt loam, 3 to 7 percent slopes	63.3	0.9\%
45A	Woodburn silt loam, 0 to 3 percent slopes	1,012.5	14.2\%
45B	Woodburn silt loam, 3 to 7 percent slopes	821.0	11.5\%
45C	Woodburn silt loam, 7 to 12 percent slopes	34.2	0.5\%
45D	Woodburn silt loam, 12 to 20 percent slopes	15.4	0.2\%
46F	Xerochrepts and Haploxerolls, very steep	10.7	0.2\%
2027A	Verboort silty clay loam, 0 to 3 percent slopes	466.8	6.6\%
2225A	Huberly silt loam, 0 to 3 percent slopes	254.5	3.6\%
Totals for Area of Interest		7,113.0	100.0\%

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
復 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
2 Landfill
A. Lava Flow

Marsh or swamp
令 Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
Severely Eroded Spot
- Sinkhole

2) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Washington County, Oregon Survey Area Data: Version 22, Sep 14, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial image were photographed: Apr 16, 2021—Apr 18, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Aloha silt loam	831.1	27.9\%
2	Amity silt loam	44.0	1.5\%
15	Dayton silt loam	51.7	1.7\%
37A	Quatama loam, 0 to 3 percent slopes	0.0	0.0\%
37B	Quatama loam, 3 to 7 percent slopes	69.0	2.3\%
37C	Quatama loam, 7 to 12 percent slopes	93.5	3.1\%
37D	Quatama loam, 12 to 20 percent slopes	30.0	1.0\%
43	Wapato silty clay loam	60.6	2.0\%
44A	Willamette silt loam, 0 to 3 percent slopes	277.1	9.3\%
45A	Woodburn silt loam, 0 to 3 percent slopes	591.8	19.9\%
45B	Woodburn silt loam, 3 to 7 percent slopes	483.0	16.2\%
45C	Woodburn silt loam, 7 to 12 percent slopes	2.2	0.1\%
45D	Woodburn silt loam, 12 to 20 percent slopes	11.7	0.4\%
2027A	Verboort silty clay loam, 0 to 3 percent slopes	396.9	13.3\%
2225A	Huberly silt loam, 0 to 3 percent slopes	31.4	1.1\%
Totals for Area of Interest		2,974.0	100.0\%

[^0]: ${ }^{1}$ See Oregon DEQ, "Short-Term NAAQS Compliance Internal Management Directive" signed September 1, 2021 and Oregon DEQ, "Recommended Procedures for Air Quality Dispersion Modeling ", March 2022.

[^1]: ${ }^{2}$ EPA Memorandum, "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2}, National Ambient Air Quality Standard", March 1, 2011.
 ${ }^{3}$ Ibid

[^2]: ${ }^{1}$ See Oregon DEQ, "Short-Term NAAQS Compliance Internal Management Directive" signed September 1, 2021 and Oregon DEQ, "Recommended Procedures for Air Quality Dispersion Modeling", March 2022.

[^3]: ${ }^{2}$ EPA Memorandum, "Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO_{2}, National Ambient Air Quality Standard", March 1, 2011.

[^4]: ${ }^{3}$ ibid

[^5]: ${ }^{4}$ North Carolina Department of Environment and Natural Resources - Air Permit Unit, 1985: A Screening Method for PSD, July 22, 1985. Memo from Eldewins Haynes to Lewis Nagler, EPA Region IV. This method was originally approved by EPA Region IV in a September 5, 1985 letter from Bruce Miller to Eldewins Haynes.

[^6]: affected pollutant. [See draft PM2.5 guidance (EPA-454/D-13-001; 180pp.)]
 Form of the standard assumes 5 years of meteorological data. If using site specific meteorological data, the form of the standard would be based on at least one year (up to 5 years) of site specific data.

[^7]: Appendix D-Attachments Pg 83

