

Data Gap Investigation Report Former Weyerhaeuser Mill Site Oregon Department of Environmental Quality ECSI #1083 Coos County, Oregon

1	7/30/	2018		Reissued for Use	e	M. Marshall	G. Freitag	S. Schlechter			
0A	05/2	5/18		Issued for Review	N	M. Marshall	G. Freitag	S. Schlechter			
0	04/2	6/18		Issued for Use		M. Marshall G. Freitag S. Schlechter					
Α	03/2	3/18		Issued for Review	W	M. Marshall	G. Freitag	S. Schlechter			
REV	DA	ATE		DESCRIPTION		BY CHKD APPVD					
IP SECUI	RITY	□с	onfident	ial		Total amou	ınt of pages inclu	ıding coversheet:	348		
FOR			Contra	act No.		Contractor	Document No.		Contractor Rev.		
DOCUME			GRI	-020		5764	SO 1195		FOR USE		
JCL		Pro	j. Code	Unit / Location	Discipline	Doc. Type	Orig. Code	Sequence No.	Sheet No.		
NUME			J1	680	RGL	RPT	GRI	00001	00		

Form No.: J1-000-ITM-FRM-JCL-00028-00

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Revision Modification Log

Document Title :	Rev.:	
Document No. :	Rev. Date :	

Page		
Page No.	Section	Change Description
L		

Form No.: J1-000-ITM-FRM-JCL-00028-00 Page **2** of **352**

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Data Gap Investigation Report

Former Weyerhaeuser Mill Site

Oregon Department of Environmental Quality ECSI #1083

Coos County, Oregon

Prepared by

Oregon & Washington

July 30, 2018

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

DATA GAP INVESTIGATION EXECUTIVE SUMMARY

The former mill site was originally developed for a neutral-sulfite, semi-chemical process mill by the Menasha Wooden Ware Corporation in 1961. The mill consisted of main mill/paper machine building, shipping warehouse, maintenance/operations buildings, office space, repair shops, and storage. Weyerhaeuser purchased the mill in 1981 and operated at the site until approximately 2003. Multiple environmental investigations have been completed at the site to identify and characterize soil and groundwater conditions following the industrial use of the property (PES, 2006), which identified residual contamination that remains at the former Weyerhaeuser site. The Oregon Department of Environmental Quality (DEQ) approved leaving this contamination in place because it is not present at concentrations that pose an unacceptable risk to human health, safety, welfare, and the environment, and No Further Action (NFA) was appropriate. DEQ's approval to leave contamination on the site recommended the extent of residual concentrations from a hydraulic oil release in the vicinity of the south "lowerator" be determined by supplementary investigation.

A data gap evaluation, conducted by GRI in 2015, identified additional data needs after review of existing information and recommended additional investigation to evaluate data needs and obtain the data necessary to assess potential human health and ecological risk to potential site receptors (GRI, 2015).

GRI prepared a Data Gap Investigation Work Plan and Site-Specific Safety Plan (SSSP), which describes the objectives, methods, and overall approach to obtaining the soil and groundwater data. DEQ approved the work plan in a letter dated January 22, 2018. In addition to delineating the extent of the residual concentrations near the south "lowerator," the work plan identified other locations for soil and groundwater chemical data collection to evaluate additional data gaps identified at the site previously (GRI, 2015) and provide current chemical data for the low-level residual industrial chemicals in soil and groundwater compared to current DEQ Risk-Based Concentrations (RBCs) as a preliminary screening approach to identify potential human health risks (DEQ, 2018). Based on anticipated continued industrial use of the site, the applicable RBC exposure pathways includes soil ingestion, inhalation, and dermal contact under the occupational, construction, and excavation worker exposure scenarios and groundwater in excavation for construction and excavation workers.

The range of polynuclear aromatic hydrocarbons (PAHs), metals, and/or petroleum hydrocarbons concentrations detected during this investigation are generally within the range of concentrations detected by the previous environmental investigation completed at the site by others (PES, 2006) that were used as the basis for the NFA determination issued by DEQ in 2006. However, where comparative analysis exists, the concentrations of PAHs, metals, and/or petroleum hydrocarbons detected during this investigation are typically detected at concentrations less than those detected in 2006. The 2006 investigation compared analytical results to a combination of regulatory levels that included DEQ RBCs published in 2003 and EPA Region 9 Preliminary Remediation Goals, dated October 2004. This report compares analytical results to the current RBCs published by DEQ in 2018.

Current chemical concentrations from soil and groundwater testing compared to generic RBCs indicate subsurface soils in the Fuel-Oil Release Area (FO), Chip Truck Hydraulic Lift Area (CT), Stream Channel Area (SC), North and South "Lowerators" Area (NL/SL), Former Mobile/Paint/Fuel Shops Area (SH), Mobile Shop Area (MO), South Jordan Point Debris Area (JP), Boiler and Powerhouse Area (BP), Debarker Area (DB), and fire suppression building areas of the site contain PAHs, metals, and/or

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

petroleum hydrocarbons at concentrations greater than the applicable RBCs considered. The SC, SH, MO, and JP areas of the site contain arsenic and/or chromium concentrations that exceed applicable RBCs but are below the natural background concentrations for the Coast Range (DEQ, 2018). In our opinion, the elevated metal concentrations likely represent natural background concentrations and are not indicative of anthropogenic sources. Concentrations detected in groundwater samples are below the applicable RBCs considered.

Based on comparison of the analytical results from the Data Gap Investigation to current generic RBCs developed by DEQ (2018) the following areas evaluated in this investigation have concentrations of PAHs, metals, and/or petroleum hydrocarbons that exceed RBCs for soil and we recommend mitigation in these areas if land use activities at the site change:

- Fuel Oil Release Area (FO) Naphthalene (46.8 mg/kg) exceeds the occupational RBC (23 mg/kg)
- Chip Truck Hydraulic Lift Area (CT) Oil (6,190 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
- "Lowerators" Area (NL/SL) Oil (61,500 mg/kg) exceeds occupational and construction worker RBCs of 4,600 and 14,000 mg/kg, respectively
- **■** Boiler and Powerhouse Area (BP):

Benzo(a)pyrene (2.27 mg/kg) exceeds occupational RBCs (2.1 mg/kg)

Naphthalene (92 mg/kg) exceeds the occupational RBCs (23 mg/kg)

Diesel (27,660 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)

Oil (14,000 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)

- Debarker Area (DB) Oil (6,130 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
- Fire-Suppression Diesel AST Area Chromium (743 mg/kg) exceeds the construction worker RBC (49 mg/kg) and the default natural background concentration (240 mg/kg) for the Coast Range (DEQ, 2018)

Consistent with the recommendation of the NFA determination, the recent data collected for this investigation should be used to evaluate if subsequent remedial mitigation efforts are necessary to reduce the concentration of contaminants in soil. If land use activities at the site change, we recommend that remedial mitigation efforts be considered to:

- Mitigate future potential risk to human health, safety, welfare, and the environment by lowering the residual concentrations or eliminating exposure; and
- Satisfy the requirements and recommendations of the NFA determination.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

TABLE OF CONTENTS

DATA GAP INVESTIGATION EXECUTIVE SUMMARY	4
INTRODUCTION	
BACKGROUND	
METHODS	11
FIELD EXPLORATION ACTIVITIES	11
RESULTS	14
1: FUEL-OIL RELEASE AREA (FO)	
Data Gap Investigation Results Soil Analytical Results Groundwater Analytical Results Fuel-Oil Release Area Investigation Findings	
2: MINERAL SPIRITS RELEASE AREA (MS)	
Data Gap Investigation Results	18 19
3: TRUCK SCALES AND CARPENTER SHOP (TS/CS)	19
Data Gap Investigation Results Soil Analytical Results Groundwater Analytical Results Truck Scales Carpenter Shop Investigation Findings	20 20
4: CHIP TRUCK HYDRAULIC LIFT AREA (CT)	
Data Gap Investigation Results	22 22
5: HOG FUEL HYDRAULIC LIFT AREA (HF)	23
Data Gap Investigation Results	24 24
6: STREAM CHANNEL AREA (SC)	24
Data Gap Investigation Results	25
7: NORTH AND SOUTH "LOWERATORS" AREA (NL/SL)	26
Data Gap Investigation Results	26

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Soil Analytical Results	
GROUNDWATER ANALYTICAL RESULTS	
North and South Lowerators Area Investigation Findings	
8: FORMER MOBILE/PAINT/FUEL SHOPS AREA (SH)	28
Data Gap Investigation Results	
Soil Analytical Results	
GROUNDWATER ANALYTICAL RESULTS	
Former Shops Area Investigation Findings	
9: MOBILE SHOP AREA (MO)	30
Data Gap Investigation Results	
SOIL ANALYTICAL RESULTS	
GROUNDWATER ANALYTICAL RESULTS	
Mobile Shop Area Investigation Findings	
10: SOUTH JORDAN POINT DEBRIS AREA (JP)	32
Data Gap Investigation Results	
Soil Analytical Results	
GROUNDWATER ANALYTICAL RESULTS	
Jordan Point Area Investigation Findings	
11: BOILER AND POWERHOUSE AREA (BP)	35
Data Gap Investigation Results	
Soil Analytical Results	
GROUNDWATER ANALYTICAL RESULTS	
Boiler and Powerhouse Area Investigation Findings	
12: DEBARKER AREA (DB)	39
Data Gap Investigation Results	39
Soil Analytical Results	
GROUNDWATER ANALYTICAL RESULTS	
Debarker Area Investigation Findings	
13: FIRE-SUPPRESSION DIESEL AST AREA (FS)	42
Data Gap Investigation Results	42
Soil Analytical Results	
Fire-Suppression Building Investigation Findings	43
FINDINGS AND CONCLUSIONS	43
REMEDIAL MITIGATION	48
LIMITATIONS	49
SIGNATURES	50

Rev.: 1 Rev. Date: 7-30-2018

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure 1: Vicinity Map

Figure 2: Exploration Locations

Figure 3: Exploration Locations (Fuel Oil Release Area)

Figure 4: Exploration Locations (Mineral Spirits and Lowerators)
Figure 5: Exploration Locations (Truck Scales and Carpenter Shop)
Figure 6: Exploration Locations (Chip Truck Lift and Hog Fuel Lift)
Figure 7: Exploration Locations (Jordan Point and Stream Channel Area)

Figure 8: Exploration Locations (Former Shops and Debarker)
Figure 9: Exploration Locations (Mobile Shops and Jordan Point)

Figure 10: Exploration Locations (Boiler and Powerhouse)

Figure 11: RBC Exceedance in Soil North Area Figure 12: RBC Exceedance in Soil South Area

APPENDICES

Appendix A: Boring Logs

Appendix B: Analytical Laboratory Reports

Rev.: 1 Rev. Date: 7-30-2018

INTRODUCTION

This Data Gap Investigation Report was prepared on behalf of Fort Chicago Holdings II, LLC, (Fort Chicago Holdings) for the former Weyerhaeuser (Weyerhaeuser) containerboard mill (site) located on the North Spit of Coos Bay, Oregon. The general location of the site is shown on Figure 1, the Vicinity Map. Multiple environmental investigations have been completed at the site to identify and characterize soil and groundwater conditions following the industrial use of the property (PES, 2006). These investigations identified residual contamination that remains at the former Weyerhaeuser site. The Oregon Department of Environmental Quality (DEQ) approved leaving this contamination in place because it is not present at concentrations that pose an unacceptable risk to human health, safety, welfare and the environment and No Further Action (NFA) was appropriate. DEQ's approval to leave contamination on the site recommended that the extent of residual concentrations from a hydraulic oil release in the vicinity of the south "lowerator" be determined by supplementary investigation. We understand Weyerhaeuser abandoned the monitoring wells associated with the hazardous-substance investigation and removal actions also recommended in the NFA determination issued by the DEQ in 2006.

Fort Chicago Holdings elected to conduct the supplementary investigation recommended by DEQ in the 2006 NFA and requested GRI prepare a Data Gap Investigation Work Plan and Site Specific Safety Plan (SSSP). The Data Gap Investigation Work Plan describes the objectives, methods, and overall approach to obtaining the soil and groundwater data and was provided to the site owner and DEQ for review and comment. DEQ approved the work plan in a letter dated January 22, 2018. In addition to delineating the extent of the residual concentrations near the south "lowerator", the work plan identified other locations for soil and groundwater chemical data collection to evaluate additional data gaps identified at the site previously (GRI, 2015) and provide current chemical data for the low level residual industrial chemicals in soil and groundwater. Our work included 1) review of DEQ files associated with Environmental Cleanup Site Information (ECSI) #1083, 2) collection of three shallow soil samples and completion of 104 exploratory borings to collect soil and groundwater samples, 3) chemical evaluation of the samples aimed to address data gaps, and 4) generation of this report.

The sample locations and chemical evaluation described in this report were designed to help identify the lateral and vertical extents of the low levels of residual contamination allowed to remain at the Main Mill Complex of the site as described in the NFA determination by DEQ and generate up-to-date chemical data. The concentrations of detected contaminants are compared to current DEQ Risk-Based Concentrations (RBCs) as a preliminary screening approach to identify potential human health risks (DEQ 2018). Considering the current industrial zoning for the site, reasonably anticipated future land use includes commercial or industrial operations. Based on anticipated continued use for industrial activities at the site, the applicable RBC exposure pathway includes soil ingestion, inhalation, and dermal contact under the occupational, construction, and excavation worker exposure scenarios. For groundwater, the applicable RBC exposure pathway includes groundwater in excavation for construction and excavation workers, since a public supply for water is readily available and groundwater is not likely to be used for potable water supply. No RBC values have been established specifically for hydraulic oil; however, detected oil concentrations in soil and groundwater have been compared to applicable RBCs for diesel. In addition, the concentrations of total metals detected are compared to DEQ natural background concentrations for metals (DEQ, 2018).

BACKGROUND

The former mill site was originally developed for a neutral-sulfite, semi-chemical process mill by the Menasha Wooden Ware Corporation in 1961. The mill consisted of main mill / paper machine building,

Rev.: 1 Rev. Date: 7-30-2018

shipping warehouse, maintenance / operations buildings, office space, repair shops, and storage. Weyerhaeuser purchased the mill in 1981 and operated at the site until approximately 2003.

The site is listed in the DEQ ECSI regulatory database (ECSI #1083). In April 1996, DEQ identified several areas of concern at the site. In 2006, PES Environmental, Inc. (PES), identified 13 areas of concern at the site where soil and groundwater contamination was suspected based on review of data from past environmental assessment work, observations of site conditions at the time, Weyerhaeuser knowledge of past practices, a 1996 DEQ Strategy Recommendation Memorandum, and findings of a Phase I Environmental Site Assessment completed by Delta Environmental Consultants (Delta) in 2004 (PES, 2006).

A data gap evaluation, conducted by GRI in 2015, identified additional data needs after review of existing information. Additional details on the evaluation and identification of data gaps can be found in the September 28, 2015, report by GRI titled "Data Gap Evaluation and Work Plan, South Dunes Site Oregon Department of Environmental Quality ECSI #1083, Coos County, Oregon." Additional investigation was recommended to evaluate data needs and obtain the data necessary to assess potential human health and ecological risk to potential site receptors.

METHODS

This section describes the methods used for the completion of field activities. The methods were developed to supplement previously available investigation data and identify current soil and groundwater environmental conditions. Data gap investigation activities included the collection of soil and groundwater samples and chemical analysis described in greater detail below.

Field Exploration Activities

Subsurface explorations were completed at the site between January 29 and February 14, 2018. Field activities complied with applicable Occupational Safety and Health Administration (OSHA) regulations for geo-environmental drilling. The GRI field supervisor served as the Site Health and Safety Officer and led the daily tailgate safety meetings. A general summary of field activities is provided below.

- Site Access GRI personnel and subcontractors accessed the locations of the subsurface explorations within the project site from the locked gate at the north end of the site. Access to the locations was coordinated with the property owner. No significant site clearing was conducted during field activities at the exploration locations. Minor areas of soil were disturbed for borings located at Jordan Point from the turning action of the drill rig.
- Exploration Layout and Utility Locates The subsurface exploration locations were located and marked with white marking paint or survey stakes with white flagging by GRI personnel on January 16 and 17, 2018. Each exploration location was evaluated for potential conflicting utilities by both One-Call Utility Notification Service and a private utility locating service.
- Subsurface Explorations The subsurface exploration program included 104 direct-push borings drilled from a track-mounted drill rig. Boring locations are

Rev.: 1 Rev. Date: 7-30-2018

presented on Figures 2 through 10. Each boring was advanced to depths ranging from 4 to 45 ft, with the majority of borings advanced to a depth of 15 ft. Borings were advanced in areas of known or suspected contamination to further evaluate and constrain identified data gaps. Due to the exploratory nature of the investigation, the location of borings presented on Figures 2 through 10 are different than those proposed in the Data Gap Investigation Work Plan (GRI, 2018).

Subsurface explorations were backfilled with bentonite and abandoned in accordance with Oregon Water Resources Department regulations. The drilling and sampling was accomplished under the direction of an experienced certified engineering geologist from GRI, who located the general areas of the subsurface explorations and maintained a log of the materials and conditions encountered during the course of the work. Boring logs are included in Appendix A. The explorations were completed by Stratus Corporation, Inc., of Gaston, Oregon. Borings were located using a recreational-grade GPS unit with a horizontal accuracy of about 15 ft.

■ Soil Sampling - Soil samples were obtained from the borings by advancing a continuous sampler in 5-ft intervals and then removing the sample core from the borehole before advancing the next 5-ft interval. The core was contained in a clear acetate sleeve inside the sample barrel. The soil core sleeves were extracted from the core barrel and opened in the field to allow visual classification of soils and qualitative observation of indications of contamination (sheen, odor, discoloration). Field screening results are used as a general guideline to assess areas of possible contamination. The field screening methods used included visual screening and organic vapor screening using a calibrated Photo lonization Detector (PID).

The effectiveness of field screening varies with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen, odor, discoloration, or volatile organic compound (VOC) vapors does not necessarily indicate the presence or absence of significant contamination. Visual screening consists of observing soil and groundwater for indications of contamination. Sheen observations involved placing a small amount of soil in water and observing the water surface for signs of sheen.

No Sheen: No visible sheen on the water surface.

Slight Sheen: Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.

Moderate Sheen: Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.

Rev.: 1 Rev. Date: 7-30-2018

Heavy Sheen: Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening evaluates the presence of VOC in the field. Headspace vapor screening involves placing a soil sample in a sealed container and measuring the vapors with PID to record the presence of organic vapors.

Soil samples for chemical analysis were selected based on results of the field screening and data needs to address potential data gaps. Sample designations in this report are codified by investigation area, followed by boring number, and the sample depth. For example, the sample designated FO-111-8 was collected from the fuel-oil release area (FO), from boring number 111, at a depth of 8 ft. Clean nitrile gloves and stainless-steel sampling tools were used for sample collection. The sampling tools were cleaned with a solution of Alconox detergent and water and then rinsed with distilled water between samples. Clean, laboratory-supplied glass sample containers were filled as full as possible and sealed with air-tight, Teflon-lined caps. Samples were stored in a cooler with ice for transport to the analytical laboratory.

- Groundwater Sampling Groundwater samples were collected from a temporary well point and brought to the ground surface by a peristaltic pump. Groundwater samples were designated with the area prefix (e.g. Fuel-oil release area samples are designated "FO"), the boring number (e.g. 111), and the letter "W." For example, groundwater sample FO-111-W was collected from boring FO-111 in the fuel-oil release area.
- Chemical Analysis Sample containers were labelled, recorded on a chain-of-custody form, placed in a cooler with ice, and later transported to ESC Lab Sciences in Mount Juliet, Tennessee, for chemical analysis. Chemical analysis included Northwest Method Total Petroleum Hydrocarbons (NWTPH) diesel (Dx) and gasoline (Gx) range organics, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270SIM, volatile organic compounds (VOCs) by EPA Method 8260, polychlorinated biphenyls PCBs) by EPA Method 8082, and Priority Pollutant Metals (metals) by EPA Method 3010B, 6020, 7470A, and 7471A. The analyses were completed within a standard turnaround time.
- Cuttings and Drilling Fluids Cuttings, decontamination fluids, and other investigation derived wastes (IDW) were produced while completing the borings. Cuttings and fluids obtained from the explorations and from equipment decontamination were contained in 55-gal. steel drums and temporarily stored on site. At the completion of the subsurface explorations, the drums were removed from the site and the IDW disposed (in accordance with appropriate regulations) at Hillsboro Landfill in May of 2018.

Rev.: 1 Rev. Date: 7-30-2018

RESULTS

A total of 13 areas are addressed in this report: 1) fuel-oil release area (FO), 2) mineral spirits release area (MS), 3) truck scales (TS) and carpenter shop (CS), 4) chip truck hydraulic lift area (CT), 5) hog fuel hydraulic lift area (HF), 6) stream channel area (SC), 7) north (NL) and south (SL) "lowerators," 8) former paint/mobile/fuel shops (SH), 9) mobile shop (MO), 10) South Jordan Point debris area (JP), 11) Boiler and Powerhouse (BP), 12) debarker area (DB), and 13) during the field activities, an above-ground storage tank (AST) cradle was identified adjacent to the fire suppression support building. The field team agreed with the property owner to collect a shallow soil sample just east of the fire support building below the footprint of the former AST.

During the course of the work, daily site-visit reports were provided to the property owner describing the work accomplished that day and presented an estimate of the field activities work planned for the following day. The site-visit reports served to inform the project team the daily findings and results of the investigation field work for discussion and planning.

1: FUEL-OIL RELEASE AREA (FO)

Background. A fuel line ruptured near the main mill entrance in 1989 and released an estimated 3,000 gal. of fuel oil. An initial cleanup action by Weyerhaeuser removed 110 cu yd of soil and 27,760 gal. of oily groundwater. In 1991 Weyerhaeuser removed an additional 950 cu yd of soil. Soil and groundwater was evaluated by four soil borings and two groundwater monitoring wells around the perimeter of the soil excavation in March 1992. Soil and groundwater from the borings did not contain detectable concentrations of TPH or benzene, toluene, ethylbenzene, and xylenes (BTEX). Analysis for TPH (diesel and oil) and PAHs was conducted on soil samples from six test pits, and soil and groundwater from one direct-push boring indicated that detectable concentrations of TPH were not encountered in soil or groundwater. Two PAH compounds were detected in groundwater at concentrations below applicable RBCs.

Data Gap Evaluation. However, the six test pits and one direct-push boring were completed outside of the former above-ground fuel oil storage tank area. Additionally, fuel oil is also referred to as cutter stock oil and reprocessed fuel oil, which is a combination of Bunker C residual and recycled used oil. Recycled used oil can contain VOCs and metals, which were not analyzed for during the investigation by PES (PES, 2006).

Data Gap Investigation Results

Ten borings were completed in the Fuel-Oil Release Area. Exploration data and field observations are summarized in the table below. Boring locations are shown on Figure 3.

FUEL-OIL RELEASE AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID, ppm	DTW, ft	TD, ft	Sheen	Odor	Date Completed	Longitude	Latitude
FO-	110	GW		2.8	15.0	No	No	1/30/2018	-124.23941	43.43640
FO-	111	GS	32.5	3.5	20.0	Slight	Slight	1/30/2018	-124.23937	43.43628

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Area Prefix	Exploration ID #	Sample collected	PID, ppm	DTW, ft	TD, ft	Sheen	Odor	Date Completed	Longitude	Latitude
FO-	112	SS		2.4	15.0	No	No	1/30/2018	-124.23953	43.43613
FO-	113	SS		3.5	15.0	No	No	1/30/2018	-124.23925	43.43634
FO-	114	SS		3.4	15.0	Slight	No	1/30/2018	-124.23926	43.43627
FO-	115	NS	8.1	3.1	20.0	Slight	Slight	1/30/2018	-124.23937	43.43625
FO-	116	SS	1.9	3.6	15.0	No	Moderate	1/31/2018	-124.23943	43.43630
FO-	11 <i>7</i>	SS	0.7	3.1	15.0	No	No	1/31/2018	-124.23920	43.43617
FO-	118	GS	0.0	2.4	15.0	No	No	1/31/2018	-124.23883	43.43611
FO-	203	SS	1.3	-	10.0	No	No	2/14/2018	-124.23934	43.43616

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring.

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

A slight sheen was observed in three borings at a depth of:

- 8 to 10 ft in boring FO-111
- 9.25 to 12.5 ft in boring FO-114
- 8.5 to 17.5 ft in FO-115

A light to moderate odor was observed in three borings at a depth of:

- 8 to 10 ft in boring FO-111
- isolated at 8.5 ft in boring FO-115
- isolated at 10 ft in boring FO-116

Soil Analytical Results

Based on field screening, six soil samples (FO-111-8, FO-113-8, FO-114-13, FO-116-14, FO-118-4, and FO-203-9) were analyzed from the fuel-oil release area. Laboratory results are summarized in Table 1 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the fuel-oil release area contains metals, VOCs, PAHs, diesel, oil, and gasoline.

Metals. Chemical analytical results indicate antimony, cadmium, selenium, silver, and thallium were not detected in soil sample FO-118-4. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs. Arsenic was detected in FO-118-4 at a concentration of

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

3.12 milligrams per kilogram (mg/kg), which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in FO-118-4 at concentrations of 7.5 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg. However, these concentrations are total chromium concentrations. Additionally, the detected chromium concentration in sample FO-118-4 is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

VOCs. A total of 12 VOC compounds were detected in soil samples. With the exception of naphthalene, chemical analytical results indicate VOCs were detected below applicable RBCs. Naphthalene was detected in soil sample FO-111-8 at a concentration of 46.8 mg/kg, which exceeds the occupational RBC of 23 mg/kg.

PAHs. PAHs were not detected in soil samples FO-116-14, FO-118-4, and FO-203-9. Chemical analytical results indicate a total of 17 PAH compounds were detected in soil samples from FO-111-8, FO-113-8, and FO-114-13 at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel (up to 375 mg/kg), oil (477 mg/kg), and gasoline (1.66 mg/kg) were detected in soil samples at concentrations below applicable RBCs.

Groundwater Analytical Results

Three groundwater samples (FO-110-W, FO-111-W, and FO-118-W) were analyzed from the fuel-oil release area. Laboratory results are summarized in Table 2 at the end of this report and in the analytical laboratory report included as Appendix B. VOCs were not detected in groundwater samples collected from the fuel-oil release area. Chemical testing indicates that groundwater in the fuel-oil release area contains metals, PAHs, and diesel.

Metals. Chemical analytical results indicate antimony, selenium, and silver were not detected in groundwater samples. Chemical analytical results indicate that other metals detected in groundwater are below applicable RBCs.

PAHs. Chemical analytical results indicate a total of five PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate oil and gasoline were not detected in the groundwater sample collected from the fuel-oil release area. Diesel was detected in the groundwater sample at a concentration of 0.0416 milligrams per liter (mg/L).

Rev.: 1 Rev. Date: 7-30-2018

Fuel-Oil Release Area Investigation Findings

The analytical results indicate detected concentrations of arsenic in soil sample FO-118-4 and naphthalene in soil sample FO-111-8 exceed the applicable RBC. Arsenic was detected in sample FO-118-4 at a concentration of 3.12 mg/kg, which exceeds the applicable RBC but is below the natural background concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil sample FO-118-4 at a concentration of 7.5 mg/kg, which exceeds the applicable RBC, but is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

Observations of petroleum sheen and odor were clustered in borings FO-111, FO-114, FO-115, and FO-116. Naphthalene was detected in soil sample FO-111-8 at a concentration of 46.8 mg/kg from the VOC analysis and 0.372 mg/kg from the PAH analysis. The concentration of naphthalene exceeds the occupational RBCs of 23 mg/kg. The absence of elevated concentrations of naphthalene in other soil samples, including from boring FO-114 and FO-116, suggests soil exceeding the occupational RBC for naphthalene is limited to a small area surrounding boring FO-111. A slight petroleum sheen and light odor were observed in boring FO-111 from 8-10 ft. Based on the observations and chemical data collected for this assessment, the volume of soil exceeding the applicable RBC for naphthalene is estimated to be approximately 200 cubic yards.

The analytical results indicate detected concentrations of analytes in groundwater do not exceed applicable RBCs in the Fuel-Oil Release area.

2: MINERAL SPIRITS RELEASE AREA (MS)

Background. Mineral spirits used to clean pitch from paper machine components were released from former above-ground storage tank (AST) and underground storage tanks (USTs) on the north side of the paper machine building. An air sparge / soil vapor extraction (AS/SVE) system was installed and operated from 1992 to 1994 to remediate contaminated groundwater. The AS/SVE system was decommissioned in 1994 following groundwater monitoring results indicating concentrations declined to below regulatory levels. PES collected groundwater samples in 2005 from three groundwater wells and three direct-push borings and analyzed for TPH (diesel and oil), PAHs, and VOCs. Soil samples were collected from three direct-push borings and analyzed for TPH (diesel, oil, and gasoline), PAHs, and VOCs. Diesel, mineral spirits, gasoline, and oil-range TPH and six VOC compounds were detected in one soil sample. Diesel, gasoline, PAHs, and VOCs were detected in groundwater in the mineral spirits release area. However, the concentrations of detected contaminants in soil and groundwater samples were less than applicable RBCs.

Data Gap Evaluation. Additional data needs were not identified in the Mineral Spirits Release area. However, the DEQ indicated in the No Further Action letter, that residual contamination remaining in the Mineral Spirits Release area includes low levels of petroleum hydrocarbon contamination below the concrete slab. Soil and groundwater below the concrete slab were evaluated to obtain recent chemical data and extent of residual mineral spirits.

Rev.: 1 Rev. Date: 7-30-2018

Data Gap Investigation Results

Eight borings were completed in the Mineral Spirits Release Area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 4.

MINERAL SPIRITS RELEASE AREA EXPLORATION SUMMARY

Area	Exploration	Sample	PID	DTW	TD			Date		
Prefix	ID#	collected	(ppm)	(ft)	(ft)	Sheen	Odor	Completed	Longitude	Latitude
MS-	131	GS	300.0	4.8	25	No	Heavy	2/2/2018	-124.23936	43.43481
MS-	132	SS	2.6	4.6	15	No	No	2/2/2018	-124.23946	43.43480
MS-	133	SS	0.3	8.3	15	No	No	2/2/2018	-124.23917	43.43477
MS-	134	GW	0.3	4.7	15	No	No	2/3/2018	-124.23936	43.43461
MS-	135	NS	0.0	4.5	15	No	No	2/5/2018	-124.23958	43.43494
MS-	136	GS	0.0	4.5	15	No	No	2/5/2018	-124.23925	43.43491
MS-	184	NS	1.4	-	4	No	No	2/12/2018	-124.23917	43.43428
MS-	185	SS	3.8	0.5	15	No	No	2/12/2018	-124.23917	43.43421

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Soil Analytical Results

Five soil samples (MS-131-9, MS-131-21, MS-132-9, MS-133-9, and MS-185-4) were analyzed from the Mineral Spirits Release area. Laboratory results are summarized in Table 3 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Mineral Spirits Release area contains VOCs, PAHs, diesel, and oil.

VOCs. A total of ten VOC compounds were detected in soil samples. Chemical analytical results indicate VOCs were detected below applicable RBCs.

PAHs. PAHs were not detected in soil samples MS-132-9 and MS-133-9. Chemical analytical results indicate a total of 16 PAH compounds were detected in the remaining soil samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel was not detected in soil samples MS-131-21 and MS-185-4, and oil was not detected in soil sample MS-131-21. Analytical results indicate diesel was detected in sample MS-131-9 at a concentration below applicable RBCs. Oil was detected in soil samples MS-131-9 and MS-185-4 at

Rev.: 1 Rev. Date: 7-30-2018

concentrations of 69.6 and 4.59 mg/kg respectively; which are below the applicable RBCs.

Groundwater Analytical Results

Three groundwater samples (MS-131-W, MS-134-W, and MS-136-W) were collected from the Mineral Spirits Release area. Laboratory results are summarized in Table 4 at the end of this report and in the analytical laboratory report included in Appendix B. Chemical testing indicates that groundwater in the Mineral Spirits Release area contains metals, VOCs, PAHs, diesel, oil, and gasoline.

Metals. Chemical analytical results indicate beryllium, cadmium, selenium, and silver were not detected in groundwater samples. Chemical analytical results indicate other metals detected in groundwater at concentrations are below applicable RBCs.

VOCs. Chemical analytical results indicate a total of 12 VOC compounds were detected in groundwater samples at concentrations below applicable RBCs.

PAHs. Chemical analytical results indicate a total of ten PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Diesel was detected in groundwater at a concentration of 15 mg/L. Oil was detected in groundwater at a concentration of 2.21 mg/L. Gasoline was detected in groundwater at a concentration of 0.38 mg/L. Chemical analytical results indicate petroleum compounds detected in groundwater samples at concentrations below applicable RBCs.

Mineral Spirits Release Area Investigation Findings

The analytical results indicate detected concentrations of analytes in soil and groundwater samples do not exceed applicable RBCs within the Mineral Spirits Release area.

3: TRUCK SCALES AND CARPENTER SHOP (TS/CS)

Background. One gasoline UST and one diesel UST were removed from north of the truck scales and one mineral spirits UST was removed from north of the carpenter shop. Soil sample analysis in 1992 detected gasoline, diesel, ethylbenzene, and xylenes in groundwater from a monitoring well, and total petroleum hydrocarbons in soil from two borings (SEACOR, 1992). In 2005, PES collected groundwater samples from two monitoring wells, soil samples from nine test pits, and soil and groundwater samples from one direct-push boring. Diesel was detected in soil in three test pits and oil was detected in soil in two test pits. Diesel, gasoline, PAHs, and VOCs were detected in groundwater.

Data Gap Evaluation. The previous investigation appears to have concentrated on an area to the east of the truck scales. Review of environmental investigations conducted prior to the 2005 investigation indicates residual impacts from the gasoline and diesel USTs are present north of the truck scales. In addition, soil

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

and groundwater sampling were not completed north of the carpenter shop in the area of former USTs. The lack of sample data in the vicinity of the decommissioned mineral spirits UST represents a data gap.

Data Gap Investigation Results

Eight borings were completed in the Truck Scales and Carpenter Shop area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 5.

TRUCK SCALES AND CARPENTER SHOP EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
HEIIX	ID π	Conecteu	(ppiii)	(It)	(IL)	Sileen	Outi	Completed	Longitude	Latitude
TS-	192	SS	4.2	1.5	15	No	Slight	2/13/2018	-124.24138	43.43581
TS-	193	SS	1.5	1.5	15	No	Slight	2/13/2018	-124.24134	43.43582
TS-	194	SS	1.6	2.0	15	No	No	2/13/2018	-124.24126	43.43578
TS-	195	GS	1.8	0.5	15	No	Slight	2/13/2018	-124.24134	43.43576
CS-	196	SS	3.4	3.2	15	No	No	2/13/2018	-124.24170	43.43584
CS-	197	SS	0.5	-	15	No	No	2/13/2018	-124.24172	43.43593
CS-	198	GS	1.5	2.1	15	No	No	2/13/2018	-124.24187	43.43585
TS-	204	GW	1.4	3.0	10	No	No	2/14/2018	-124.24091	43.43631

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Soil Analytical Results

Three soil samples (TS-192-8, TS-193-15, and TS-195-11) were analyzed from the truck scales area and one soil sample (CS-198-9) was analyzed from the carpenter shop area. Laboratory results are summarized in Table 5 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Truck Scales area contains PAHs and diesel.

PAHs. PAHs were not detected in soil samples TS-193-15 and CS-198-9. Chemical analytical results indicate a total of eight PAH compounds were detected in soil samples TS-192-8 and TS-195-11 at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel was detected in sample TS-192-8 at a concentration of 13.2 mg/kg, which is below the applicable RBCs.

Groundwater Analytical Results

Three groundwater samples (TS-195-W, TS-204-W, and CS-198-W) were analyzed from the Truck Scale and Carpenter Shop areas. Laboratory results are summarized in Table 6 at the end of this report and in the

Rev.: 1 Rev. Date: 7-30-2018

analytical laboratory report included as Appendix B. VOCs were not detected in the groundwater sample collected from TS-195-W, with the exception of a low concentration of toluene. Chemical testing indicates that groundwater in the Truck Scales area contains metals, PAHs, and diesel.

Metals. Chemical analytical results indicate metals detected in groundwater are below applicable RBCs.

PAHs. Chemical analytical results indicate a total of four PAH compounds were detected in groundwater samples at concentrations below applicable RBCs. In addition, two PAH compounds were also detected in the laboratory blank and likely represent a laboratory contaminant not actually present in the sample.

Petroleum. Analytical results indicate gasoline was not detected in the groundwater samples collected from the Truck Scales area. Diesel and oil were detected in the groundwater samples at concentrations below applicable RBCs.

Truck Scales Carpenter Shop Investigation Findings

The analytical results indicate detected concentrations of analytes in soil and groundwater samples do not exceed applicable RBCs within the Truck Scales and Carpenter Shop area.

4: CHIP TRUCK HYDRAULIC LIFT AREA (CT)

Background. Approximately 150 gal. of hydraulic oil was released in this area in the early 1990s. Soil sample analysis in 1992 detected TPH on the south side of the chip truck hydraulic lift. Additional soil sampling in 1995 detected oil on the north side of the lift. PES collected soil samples from five test pits and soil and groundwater from five direct-push borings in 2005. Analysis of four soil samples detected diesel and oil. Based on the results of TPH analysis, soil samples were also analyzed for PAHs and two compounds were detected. Analysis of two groundwater samples indicated detection of diesel and oil and one groundwater sample detected PAHs. A remedial excavation was completed in the area in 2005 that removed approximately 699.5 tons of soil and 3,315 gal. of contaminated groundwater.

Data Gap Evaluation. Diesel, oil, and PAHs were detected in soil and groundwater in the chip truck hydraulic lift area. Following excavation and removal of contaminated soil and groundwater, confirmation samples indicate the concentrations are less than applicable RBCs. Based on the sampling and analysis completed in 2005, it did not appear that there are remaining data gaps in this area. However, some contamination was left in place following remedial activities and the spatial distribution of sample locations suggest that horizontal limits were less than refined.

Data Gap Investigation Results

Thirteen borings were completed in the Chip Truck Hydraulic Lift Area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 6.

Rev.: 1 Rev. Date: 7-30-2018

CHIP TRUCK HYDRAULIC LIFT AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
CT-	142	GS	1.0	4.3	20	Moderate	Moderate	2/5/2018	-124.24111	43.43525
CT-	143	SS	0.6	3.6	15	No	No	2/5/2018	-124.24073	43.43520
CT-	144	GS	0.0	3.5	20	No	No	2/5/2018	-124.24108	43.43514
CT-	145	SS	0.0	3.8	20	Moderate	Heavy	2/6/2018	-124.24121	43.43528
CT-	146	SS	0.0	4.2	20	Slight	No	2/6/2018	-124.24121	43.43519
CT-	147	NS	0.0	6.2	20	Moderate	Moderate	2/6/2018	-124.24103	43.43532
CT-	148	SS	0.0	4.6	15	No	No	2/6/2018	-124.24099	43.43542
CT-	149	SS	0.0	4.5	30	Slight	No	2/6/2018	-124.24123	43.43537
CT-	150	SS		3.4	20	Slight	No	2/6/2018	-124.24132	43.43533
CT-	151	GS		2.5	15	Slight	No	2/6/2018	-124.24155	43.43518
CT-	152	SS		3.9	15	Slight	No	2/6/2018	-124.24083	43.43525
CT-	153	GW		2.4	15	No	No	2/7/2018	-124.24134	43.43507
CT-	154	GW		4.5	15	No	No	2/7/2018	-124.24155	43.43485

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

Soil Analytical Results

Seven soil samples (CT-142-11, CT-145-7, CT-145-16, CT-146-13, CT-149-13, CT-149-29, and CT-150-13) were analyzed from the Chip Truck Hydraulic Lift area. Laboratory results are summarized in Table 7 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Chip Truck Hydraulic Lift area contains PAHs, diesel, and oil.

PAHs. PAHs were not detected in soil samples CT-145-16, CT-146-13, CT-149-29, and CT-150-13. Chemical analytical results indicate a total of 12 PAH compounds were detected in soil samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel and oil detected were in soil in the Chip Truck area. Oil was detected in sample CT-145-7 at concentration of 6,190 mg/kg, which exceeds the applicable RBC of 4,600 mg/kg.

Groundwater Analytical Results

Four groundwater samples (CT-142-W, CT-144-W, CT-151-W, and CT-153-W) were analyzed from the Chip Truck Hydraulic Lift area. Laboratory results are summarized in Table 8 at the end of this report and

Rev.: 1 Rev. Date: 7-30-2018

in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in Chip Truck Hydraulic Lift area contains PAHs, oil, and diesel.

PAHs. Chemical analytical results indicate a total of 10 PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel and oil were detected in the groundwater sample at concentrations below applicable RBCs.

Chip Truck Investigation Findings

The analytical results indicate the detected concentration of oil in soil exceeds applicable RBCs within the Chip Truck Hydraulic Lift area.

The analytical results indicate detected concentrations of analytes in groundwater samples do not exceed applicable RBCs within the Chip Truck Hydraulic Lift area.

5: HOG FUEL HYDRAULIC LIFT AREA (HF)

Background. Soil and groundwater samples were collected from seven direct-push borings in 1995. Analysis of the samples indicated that oil was detected between the truck scales and the chip truck lift area. Analysis of soil samples from three test pits detected diesel and oil in one test pit sample at concentrations below applicable RBCs. Analysis for PAHs in the sample with diesel and oil did not detect PAHs.

Data Gap Evaluation. The test pits completed to evaluate the hog fuel area were not located within the footprint of the hydraulic lift. Drips and leaks from hydraulic equipment and oil reservoir storage, if they occurred, would be located directly below the lift equipment. Additionally, the groundwater sample used to represent groundwater conditions in the hog fuel hydraulic lift area was located approximately 60 ft south of the equipment location. This distance may not be adequate to represent groundwater characterization of the hog fuel lift.

Data Gap Investigation Results

Five borings were completed in the Hog Fuel Hydraulic Lift Area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 6.

HOG FUEL AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
HF-	137	GS	0.9	3.6	20	Very Slight	No	2/5/2018	-124.24101	43.43557
HF-	138	NS	1.6	3.3	15	No	No	2/5/2018	-124.24114	43.43561
HF-	139	NS	0.2	3.2	7	No	No	2/5/2018	-124.24094	43.43557
HF-	140	SS	0.0	3.5	15	No	No	2/5/2018	-124.24090	43.43560
HF-	141	SS	0.8	3.8	15	No	No	2/5/2018	-124.24101	43.43561

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

Soil Analytical Results

One soil sample (HF-137-16) was analyzed from the Hog Fuel Hydraulic Lift Area. Laboratory results are summarized in Table 9 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the fuel-oil release area contains a PAH compound, phenanthrene.

PAHs. Chemical analytical results indicate phenanthrene was detected at a concentration of 0.000756 mg/kg. There is no established RBC for this compound.

Petroleum. Analytical results indicate diesel and oil were not detected.

Groundwater Analytical Results

One groundwater sample (HF-137-W) was analyzed from the Hog Fuel Hydraulic Lift area. Laboratory results are summarized in Table 10 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical analytical testing indicates that PAHs were not detected in the groundwater sample collected from the Hog Fuel Hydraulic Lift area. Chemical testing indicates that groundwater in the Hog Fuel Hydraulic Lift area contains diesel and oil.

Petroleum. Analytical results indicate diesel and oil were detected in the groundwater sample at concentrations of 0.0964 and 0.163 mg/l respectively, which are below applicable RBCs.

Hog Fuel Area Investigation Findings

The analytical results indicate phenanthrene was detected in soil sample HF-137-16 at a concentration of 0.000756 mg/kg. However, no RBCs have been established for this compound. The analytical results indicate soil concentrations do not exceed applicable RBCs within the Hog Fuel Hydraulic Lift area.

The analytical results indicate detected concentrations of diesel and oil do not exceed applicable RBCs within the Hog Fuel Hydraulic Lift area.

6: STREAM CHANNEL AREA (SC)

Background. A stream formerly drained south-southeast from the maintenance shop to Coos Bay. The northern segment has been culverted and the southern segment remains open. Sediment samples collected in 2005 from four hand-augered borings completed in the southern portion and one direct-push boring in the northern portion of the channel encountered diesel and oil, three PAHs, and two PCBs.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Data Gap Evaluation. The likely source of contaminants in the stream channel is stormwater runoff from the mill site. Sediment samples were collected in the stream channel area to evaluate the concentration of these contaminants.

Data Gap Investigation Results

Two shallow explorations were completed in the Stream Channel Area. Stream Channel area samples were not field-screened using the PID. Groundwater samples were not collected from the Stream Channel explorations. Exploration data and observations are summarized in the table below. Exploration locations are shown on Figure 7.

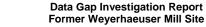
STREAMCHANNEL AREA EXPLORATION SUMMARY

Are Pref		Sample collected	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
SC-	205	SS	-	1	No	No	2/14/2018	-124.23855	43.43208
SC-	206	SS	_	1	No	No	2/14/2018	-124.23999	43.43206

SS = Soil sample collected only

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft


Soil Analytical Results

Two soil samples (SC-205-1 and SC-206-1) were analyzed from the Stream Channel area. Laboratory results are summarized in Table 11 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Stream Channel area contains metals, PAHs, oil, and gasoline. Chemical analytical results indicate PCBs were not detected in Stream Channel area soil samples.

Metals. Chemical analytical results indicate selenium, silver, and thallium were not detected in soil samples. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs. Arsenic was detected in SC-205-1 and SC-206-1 at concentrations of 3.12 and 4.84 mg/kg respectively, which exceed the occupational RBC of 1.9 mg/kg, but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in SC-205-1 and SC-206-1 at concentrations of 80.3 and 7.11 mg/kg respectively, which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. The chromium concentration detected in soil sample SC-205-1 also exceeds the construction worker RBC for chromium (VI) of 49 mg/kg. However, these concentrations are total chromium concentrations. Additionally, the detected chromium concentrations are below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

^{- =} Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Rev.: 1 Rev. Date: 7-30-2018

PAHs. Chemical analytical results indicate a total of 18 PAH compounds were detected in soil samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate oil and gasoline were detected in soil samples at concentrations below applicable RBCs.

Stream Channel Area Investigation Findings

The analytical results indicate detected concentrations of arsenic and chromium in soil samples SC-205-1 and SC-206-1 exceed the occupational RBC, and chromium in soil sample SC-205-1 also exceeds the construction worker RBC. Elevated arsenic concentrations and chromium concentration in SC-206-1 likely represent natural background concentrations and are not indicative of anthropogenic sources. Based on receiving site stormwater runoff and the shallow depth of sample collection, the elevated chromium concentration in SC-205-1 of 80.3 mg/kg when compared to other chromium results potentially represents an anthropogenic source. However, the concentration of chromium in SC-205-1 is less than the natural background concentration of 240 mg/kg.

7: NORTH AND SOUTH "LOWERATORS" AREA (NL/SL)

Background. Two hydraulic elevators, or "lowerators," were located at the east end of the main mill building to lower paper from the upper floor of the main mill building to the lower floor. The hydraulic equipment was set within concrete walls in a below-grade sump about 10 to 16 ft below the floor of the building. Soil and groundwater samples were collected from two direct-push borings completed near the north and south lowerators and analyzed for diesel, oil, and PAHs. Oil was detected in soil near the south lowerator. Diesel and oil were detected in groundwater less than the applicable RBC.

Data Gap Evaluation. PAHs were not detected in soil or groundwater; however, analytical testing results indicate elevated detection limits for PAHs are greater than the applicable RBCs.

Data Gap Investigation Results

Seven borings were completed in the North and South "Lowerators" Area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 4.

NORTH AND SOUTH "LOWERATORS" AREA EXPLORATION SUMMARY

Area	Exploration	Sample	PID,	DTW,	TD,			Date		
Prefix	ID#	collected	ppm	ft	ft	Sheen	Odor	Completed	Longitude	Latitude
SL-	1 <i>7</i> 8	NS	0.0	-	7	No	No	2/12/2018	-124.23872	43.43465
SL-	1 <i>7</i> 9	NS	0.0	-	7	No	No	2/12/2018	-124.23869	43.43463
SL-	180	GS	20.0	5.8	15	No	Moderate	2/12/2018	-124.23874	43.43464
SL-	181	SS	0.4	-	15	No	No	2/12/2018	-124.23873	43.43458
NL-	182	SS	0.3	0.7	5	Heavy	Moderate	2/12/2018	-124.23870	43.43477
NL-	183	SS	0.3	-	15	No	No	2/12/2018	-124.23865	43.43476
SL-	186	GW	1.3	3.8	10	No	No	2/12/2018	-124.23838	43.43435

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Soil Analytical Results

Four soil samples (SL-180-10, SL-180-15, NL-182-5, and NL-183-15) were analyzed from North and South "Lowerators" area. Laboratory results are summarized in Table 12 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in North and South "Lowerators" area contains metals, VOCs, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, silver, and thallium were not detected in soil sample NL-182-5. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs. Arsenic was detected in NL-182-5 at a concentration of 3.97 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in NL-182-5 at a concentration of 8.76 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

VOCs. A total of eight VOC compounds were detected in soil. Chemical analytical results indicate VOCs were detected below applicable RBCs.

PAHs. PAHs were not detected in soil sample NL-183-15. Chemical analytical results indicate a total of thirteen PAH compounds were detected in soil samplesat concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel was detected in soil samples at concentrations below applicable RBCs. Oil was detected in soil sample SL-180-10 at a concentration of 61,500 mg/kg, which exceeds the applicable RBC of 4,600 mg/kg.

Groundwater Analytical Results

Two groundwater samples (SL-180-W and SL-186-W) were analyzed from the North and South "Lowerators" area. Laboratory results are summarized in Table 13 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in the North and South "Lowerators" area contains metals, PAHs, diesel, and oil.

Rev.: 1 Rev. Date: 7-30-2018

Metals. Chemical analytical results indicate beryllium, cadmium, selenium, silver, and thallium were not detected in groundwater samples. Chemical analytical results indicate other metals were detected in groundwater below applicable RBCs.

PAHs. Chemical analytical results indicate naphthalene and 1-methylnaphthalene were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Gasoline was not detected in groundwater. Analytical results indicate diesel and oil was detected in both groundwater samples at concentrations below applicable RBCs.

North and South Lowerators Area Investigation Findings

The analytical results indicate detected concentrations of arsenic and chromium in soil sample NL-182-5 exceed the occupational RBCs. Arsenic was detected in sample NL-182-5 at a concentration of 3.97 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in NL-182-5 at a concentration of 8.76 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg, but is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

Chemical analytical results indicate a total of 13 PAH compounds were detected in soil samples at concentrations below applicable RBCs. Oil was detected in soil sample SL-180-10 at a concentration that exceeds applicable RBCs. A moderate petroleum odor was observed from 6 to 10 ft in boring SL-180. Using field observations, samples were selected for analysis to determine the lateral and vertical extent of compounds within soil that potentially exceed applicable RBCs. In the South "Lowerator" area, field observations did not suggest potential RBC exceedances below a depth of 10 ft. Additionally, field observations did not indicate affected soil in boring SL-181; therefore, soil samples were not selected for analysis from boring SL-181. Due to refusal at 7 ft in borings SL-178 and SL-179, potential contamination at depth could not be evaluated northeast of boring SL-180. Based on field observations, it appeared that the vaults containing the in-ground hydraulic lift for the lowerators were filled with concrete during the mill decommissioning activities. In addition, it appeared that the detected analytes that exceed RBCs are contained in the concrete vault and affected soils are likely limited to the interior of the north lowerator vault and the area to the northwest of the south lowerator.

The analytical results indicate detected concentrations of analytes in groundwater do not exceed applicable RBCs for the North and South "Lowerators" area.

8: FORMER MOBILE/PAINT/FUEL SHOPS AREA (SH)

Background. The oil, mobile, and paint shops were located adjacent to each other near the west end of the main mill building. These shops were demolished in 1990 and the oil shop service pit was filled with gravel and capped with concrete. Soil samples from four direct-push borings were collected in 2005 and analyzed for diesel and oil. No diesel or oil was detected in soil samples.

Jordan 🌙

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Data Gap Evaluation. Previous samples were not analyzed for VOCs or metals, which may have been used or stored at this location as used oils and spent solvents. In addition, three of the samples analyzed were shallow (less than 3 ft).

Data Gap Investigation Results

Two borings were completed in the Former Mobile/Paint/Fuel Shops area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 8.

FORMER MOBILE/PAINT/FUEL SHOPS AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
SH-	176	GS	0.6	4.3	15	No	No	2/9/2018	-124.24063	43.43433
SH-	1 <i>77</i>	SS	0.0	1.7	15	Slight	Slight	2/12/2018	-124.24055	43.43459

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

Soil Analytical Results

One soil sample (SH-177-5) was analyzed from the Former Mobile/Paint/Fuel Shops area. Laboratory results are summarized in Table 14 at the end of this report and in the analytical laboratory report included as Appendix B. Analytical results indicate VOCs were not detected in soil sample SH-177-5. Chemical testing indicates that soil in Former Mobile/Paint/Fuel Shops area contains metals, PAHs, diesel, oil, and gasoline.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, silver, and thallium were not detected in soil sample SH-177-5. With the exception of arsenic, chemical analytical results indicate other metals were detected below applicable RBCs. Arsenic was detected in SH-177-5 at a concentration of 4.33 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018).

PAHs. Naphthalene was detected at a concentration of 0.00307 mg/kg, which is below applicable RBCs. 2-methylnapthalene was detected at a concentration of 0.00382 mg/kg; however, no RBCs have been established for this compound.

Petroleum. Analytical results indicate diesel, oil, and gasoline were detected in soil samples at concentrations below applicable RBCs.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Groundwater Analytical Results

One groundwater samples (SH-176-W) was analyzed from the Former Mobile/Paint/Fuel Shops area. Laboratory results are summarized in Table 15 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in the Former Mobile/Paint/Fuel Shops area contains metals, VOCs, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, silver, thallium, and mercury were not detected in groundwater samples. Chemical analytical results indicate other metals detected in groundwater are below applicable RBCs.

VOCs. Chemical analytical results indicate toluene was detected at a concentration of 0.00103 mg/L, which is below the RBC of 220 mg/L.

PAHs. Chemical analytical results indicate a total of three PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate gasoline was not detected in the groundwater sample collected from the Former Mobile/Paint/Fuel Shops area. Diesel was detected in the groundwater sample at a concentration of 0.159 mg/L, which is below the applicable RBC. Oil was detected at a concentration of 0.083 mg/L, which is below the applicable RBC.

Former Shops Area Investigation Findings

The analytical results indicate arsenic was detected in SH-177-5 at a concentration of 4.33 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018).

The analytical results indicate detected concentrations of VOC, PAHs, diesel, and oil detected in soil and groundwater do not exceed applicable RBCs.

9: MOBILE SHOP AREA (MO)

Background. Following the demolition of the former paint, mobile, and oil shops, new paint, mobile, and oil shop buildings were constructed south of the purchasing building. A shallow soil sample (less than 2 ft) was collected from one direct-push boring in the drum storage area of the mobile shop and analyzed for diesel and oil. No diesel or oil was detected in the soil sample.

Data Gap Evaluation. Analysis of soil and groundwater in the vicinity of the oil shop and paint shop has not been completed.

Rev.: 1 Rev. Date: 7-30-2018

Data Gap Investigation Results

Five borings were completed in the Mobile Shop area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 9.

MOBILE SHOP AREA EXPLORATION SUMMARY

Area	Exploration	Sample	PID	DTW	TD			Date		
Prefix	ID#	collected	(ppm)	(ft)	(ft)	Sheen	Odor	Completed	Longitude	Latitude
MO-	1 <i>7</i> 1	GS	0.8	3.5	15	No	No	2/8/2018	-124.24112	43.43379
MO-	172	SS	0.7	3.8	15	No	No	2/8/2018	-124.24115	43.43364
MO-	173	GS	0.7	3.3	15	Slight	No	2/8/2018	-124.24093	43.43361
MO-	174	SS	0.3	-	15	No	No	2/9/2018	-124.24041	43.43330
MO-	1 <i>7</i> 5	GS	0.8	3.1	15	No	No	2/9/2018	-124.24023	43.43370

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Soil Analytical Results

One soil sample (MO-173-14) was analyzed from the Mobile Shop area. Laboratory results are summarized in Table 16 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Mobile Shop area contains metals. Chemical analytical results indicate PAHs, diesel, and oil were not detected in soil sample MO-173-14.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, silver, and thallium were not detected in soil sample MO-173-14. With the exception of arsenic, chemical analytical results indicate other metals were detected below applicable RBCs. Arsenic was detected in MO-173-14 at a concentration of 3.78 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018).

Groundwater Analytical Results

Three groundwater samples (MO-171-W, MO-173-W, and MO-175-W) were analyzed from the Mobile Shop area. Laboratory results are summarized in Table 17 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in the Mobile Shop area contains metals, VOCs, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate silver and thallium were not detected in groundwater samples. Chemical analytical results indicate other metals were detected in groundwater are below applicable RBCs.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

PAHs. Chemical analytical results indicate naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Diesel and oil were detected in groundwater sample MO-175-W, at concentrations of 1.44 and 2.88 mg/kg, respectively, at concentrations below applicable RBCs.

Mobile Shop Area Investigation Findings

The analytical results indicate detected concentrations of arsenic in soil sample MO-173-14 exceed the RBCs for the occupational exposure scenario. Arsenic was detected in MO-173-14 at a concentration of 3.78 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018).

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs for the Mobile Shop area.

10: SOUTH JORDAN POINT DEBRIS AREA (JP)

Background. According to previous report findings, the southern portion of Jordan Point was used as a disposal area for mill-related fill and construction debris. The debris material includes metal plates and scrap, wires, and building material (including asbestos-containing transite siding). Thirteen test pits were completed in the disposal area and four samples of suspected asbestos-containing material analyzed for asbestos. Three of the samples analyzed contained asbestos.

Data Gap Evaluation. The use of Jordan Point as a former disposal area for various mill debris (metals, building materials, and fill soil), suggest that TPH and metals may be present in the fill.

Data Gap Investigation Results

Four borings were completed in the South Jordan Point Debris area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figures 7 and 9.

SOUTH JORDAN POINT DEBRIS AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
JP-	188	GS	0.0	7.5	10	No	No	2/13/2018	-124.23925	43.43105
JP-	189	SS	0.0	7.5	10	No	No	2/13/2018	-124.23908	43.43142
JP-	190	SS	0.0	7.0	10	No	No	2/13/2018	-124.23854	43.43139
JP-	191	GS	2.1	6.0	15	No	No	2/13/2018	-124.24007	43.43274

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

TD = Total depth of boring, in ft

Soil Analytical Results

Four soil samples (JP-188-6, JP189-7, JP-190-7, and JP-191-8) were analyzed from the South Jordan Point Debris area. Laboratory results are summarized in Table 18 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Jordan Point area contains metals, PAHs, diesel, and oil. PCBs were not detected in soil samples

Metals. Chemical analytical results indicate antimony, selenium, silver, and thallium were not detected in South Jordan Point Debris area soil samples. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected soil below applicable RBCs. Arsenic was detected in soil samples JP-188-6, JP189-7, and JP-190-7 at concentrations of 2.39, 4.66, and 7.07 mg/kg, respectively, which exceed the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil samples JP-188-6, JP189-7, and JP-190-7 at concentrations of 19.7, 15.6, and 38.3 mg/kg, respectively, which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

PAHs. PAHs were not detected in soil sample JP-191-8. Chemical analytical results indicate a total of 17 PAH compounds were detected in the remaining soil samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel, oil, and gasoline were not detected in sample JP-191-8. Diesel and oil were detected in sample JP-188-6 at concentrations of 48 and 1,980 mg/kg respectively, which are below applicable RBCs.

Groundwater Analytical Results

Two groundwater samples (JP-188-W and JP-191-W) were analyzed from the South Jordan Point Debris area. Laboratory results are summarized in Table 19 at the end of this report and in the analytical laboratory report included as Appendix B. VOCs were not detected in groundwater samples collected from the South Jordan Point Debris area. Chemical testing indicates that groundwater in the South Jordan Point Debris area contains metals, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, silver, and thallium were not detected in groundwater samples. Chemical analytical results indicate other metals were detected below applicable RBCs.

PAHs. Chemical analytical results indicate benzo(g,h,i)perylene, naphthalene, and 2-methylnapthalene were detected in groundwater samples at concentrations below

Rev.: 1 Rev. Date: 7-30-2018

applicable RBCs. In addition, benzo(g,h,i)perylene and naphthalene were also detected in the laboratory blank and likely represent a laboratory contaminant not actually present in the sample.

Petroleum. Gasoline was not detected in groundwater samples. Diesel was detected in groundwater samples JP-188-W and JP-191-W at concentrations of 0.674 and 0.179 mg/L, respectively. Oil was detected in samples JP-188-W and JP-191-W at concentrations of 1.31 and 0.21 mg/L respectively, which is below the applicable RBCs.

Jordan Point Area Investigation Findings

The analytical results indicate detected concentrations of arsenic and chromium in soil samples JP-188-6, JP189-7, and JP-190-7 exceed the occupational RBCs. Arsenic was detected in soil samples JP-188-6, JP189-7, and JP-190-7 at concentrations ranging from 2.39 to 7.07 mg/kg, which exceed the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil samples JP-188-6, JP189-7, and JP-190-7 at concentrations ranging from 15.6 to 38.3 mg/kg, which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs for the South Jordan Point Debris area.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

11: BOILER AND POWERHOUSE AREA (BP)

Background. Based on information from a former Weyerhaeuser employee, the mill operated two boilers to provide heat to the mill and for drying kilns.

Data Gap Evaluation. The fuel used for the boilers consisted of fuel oil and hog fuel. There is potential for fuel oil to be present beneath the former boiler and powerhouse location. There is no TPH, PAHs, metals, and VOCs data from the area of the boilers and powerhouse prior to this investigation.

Data Gap Investigation Results

Twenty-five borings were completed in the Boiler and Powerhouse area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 10.

BOILER AND POWERHOUSE AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude	
BP-	101	GS	0.0	1.8	35	Slight	No	1/29/2018	-124.23968	43.43561	
BP-	102	GS	2.1	2.2	20	Heavy	Slight	1/29/2018	-124.23975	43.43563	
BP-	103	SS	0.0	1.9	20	No	No	1/30/2018	-124.23978	43.43572	
BP-	104	SS	0.0	2.4	20	Slight	No	1/30/2018	-124.23981	43.43560	
BP-	105	NS	0.6	2.3	20	Moderate	No	1/30/2018	-124.23966	43.43576	
BP-	106	SS	0.0	2.5	20	No	No	1/30/2018	-124.23950	43.43590	
BP-	107	SS	0.0	1.8	20	No	No	1/30/2018	-124.23949	43.43580	
BP-	108	SS	0.0	2.5	20	Slight	No	1/30/2018	-124.23967	43.43588	
BP-	109	GW		2.8	10	No	No	1/30/2018	-124.23982	43.43589	
BP-	119	GS	75.0	3.5	45	Heavy	Heavy	1/31/2018	-124.23940	43.43540	
BP-	120	SS	2.9	3.2	20	Moderate	Moderate	2/1/2018	-124.23951	43.43556	
BP-	121	GS	3.3	3.8	30	No	Slight	2/1/2018	-124.23928	43.43522	
BP-	122	SS	2.0	3.7	15	No	Slight	2/1/2018	-124.23928	43.43531	
BP-	123	SS	3.2	3.8	15	No	No	2/1/2018	-124.23968	43.43508	
BP-	124	NS	0.6	3.7	15	No	No	2/1/2018	-124.23944	43.43519	
BP-	125	SS	0.0	3.6	20	No	Slight	2/1/2018	-124.23932	43.43534	
BP-	126	SS	0.3	3.3	15	Slight	No	2/1/2018	-124.23950	43.43537	
BP-	127	SS	0.0	-	15	Slight	No	2/1/2018	-124.23929	43.43551	
BP-	128	SS	107.0	3.8	15	Moderate	Heavy	2/2/2018	-124.23927	43.43542	
BP-	129	SS	140.0	4.0	15	Heavy	Heavy	2/2/2018	-124.23923	43.43543	
BP-	130	NS		2.0	5.5	No	No	2/2/2018	-124.23918	43.43544	
BP-	187	GS	2.4	-	15	No	No	2/12/2018	-124.23909	43.43547	

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Area	Exploration	Sample	PID	DTW	TD			Date		
Prefix	ID#	collected	(ppm)	(ft)	(ft)	Sheen	Odor	Completed	Longitude	Latitude
BP-	200	SS	13.0	-	15	Moderate	Heavy	2/14/2018	-124.23949	43.43549
BP-	201	NS		-	5	No	No	2/14/2018	-124.23967	43.43533
BP-	202	GS	0.5	2.0	10	No	No	2/14/2018	-124.23965	43.43531

GW = Groundwater sample collected only

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

A slight sheen was observed in boring BP-101 between a depth of 7 and 12 ft. A heavy sheen and slight odor were observed in boring BP-102 between a depth of 8 and 17 ft. A slight sheen was observed in boring BP-104 between a depth of 10 and 14 ft. A moderate sheen was observed in boring BP-105 between a depth of 8.5 and 13.5 ft. A slight sheen was observed in boring BP-108 between a depth of 8.7 and 14.5 ft. A heavy odor was observed in boring BP-119 between a depth of 8 and 20 ft; a heavy sheen was observed between 11 and 24 ft; a moderate odor was observed between a depth of 20 and 28 ft; a moderate sheen was observed between 24 and 26 ft; a slight sheen was observed between 26 and 29 ft; a slight sheen and/or staining of the acetate sample sleeves was observed between 29 and 43.5 ft. A moderate sheen and odor was observed in boring BP-120 between a depth of 8 and 9 ft. A slight odor was observed in boring BP-122 at a depth of between 6 and 7 ft. A slight odor was observed in boring BP-125 isolated at a depth of 14 ft. A slight sheen was observed in boring BP-126 at a depth of between 5 and 6 ft. A slight sheen was observed in boring BP-127 isolated at a depth of 9 ft. A moderate sheen and heavy odor were observed in boring BP-128 at a depth of between 7.5 and 14 ft. A heavy odor was observed in boring BP-129 isolated at a depth of 6.5 ft, a slight to moderate sheen was observed between 8 and 10 ft, and a moderate odor and moderate to heavy sheen were observed from 10 to 13.5 ft. A heavy odor and moderate sheen were observed in boring BP-200 between a depth of 6 and 9.5 ft.

Soil Analytical Results

Twenty-five soil samples (BP-101-7, BP-101-30, BP-102-12, BP-102-20, BP-103-13, BP-104-13, BP-104-20, BP-106-13, BP-107-12, BP-108-13, BP-108-17, BP-119-8, BP-119-17, BP-119-33, BP-121-9, BP-125-13, BP-126-6, BP-127-8, BP-129-8, BP-129-14, BP-187-11, BP-200-8, BP-200-13, BP-202-4, and BP-202-10) were analyzed from the Boiler and Powerhouse area. Laboratory results are summarized in Table 20 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil in the Boiler and Powerhouse area contains metals, VOCs, PAHs, gasoline, diesel, and oil. Chemical analytical results indicate PCBs were not detected in soil samples

Metals. Chemical analytical results indicate antimony, selenium, silver, and thallium were not detected in Boiler and Powerhouse area soil samples.

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs.

Arsenic was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 3.68 and 4.17 mg/kg, respectively, which exceed the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018).

Chromium was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 11.6 and 13.8 mg/kg which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentrations are below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

VOCs. A total of 13 VOC compounds were detected in soil. With the Chemical analytical results indicate VOCs were detected below applicable RBCs.

PAHs. With the exception of 2-chloronapthalene, chemical analytical results indicate 18 PAH compounds were detected in soil samples from the Boiler and Powerhouse area. PAHs were not detected in soil samples BP-101-30, BP-102-20, BP-103-13, BP-104-20, BP-106-13, BP-107-12, BP-108-17, BP-127-8, BP-200-13, and BP-202-10.

With the exception of benzo(a)pyrene and naphthalene, PAHs were detected at concentrations below applicable RBCs. Benzo(a)pyrene was detected in soil sample BP-119-8 at a concentration of 2.27 mg/kg, which exceeds the occupational RBC of 2.1 mg/kg.

Naphthalene was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 92.0 and 50.4 mg/kg, which exceed the occupational RBCs of 23 mg/kg.

Petroleum. Analytical results indicate gasoline was detected in soil samples BP-102-12 and BP-119-8 at concentrations of 0.803 and 161 mg/kg, respectively, which are below applicable RBCs.

Diesel was detected in soil samples BP-102-12, BP-108-13, BP-119-8, BP-129-8, BP-129-14, and BP-200-8. Diesel was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 27,660 and 10,800 mg/kg, which exceed the construction worker RBC of 4,600 mg/kg. Diesel in soil sample BP-119-8 (27,660 mg/kg) exceeds the occupational RBC of 14,000 mg/kg.

Oil was detected in soil samples BP-102-12, BP-108-13, BP-119-8, BP-119-17, BP-129-8, BP-200-8, and BP-202-4 at concentrations ranging from 5.79 to 14,000 mg/kg. Oil was detected in soil samples BP-119-8 and BP-129-8 at

Rev.: 1 Rev. Date: 7-30-2018

concentrations of 14,000 and 5,100 mg/kg, which exceed the construction worker RBC of 4,600 mg/kg.

Groundwater Analytical Results

Six groundwater samples (BP-102-W, BP-109-W, BP-119-W, BP-121-W, BP-187-W, and BP-202-W) were analyzed from the Boiler and Powerhouse area. Laboratory results are summarized in Table 21 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in the Boiler and Powerhouse area contains metals, VOCs, PAHs, gasoline, diesel, and oil.

Metals. Chemical analytical results indicate beryllium, cadmium, selenium, and silver were not detected in groundwater samples. Chemical analytical results indicate other metals were detected in groundwater below applicable RBCs.

VOCs. Chemical analytical results indicate naphthalene and n-propylbenzene were detected in groundwater from BP-119-W at concentrations of 0.0249 and 0.000686 mg/L, respectively. Naphthalene was detected in BP-119-W at a concentration less than the RBC of 0.5 mg/L.

PAHs. Chemical analytical results indicate a total of 10 PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Gasoline was detected in BP-119-W at a concentration of 0.0929 mg/L, which is below the RBC of 14 mg/L. Diesel was detected in groundwater samples BP-102-W, BP-119-W, BP-187-W, and BP-202-W at concentrations ranging from 0.0428 and 1.34 mg/L. Oil was detected in samples BP-119-W, BP-187-W, and BP-202-W at concentrations ranging from 0.148 and 1.25 mg/L, which are below the applicable RBCs.

Boiler and Powerhouse Area Investigation Findings

The analytical results indicate detected concentrations of arsenic and chromium in soil samples BP-102-12 and BP-202-4 exceed the applicable RBCs. The concentration of two PAH compounds (benzo(a)pyrene and naphthalene), diesel, and oil in soil from BP-119-8 and BP-129-8 exceed the applicable RBCs.

Arsenic was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 3.68 and 4.17 mg/kg respectively, which exceed the occupational RBC of 1.9 mg/kg, but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 11.6 and 13.8 mg/kg, which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentrations are below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

Rev.: 1 Rev. Date: 7-30-2018

Analytical results indicate gasoline was detected in soil samples BP-102-12 and BP-119-8 at concentrations of 0.803 and 161 mg/kg, respectively, which are below applicable RBCs. Diesel was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 27,660 and 10,800 mg/kg, which exceed the construction worker RBC of 4,600 mg/kg. Diesel in soil sample BP-119-8 (27,660 mg/kg) exceeds the occupational RBC of 14,000 mg/kg.

With the exception of benzo(a)pyrene and naphthalene, PAHs were detected at concentrations below applicable RBCs. Benzo(a)pyrene was detected in soil sample BP-119-8 at a concentration of 2.27 mg/kg, which exceed the occupational RBCs of 2.1 mg/kg. Naphthalene was detected in soil samples BP-119-8 and BP-129-8 at concentration of 92.0 and 50.4 mg/kg, which exceed the occupational RBCs of 23 mg/kg.

The absence of elevated concentrations of diesel and oil in other soil samples, including borings adjacent to borings BP-119 and BP-129, suggests soil exceeding the construction worker RBCs for diesel and oil is limited to a small area surrounding borings BP-119 and BP-129. The absence of elevated concentrations of diesel and oil in soil samples BP-119-17 and BP-119-33 suggests soil exceeding the applicable RBCs is limited to depths shallower than 17 ft. The volume of soil exceeding the occupational RBC for benzo(a)pyrene naphthalene, diesel, and oil and the construction worker RBC for diesel and oil is estimated to be approximately 6,100 cubic yards.

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs for the Boiler and Powerhouse area.

12: DEBARKER AREA (DB)

Background. Based on historical aerial photographs, a debarker and saw mill appear to have been in operation west of the purchasing building.

Data Gap Evaluation. Drips and/or leaks of hydraulic fluids may have occurred at the debarker. However, there have been no previous investigations in this area.

Data Gap Investigation Results

Seventeen borings were completed in the Debarker area. Exploration data and observations are summarized in the table below. Boring locations are shown on Figure 7.

DEBARKER AREA EXPLORATION SUMMARY

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
DB-	155	NS		-	7.0	No	No	2/7/2018	-124.24136	43.43452
DB-	156	GS	0.4	1.6	7.5	Slight	Slight	2/7/2018	-124.24107	43.43467
DB-	15 <i>7</i>	SS		-	5.3	No	No	2/7/2018	-124.24127	43.43435
DB-	158	NS	0.2	-	5.1	No	No	2/7/2018	-124.24117	43.43441
DB-	159	SS	0.6	6.8	7.7	No	Slight	2/7/2018	-124.24132	43.43438
DB-	160	SS	0.4	5.2	15.0	No	No	2/7/2018	-124.24107	43.43439
DB-	161	SS	0.5	-	30	Slight	No	2/7/2018	-124.24120	43.43417

Rev.: 1 Rev. Date: 7-30-2018

Area Prefix	Exploration ID #	Sample collected	PID (ppm)	DTW (ft)	TD (ft)	Sheen	Odor	Date Completed	Longitude	Latitude
DB-	162	GS	1.8	7.3	25	Heavy	Heavy	2/7/2018	-124.24137	43.43433
DB-	163	GS	1.3	11.3	15	No	No	2/8/2018	-124.24139	43.43431
DB-	164	NS	1.2	-	7.5	No	No	2/8/2018	-124.24140	43.43437
DB-	165	SS	1.4	-	15	No	No	2/8/2018	-124.24146	43.43440
DB-	166	SS	1.2	-	15	No	No	2/8/2018	-124.24133	43.43430
DB-	167	SS		-	7.0	No	No	2/8/2018	-124.24132	43.43443
DB-	168	SS	0.9	5.6	15	No	No	2/8/2018	-124.24117	43.43419
DB-	169	SS	0.5	5.5	20	Slight	No	2/8/2018	-124.24111	43.43414
DB-	170	SS	1.0	4.8	20	Slight	No	2/8/2018	-124.24122	43.43402
DB-	199	GS	1.2	-	15	No	No	2/14/2018	-124.24255	43.43507

GS = Both groundwater and soil samples collected

SS = Soil sample collected only

NS = No samples were collected from this boring

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

A slight sheen was observed in borings DB-156, DB-161, DB-169, and DB-170. In boring DB-162, a moderate to heavy sheen was observed from 8 to 11 ft, a moderate to heavy odor was observed from 8 to 10 ft, a slight to moderate odor was observed from 5 to 8 ft, and a slight sheen was observed from 12 to 20 ft. A slight odor was observed in borings DB-156 between 6 and 7 ft and DB-159 between 7 and 8 ft. Several of the explorations in the DB area encountered refusal at similar depths. The obstruction may be a former concrete pad that appears to have been buried and paved over.

Soil Analytical Results

Twelve soil samples (DB-159-7, DB-161-13, DB-161-30, DB-162-10, DB-162-21, DB-163-11, DB-165-10, DB-166-11, DB-169-12, DB-169-16, DB-170-13, and DB-199-11) were analyzed from the Debarker area. Laboratory results are summarized in Table 22 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical analytical results indicate VOCs and gasoline were not detected in soil samples. Chemical testing indicates that soil in the Debarker area contains metals, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate antimony, cadmium, selenium, silver, and thallium were not detected in Debarker area soil samples. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs. Arsenic was detected in soil samples DB-162-10 and DB-199-11 at concentrations of 3.75 and 3.87 mg/kg respectively, which exceed the occupational RBC of 1.9 mg/kg, but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

in soil sample DB-199-11 at a concentration of 7.46 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

PAHs. PAHs were not detected in soil samples DB-170-13 and DB-199-11. Chemical analytical results indicate a total of 17 PAH compounds were detected in soil samples at concentrations below applicable RBCs.

Petroleum. Analytical results indicate gasoline was not detected in sample DB-199-11. Diesel was detected in samples DB-162-10 and DB-166-11 at concentrations of 1,480 and 1.6 mg/kg respectively, which are below applicable RBCs. Oil was detected in samples DB-163-11, DB-166-11, and DB-169-12 at concentrations ranging from 4.15 to 26 mg/kg, which are below applicable RBCs. Oil detected in DB-162-10 at a concentration of 6,130 mg/kg, which exceeds applicable RBCs.

Groundwater Analytical Results

Three groundwater samples (DB-162-W, DB-163-W, and DB-199-W) were analyzed from the Debarker area. Laboratory results are summarized in Table 23 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that groundwater in the Debarker area contains metals, 1,2,3-trimethylbenzene, PAHs, diesel, and gasoline.

Metals. Chemical analytical results indicate antimony, beryllium, cadmium, selenium, and silver were not detected in groundwater samples. Chemical analytical results indicate metals were detected below applicable RBCs.

VOCs. VOCs were not detected in groundwater samples DB-163-W and DB-199-W. Chemical analytical results indicate 1,2,3-trimethylbenzene was detected in groundwater sample DB-162-W at concentration of 0.000369 mg/L. No applicable RBC is established for 1,2,3-trimethylbenzene.

PAHs. Chemical analytical results indicate a total of 11 PAH compounds were detected in groundwater samples at concentrations below applicable RBCs.

Petroleum. Oil was not detected in groundwater samples. Gasoline was not detected in groundwater sample DB-199-W. Diesel was detected in groundwater sample DB-163-W at a concentration of 0.0494 mg/L, which is below the applicable RBC. Gasoline was detected in sample DB-163-W at a concentration of 0.0324 mg/L, which is below the applicable RBC of 14 mg/L. Gasoline was also detected in the laboratory blank.

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

Debarker Area Investigation Findings

The analytical results indicate detected concentrations of arsenic and chromium in soil samples DB-162-10 and DB-199-11 exceed the occupational RBCs. Arsenic was detected in soil samples DB-162-10 and DB-199-11 at concentrations of 3.75 and 3.87 mg/kg respectively, which exceed the occupational RBC of 1.9 mg/kg, but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil sample DB-199-11 at a concentration of 7.46 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

Diesel was detected in samples DB-162-10 and DB-166-11 at concentrations of 1,480 and 1.6 mg/kg respectively, which are below applicable RBCs. Oil detected in DB-162-10 at a concentration of 6,130 mg/kg, which exceeds the construction worker RBC.

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs.

13: FIRE-SUPPRESSION DIESEL AST AREA (FS)

Background. A former diesel aboveground storage tank (AST) cradle was identified by GRI adjacent to the fire suppression building. The field team collected a shallow soil sample below the footprint of the former AST to evaluate for the potential the drips and/or leaks of diesel fuel that may have occurred.

Data Gap Investigation Results

One shallow soil sample (FSDAST) was collected from the former AST area. Exploration data and observations are summarized below. The exploration location is shown on Figure 10.

Rev.: 1 Rev. Date: 7-30-2018

DEBARKER AREA EXPLORATION SUMMARY

Exploration	Sample	PID	DTW	TD	Chaan	Oden	Date	l amateuda	ا منائد، با م
ID#	collected	(ppm)	(ft)	(ft)	Sheen	Odor	Completed	Longitude	Latitude
FSDAST	SS	0.0	-	1.0	No	No	2/14/2018	-124.23930	43.43588

SS = Soil sample collected only

PID = Highest concentration of VOCs detected, in parts per million

DTW = Depth to groundwater, in ft

TD = Total depth of boring, in ft

- = Depth to groundwater could not be obtained, due to either refusal above the water level or caving

Soil Analytical Results

One soil sample (FSDAST) was analyzed for metals, PAHs, and Dx. Laboratory results are summarized in Table 24 at the end of this report and in the analytical laboratory report included as Appendix B. Chemical testing indicates that soil metals, PAHs, diesel, and oil.

Metals. Chemical analytical results indicate selenium, silver, and thallium were not detected. With the exception of arsenic and chromium, chemical analytical results indicate metals were detected below applicable RBCs. Arsenic was detected at 3.07 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected at 743 mg/kg, which exceeds the applicable RBCs for chromium (VI). However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is greater than the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018).

PAHs. Chemical analytical results indicate a total of 16 PAH compounds were detected in soil at concentrations below applicable RBCs.

Petroleum. Analytical results indicate diesel and oil were detected at concentrations of 701 and 361 mg/kg, respectively, which are below applicable RBCs.

Fire-Suppression Building Investigation Findings

The analytical results indicate detected concentrations of arsenic (3.07 mg/kg) and chromium (743 mg/kg) in soil exceed the applicable RBCs.

FINDINGS AND CONCLUSIONS

Activities conducted during investigation included soil and groundwater sample collection from 104 direct-push explorations and three surface soil samples at the site. The following summarizes the findings of the investigation.

General. Subsurface soils and groundwater at the site generally contain low concentrations of metals, PAHs, and petroleum hydrocarbons. The analytical results of soil and groundwater samples collected

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

during this work address recommendations in the NFA determination issued by the DEQ in 2006 to delineate the vertical and areal extent of low levels of residual TPH by supplementary investigation.

1: Fuel-Oil Release Area (FO). The analytical results indicate the concentration of arsenic and chromium in soil sample FO-118-4 and naphthalene in soil sample FO-111-8 exceed the applicable RBC. Arsenic was detected in sample FO-118-4 at a concentration of 3.12 mg/kg, which exceeds the applicable RBC but is below the natural background concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil sample FO-118-4 at a concentration of 7.5 mg/kg, which exceeds the applicable RBC but is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic and chromium concentrations represent natural background concentrations and are not indicative of anthropogenic sources.

Naphthalene was detected in soil sample FO-111-8 at a concentration of 46.8 mg/kg from the VOC analysis and 0.372 mg/kg from the PAH analysis. The concentration of naphthalene exceeds the occupational RBCs of 23 mg/kg. Elevated concentrations of naphthalene were not disclosed in borings FO-114 and FO-116, which suggests soil exceeding the occupational RBC for naphthalene is limited to a small area surrounding boring FO-111. A slight petroleum sheen and light odor were observed in boring FO-111 from 8 to 10 ft. Based on field observations and chemical data collected for this assessment, the volume of soil exceeding the applicable RBC for naphthalene is estimated to be approximately 200 cubic yards.

The analytical results indicate concentration of analytes in groundwater do not exceed applicable RBCs in the Fuel-Oil Release area.

- 2: Mineral Spirits Release Area (MS). The analytical results indicate the concentration of analytes detected do not exceed applicable RBCs for soil or groundwater. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.
- **3:** Truck Scales and Carpenter Shop (TS/CS). The analytical results indicate the concentration of analytes detected do not exceed applicable RBCs for soil or groundwater. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.
- **4:** Chip Truck Hydraulic Lift Area (CT). The analytical results indicate the detected concentration of oil (6,190 mg/kg) in soil exceeds the construction worker RBC (4,600 mg/kg). The analytical results indicate the concentration of analytes detected do not exceed applicable RBCs for groundwater. Based on the results of this investigation, additional characterization does not appear to be necessary at this time.
- 5: Hog Fuel Hydraulic Lift Area (HF). The analytical results indicate the concentration of analytes detected do not exceed applicable RBCs for soil or groundwater. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.
- **6: Stream Channel Area (SC).** The analytical results indicate detected concentrations of arsenic and chromium in soil samples SC-205-1 (3.12 mg/kg and 80.3 mg/kg, respectively) and SC-206-1 (4.84 mg/kg

Rev.: 1 Rev. Date: 7-30-2018

and 7.11 mg/kg, respectively) exceed the occupational RBC (1.9 mg/kg and 6.3 mg/kg, respectively), and chromium in soil sample SC-205-1 also exceeds the construction worker RBC (49 mg/kg). In our opinion, the elevated arsenic concentration likely represents natural background concentration and is not indicative of anthropogenic sources. Based on receiving site stormwater runoff and the shallow depth of sample collection, the elevated chromium concentration in SC-205-1 of 80.3 mg/kg potentially represents an anthropogenic source. However, the concentration of chromium in SC-205-1 is less than the natural background concentration of 240 mg/kg and, in our opinion, additional characterization and remedial mitigation do not appear to be necessary at this time.

7: North and South "Lowerators" Area (NL/SL). The analytical results indicate detected concentrations of arsenic and chromium in soil sample NL-182-5 exceed the occupational RBCs. Arsenic was detected in sample NL-182-5 at a concentration of 3.97 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in NL-182-5 at a concentration of 8.76 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg, but is below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic and chromium concentrations represent natural background concentrations and are not indicative of anthropogenic sources.

Chemical analytical results indicate 13 PAH compounds were detected in soil samples at concentrations below applicable RBCs. Oil was detected in soil sample SL-180-10 at a concentration of 61,500 mg/kg that exceeds the applicable occupational and construction worker RBCs of 4,600 and 14,000 mg/kg, respectively. A moderate petroleum odor was observed from 6 to 10 ft in boring SL-180. Using field observations, samples were selected for analysis to determine the lateral and vertical extent of compounds within soil that potentially exceed applicable RBCs. In the South "Lowerator" area, field observations did not suggest potential RBC exceedances below a depth of 10 ft. Additionally, field observations did not disclose potential contamination in boring SL-181; therefore, soil samples were not selected for analysis from boring SL-181. Borings NL-182, SL-178, SL-179 met refusal at about 5 to 7 ft due to encountering concrete. Based on field observations, it appeared that the vaults containing the in-ground hydraulic lift for the lowerators were filled with concrete during the mill decommissioning activities. In addition, it appeared that the detected analytes that exceed RBCs are contained in the concrete vault and affected soils are likely limited to the interior of the north lowerator vault and the area to the northwest of the south lowerator.

The analytical results indicate concentration of analytes in groundwater do not exceed applicable RBCs for the North and South "Lowerators" area.

Based on the results of this investigation, additional characterization does not appear to be necessary at this time.

8: Former Mobile/Paint/Fuel Shops Area (SH). The analytical results indicate arsenic was detected in SH-177-5 at a concentration of 4.33 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic concentration likely represents a natural background concentration and is not indicative of anthropogenic sources.

The analytical results indicate the concentration of analytes in groundwater do not exceed applicable RBCs. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.

9: Mobile Shop Area (MO). The analytical results indicate arsenic was detected in MO-173-14 at a concentration of 3.78 mg/kg, which exceeds the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic concentration likely represents a natural background concentration and is not indicative of anthropogenic sources.

The analytical results indicate concentration of analytes in groundwater do not exceed applicable RBCs for the Mobile Shop area. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.

10: South Jordan Point Debris Area (JP). The analytical results indicate detected concentrations of arsenic and chromium in soil samples JP-188-6, JP-189-7, and JP-190-7 exceeding the occupational RBCs. Arsenic was detected in soil samples JP-188-6, JP-189-7, and JP-190-7 at concentrations ranging from 2.39 to 7.07 mg/kg, which exceed the occupational RBC of 1.9 mg/kg, but is below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil samples JP-188-6, JP-189-7, and JP-190-7 at concentrations ranging from 15.6 to 38.3 mg/kg which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg, but are below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic and chromium concentrations likely represent natural background concentrations and are not indicative of anthropogenic sources.

The analytical results indicate concentration of analytes in groundwater do not exceed applicable RBCs for the South Jordan Point Debris area. Based on the results of this investigation, additional characterization and remedial mitigation (for compounds other than asbestos) do not appear to be necessary at this time.

Previous assessments in the Jordan Point area encountered asbestos containing materials in the Jordan Point area (PES, 2006). Asbestos concentration and distribution were not evaluated during the Data Gap Investigation.

11: Boiler and Powerhouse Area (BP). The analytical results indicate detected concentrations of arsenic and chromium in soil samples BP-102-12 and BP-202-4 exceed the applicable RBCs. The concentration of benzo(a)pyrene, naphthalene, and diesel in soil from BP-119-8 and BP-129-8 exceed the applicable RBCs.

Arsenic was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 3.68 and 4.12 mg/kg respectively, which exceed the occupational RBC of 1.9 mg/kg, but are below the natural background

Rev.: 1 Rev. Date: 7-30-2018

arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil samples BP-102-12 and BP-202-4 at concentrations of 11.6 and 13.8 mg/kg which exceed the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentrations are below the natural background chromium concentration for the Coast Range of 240 mg/kg (DEQ, 2018). In our opinion, the elevated arsenic and chromium concentration likely represents a natural background concentration and are not indicative of anthropogenic sources.

Analytical results indicate gasoline was detected in soil samples BP-102-12 and BP-119-8 at concentrations of 0.803 and 161 mg/kg, respectively, which are below applicable RBCs. Diesel was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 27,660 and 10,800 mg/kg, which exceed the construction worker RBC of 4,600 mg/kg. Diesel in soil sample BP-119-8 (27,660 mg/kg) exceeds the occupational RBC of 14,000 mg/kg. Oil was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 14,000 and 5,100 mg/kg, which exceed the construction worker RBC of 4,600 mg/kg.

With the exception of benzo(a)pyrene and naphthalene, PAHs were detected at concentrations below applicable RBCs. Benzo(a)pyrene was detected in soil sample BP-119-8 at a concentration of 2.27 mg/kg, which exceeds the occupational RBCs of 2.1 mg/kg. Naphthalene was detected in soil samples BP-119-8 and BP-129-8 at concentrations of 92.0 and 50.4 mg/kg, which exceed the occupational RBCs of 23 mg/kg.

Field observations and chemical analytical data, suggests soil exceeding the occupational RBCs for the two PAH compounds, diesel, and oil, and the construction worker RBCs for diesel and oil is limited to a small area surrounding borings BP-119 and BP-129. Based on field observations and analytical testing, the volume of soil exceeding the occupational RBCs for benzo(a)pyrene naphthalene, diesel, and oil and the construction worker RBCs for diesel and oil is estimated to be approximately 6,100 cubic yards.

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs for the Boiler and Powerhouse area.

Based on the results of this investigation, previously unidentified soil and groundwater contamination were encountered in the Boiler and Powerhouse area. Analytical testing indicates that the concentration of PAHs, diesel, and oil exceed applicable RBCs.

12: Debarker Area (DB). The analytical results indicate detected concentrations of arsenic and chromium in soil samples DB-162-10 and DB-199-11 exceed the occupational RBCs. Arsenic was detected in soil samples DB-162-10 and DB-199-11 at concentrations of 3.75 and 3.87 mg/kg, respectively, which exceed the occupational RBC of 1.9 mg/kg but are below the natural background arsenic concentration for the Coast Range of 12 mg/kg (DEQ, 2018). Chromium was detected in soil sample DB-199-11 at a concentration of 7.46 mg/kg, which exceeds the occupational RBC for chromium (VI) of 6.3 mg/kg. However, chromium is reported as total chromium concentrations. Additionally, the detected chromium concentration is below the natural background chromium concentration for the Coast Range of 240 mg/kg

Rev.: 1 Rev. Date: 7-30-2018

(DEQ, 2018). Elevated arsenic and chromium concentration likely represents a natural background concentration and are not indicative of anthropogenic sources.

Diesel was detected in samples DB-162-10 and DB-166-11 at concentrations of 1,480 and 1.6 mg/kg respectively, which are below applicable RBCs. Oil detected in DB-162-10 at a concentration of 6,130 mg/kg, which exceeds the applicable construction worker RBC.

The analytical results indicate detected concentrations of compounds in groundwater do not exceed applicable RBCs. Based on the results of this investigation, additional characterization and remedial mitigation do not appear to be necessary at this time.

13: Fire-Suppression Diesel AST Area. The analytical results indicate detected concentrations of arsenic (3.07 mg/kg) and chromium (743 mg/kg) in soil exceed the occupational RBCs of 1.9 mg/kg and 6.3 mg/kg, respectively. In addition, detected concentrations of chromium (743 mg/kg) exceeds the construction worker RBC of 49 mg/kg. In our opinion, the elevated arsenic concentration likely represents a natural background concentration and are not indicative of anthropogenic sources. The elevated chromium concentration may represent an anthropogenic source related to paint used on the fire suppression building.

Remedial Mitigation

Current chemical concentrations from soil and groundwater testing compared to generic RBCs indicate subsurface soils in the FO, CT, SC, NL/SL, SH, MO, JP, BP, DB, and fire suppression building areas of the site contain PAHs, metals, and/or petroleum hydrocarbons at concentrations that are greater than the applicable RBCs considered. Figure 11, RBC Exceedance in Soil North Area, and Figure 12, RBC Exceedance in Soil South Area, present the approximate areas where the concentration of residual contamination from historical industrial activities are greater than applicable RBCs. Concentrations detected in groundwater samples are below the applicable RBCs considered.

Detected metal concentrations in soil at the SC, MO, SH, and JP areas that exceed the applicable RBCs are generally less than the regional default natural background concentrations for metals in the Coast Range (DEQ, 2018). Only the Fire-Suppression Diesel AST area sample result for chromium (743 mg/kg) is greater than the regional default natural background concentration (240 mg/kg) for the Coast Range (DEQ, 2018).

The range of PAHs, metals, and/or petroleum hydrocarbons concentrations detected during this investigation are generally within the range of concentrations detected by the previous environmental investigation completed at the site by others (PES, 2006) that were used as the basis for the NFA determination issued by DEQ in 2006. However, where comparative analysis exists, the concentration of PAHs, metals, and/or petroleum hydrocarbons detected during this investigation are typically not detected or at concentrations less than those detected in 2006. The 2006 investigation compared analytical results to a combination of regulatory levels that included DEQ RBCs published in 2003 and EPA Region 9

Rev.: 1 Rev. Date: 7-30-2018

Preliminary Remediation Goals, dated October 2004. This report compares analytical results to the current RBCs published by DEQ in 2018.

Consistent with the recommendation of the NFA determination, the recent data collected for this investigation should be used to evaluate if subsequent remedial mitigation efforts are necessary to reduce the concentration of contaminants in soil. If land use activities at the site change, we recommend that remedial mitigation efforts be considered to:

- mitigate future potential risk to human health, safety, welfare and the environment by lowering the residual concentrations or eliminating exposure; and,
- satisfy the requirements and recommendations of the NFA determination.

Based on comparison of the analytical results from the Data Gap Investigation to current generic RBCs developed by DEQ (2018) the following areas evaluated in this investigation have concentrations of PAHs, metals, and/or petroleum hydrocarbons that exceed RBCs for soil and we recommend mitigation in these areas if land use activities at the site change:

- Fuel Oil Release Area (FO): Naphthalene (46.8 mg/kg) exceeds the occupational RBC (23 mg/kg)
- Chip Truck Hydraulic Lift Area (CT). Oil (6,190 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
- "Lowerators" Area (NL/SL) Oil (61,500 mg/kg) exceeds occupational and construction worker RBC of 4,600 and 14,000 mg/kg, respectively
- **■** Boiler and Powerhouse Area (BP):
 - -Benzo(a)pyrene (2.27 mg/kg) exceeds occupational RBC (2.1 mg/kg)
 - -Naphthalene (92 mg/kg) exceeds the occupational RBC (23 mg/kg)
 - -Diesel (27,660 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
 - -Oil (14,000 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
- **Debarker Area** (**DB**): Oil (6,130 mg/kg) exceeds the construction worker RBC (4,600 mg/kg)
- Fire-Suppression Diesel AST Area: Chromium (743 mg/kg) exceeds the construction worker RBC (49 mg/kg) and the default natural background concentration (240 mg/kg) for the Coast Range (DEQ, 2018).

LIMITATIONS

This report has been prepared to assist in evaluating soil and groundwater conditions at the above-referenced site. The scope of work was limited to the specific project, location, and activities described herein. In the performance of an assessment of this type, specific information is obtained at specific locations at specific times. This report may be used only by the client and project team within a reasonable time from its issuance. Land-use, on- and off-site conditions, regulatory requirements or other factors may change over time, and additional work may be required with the passage of time.

	The second	
	day Comment	
JOI	dan	
	COVEING	

Data Gap Investigation Report Former Weyerhaeuser Mill Site

Doc. No.: J1-680-RGL-RPT-GRI-00001-00

Rev.: 1 Rev. Date: 7-30-2018

The conclusions and recommendations presented in this report are based on our interpretation of the information obtained through the assessment procedures described in this report. No other warranty or representation, either expressed or implied, is included or intended in this report.

We appreciate the opportunity to be of service to you on this project. Please contact the undersigned if you have any questions regarding this report or require further assistance.

SIGNATURES Report prepared by Mike Mai	rshall, RG, CEG		
Signature	<u>l</u>	Date	7/30/2018
Technical and corporate review CERTIFIE OREGO GEORGE A. FR. E1380	Trala	CEG	
\checkmark	Renews 02/2019		7/30/2018
Signature		Date	
	This document has been submit	ted electronically.	

References

CH2M Hill, Inc., October 1, 1996, Phase II – Ingram Site Investigation, North Bed, Oregon, prepared for Weyerhaeuser Company. DEQ, 2018, Background Levels of Metals in Soils for Cleanups, Fact Sheet, Environmental Cleanup Program, January 25, 2018. DEQ, 2018, Risk-Based Concentrations for Individual Chemicals: Environmental Cleanup Program.

Rev.: 1 Rev. Date: 7-30-2018

DEQ, 2018, Risk-Based Decision Making for the Remediation of Contaminated Sites Guidance includes: Table of Generic Risk-Based Concentrations for Petroleum Constituents and Total Petroleum Hydrocarbons and Generic Remedy for Simple Risk Based Sites. Land Quality Division.

GRI, September 28, 2015, Data Gap Evaluation and Work Plan, South Dunes Site, Oregon Department of Environmental Qulity ECSI #1083, Coos County, Oregon.

Oregon Department of Environmental Quality (DEQ), 2018, Background Levels of Metals in Soils for Cleanups, Fact Sheet, Environmental Cleanup Program.

PES Environmental, Inc., April, 2006, Level II Environmental Assessment, Former Weyerhaeuser Containerboard Mill, North Bend, Oregon, prepared for Weyerhaeuser Company.

SEACOR, 1992, Soil and Groundwater Investigation Report: Weyerhaeuser Paper Company, North Bend Mill.

					C	oncentration	(mg/kg)			
	Compound		Fuel	Oil Release	Area Soil Sam	ples			or Soil Ingestion ct, and Inhalatio	n
		FO-111-8	FO-113-8	FO-114-13	FO-116-14	FO-118-4	FO-203-9	Occupational	Construction Worker	Excavation Worker
	Antimony	NA	NA	NA	NA	ND	NA	NE	NE	NE
	Arsenic	NA	NA	NA	NA	3.12	NA	1.9	15	420
	Beryllium Cadmium	NA NA	NA	NA NA	NA NA	0.106 J ND	NA	2,300	700	19,000
	Chromium	NA NA	NA NA	NA NA	NA NA	7.5	NA NA	1,100 6.3	350 49	9,700 1,400
	Copper	NA NA	NA NA	NA NA	NA NA	2.84	NA NA	47,000	14,000	390,000
Metals	Lead	NA	NA	NA	NA	6.54	NA	800	800	800
ž	Nickel	NA	NA	NA	NA	5.3	NA	22,000	7,000	190,000
	Selenium	NA	NA	NA	NA	ND	NA	NE	NE	NE
	Silver	NA	NA	NA	NA	ND	NA	5,800	1,800	49,000
	Thallium	NA	NA	NA	NA	ND	NA	NE	NE	NE
	Zinc	NA	NA	NA	NA	28.1	NA	NE	NE	NE
	Mercury	NA	NA	NA	NA	0.00807 B J	NA	350	110	2,900
	Acetone	ND	NA	0.0186	0.0133 J V3	NA	NA	NE	NE	NE
	Acrylonitrile	ND	NA	ND	ND	NA	NA	4	40	1,100
	Benzene Bromobenzene	ND ND	NA NA	ND ND	ND ND	NA NA	NA NA	37 NE	380 NE	11,000 NE
	Bromodichloromethane	ND ND	NA NA	ND	ND ND	NA NA	NA NA	15	230	6,300
	Bromoform	ND ND	NA NA	ND	ND ND	NA NA	NA NA	260	2,700	74,000
	Bromomethane	ND	NA NA	ND	ND	NA NA	NA NA	750	370	10,000
	N-butylbenzene	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Sec-butylbenzene	0.0797	NA	ND	ND	NA	NA	NE	NE	NE
	Tert-Butylbenzene	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Carbon tetrachloride	ND	NA	ND	ND	NA	NA	34	320	8,900
	Chlorobenzene	ND	NA	ND	ND	NA	NA	8,700	4,700	130,000
	Chlorodibromomethane	ND	NA	ND	ND	NA	NA	1 <i>7</i>	210	5,800
	Chloroethane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Chloroform	ND	NA	ND	ND	NA	NA	26	410	11,000
	Chloromethane 2-Chlorotoluene	ND ND	NA NA	ND ND	ND ND	NA NA	NA NA	25,000 NE	25,000 NE	700,000 NE
	4-Chlorotoluene	ND ND	NA NA	ND ND	ND	NA NA	NA NA	NE NE	NE NE	NE NE
	1,2-dibromo-3-chloropropane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,2-dibromoethane	ND	NA	ND	ND	NA	NA	0.73	9	250
	Dibromomethane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,2-dichlorobenzene	ND	NA	ND	ND	NA	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,4-dichlorobenzene	ND	NA	ND	ND	NA	NA	64	1,300	36,000
	Dichlorodifluoromethane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,1-dichloroethane	ND	NA	ND	ND	NA	NA	260	3,200	89,000
	1,2-dichloroethane 1,1-dichloroethene	ND ND	NA	ND	ND	NA	NA NA	NE	NE	NE
	Cis-1,2-dichloroethene	ND ND	NA NA	ND ND	ND ND	NA NA	NA NA	29,000 2,300	13,000 710	370,000 20,000
	Trans-1,2-dichloroethene	ND	NA NA	ND	ND	NA NA	NA NA	23,000	7,100	200,000
	1,2-dichloropropane	ND	NA	ND	ND	NA	NA	NE NE	NE	NE
	1,1-dichloropropene	ND	NA	ND	ND	NA	NA	NE	NE	NE
VOCs	1,3-dichloropropane	ND	NA	ND	ND	NA	NA	NE	NE	NE
>	Cis-1,3-dichloropropene	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Trans-1,3-dichloropropene	ND	NA	ND	ND	NA	NA	NE	NE	NE
	2,2-dichloropropane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Di-isopropyl ether	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Ethylbenzene	0.0158 J	NA	ND	ND	NA	NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	ND	NA	ND	ND	NA	NA	NE ••••••	NE	NE
	Isopropylbenzene P-isopropyltoluene	0.0297 J 0.0133 J	NA NA	ND ND	ND ND	NA NA	NA NA	57,000 NE	27,000 NE	750,000 NE
	2-butanone (Mek)	0.0133 J ND	NA NA	ND ND	ND ND	NA NA	NA NA	NE NE	NE NE	NE NE
	Methylene chloride	ND ND	NA NA	ND	ND ND	NA NA	NA NA	NE NE	NE NE	NE NE
	4-methyl-2-pentanone (Mibk)	ND	NA	ND	ND	NA	NA	NE	NE	NE
	Methyl tert-butyl ether	ND	NA	ND	ND	NA	NA	1,100	12,000	320,000
	Naphthalene	46.8	NA	ND	ND	NA	NA	23	580	16,000
	N-propylbenzene	0.00794 J	NA	ND	ND	NA	NA	NE	NE	NE
	Styrene	ND	NA	ND	ND	NA	NA	130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,1,2,2-tetrachloroethane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,1,2-trichlorotrifluoroethane	ND	NA	ND	ND	NA	NA	NE 1.000	NE 1.000	NE Fo. 200
	Tetrachloroethene	ND	NA NA	ND	ND	NA NA	NA NA	1,000	1,800	50,000
	Toluene 1,2,3-trichlorobenzene	ND ND	NA NA	ND ND	0.00057 J V3 ND	NA NA	NA NA	88,000 NE	28,000 NE	770,000 NE
	1,2,4-trichlorobenzene	ND ND	NA NA	ND	ND ND	NA NA	NA NA	NE NE	NE NE	NE NE

Table 1: SUMMARY OF FUEL OIL RELEASE AREA SOIL CHEMICAL DATA

					Co	oncentration	(mg/kg)			
	Compound		Fuel	Oil Release	Area Soil Samp	oles			or Soil Ingestion	
		FO-111-8	FO-113-8	FO-114-13	FO-116-14	FO-118-4	FO-203-9	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	ND	NA	ND	ND	NA	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	ND	NA	ND	ND	NA	NA	26	54	1,500
	Trichloroethene	ND	NA	ND	ND	NA	NA	51	130	3,700
	Trichlorofluoromethane	ND	NA	ND	ND	NA	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	ND	NA	ND	ND	NA	NA	NE	NE	NE
	1,2,4-trimethylbenzene	0.0546 J	NA	ND	0.00036 J V3	NA	NA	6,900	2,900	81,000
	1,2,3-trimethylbenzene	0.0263 J	NA	ND	ND	NA	NA	NE	NE	NE
	1,3,5-trimethylbenzene	0.0261 J	NA	ND	ND	NA	NA	6,900	2,900	81,000
	Vinyl chloride	ND	NA	ND	ND	NA	NA	4.4	34	950
	Xylenes, total	0.0325 J	NA	ND	ND	NA	NA	25,000	20,000	560,000
	Anthracene	0.173	ND	ND	ND	ND	ND	350,000	110,000	>Max
	Acenaphthene	0.267	0.00185 J	0.0180	ND	ND	ND	70,000	21,000	590,000
	Acenaphthylene	ND	ND	ND	ND	ND	ND	NE	NE	NE
	Benzo(a)anthracene	0.0626	ND	ND	ND	ND	ND	21	170	4,800
	Benzo(a)pyrene	0.0234	ND	ND	ND	ND	ND	2.1	17	490
	Benzo(b)fluoranthene	0.0275	ND	ND	ND	ND	ND	21	1 <i>7</i> 0	4,900
	Benzo(g,h,i)perylene	0.00965 J	ND	ND	ND	ND	ND	NE	NE	NE
	Benzo(k)fluoranthene	0.0071 J	ND	ND	ND	ND	ND	210	1,700	49,000
S	Chrysene	0.0914	ND	ND	ND	ND	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	0.00453 J	ND	ND	ND	ND	ND	2.1	17	490
4	Fluoranthene	0.222	ND	ND	ND	ND	ND	30,000	10,000	280,000
	Fluorene	0.188	0.00104 J	0.00122 J	ND	ND	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	0.00405 J	ND	ND	ND	ND	ND	21	170	4,900
	Naphthalene	0.372	ND	0.0107 J	ND	ND	ND	23	580	16,000
	Phenanthrene	0.455	ND	0.000870 J	ND	ND	ND	NE	NE	NE
	Pyrene	0.287	0.000835 J	ND	ND	ND	ND	23,000	7,500	210,000
	1-methylnaphthalene	0.0774	ND	ND	ND	ND	ND	NE	NE	NE
	2-methylnaphthalene	0.121	ND	ND	ND	ND	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	NA	NA	0.59	4.9	140
	Diesel-Range Organics	375 J3	NA	NA	NA	3.45 J	NA	14,000	4,600	>Max
	Residual-Range Organics	477 J3	NA	NA	NA	ND	NA	14,000	4,600	>Max
	Gasoline-Range Organics	1.66	NA	NA	NA	NA	NA	20,000	9,700	>Max

- ND: Not detected at concentration greater than method detection limit.
- NA: NA: Compound not analyzed for this sample.
 - J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
 - **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

			Conce	ntration (mg/l)	
	Compound	Fuel Oil Releas	e Area Groundwat	er Samples	DEQ RBCs for Groundwate in Excavation
		FO-110-W	FO-111-W	FO-118-W	Construction & Excavation Worker
	Antimony	ND	ND	NA	worker NE
	Arsenic	0.0124	0.00188 J	NA	6.3
	Beryllium	0.00135 J	ND	NA	270
	Cadmium	0.00108 J	ND	NA	130
	Chromium	0.119	ND	NA	9.4
	Copper	0.0925	ND	NA	5,400
Metals	Lead	0.0193	0.000827 J	NA	>\$
Σ	Nickel	0.0823	ND	NA	>\$
	Selenium	ND	ND	NA	NE
	Silver	ND	ND	NA	1,100
	Thallium	0.000342 B J	ND	NA	NE
	Zinc	1.05	ND	NA	NE
	Mercury	0.0000553 J J3	0.0000492 J J3	NA	>\$
	Acetone	ND	ND	ND	NE
	Acrolein	ND J4	ND J4	ND J4	NE NE
	Acrylonitrile	ND	ND	ND	0.25
	Benzene	ND	ND	ND	1.8
	Bromobenzene	ND	ND	ND	NE
	Bromodichloromethane	ND	ND	ND	0.45
	Bromoform	ND	ND	ND	14
	Bromomethane	ND	ND J3	ND	1.2
	N-butylbenzene	ND	ND	ND	NE
	Sec-butylbenzene	ND	ND	ND	NE NE
	Tert-Butylbenzene	ND	ND	ND	NE NE
	Carbon tetrachloride	ND	ND	ND	1.8
	Chlorobenzene	ND	ND	ND	10
	Chlorodibromomethane	ND	ND	ND	0.61
	Chloroethane	ND ND	ND J3	ND ND	2,400
	Chloroform		ND		·
	Chloromethane	ND ND		ND ND	0.72 22
	2-Chlorotoluene	ND ND	ND J3 J4		
	4-Chlorotoluene		ND	ND	NE NE
		ND	ND	ND	NE NE
	1,2-dibromo-3-chloropropane	ND	ND	ND	NE NE
	1,2-dibromoethane	ND	ND	ND	NE NE
	Dibromomethane	ND	ND	ND	NE
	1,2-dichlorobenzene	ND	ND	ND	37
	1,3-dichlorobenzene	ND	ND	ND	NE
	1,4-dichlorobenzene	ND	ND	ND	1.5
	Dichlorodifluoromethane	ND	ND	ND	NE 10
	1,1-dichloroethane	ND	ND	ND	10
	1,2-dichloroethane	ND	ND	ND	NE
	1,1-dichloroethene	ND	ND J3	ND	44
	Cis-1,2-dichloroethene	ND	ND	ND	18
	Trans-1,2-dichloroethene	ND	ND	ND	180
	1,2-dichloropropane	ND	ND	ND	NE
3	1,1-dichloropropene	ND	ND	ND	NE
•	1,3-dichloropropane	ND	ND	ND	NE
	Cis-1,3-dichloropropene	ND	ND	ND	NE
	Trans-1,3-dichloropropene	ND	ND	ND	NE
	2,2-dichloropropane	ND	ND J3	ND	NE
	Di-isopropyl ether	ND	ND	ND	NE
	Ethylbenzene	ND	ND	ND	4.5
	Hexachloro-1,3-butadiene	ND	ND	ND	NE
	Isopropylbenzene	ND	ND	ND	51
	P-isopropyltoluene	ND	ND	ND	NE
	2-butanone (Mek)	ND	ND	ND	NE
	Methylene chloride	ND	ND	ND	NE
	4-methyl-2-pentanone (Mibk)	ND	ND	ND	NE
	Methyl tert-butyl ether	ND	ND	ND	63
	Naphthalene	ND	ND	ND	0.5
	N-propylbenzene	ND	ND	ND	NE
	Styrene	ND	ND	ND	170
	1,1,1,2-tetrachloroethane	ND	ND	ND	NE
	1,1,2,2-tetrachloroethane	ND	ND	ND	NE
	1,1,2-trichlorotrifluoroethane	ND	ND J3	ND	>\$
	Tetrachloroethene	ND	ND	ND	6
	Toluene	ND	ND	ND	220
	1,2,3-trichlorobenzene	ND	ND	ND	NE

Table 2: SUMMARY OF FUEL OIL RELEASE AREA GROUNDWATER CHEMICAL DATA

			Conce	entration (mg/l)	
	Compound	Fuel Oil Releas	e Area Groundwat	er Samples	DEQ RBCs for Groundwater in Excavation
		FO-110-W	FO-111-W	FO-118-W	Construction & Excavation Worker
	1,2,4-trichlorobenzene	ND	ND	ND	NE
	1,1,1-trichloroethane	ND	ND	ND	1,100
	1,1,2-trichloroethane	ND	ND	ND	0.049
	Trichloroethene	ND	ND	ND	0.43
	Trichlorofluoromethane	ND	ND	ND	160
	1,2,3-trichloropropane	ND	ND	ND	NE
	1,2,4-trimethylbenzene	ND	ND	ND	6
	1,2,3-trimethylbenzene	ND	ND	ND	NE
	1,3,5-trimethylbenzene	ND	ND	ND	8
	Vinyl chloride	ND	ND J3 J4	ND	0.96
	Xylenes, total	ND	ND	ND	23
	Anthracene	ND T8	ND	ND	>\$
	Acenaphthene	ND T8	ND	ND	>\$
	Acenaphthylene	ND T8	ND	ND	NE
	Benzo(a)anthracene	ND T8	ND	ND	>\$
	Benzo(a)pyrene	ND T8	ND	ND	>\$
	Benzo(b)fluoranthene	0.0000255 J T8	0.00000721 B J	ND	>\$
	Benzo(g,h,i)perylene	0.0000986 J T8	0.00000248 B J	ND	NE
	Benzo(k)fluoranthene	ND T8	ND	ND	>\$
	Chrysene	0.0000355 J T8	ND	ND	>\$
PAHs	Dibenz(a,h)anthracene	ND T8	ND	ND	>\$
Δ.	Fluoranthene	ND T8	ND	ND	>\$
	Fluorene	ND T8	ND	ND	>\$
	Indeno(1,2,3-cd)pyrene	ND T8	ND	ND	>\$
	Naphthalene	ND T8	0.0000242 B J	0.0000599 J	0.5
	Phenanthrene	ND T8	ND	ND	NE
	Pyrene	0.0000512 J T8	ND	ND	>\$
	1-methylnaphthalene	ND T8	ND	ND	NE
	2-methylnaphthalene	ND T8	ND	ND	NE
	2-chloronaphthalene	ND T8	ND	ND	NE
	Diesel-Range Organics	NA	0.0416 J	NA	>\$
	Residual-Range Organics	NA	ND	NA	>\$
	Gasoline-Range Organics	NA	ND	NA	14

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- $T8: \ Sample(s) \ received \ past/too \ close \ to \ holding \ time \ expiration.$
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the RBC for groundwater in excavation for the construction and excavation worker

Revision: 1

	Compound		Mineral Sp	oirits Area S		entration (mg	DEQ RBCs fo	or Soil Ingestion	
		MS-131-9	MS-131-21	MS-132-9	MS-133-9	MS-185-4	Occupational	Construction Worker	
	Antimony	NA	NA	NA	NA	NA	NE	NE NE	NE NE
	Arsenic	NA	NA	NA	NA	NA	1.9	15	420
	Beryllium	NA	NA	NA	NA	NA	2,300	700	19,000
	Cadmium	NA	NA	NA	NA	NA	1,100	350	9,700
	Chromium	NA	NA	NA	NA	NA	6.3	49	1400
tals	Copper	NA NA	NA NA	NA NA	NA NA	NA NA	47,000 800	14,000 800	390,000 800
Metals	Nickel	NA NA	NA NA	NA NA	NA NA	NA NA	22,000	7,000	190,000
	Selenium	NA	NA	NA	NA	NA	NE NE	NE	NE
	Silver	NA	NA	NA	NA	NA	5,800	1,800	49,000
	Thallium	NA	NA	NA	NA	NA	NE	NE	NE
	Zinc	NA	NA	NA	NA	NA	NE	NE	NE
	Mercury	NA	NA	NA	NA	NA	350	110	2,900
	Acetone	ND	ND	0.0168 J	ND	NA	NE	NE	NE
	Acrylonitrile	ND	ND	ND	ND	NA	4	40	1,100
	Benzene	ND	ND	ND	ND	NA	37	380	11,000
	Bromobenzene Bromodichloromethane	ND ND	ND ND	ND ND	ND ND	NA NA	NE 15	NE 230	NE 6,300
	Bromoform	ND ND	ND	ND ND	ND ND	NA NA	260	2,700	74,000
	Bromomethane	ND	ND	ND	ND	NA NA	750	370	10,000
	N-butylbenzene	0.0704	ND	ND	ND	NA	NE	NE	NE
	Sec-butylbenzene	0.0442	ND	ND	ND	NA	NE	NE	NE
	Tert-Butylbenzene	ND	ND	ND	ND	NA	NE	NE	NE
	Carbon tetrachloride	ND	ND	ND	ND	NA	34	320	8,900
	Chlorobenzene	ND	ND	ND	ND	NA	8,700	4,700	130,000
	Chlorodibromomethane	ND	ND	ND	ND	NA	17	210	5,800
	Chloroethane	ND	ND	ND	ND	NA	NE 26	NE 410	NE
	Chloroform Chloromethane	ND ND	ND ND	ND ND	ND ND	NA NA	26 25,000	410 25,000	11,000 700,000
	2-Chlorotoluene	ND	ND	ND	ND	NA NA	25,000 NE	23,000 NE	700,000 NE
	4-Chlorotoluene	ND	ND	ND	ND	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	ND	ND	ND	ND	NA	NE	NE	NE
	1,2-dibromoethane	ND	ND	ND	ND	NA	0.73	9	250
	Dibromomethane	ND	ND	ND	ND	NA	NE	NE	NE
	1,2-dichlorobenzene	ND	ND	ND	ND	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	ND	ND	ND	ND	NA	NE	NE	NE
	1,4-dichlorobenzene	ND	ND	ND	ND	NA	64 NE	1,300	36,000
	Dichlorodifluoromethane 1,1-dichloroethane	ND ND	ND NA	ND ND	ND ND	NA NA	NE 260	NE 3,200	NE 89,000
	1,2-dichloroethane	ND	ND	ND	ND	NA NA	NE	NE	NE
	1,1-dichloroethene	ND	ND	ND	ND	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	ND	ND	0.0052 J	ND	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	ND	ND	ND	ND	NA	23,000	7,100	200,000
	1,2-dichloropropane	ND	ND	ND	ND	NA	NE	NE	NE
S	1,1-dichloropropene	ND	ND	ND	ND	NA	NE	NE	NE
VOCs	1,3-dichloropropane	ND	ND	ND	ND	NA	NE	NE	NE
	Cis-1,3-dichloropropene	ND	ND	ND	ND	NA	NE	NE	NE
	Trans-1,3-dichloropropene	ND	ND	ND	ND	NA NA	NE NE	NE NE	NE
	2,2-dichloropropane Di-isopropyl ether	ND ND	ND ND	ND ND	ND ND	NA NA	NE NE	NE NE	NE NE
	Ethylbenzene	ND	ND	ND	ND	NA NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	ND	ND	ND	ND	NA	NE NE	NE	NE
	Isopropylbenzene	0.00767 J	ND	ND	ND	NA	57,000	27,000	750,000
	P-isopropyltoluene	0.0308	ND	ND	ND	NA	NE	NE	NE
	2-butanone (Mek)	ND	ND	ND	ND	NA	NE	NE	NE
	Methylene chloride	ND	ND	ND	ND	NA	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	ND	ND	ND	ND	NA	NE	NE	NE
	Methyl tert-butyl ether	ND 0.00351	ND	ND	ND	NA	1,100	12,000	320,000
	Naphthalene	0.0935 J	ND	ND	ND	NA NA	23 NE	580	16,000
	N-propylbenzene Styrono	0.0264 J	ND ND	ND	ND	NA NA	NE 130,000	NE 56,000	NE >Max
	Styrene 1,1,1,2-tetrachloroethane	ND ND	ND ND	ND ND	ND ND	NA NA	130,000 NE	56,000 NE	>Max NE
	1,1,2,2-tetrachloroethane	ND ND	ND	ND ND	ND ND	NA NA	NE NE	NE NE	NE NE
	1,1,2-trichlorotrifluoroethane	ND	ND	ND	ND	NA	NE	NE	NE
	Tetrachloroethene	ND	ND	ND	ND	NA	1,000	1,800	50,000
	Toluene	ND	ND	ND	ND	NA	88,000	28,000	770,000
	1,2,3-trichlorobenzene	ND	ND	ND	ND	NA	NE	NE	NE
	1,2,4-trichlorobenzene	ND	ND	ND	ND	NA	NE	NE	NE

Table 3: SUMMARY OF MINERAL SPIRITS AREA SOIL CHEMICAL DATA

					Conce	entration (mg	g/kg)		
	Compound		Mineral Sp	oirits Area S	oil Samples		•	or Soil Ingestion ct, and Inhalatio	•
		MS-131-9	MS-131-21	MS-132-9	MS-133-9	MS-185-4	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	ND	ND	ND	ND	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	ND	ND	ND	ND	NA	26	54	1,500
	Trichloroethene	ND	ND	ND	ND	NA	51	130	3,700
	Trichlorofluoromethane	ND	ND	ND	ND	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	ND	ND	ND	ND	NA	NE	NE	NE
	1,2,4-trimethylbenzene	ND	ND	ND	0.00101 J	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	ND	ND	ND	0.00045 J	NA	NE	NE	NE
	1,3,5-trimethylbenzene	ND	ND	ND	ND	NA	6,900	6,900	81,000
	Vinyl chloride	ND	ND	ND	ND	NA	4.4	34	950
	Xylenes, total	ND	ND	ND	ND	NA	25,000	20,000	560,000
	Anthracene	0.00333 J	ND	ND	ND	0.0148	350,000	110,000	>Max
	Acenaphthene	ND	0.0012 J	ND	ND	ND	70,000	21,000	590,000
	Acenaphthylene	ND	ND	ND	ND	ND	NE	NE	NE
	Benzo(a)anthracene	0.0022 J	ND	ND	ND	ND	21	170	4,800
	Benzo(a)pyrene	0.00265 J	ND	ND	ND	ND	2.1	1 <i>7</i>	490
	Benzo(b)fluoranthene	0.00275 J	ND	ND	ND	ND	21	170	4,900
	Benzo(g,h,i)perylene	0.00566 J	ND	ND	ND	ND	NE	NE	NE
	Benzo(k)fluoranthene	0.00086 J	ND	ND	ND	ND	210	1,700	49,000
(C	Chrysene	0.00204 J	ND	ND	ND	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	2.1	1 <i>7</i>	490
Ь	Fluoranthene	0.00857	ND	ND	ND	0.00701	30,000	10,000	280,000
	Fluorene	0.0415	ND	ND	ND	0.0562	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	0.00416 J	ND	ND	ND	ND	21	170	4,900
	Naphthalene	0.319	ND	ND	ND	ND	23	580	16,000
	Phenanthrene	0.0235	ND	ND	ND	0.0702	NE	NE	NE
	Pyrene	0.0103	ND	ND	ND	0.00719	23,000	7,500	210,000
	1-methylnaphthalene	0.492	ND	ND	ND	ND	NE	NE	NE
	2-methylnaphthalene	0.459	ND	ND	ND	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	NA	0.59	4.9	140
	Diesel-Range Organics	1,150	ND	NA	NA	ND	14,000	4,600	>Max
	Residual-Range Organics	69.6	ND	NA	NA	4.59	14,000	4,600	>Max
	Gasoline-Range Organics	NA	NA	NA	NA	NA	20,000	9,700	>Max

- ND: Not detected at concentration greater than method detection limit.
- NA: NA: Compound not analyzed for this sample.
 - $\ensuremath{\mathsf{J}}\xspace$ The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
 - **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

			Conc	entration (mg/L	
	Compound		rits Groundwater		DEQ RBCs for Groundwate in Excavation Construction & Excavation
		MS-131-W	MS-134-W	MS-136-W	Worker
	Antimony	0.000804 J	NA	NA	NE
	Arsenic	0.0164	NA	NA	6.3
	Beryllium Cadmium	ND	NA	NA NA	270
	Chromium	ND 0.00933 J	NA NA	NA NA	130 9.4
	Copper	0.0104	NA NA	NA NA	5,400
Metals	Lead	0.00218 B	NA	NA	>S
≥ N	Nickel	0.00505 J	NA	NA	>\$
	Selenium	ND	NA	NA	NE
	Silver	ND	NA	NA	1,100
	Thallium	0.00218	NA	NA	NE
	Zinc	0.0422 J	NA	NA	NE
	Mercury	0.0000823 B J	NA	NA	>\$
	Acetone	ND J3	ND J3	NA	NE
	Acrolein	ND	ND	NA	NE
	Acrylonitrile	ND	ND	NA	0.25
	Benzene	ND	ND	NA	1.8
	Bromobenzene	ND	ND	NA	NE
	Bromodichloromethane	ND	ND	NA	0.45
	Bromoform	ND	ND	NA	14
	Bromomethane	ND	ND	NA	1.2
	N-butylbenzene	0.00359	ND	NA NA	NE NE
	Sec-butylbenzene Tert-Butylbenzene	0.00294	ND ND	NA NA	NE NE
	Carbon tetrachloride	0.000693 J			
	Chlorobenzene	ND ND	ND ND	NA NA	1.8
	Chlorodibromomethane	ND ND	ND	NA NA	0.61
	Chloroethane	ND ND	ND	NA NA	2,400
	Chloroform	ND	ND	NA NA	0.72
	Chloromethane	ND	ND	NA NA	22
	2-Chlorotoluene	ND	ND	NA	NE
	4-Chlorotoluene	ND	ND	NA	NE NE
	1,2-dibromo-3-chloropropane	ND	ND	NA	NE NE
	1,2-dibromoethane	ND	ND	NA	NE
	Dibromomethane	ND	ND	NA	NE
	1,2-dichlorobenzene	ND	ND	NA	37
	1,3-dichlorobenzene	ND	ND	NA	NE
	1,4-dichlorobenzene	ND	ND	NA	1.5
	Dichlorodifluoromethane	ND	ND	NA	NE
	1,1-dichloroethane	ND	ND	NA	10
	1,2-dichloroethane	ND	ND	NA	NE
	1,1-dichloroethene	ND	ND	NA	44
	Cis-1,2-dichloroethene	ND	ND	NA	18
	Trans-1,2-dichloroethene	ND	ND	NA	180
	1,2-dichloropropane	ND	ND	NA	NE NE
	1,1-dichloropropene	ND	ND	NA	NE NE
	1,3-dichloropropane	ND	ND	NA NA	NE NE
	Cis-1,3-dichloropropene	ND	ND	NA NA	NE NE
	Trans-1,3-dichloropropene 2,2-dichloropropane	ND ND	ND	NA NA	NE NE
	Di-isopropyl ether	ND ND	ND ND	NA NA	NE NE
	Ethylbenzene	0.000498 J	ND ND	NA NA	4.5
	Hexachloro-1,3-butadiene	0.000498 J ND	ND	NA NA	NE
	Isopropylbenzene	0.00112	ND	NA NA	51
	P-isopropyltoluene	0.00331	ND	NA	NE NE
	2-butanone (Mek)	ND	ND	NA NA	NE NE
	Methylene chloride	ND	ND	NA	NE
	4-methyl-2-pentanone (Mibk)	ND	ND	NA	NE
	Methyl tert-butyl ether	ND	ND	NA	63
	Naphthalene	0.00707	ND	NA	0.5
	N-propylbenzene	0.00291	ND	NA	NE
	Styrene	ND	ND	NA	170
	1,1,1,2-tetrachloroethane	ND	ND	NA	NE
	1,1,2,2-tetrachloroethane	ND	ND	NA	NE
	1,1,2-trichlorotrifluoroethane	ND	ND	NA	>\$
	Tetrachloroethene	ND	ND	NA	6
	Toluene	0.00149	ND	NA	220
	1,2,3-trichlorobenzene	ND	ND	NA	NE

Table 4: SUMMARY OF MINERAL SPIRITS GROUNDWATER CHEMICAL DATA

		Conc	centration (mg/L)	
Compound	Mineral Spi	rits Groundwater	Samples	DEQ RBCs for Groundwater in Excavation
	MS-131-W	MS-134-W	MS-136-W	Construction & Excavation Worker
1,2,4-trichlorobenzene	ND	ND	NA	NE
1,1,1-trichloroethane	ND	ND	NA	1,100
1,1,2-trichloroethane	ND	ND	NA	0.049
Trichloroethene	ND	ND	NA	0.43
Trichlorofluoromethane	ND	ND	NA	160
1,2,3-trichloropropane	ND	ND	NA	NE
1,2,4-trimethylbenzene	0.000662 J	0.000408 J	NA	6
1,2,3-trimethylbenzene	0.000515 J	ND	NA	NE
1,3,5-trimethylbenzene	ND	ND	NA	8
Vinyl chloride	ND	ND	NA	0.96
Xylenes, total	0.0021 J	ND	NA	23
Anthracene	ND	ND	ND	>S
Acenaphthene	ND	ND	ND	>S
Acenaphthylene	ND	ND	ND	NE
Benzo(a)anthracene	0.0000416 J	ND	ND	>S
Benzo(a)pyrene	0.0000987	ND	ND	>\$
Benzo(b)fluoranthene	0.0000842	ND	ND	>\$
Benzo(g,h,i)perylene	0.000197 J3	ND J3	.00000251 B J	NE
Benzo(k)fluoranthene	0.000022 J	ND	ND	>S
Chrysene	0.0000313 J	ND	ND	>S
Dibenz(a,h)anthracene	ND J3	ND J3	ND J3	>S
Fluoranthene	0.000118	ND	ND	>\$
Fluorene	ND	ND	ND	>S
Indeno(1,2,3-cd)pyrene	0.00016 J3	ND J3	ND J3	>\$
Naphthalene	0.00054	0.0000211 J	0.0000268 J	0.5
Phenanthrene	ND	ND	ND	NE
Pyrene	0.000189	ND	ND	>\$
1-methylnaphthalene	ND	ND	ND	NE
2-methylnaphthalene	ND	ND	ND	NE
2-chloronaphthalene	ND	ND	ND	NE
Diesel-Range Organics	15	NA	NA	>\$
Residual-Range Organics	2.21	NA	NA	>\$
Gasoline-Range Organics	0.38 B	NA	NA	14

- ND: Not detected at concentration greater than method detection limit.
- NA: Compound not analyzed for this sample.
- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- $\label{thm:constraint} T8: \ Sample(s) \ received \ past/too \ close \ to \ holding \ time \ expiration.$
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the Risk-Based Concentration for groundwater in excavation for the construction and excavation worker receptor scenario for this compound.

		Truck Sc	ales and Car	penter Shop	Concentrati Area Soil		for Soil Ingestion	n, Dermal
	Compound		Sam	-		Contact, and Inhalation Construction Excavation		
		TS-192-8	TS-193-15*	TS-195-11	CS-198-9	Occupational	Worker	Excavation Worker
	Antimony	NA	NA	NA	NA	NE	NE	NE
	Arsenic	NA NA	NA	NA	NA	1.9	15	420
	Beryllium Cadmium	NA NA	NA NA	NA NA	NA NA	2,300 1,100	700 350	19,000 9,700
	Chromium	NA NA	NA NA	NA NA	NA NA	6.3	49	1400
	Copper	NA NA	NA NA	NA NA	NA	47,000	14,000	390,000
Metals	Lead	NA	NA	NA	NA	800	800	800
Σ	Nickel	NA	NA	NA	NA	22,000	7,000	190,000
	Selenium	NA	NA	NA	NA	NE	NE	NE
	Silver	NA	NA	NA	NA	5,800	1,800	49,000
	Thallium	NA	NA	NA	NA	NE	NE	NE
	Zinc	NA NA	NA	NA NA	NA NA	NE 350	NE 110	NE
	Mercury	NA NA	NA	NA	NA	350	110 NE	2,900
	Acetone Acrylonitrile	NA NA	NA NA	NA NA	NA NA	NE 4	NE 40	NE 1,100
	Benzene	NA NA	NA NA	NA NA	NA NA	37	380	11,000
	Bromobenzene	NA	NA	NA	NA	NE	NE	NE
	Bromodichloromethane	NA	NA	NA	NA	15	230	6,300
	Bromoform	NA	NA	NA	NA	260	2,700	74,000
	Bromomethane	NA	NA	NA	NA	750	370	10,000
	N-butylbenzene	NA	NA	NA	NA	NE	NE	NE
	Sec-butylbenzene	NA	NA	NA	NA	NE	NE	NE
	Tert-Butylbenzene	NA	NA	NA	NA	NE 2.4	NE	NE
	Carbon tetrachloride Chlorobenzene	NA NA	NA	NA NA	NA NA	34	320	8,900
	Chlorodibromomethane	NA NA	NA NA	NA NA	NA NA	8,700 17	4,700 210	130,000 5,800
	Chloroethane	NA NA	NA NA	NA NA	NA NA	NE	NE	3,800 NE
	Chloroform	NA	NA	NA	NA	26	410	11,000
	Chloromethane	NA	NA	NA	NA	25,000	25,000	700,000
	2-Chlorotoluene	NA	NA	NA	NA	NE	NE	NE
	4-Chlorotoluene	NA	NA	NA	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	NA	NA	NA	NA	NE	NE	NE
	1,2-dibromoethane	NA	NA	NA	NA	0.73	9	250
	Dibromomethane	NA	NA	NA	NA	NE	NE	NE
	1,2-dichlorobenzene	NA	NA	NA	NA	36,000	20,000	560,000
	1,3-dichlorobenzene 1,4-dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NE 64	NE 1,300	NE 36,000
	Dichlorodifluoromethane	NA NA	NA NA	NA NA	NA NA	NE	1,300 NE	36,000 NE
	1,1-dichloroethane	NA	NA	NA	NA	260	3,200	89,000
	1,2-dichloroethane	NA	NA	NA	NA	NE	NE NE	NE
	1,1-dichloroethene	NA	NA	NA	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA	NA	NA	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	NA	NA	NA	23,000	7,100	200,000
	1,2-dichloropropane	NA	NA	NA	NA	NE	NE	NE
C	1,1-dichloropropene	NA	NA	NA	NA	NE	NE	NE
VOCs	1,3-dichloropropane	NA	NA	NA	NA	NE	NE	NE
	Cis-1,3-dichloropropene Trans-1,3-dichloropropene	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	2,2-dichloropropane	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	Di-isopropyl ether	NA NA	NA NA	NA NA	NA	NE	NE	NE
	Ethylbenzene	NA	NA	NA	NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA	NA	NA	NA	NE	NE	NE
	Isopropylbenzene	NA	NA	NA	NA	5 <i>7,</i> 000	27,000	750,000
	P-isopropyltoluene	NA	NA	NA	NA	NE	NE	NE
	2-butanone (Mek)	NA	NA	NA	NA	NE	NE	NE
	Methylene chloride	NA	NA	NA	NA	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NA	NA	NA	NE	NE	NE
	Methyl tert-butyl ether	NA NA	NA NA	NA NA	NA NA	1,100	12,000	320,000
	Naphthalene	NA NA	NA NA	NA NA	NA NA	23 NE	580 NE	16,000 NE
	N-propylbenzene Styrene	NA NA	NA NA	NA NA	NA NA	NE 130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	NA NA	NA NA	NA NA	NA NA	130,000 NE	36,000 NE	> Max NE
	1,1,2,2-tetrachloroethane	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE
	1,1,2-trichlorotrifluoroethane	NA	NA	NA	NA	NE	NE	NE
	Tetrachloroethene	NA	NA	NA	NA	1,000	1,800	50,000
	Toluene	NA	NA	NA	NA	88,000	28,000	770,000
	1,2,3-trichlorobenzene	NA	NA	NA	NA	NE	NE	NE
	1,2,4-trichlorobenzene	NA	NA	NA	NA	NE	NE	NE

Table 5: SUMMARY OF TRUCK SCALES AND CARPENTER SHOP AREA SOIL CHEMICAL DATA

					Concentrati	on (mg/kg)		
		Truck Sca	ales and Carp				or Soil Ingestion	, Dermal
	Compound		Sam	ples		Conta	ct, and Inhalatio	
		TS-192-8	TS-193-15*	TS-195-11	CS-198-9	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	NA	NA	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	NA	NA	NA	26	54	1,500
	Trichloroethene	NA	NA	NA	NA	51	130	3,700
	Trichlorofluoromethane	NA	NA	NA	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NA	NA	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	NA	NA	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NA	NA	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	NA	NA	NA	6,900	6,900	81,000
	Vinyl chloride	NA	NA	NA	NA	4.4	34	950
	Xylenes, total	NA	NA	NA	NA	25,000	20,000	560,000
	Anthracene	0.00227 J	ND	ND	ND	350,000	110,000	>Max
	Acenaphthene	0.00338 J	ND	ND	ND	70,000	21,000	590,000
	Acenaphthylene	ND	ND	ND	ND	NE	NE	NE
	Benzo(a)anthracene	ND	ND	ND	ND	21	170	4,800
	Benzo(a)pyrene	ND	ND	ND	ND	2.1	1 <i>7</i>	490
	Benzo(b)fluoranthene	ND	ND	ND	ND	21	170	4,900
	Benzo(g,h,i)perylene	ND	ND	ND	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	ND	ND	ND	210	1,700	49,000
S	Chrysene	ND	ND	ND	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	ND	ND	ND	2.1	1 <i>7</i>	490
Δ.	Fluoranthene	ND	ND	ND	ND	30,000	10,000	280,000
	Fluorene	0.00522 J	ND	ND	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	21	170	4,900
	Naphthalene	0.00295 J	ND	0.00317 J	ND	23	580	16,000
	Phenanthrene	0.0154	ND	0.00148 J	ND	NE	NE	NE
	Pyrene	0.0012 J	ND	ND	ND	23,000	<i>7,</i> 500	210,000
	1-methylnaphthalene	0.0205 J	ND	ND	ND	NE	NE	NE
	2-methylnaphthalene	0.0216 J	ND	ND	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	0.59	4.9	140
	Diesel-Range Organics	13.2	ND	ND	ND	14,000	4,600	>Max
	Residual-Range Organics	ND	ND	ND	ND	14,000	4,600	>Max
	Gasoline-Range Organics	NA	NA	NA	NA	20,000	9,700	>Max

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- $\ensuremath{\mathsf{J}}\xspace$ The identification of the analyte is acceptable; the reported value is an estimate.
- ${\sf J3:}$ The associated batch QC was outside the established quality control range for precision.
- $\label{eq:V3:equation:policy} V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.$
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
 - **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.
 - * Sample incorrectly submitted to lab as "TS-192-15"

Table 6: SUMMARY OF TRUCK SCALES GROUNDWATER CHEMICAL DATA

				Concentration (mg/l)	
•	Compound	Truck Scales Grou	ındwater Samples	Carpenter Shop Groundwater Sample	DEQ RBCs for Groundwate in Excavation
		TS-195-W	TS-204-W	CS-198-W	Construction & Excavation Worker
Antimor	ıy	ND	ND	ND	NE
Arsenic		0.013	0.0745	0.0218	6.3
Berylliu	m	ND	ND	ND	270
Cadmiu	m	0.00106 J	ND	ND	130
Chromit	um	0.0479	0.12	0.00325 J	9.4
Copper		0.0565	0.0414	ND	5,400
Lead Nickel		0.0106	0.00386	0.000403 J	>\$
TAICKCI		0.0241	0.0213	ND	>\$
Seleniur	n	ND	ND	ND	NE
Silver		ND	ND	ND	1,100
Thallium	n	ND	ND	ND	ND
Zinc		0.101	0.034 J	ND	NE
Mercury	,	0.000128 J	ND	0.0000542 J	>S
Acetone		ND	ND	NA	NE
Acrolein	1	ND	ND	NA	NE
Acryloni	itrile	ND J4	ND J4	NA	0.25
Benzene		ND	ND	NA	1.8
Bromob		ND	ND	NA	NE
	ichloromethane	ND	ND	NA	0.45
Bromofo		ND	ND	NA	14
Bromon		ND	ND	NA	1.2
N-butylk		ND	ND	NA NA	NE
	/lbenzene	ND	ND	NA	NE NE
	ylbenzene	ND	ND	NA	NE NE
	tetrachloride	ND	ND	NA NA	1.8
Chlorob		ND	ND	NA NA	1.0
	ibromomethane	ND	ND	NA NA	0.61
Chloroe		ND	ND	NA NA	
Chlorofo					2,400
		ND	ND	NA NA	0.72
Chloron		ND	ND	NA NA	22
	otoluene	ND	ND	NA 	NE
	otoluene	ND	ND	NA NA	NE
	omo-3-chloropropane	ND	ND	NA	NE
	omoethane	ND	ND	NA	NE
	omethane 	ND	ND	NA	NE
	lorobenzene	ND	ND	NA	37
	lorobenzene	ND	ND	NA	NE
	lorobenzene	ND	ND	NA	1.5
	odifluoromethane	ND	ND	NA	NE
	loroethane	ND	ND	NA	10
	loroethane	ND	ND	NA	NE
	loroethene	ND	ND	NA	44
	dichloroethene	ND	ND	NA	18
	2-dichloroethene	ND	ND	NA	180
	loropropane	ND	ND	NA	NE
`	loropropene	ND	ND	NA	NE
	loropropane	ND	ND	NA	NE
	dichloropropene	ND	ND	NA	NE
Trans-1,	3-dichloropropene	ND	ND	NA	NE
2,2-dich	loropropane	ND	ND	NA	NE
	opyl ether	ND	ND	NA	NE
Ethylber	nzene	ND	ND	NA	4.5
Hexachl	loro-1,3-butadiene	ND	ND	NA	NE
Isopropy	/lbenzene	ND	ND	NA	51
P-isopro	pyltoluene	ND	ND	NA	NE
2-butano	one (Mek)	ND	ND	NA	NE
-	ne chloride	ND	ND	NA	NE
4-methy	l-2-pentanone (Mibk)	ND	ND	NA	NE
Methyl t	tert-butyl ether	ND	ND	NA	63
Naphtha	alene	ND	ND	NA	0.5
N-propy	lbenzene	ND	ND	NA	NE
Styrene		ND	ND	NA	170
	tetrachloroethane	ND	ND	NA	NE
	tetrachloroethane	ND	ND	NA	NE NE
	chlorotrifluoroethane	ND	ND	NA NA	>S
	oroethene	ND	ND	NA NA	6
Toluene		0.000866 J	ND	NA NA	220
TOTACHE	chlorobenzene	ND	ND	NA NA	NE

Table 6: SUMMARY OF TRUCK SCALES GROUNDWATER CHEMICAL DATA

			Concentration (mg/l)	
Compound	Truck Scales Grou		Carpenter Shop Groundwater Sample	DEQ RBCs for Groundwater in Excavation Construction & Excavation
	TS-195-W	TS-204-W	CS-198-W	Worker
1,2,4-trichlorobenzene	ND	ND	NA	NE
1,1,1-trichloroethane	ND	ND	NA	1,100
1,1,2-trichloroethane	ND	ND	NA	0.049
Trichloroethene	ND	ND	NA	0.43
Trichlorofluoromethane	ND	ND	NA	160
1,2,3-trichloropropane	ND	ND	NA	NE
1,2,4-trimethylbenzene	ND	ND	NA	6
1,2,3-trimethylbenzene	ND	ND	NA	NE
1,3,5-trimethylbenzene	ND	ND	NA	8
Vinyl chloride	ND	ND	NA	0.96
Xylenes, total	ND	ND	NA	23
Anthracene	ND	ND	ND	>\$
Acenaphthene	0.000079 J	ND	ND	>\$
Acenaphthylene	ND	ND	ND	NE
Benzo(a)anthracene	ND	ND	ND	>\$
Benzo(a)pyrene	ND	ND	ND	>\$
Benzo(b)fluoranthene	ND	ND	ND	>S
Benzo(g,h,i)perylene	0.0000329 B J	ND	0.00000339 B J	NE
Benzo(k)fluoranthene	ND	ND	ND	>\$
Chrysene	ND	ND	ND	>\$
Dibenz(a,h)anthracene	ND	ND	ND	>S
Fluoranthene	ND	ND	ND	>\$
Fluorene	0.000156 J	ND	ND	>S
Indeno(1,2,3-cd)pyrene	ND	ND	ND	>S
Naphthalene	0.000303 B J	0.0000744 B J	0.0000473 B J	0.5
Phenanthrene	ND	ND	ND	NE
Pyrene	ND	ND	ND	>\$
1-methylnaphthalene	0.000353 J	ND	ND	NE
2-methylnaphthalene	0.000218 J	ND	ND	NE
2-chloronaphthalene	ND	ND	ND	NE
Diesel-Range Organics	0.601	0.183	0.327	>\$
Residual-Range Organics	0.855	0.288	0.459	>\$
Gasoline-Range Organics	ND	ND	NA	14

Notes:

- ND: Not detected at concentration greater than method detection limit.
- NA: Compound not analyzed for this sample.
- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the Risk-Based Concentration for groundwater in excavation for the construction and excavation worker receptor scenario for this compound.

Table 7: SUMMARY OF CHIP TRUCK HYDRAULIC LIFT AREA SOIL CHEMICAL DATA

				T. 1			entration (mg	g/kg)	DEQ RBCs f	or Soil Ingestior	n, Dermal
	Compound			·	raulic Lift A				Conta I	ct, and Inhalati	
		CT-142-11			CT-146-13				Occupational	Worker	Worker
	antimony Arsenic	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE 1.9	NE 15	NE 420
	Beryllium	NA	NA	NA	NA	NA	NA	NA	2,300	700	19,000
C	Cadmium	NA	NA	NA	NA	NA	NA	NA	1,100	350	9,700
C	Chromium	NA	NA	NA	NA	NA	NA	NA	6.3	49	1400
<u>~</u> C	Copper	NA	NA	NA	NA	NA	NA	NA	47,000	14,000	390,000
~	ead	NA	NA	NA	NA	NA	NA	NA	800	800	800
1	lickel 	NA	NA	NA	NA	NA	NA	NA	22,000	7,000	190,000
	elenium	NA	NA	NA	NA	NA	NA	NA	NE 5 000	NE 1.000	NE 10,000
	ilver hallium	NA NA	NA	NA	NA	NA	NA NA	NA NA	5,800 NE	1,800 NE	49,000 NE
	inc	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	Mercury	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	350	110	2,900
	acetone	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE	NE	2,900 NE
	Acrylonitrile	NA NA	NA	NA	NA NA	NA	NA	NA	4	40	1,100
	Senzene	NA	NA	NA	NA	NA	NA	NA	37	380	11,000
	Fromobenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
В	romodichloromethane	NA	NA	NA	NA	NA	NA	NA	15	230	6,300
В	Fromoform	NA	NA	NA	NA	NA	NA	NA	260	2,700	74,000
В	Fromomethane	NA	NA	NA	NA	NA	NA	NA	750	370	10,000
	N-butylbenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	ec-butylbenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	ert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Carbon tetrachloride	NA	NA	NA	NA	NA	NA	NA	34	320	8,900
	Chlorobenzene	NA	NA	NA	NA	NA	NA	NA	8,700	4,700	130,000
	Chlorodibromomethane	NA NA	NA	NA	NA	NA	NA	NA	17	210	5,800
	Chloroethane Chloroform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE 26	NE 410	NE
	Chloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	25,000	25,000	11,000 700,000
	-Chlorotoluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	23,000 NE	23,000 NE	700,000 NE
	-Chlorotoluene	NA NA	NA	NA	NA NA	NA	NA	NA	NE	NE	NE
	,2-dibromo-3-chloropropane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	,2-dibromoethane	NA	NA	NA	NA	NA	NA	NA	0.73	9	250
Е	Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1	,2-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	36,000	20,000	560,000
1	,3-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1	,4-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	64	1,300	36,000
	Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	,1-dichloroethane	NA	NA	NA	NA	NA	NA	NA	260	3,200	89,000
	,2-dichloroethane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	,1-dichloroethene	NA	NA	NA	NA	NA	NA	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA NA	NA	NA	NA	NA	NA	NA	2,300	710	20,000
	rans-1,2-dichloroethene ,2-dichloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	23,000 NE	7,100 NE	200,000 NE
1	,1-dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE
r)	,3-dichloropropane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE	NE
> '	Cis-1,3-dichloropropene	NA NA	NA NA	NA	NA NA	NA	NA	NA	NE	NE	NE
	rans-1,3-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	,2-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Di-isopropyl ether	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
E	thylbenzene	NA	NA	NA	NA	NA	NA	NA	150	1,700	49,000
H	Hexachloro-1,3-butadiene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
ls	sopropylbenzene	NA	NA	NA	NA	NA	NA	NA	5 <i>7</i> ,000	27,000	750,000
	-isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	-butanone (Mek)	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	-methyl-2-pentanone (Mibk)	NA NA	NA	NA	NA	NA	NA	NA	NE 1 100	NE	NE
	Methyl tert-butyl ether Naphthalene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1,100	12,000	320,000
	Naphthalene N-propylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	23 NE	580 NE	16,000 NE
	n-propylbenzene tyrene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE 130,000	56,000	>Max
	,1,1,2-tetrachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	130,000 NE	56,000 NE	> Max NE
	,1,2,2-tetrachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	,1,2-trichlorotrifluoroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE	NE
	Tetrachloroethene	NA NA	NA	NA	NA NA	NA	NA	NA	1,000	1,800	50,000
	oluene	NA NA	NA	NA	NA NA	NA	NA	NA	88,000	28,000	770,000
	,2,3-trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	,2,4-trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE

Table 7: SUMMARY OF CHIP TRUCK HYDRAULIC LIFT AREA SOIL CHEMICAL DATA

						Conce	entration (mg	g/kg)			
	Compound		Chip	Truck Hyd	raulic Lift A	rea Soil Sam	ples			or Soil Ingestion ct, and Inhalatio	
		CT-142-11	CT-145-16	CT-145-7	CT-146-13	CT-149-13	CT-149-29	CT-150-13	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	NA	NA	NA	NA	NA	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	NA	NA	NA	NA	NA	NA	26	54	1,500
	Trichloroethene	NA	NA	NA	NA	NA	NA	NA	51	130	3,700
	Trichlorofluoromethane	NA	NA	NA	NA	NA	NA	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	6,900	6,900	81,000
	Vinyl chloride	NA	NA	NA	NA	NA	NA	NA	4.4	34	950
	Xylenes, total	NA	NA	NA	NA	NA	NA	NA	25,000	20,000	560,000
	Anthracene	ND	ND	0.151	ND	ND	ND	ND	350,000	110,000	>Max
	Acenaphthene	0.00819	ND	0.0688 J	ND	0.00107 J	ND	ND	70,000	21,000	590,000
	Acenaphthylene	ND	ND	0.0153 J	ND	ND	ND	ND	NE	NE	NE
	Benzo(a)anthracene	0.00112 J	ND	0.0249 J	ND	ND	ND	ND	21	170	4,800
	Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	2.1	1 <i>7</i>	490
	Benzo(b)fluoranthene	ND	ND	0.0734	ND	ND	ND	ND	21	170	4,900
	Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	ND	0.00958 J	ND	ND	ND	ND	210	1,700	49,000
.0	Chrysene	0.00167 J	ND	0.0114 J	ND	ND	ND	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	2.1	17	490
Д	Fluoranthene	0.0047 J	ND	0.0166 J	ND	ND	ND	ND	30,000	10,000	280,000
	Fluorene	0.0625	ND	0.0882	ND	ND	ND	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	21	170	4,900
	Naphthalene	ND	ND	ND	ND	0.0026 J	ND	ND	23	580	16,000
	Phenanthrene	ND	ND	0.053 J	ND	ND	ND	ND	NE	NE	NE
	Pyrene	0.0133	ND	0.097	ND	ND	ND	ND	23,000	7,500	210,000
	1-methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
	2-methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	NA	NA	NA	0.59	4.9	140
	Diesel-Range Organics	75	2.16 J	1,030	NA	NA	NA	NA	14,000	4,600	>Max
	Residual-Range Organics	440	8.14 J	6,190	NA	NA	NA	NA	14,000	4,600	>Max
	Gasoline-Range Organics	NA	NA	NA	NA	NA	NA	NA	20,000	9,700	>Max

- ND: Not detected at concentration greater than method detection limit.
- NA: NA: Compound not analyzed for this sample.
 - $\ensuremath{\mathsf{J}}\xspace$ The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
- **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

Table 8: SUMMARY OF CHIP TRUCK GROUNDWATER CHEMICAL DATA

			Concentration	(mg/l)	
Compound		Chip Truck Gro	undwater Samples		DEQ RBCs for Groundwate in Excavation Construction & Excavation
	CT-142-W	CT-144-W	CT-151-W	CT-153-W	Worker
Antimony	NA	NA	NA	NA	NE
Arsenic	NA	NA	NA NA	NA	6.3
Beryllium Cadmium	NA NA	NA NA	NA NA	NA NA	270
Chromium	NA NA	NA NA	NA NA	NA NA	9.4
Copper	NA NA	NA NA	NA NA	NA NA	5,400
Lead Nickel	NA	NA	NA	NA	>S
Nickel	NA	NA	NA	NA	>\$
Selenium	NA	NA	NA	NA	NE
Silver	NA	NA	NA	NA	1,100
Thallium	NA	NA	NA	NA	NE
Zinc	NA	NA	NA	NA	NE
Mercury	NA	NA	NA	NA	>S
Acetone	NA	NA	NA	NA	NE
Acrolein	NA	NA	NA	NA	NE
Acrylonitrile	NA	NA	NA	NA	0.25
Benzene	NA	NA	NA	NA	1.8
Bromobenzene	NA	NA	NA	NA	NE 0.45
Bromodichloromethane	NA	NA	NA	NA	0.45
Bromoform	NA	NA NA	NA NA	NA NA	14
Bromomethane	NA NA	NA NA	NA NA	NA NA	1.2 NE
N-butylbenzene Sec-butylbenzene	NA NA	NA NA	NA NA	NA NA	NE NE
Tert-Butylbenzene	NA NA	NA NA	NA NA	NA NA	NE NE
Carbon tetrachloride	NA	NA	NA	NA NA	1.8
Chlorobenzene	NA NA	NA NA	NA NA	NA	10
Chlorodibromomethane	NA	NA	NA	NA	0.61
Chloroethane	NA	NA	NA	NA	2,400
Chloroform	NA	NA	NA	NA	0.72
Chloromethane	NA	NA	NA	NA	22
2-Chlorotoluene	NA	NA	NA	NA	NE
4-Chlorotoluene	NA	NA	NA	NA	NE
1,2-dibromo-3-chloropropane	NA	NA	NA	NA	NE
1,2-dibromoethane	NA	NA	NA	NA	NE
Dibromomethane	NA	NA	NA	NA	NE
1,2-dichlorobenzene	NA	NA	NA	NA	37
1,3-dichlorobenzene	NA	NA	NA	NA	NE
1,4-dichlorobenzene	NA	NA	NA	NA	1.5
Dichlorodifluoromethane	NA NA	NA NA	NA NA	NA NA	NE 10
1,1-dichloroethane 1,2-dichloroethane	NA NA	NA NA	NA NA	NA NA	10 NE
1,1-dichloroethene	NA NA	NA NA	NA NA	NA NA	44
Cis-1,2-dichloroethene	NA	NA	NA NA	NA NA	18
Trans-1,2-dichloroethene	NA	NA	NA	NA	180
1,2-dichloropropane	NA	NA	NA	NA	NE NE
	NA	NA	NA	NA	NE
1,1-dichloropropene 1,3-dichloropropane	NA	NA	NA	NA	NE
Cis-1,3-dichloropropene	NA	NA	NA	NA	NE
Trans-1,3-dichloropropene	NA	NA	NA	NA	NE
2,2-dichloropropane	NA	NA	NA	NA	NE
Di-isopropyl ether	NA	NA	NA	NA	NE
Ethylbenzene	NA	NA	NA	NA	4.5
Hexachloro-1,3-butadiene	NA	NA	NA	NA	NE
Isopropylbenzene	NA	NA	NA	NA	51
P-isopropyltoluene	NA NA	NA NA	NA	NA NA	NE NE
2-butanone (Mek)	NA NA	NA NA	NA NA	NA NA	NE NE
Methylene chloride 4-methyl-2-pentanone (Mibk)	NA NA	NA NA	NA NA	NA NA	NE NE
Methyl tert-butyl ether	NA NA	NA NA	NA NA	NA NA	63
Naphthalene	NA NA	NA NA	NA NA	NA NA	0.5
N-propylbenzene	NA NA	NA NA	NA NA	NA NA	NE
Styrene	NA NA	NA NA	NA NA	NA NA	170
1,1,1,2-tetrachloroethane	NA	NA	NA	NA	NE NE
1,1,2,2-tetrachloroethane	NA	NA	NA	NA	NE NE
1,1,2-trichlorotrifluoroethane	NA	NA	NA	NA	>\$
Tetrachloroethene	NA	NA	NA	NA	6
Toluene	NA	NA	NA	NA	220
1,2,3-trichlorobenzene	NA	NA	NA	NA	NE

Table 8: SUMMARY OF CHIP TRUCK GROUNDWATER CHEMICAL DATA

			Concentration	(mg/l)	
Compound	CT-142-W	Chip Truck Grou	undwater Samples CT-151-W	CT-153-W	DEQ RBCs for Groundwater in Excavation Construction & Excavation Worker
1,2,4-trichlorobenzene	NA	NA	NA	NA	NE NE
1,1,1-trichloroethane	NA	NA	NA	NA	1,100
1,1,2-trichloroethane	NA	NA	NA	NA	0.049
Trichloroethene	NA	NA	NA	NA	0.43
Trichlorofluoromethane	NA	NA	NA	NA	160
1,2,3-trichloropropane	NA	NA	NA	NA	NE
1,2,4-trimethylbenzene	NA	NA	NA	NA	6
1,2,3-trimethylbenzene	NA	NA	NA	NA	NE
1,3,5-trimethylbenzene	NA	NA	NA	NA	8
Vinyl chloride	NA	NA	NA	NA	0.96
Xylenes, total	NA	NA	NA	NA	23
Anthracene	0.000186	ND	ND	ND	>\$
Acenaphthene	0.000232	0.0000384 J	ND	0.0000119 J	>\$
Acenaphthylene	ND	ND	ND	ND	NE
Benzo(a)anthracene	ND	ND	ND	ND	>\$
Benzo(a)pyrene	ND	ND	ND	ND	>\$
Benzo(b)fluoranthene	ND	ND	ND	ND	>\$
Benzo(g,h,i)perylene	ND J3	0.00000854 B J J3	0.00000231 B J J3	0.00000401 B J J3	NE
Benzo(k)fluoranthene	ND	ND	ND	ND	>\$
Chrysene	ND	ND	ND	ND	>\$
Dibenz(a,h)anthracene	ND J3	ND J3	ND J3	ND J3	>\$
Fluoranthene	0.0000225 J	ND	ND	ND	>\$
Fluorene	0.00158	0.000128	ND	0.000012 J	>\$
Indeno(1,2,3-cd)pyrene	ND J3	ND J3	ND J3	ND J3	>\$
Naphthalene	0.0000434	ND	0.0000241 J	0.0000229 J	0.5
Phenanthrene	ND	ND	0.00000854 J	0.00000963 J	NE
Pyrene	0.0000495 J	0.0000136 J	ND	ND	>\$
1-methylnaphthalene	0.0000196 J	ND	ND	ND	NE
2-methylnaphthalene	0.0000185 J	ND	ND	ND	NE
2-chloronaphthalene	ND	ND	ND	ND	NE
Diesel-Range Organics	1.32	NA	NA	NA	>\$
Residual-Range Organics	1.98	NA	NA	NA	>\$
Gasoline-Range Organics	NA	NA	NA	NA	14

Notes:

- ND: Not detected at concentration greater than method detection limit.
- NA: Compound not analyzed for this sample.
- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the RBC for groundwater in excavation for the construction and excavation worker receptor scenari

Revision: 1

			Concentration				
	Compound	Hog Fuel Hydraulic Lift		or Soil Ingestion			
	Compound		Contact, and Inhalation Construction Excavati				
		HF-137-16	Occupational	Worker	Worker		
	Antimony	NA	NE 1.0	NE	NE 130		
	Arsenic	NA NA	1.9	15	420		
	Beryllium Cadmium	NA NA	2,300	700 350	19,000 9,700		
	Chromium	NA NA	1,100 6.3	49	1400		
	Copper	NA NA	47,000	14,000	390,000		
<u> </u>	Lead	NA NA	800	800	800		
ž	Nickel	NA	22,000	7,000	190,000		
	Selenium	NA	NE	NE	NE		
	Silver	NA	5,800	1,800	49,000		
	Thallium	NA	NE	NE	NE		
	Zinc	NA	NE	NE	NE		
	Mercury	NA	350	110	2,900		
	Acetone	NA	NE	NE	NE		
	Acrylonitrile	NA	4	40	1,100		
	Benzene	NA	37	380	11,000		
	Bromobenzene	NA	NE 	NE	NE		
	Bromodichloromethane	NA NA	15	230	6,300		
	Bromoform Bromomethane	NA NA	260	2,700	74,000		
	Bromomethane	NA NA	750 NE	370	10,000 NE		
	N-butylbenzene	NA NA	NE NE	NE NE	NE NE		
	Sec-butylbenzene Tert-Butylbenzene	NA NA	NE NE	NE NE	NE NE		
	Carbon tetrachloride	NA NA	34	320	8,900		
	Chlorobenzene	NA NA	8,700	4,700	130,000		
	Chlorodibromomethane	NA NA	17	210	5,800		
	Chloroethane	NA NA	NE	NE	3,800 NE		
	Chloroform	NA NA	26	410	11,000		
	Chloromethane	NA NA	25,000	25,000	700,000		
	2-Chlorotoluene	NA NA	NE	NE	700,000 NE		
	4-Chlorotoluene	NA NA	NE NE	NE	NE		
	1,2-dibromo-3-chloropropane	NA NA	NE	NE	NE		
	1,2-dibromoethane	NA	0.73	9	250		
	Dibromomethane	NA	NE	NE	NE		
	1,2-dichlorobenzene	NA	36,000	20,000	560,000		
	1,3-dichlorobenzene	NA	NE	NE	NE		
	1,4-dichlorobenzene	NA	64	1,300	36,000		
	Dichlorodifluoromethane	NA	NE	NE	NE		
	1,1-dichloroethane	NA	260	3,200	89,000		
	1,2-dichloroethane	NA	NE	NE	NE		
	1,1-dichloroethene	NA	29,000	13,000	370,000		
	Cis-1,2-dichloroethene	NA	2,300	710	20,000		
	Trans-1,2-dichloroethene	NA	23,000	7,100	200,000		
	1,2-dichloropropane	NA	NE	NE	NE		
νί	1,1-dichloropropene	NA	NE	NE	NE		
NOCs	1,3-dichloropropane	NA	NE	NE	NE		
	Cis-1,3-dichloropropene	NA	NE	NE	NE		
	Trans-1,3-dichloropropene	NA	NE	NE	NE		
	2,2-dichloropropane	NA	NE	NE	NE		
	Di-isopropyl ether	NA	NE	NE	NE		
	Ethylbenzene	NA	150	1,700	49,000		
	Hexachloro-1,3-butadiene	NA	NE	NE	NE		
	Isopropylbenzene	NA	57,000	27,000	750,000		
	P-isopropyltoluene	NA	NE	NE	NE		
	2-butanone (Mek)	NA NA	NE NE	NE	NE		
	Methylene chloride	NA NA	NE NE	NE	NE		
	4-methyl-2-pentanone (Mibk)	NA NA	NE 1 100	NE	NE		
	Methyl tert-butyl ether	NA NA	1,100	12,000	320,000		
	Naphthalene	NA NA	23 NE	580	16,000		
	N-propylbenzene Styropo	NA NA	NE	NE 56.000	NE >Max		
	Styrene 1.1.1.2 tetrachloroethane	NA NA	130,000	56,000	>Max		
	1,1,2-tetrachloroethane	NA NA	NE NE	NE NE	NE NE		
	1,1,2,2-tetrachloroethane 1,1,2-trichlorotrifluoroethane	NA NA	NE NE	NE NE	NE NE		
	Tetrachloroethene	NA NA	1,000		50,000		
	Toluene	NA NA	88,000	1,800 28,000	770,000		
	1,2,3-trichlorobenzene	NA NA	88,000 NE	28,000 NE	770,000 NE		
	1,2,4-trichlorobenzene	NA NA	NE NE	NE NE	NE NE		

Table 9: SUMMARY OF HOG FUEL HYDRAULIC LIFT AREA SOIL CHEMICAL DATA

	_		Concentration	(mg/kg)	
		Hog Fuel		or Soil Ingestion	, Dermal
	Compound	Hydraulic Lift		ct, and Inhalatio	
		HF-137-16	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	26	54	1,500
	Trichloroethene	NA	51	130	3,700
	Trichlorofluoromethane	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	6,900	6,900	81,000
	Vinyl chloride	NA	4.4	34	950
	Xylenes, total	NA	25,000	20,000	560,000
	Anthracene	ND	350,000	110,000	>Max
	Acenaphthene	ND	70,000	21,000	590,000
	Acenaphthylene	ND	NE	NE	NE
	Benzo(a)anthracene	ND	21	170	4,800
	Benzo(a)pyrene	ND	2.1	17	490
	Benzo(b)fluoranthene	ND	21	170	4,900
	Benzo(g,h,i)perylene	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	210	1,700	49,000
S	Chrysene	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	2.1	1 <i>7</i>	490
а_	Fluoranthene	ND	30,000	10,000	280,000
	Fluorene	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	21	170	4,900
	Naphthalene	ND	23	580	16,000
	Phenanthrene	0.000756 J	NE	NE	NE
	Pyrene	ND	23,000	7,500	210,000
	1-methylnaphthalene	ND	NE	NE	NE
	2-methylnaphthalene	ND	NE	NE	NE
	2-chloronaphthalene	ND	NE	NE	NE
	Total PCBs	NA	0.59	4.9	140
	Diesel-Range Organics	ND	14,000	4,600	>Max
	Residual-Range Organics	ND	14,000	4,600	>Max
	Gasoline-Range Organics	NA	20,000	9,700	>Max

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is
- J3: The associated batch QC was outside the established quality contro
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this
 - **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor

		Come	ntration (mg/L)
			DEQ RBCs for Groundwater
	Compound	Samples	in Excavation
		HF-137-W	Construction & Excavation Worker
	Antimony	NA	NE
	Arsenic	NA	6.3
	Beryllium Cadmium	NA NA	270
	Chromium	NA NA	130 9.4
	Copper	NA NA	5,400
Metals	Lead	NA	>S
Σ	Nickel	NA	>\$
	Selenium	NA	NE
	Silver	NA 	1,100
	Thallium	NA	NE
	Zinc Mercury	NA NA	NE >S
	Acetone	NA NA	NE
	Acrolein	NA NA	NE
	Acrylonitrile	NA	0.25
	Benzene	NA	1.8
	Bromobenzene	NA	NE
	Bromodichloromethane	NA NA	0.45
	Bromoform Bromomethane	NA NA	14
	N-butylbenzene	NA NA	1.2 NE
	Sec-butylbenzene	NA NA	NE
	Tert-Butylbenzene	NA	NE
	Carbon tetrachloride	NA	1.8
	Chlorobenzene	NA	10
	Chlorodibromomethane	NA	0.61
	Chloroethane Chloroform	NA NA	2,400 0.72
	Chloromethane	NA NA	22
	2-Chlorotoluene	NA NA	NE NE
	4-Chlorotoluene	NA	NE
	1,2-dibromo-3-chloropropane	NA	NE
	1,2-dibromoethane	NA	NE
	Dibromomethane	NA	NE
	1,2-dichlorobenzene 1,3-dichlorobenzene	NA NA	37 NE
	1,4-dichlorobenzene	NA NA	1.5
	Dichlorodifluoromethane	NA	NE
	1,1-dichloroethane	NA	10
	1,2-dichloroethane	NA	NE
	1,1-dichloroethene	NA	44
	Cis-1,2-dichloroethene	NA	18
	Trans-1,2-dichloroethene 1,2-dichloropropane	NA NA	180 NE
S	1,1-dichloropropene	NA NA	NE NE
VOCs	1,3-dichloropropane	NA	NE
	Cis-1,3-dichloropropene	NA	NE
	Trans-1,3-dichloropropene	NA	NE
	2,2-dichloropropane	NA	NE
	Di-isopropyl ether	NA	NE 1 -
	Ethylbenzene Hexachloro-1,3-butadiene	NA NA	4.5 NE
	Isopropylbenzene	NA NA	NE 51
	P-isopropyltoluene	NA NA	NE NE
	2-butanone (Mek)	NA	NE
	Methylene chloride	NA	NE
	4-methyl-2-pentanone (Mibk)	NA 	NE
	Methyl tert-butyl ether	NA NA	63
	Naphthalene N-propylbenzene	NA NA	0.5 NE
	N-propyibenzene Styrene	NA NA	170
	1,1,1,2-tetrachloroethane	NA NA	NE
	1,1,2,2-tetrachloroethane	NA	NE
	1,1,2-trichlorotrifluoroethane	NA	>\$
	Tetrachloroethene	NA	6
	Toluene	NA	220
	1,2,3-trichlorobenzene	NA	NE

Table 10: SUMMARY OF HOG FUEL GROUNDWATER CHEMICAL DATA

		Concentration (mg/L)				
	Compound	Hog Fuel Groundwater Samples HF-137-W	DEQ RBCs for Groundwater in Excavation Construction & Excavation Worker			
	1,2,4-trichlorobenzene	NA	NE			
	1,1,1-trichloroethane	NA	1,100			
	1,1,2-trichloroethane	NA	0.049			
	Trichloroethene	NA	0.43			
	Trichlorofluoromethane	NA	160			
	1,2,3-trichloropropane	NA	NE			
	1,2,4-trimethylbenzene	NA	6			
	1,2,3-trimethylbenzene	NA	NE			
	1,3,5-trimethylbenzene	NA	8			
	Vinyl chloride	NA	0.96			
	Xylenes, total	NA	23			
	Anthracene	ND	>\$			
	Acenaphthene	ND	>\$			
	Acenaphthylene	ND	NE			
	Benzo(a)anthracene	ND	>\$			
	Benzo(a)pyrene	ND	>\$			
	Benzo(b)fluoranthene	ND	>\$			
	Benzo(g,h,i)perylene	ND	NE			
	Benzo(k)fluoranthene	ND	>\$			
	Chrysene	ND	>\$			
PAHs	Dibenz(a,h)anthracene	ND	>\$			
4	Fluoranthene	ND	>\$			
	Fluorene	ND	>\$			
	Indeno(1,2,3-cd)pyrene	ND	>\$			
	Naphthalene	ND	0.5			
	Phenanthrene	ND	NE			
	Pyrene	ND	>\$			
	1-methylnaphthalene	ND	NE			
	2-methylnaphthalene	ND	NE			
	2-chloronaphthalene	ND	NE			
	Diesel-Range Organics	0.0964	>S			
	Residual-Range Organics	0.163	>\$			
	Gasoline-Range Organics	NA	14			

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.

Revision: 1

- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the Risk-Based Concentration for groundwater in excavation for the construction and excavation worker receptor

Compound				Concentration (m		
		Stream Channel Area Soil Samples		DEQ RBCs for		
	Compound				ct, and Inhalation Construction	n Excavation
		SC-205-1	SC-206-1	Occupational	Worker	Worker
	Antimony	1.36 J	ND	NE 1.0	NE 1F	NE 430
Metals	Arsenic Beryllium	3.12 0.673	4.84 ND	1.9 2,300	15 700	420 19,000
	Cadmium	0.073	ND	1,100	350	9,700
	Chromium	80.3	7.11	6.3	49	1,400
	Copper	70.4	1.09 J	47,000	14,000	390,000
	Lead	7.07	1.66	800	800	800
Σ	Nickel	306	5.04	22,000	7,000	190,000
	Selenium	ND	ND	NE	NE	NE
	Silver	ND	ND	5,800	1,800	49,000
	Thallium	ND	ND	NE	NE	NE
	Zinc	230	14.9	NE	NE	NE
	Mercury	0.0182 J	0.0072 J	350	110	2,900
	Acetone	NA	NA	NE	NE	NE 1.100
	Acrylonitrile Benzene	NA NA	NA NA	4	40	1,100
	Bromobenzene	NA NA	NA NA	37 NE	380 NE	11,000 NE
	Bromobenzene Bromodichloromethane	NA NA	NA NA	15	230	6,300
	Bromodicniorometnane	NA NA	NA NA	260	2,700	74,000
	Bromomethane	NA NA	NA NA	750	370	10,000
	N-butylbenzene	NA NA	NA NA	NE	NE	NE
	Sec-butylbenzene	NA	NA	NE NE	NE	NE
	Tert-Butylbenzene	NA	NA	NE	NE	NE
	Carbon tetrachloride	NA	NA	34	320	8,900
	Chlorobenzene	NA	NA	8,700	4,700	130,000
	Chlorodibromomethane	NA	NA	17	210	5,800
	Chloroethane	NA	NA	NE	NE	NE
	Chloroform	NA	NA	26	410	11,000
	Chloromethane	NA	NA	25,000	25,000	700,000
	2-Chlorotoluene	NA	NA	NE	NE	NE
	4-Chlorotoluene	NA	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	NA	NA	NE	NE	NE
	1,2-dibromoethane	NA	NA	0.73	9	250
	Dibromomethane	NA	NA	NE	NE	NE
	1,2-dichlorobenzene	NA	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	NA	NA	NE	NE 1 300	NE
	1,4-dichlorobenzene	NA NA	NA	64 NE	1,300	36,000
	Dichlorodifluoromethane 1,1-dichloroethane	NA NA	NA NA	NE 260	NE 3,200	NE 89,000
	1,2-dichloroethane	NA NA	NA NA	NE	3,200 NE	89,000 NE
	1,1-dichloroethene	NA NA	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA NA	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	NA	23,000	7,100	200,000
	1,2-dichloropropane	NA	NA	NE NE	NE	NE
	1,1-dichloropropene	NA	NA	NE	NE	NE
VOCs	1,3-dichloropropane	NA	NA	NE	NE	NE
>	Cis-1,3-dichloropropene	NA	NA	NE	NE	NE
	Trans-1,3-dichloropropene	NA	NA	NE	NE	NE
	2,2-dichloropropane	NA	NA	NE	NE	NE
	Di-isopropyl ether	NA	NA	NE	NE	NE
	Ethylbenzene	NA	NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA	NA	NE	NE	NE
	Isopropylbenzene	NA	NA	57,000	27,000	750,000
	P-isopropyltoluene	NA	NA	NE	NE	NE
	2-butanone (Mek)	NA	NA	NE	NE	NE
	Methylene chloride	NA	NA	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NA	NE 1.100	NE 10.000	NE
	Methyl tert-butyl ether	NA NA	NA	1,100	12,000	320,000
	Naphthalene	NA NA	NA	23 NE	580 NE	16,000
	N-propylbenzene Styrono	NA NA	NA NA	NE 120,000	NE 56,000	NE > Max
	Styrene 1,1,1,2-tetrachloroethane	NA NA	NA NA	130,000 NE	56,000 NE	>Max
	1,1,2,2-tetrachloroethane	NA NA	NA NA	NE NE	NE NE	NE NE
	1,1,2-trichlorotrifluoroethane	NA NA	NA NA	NE NE	NE NE	NE NE
	Tetrachloroethene	NA NA	NA NA	1,000	1,800	50,000
	Toluene	NA NA	NA NA	88,000	28,000	770,000
	1,2,3-trichlorobenzene	NA NA	NA	00,000 NE	28,000 NE	770,000 NE
		1 1/ 1	1 1/ 1		1 1 L	

Table 11: SUMMARY OF STREAM CHANNEL AREA SOIL CHEMICAL DATA

Compound		Concentration (mg/kg)					
		Stream Channel Area DEQ RBCs for Soil Ingestion, Dermal					
		Soil Samples		Contact, and Inhalation			
		SC-205-1	SC-206-1	Occupational	Construction Worker	Excavation Worker	
	1,1,1-trichloroethane	NA	NA	870,000	470,000	>Max	
	1,1,2-trichloroethane	NA	NA	26	54	1,500	
	Trichloroethene	NA	NA	51	130	3,700	
	Trichlorofluoromethane	NA	NA	130,000	69,000	>Max	
	1,2,3-trichloropropane	NA	NA	NE	NE	NE	
	1,2,4-trimethylbenzene	NA	NA	6,900	6,900	81,000	
	1,2,3-trimethylbenzene	NA	NA	NE	NE	NE	
	1,3,5-trimethylbenzene	NA	NA	6,900	6,900	81,000	
	Vinyl chloride	NA	NA	4.4	34	950	
	Xylenes, total	NA	NA	25,000	20,000	560,000	
	Anthracene	0.0273	ND	350,000	110,000	>Max	
	Acenaphthene	0.0142	ND	70,000	21,000	590,000	
	Acenaphthylene	0.0105	ND	NE	NE	NE	
	Benzo(a)anthracene	0.138	0.00102 J	21	170	4,800	
	Benzo(a)pyrene	0.168	ND	2.1	17	490	
	Benzo(b)fluoranthene	0.279	ND	21	170	4,900	
	Benzo(g,h,i)perylene	0.13	ND	NE	NE	NE	
	Benzo(k)fluoranthene	0.0709	ND	210	1,700	49,000	
PAHs	Chrysene	0.201	ND	2,100	17,000	490,000	
	Dibenz(a,h)anthracene	0.0272	ND	2.1	1 <i>7</i>	490	
Δ.	Fluoranthene	0.481	0.0019 J	30,000	10,000	280,000	
	Fluorene	0.0104	ND	47,000	14,000	390,000	
	Indeno(1,2,3-cd)pyrene	0.109	ND	21	170	4,900	
	Naphthalene	0.0348	ND	23	580	16,000	
	Phenanthrene	0.208	ND	NE	NE	NE	
	Pyrene	0.261	0.00127 J	23,000	7,500	210,000	
	1-methylnaphthalene	0.00345 J	ND	NE	NE	NE	
	2-methylnaphthalene	0.00596 J	ND	NE	NE	NE	
	2-chloronaphthalene	ND	ND	NE	NE	NE	
	Total PCBs	ND	ND J3	0.59	4.9	140	
	Diesel-Range Organics	ND	ND	14,000	4,600	>Max	
	Residual-Range Organics	23.6 J	ND	14,000	4,600	>Max	
	Gasoline-Range Organics	0.122 J	0.133 J	20,000	9,700	>Max	

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is an estimate.
- ${\tt J3:}\ The\ associated\ batch\ QC\ was\ outside\ the\ established\ quality\ control\ range\ for\ precisi$
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance
 - **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this

		North a	nd South "	owerators"	Concentration		for Soil Ingestion	n, Dermal
	Compound	North and South "Lowerators" Area Soil Samples			•	act, and Inhalati	•	
		SL-180-10	SL-180-15	NL-182-5	NL-183-15	Occupational	Construction	Excavation
	Antimony	NA	NA	ND	NA	NE	Worker NE	Worker NE
	Arsenic	NA	NA	3.97	NA	1.9	15	420
	Beryllium	NA	NA	ND	NA	2,300	700	19,000
	Cadmium	NA	NA	ND	NA	1,100	350	9,700
	Chromium	NA	NA	8.76	NA	6.3	49	1,400
S	Copper	NA	NA	3.97	NA	47,000	14,000	390,000
Metals	Lead	NA	NA	3.63	NA	800	800	800
_	Nickel	NA	NA	4.67	NA	22,000	7,000	190,000
	Selenium Silver	NA NA	NA	ND	NA NA	NE 5.800	NE 1.000	NE
	Thallium	NA NA	NA NA	ND ND	NA NA	5,800 NE	1,800 NE	49,000 NE
	Zinc	NA NA	NA NA	17.6	NA NA	NE	NE NE	NE
	Mercury	NA NA	NA	0.0444	NA NA	350	110	2,900
	Acetone	NA NA	NA NA	ND	NA NA	NE NE	NE NE	NE
	Acrylonitrile	NA	NA	ND	NA	4	40	1,100
	Benzene	NA	NA	0.00059 J	NA	37	380	11,000
	Bromobenzene	NA	NA	ND	NA	NE	NE	NE
	Bromodichloromethane	NA	NA	ND	NA	15	230	6,300
	Bromoform	NA	NA	ND	NA	260	2,700	74,000
	Bromomethane	NA	NA	ND	NA	750	370	10,000
	N-butylbenzene	NA	NA	ND	NA	NE	NE	NE
	Sec-butylbenzene	NA	NA	ND	NA	NE	NE	NE
	Tert-Butylbenzene	NA	NA	ND	NA	NE	NE	NE
	Carbon tetrachloride	NA	NA	ND	NA	34	320	8,900
	Chlorobenzene	NA	NA	ND	NA	8,700	4,700	130,000
	Chlorodibromomethane	NA	NA	ND	NA	17	210	5,800
	Chloroethane	NA	NA	ND	NA	NE	NE	NE
	Chloroform	NA	NA	ND	NA	26	410	11,000
	Chloromethane	NA	NA	ND	NA	25,000	25,000	700,000
	2-Chlorotoluene 4-Chlorotoluene	NA NA	NA NA	ND ND	NA NA	NE NE	NE NE	NE NE
	1,2-dibromo-3-chloropropane	NA NA	NA NA	ND ND	NA NA	NE	NE NE	NE NE
	1,2-dibromoethane	NA NA	NA	ND	NA NA	0.73	9	250
	Dibromomethane	NA NA	NA	ND	NA NA	NE	NE NE	NE NE
	1,2-dichlorobenzene	NA	NA	0.0223	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	NA	NA	0.00091 J	NA	NE	NE	NE
	1,4-dichlorobenzene	NA	NA	0.00202	NA	64	1,300	36,000
	Dichlorodifluoromethane	NA	NA	ND	NA	NE	NE	NE
	1,1-dichloroethane	NA	NA	ND	NA	260	3,200	89,000
	1,2-dichloroethane	NA	NA	ND	NA	NE	NE	NE
	1,1-dichloroethene	NA	NA	ND	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA	NA	ND	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	NA	ND	NA	23,000	7,100	200,000
	1,2-dichloropropane	NA	NA	ND	NA	NE	NE	NE
CS	1,1-dichloropropene	NA	NA	ND	NA	NE	NE	NE
VOCs	1,3-dichloropropane	NA	NA	ND	NA	NE	NE	NE
	Cis-1,3-dichloropropene	NA	NA	ND	NA	NE	NE	NE
	Trans-1,3-dichloropropene	NA NA	NA	ND	NA NA	NE	NE NE	NE
	2,2-dichloropropane Di-isopropyl ether	NA NA	NA NA	ND ND	NA NA	NE NE	NE NE	NE NE
	Ethylbenzene	NA NA	NA NA	ND ND	NA NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA NA	NA	ND	NA NA	NE	NE	49,000 NE
	Isopropylbenzene	NA NA	NA NA	ND	NA NA	57,000	27,000	750,000
	P-isopropyltoluene	NA NA	NA	ND	NA	NE	NE	750,000 NE
	2-butanone (Mek)	NA	NA	ND	NA	NE	NE	NE
	Methylene chloride	NA	NA	ND	NA	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NA	ND	NA	NE	NE	NE
	Methyl tert-butyl ether	NA	NA	ND	NA	1,100	12,000	320,000
	Naphthalene	NA	NA	ND	NA	23	580	16,000
	N-propylbenzene	NA	NA	ND	NA	NE	NE	NE
	Styrene	NA	NA	ND	NA	130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	NA	NA	ND	NA	NE	NE	NE
	1,1,2,2-tetrachloroethane	NA	NA	ND	NA	NE	NE	NE
	1,1,2-trichlorotrifluoroethane	NA	NA	ND	NA	NE	NE	NE
	Tetrachloroethene	NA	NA	ND	NA	1,000	1,800	50,000
	Toluene	NA	NA	0.0102	NA	88,000	28,000	770,000
	1,2,3-trichlorobenzene	NA	NA	ND	NA	NE	NE	NE
	1,2,4-trichlorobenzene	NA	NA	ND	NA	NE	NE	NE

Table 12: SUMMARY OF NORTH AND SOUTH "LOWERATORS" AREA SOIL CHEMICAL DATA

		Concentration (mg/kg)						
		North a	nd South "Lo			DEQ RBCs for Soil Ingestion, Dermal		
	Compound	Samples			Conta	ct, and Inhalatio		
		SL-180-10	SL-180-15	NL-182-5	NL-183-15	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	NA	ND	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	NA	ND	NA	26	54	1,500
	Trichloroethene	NA	NA	ND	NA	51	130	3,700
	Trichlorofluoromethane	NA	NA	ND	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NA	ND	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	NA	0.00073 J	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NA	0.00048 J	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	NA	0.00032 J	NA	6,900	6,900	81,000
	Vinyl chloride	NA	NA	ND	NA	4.4	34	950
	Xylenes, total	NA	NA	ND	NA	25,000	20,000	560,000
	Anthracene	ND	0.0236 J	ND	ND	350,000	110,000	>Max
	Acenaphthene	ND	ND	ND	ND	70,000	21,000	590,000
	Acenaphthylene	ND	ND	ND	ND	NE	NE	NE
	Benzo(a)anthracene	ND	0.0446 J	ND	ND	21	170	4,800
	Benzo(a)pyrene	ND	0.887	0.00409 J	ND	2.1	1 <i>7</i>	490
	Benzo(b)fluoranthene	ND	0.17	ND	ND	21	170	4,900
	Benzo(g,h,i)perylene	ND	ND	ND	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	0.0235 J	ND	ND	210	1,700	49,000
	Chrysene	ND	0.0182 J	ND	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	1.1461 J	ND	ND	2.1	1 <i>7</i>	490
Δ.	Fluoranthene	ND	ND	ND	ND	30,000	10,000	280,000
	Fluorene	ND	0.0159 J	ND	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	0.0303 J	ND	ND	21	170	4,900
	Naphthalene	0.00519 J	ND	0.0264 J	ND	23	580	16,000
	Phenanthrene	ND	0.0158 J	ND	ND	NE	NE	NE
	Pyrene	ND	0.0387 J	0.00079 J	ND	23,000	7,500	210,000
	1-methylnaphthalene	ND	ND	ND	ND	NE	NE	NE
	2-methylnaphthalene	ND	0.0811 J	ND	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	0.59	4.9	140
	Diesel-Range Organics	4440	26.6	166	NA	14,000	4,600	>Max
	Residual-Range Organics	61,500	348	1,560	NA	14,000	4,600	>Max
	Gasoline-Range Organics	NA	NA	NA	NA	20,000	9,700	>Max

- ND: Not detected at concentration greater than method detection limit.
- NA: NA: Compound not analyzed for this sample.
 - J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
- **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

	Concentration (ng/L)		
Compound	North and South Low Sam	erators Groundwater	DEQ RBCs for Groundwater in Excavation		
	SL-180-W	SL-186-W	Construction & Excavation Worker		
Antimony	0.000867 J	ND	NE		
Arsenic	0.00732	0.0164	6.3		
Beryllium	ND	ND	270		
Cadmium	ND	ND	130		
Chromium	0.00641 J	0.0218	9.4		
Copper	0.00704 J	0.0119	5,400		
Lead	0.00447	0.00229	>S		
Nickei	ND	0.00975 J	>\$		
Selenium	ND ND	ND	NE 1 100		
Silver	ND	ND	1,100		
Thallium	ND	ND	ND		
Zinc	0.596	0.0259 J	NE		
Mercury	0.0000683 B J	0.0000747 B J	>S		
Acetone	ND J4	ND J4	NE		
Acrolein	ND J4	ND J4	NE		
Acrylonitrile	ND	ND	0.25		
Benzene	ND ND	ND	1.8		
Bromobenzene Bromodichleremethene	ND ND	ND ND	NE 0.45		
Bromodichloromethane Bromoform	ND ND	ND ND	0.45		
Bromoform Bromomethane	ND ND	ND ND	1.2		
N-butylbenzene	ND ND	ND ND	NE		
Sec-butylbenzene	ND ND	ND ND	NE NE		
Tert-Butylbenzene	ND	ND	NE		
Carbon tetrachloride	ND	ND	1.8		
Chlorobenzene	ND	ND	10		
Chlorodibromomethane	ND	ND	0.61		
Chloroethane	ND J4	ND J4	2,400		
Chloroform	ND	ND	0.72		
Chloromethane	ND	ND	22		
2-Chlorotoluene	ND	ND	NE		
4-Chlorotoluene	ND	ND	NE		
1,2-dibromo-3-chloropropane	ND	ND	NE		
1,2-dibromoethane	ND	ND	NE		
Dibromomethane	ND	ND	NE		
1,2-dichlorobenzene	ND	ND	37		
1,3-dichlorobenzene	ND	ND	NE		
1,4-dichlorobenzene	ND	ND	1.5		
Dichlorodifluoromethane	ND	ND	NE		
1,1-dichloroethane	ND	ND	10		
1,2-dichloroethane	ND	ND	NE		
1,1-dichloroethene	ND	ND	44		
Cis-1,2-dichloroethene	ND	ND	18		
Trans-1,2-dichloroethene	ND	ND	180		
1,2-dichloropropane	ND	ND	NE NE		
1,1-dichloropropene 1,3-dichloropropane	ND	ND	NE NE		
, ,	ND ND	ND	NE NE		
Cis-1,3-dichloropropene	ND ND	ND	NE NE		
Trans-1,3-dichloropropene 2,2-dichloropropane	ND ND	ND ND	NE NE		
Di-isopropyl ether	ND	ND	NE NE		
Ethylbenzene	ND	ND	4.5		
Hexachloro-1,3-butadiene	ND	ND	NE		
Isopropylbenzene	ND	ND ND	51		
P-isopropyltoluene	ND	ND	NE		
2-butanone (Mek)	ND	ND	NE NE		
Methylene chloride	ND	ND	NE NE		
4-methyl-2-pentanone (Mibk)	ND	ND	NE		
Methyl tert-butyl ether	ND	ND	63		
Naphthalene	ND	ND	0.5		
N-propylbenzene	ND	ND	NE		
Styrene	ND	ND	170		
1,1,1,2-tetrachloroethane	ND	ND	NE		
1,1,2,2-tetrachloroethane	ND	ND	NE		
1,1,2-trichlorotrifluoroethane	ND	ND	>S		
Tetrachloroethene	ND	ND	6		
Toluene	ND	ND	220		
1,2,3-trichlorobenzene	ND	ND	NE		

Table 13: SUMMARY OF NORTH SOUTH LOWERATORS GROUNDWATER CHEMICAL DATA

	_	Concentration (mg/L)						
Compound		North and South Low Sam	erators Groundwater	DEQ RBCs for Groundwater in Excavation				
		SL-180-W	SL-186-W	Construction & Excavation Worker				
	1,2,4-trichlorobenzene	ND	ND	NE				
	1,1,1-trichloroethane	ND	ND	1,100				
	1,1,2-trichloroethane	ND	ND	0.049				
	Trichloroethene	ND	ND	0.43				
	Trichlorofluoromethane	ND	ND	160				
	1,2,3-trichloropropane	ND	ND	NE				
	1,2,4-trimethylbenzene	ND	ND	6				
	1,2,3-trimethylbenzene	ND	ND	NE				
	1,3,5-trimethylbenzene	ND	ND	8				
	Vinyl chloride	ND	ND	0.96				
	Xylenes, total	ND	ND	23				
	Anthracene	ND	ND	>\$				
	Acenaphthene	ND	ND	>\$				
	Acenaphthylene	ND	ND	NE				
	Benzo(a)anthracene	ND	ND	>\$				
	Benzo(a)pyrene	ND	ND	>\$				
	Benzo(b)fluoranthene	ND	ND	>\$				
	Benzo(g,h,i)perylene	ND	ND	NE				
	Benzo(k)fluoranthene	ND	ND	>\$				
	Chrysene	ND	ND	>\$				
PAHs	Dibenz(a,h)anthracene	ND	ND	>\$				
Ъ	Fluoranthene	ND	ND	>\$				
	Fluorene	ND	ND	>\$				
	Indeno(1,2,3-cd)pyrene	ND	ND	>\$				
	Naphthalene	0.0000366 B J	0.0000447 B J	0.5				
	Phenanthrene	ND	ND	NE				
	Pyrene	ND	ND	>\$				
	1-methylnaphthalene	0.0000123 J	ND	NE				
	2-methylnaphthalene	ND	ND	NE				
	2-chloronaphthalene	ND	ND	NE				
	Diesel-Range Organics	7.58	0.0593 J	>\$				
	Residual-Range Organics	11.1	0.248 J	>\$				
	Gasoline-Range Organics	NA	ND	14				

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.

Revision: 1

- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the Risk-Based Concentration for groundwater in excavation for the construction and excavation worker receptor scenario for this compound.

Compound			oncentration (mg/kg)			
		Former Paint/Mobile/Fuel Shops Area Soil Samples	DEQ RBCs for Soil Ingestion, Dermal Contact, and Inhalation			
		SH-177-5	Occupational	Construction Worker	Excavatio Worker	
	Antimony	ND	NE	NE	NE NE	
	Arsenic	4.33	1.9	15	420	
	Beryllium	ND	2,300	700	19,000	
	Cadmium	ND	1,100	350	9,700	
	Chromium	6.15	6.3	49	1400	
<u>v</u>	Copper	0.944 J	47,000	14,000	390,000	
Metals	Lead	1.62	800	800	800	
2	Nickel	3.45	22,000	7,000	190,000	
	Selenium	ND	NE	NE	NE	
	Silver	ND	5,800	1,800	49,000	
	Thallium	ND	NE	NE	NE	
	Zinc	7.93	NE	NE	NE	
	Mercury	0.0443	350	110	2,900	
	Acetone	ND	NE	NE	NE	
	Acrylonitrile	ND	4	40	1,100	
	Benzene	ND	37	380	11,000	
	Bromobenzene	ND	NE	NE	NE	
	Bromodichloromethane	ND	15	230	6,300	
	Bromoform	ND	260	2,700	74,000	
	Bromomethane	ND	750	370	10,000	
	N-butylbenzene	ND	NE	NE	NE	
	Sec-butylbenzene	ND	NE	NE	NE	
	Tert-Butylbenzene	ND	NE 24	NE 330	NE 0.000	
	Carbon tetrachloride	ND	34	320	8,900	
	Chlorobenzene	ND	8,700	4,700	130,000	
	Chlorodibromomethane Chloroethane	ND ND	17 NE	210 NE	5,800 NE	
	Chloroform	ND ND	26	410	11,000	
	Chloromethane	ND ND	25,000	25,000	700,000	
	2-Chlorotoluene	ND ND	25,000 NE	25,000 NE	700,000 NE	
	4-Chlorotoluene	ND	NE NE	NE NE	NE NE	
	1,2-dibromo-3-chloropropane	ND	NE	NE	NE	
	1,2-dibromoethane	ND	0.73	9	250	
	Dibromomethane	ND	NE NE	NE	NE NE	
	1,2-dichlorobenzene	ND	36,000	20,000	560,000	
	1,3-dichlorobenzene	ND	NE	NE	NE	
	1,4-dichlorobenzene	ND	64	1,300	36,000	
	Dichlorodifluoromethane	ND	NE	NE	NE	
	1,1-dichloroethane	ND	260	3,200	89,000	
	1,2-dichloroethane	ND	NE	NE	NE	
	1,1-dichloroethene	ND	29,000	13,000	370,000	
	Cis-1,2-dichloroethene	ND	2,300	710	20,000	
	Trans-1,2-dichloroethene	ND	23,000	7,100	200,000	
	1,2-dichloropropane	ND	NE	NE	NE	
0	1,1-dichloropropene	ND	NE	NE	NE	
)) >	1,3-dichloropropane	ND	NE	NE	NE	
>	Cis-1,3-dichloropropene	ND	NE	NE	NE	
	Trans-1,3-dichloropropene	ND	NE	NE	NE	
	2,2-dichloropropane	ND	NE	NE	NE	
	Di-isopropyl ether	ND	NE	NE	NE	
	Ethylbenzene	ND	150	1,700	49,000	
	Hexachloro-1,3-butadiene	ND	NE	NE	NE	
	Isopropylbenzene	ND	5 <i>7,</i> 000	27,000	750,000	
	P-isopropyltoluene	ND	NE	NE	NE	
	2-butanone (Mek)	ND	NE	NE	NE	
	Methylene chloride	ND	NE	NE	NE	
	4-methyl-2-pentanone (Mibk)	ND	NE	NE	NE	
	Methyl tert-butyl ether	ND	1,100	12,000	320,000	
	Naphthalene	ND	23	580	16,000	
	N-propylbenzene	ND	NE	NE	NE	
	Styrene	ND	130,000	56,000	>Max	
	1,1,1,2-tetrachloroethane	ND	NE	NE	NE	
	1,1,2,2-tetrachloroethane	ND	NE	NE	NE	
	1,1,2-trichlorotrifluoroethane	ND	NE	NE	NE	
	Tetrachloroethene	ND	1,000	1,800	50,000	
	Toluene	ND	88,000	28,000	770,000	
	1,2,3-trichlorobenzene	ND	NE	NE	NE	

Table 14: SUMMARY OF FORMER PAINT/MOBILE/FUEL SHOP AREA SOIL CHEMICAL DATA

		Concentration (mg/kg)					
Compound		Former Paint/Mobile/Fuel		or Soil Ingestion	, Dermal		
		Shops Area Soil Samples	Conta	ct, and Inhalatio	on		
		SH-177-5	Occupational	Construction Worker	Excavation Worker		
	1,1,1-trichloroethane	ND	870,000	470,000	NE		
	1,1,2-trichloroethane	ND	26	54	1,500		
	Trichloroethene	ND	51	130	3,700		
	Trichlorofluoromethane	ND	130,000	69,000	>Max		
	1,2,3-trichloropropane	ND	NE	NE	NE		
	1,2,4-trimethylbenzene	ND	6,900	6,900	81,000		
	1,2,3-trimethylbenzene	ND	NE	NE	NE		
	1,3,5-trimethylbenzene	ND	6,900	6,900	81,000		
	Vinyl chloride	ND	4.4	34	950		
	Xylenes, total	ND	25,000	20,000	560,000		
	Anthracene	ND	350,000	110,000	>Max		
	Acenaphthene	ND	70,000	21,000	590,000		
	Acenaphthylene	ND	NE	NE	NE		
	Benzo(a)anthracene	ND	21	170	4,800		
	Benzo(a)pyrene	ND	2.1	17	490		
	Benzo(b)fluoranthene	ND	21	170	4,900		
	Benzo(g,h,i)perylene	ND	NE	NE	NE		
	Benzo(k)fluoranthene	ND	210	1,700	49,000		
,	Chrysene	ND	2,100	17,000	490,000		
2 2 7	Dibenz(a,h)anthracene	ND	2.1	17	490		
-	Fluoranthene	ND	30,000	10,000	280,000		
	Fluorene	ND	47,000	14,000	390,000		
	Indeno(1,2,3-cd)pyrene	ND	21	170	4,900		
	Naphthalene	0.00307	23	580	16,000		
	Phenanthrene	ND	NE	NE	NE		
	Pyrene	ND	23,000	7,500	210,000		
	1-methylnaphthalene	ND	NE	NE	NE		
	2-methylnaphthalene	0.00382	NE	NE	NE		
	2-chloronaphthalene	ND	NE	NE	NE		
	Total PCBs	NA	0.59	4.9	140		
	Diesel-Range Organics	12.5	14,000	4,600	>Max		
	Residual-Range Organics	29.8	14,000	4,600	>Max		
	Gasoline-Range Organics	2.68	20,000	9,700	>Max		

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to
- **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this

		Concentrati	on (mg/L)	
Compound		Former Shops Groundwater Samples	DEQ RBCs for Groundwate in Excavation	
		SH-176-W	Construction & Excavation Worker	
P	Antimony	ND	NE NE	
A	Arsenic	0.0127	6.3	
E	Beryllium	ND	270	
	Cadmium	ND	130	
	Chromium	0.0149	9.4	
als)	Copper	0.00657 J	5,400	
9	ead Nickel	0.00178 J 0.0076 J	>S >S	
	Selenium	0.0070) ND	NE	
	Silver	ND	1,100	
	[hallium	ND	NE NE	
	Zinc	0.0102 J	NE NE	
	Mercury	ND	>5	
	Acetone	ND J4	NE NE	
	Acrolein	ND J4	NE	
P	Acrylonitrile	ND	0.25	
E	Benzene	ND	1.8	
E	Bromobenzene	ND	NE	
	Bromodichloromethane	ND	0.45	
	Bromoform	ND	14	
	Bromomethane	ND	1.2	
	N-butylbenzene	ND	NE	
	Sec-butylbenzene	ND	NE =	
	Tert-Butylbenzene	ND	NE 1.0	
	Carbon tetrachloride Chlorobenzene	ND	1.8	
	Chlorodibromomethane	ND ND	0.61	
	Chloroethane	ND J4	2,400	
	Chloroform	ND ND	0.72	
	Chloromethane	ND	22	
	2-Chlorotoluene	ND	NE	
	1-Chlorotoluene	ND	NE	
1	,2-dibromo-3-chloropropane	ND	NE	
1	1,2-dibromoethane	ND	NE	
Ε	Dibromomethane	ND	NE	
1	1,2-dichlorobenzene	ND	37	
1	,3-dichlorobenzene	ND	NE	
	1,4-dichlorobenzene	ND	1.5	
	Dichlorodifluoromethane	ND	NE	
	1,1-dichloroethane	ND	10	
	,2-dichloroethane	ND	NE 44	
	1,1-dichloroethene	ND ND	44	
	Cis-1,2-dichloroethene Frans-1,2-dichloroethene	ND ND	18	
	1,2-dichloropropane	ND ND	NE	
	1,1-dichloropropane	ND ND	NE NE	
	,3-dichloropropane	ND	NE NE	
	Cis-1,3-dichloropropene	ND	NE	
	Frans-1,3-dichloropropene	ND	NE	
	2,2-dichloropropane	ND	NE	
	Di-isopropyl ether	ND	NE	
E	thylbenzene	ND	4.5	
	Hexachloro-1,3-butadiene	ND	NE	
	sopropylbenzene	ND	51	
	P-isopropyltoluene	ND	NE	
	2-butanone (Mek)	ND	NE	
	Methylene chloride	ND	NE NE	
	1-methyl-2-pentanone (Mibk)	ND ND	NE	
	Methyl tert-butyl ether	ND ND	63	
	Naphthalene N-propylbenzene	ND ND	0.5 NE	
	N-propylbenzene Styrene	ND ND	170	
	1,1,1,2-tetrachloroethane	ND ND	NE	
	1,1,2,2-tetrachloroethane	ND	NE NE	
	1,1,2-trichlorotrifluoroethane	ND	>S	
	Fetrachloroethene	ND	6	
	Toluene	0.00103	220	
	1,2,3-trichlorobenzene	ND	NE	

Table 15: SUMMARY OF FORMER SHOPS GROUNDWATER CHEMICAL DATA

Compound		Concentration (mg/L)				
		Former Shops Groundwater Samples SH-176-W	DEQ RBCs for Groundwater in Excavation Construction & Excavation Worker			
	1,2,4-trichlorobenzene	ND	NE			
	1,1,1-trichloroethane	ND	1,100			
	1,1,2-trichloroethane	ND	0.049			
	Trichloroethene	ND	0.43			
	Trichlorofluoromethane	ND	160			
	1,2,3-trichloropropane	ND	NE			
	1,2,4-trimethylbenzene	ND	6			
	1,2,3-trimethylbenzene	ND	NE			
	1,3,5-trimethylbenzene	ND	8			
	Vinyl chloride	ND	0.96			
	Xylenes, total	ND	23			
	Anthracene	ND	>\$			
	Acenaphthene	ND	>\$			
	Acenaphthylene	ND	NE			
	Benzo(a)anthracene	ND	>\$			
	Benzo(a)pyrene	ND	>\$			
	Benzo(b)fluoranthene	ND	>\$			
	Benzo(g,h,i)perylene	ND	NE			
	Benzo(k)fluoranthene	ND	>\$			
·o	Chrysene	ND	>\$			
PAHs	Dibenz(a,h)anthracene	ND	>\$			
Δ.	Fluoranthene	ND	>\$			
	Fluorene	ND	>\$			
	Indeno(1,2,3-cd)pyrene	ND	>\$			
	Naphthalene	0.0000508 B J	0.5			
	Phenanthrene	ND	NE			
	Pyrene	ND	>\$			
	1-methylnaphthalene	0.0000278 J	NE			
	2-methylnaphthalene	0.0000139 J	NE			
	2-chloronaphthalene	ND	NE			
	Diesel-Range Organics	0.159	>\$			
	Residual-Range Organics	0.083 J	>\$			
	Gasoline-Range Organics	ND	14			

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

B: The same analyte is found in the associated blank.

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for prec

J4: The associated batch QC was outside the established quality control range for accu

NE: Value not established.

T8: Sample(s) received past/too close to holding time expiration.

>S: The groundwater Risk-Based

Bold: Value exceeds the RBC for groundwater in excavation for the construction and exc

Revision: 1

		Concentration (mg/kg)				
	Compound	Mobile Shop Area	DEQ RBCs for Soil Ingestion, Dermal Contact, and Inhalation			
	Compound	Soil Samples		Construction	on Excavatior	
		MO-173-14	Occupational	Worker	Worker	
	Antimony	ND	NE 1.0	NE 15	NE 430	
Metals	Arsenic Beryllium	3.78 ND	1.9 2,300	15 700	420 19,000	
	Cadmium	ND	1,100	350	9,700	
	Chromium	5.45	6.3	49	1400	
	Copper	1.04 J	47,000	14,000	390,000	
	Lead	1.39	800	800	800	
Σ	Nickel	3.28	22,000	7,000	190,000	
	Selenium	ND	NE	NE	NE	
	Silver	ND	5,800	1,800	49,000	
	Thallium	ND	NE	NE	NE	
	Zinc	7.4	NE	NE	NE	
	Mercury	0.0443	350	110	2,900	
	Acetone	NA	NE 4	NE 40	NE 1.100	
	Acrylonitrile Benzene	NA NA	37	40 380	1,100	
	Bromobenzene	NA NA	NE	NE	11,000 NE	
	Bromodichloromethane	NA NA	15	230	6,300	
	Bromoform	NA NA	260	2,700	74,000	
	Bromomethane	NA NA	750	370	10,000	
	N-butylbenzene	NA	NE	NE	NE	
	Sec-butylbenzene	NA	NE	NE	NE	
	Tert-Butylbenzene	NA	NE	NE	NE	
	Carbon tetrachloride	NA	34	320	8,900	
	Chlorobenzene	NA	8,700	4,700	130,000	
	Chlorodibromomethane	NA	17	210	5,800	
	Chloroethane	NA	NE 2.5	NE	NE	
	Chloroform Chloromethane	NA NA	26	410	11,000	
	2-Chlorotoluene	NA NA	25,000 NE	25,000 NE	700,000 NE	
	4-Chlorotoluene	NA NA	NE NE	NE NE	NE NE	
	1,2-dibromo-3-chloropropane	NA NA	NE	NE NE	NE	
	1,2-dibromoethane	NA NA	0.73	9	250	
	Dibromomethane	NA	NE	NE	NE	
	1,2-dichlorobenzene	NA	36,000	20,000	560,000	
	1,3-dichlorobenzene	NA	NE	NE	NE	
	1,4-dichlorobenzene	NA	64	1,300	36,000	
	Dichlorodifluoromethane	NA	NE	NE	NE	
	1,1-dichloroethane	NA	260	3,200	89,000	
	1,2-dichloroethane	NA	NE	NE	NE	
	1,1-dichloroethene	NA	29,000	13,000	370,000	
	Cis-1,2-dichloroethene	NA NA	2,300	710	20,000	
	Trans-1,2-dichloroethene 1,2-dichloropropane	NA NA	23,000 NE	7,100 NE	200,000 NE	
	1,1-dichloropropane	NA NA	NE NE	NE NE	NE NE	
VOCs	1,3-dichloropropane	NA NA	NE	NE NE	NE	
\geq	Cis-1,3-dichloropropene	NA NA	NE	NE	NE	
	Trans-1,3-dichloropropene	NA	NE	NE	NE	
	2,2-dichloropropane	NA	NE	NE	NE	
	Di-isopropyl ether	NA	NE	NE	NE	
	Ethylbenzene	NA	150	1,700	49,000	
	Hexachloro-1,3-butadiene	NA	NE	NE	NE	
	Isopropylbenzene	NA	5 <i>7,</i> 000	27,000	750,000	
	P-isopropyltoluene	NA	NE	NE	NE	
	2-butanone (Mek)	NA	NE	NE	NE	
	Methylene chloride	NA	NE	NE	NE	
	4-methyl-2-pentanone (Mibk)	NA NA	NE	NE	NE	
	Methyl tert-butyl ether	NA NA	1,100	12,000	320,000	
	Naphthalene N-propylbenzene	NA NA	23 NE	580 NE	16,000 NE	
	Styrene Styrene	NA NA	130,000	56,000	>Max	
	1,1,1,2-tetrachloroethane	NA NA	130,000 NE	36,000 NE	>Max NE	
	1,1,2,2-tetrachloroethane	NA NA	NE NE	NE NE	NE NE	
	1,1,2-trichlorotrifluoroethane	NA NA	NE	NE	NE	
	Tetrachloroethene	NA NA	1,000	1,800	50,000	
	Toluene	NA	88,000	28,000	770,000	
	1,2,3-trichlorobenzene	NA	NE	NE	NE	
	1,2,4-trichlorobenzene	NA	NE	NE	NE	

Table 16: SUMMARY OF MOBILE SHOP AREA SOIL CHEMICAL DATA

			Concentration	(mg/kg)	
Compound		Mobile Shop Area		or Soil Ingestion	, Dermal
		Soil Samples	Conta	ct, and Inhalatio	
		MO-173-14	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	26	54	1,500
	Trichloroethene	NA	51	130	3,700
	Trichlorofluoromethane	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	6,900	6,900	81,000
	Vinyl chloride	NA	4.4	34	950
	Xylenes, total	NA	25,000	20,000	560,000
	Anthracene	ND	350,000	110,000	>Max
	Acenaphthene	ND	70,000	21,000	590,000
	Acenaphthylene	ND	NE	NE	NE
	Benzo(a)anthracene	ND	21	170	4,800
	Benzo(a)pyrene	ND	2.1	17	490
	Benzo(b)fluoranthene	ND	21	170	4,900
	Benzo(g,h,i)perylene	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	210	1,700	49,000
	Chrysene	ND	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	2.1	1 <i>7</i>	490
Δ.	Fluoranthene	ND	30,000	10,000	280,000
	Fluorene	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	21	170	4,900
	Naphthalene	ND	23	580	16,000
	Phenanthrene	ND	NE	NE	NE
	Pyrene	ND	23,000	7,500	210,000
	1-methylnaphthalene	ND	NE	NE	NE
	2-methylnaphthalene	ND	NE	NE	NE
	2-chloronaphthalene	ND	NE	NE	NE
	Total PCBs	NA	0.59	4.9	140
	Diesel-Range Organics	ND	14,000	4,600	>Max
	Residual-Range Organics	ND	14,000	4,600	>Max
	Gasoline-Range Organics	NA	20,000	9,700	>Max

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high.
- NE: Value not established.
- > Max: The constituent rbc for this pathway is calculated as greater than 1,000,000 mg/kg

Bold: Value exceeds the RBC for soil ingestion, dermal contact, and inhalation for the occupational receptor scenarios.

Compound		Mobile	Shops Groundwate	r Samples	DEQ RBCs for Groundwater in Excavation	
		MO-171-W	MO-173-W	MO-175-W	Construction & Excavation	
Antin	nony	NA	ND	0.00148 J	NE NE	
Arsen	nic	NA	0.000956 J	0.00783	6.3	
Beryll	lium	NA	ND	0.00104 J	270	
Cadm	nium	NA	ND	0.000799 J	130	
Chror	mium	NA	0.00749 J	0.117	9.4	
Сорр	er	NA	0.00553 J	0.103	5,400	
Fead Nicke		NA	0.00172 J	0.0183	>\$	
Nicke	el	NA	0.00634 J	0.177	>\$	
Selen	ium	NA	0.00924 J	ND	NE	
Silver	r	NA	ND	ND	1,100	
Thalli	ium	NA	ND	NA	NE	
Zinc		NA	0.952	0.197	NE	
Merci	ury	NA	ND	0.0000963 B J	>\$	
Aceto		NA	ND J4	ND J J4	NE	
Acrol		NA	ND J4	ND J4	NE	
	onitrile	NA	ND	ND ND	0.25	
Benze		NA	ND	ND	1.8	
	obenzene	NA	ND	ND	NE NE	
	odichloromethane	NA NA	ND	ND	0.45	
	oform	NA NA	ND	ND	14	
	omethane	NA NA	ND	ND	1.2	
	tylbenzene	NA NA	ND	ND	NE	
	outylbenzene	NA	ND	ND	NE	
	Butylbenzene	NA NA	ND	ND	NE NE	
	on tetrachloride	NA NA	ND	ND	1.8	
	robenzene	NA NA	ND	ND	10	
	rodibromomethane	NA NA	ND	ND	0.61	
	roethane	NA NA	ND J4	ND		
	roform				2,400	
		NA NA	ND	ND	0.72	
	romethane	NA	ND	ND	22	
	orotoluene	NA	ND	ND	NE	
	orotoluene	NA	ND	ND	NE NE	
	ibromo-3-chloropropane	NA	ND	ND	NE	
	ibromoethane	NA	ND	ND	NE	
	omomethane	NA	ND	ND	NE	
	ichlorobenzene	NA	ND	ND	37	
	ichlorobenzene	NA	ND	ND	NE .	
	ichlorobenzene	NA	ND	ND	1.5	
	lorodifluoromethane	NA	ND	ND	NE	
	ichloroethane	NA	ND	ND	10	
	ichloroethane	NA	ND	ND	NE	
	ichloroethene	NA	ND	ND	44	
	,2-dichloroethene	NA	ND	ND	18	
	-1,2-dichloroethene	NA	ND	ND	180	
	ichloropropane	NA	ND	ND	NE	
, ·	ichloropropene	NA	ND	ND	NE	
	ichloropropane	NA	ND	ND	NE	
	,3-dichloropropene	NA	ND	ND	NE	
	-1,3-dichloropropene	NA	ND	ND	NE	
	ichloropropane	NA	ND	ND	NE	
	opropyl ether	NA	ND	ND	NE	
	benzene	NA	ND	ND	4.5	
	chloro-1,3-butadiene	NA	ND	ND	NE	
	opylbenzene	NA	ND	ND	51	
	propyltoluene	NA	ND	ND	NE	
	anone (Mek)	NA	ND	ND	NE	
	ylene chloride	NA	ND	ND	NE	
	thyl-2-pentanone (Mibk)	NA	ND	ND	NE	
	yl tert-butyl ether	NA	ND	ND	63	
	thalene	NA	ND	ND	0.5	
	ppylbenzene	NA	ND	ND	NE	
Styrer		NA	ND	ND	170	
	,2-tetrachloroethane	NA	ND	ND	NE	
	,2-tetrachloroethane	NA	ND	ND	NE	
	-trichlorotrifluoroethane	NA	ND	ND	>\$	
Tetrac	chloroethene	NA	ND	ND	6	
Tolue	ene	NA	ND	ND	220	
	-trichlorobenzene	NA	ND	ND	NE	

Table 17: SUMMARY OF MOBILE SHOPS GROUNDWATER CHEMICAL DATA

		Concentration (mg/l)						
	Compound	Mobile	Shops Groundwater	Samples	DEQ RBCs for Groundwater in Excavation			
		MO-171-W	MO-173-W	MO-175-W	Construction & Excavation Worker			
	1,2,4-trichlorobenzene	NA	ND	ND	NE			
	1,1,1-trichloroethane	NA	ND	ND	1,100			
	1,1,2-trichloroethane	NA	ND	ND	0.049			
	Trichloroethene	NA	ND	ND	0.43			
	Trichlorofluoromethane	NA	ND	ND	160			
	1,2,3-trichloropropane	NA	ND	ND	NE			
	1,2,4-trimethylbenzene	NA	ND	ND	6			
	1,2,3-trimethylbenzene	NA	ND	ND	NE			
	1,3,5-trimethylbenzene	NA	ND	ND	8			
	Vinyl chloride	NA	ND	ND	0.96			
	Xylenes, total	NA	ND	ND	23			
	Anthracene	ND	ND	ND	>\$			
	Acenaphthene	ND	ND	ND	>\$			
	Acenaphthylene	ND	ND	ND	NE			
	Benzo(a)anthracene	ND	ND	ND	>\$			
	Benzo(a)pyrene	ND	ND	ND	>\$			
	Benzo(b)fluoranthene	ND	ND	ND	>\$			
	Benzo(g,h,i)perylene	ND	ND	ND	NE			
	Benzo(k)fluoranthene	ND	ND	ND	>\$			
	Chrysene	ND	ND	ND	>\$			
PAHs	Dibenz(a,h)anthracene	ND	ND	ND	>\$			
Д	Fluoranthene	ND	ND	ND	>\$			
	Fluorene	ND	ND	ND	>\$			
	Indeno(1,2,3-cd)pyrene	ND	ND	ND	>\$			
	Naphthalene	0.0000509 B J	0.0000472 B J	0.0000503 B J	0.5			
	Phenanthrene	ND	ND	ND	NE			
	Pyrene	ND	ND	ND	>\$			
	1-methylnaphthalene	ND	ND	0.0000162 J	NE			
	2-methylnaphthalene	ND	ND	0.00002 J	NE			
	2-chloronaphthalene	ND	ND	ND	NE			
	Diesel-Range Organics	ND	ND	1.44	>\$			
	Residual-Range Organics	ND	ND	2.88	>\$			
	Gasoline-Range Organics	NA	ND	ND	14			

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- $\label{thm:constraint} T8: \ Sample(s) \ received \ past/too \ close \ to \ holding \ time \ expiration.$
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the rbc for groundwater in excavation for the construction and excavation worker

Revision: 1

Reissued for Use

					Concentrati		or Soil Ingestion	n, Dermal
	Compound		lan Point De		•	Conta	ct, and Inhalati Construction	
		JP-188-6	JP-189-7	JP-190-7	JP-191-8	Occupational	Worker	Worker
	Antimony	ND	ND	ND	NA	NE	NE	NE
	Arsenic Beryllium	2.39 J ND	4.66 0.146 J	7.07 J 0.32 J	NA NA	1.9 2,300	15 700	420 19,000
	Cadmium	ND	0.146) ND	0.32 J	NA NA	1,100	350	9,700
	Chromium	19.7	15.6	38.3	NA	6.3	49	1400
	Copper	19.5	10.6	44	NA	47,000	14,000	390,000
Metals	Lead	8.66	6.38	35.8	NA	800	800	800
Σ	Nickel	22.4	13.2	34	NA	22,000	7,000	190,000
	Selenium	ND	ND	ND	NA	NE	NE	NE
	Silver	ND	ND	ND	NA	5,800	1,800	49,000
	Thallium	ND	ND	ND	NA	NE	NE	NE
	Zinc	52.3	37.1	130	NA	NE	NE	NE
	Mercury	0.0223 J	0.0142 J	0.058 J	NA	350	110	2,900
	Acetone	NA	NA	NA	NA	NE	NE	NE
	Acrylonitrile	NA NA	NA	NA	NA NA	4	40	1,100
	Benzene Bromobenzene	NA NA	NA NA	NA NA	NA NA	37 NE	380 NE	11,000 NE
	Bromodichloromethane	NA NA	NA NA	NA NA	NA NA	15	230	6,300
	Bromoform	NA NA	NA	NA	NA	260	2,700	74,000
	Bromomethane	NA	NA	NA	NA	750	370	10,000
	N-butylbenzene	NA	NA	NA	NA	NE	NE	NE
	Sec-butylbenzene	NA	NA	NA	NA	NE	NE	NE
	Tert-Butylbenzene	NA	NA	NA	NA	NE	NE	NE
	Carbon tetrachloride	NA	NA	NA	NA	34	320	8,900
	Chlorobenzene	NA	NA	NA	NA	8,700	4,700	130,000
	Chlorodibromomethane	NA	NA	NA	NA	17	210	5,800
	Chloroethane	NA	NA	NA	NA	NE 26	NE 410	NE
	Chloroform Chloromethane	NA NA	NA NA	NA NA	NA NA	26	410	11,000 700,000
	2-Chlorotoluene	NA NA	NA NA	NA NA	NA NA	25,000 NE	25,000 NE	700,000 NE
	4-Chlorotoluene	NA NA	NA	NA NA	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	NA	NA	NA	NA	NE	NE	NE
	1,2-dibromoethane	NA	NA	NA	NA	0.73	9	250
	Dibromomethane	NA	NA	NA	NA	NE	NE	NE
	1,2-dichlorobenzene	NA	NA	NA	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	NA	NA	NA	NA	NE	NE	NE
	1,4-dichlorobenzene	NA	NA	NA	NA	64	1,300	36,000
	Dichlorodifluoromethane	NA	NA	NA	NA	NE	NE	NE
	1,1-dichloroethane	NA	NA	NA	NA	260	3,200	89,000
	1,2-dichloroethane	NA NA	NA	NA	NA	NE	NE	NE
	1,1-dichloroethene Cis-1,2-dichloroethene	NA NA	NA NA	NA NA	NA NA	29,000 2,300	13,000 <i>7</i> 10	370,000 20,000
	Trans-1,2-dichloroethene	NA NA	NA NA	NA NA	NA NA	23,000	7,100	200,000
	1,2-dichloropropane	NA NA	NA	NA NA	NA	NE	NE	200,000 NE
	1,1-dichloropropene	NA	NA	NA	NA	NE	NE	NE
VOCs	1,3-dichloropropane	NA	NA	NA	NA	NE	NE	NE
>	Cis-1,3-dichloropropene	NA	NA	NA	NA	NE	NE	NE
	Trans-1,3-dichloropropene	NA	NA	NA	NA	NE	NE	NE
	2,2-dichloropropane	NA	NA	NA	NA	NE	NE	NE
	Di-isopropyl ether	NA	NA	NA	NA	NE	NE	NE
	Ethylbenzene	NA	NA	NA	NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA	NA	NA	NA	NE 57.000	NE a z osa	NE TEO 000
	Isopropylbenzene P-isopropyltoluene	NA NA	NA NA	NA	NA NA	57,000	27,000	750,000
	2-butanone (Mek)	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	Methylene chloride	NA NA	NA NA	NA NA	NA NA	NE NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NA	NA	NA	NE	NE	NE
	Methyl tert-butyl ether	NA	NA	NA	NA	1,100	12,000	320,000
	Naphthalene	NA	NA	NA	NA	23	580	16,000
	N-propylbenzene	NA	NA	NA	NA	NE	NE	NE
	Styrene	NA	NA	NA	NA	130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	NA	NA	NA	NA	NE	NE	NE
	1,1,2,2-tetrachloroethane	NA	NA	NA	NA	NE	NE	NE
	1,1,2-trichlorotrifluoroethane	NA	NA	NA	NA	NE	NE	NE
	Tetrachloroethene	NA	NA	NA	NA	1,000	1,800	50,000
	Toluene 1,2,3-trichlorobenzene	NA	NA	NA	NA	88,000	28,000	770,000
		NA	NA	NA	NA	NE	NE	NE

Table 18: SUMMARY OF SOUTH JORDAN POINT DEBRIS AREA SOIL CHEMICAL DATA

		Concentration (mg/kg)											
	Compound	South Jord	lan Point De	ebris Area So	oil Samples		or Soil Ingestion ct, and Inhalatio						
		JP-188-6	JP-189-7	JP-190-7	JP-191-8	Occupational	Construction Worker	Excavation Worker					
	1,1,1-trichloroethane	NA	NA	NA	NA	870,000	470,000	>Max					
	1,1,2-trichloroethane	NA	NA	NA	NA	26	54	1,500					
	Trichloroethene	NA	NA	NA	NA	51	130	3,700					
	Trichlorofluoromethane	NA	NA	NA	NA	130,000	69,000	>Max					
	1,2,3-trichloropropane	NA	NA	NA	NA	NE	NE	NE					
	1,2,4-trimethylbenzene	NA	NA	NA	NA	6,900	6,900	81,000					
	1,2,3-trimethylbenzene	NA	NA	NA	NA	NE	NE	NE					
	1,3,5-trimethylbenzene	NA	NA	NA	NA	6,900	6,900	81,000					
	Vinyl chloride	NA	NA	NA	NA	4.4	34	950					
	Xylenes, total	NA	NA	NA	NA	25,000	20,000	560,000					
	Anthracene	0.0276	ND	0.00726 J	ND	350,000	110,000	>Max					
	Acenaphthene	0.00559 J	0.00132 J	0.00393 J	ND	70,000	21,000	590,000					
	Acenaphthylene	0.00429 J	0.00297 J	0.137	ND	NE	NE	NE					
	Benzo(a)anthracene	0.00504 J	ND	0.0131 J	ND	21	170	4,800					
	Benzo(a)pyrene	0.00173 J	ND	ND	ND	2.1	17	490					
	Benzo(b)fluoranthene	0.00965 J	ND	0.00254 J	ND	21	170	4,900					
	Benzo(g,h,i)perylene	0.0539	ND	0.00226 J	ND	NE	NE	NE					
	Benzo(k)fluoranthene	0.00234 J	ND	ND	ND	210	1,700	49,000					
	Chrysene	0.0148	ND	0.0116 J	ND	2,100	17,000	490,000					
PAHs	Dibenz(a,h)anthracene	ND	ND	ND	ND	2.1	1 <i>7</i>	490					
Д	Fluoranthene	0.0287	0.00164 J	0.0262	ND	30,000	10,000	280,000					
	Fluorene	0.00858 J	ND	0.00271 J	ND	47,000	14,000	390,000					
	Indeno(1,2,3-cd)pyrene	0.00191 J	ND	ND	ND	21	170	4,900					
	Naphthalene	0.0547	0.00839 J	1.12	ND	23	580	16,000					
	Phenanthrene	0.0815	0.00124 J	0.0643	ND	NE	NE	NE					
	Pyrene	0.0406	0.00105 J	0.0188 J	ND	23,000	7,500	210,000					
	1-methylnaphthalene	0.0281 J	ND	0.0598 J	ND	NE	NE	NE					
	2-methylnaphthalene	0.0317 J	ND	0.0634 J	ND	NE	NE	NE					
	2-chloronaphthalene	ND	ND	ND	ND	NE	NE	NE					
	Total PCBs	NA	NA	ND	NA	0.59	4.9	140					
	Diesel-Range Organics	48	NA	NA	ND	14,000	4,600	>Max					
	Residual-Range Organics	1,980	NA	NA	ND	14,000	4,600	>Max					
	Gasoline-Range Organics	NA	NA	NA	ND	20,000	9,700	>Max					

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.

Bold: Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

	_		Concentration	(mg/1)
	Compound	Jordan Point Gro	undwater Samples	DEQ RBCs for Groundwater in Excavation
	Compound	JP-188-W	JP-191-W	Construction & Excavation
	Antimony	ND	ND	Worker NE
	Arsenic	0.00613	0.00626	6.3
	Beryllium	ND	ND	270
	Cadmium	ND	ND	130
	Chromium	0.08	0.0147	9.4
als	Copper	0.11	0.00712 J	5,400
Metals	Lead Nickel	0.00424 0.0379	0.00437 0.00867 J	>S >S
	Selenium	0.037 9 ND	0.00007) ND	NE
	Silver	ND	ND	1,100
	Thallium	ND	ND	ND
	Zinc	0.0267 J	0.0162 J	NE
	Mercury	0.0000514 J	0.000102 J	>\$
	Acetone	ND	ND	NE
	Acrolein	ND	ND	NE
	Acrylonitrile	ND	ND	0.25
	Benzene	ND	ND	1.8
	Bromobenzene Bromodichloromethana	ND ND	ND	NE 0.45
	Bromodichloromethane Bromoform	ND ND	ND ND	0.45 14
	Bromotorm	ND ND	ND ND	1.2
	N-butylbenzene	ND	ND	NE
	Sec-butylbenzene	ND	ND	NE NE
	Tert-Butylbenzene	ND	ND	NE
	Carbon tetrachloride	ND	ND	1.8
	Chlorobenzene	ND	ND	10
	Chlorodibromomethane	ND	ND	0.61
	Chloroethane	ND	ND	2,400
	Chloroform Chloromethane	ND ND	ND ND	0.72 22
	2-Chlorotoluene	ND	ND	NE
	4-Chlorotoluene	ND	ND	NE NE
	1,2-dibromo-3-chloropropane	ND	ND	NE
	1,2-dibromoethane	ND	ND	NE
	Dibromomethane	ND	ND	NE
	1,2-dichlorobenzene	ND	ND	37
	1,3-dichlorobenzene	ND	ND	NE 1.5
	1,4-dichlorobenzene Dichlorodifluoromethane	ND ND	ND ND	1.5 NE
	1,1-dichloroethane	ND ND	ND	10
	1,2-dichloroethane	ND	ND	NE NE
	1,1-dichloroethene	ND	ND	44
	Cis-1,2-dichloroethene	ND	ND	18
	Trans-1,2-dichloroethene	ND	ND	180
	1,2-dichloropropane	ND	ND	NE
VOCs	1,1-dichloropropene	ND	ND	NE
>	1,3-dichloropropane Cis-1,3-dichloropropene	ND ND	ND ND	NE NE
	Trans-1,3-dichloropropene	ND ND	ND	NE NE
	2,2-dichloropropane	ND	ND	NE NE
	Di-isopropyl ether	ND	ND	NE NE
	Ethylbenzene	ND	ND	4.5
	Hexachloro-1,3-butadiene	ND	ND	NE
	Isopropylbenzene	ND	ND	51
	P-isopropyltoluene	ND	ND	NE
	2-butanone (Mek)	ND	ND	NE
	Methylene chloride	ND ND	ND ND	NE NE
	4-methyl-2-pentanone (Mibk) Methyl tert-butyl ether	ND ND	ND ND	NE 63
	Naphthalene	ND ND	ND	0.5
	N-propylbenzene	ND	ND	NE
	Styrene	ND	ND	170
	1,1,1,2-tetrachloroethane	ND	ND	NE
	1,1,2,2-tetrachloroethane	ND	ND	NE
	1,1,2-trichlorotrifluoroethane	ND	ND	>\$
	Tetrachloroethene	ND	ND	6
	Toluene	ND	ND	220
	1,2,3-trichlorobenzene	ND	ND	NE

Table 19: SUMMARY OF JORDAN POINT GROUNDWATER CHEMICAL DATA

			Concentration	(mg/L)
	Compound	Jordan Point Gro	undwater Samples	DEQ RBCs for Groundwater in Excavation
		JP-188-W	JP-191-W	Construction & Excavation Worker
	1,2,4-trichlorobenzene	ND	ND	NE
	1,1,1-trichloroethane	ND	ND	1,100
	1,1,2-trichloroethane	ND	ND	0.049
	Trichloroethene	ND	ND	0.43
	Trichlorofluoromethane	ND	ND	160
	1,2,3-trichloropropane	ND	ND	NE
	1,2,4-trimethylbenzene	ND	ND	6
	1,2,3-trimethylbenzene	ND	ND	NE
	1,3,5-trimethylbenzene	ND	ND	8
	Vinyl chloride	ND	ND	0.96
	Xylenes, total	ND	ND	23
	Anthracene	ND	ND	>\$
	Acenaphthene	ND	ND	>\$
	Acenaphthylene	ND	ND	NE
	Benzo(a)anthracene	ND	ND	>\$
	Benzo(a)pyrene	ND	ND	>\$
	Benzo(b)fluoranthene	ND	ND	>\$
	Benzo(g,h,i)perylene	0.00000474 B J	ND	NE
	Benzo(k)fluoranthene	ND	ND	>\$
S	Chrysene	ND	ND	>\$
PAHs	Dibenz(a,h)anthracene	ND	ND	>\$
ш.	Fluoranthene	ND	ND	>\$
	Fluorene	ND	ND	>\$
	Indeno(1,2,3-cd)pyrene	ND	ND	>\$
	Naphthalene	0.0000937 B J	0.0000543 B J	0.5
	Phenanthrene	ND	ND	NE
	Pyrene	ND	ND	>\$
	1-methylnaphthalene	ND	ND	NE
	2-methylnaphthalene	ND	0.00001 J	NE
	2-chloronaphthalene	ND	ND	NE
	Diesel-Range Organics	0.674	0.179	>\$
	Residual-Range Organics	1.31	0.21 J	>\$
	Gasoline-Range Organics	ND	ND	14

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: Compound not analyzed for this sample.

- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precisio
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the rbc for groundwater in excavation for the construction and excavation

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-101-7 through BP-107-12)

					Concentration (mg/k	g)						
Compound				Boiler and	Powerhouse Area S	Soil Samples					or Soil Ingestion ct, and Inhalati	
	BP-101-7	BP-101-30	BP-102-12	BP-102-20	BP-103-13	BP-104-13	BP-104-20	BP-106-13	BP-107-12	Occupational	Construction Worker	
Antimony	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Arsenic	NA	NA	3.68	NA	NA	NA	NA	NA	NA	1.9	15	420
Beryllium	NA	NA	0.146 J	NA	NA	NA	NA	NA	NA	2,300	700	19,000
Cadmium	NA	NA	ND	NA	NA	NA	NA	NA	NA	1,100	350	9,700
Chromium	NA	NA	11.6	NA	NA	NA	NA	NA	NA	6.3	49	1400
Copper	NA	NA	10.8	NA	NA	NA	NA	NA	NA	47,000	14,000	390,000
Lead	NA	NA	4.61	NA	NA	NA	NA	NA	NA	800	800	800
Nickel	NA	NA	9.84	NA	NA	NA	NA	NA	NA	22,000	7,000	190,000
Selenium	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Silver	NA	NA	ND	NA	NA	NA	NA	NA	NA	5,800	1,800	49,000
Thallium	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Zinc	NA	NA	26.7	NA	NA	NA	NA	NA	NA	NE	NE	NE
Mercury	NA	NA	0.0416 B	NA	NA	NA	NA	NA	NA	350	110	2,900
Acetone	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Acrylonitrile	NA	NA	ND	NA	NA	NA	NA	NA	NA	4	40	1,100
Benzene	NA	NA	0.000374 J	NA	NA	NA	NA	NA	NA	37	380	11,000
Bromobenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Bromodichloromethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	15	230	6,300
Bromoform	NA	NA	ND	NA	NA	NA	NA	NA	NA	260	2,700	74,000
Bromomethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	750	370	10,000
N-butylbenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE NE
Sec-butylbenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Tert-Butylbenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Carbon tetrachloride	NA	NA	ND	NA	NA	NA	NA	NA	NA	34	320	8,900
Chlorobenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	8,700	4,700	130,000
Chlorodibromomethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	17	210	5,800
Chloroethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
Chloroform	NA	NA	ND	NA	NA	NA	NA	NA	NA	26	410	11,000
Chloromethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	25,000	25,000	700,000
2-Chlorotoluene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
4-Chlorotoluene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dibromo-3-chloropropane	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dibromoethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	0.73	9	250
Dibromomethane	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dichlorobenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	36,000	20,000	560,000
1,3-dichlorobenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	NE NE	NE NE	NE
1,4-dichlorobenzene	NA	NA	ND	NA	NA	NA	NA	NA	NA	64	1,300	36,000
Dichlorodifluoromethane	NA NA	NA	ND	NA	NA	NA	NA	NA	NA	NE NE	NE	NE

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-101-7 through BP-107-12)

BP-101-7 NA NA NA NA NA NA NA NA NA N	BP-101-30 NA NA NA NA NA NA NA NA NA N	BP-102-12 ND ND ND ND ND ND ND ND ND N	Boiler and BP-102-20 NA NA NA NA NA NA NA NA NA N	Powerhouse Area S BP-103-13 NA	BP-104-13 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA	BP-106-13 NA NA NA NA	BP-107-12 NA NA NA NA	Conta Occupational 260 NE 29,000	or Soil Ingestion ct, and Inhalatio Construction Worker 3,200 NE 13,000	on
NA	NA	ND	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	260 NE 29,000	3,200 NE 13,000	Worker 89,000 NE
NA	NA NA NA NA NA NA	ND ND ND ND ND	NA NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NE 29,000	NE 13,000	NE
NA NA NA NA NA NA NA NA NA	NA NA NA NA NA	ND ND ND ND ND	NA NA NA	NA NA NA	NA NA	NA	NA	NA	29,000	13,000	
NA NA NA NA NA NA NA	NA NA NA NA	ND ND ND ND	NA NA NA	NA NA	NA						370 000
NA NA NA NA NA	NA NA NA	ND ND ND	NA NA	NA		NA	NA	NA	2.200	=	370,000
NA NA NA NA	NA NA NA	ND ND	NA		NA			. 1, 1	2,300	710	20,000
NA NA NA	NA NA	ND		NA		NA	NA	NA	23,000	7,100	200,000
NA NA NA	NA		NA		NA	NA	NA	NA	NE	NE	NE
NA NA		ND		NA	NA	NA	NA	NA	NE	NE	NE
NA	NA		NA	NA	NA	NA	NA	NA	NE	NE	NE
		ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
•	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
NA	NA	ND	NA	NA	NA	NA	NA	NA	150	1,700	49,000
NA	NA	ND	NA	NA	NA	NA	NA	NA	NE	NE	NE
NA	NA			NA		NA	NA				750,000
									·		NE
											NE
											NE
											NE
											320,000
									·		16,000
											NE
											>Max
											NE
											NE
											NE
											50,000
											770,000
											NE
											NE
											>Max
											1,500
											3,700
											>Max
											NE
											81,000
											NE 81,000
	NA NA	NA N	NA NA ND NA NA ND	NA NA ND NA NA NA ND<	NA NA ND NA NA NA NA NA NA NA NA NA ND NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA <	NA NA<	NA NA<	NA NA<	NA NA NA NA NA NA NA NA NE NE NA NE NE NE NE NA NA </td

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-101-7 through BP-107-12)

					Concentration (mg/k	g)						
Compound				Boiler and	Powerhouse Area S	oil Samples					or Soil Ingestion ect, and Inhalati	on
	BP-101-7	BP-101-30	BP-102-12	BP-102-20	BP-103-13	BP-104-13	BP-104-20	BP-106-13	BP-107-12	Occupational	Construction Worker	Excavation Worker
Vinyl chloride	NA	NA	ND	NA	NA	NA	NA	NA	NA	4.4	34	950
Xylenes, total	NA	NA	ND	NA	NA	NA	NA	NA	NA	25,000	20,000	560,000
Anthracene	0.0013 J	ND	0.0739	ND	ND	ND	ND	ND	ND	350,000	110,000	>Max
Acenaphthene	0.00496 J	ND	0.0915	ND	ND	0.00542 J	ND	ND	ND	70,000	21,000	590,000
Acenaphthylene	0.00951 J	ND	ND	ND	ND	0.0206 J	ND	ND	ND	NE	NE	NE
Benzo(a)anthracene	0.00116 J	ND	0.00733 J	ND	ND	ND	ND	ND	ND	21	170	4,800
Benzo(a)pyrene	ND	ND	0.00403 J	ND	ND	ND	ND	ND	ND	2.1	1 <i>7</i>	490
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	170	4,900
Benzo(g,h,i)perylene	ND	ND	0.00421 J	ND	ND	ND	ND	ND	ND	NE	NE	NE
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	210	1,700	49,000
Chrysene	ND	ND	0.00691 J	ND	ND	ND	ND	ND	ND	2,100	17,000	490,000
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	17	490
Fluoranthene	0.00216 J	ND	0.0217 J	ND	ND	0.00442 J	ND	ND	ND	30,000	10,000	280,000
Fluorene	0.0012 J	ND	0.0308	ND	ND	ND	ND	ND	ND	47,000	14,000	390,000
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	170	4,900
Naphthalene	0.0785	ND	0.165	ND	ND	0.199	ND	ND	ND	23	580	16,000
Phenanthrene	0.00455 J	ND	0.139	ND	ND	0.00907 J	ND	ND	ND	NE	NE	NE
Pyrene	0.00179 J	ND	0.0641	ND	ND	0.00374 J	ND	ND	ND	23,000	7,500	210,000
1-methylnaphthalene	0.016 J	ND	0.321	ND	ND	ND	ND	ND	ND	NE	NE	NE
2-methylnaphthalene	0.0128 J	ND	0.409	ND	ND	ND	ND	ND	ND	NE	NE	NE
2-chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
Total PCBs	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.59	4.9	140
Diesel-Range Organics	NA	NA	697 J3	NA	NA	NA	NA	NA	NA	14,000	4,600	>Max
Residual-Range Organics	NA	NA	757 J3	NA	NA	NA	NA	NA	NA	14,000	4,600	>Max
Gasoline-Range Organics	NA	NA	0.803	NA	NA	NA	NA	NA	NA	20,000	9,700	>Max

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for precision.

V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.

NE: Value not established.

>Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.

Bold: Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-108-13 through BP-126-6)

					Concentrat	tion (mg/kg)						
	Compound			Boiler a	and Powerhou	use Area Soil	Samples				or Soil Ingestion ct, and Inhalati	
		BP-108-13	BP-108-17	BP-119-8	BP-119-17	BP-119-33	BP-121-9	BP-125-13	BP-126-6	Occupational	Construction Worker	Excavation Worker
	Antimony	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	1.9	15	420
	Beryllium	NA	NA	NA	NA	NA	NA	NA	NA	2,300	700	19,000
	Cadmium	NA	NA	NA	NA	NA	NA	NA	NA	1,100	350	9,700
	Chromium	NA	NA	NA	NA	NA	NA	NA	NA	6.3	49	1400
<u>s</u>	Copper	NA	NA	NA	NA	NA	NA	NA	NA	47,000	14,000	390,000
Metals	Lead	NA	NA	NA	NA	NA	NA	NA	NA	800	800	800
Σ	Nickel	NA	NA	NA	NA	NA	NA	NA	NA	22,000	7,000	190,000
	Selenium	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Silver	NA	NA	NA	NA	NA	NA	NA	NA	5,800	1,800	49,000
	Thallium	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Zinc	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
	Mercury	NA	NA	NA	NA	NA	NA	NA	NA	350	110	2,900
	Acetone	NA	NA	ND	0.0188 J	NA	NA	NA	NA	NE	NE	NE
	Acrylonitrile	NA	NA	ND	ND	NA	NA	NA	NA	4	40	1,100
	Benzene	NA	NA	ND	ND	NA	NA	NA	NA	37	380	11,000
	Bromobenzene	NA	NA	ND	ND	NA	NA	NA	NA	NE NE	NE	NE
	Bromodichloromethane	NA NA	NA NA	ND	ND	NA	NA	NA NA	NA	15	230	6,300
	Bromoform	NA NA	NA	ND	ND	NA	NA	NA NA	NA	260	2,700	74,000
	Bromomethane	NA NA	NA NA	ND	ND	NA NA	NA NA	NA NA	NA NA	750	370	10,000
	N-butylbenzene	NA NA	NA NA	0.751	ND	NA	NA	NA NA	NA	NE	NE	NE
	Sec-butylbenzene	NA NA	NA NA	0.751 0.101 J	ND	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
	Tert-Butylbenzene	NA NA	NA NA	0.101) ND	ND	NA NA		NA NA		NE NE	NE NE	NE
	Carbon tetrachloride						NA	NA NA	NA			
		NA NA	NA	ND	ND	NA	NA		NA	34	320	8,900
	Chlorobenzene	NA NA	NA	ND	ND	NA	NA	NA	NA	8,700	4,700	130,000
	Chlorodibromomethane	NA	NA	ND	ND	NA	NA	NA	NA	17	210	5,800
	Chloroethane	NA	NA	ND	ND	NA	NA	NA	NA	NE or	NE	NE
	Chloroform	NA	NA	ND	ND	NA	NA	NA	NA	26	410	11,000
	Chloromethane	NA	NA	ND	ND	NA	NA	NA	NA	25,000	25,000	700,000
	2-Chlorotoluene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	4-Chlorotoluene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,2-dibromoethane	NA	NA	ND	ND	NA	NA	NA	NA	0.73	9	250
	Dibromomethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,2-dichlorobenzene	NA	NA	ND	ND	NA	NA	NA	NA	36,000	20,000	560,000
	1,3-dichlorobenzene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,4-dichlorobenzene	NA	NA	ND	ND	NA	NA	NA	NA	64	1,300	36,000
	Dichlorodifluoromethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,1-dichloroethane	NA	NA	ND	ND	NA	NA	NA	NA	260	3,200	89,000
	1,2-dichloroethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
	1,1-dichloroethene	NA	NA	ND	ND	NA	NA	NA	NA	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA	NA	ND	ND	NA	NA	NA	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	NA	ND	ND	NA	NA	NA	NA	23,000	7,100	200,000
	1,2-dichloropropane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
S	1,1-dichloropropene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
VOCs	1,3-dichloropropane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
>	Cis-1,3-dichloropropene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE

				Concentra	tion (mg/kg)						
Compound			Boiler a	and Powerhou	use Area Soil	Samples				or Soil Ingestion ct, and Inhalati	
	BP-108-13	BP-108-17	BP-119-8	BP-119-17	BP-119-33	BP-121-9	BP-125-13	BP-126-6	Occupational	Construction Worker	Excavatio Worker
Trans-1,3-dichloropropene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
2,2-dichloropropane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Di-isopropyl ether	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Ethylbenzene	NA	NA	0.0402 J	ND	NA	NA	NA	NA	150	1,700	49,000
Hexachloro-1,3-butadiene	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Isopropylbenzene	NA	NA	0.0773 J	ND	NA	NA	NA	NA	57,000	27,000	750,000
P-isopropyltoluene	NA	NA	0.0310 J	ND	NA	NA	NA	NA	NE	NE	NE
2-butanone (Mek)	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Methylene chloride	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
4-methyl-2-pentanone (Mibk)	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Methyl tert-butyl ether	NA	NA	ND	ND	NA	NA	NA	NA	1,100	12,000	320,000
Naphthalene	NA	NA	12.7	ND	NA	NA	NA	NA	23	580	16,000
N-propylbenzene	NA	NA	0.549	ND	NA	NA	NA	NA	NE	NE	NE
Styrene	NA	NA	ND	ND	NA	NA	NA	NA	130,000	56,000	>Max
1,1,1,2-tetrachloroethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
1,1,2,2-tetrachloroethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
1,1,2-trichlorotrifluoroethane	NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
Tetrachloroethene	NA	NA	ND	ND	NA	NA	NA	NA	1,000	1,800	50,000
Toluene	NA	NA	ND	ND	NA	NA	NA	NA	88,000	28,000	770,000
1,2,3-trichlorobenzene	NA	NA	ND	ND	NA	NA	NA	NA	NE NE	NE NE	NE
1,2,4-trichlorobenzene	NA	NA	ND	ND	NA	NA	NA	NA	NE NE	NE	NE
1,1,1-trichloroethane	NA	NA	ND	ND	NA	NA	NA	NA	870,000	470,000	>Max
1,1,2-trichloroethane	NA	NA	ND	ND	NA	NA	NA	NA	26	54	1,500
Trichloroethene	NA NA	NA	ND	ND	NA	NA	NA	NA	51	130	3,700
Trichlorofluoromethane	NA NA	NA NA	ND	ND	NA NA	NA	NA	NA	130,000	69,000	>Max
1,2,3-trichloropropane	NA NA	NA	ND	ND	NA	NA	NA	NA	NE	NE	NE
1,2,4-trimethylbenzene	NA NA	NA NA	0.0239 J	ND	NA NA	NA NA	NA NA	NA NA	6,900	6,900	81,000
1,2,3-trimethylbenzene	NA NA	NA NA		ND	NA NA	NA NA	NA NA	NA NA	0,900 NE	0,900 NE	81,000 NE
1,3,5-trimethylbenzene	NA NA		0.114 ND	ND	NA NA		NA NA	NA NA			
, ,		NA	ND			NA			6,900	6,900	81,000
Vinyl chloride	NA	NA	ND	ND	NA	NA	NA	NA	4.4	34	950
Xylenes, total	NA 0.002011	NA	0.0872 J	ND	NA	NA	NA	NA	25,000	20,000	560,000
Anthracene	0.00391 J	ND	30.7	0.00241 J	0.00072 J	ND	0.0017 J	0.0147 J	350,000	110,000	>Max
Acenaphthene	0.00718 J	ND	30.6	0.00376 J	0.0014 J	ND	0.0327	ND	70,000	21,000	590,000
Acenaphthylene	0.0134 J	ND	ND	0.00082 J	ND	ND	ND	0.0205 J	NE	NE	NE
Benzo(a)anthracene	0.00254 J	ND	5.94	0.00109 J	ND	ND	ND	0.0257 J	21	170	4,800
Benzo(a)pyrene	ND	ND	2.27	ND	ND	ND	ND	0.0163 J	2.1	17	490
Benzo(b)fluoranthene	ND	ND	1.15	ND	ND	ND	ND	0.0432 J	21	170	4,900
Benzo(g,h,i)perylene	ND	ND	0.998	ND	ND	ND	ND	0.449	NE	NE	NE
Benzo(k)fluoranthene	ND	ND	0.0605 J	ND	ND	ND	ND	0.0201 J	210	1,700	49,000
Chrysene	ND	ND	10.0	0.00073 J	ND	ND	ND	ND	2,100	17,000	490,000
Dibenz(a,h)anthracene	ND	ND	0.275 J	ND	ND	ND	ND	ND	2.1	17	490
Fluoranthene	0.00467 J	ND	4.45	ND	ND	ND	0.00377 J	0.0152 J	30,000	10,000	280,000
Fluorene	0.00271 J	ND	28.8	0.00339	0.00128 J	0.00075 J	0.0109	ND	47,000	14,000	390,000
Indeno(1,2,3-cd)pyrene	ND	ND	0.179 J	ND	ND	ND	ND	0.0224	21	170	4,900
Naphthalene	0.106	ND	92.0	0.0129 J	ND	ND	0.02 J	ND	23	580	16,000
Phenanthrene	0.012 J	ND	124	0.00928	0.00314 J	ND	ND	0.015 J	NE	NE	NE
Pyrene	0.00442 J	ND	28.2	0.00229 J	ND	ND	0.00255 J	0.0199 J	23,000	7,500	210,000

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-108-13 through BP-126-6)

				Concentra	tion (mg/kg)						
Compound			Boiler a	and Powerhou	use Area Soil	Samples			*	or Soil Ingestion	•
	BP-108-13	BP-108-17	BP-119-8	BP-119-17	BP-119-33	BP-121-9	BP-125-13	BP-126-6	Occupational	Construction Worker	Excavation Worker
1-methylnaphthalene	ND	ND	138	0.0451	0.00855 J	ND	0.0032 J	ND	NE	NE	NE
2-methylnaphthalene	0.00785 J	ND	202	0.052	0.00959 J	ND	0.00403	ND	NE	NE	NE
2-chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
Total PCBs	NA	NA	NA	NA	NA	NA	NA	NA	0.59	4.9	140
Diesel-Range Organics	85.1	NA	27,600 J3	ND	ND	NA	ND	NA	14,000	4,600	>Max
Residual-Range Organics	389	NA	14,000 J3	5.79	ND	NA	ND	NA	14,000	4,600	>Max
Gasoline-Range Organics	NA	NA	161	NA	NA	NA	NA	NA	20,000	9,700	>Max

Notes:

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for precision.

V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.

NE: Value not established.

>Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.

Bold: Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

Document No. J1-680-RGL-GRI-00001-00 Revision: 1

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-127.8 through BP-202.10)

				Concentrat	ion (mg/kg)						
Compound			Boiler a	and Powerhou	ıse Area Soil	Samples			DEQ RBCs for S	oil Ingestion, Dermal Inhalation	Contact, and
	BP-127-8	BP-129-8	BP-129-14	BP-187-11	BP-200-8	BP-200-13	BP-202-4	BP-202-10	Occupational	Construction Worker	Excavatio Worker
Antimony	NA	NA	NA	NA	NA	NA	ND	NA	NE	NE	NE
Arsenic	NA	NA	NA	NA	NA	NA	4.17	NA	1.9	15	420
Beryllium	NA	NA	NA	NA	NA	NA	0.139 J	NA	2,300	700	19,000
Cadmium	NA	NA	NA	NA	NA	NA	0.151 J	NA	1,100	350	9,700
Chromium	NA	NA	NA	NA	NA	NA	13.8	NA	6.3	49	1400
Copper	NA	NA	NA	NA	NA	NA	28.8	NA	47,000	14,000	390,000
Lead	NA	NA	NA	NA	NA	NA	12.6	NA	800	800	800
Nickel	NA	NA	NA	NA	NA	NA	13.7	NA	22,000	7,000	190,000
Selenium	NA	NA	NA	NA	NA	NA	ND	NA	NE	NE	NE
Silver	NA	NA	NA	NA	NA	NA	ND	NA	5,800	1,800	49,000
Thallium	NA	NA	NA	NA	NA	NA	ND	NA	, NE	, NE	NE
Zinc	NA	NA	NA	NA	NA	NA	56.9	NA	NE	NE	NE
Mercury	NA	NA	NA	NA	NA	NA	0.0367	NA	350	110	2,900
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
Acrylonitrile	NA	NA	NA	NA	NA	NA	NA	NA	4	40	1,100
Benzene	NA	NA	NA	NA	NA	NA	NA	NA	37	380	11,000
Bromobenzene	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NE NE	NE NE	NE
Bromodichloromethane	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	15	230	6,300
Bromoform	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	260	2,700	74,000
Bromomethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	750	370	10,000
N-butylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE	NE	10,000 NE
Sec-butylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NE NE	NE NE	NE NE
Tert-Butylbenzene	NA NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE 0.000
Carbon tetrachloride	NA	NA	NA	NA	NA	NA	NA	NA	34	320	8,900
Chlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	8,700	4,700	130,000
Chlorodibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	17	210	5,800
Chloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
Chloroform	NA	NA	NA	NA	NA	NA	NA	NA	26	410	11,000
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	25,000	25,000	700,000
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dibromo-3-chloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dibromoethane	NA	NA	NA	NA	NA	NA	NA	NA	0.73	9	250
Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,2-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	36,000	20,000	560,000
1,3-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,4-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	64	1,300	36,000
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,1-dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	260	3,200	89,000
1,2-dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE
1,1-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	29,000	13,000	370,000
Cis-1,2-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	2,300	710	20,000

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-127.8 through BP-202.10)

	(BP-127.8 through BP-202.10) Concentration (mg/kg)													
Compound			Boiler a	and Powerhou		Samples			DEQ RBCs for S	oil Ingestion, Dermal Inhalation	Contact, and			
	BP-127-8	BP-129-8	BP-129-14	BP-187-11	BP-200-8	BP-200-13	BP-202-4	BP-202-10	Occupational	Construction Worker	Excavation Worker			
Trans-1,2-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	23,000	7,100	200,000			
1,2-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
1,1-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
1,3-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Cis-1,3-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Trans-1,3-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
2,2-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Di-isopropyl ether	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Ethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	150	1,700	49,000			
Hexachloro-1,3-butadiene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	57,000	27,000	750,000			
P-isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
2-butanone (Mek)	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
4-methyl-2-pentanone (Mibk)	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Methyl tert-butyl ether	NA	NA	NA	NA	NA	NA	NA	NA	1,100	12,000	320,000			
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	23	580	16,000			
N-propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Styrene	NA	NA	NA	NA	NA	NA	NA	NA	130,000	56,000	>Max			
1,1,1,2-tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE NE	NE			
1,1,2,2-tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
1,1,2-trichlorotrifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	1,000	1,800	50,000			
Toluene	NA	NA	NA	NA	NA	NA	NA	NA	88,000	28,000	770,000			
1,2,3-trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NE NE	NE NE	NE			
1,2,4-trichlorobenzene	NA NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE			
1,1,1-trichloroethane	NA NA	NA	NA	NA	NA	NA	NA	NA	870,000	470,000	>Max			
1,1,2-trichloroethane	NA NA	NA	NA	NA	NA	NA	NA	NA	26	54	1,500			
Trichloroethene	NA NA	NA	NA	NA	NA	NA	NA	NA	51	130	6,700			
Trichlorofluoromethane	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	130,000	69,000	> <i>M</i> ax			
1,2,3-trichloropropane	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NE	NE	NE			
1,2,4-trimethylbenzene	NA NA	NA NA	NA	NA	NA	NA	NA	NA	6,900	6,900	81,000			
1,2,3-trimethylbenzene	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NE	NE	NE			
1,3,5-trimethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6,900	6,900	81,000			
Vinyl chloride	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.4	34	950			
Xylenes, total	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	25,000	20,000	560,000			
Anthracene	ND	22.9	ND	ND		ND	0.00485 J	ND ND	350,000	110,000	>Max			
Acenaphthene	ND ND	16.1	0.00719 J	ND ND	1.06 1.46	ND ND	0.00485 J 0.00078 J	ND ND	70,000	21,000	> Max 590,000			
·			0.00719 J ND						70,000 NE	21,000 NE	590,000 NE			
Acenaphthylene Ronzo(a)anthracene	ND	3.64		ND	0.182	ND	0.00184 J	ND ND						
Benzo(a)anthracene	ND	3.88	0.00218 J	ND 0.00073.1	0.0922	ND	0.0397	ND	21	170	4,800 490			
Benzo(a)pyrene	ND	1.76	0.00077 J	0.00073 J	0.0405 J	ND	0.0368	ND	2.1	17				
Benzo(b)fluoranthene	ND	0.842	ND	ND	0.0431 J	ND	0.0479	ND	21	170	4,900			

Table 20: SUMMARY OF BOILER AND POWERHOUSE AREA SOIL CHEMICAL DATA (BP-127.8 through BP-202.10)

					Concentrat	ion (mg/kg)						
	Compound			Boiler a	nd Powerhou		Samples			DEQ RBCs for S	oil Ingestion, Dermal Inhalation	Contact, and
		BP-127-8	BP-129-8	BP-129-14	BP-187-11	BP-200-8	BP-200-13	BP-202-4	BP-202-10	Occupational	Construction Worker	Excavation Worker
	Benzo(g,h,i)perylene	ND	0.836	ND	ND	0.0376 J	ND	0.0263	ND	NE	NE	NE
	Benzo(k)fluoranthene	ND	0.16	ND	ND	0.0181 J	ND	0.0215	ND	210	1,700	49,000
S	Chrysene	ND	7.08	0.00318 J	ND	0.172	ND	0.0407	ND	2,100	17,000	490,000
PAH	Dibenz(a,h)anthracene	ND	0.228	ND	ND	0.00824 J	ND	0.00632 J	ND	2.1	1 <i>7</i>	490
Δ.	Fluoranthene	ND	2.83	0.00191 J	ND	0.403	ND	0.0678	ND	30,000	10,000	280,000
	Fluorene	ND	16.5	0.0048 J	ND	0.481	ND	0.00125 J	ND	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	ND	0.130 J	ND	ND	0.0106 J	ND	0.0217	ND	21	170	4,900
	Naphthalene	ND	50.4	0.00388 J	0.00449 J	0.153 J	ND	ND	ND	23	580	16,000
	Phenanthrene	ND	86.0	0.0166	ND	0.508	ND	0.0146	ND	NE	NE	NE
	Pyrene	ND	17.6	0.00812	ND	1.4	ND	0.0475	ND	23,000	7,500	210,000
	1-methylnaphthalene	ND	258	0.0492	ND	0.455	ND	0.00308 J	ND	NE	NE	NE
	2-methylnaphthalene	ND	35.8	0.00709 J	ND	0.400	ND	0.00463 J	ND	NE	NE	NE
	2-chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
	Total PCBs	NA	NA	NA	NA	NA	NA	ND J3	NA	0.59	4.9	140
	Diesel-Range Organics	NA	10,800	11.2	NA	2,360	NA	ND	NA	14,000	4,600	>Max
	Residual-Range Organics	NA	5,100	ND J	NA	967	NA	98.2	NA	14,000	4,600	>Max
	Gasoline-Range Organics	NA	NA	NA	NA	NA	NA	NA	NA	20,000	9,700	>Max

Notes:

- ND: Not detected at concentration greater than method detection limit.
- NA: NA: Compound not analyzed for this sample.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.
- NE: Value not established
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.
- **Bold:** Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

Document No. J1-680-RGL-GRI-00001-00 Revision: 1

Table 21: SUMMARY OF BOILER AND POWERHOUSE GROUNDWATER CHEMICAL DATA

	Compound		Boi	iler and Powerhous	e Groundwater	Samples		DEQ RBCs for Groundwate in Excavation
		BP-102-W	BP-109-W	BP-119-W	BP-121-W	BP-187-W	BP-202-W	Construction & Excavation Worker
	Antimony	ND	0.000828 J	ND	NA	ND	NA	NE
	Arsenic	0.0105	0.00301	0.00474	NA	0.00908	NA	6.3
	Beryllium Cadmium	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	270 130
	Chromium	0.0368	0.005 J	0.00313 J	NA NA	0.0215	NA NA	9.4
	Copper	0.0194	ND	ND	NA	ND	NA	5,400
Metals	Lead	0.0103	0.00184 B J	0.000716 J	NA	0.00529	NA	>5
ž	Nickel	0.0193	ND	ND	NA	0.0127	NA	>\$
	Selenium	ND	ND	ND	NA	ND	NA	NE
	Silver	ND	ND	ND	NA	ND	NA	1,100
	Thallium	0.000372 J	0.00028 B J	NA	NA	ND	NA	NE
	Zinc	0.0625	0.0079 J	ND	NA	0.0245 J	NA	NE
	Mercury	0.0000545 J J3	ND J3	0.0000542 J J3	NA	0.0000686 B J	NA	>\$
	Acetone	ND	ND	ND	NA	ND J4	NA	NE
	Acrolein	ND J4	ND J4	ND J4	NA	ND J4	NA	NE
	Acrylonitrile	ND	ND	ND	NA	ND	NA	0.25
	Benzene Bromobenzene	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	1.8 NE
	Bromobenzene Bromodichloromethane	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	0.45
	Bromoform	ND ND	ND ND	ND ND	NA NA	ND	NA NA	0.45
	Bromomethane	ND J3	ND	ND J3	NA NA	ND	NA NA	1.2
	N-butylbenzene	ND	ND	ND ND	NA	ND	NA	NE NE
	Sec-butylbenzene	ND	ND	ND	NA	ND	NA	NE NE
	Tert-Butylbenzene	ND	ND	ND	NA	ND	NA	NE
	Carbon tetrachloride	ND	ND	ND	NA	ND	NA	1.8
	Chlorobenzene	ND	ND	ND	NA	ND	NA	10
	Chlorodibromomethane	ND	ND	ND	NA	ND	NA	0.61
	Chloroethane	ND J3	ND	ND J3	NA	ND J4	NA	2,400
	Chloroform	ND	ND	ND	NA	ND	NA	0.72
	Chloromethane	ND J3 J4	ND	ND J3 J4	NA	ND	NA	22
	2-Chlorotoluene	ND	ND	ND	NA	ND	NA	NE
	4-Chlorotoluene	ND	ND	ND	NA	ND	NA	NE NE
	1,2-dibromo-3-chloropropa 1,2-dibromoethane	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	NE NE
	Dibromomethane	ND ND	ND ND	ND ND	NA NA	ND	NA NA	NE NE
	1,2-dichlorobenzene	ND	ND	ND	NA NA	ND	NA NA	37
	1,3-dichlorobenzene	ND	ND	ND	NA	ND	NA	NE NE
	1,4-dichlorobenzene	ND	ND	ND	NA	ND	NA	1.5
	Dichlorodifluoromethane	ND	ND	ND	NA	ND	NA	NE
	1,1-dichloroethane	ND	ND	ND	NA	ND	NA	10
	1,2-dichloroethane	ND	ND	ND	NA	ND	NA	NE
	1,1-dichloroethene	ND J3	ND	ND J3	NA	ND	NA	44
	Cis-1,2-dichloroethene	ND	ND	ND	NA	ND	NA	18
	Trans-1,2-dichloroethene	ND	ND	ND	NA	ND	NA	180
	1,2-dichloropropane	ND	ND	ND	NA	ND	NA	NE
VOCs	1,1-dichloropropene	ND	ND	ND	NA NA	ND	NA NA	NE NE
>	1,3-dichloropropane	ND ND	ND	ND ND	NA NA	ND ND	NA NA	NE NE
	Cis-1,3-dichloropropene Trans-1,3-dichloropropene	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	NE NE
	2,2-dichloropropane	ND J3	ND ND	ND J3	NA NA	ND ND	NA NA	NE NE
	Di-isopropyl ether	ND ND	ND ND	ND ND	NA NA	ND	NA NA	NE NE
	Ethylbenzene	ND ND	ND	ND	NA NA	ND	NA NA	4.5
	Hexachloro-1,3-butadiene		ND	ND	NA	ND	NA	NE
	Isopropylbenzene	ND	ND	ND	NA	ND	NA	51
	P-isopropyltoluene	ND	ND	ND	NA	ND	NA	NE
	2-butanone (Mek)	ND	ND	ND	NA	ND	NA	NE
	Methylene chloride	ND	ND	ND	NA	ND	NA	NE
	4-methyl-2-pentanone (Mil		ND	ND	NA	ND	NA	NE
	Methyl tert-butyl ether	ND	ND	ND	NA	ND	NA	63
	Naphthalene	ND	ND	0.0249	NA	ND	NA	0.5
	N-propylbenzene	ND	ND	0.000686 J	NA	ND	NA	NE
	Styrene	ND	ND	ND	NA	ND	NA	170
	1,1,1,2-tetrachloroethane	ND	ND	ND	NA	ND	NA	NE NE
	1,1,2,2-tetrachloroethane	ND 12	ND	ND 13	NA	ND	NA	NE > C
	1,1,2-trichlorotrifluoroetha Tetrachloroethene	-	ND	ND J3 ND	NA NA	ND ND	NA NA	>S
	Toluene	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	6 220
	1,2,3-trichlorobenzene	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	NE NE

Table 21: SUMMARY OF BOILER AND POWERHOUSE GROUNDWATER CHEMICAL DATA

					Concentra	tion (mg/L)		
	Compound		Boile	r and Powerhou	se Groundwater	Samples		DEQ RBCs for Groundwater in Excavation
	·	BP-102-W	BP-109-W	BP-119-W	BP-121-W	BP-187-W	BP-202-W	Construction & Excavation Worker
	1,2,4-trichlorobenzene	ND	ND	ND	NA	ND	NA	NE
	1,1,1-trichloroethane	ND	ND	ND	NA	ND	NA	1,100
	1,1,2-trichloroethane	ND	ND	ND	NA	ND	NA	0.049
	Trichloroethene	ND	ND	ND	NA	ND	NA	0.43
	Trichlorofluoromethane	ND J3	ND	ND J3	NA	ND	NA	160
	1,2,3-trichloropropane	ND	ND	ND	NA	ND	NA	NE
	1,2,4-trimethylbenzene	ND	ND	ND	NA	ND	NA	6
	1,2,3-trimethylbenzene	ND	ND	ND	NA	ND	NA	NE
	1,3,5-trimethylbenzene	ND	ND	ND	NA	ND	NA	8
	Vinyl chloride	ND J3 J4	ND	ND J3 J4	NA	ND	NA	0.96
	Xylenes, total	ND	ND	ND	NA	ND	NA	23
	Anthracene	ND	ND T8	0.000436	ND	ND	ND	>\$
	Acenaphthene	ND	ND T8	0.00439	ND	ND	ND	>\$
	Acenaphthylene	ND	ND T8	ND	ND	ND	ND	NE
	Benzo(a)anthracene	ND	ND T8	ND	ND	ND	ND	>\$
	Benzo(a)pyrene	ND	ND T8	ND	ND	ND	ND	>\$
	Benzo(b)fluoranthene	0.0000068 B J	0.00000535 J T8	0.000014 B J	ND	ND	ND	>S
	Benzo(g,h,i)perylene	0.00000662 B J	0.00000313 J T8	0.000026 B J	ND	ND	0.00000589 B J	NE
	Benzo(k)fluoranthene	ND	ND T8	ND	ND	ND	ND	>\$
4	Chrysene	ND	ND T8	ND	ND	ND	ND	>\$
PAHs	Dibenz(a,h)anthracene	ND	ND T8	ND	ND	ND	ND	>\$
	Fluoranthene	ND	ND T8	ND	ND	ND	ND	>\$
	Fluorene	ND	ND T8	0.00345	ND	ND	ND	>\$
	Indeno(1,2,3-cd)pyrene	ND	ND T8	ND	ND	ND	ND	>\$
	Naphthalene	0.0000978 B J	ND T8	0.0423	0.0000872 J	0.0000305 B J	0.0000552 B J	0.5
	Phenanthrene	ND	ND T8	0.0041	ND	ND	ND	NE
	Pyrene	ND	ND T8	0.000159 J	ND	ND	ND	>\$
	1-methylnaphthalene	ND	ND T8	0.103	0.000037 J	ND	ND	NE
	2-methylnaphthalene	ND	ND T8	0.0955	0.0000355 J	ND	ND	NE
	2-chloronaphthalene	ND	ND T8	ND	ND	ND	ND	NE
	Diesel-Range Organics	0.0428 J	NA	1.34	NA	0.0577 J	0.0854 J	>\$
R	Residual-Range Organics	ND	NA	1.25	NA	0.148 J	0.272	>\$
C	Gasoline-Range Organics	ND	NA	0.0929 J	NA	ND	NA	14

- ND: Not detected at concentration greater than method detection limit.
- NA: Compound not analyzed for this sample.
- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the RBC for groundwater in excavation for the construction and excavation worker receptor scenario for this compound.

Table 22: SUMMARY OF DEBARKER AREA SOIL CHEMICAL DATA

							Co	ncentration (mg/kg)						
Compound Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Thallium Zinc Mercury Acetone Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane N-butylbenzene Sec-butylbenzene Carbon tetrachloride Chlorodibromomethane Chloroform Chloromethane Chloroform Chloromethane 2-Chlorotoluene 1,2-dibromo-3-chloropropane 1,2-dibromoethane					D	ebarker Area	Soil Samples							or Soil Ingestion ct, and Inhalatio	on
	DB-159-7	DB-161-13	DB-161-30	DB-162-10	DB-162-21	DB-163-11	DB-165-10	DB-166-11	DB-169-12	DB-169-16	DB-170-13	3 DB-199-11	Occupational	Construction Worker	Excavation Worker
Antimony	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Arsenic	NA	NA	NA	3.75	NA	NA	NA	NA	NA	NA	NA	3.87	1.9	15	420
Beryllium	NA	NA	NA	0.122 J	NA	NA	NA	NA	NA	NA	NA	0.104 J	2,300	700	19,000
Cadmium	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	ND	1,100	350	9,700
Chromium	NA	NA	NA	6.28	NA	NA	NA	NA	NA	NA	NA	7.46	6.3	49	1400
Copper	NA	NA	NA	0.984 J	NA	NA	NA	NA	NA	NA	NA	ND	47,000	14,000	390,000
Lead	NA	NA	NA	1.13	NA	NA	NA	NA	NA	NA	NA	1.48	800	800	800
Nickel	NA	NA	NA	3.63	NA	NA	NA	NA	NA	NA	NA	3.88	22,000	7,000	190,000
Selenium	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Silver	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	ND	5,800	1,800	49,000
Thallium	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Zinc	NA	NA	NA	7.89	NA	NA	NA	NA	NA	NA	NA	8.18	NE	NE	NE
Mercury	NA	NA	NA	0.0352 J3	NA	NA	NA	NA	NA	NA	NA	0.00717 J	350	110	2,900
Acetone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Acrylonitrile	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4	40	1,100
Benzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	37	380	11,000
Bromobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Bromodichloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	15	230	6,300
Bromoform	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	260	2,700	74,000
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	750	370	10,000
N-butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Sec-butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND J4	NE	NE	NE
Tert-Butylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Carbon tetrachloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	34	320	8,900
Chlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	8,700	4,700	130,000
Chlorodibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	17	210	5,800
Chloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
Chloroform	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	26	410	11,000
Chloromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	25,000	25,000	700,000
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
1,2-dibromo-3-chloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.73	9	250
Dibromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
1,2-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	36,000	20,000	560,000
1,3-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	, NE	NE	NE
1,4-dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	64	1,300	36,000
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE

Table 22: SUMMARY OF DEBARKER AREA SOIL CHEMICAL DATA

								Co	ncentration ((mg/kg)						
	Compound					D	ebarker Area	Soil Samples							or Soil Ingestion act, and Inhalatio	
		DB-159-7	DB-161-13	DB-161-30	DB-162-10	DB-162-21	DB-163-11	DB-165-10	DB-166-11	DB-169-12	DB-169-16	DB-170-13	DB-199-11	Occupational	Construction Worker	Excavation Worker
	1,1-dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	260	3,200	89,000
	1,2-dichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,1-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	29,000	13,000	370,000
	Cis-1,2-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	23,000	7,100	200,000
	1,2-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,1-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,3-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Cis-1,3-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Trans-1,3-dichloropropene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	2,2-dichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Di-isopropyl ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Ethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Isopropylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND J4	57,000	27,000	750,000
	P-isopropyltoluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
ľ	2-butanone (Mek)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Methylene chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Methyl tert-butyl ether	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	1,100	12,000	320,000
	Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	23	580	16,000
	N-propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	Styrene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,1,2,2-tetrachloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,1,2-trichlorotrifluoroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
ľ	Tetrachloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	1,000	1,800	50,000
	Toluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	88,000	28,000	770,000
	1,2,3-trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,2,4-trichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE	NE	NE
	1,1,1-trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	26	54	1,500
	Trichloroethene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	51	130	3,700
	Trichlorofluoromethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NE NE	, NE	NE
	1,2,4-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND J4	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	, NE	, NE	NE
	1,3,5-trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND J4	6,900	6,900	81,000

Table 22: SUMMARY OF DEBARKER AREA SOIL CHEMICAL DATA

							Co	ncentration (ı	mg/kg)						
Compound					D	ebarker Area	Soil Samples						*	or Soil Ingestion ct, and Inhalatio	
	DB-159-7	DB-161-13	DB-161-30	DB-162-10	DB-162-21	DB-163-11	DB-165-10	DB-166-11	DB-169-12	DB-169-16	DB-170-13	DB-199-11	Occupational	Construction Worker	Excavation Worker
Vinyl chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	4.4	34	950
Xylenes, total	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	25,000	20,000	560,000
Anthracene	ND	0.0014 J	0.00082 J	0.288	ND	ND	ND	ND	0.00338 J	ND	ND	ND	350,000	110,000	>Max
Acenaphthene	ND	0.00681 J	0.00247 J	0.0372	ND	0.00077 J	0.00253	0.00238 J	0.00439 J	0.00190 J	ND	ND	70,000	21,000	590,000
Acenaphthylene	ND	ND	ND	0.0316	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
Benzo(a)anthracene	ND	ND	ND	0.0317	0.00077 J	ND	ND	0.00235 J	ND	ND	ND	ND	21	170	4,800
Benzo(a)pyrene	ND	ND	ND	0.201	0.00084 J	ND	ND	ND	ND	ND	ND	ND	2.1	1 <i>7</i>	490
Benzo(b)fluoranthene	0.00784 J	ND	ND	0.0471	0.00085 J	ND	ND	ND	ND	ND	ND	ND	21	170	4,900
Benzo(g,h,i)perylene	ND	ND	ND	0.00998	0.00102 J	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
Benzo(k)fluoranthene	ND	ND	ND	0.0527	ND	ND	ND	ND	ND	ND	ND	ND	210	1,700	49,000
္တ Chrysene	ND	ND	ND	0.123	0.0072 J	ND	ND	ND	ND	ND	ND	ND	2,100	17,000	490,000
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	1 <i>7</i>	490
Fluoranthene	0.0295 J	0.00104 J	0.00271 J	0.0459	ND	ND	ND	0.00106 J	0.00219 J	ND	ND	ND	30,000	10,000	280,000
Fluorene	ND	ND	ND	0.111	ND	ND	ND	ND	ND	ND	ND	ND	47,000	14,000	390,000
Indeno(1,2,3-cd)pyrene	ND	ND	ND	0.00203 J	ND	ND	ND	ND	ND	ND	ND	ND	21	170	4,900
Naphthalene	ND	ND	0.00288 J	0.0108 J	ND	ND	0.00233 J	ND	0.00273 J	ND	ND	ND	23	580	16,000
Phenanthrene	0.0074 J	ND	0.00352 J	0.510	ND	0.00086 J	0.0011 J	0.000795 J	0.00301 J	ND	ND	ND	NE	NE	NE
Pyrene	0.00746 J	ND	0.0013 J	0.0979	ND	ND	0.00073 J	ND	0.00146 J	ND	ND	ND	23,000	7,500	210,000
1-methylnaphthalene	ND	ND	ND	0.0671	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
2-methylnaphthalene	ND	ND	ND	0.00496 J	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
2-chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	NE	NE
Total PCBs	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.59	4.9	140
Diesel-Range Organics	NA	NA	NA	1,480	ND	ND	NA	1.6 J	ND	ND	ND	ND	14,000	4,600	>Max
Residual-Range Organics	NA	NA	NA	6,130	ND	26	NA	17.3	4.15	ND J3	ND	ND	14,000	4,600	>Max
Gasoline-Range Organics	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	20,000	9,700	>Max

Bold: Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for precision.

V3: The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. Below detection limit (BDL) results will be unaffected.

NE: Value not established.

>Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.

Compound		Deb	Conc arker Groundwater Sa	mples (mg/L)	DEQ RBCs for Groundwate
	•	DB-162-W	DB-163-W	DB-199-W	Construction & Excavation
	Antimony	NA	ND	NA	Worker NE
	Arsenic	NA	0.0125	NA	6.3
	Beryllium	NA	ND	ND	270
	Cadmium	NA	ND	ND	130
	Chromium	NA	0.119	0.0396	9.4
s	Copper	NA	0.0304	0.0194	5,400
Metals	Lead	NA	0.0119	0.00701	>\$
≥	Nickel	NA	0.0421	0.0473	>\$
	Selenium	NA	ND	ND	NE
	Silver	NA	ND	ND	1,100
	Thallium	NA	0.000207 J	NA	ND
	Zinc	NA	0.0682	0.0368 J	NE
	Mercury	NA	0.0000958 B J	0.0000602 J	>\$
	Acetone	ND J3	ND J4	ND	NE
	Acrolein	ND	ND J4	ND J4	NE
	Acrylonitrile	ND	ND	ND	0.25
	Benzene	ND	ND	ND	1.8
	Bromobenzene	ND	ND	ND	NE
	Bromodichloromethane	ND	ND	ND	0.45
	Bromoform	ND	ND	ND	14
	Bromomethane	ND	ND	ND	1.2
	N-butylbenzene	ND	ND	ND	NE
	Sec-butylbenzene	ND	ND	ND	NE
	Tert-Butylbenzene	ND	ND	ND	NE
	Carbon tetrachloride	ND	ND	ND	1.8
	Chlorobenzene	ND	ND	ND	10
	Chlorodibromomethane	ND	ND	ND	0.61
	Chloroethane	ND	ND J4	ND	2,400
	Chloroform	ND	ND	ND	0.72
	Chloromethane	ND	ND	ND	22
	2-Chlorotoluene	ND	ND	ND	NE -
	4-Chlorotoluene	ND	ND	ND	NE
	1,2-dibromo-3-chloropropane	ND	ND	ND	NE NE
	1,2-dibromoethane	ND	ND	ND	NE
	Dibromomethane	ND	ND	ND	NE 37
	1,2-dichlorobenzene	ND	ND	ND	37
	1,3-dichlorobenzene	ND	ND	ND	NE 1.5
	1,4-dichlorobenzene Dichlorodifluoromethane	ND	ND	ND	1.5
	1,1-dichloroethane	ND ND	ND ND	ND ND	NE 10
	1,2-dichloroethane	ND ND	ND ND	ND ND	NE
	1,1-dichloroethene	ND ND	ND ND	ND ND	1NE 44
	Cis-1,2-dichloroethene	ND	ND	ND	18
	Trans-1,2-dichloroethene	ND ND	ND ND	ND ND	180
	1,2-dichloropropane	ND ND	ND ND	ND ND	NE
ν	1,1-dichloropropene	ND	ND	ND	NE NE
ςς > -	1,3-dichloropropane	ND	ND	ND	NE NE
	Cis-1,3-dichloropropene	ND	ND	ND	NE NE
	Trans-1,3-dichloropropene	ND	ND	ND	NE NE
	2,2-dichloropropane	ND	ND	ND	NE NE
	Di-isopropyl ether	ND	ND	ND	NE NE
	Ethylbenzene	ND	ND	ND	4.5
	Hexachloro-1,3-butadiene	ND	ND	ND	NE NE
	Isopropylbenzene	ND	ND	ND	51
	P-isopropyltoluene	ND	ND	ND	NE NE
	2-butanone (Mek)	ND	ND	ND	NE
	Methylene chloride	ND	ND	ND	NE
	4-methyl-2-pentanone (Mibk)	ND	ND	ND	NE
	Methyl tert-butyl ether	ND	ND	ND	63
	Naphthalene	ND	ND	ND	0.5
	N-propylbenzene	ND	ND	ND	NE
	Styrene	ND	ND	ND	170
	1,1,1,2-tetrachloroethane	ND	ND	ND	NE
	1,1,2,2-tetrachloroethane	ND	ND	ND	NE
	1,1,2-trichlorotrifluoroethane	ND	ND	ND	>S
	Tetrachloroethene	ND	ND	ND	6
	Toluene	ND	ND	ND	220
	1,2,3-trichlorobenzene	ND	ND	ND	NE

Table 23: SUMMARY OF DEBARKER GROUNDWATER CHEMICAL DATA

			Con	centration (mg/L)	
Comp	ound	Deba	arker Groundwater S	amples	DEQ RBCs for Groundwater in Excavation
		DB-162-W	DB-163-W	DB-199-W	Construction & Excavation Worker
1,2,4-trichloro	benzene	ND	ND	ND	NE
1,1,1-trichloro	ethane	ND	ND	ND	1,100
1,1,2-trichloro	ethane	ND	ND	ND	0.049
Trichloroether	ne	ND	ND	ND	0.43
Trichlorofluor	omethane	ND	ND	ND	160
1,2,3-trichloro	propane	ND	ND	ND	NE
1,2,4-trimethy	Ibenzene	ND	ND	ND	6
1,2,3-trimethy	lbenzene	0.000369 J	ND	ND	NE
1,3,5-trimethy	lbenzene	ND	ND	ND	8
Vinyl chloride	!	ND	ND	ND	0.96
Xylenes, total		ND	ND	ND	23
Anthracene		0.0000575	ND	ND	>\$
Acenaphthene	1	0.000205	0.00466	ND	>\$
Acenaphthylei	ne	ND	ND	ND	NE
Benzo(a)anthr	acene	ND	ND	ND	>\$
Benzo(a)pyren	ne	ND	ND	ND	>\$
Benzo(b)fluora	anthene	ND	ND	ND	>\$
Benzo(g,h,i)pe	erylene	ND	ND	0.00000504 J B	NE
Benzo(k)fluora	anthene	ND	ND	ND	>\$
Chrysene		ND	ND	ND	>\$
Dibenz(a,h)an	thracene	ND J3	ND	0.00000462 J	>\$
Fluoranthene		0.0000182 J	ND	ND	>\$
Fluorene		0.000178	0.0000207 J	ND	>\$
Indeno(1,2,3-a	cd)pyrene	ND J3	ND	ND	>\$
Naphthalene		0.0000266 J	0.000065 B J	0.0000462 J B	0.5
Phenanthrene		0.000325	0.0000245 J	ND	NE
Pyrene		0.0000154 J	ND	ND	>\$
1-methylnapht	thalene	0.000206 J	0.00000952 J	ND	NE
2-methylnapht	thalene	0.0000266 J	0.0000131 J	ND	NE
2-chloronapht	halene	ND	ND	ND	NE
Diesel-Rang	e Organics	NA	0.0494 J	NA	>\$
Residual-Ran	ge Organics	NA	ND	NA	>\$
Gasoline-Ran	ge Organics	NA	0.0324 B J	ND	14

Notes:

- ND: Not detected at concentration greater than method detection limit.
- NA: Compound not analyzed for this sample.
- B: The same analyte is found in the associated blank.
- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.
- J4: The associated batch QC was outside the established quality control range for accuracy
- NE: Value not established.
- T8: Sample(s) received past/too close to holding time expiration.
- >S: The groundwater Risk-Based Concentration exceeds the solubility limit.

Bold: Value exceeds the Risk-Based Concentration for groundwater in excavation for the construction and excavation worker receptor scenario for this compound.

		Conce	entration (mg/kg)		<u> </u>
	Compound	Fire Suppression AST Soil Sample		or Soil Ingestion, act, and Inhalatio	
	-	FSDAST	Occupational	Construction	Excavatio
			•	Worker	Worker
	Antimony	4.55	NE 1.0	NE 15	NE 100
	Arsenic	3.07	1.9	15	420
	Beryllium Cadmium	0.0899 J	2,300	700	19,000
	Chromium	1.01 743	1,100 6.3	350 49	9,700
		-			1400
5	Copper Lead	126 202	47,000 800	14,000 800	390,000 800
Metals	Nickel	346	22,000	7,000	190,000
	Selenium	ND	NE	7,000 NE	130,000 NE
	Silver	ND	5,800	1,800	49,000
	Thallium	ND	NE	NE	NE
	Zinc	543	NE	NE	NE
	Mercury	0.0644	350	110	2,900
	Acetone	NA NA	NE	NE NE	NE NE
	Acrylonitrile	NA	4	40	1,100
	Benzene	NA NA	37	380	11,000
	Bromobenzene	NA NA	NE	NE NE	NE
	Bromodichloromethane	NA NA	15	230	6,300
	Bromoform	NA	260	2,700	74,000
	Bromomethane	NA NA	750	370	10,000
	N-butylbenzene	NA NA	NE	NE	NE
	Sec-butylbenzene	NA NA	NE	NE	NE
	Tert-Butylbenzene	NA	NE NE	NE	NE
	Carbon tetrachloride	NA	34	320	8,900
	Chlorobenzene	NA	8,700	4,700	130,00
	Chlorodibromomethane	NA	17	210	5,800
	Chloroethane	NA	NE	NE	, NE
	Chloroform	NA	26	410	11,000
	Chloromethane	NA	25,000	25,000	700,00
	2-Chlorotoluene	NA	, NE	NE	NE
	4-Chlorotoluene	NA	NE	NE	NE
	1,2-dibromo-3-chloropropane	NA	NE	NE	NE
	1,2-dibromoethane	NA	0.73	9	250
	Dibromomethane	NA	NE	NE	NE
	1,2-dichlorobenzene	NA	36,000	20,000	560,00
	1,3-dichlorobenzene	NA	NE	NE	NE
	1,4-dichlorobenzene	NA	64	1,300	36,000
	Dichlorodifluoromethane	NA	NE	NE	NE
	1,1-dichloroethane	NA	260	3,200	89,000
	1,2-dichloroethane	NA	NE	NE	NE
	1,1-dichloroethene	NA	29,000	13,000	370,00
	Cis-1,2-dichloroethene	NA	2,300	710	20,000
	Trans-1,2-dichloroethene	NA	23,000	7,100	200,00
	1,2-dichloropropane	NA	NE	NE	NE
	1,1-dichloropropene	NA	NE	NE	NE
1	1,3-dichloropropane	NA	NE	NE	NE
	Cis-1,3-dichloropropene	NA	NE	NE	NE
	Trans-1,3-dichloropropene	NA	NE	NE	NE
	2,2-dichloropropane	NA	NE	NE	NE
	Di-isopropyl ether	NA	NE	NE	NE
	Ethylbenzene	NA	150	1,700	49,000
	Hexachloro-1,3-butadiene	NA	NE	NE	NE
	Isopropylbenzene	NA	57,000	27,000	750,00
	P-isopropyltoluene	NA	NE	NE	NE
	2-butanone (Mek)	NA	NE	NE	NE
	Methylene chloride	NA	NE	NE	NE
	4-methyl-2-pentanone (Mibk)	NA	NE 1 100	NE 10.000	NE
	Methyl tert-butyl ether	NA	1,100	12,000	320,000
	Naphthalene	NA	23	580	16,000
	N-propylbenzene	NA	NE	NE Trans	NE
	Styrene	NA	130,000	56,000	>Max
	1,1,1,2-tetrachloroethane	NA	NE	NE	NE
	1,1,2,2-tetrachloroethane	NA	NE	NE	NE
	1,1,2-trichlorotrifluoroethane	NA	NE 1.000	NE 1.000	NE 50.000
	Tetrachloroethene	NA	1,000	1,800	50,000
	Toluene	NA	88,000	28,000	770,000
	1,2,3-trichlorobenzene	NA	NE	NE	NE

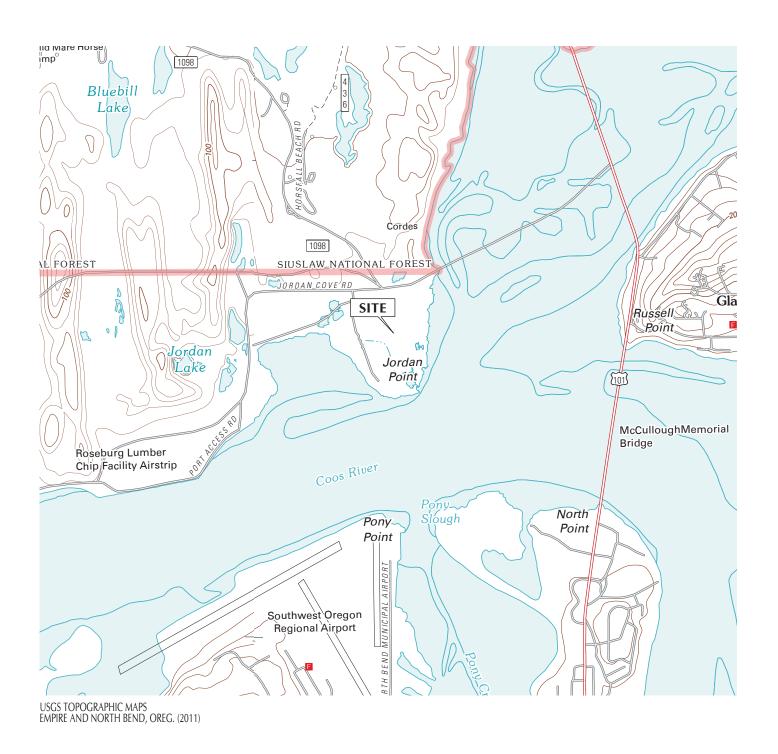
Table 24: SUMMARY OF FIRE SUPPRESSION DIESEL ABOVE GROUND STORAGE TANK AREA SOIL CHEMICAL DATA

		Conce	ntration (mg/kg)		
		Fire Suppression AST Soil Sample	*	or Soil Ingestion	•
	Compound	The Suppression A31 3011 3ample	Conta	ct, and Inhalatio	
		FSDAST	Occupational	Construction Worker	Excavation Worker
	1,1,1-trichloroethane	NA	870,000	470,000	>Max
	1,1,2-trichloroethane	NA	26	54	1,500
	Trichloroethene	NA	51	130	3,700
	Trichlorofluoromethane	NA	130,000	69,000	>Max
	1,2,3-trichloropropane	NA	NE	NE	NE
	1,2,4-trimethylbenzene	NA	6,900	6,900	81,000
	1,2,3-trimethylbenzene	NA	NE	NE	NE
	1,3,5-trimethylbenzene	NA	6,900	6,900	81,000
	Vinyl chloride	NA	4.4	34	950
	Xylenes, total	NA	25,000	20,000	560,000
	Anthracene	0.0459 J	350,000	110,000	>Max
	Acenaphthene	0.0135 J	70,000	21,000	590,000
	Acenaphthylene	0.01 <i>77</i> J	NE	NE	NE
	Benzo(a)anthracene	0.0362 J	21	170	4,800
	Benzo(a)pyrene	0.00989 J	2.1	1 <i>7</i>	490
	Benzo(b)fluoranthene	0.0144 J	21	170	4,900
	Benzo(g,h,i)perylene	0.0109 J	NE	NE	NE
	Benzo(k)fluoranthene	ND	210	1,700	49,000
(A)	Chrysene	0.0176 J	2,100	17,000	490,000
PAHs	Dibenz(a,h)anthracene	ND	2.1	17	490
Ь	Fluoranthene	0.0755	30,000	10,000	280,000
	Fluorene	0.0257 J	47,000	14,000	390,000
	Indeno(1,2,3-cd)pyrene	0.0075 J	21	170	4,900
	Naphthalene	0.166 J	23	580	16,000
	Phenanthrene	0.177	NE	NE	NE
	Pyrene	0.127	23,000	7,500	210,000
	1-methylnaphthalene	0.0939 J	NE	NE	NE
	2-methylnaphthalene	0.248	NE	NE	NE
	2-chloronaphthalene	ND	NE	NE	NE
	Total PCBs	NA	0.59	4.9	140
	Diesel-Range Organics	701	14,000	4,600	>Max
	Residual-Range Organics	361	14,000	4,600	>Max
	Gasoline-Range Organics	NA	20,000	9,700	>Max

ND: Not detected at concentration greater than method detection limit.

NA: NA: Compound not analyzed for this sample.

- J: The identification of the analyte is acceptable; the reported value is an estimate.
- J3: The associated batch QC was outside the established quality control range for precision.


Revision: 1

- V3: The internal standard exhibited poor recovery due to sample matrix interference.

 The analytical results will be biased high. Below detection limit (BDL) results will
- NE: Value not established.
- >Max: The constituent Risk-Based Concentration for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this

Bold: Value exceeds the Risk-Based Concentration for soil ingestion, dermal contact, and inhalation for the occupational receptor scenario for this compound.

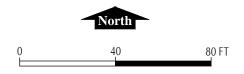


VICINITY MAP

JULY 2018 JOB NO. 5764-1195 FIG. 1

EXPLORATION LOCATION

EXPLORATION LOCATIONS


JULY 2018

JOB NO. 5764-1195

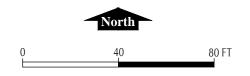
- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

2014 NAIP AERIAL PHOTO

EXPLORATION LOCATIONS

(FUEL OIL RELEASE AREA)

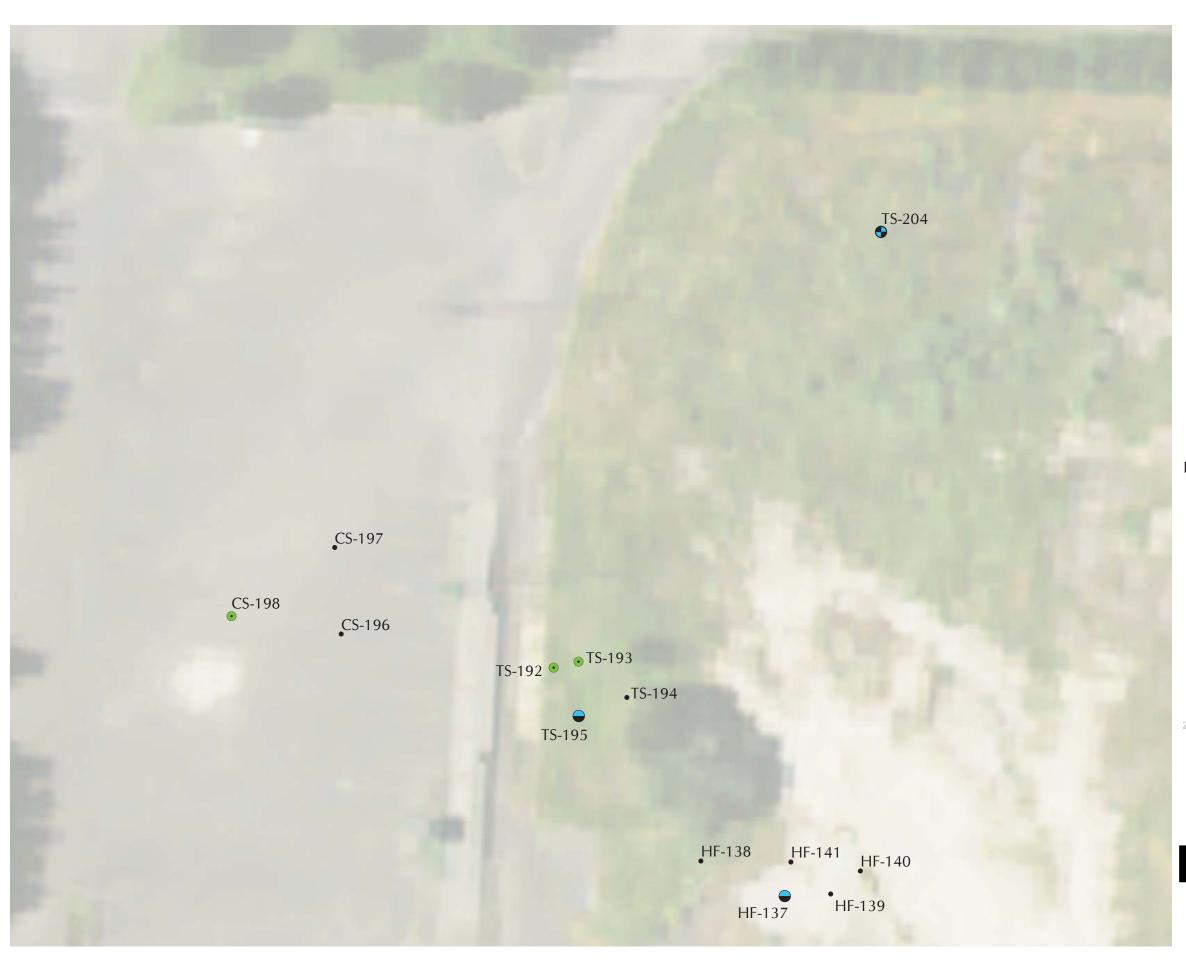
JULY 2018 JOB NO. 5764-1195


1195 FIG. 3

- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

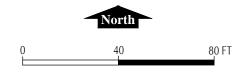
2014 NAIP AERIAL PHOTO

JULY 2018



EXPLORATION LOCATIONS (MINERAL SPIRITS AND LOWERATORS)

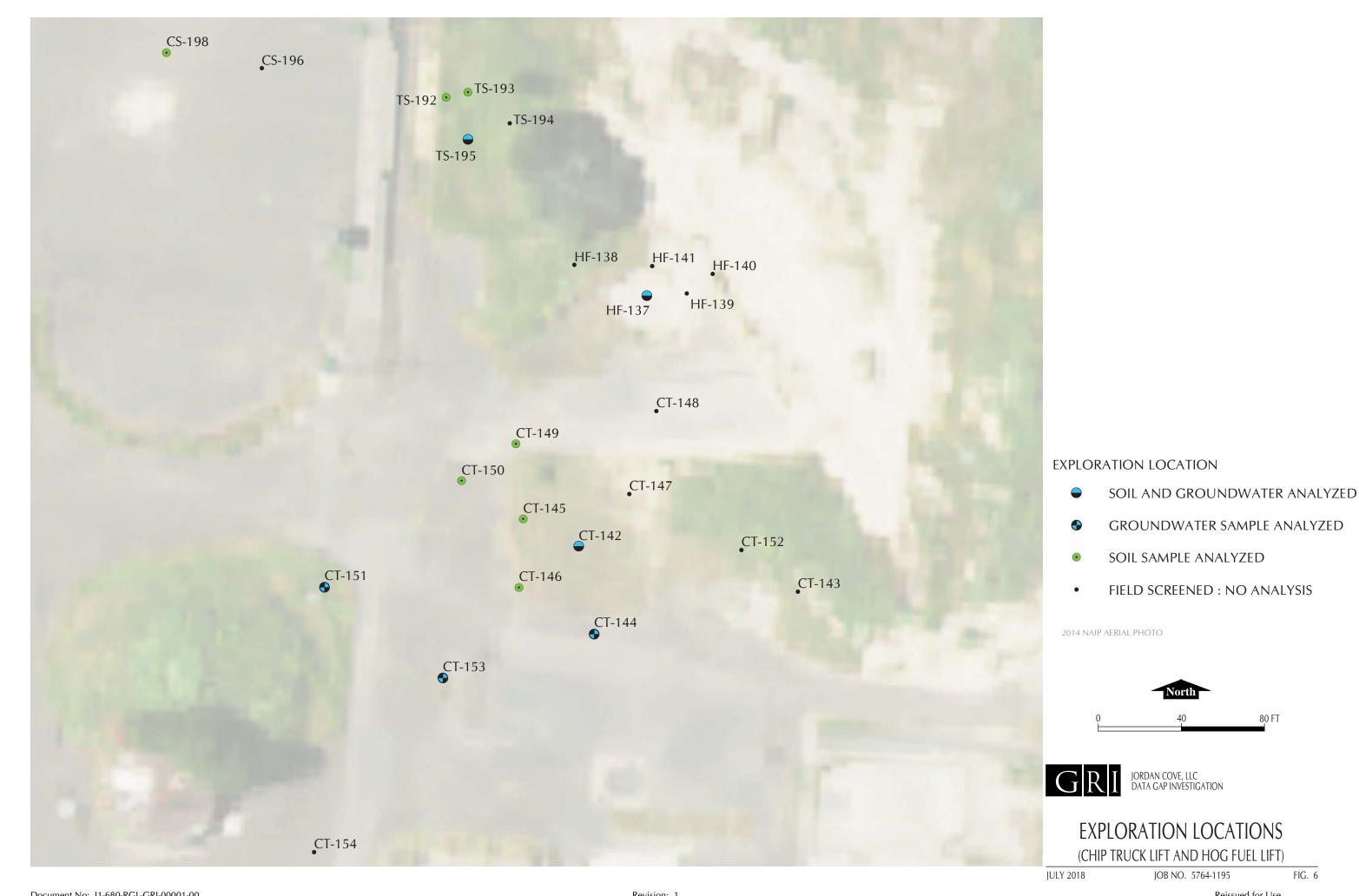
JOB NO. 5764-1195


5764-1195 FIG.

Reissued for Use

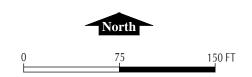
- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

2014 NAIP AERIAL PHOTO



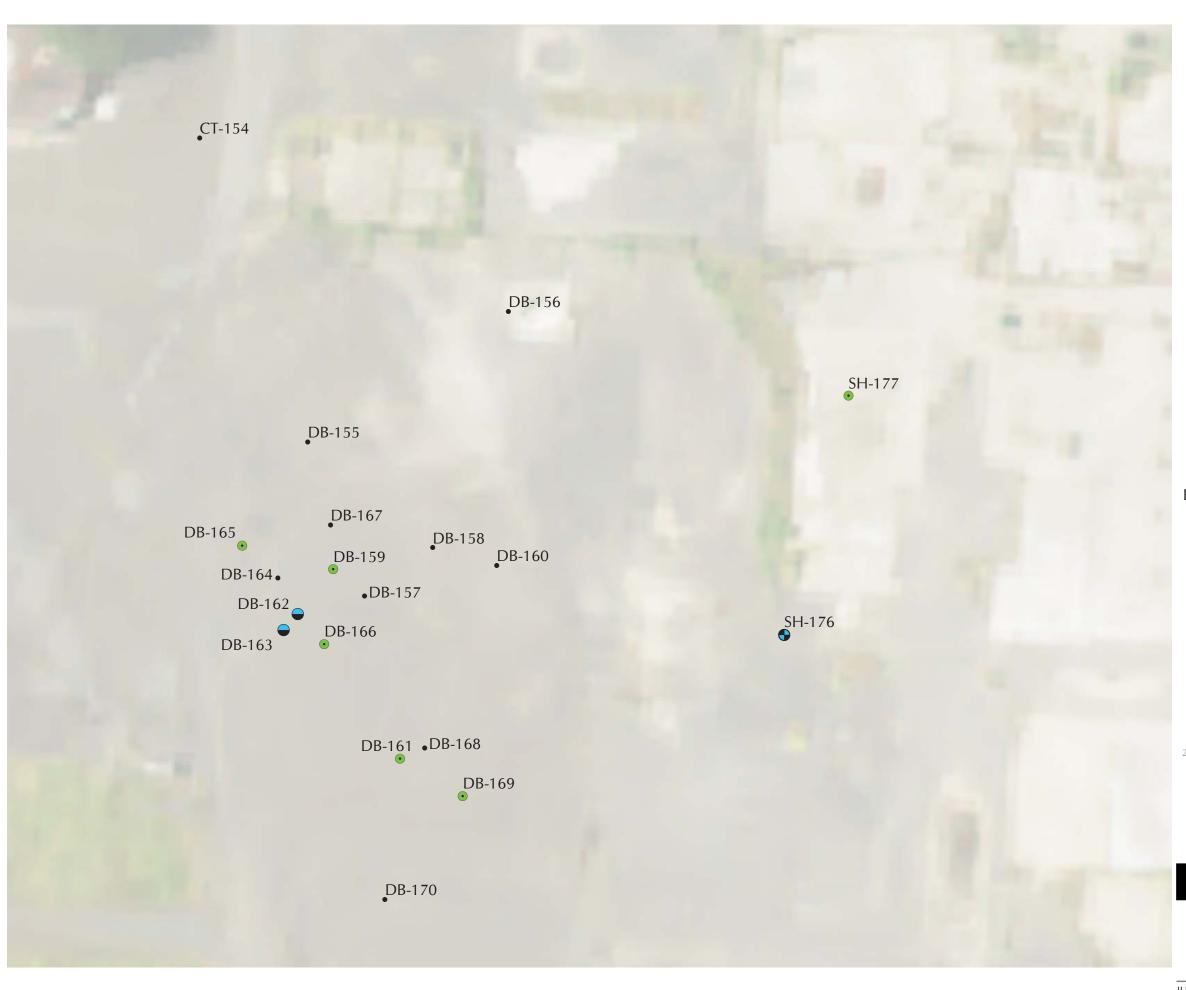
EXPLORATION LOCATIONS (TRUCK SCALES AND CARPENTER SHOP)

JULY 2018 JOB NO. 5764-1195


5764-1195 FIC

- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

2014 NAIP AERIAL PHOTO


EXPLORATION LOCATIONS

(JORDAN POINT AND STREAM CHANNEL AREA)

JULY 2018

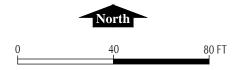

JOB NO. 5764-1195

FIG.

- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

2014 NAIP AERIAL PHOTO

EXPLORATION LOCATIONS

(FORMER SHOPS AND DEBARKER)

JULY 2018 JOB NO. 5764-1195

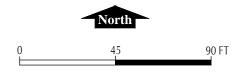

Reissued for Use

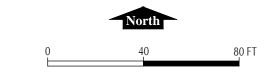
FIG. 8

- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED : NO ANALYSIS

2014 NAIP AERIAL PHOTO

EXPLORATION LOCATIONS

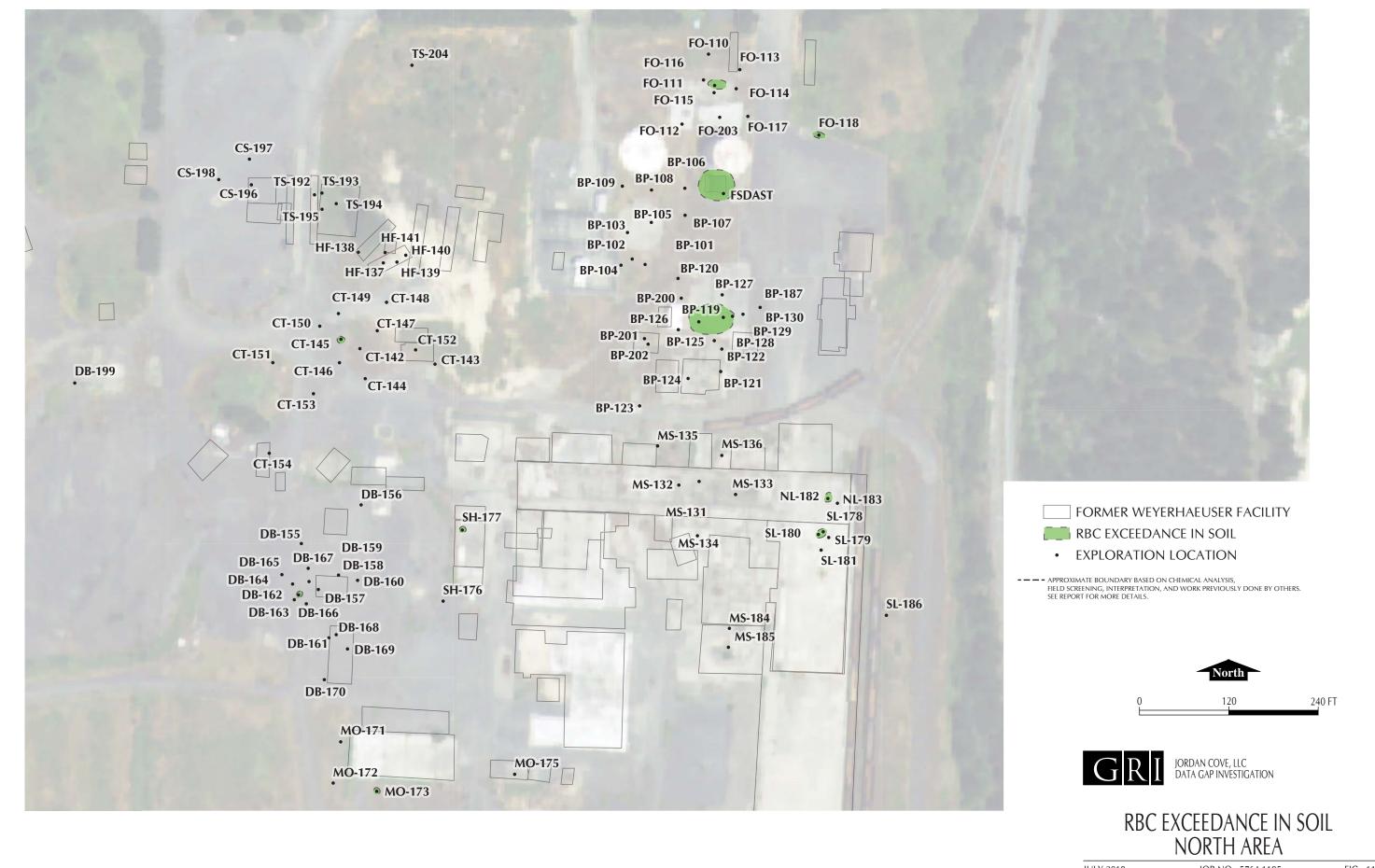
(MOBILE SHOPS)


JOB NO. 5764-1195 JULY 2018

Reissued for Use

- SOIL AND GROUNDWATER ANALYZED
- GROUNDWATER SAMPLE ANALYZED
- SOIL SAMPLE ANALYZED
- FIELD SCREENED: NO ANALYSIS

2014 NAIP AERIAL PHOTO


EXPLORATION LOCATIONS

(BOILER AND POWERHOUSE)

JOB NO. 5764-1195

FIG. 10

Reissued for Use

APPENDIX A		
Boring Logs		

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

BORING AND TEST PIT LOG LEGEND

SOIL SYMBOLS

Symbol **Typical Description** LANDSCAPE MATERIALS FILL GRAVEL; clean to some silt, clay, and sand Sandy GRAVEL; clean to some silt and clay Silty GRAVEL; up to some clay and sand Clayey GRAVEL; up to some silt and sand SAND; clean to some silt, clay, and gravel Gravelly SAND; clean to some silt and clay Silty SAND; up to some clay and gravel Clayey SAND; up to some silt and gravel SILT; up to some clay, sand, and gravel Gravelly SILT; up to some clay and sand Sandy SILT; up to some clay and gravel Clayey SILT; up to some sand and gravel CLAY; up to some silt, sand, and gravel Gravelly CLAY; up to some silt and sand Sandy CLAY; up to some silt and gravel Silty CLAY; up to some sand and gravel **PEAT**

BEDROCK SYMBOLS

Symbol	Typical Description								
+++ +++ +++	BASALT								
	MUDSTONE								
	SILTSTONE								
	SANDSTONE								

SURFACE MATERIAL SYMBOLS

Symbol	Typical Description					
	Asphalt concrete PAVEMENT					
	Portland cement concrete PAVEMENT					
000	Crushed rock BASE COURSE					

SAMPLER SYMBOLS

Symbol	Sampler Description							
Ī	2.0-in. O.D. split-spoon sampler and Standard Penetration Test with recovery (ASTM D1586)							
lacksquare	Shelby tube sampler with recovery (ASTM D1587)							
${\rm I\hspace{1em}I}$	3.0-in. O.D. split-spoon sampler with recovery (ASTM D3550)							
	Grab Sample							
	Rock core sample interval							
	Sonic core sample interval							
	Geoprobe sample interval							

INSTALLATION SYMBOLS

Symbol	Symbol Description						
	Flush-mount monument set in concrete						
	Concrete, well casing shown where applicable						
	Bentonite seal, well casing shown where applicable						
	Filter pack, machine-slotted well casing shown where applicable						
	Grout, vibrating-wire transducer cable shown where applicable						
P	Vibrating-wire pressure transducer						
	1-indiameter solid PVC						
	1-indiameter hand-slotted PVC						
	Grout, inclinometer casing shown where applicable						

FIELD MEASUREMENTS

Symbol	Typical Description
$\bar{\Sigma}$	Groundwater level during drilling and date measured
Ā	Groundwater level after drilling and date measured
	Rock core recovery (%)
	Rock quality designation (RQD, %)

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, trace to some gravel, trace silt, gray-brown, fine to coarse grained, contains trace organicsgravel absent, brown, fine to medium grained below 1.5 ft			Run 1		₹1.8 ft (1/29/2018) Run 1 recovery 36 in.
5—		gray below 6.75 ft		0	Run 2 BP-101-7		Run 2 recovery 60 in. Slight sheen between depths of 7 to 12 ft
- - - - 15—		fine grained below 15 ft		0	Run 3	-	Run 3 recovery 60 in.
- - - -				0	Run 4		Run 4 recovery 60 in.
20-				0	Run 5		Run 5 recovery 56 in.
25—		light gray below 28.5 ft		0	Run 6 BP-101-30		Run 6 recovery 60 in.
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5			25.0	0	Run 7		Run 7 recovery 60 in.
ENVIRONMENTAL BORING		(1/29/2018)	35.0		_		

Logged By: C. Smerdon	Drilled by: Stratus	Corporation
Date Started: 1/29/18	-124.23968° W (WGS 84)	
Drilling Method: Direct Pu	Hammer Type: Not Used	
Equipment: Geoprob	Weight:	
Hole Diameter: 3 in.	Drop:	
Note: See Legend for Expla	Energy Ratio:	

FIG. 1A

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine to medium grained, contains gravel to a depth of 3 in.			Run 1		₹2.2 ft (1/29/2018) Run 1 recovery 32 in.
5—		gray below 8 ft		2.1	Run 2		Run 2 recovery 48 in. Heavy sheen and slight odor between depths of 8 to 17 ft
- - - - 15-					Run 3 BP-102-12		Run 3 recovery 60 in.
20—		(1/29/2018)	20.0	0	Run 4 BP-102-20		Run 4 recovery 60 in.
	-	(1723/2010)					
E.GDT 7/26/18	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL BOR	-					0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/29/18	Coordinates:43.43563° N	-124.23975° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine grained			Run 1		₹1.9 ft (1/30/2018) Run 1 recovery 33 in.
5— — —		dark gray/discolored below 5 ft gray to gray-brown, discoloration absent below 8 ft			Run 2		Run 2 recovery 54 in.
10-		gray to dark gray/discolored below 12.5 ft			Run 3		Run 2 recovery 60 in.
15— ———————————————————————————————————		SILT, gray SAND, gray to gray-brown/discolored, fine graineddiscoloration absent below 16.5 ft	14.0 15.0	0	BP-103-13 X		Run 4 recovery 60 in.
20-		(1/30/2018)	20.0				
25— —							
MPLATE.GDT 7/26/18 - 00							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL — — — — — — — — — — — — — — — — — — —					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Corporation
Date Started: 1/30/18	-124.23978° W (WGS 84)	
Drilling Method: Direct Pu	Hammer Type: Not Used	
Equipment: Geoprob	Weight:	
Hole Diameter: 3 in.	Drop:	
Note: See Legend for Expla	Energy Ratio:	

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_		SAND, trace to some gravel, trace silt, gray-brown, fine to medium grainedgravel absent, light brown, fine grained below 1 ft			Run 1		₹2.4 ft (1/30/2018) Run 1 recovery 31 in.
5— — — —		dark gray to black, contains woody organics below 8 ft			Run 2		Run 2 recovery 42 in.
10				0	Run 3 BP-104-13		Slight sheen between depths of 10 to 14 ft Run 3 recovery 60 in.
15— — — —					Run 4		Run 4 recovery 60 in.
20—		(1/30/2018)	20.0		BP-104-20		
25 — — — — — — — — — — — — — — — — — — —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENTAL BORING GRI DA \$ 50							
ENVIRONME ————————————————————————————————————					()	1.0

Logged By: C. Smerdon	Drilled by: Stra	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates: 43.4356°	I -124.23981° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		SAND, trace to some gravel, trace silt, gray-brown, fine grainedbrown, gravel absent below 0.5 ft			Run 1		₹2.3 ft (1/30/2018) Run 1 recovery 27 in.
5— — —		dark brown below 5 ft			Run 2		Run 2 recovery 52 in.
10— 10—		black below 8.5 ftgray below 12.5 ft		0.6	Dur 1	_	Moderate sheen between depths of 8.5 to 13.5 ft
- 15- -		SILT, gray SAND, gray, fine grained	13.5 14.5		Run 3 	_	Run 3 recovery 60 in.
20—		(1/30/2018)	20.0		Run 4		Run 4 recovery 60 in.
-							
04TA TEMPLATE.GDT 08 08 09 09 09 09 09 09							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONIMEI —40—						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates: 43.43576° N	-124.23966° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace silt, brown, fine grainedlight brown below 0.5 ft			Run 1		¹ √2.5 ft (1/30/2018)6 in.
5— ———————————————————————————————————		gray below 8.5 ft		0	Run 2		Run 2 recovery 45 in.
- - 15-		¬ SILT, gray	14.0 14.5		Run 3 BP-106-13		Run 3 recovery 60 in.
20—		(1/30/2018)	20.0		Run 4		Run 4 recovery 60 in.
25—							
PLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL — — — — — — — — — — — — — — — — — — —						0	1.0

Logged By: C. Smerdon		Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordin	nates:43.4359° N	-124.2395° W (WGS 84)	
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace to some silt and gravel, brown, fine grainedbrown to black, gravel absent, contains wood debris and organics below 1 ftlight brown, wood debris and organics absent below 5 ft			Run 1		☑1.8 ft (1/30/2018) Run 1 recovery 36 in.
5— — — — — —		gray below 7.5 ft			Run 2		Run 2 reocvery 52 in.
- - - 15—		SILT, dark gray SAND, gray, fine grained	13.0 14.0		Run 3 BP-107-12		Run 3 reocvery 60 in.
- - - - 20-		light gray below 16 ft	20.0		Run 4		Run 4 recovery 60 in.
- - -		(1/30/2018)	20.0				
25— — — — — — — — — — — — — — — — — — — —							
GRI DATA TEMPLATE.G							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ź40—						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.4358° N	-124.23949° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, trace silt, brown to light brown, fine grained, contains organicslight brown, organics absent below 0.5 ft			Run 1		₹2.5 ft (1/30/2018) Run 1 recovery 33 in
5— — — — — — 10—		black below 8 ft		0	Run 2		Run 2 recovery 60 in. Slight sheen between depths of 8.7 to 14.5 ft
15—	ПП	¬ SILT, gray	14.5 15.0		Run 3 BP-108-13		Run 3 recovery 60 in.
20-		(1/30/2018)	20.0		Run 4 BP-108-17		Run 4 recovery 60 in.
25— ———————————————————————————————————							
TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 5							
ENVIRONIME!						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation			
Date Started: 1/30/18	Coordinates:43.43588° N	-124.23967° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	Weight:				
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace silt, brown, fine grained, contains organicslight brown, organics absent below 0.5 ft			Run 1		Run 1 recovery 36 in.
5— — — — — —		gray below 8.5 ft (1/30/2018)	10.0		Run 2		Run 2 recovery 50 in.
20-							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
RONMENTAL BORING GRI							
=40—					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43589° N	-124.23982° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace to some silt, brown, fine grainedlight brown below 0.5 ft			Run 1		Run 1 recovery 36 in.
5		gray-brown, grades to gray with depth below 7 ft			Run 2		Run 2 recovery 51 in.
- - - 15-		SILT, gray SAND, gray, fine grained (1/30/2018)	13.5 14.2 15.0		Run 3		Run 3 recovery 60 in.
20—		(
25—							
4PLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.4364° N	-124.23941° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, some gravel, trace silt, brown to gray, fine to medium grained gravel absent, light brown, fine grained below 3 ft			Run 1		Run 1 recovery 35 in.
5		gray-brown, contains wood debris below 8 ft		32.5	Run 2 FO-111-8		Run 2 recovery 48 in. Slight sheen and odor between depths of 8 to 10 ft
 15		SAND, gray, fine grained	14.0 15.0		Run 3		Run 3 recovery 60 in.
20—		(1/30/2018)	20.0		Run 4		Run 4 recovery 60 in.
		(1100,120,10)					
_							
RI DATA TEMPLATE.GI							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENNE —					(0	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43628° N	-124.23937° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine grained			Run 1		₹2.4 ft (1/30/2018) Run 1 recovery 32 in.
5— — — —		grades to gray-brown, contains organics below 7 ft			Run 2	_	Run 2 recovery 60 in.
10	ПП	dark gray below 10 ft SILT, gray	13.0		FO-112-9 Run 3		Run 3 recovery 60 in.
15— - -		SAND, gray, fine grained (1/30/2018)	14.0 15.0				
20-							
25—							
LATE.GDT 7/26/18							
RING GRI DATA TEMPI 1928 1971 197							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43613° N	-124.23953° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (11 in.) SAND, trace to some gravel, trace silt, brown, fine to medium grainedgravel absent, light brown, fine grained below 3 ft	0.9		Run 1		Run 1 recovery 36 in.
5		light gray-brown below 7.5 ft contains wood debris at 8 ft			Run 2 FO-113-8		Run 2 recovery 55 in.
10— — — —		grades to silty material below 12.5 ft SILT, gray SAND, dark gray, fine grained	13.5 14.5		Run 3		Run 3 recovery 60 in.
15— — — —		(1/30/2018)	15.0				
20-							
25- - - - - - - - - - - - - - - - - - -							
GRI DATA TEMPLATE.G							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43634° N	-124.23925° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - - 5-	-	SAND, trace to some gravel, trace silt, brown, fine to medium grained gravel absent, light brown, fine grained below 3.5 ft			Run 1		Run 1 recovery 32 in.
- - - 10- -		gray-brown below 9 ft contains wood debris at 9.2 ft			Run 2		Run 2 recovery 44 in. Slight sheen between depths of 9.2 to 12.5 ft
- 15- - -		SILT, some fine-grained sand, gray (1/30/2018)	14.0 15.0		Run 3 FO-114-13		Run 3 recovery 60 in.
- 20- - -	-						
25-	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18	-						
ENVIRONMENTAL BORING	-				(1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43627° N	-124.23926° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		Asphalt concrete PAVEMENT (12 in.) SAND, light brown, fine grained	1.0		Run 1		Run 1 recovery 32 in.
5—; —; —;		grades to gray-brown below 5 ftgray below 8.5 ft		8.1	Run 2	-	Run 2 recovery 52 in.
10		dark gray below 10 ft		0.1	Run 3		Slight sheen and odor between depths of 8.5 to 17.5 ft Run 3 recovery 60 in.
15—		Sandy SILT, gray, fine-grained sand SAND, dark gray, fine grained	13.5 14.5	6.1			,
20-		(1/30/2018)	20.0	3.7	Run 4		Run 4 recovery 60 in.
DT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
MENTAL BORING GR							
ENVIRON 40						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 1/30/18	Coordinates:43.43625° N	-124.23937° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, some gravel, trace silt, brown, fine grainedgravel absent, light brown below 1 ft			Run 1		Run 1 recovery 37 in.
5— — — —		grades to gray-brown below 7 ftgray below 9 ft			Run 2		Run 2 recovery 48 in.
10— — — —	-		14.0	1.9	Run 3		Moderate odor at 10 ft Run 3 recovery 60 in.
15— — — —		SILT, some fine-grained sand, gray, contains organics (1/31/2018)	15.0	1.3	FO-116-14 X		
20—							
25							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENTAL BORING GRI DA 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
ENVIRONME —					C)	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation			
Date Started: 1/31/18	Coordinates:43.4363° N -	124.23943° W (WGS 84)			
Drilling Method: Direct Pu	ush Probe	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Asphalt concrete PAVEMENT (4 in.) SAND, some gravel, trace to some silt, dark brown, fine to medium grainedgravel absent, light brown, fine grained below 1 ft	0.3		Run 1		Run 1 recovery 37 in.
5— — — — — 10—		light gray below 8 ft		0.7	Run 2		Run 2 recovery 49 in.
- - - 15-		some silt, gray below 13 ftup to trace silt below 14 ft (1/31/2018)	15.0	0	Run 3 FO-117-13		Run 3 recovery 60 in.
20-							
25— - - - - -							
81 DATA TEMPLATE.GDT 7/2							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 1/31/18	Coordinates: 43.43617° N	-124.2392° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		SAND, trace silt and gravel, brown, fine to medium grainedgravel absent, light brown below 0.5 ftgray-brown, contains organics below 4 ft		0	Run 1		₹2.4 ft (1/31/2018) Run 1 recovery 32 in.
5		organics absent below 7 ftgray below 8 ft		0	Run 2		Run 2 recovery 60 in.
10— — — — — — 15—		Sandy SILT, gray, fine-grained sand, sandier n material in graded interbeds SAND, light gray, fine grained (1/31/2018)	12.5 13.5 15.0	0	Run 3		Run 3 recovery 60 in.
20—							
25—							
MPLATE.GDT 7/26/18 00 00 00							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENT)						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation			
Date Started: 1/31/18	Coordinates:43.43611° N	-124.23883° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

	DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
			Asphalt concrete PAVEMENT (3 in.) / SAND, light brown, fine grained	0.2		Run 1		Run 1 recovery 30 in.
	5 		trace silt below 5 ft			H	_	
	- - 10-		dark brown to gray below 8 ft		70 58	Run 2 BP-119-8		Run 2 recovery 49 in. Heavy odor between depths of 8 to 20 ft
	_					Run 3		Heavy sheen between depths of 11 to 24 ft Run 3 recovery 60 in.
	_ 15—				55 33		_	
	_		gray below 17 ft			Run 4 BP-119-17		Run 4 recovery 60 in.
	20—				30.2	H	_	Moderate odor between depths of 20 to 28 ft
	_					Run 5		Run 5 recovery 60 in. Moderate sheen between depths of 24 to 26 ft
	25— —				28			Slight sheen between depths of 26 to 29 ft
DT 7/26/18	_				0.7	Run 6		Run 6 recovery 60 in. Slight odor between depths of 28 to 43.5 ft Slight staining or sheen on acetate sleeves between depths of 29 to 43.5 ft
TEMPLATE.G	30— —				0			
G GRI DATA	-		light gray below 33 ft			Run 7 BP-119-33		Run 7 recovery 60 in.
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	35—					Run 8		Run 8 recovery 60 in.
	 40 		(CONTINUED NEXT PAGE)				0	1.0

(CONTINUED NEXT PAGE)									
Logged By: C. Smerdon	ratus Corporation								
Date Started: 1/31/18	°N -124.2394° W (WGS 84)								
Drilling Method: Direct Pu	ish Probe	Hammer Type: Not Used							
Equipment: Geoprobe	e 7822DT	Weight:							
Hole Diameter: 3 in.	Drop:								
Note: See Legend for Expla	Note: See Legend for Explanation of Symbols								

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
 45 		SAND, trace silt, light gray, fine grained contains shell fragments at 43.5 ft (1/31/2018) Depth to groundwater not measured due to caving	- 45.0		Run 9		Slight odor and staining or sheen on acetate sleeves to 43.5 ft Run 9 recovery 60 in.
50—							
60-							
65DT 7/26/18 							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 CO							
ENVIRONME 	-)	1.0

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, some gravel, trace silt, brown with scattered red mottling, fine to medium grainedgravel absent, light brown, fine grained below 1 ft			Run 1		Run 1 recovery 34 in. ¥3.2 ft (2/1/2018)
5— — — — — 10—		light gray to light brown below 7 ftdark gray below 8 ft		2.9	Run 2 BP-120-8		Run 2 recovery 45 in. Moderate sheen and odor between depths of 8 to 9 ft
- - - - 15-		trace to some silt below 14 ftup to trace silt, gray-brown below 15 ft			BP-120-11 Run 3		Run 3 recovery 60 in.
20-		(2/1/2018)	20.0		Run 4		Run 4 recovery 35 in.
25—							
TE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL BOR						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation			
Date Started: 2/1/18	Coordinates:43.43556° N	-124.23951° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace silt and gravel, light brown to dark brown, fine to coarse grainedgravel absent, light brown, fine grained below 1.5 ft			Run 1		Run 1 recovery 32 in.
5— — — —		contains organics at 9 ft, light gray-brown below 9 ft		3.3	Run 2 BP-121-9		Run 2 recovery 50 in. Possible slight odor at 9 ft
10-					Run 3		Run 3 recovery 60 in.
15— — — —					Run 4		Run 4 recovery 40 in.
20-		trace to some silt at 23 ft			Run 5		Run 5 recovery 45 in.
25—					Run 6		Run 6 recovery 43 in.
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 5		(2/1/2018)	30.0		_		
NVIRONMENTAL BORING							

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Date Started: 2/1/18 Coordinates: 43.43522° N			
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-		SAND, trace to some silt and gravel, brown, fine to medium grainedgravel absent, up to trace silt, light brown mottled brown, fine grained, contains organicscontains metal fragments below 5 ft		1	Run 1		Run 1 recovery 22 in.
10—		metal fragments absent below 7 ftlight gray, organics absent below 8 ftgray below 10 ft		2	Run 2 BP-122-7		Slight odor between depths of 6 to 7 ft Run 2 recovery 48 in.
15—		(2/1/2018)	15.0		Run 3		Run 3 recovery 60 in.
20-							
25—							
EMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMEN.					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Date Started: 2/1/18 Coordinates:43.43531° N			
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - - 5-		SAND, trace silt, light brown, fine grained			Run 1		Run 1 recovery 28 in.
- - - 10-		contains woody debris at 8.5 ft, gray below 8.5 ft		3.2	Run 2 BP-123-8		Run 2 recovery 47 in.
- - - 15-		(2/1/2018)	15.0	0	Run 3		Run 3 recovery 60 in.
- - - 20-		(211/2010)					
- - - 25-							
ATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Date Started: 2/1/18 Coordinates:43.43508° N			
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		SAND, some gravel, trace silt, brown to red-brown, fine grained, contains organicsgravel absent, light brown to brown mottled dark brown below 0.5 ft			Run 1		Run 1 recovery 34 in.
5— — — — — —		gray below 8.5 ft		0.6	Run 2		Run 2 recovery 49 in.
15—		dark gray below 13 ft SILT, trace to some fine-grained sand, dark gray, contains organics (2/1/2018)	14.0 15.0		Run 3		Run 3 recovery 60 in.
20—							
25—							
TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMEN — — — — — — — — — — — — — — — — — — —					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Coordinates:43.43519° N	-124.23944° W (WGS 84)		
Drilling Method: Direct Pu	ush Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		Asphalt concrete PAVEMENT (4 in.) / SAND, light brown mottled dark brown, fine grained, contains organics	0.3		Run 1		Run 1 recovery 24 in.
5—		gray below 8.5 ft			Run 2		Run 2 recovery 45 in.
15—		Sandy SILT, gray, fine-grained sand Silty SAND, gray, fine grained	14.0 15.0	0	Run 3 BP-125-13		Run 3 recovery 60 in. Slight odor at 14 ft
20—		(2/1/2018)	20.0		Run 4		Run 4 recovery 42 in.
25—							
PLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL — — — — — — — — — — — — — — — — — — —						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Coordinates:43.43534° N	-124.23932° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (3 in.) / SAND, trace to some silt, light brown to dark brown, fine grained, contains organics	0.2		Run 1		Run 1 recovery 14 in.
5—		up to trace silt, light brown, organics absent below 7 ftdark gray-brown at 8.5 ft		0.3	BP-126-6 X		Slight sheen between depths of 5 and 6 ft Run 2 recovery 51 in.
10— — —		gray below 10 ft			Run 3		Run 3 recovery 60 in.
15— ———————————————————————————————————		dark gray, trace to some silt below 14 ft (2/1/2018)	15.0	0			
20-							
25— —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 S							
L BORING GRI DATAT 256 1 1 1							
ENVIRONMENTA 04)	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Coordinates:43.43537° N	-124.2395° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		¬ Portland cement CONCRETE (5 in.) / SAND, light brown, fine grained	0.4		Run 1		Run 1 recovery 27 in.
5— —— —— —— 10— ——		trace silt, gray to dark gray below 8.5 ft		0	Run 2 BP-127-8		Run 2 recovery 45 in. Slight sheen at 9 ft
15— - - - -		(2/1/2018) Depth to groundwater not measured due to caving	15.0		Run 3 BP-127-13		Run 3 recovery 60 in.
20— — — —							
25— 25— 25— 25— 25— 25— 25— 25— 25— 25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC					C)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/1/18	Coordinates: 43.43551° N	-124.23929° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - - 5-		Asphalt concrete PAVEMENT (6 in.) SAND, light brown, fine grained 3-inthick lens of organics at 4 ft	0.5		Run 1		Run 1 recovery 36 in.
- - - 10-		trace silt, black below 7.5 ft		107	Run 2 BP-128-9		Run 2 recovery 45 in. Moderate sheen and heavy odor between depths of 7.5 and 14 ft
- - - 15-		(2/2/2018)	15.0	11	Run 3 BP-128-15		Run 3 recovery 60 in.
- - - 20-		(222010)					
25—							
ATE.GDT 7/26/18 30							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates:43.43542° N	-124.23927° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (3 in.)/ SAND, light brown, fine grained	0.2		Run 1		Run 1 recovery 32 in.
5— — —		dark brown below 6 ft		1	Run 2		Heavy odor at 6.5 ft Run 2 recovery 45 in.
10—		dark gray below 9 ft		140	BP-129-8		Slight to moderate sheen between depths of 8 to 10 ft Moderate to heavy sheen, moderate odor between depths of 10 to 13.5 ft
- - 15—		trace to some silt, gray below 13 ft (2/2/2018)	15.0	60	Run 3		Run 3 recovery 60 in.
- - -		(===0.0)					
20—							
25— —							
-ATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ONMENTAL BORING							
-40—					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates: 43.43543° N	-124.23923° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		SAND, trace to some silt, trace gravel, brown, fine to medium grainedtrace silt, light brown mottled brown, fine grained below 0.5 ft			Run 1		₹2.0 ft (2/2/2018) Run 1 recovery 32 in.
5— — —		gravel lens at 4.5 ft (2/2/2018) Practical refusal at 5.5 ft	5.5		Run 2		Run 2 recovery 6 in.
10-							
- - -							
20-							
25— ———————————————————————————————————							
PLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
VIRONMENTAL BOR							
<u> </u>					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates:43.43544° N	-124.23918° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		Asphalt concrete PAVEMENT (3 in.) / SAND, light brown, fine grained	0.2		Run 1		Run 1 recovery 26 in.
5—		trace silt, light gray below 8.5 ft		300	Run 2 MS-131-9		Run 2 recovery 44 in. Moderate odor between depths of 8.5 to 10 ft Heavy odor between depths of 10 to 15 ft
15—	ĪŪ	silty, gray below 14 ft trace silt below 15 ft			Run 3		Run 3 recovery 60 in. Slight to moderate odor between depths of 15 to 20 ft
20—				0.9	Run 4		Run 4 recovery 40 in.
25		silty sand lens at 24 ft (2/2/2018)	25.0	0	MS-131-21 Run 5		Run 5 recovery 43 in. Slight odor between depths of 23 to 24 ft
ATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL B(()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates:43.43481° N	-124.23936° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Asphalt concrete PAVEMENT (5 in.) SAND, light brown, fine grained	0.4		Run 1		Run 1 recovery 15 in.
5-		light gray, contains organics below 8.5 ft light gray to gray below 10 ft		2	Run 2 MS-132-9		Run 2 recovery 47 in.
10-		silty, gray below 14 ft	45.0	2.6	Run 3		Run 3 recovery 60 in.
15— — — —		(2/2/2018)	15.0		_		
20—							
-							
3 GRI DATA TEMPLATE.G							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation			
Date Started: 2/2/18	Coordinates:43.4348° N -	124.23946° W (WGS 84)			
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine grained			Run 1		Run 1 recovery 31 in.
5— ———————————————————————————————————		light gray to gray below 8.5 ft		0.3	Run 2 MS-133-9		Run 2 recovery 51 in. 8.3 ft (2/2/2018)
15— ———————————————————————————————————		trace to some silt, gray below 14 ft (2/2/2018)	- 15.0	0.3	Run 3		Run 3 recovery 60 in.
20-							
25— — — — — — — — — — — — — — — — — — —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BOR					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates:43.43477° N	-124.23917° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _ _ 5—		Asphalt concrete PAVEMENT (2 in.) SAND, light brown, fine grained	0.2		Run 1		Approximately 3-inthick concrete slab or fragment encountered at depth of 2 ft Run 1 recovery 31 in.
- - - 10-		trace silt, gray to light gray below 8.5 ft contains organics at 9 ft		0.3	Run 2		Run 2 recovery 57 in.
- - - 15-		trace to some silt, gray below 13.5 ft (2/2/2018)	15.0	0	Run 3		Run 3 recovery 60 in.
20—							
25—							
EMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMEN -					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/2/18	Coordinates:43.43461° N	-124.23936° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		SAND, trace silt and gravel, brown, fine to medium grained, contains organicsgravel and organics absent, light brown, fine grained below 0.7 ft			Run 1		Run 1 recovery 34 in.
5		light gray below 8.5 ft		0	Run 2		₹4.5 ft (2/5/2018) Run 2 recovery 51 in.
10-		light gray below 8.5 ftcontains wood debris at 9 fttrace to some silt, gray below 13 ft		0	Run 3		Run 3 recovery 60 in.
15— —		(2/5/2018)	15.0	0			
20—							
25—							
TE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
WIRONMENTAL BORIP							
ENAME —)	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43494° N	-124.23958° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, light brown, fine grained			Run 1		Run 1 recovery 37 in.
5		trace silt, light gray below 8.5 ft		0	Run 2		Run 2 recovery 60 in.
10—		trace to some silt, gray below 13.5 ft		0	MS-136-9 X		Run 3 recovery 60 in.
15—		(2/5/2018)	15.0	U			
20-							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
NTAL BORING GRI DATA 1 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
ENVIRONMEN — — — — — — — — — — — — — — — — — — —					1	0	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation			
Date Started: 2/5/18	Coordinates:43.43491° N	-124.23925° W (WGS 84)			
Drilling Method: Direct Pu	ish Probe	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-	75 76	Sandy GRAVEL, trace silt, fine- to medium-grained SAND, light brown, fine grained	0.44.55.5	0.9	Run 1		Run 1 recovery 34 in.
10-				0.8	Run 2		Run 2 recovery 58 in. Run 3 recovery 60 in.
15— — — — —		SILT, some fine-grained sand, graysome clay, trace sand below 14.5 ft SAND, trace silt, gray to light gray, fine grained	13.5	0.5	HF-137-16 X		Very slight sheen between depths of 13 to 20 ft Run 4 recovery 45 in.
20— — — — — — 25—		(2/5/2018)	20.0				
PLATE.GDT 7/26/18 0 1 1 1 1							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 S							
ENVIRONME ————————————————————————————————————					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43557° N	-124.24101° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, trace to some silt, light brown, fine grained, contains organicsup to trace silt, organics absent below 0.5 ft			Run 1		Run 1 recovery 34 in.
5— — — — — 10—		contains wood debris at 8.5 ft trace silt, light brown-gray below 9 ft		1.6	Run 2		Run 2 recovery 55 in.
- - - 15—	W	Clayey SILT, trace fine-grained sand, gray (2/5/2018)	13.5 15.0	0	Run 3		Run 3 recovery 60 in.
20—		(202010)					
25—							
APLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43561° N	-124.24114° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
5—		SAND, light brown, fine grained contains organics at 5 ft, trace silt, brown below 5 ft (2/5/2018) Refusal on obstruction at 7 ft	7.0	0.2	Run 1		Run 1 recovery 19 in. 3.2 ft (2/5/2018) Run 2 recovery 16 in.
15— ———————————————————————————————————							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONM —	-				()	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation			
Date Started: 2/5/18	Coordinates:43.43557° N	-124.24094° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	Weight:				
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		¬ Portland cement CONCRETE (5 in.) / SAND, light brown, fine grained	0.4		Run 1		Run 1 recovery 24 in.
5—		trace to some silt below 8 ftcoarse sand with some gravel lens at 8.5 ft		0	Run 2		Run 2 recovery 48 in.
10		light brown-gray below 10 ftgray below 13 ft		0	Run 3 HF-140-13		Run 3 recovery 60 in.
15— — — —	ИΥ	Clayey SILT, gray (2/5/2018)	14.5 15.0				
20—							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							
MENTAL BORING GRID							
ENVIRONI ————————————————————————————————————					C)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.4356° N	-124.2409° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine grained some gravel, trace to some silt, dark brown at			Run 1		Run 1 recovery 22 in.
5— — — — — —		4.5 fttrace silt, light brown-gray below 8.5 ft		0.6	Run 2 HF-141-8		Run 2 recovery 52 in.
		SILT, some clay and fine-grained sand, graygrades to clayey silt/silty clay below 14.5 ft	13.5 15.0	0.6	Run 3		Run 3 recovery 60 in.
- - -		(2/5/2018)	15.0		_		
20-							
25—							
GRI DATA TEMPLATE.G							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43561° N	-124.24101° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Sandy GRAVEL, soem silt, fine- to coarse-grained sand			Run 1		Run 1 recovery 42 in.
5— — — —		silty below 5 ft	8.5		Run 2		Run 2 recovery 27 in.
10-		SAND, trace silt, gray to light gray, fine grained		0	CT-142-11 X		Moderate sheen and odor between depths of 9 to 11 ft Run 3 recovery 60 in.
15— - -		Sandy SILT, gray, fine-grained sand SAND, trace silt, gray to light gray, fine grained	· 14.0 · 15.0	0	Run 4		Run 4 recovery 43 in.
20— —		silt with some clay lens at 19 ft (2/5/2018)	20.0				
25— —							
APLATE.GDT 7/26/18	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL B	-					0	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43525° N	-124.24111° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown, fine grainedtrace to some silt, brown, contains organics at 3 ft			Run 1		Run 1 recovery 36 in.
5— — — — — 10—		trace silt, light gray below 8.5 ft			Run 2		Run 2 recovery 55 in.
- - - 15-		Clayey SILT, gray (2/5/2018)	13.5 15.0	0.5	CT-143-11 X		Run 3 recovery 60 in.
20—							
25—							
TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONME 40-					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Corporation
Date Started: 2/5/18	Coordinates: 43.4352° N	-124.24073° W (WGS 84)
Drilling Method: Direct Pu	Hammer Type: Not Used	
Equipment: Geoprob	Weight:	
Hole Diameter: 3 in.	Drop:	
Note: See Legend for Expla	Energy Ratio:	

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -) (2 <u>) «</u>	Sandy GRAVEL, trace silt, fine-graiend sand SAND, light brown, fine grained	- 1.0		Run 1		Run 1 recovery 36 in.
5— — — — — 10—		trace silt below 5 ftcontains wood debris at 8.5 ft, light gray-brown below 8.5 ft		0	Run 2		Run 2 recovery 60 in.
		SILT, some clay and fine-grained sand, gray	14.0 15.0	0	Run 3		Run 3 recovery 60 in.
		SAND, trace silt, gray, fine grainedclay with some silt lens at 18 ft	20.0		Run 4		Run 4 recovery 44 in.
		(2/5/2018)					
25— - - -							
3RI DATA TEMPLATE.GI 1							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
HE 40-					(0	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/5/18	Coordinates:43.43514° N	-124.24108° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand, contains organicsorganics absent below 0.5 ftincreasing sand content with depth	5.0		Run 1		Run 1 recovery 41 in.
- - - - 10-		Silty SAND, some gravel, red-brown, fine to medium grained trace silt, gray, fine grained below 8 ft trace to some silt below 10 ft	5.0	0	Run 2 CT-145-7		Run 2 recovery 34 in. Moderate sheen and discoloration, moderate to heavy odor between depths of 7 to 14 ft
- 10— 15—		SILT, trace to some clay, gray	13.5	0	Run 3		Run 3 recovery 55 in.
- - - 20-		SAND, trace to some silt, gray, fine grained, contains organics SILT, some clay, gray	19.5 20.0	0	CT-145-16 X		Run 4 recovery 44 in.
		(2/6/2018)	20.0				
-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
VIRONMENTAL BORING							
ä∟40—						0	1.0

Logged By: C. Smerdon	Di	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinat	ites:43.43528° N	-124.24121° W (WGS 84)	
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob		Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-) <u>(</u>	Sandy GRAVEL, some silt to silty, fine- to coarse-grained sand	1.0		Run 1		Run 1 recovery 38 in. $ \overline{4.2} \text{ ft } (2/6/2018)$
5— — — — — 10—		trace silt, light brown-gray, contains organics below 8.5 ft		0	Run 2		Run 2 recovery 60 in. Slight sheen between depths of 8.5 to 20 ft
		trace to some silt below 12 ftclayey silt with some sand lens at 14 ftsome silt, gray below 14.5 ft		0	Run 3 CT-146-13		Run 3 recovery 60 in.
-		clayey silt lens at 17 ft	20.0		Run 4		Run 4 recovery 42 in.
20-		(2/6/2018)	20.0		_		
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
TAL BORING GRI DA-							
ENVIRONMEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43519° N	-124.24121° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	.0. .0. .0.	SAND, light brown, fine grained Sandy GRAVEL, some silt to silty, fine- to coarse-grained sand	1.0		Run 1		Run 1 recovery 32 in.
5— — — —	0	SAND, light brown, fine grainedtrace silt, light brown-gray below 8 ft	5.0	0	Run 2		□ 4.2 ft (2/6/2018) Run 2 recovery 44 in. Moderate odor between depths of 8 to 14 ft Slight sheen between depths of 9 to 20 ft
10		trace to some silt, light gray below 12.5 ftgray, contains organics below 14 ft		0	Run 3		Run 3 recovery 60 in. Moderate sheen at 14 ft
15— — —		clayey silt lenses up to 3 in. thick at 17 ft		0	Run 4		Run 4 recovery 50 in.
20-		(2/6/2018)	20.0				
25-	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
UTAL BORING GRI DAT							
ENVIRONMEN — — — — — — — — — — — — — — — — — — —					(0	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43532° N	-124.24103° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (7.5 in.) Sandy GRAVEL, trace silt, fine- to coarse-grained sand	0.6		Run 1		Run 1 recovery 27 in.
5-) - 	SAND, light brown, fine grained	4.5		 Run 2		₹4.6 ft (2/6/2018) Run 2 recovery 55 in.
10-	- - -	trace silt, light gray-brown below 8.5 ft		0	CT-148-9		
- - - 15-	- - - - - - - - - - - -	Clayey sandy SILT, gray, fine-grained sand (2/6/2018)	13.5 15.0	0	Run 3		Run 3 recovery 60 in.
-	- - -	(20/2010)					
20-	-						
25- -	-						
ATE.GDT 7/26/18	-						
G GRI DATA TEMPI	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	- - - -						
#N3 40-					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43542° N	-124.24099° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-		Asphalt concrete PAVEMENT (8 in.) Sandy GRAVEL, some silt, fine- to coarse-grained sand SAND, light brown, fine grained	0.6 2.5		Run 1		Run 1 recovery 40 in.
- - - 10-		trace silt, light gray below 8.5 ft			Run 2		Run 2 recovery 52 in.
- - - 15-		some silt, contains wood debris below 12 ft Clayey SILT, some fine-grained sand, gray, contains wood debrisgrades to clay below 14.5 ft	13.0 15.0	0	Run 3 CT-149-13		Run 3 recovery 60 in. Slight sheen between depths of 13 to 25 ft
- - - 20-		SAND, some silt, light gray, fine grained, contains organics and wood debris silt with some clay lens at 18 ft silt with some clay lens at 20 ft		0	Run 4		Run 4 recovery 45 in.
- - - 25-					Run 5		Run 5 recovery 45 in.
30		(2/6/2018)	30.0		Run 6		Run 6 recovery 45 in.
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43537° N	-124.24123° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		Asphalt cocnrete PAVEMENT (4 in.) GRAVEL, some fine- to coarse-grained sand, trace to some silt SAND, light brown, fine grained	2.0		Run 1		Run 1 recovery 52 in. 3.4 ft (2/6/2018) Slight sheen between depths of 4 to 20 ft
5— — —		trace silt below 5 fttrace to some silt, light gray, contains organics below 8.5 ft			Run 2		Run 2 recovery 60 in.
10-		some silt below 10 ft	12.5		Run 3		Run 3 recovery 60 in.
15— -		Clayey SILT, some fine-grained sand, gray SAND, some silt, gray, fine grained, contains organics	13.5		CT-150-13 X		Run 4 recovery 45 in.
20-	Ж	Clayey SILT, trace fine-grained sand, gray (2/6/2018)	19.0 20.0				
25—							
LATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BO.							1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43533° N	-124.24132° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Asphalt concrete PAVEMENT (4 in.) Sandy GRAVEL, some silt, fine- to coarse-grained Sand SAND, light brown, fine grained	2.0		Run 1		[¥] 2.5 ft (2/6/2018) Run 1 recovery 24 in.
5— — — —		light gray-brown below 7.5 ft			Run 2		Run 2 recovery 60 in.
10		Clayey SILT, trace to some fine-grained sand, gray SAND, some silt, gray, fine grained	12.5 14.0		Run 3 CT-151-12		Slight sheen below 12 ft Run 3 recovery 60 in.
15— — — —		(2/6/2018)	15.0		-		
20-							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
MENTAL BORING GRID — 52							
ENVIRONA — 40—					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates: 43.43518° N	-124.24155° W (WGS 84)		
Drilling Method: Direct Po	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Silty SAND, brown, fine grained, contains organicsup to trace silt, light brown below 1 ft			Run 1		Run 1 recovery 36 in.
5— — —		trace to some silt, light brown-gray below 6 ftcontains organics between depths of 8 to 9 ft			Run 2		Run 2 recovery 52 in. Slight sheen between depths of 8 to 15 ft
10— 10— —		some silt, gray, contains organics and wood debris below 10 ft			Run 3		Run 3 recovery 60 in.
15— - -	ИИ	Clayey SILT, trace fine-grained sand, gray (2/6/2018)	14.0		CT-152-13		
20-							
25—							
ATE.GDT 7/26/18							
ING GRI DATA TEMPL 35.							
ENVIRONMENTAL BORING GRI DATA TEMPLATE GDT 7/26/18 05 07 08 08 08 08 08 08 08							

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/6/18	Coordinates:43.43525° N	-124.24083° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	50	A Asphalt cocnrete PAVEMENT (4 in.) Sandy GRAVEL, some silt, fine- to coarse-grained / Sand / SAND, light brown, fine grained	1.0		Run 1		₹2.4 ft (2/7/2018) Run 1 recovery 45 in.
5—		trace to some silt, gray below 5 ftgray mottled brown, contains organics and wood debris at 8 ft		0	Run 2		Run 2 recovery 60 in.
10		SILT, some clay and fine-grained sand, gray	13.0 14.0	0	Run 3		Run 3 recovery 60 in.
15—		SAND, some silt, gray, fine grained (2/7/2018)	15.0	0	_		
20—							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENTAL BORING GRI DA							
ENVIRONME — — —					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43507° N	-124.24134° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand (Fill)			Run 1		Run 1 recovery 19 in.
5- - -		SAND, light brown, fine grained, contains organicstrace to some silt, light brown-gray below 8.5 ft	5.0	0	Run 2		-¥-4.5 π (2/7/2018) Run 2 recovery 27 in.
10- - -	- - -	gray below 10 ft		0	Run 3		Run 3 recovery 60 in.
- 15- - -	ИИ. -	Clayey SILT, trace to some fine-grained sand, gray, contains wood debris (2/7/2018)	14.0 15.0	0			
20-							
- 25-	-						
1ATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ENVIRONMENTAL BO)	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43485° N	-124.24155° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (5 in.) Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand (Fill)	0.4		Run 1		Run 1 recovery 26 in.
5- - -		SAND, some gravel, trace to some silt, brown-gray, fine to coarse grained (Fill) (2/7/2018) Practical refusal at 7 ft	7.0		Run 2		Run 2 recovery 15 in.
10-		Groundwater not encountered					
- 15- - -	-						
20-							
- - 25-	-						
PLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ENVIRONMENTAL BO)	1.0

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43452° N	-124.24136° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (3 in.) / SAND, some silt, trace gravel, dark brown, fine to coarse grainedup to trace silt, gravel absent, light brown-gray, fine grained below 1 ft	0.2		Run 1		₹1.6 ft (2/7/2018) Run 1 recovery 26 in.
5— — —		trace to some silt, contains wood debris 5 ft (2/7/2018)	7.5	0.4	Run 2 DB-156-6		Run 2 recovery 18 in. Slight odor and sheen between depths of 6 to 7 ft
10—		Practical refusal at 7.5 ft					
15— — —							
20—							
25—							
MPLATE.GDT 7/26/18 0.0000000000000000000000000000000000							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL I					()	1.0

Logged By: C. Smerdon	Drilled by: Stratu	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates: 43.43467° N	-124.24107° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (5 in.) Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand (Fill) SAND, light brown, fine grained	2.5		Run 1		Run 1 recovery 37 in.
5— 5—		(2/7/2018) Practical refusal at 5.3 ft	5.3		DB-157-5 Run 2		Run 2 recovery 4 in.
10-		Groundwater not encountered					
- 15-							
- - -							
25—							
TTA TEMPLATE.GDT							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONIME						0	1.0

Logged By: C. Smerdon	Drilled by: Stra	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates: 43.43435	° N -124.24127° W (WGS 84)		
Drilling Method: Direct Po	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	00000	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light gray, fine grained	- 4.0		Run 1		Run 1 recovery 37 in.
5- - - -		(2/7/2018) Practical refusal at 5.1 ft Groundwater not encountered	- 5.1	0.2	Run 2 💳		Run 2 recovery 1 in.
10-	-						
15- - - -	- - -						
20- - - -	-						
25-	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ONMENTAL BORING GR	- - - -						
ENN -40-					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43441° N	-124.24117° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Asphalt concrete PAVEMENT (5 in.) Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand	0.4		Run 1		Run 1 recovery 18 in.
5- - -		SAND, light brown to brown-gray, fine grained (2/7/2018)	4.57.7	0.6	Run 2 DB-159-7		Run 2 recovery 20 in.
10-	-	Practical refusal at 7.7 ft					
15— —	-						
20-	-						
25—	-						
ATE.GDT 7/26/18	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ENVIRONMENTAL BOR	-						

Logged By: C. Smerdon	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43438° N	-124.24132° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	00000	Sandy GRAVEL, trace silt, fine- to coarse-grained sand	4.0		Run 1		Run 1 recovery 35 in.
5— - -		SAND, light brown, fine grainedcontains abundant wood debris at 7.5 ft			Run 2		¥5.2 ft (2/7/2018) Run 2 recovery 45 in.
10-		trace to some silt, gray below 10 ft		0.4 0.4	Run 3 DB-160-12		Run 3 recovery 55 in.
15— - -	ИΥ	Clayey SILT, trace to some fine-grained sand, gray (2/7/2018)	14.0 15.0	0.4	100-12 - 12		
20-							
25—							
TE.GDT 7/26/18							
G GRI DATA TEMPLAT							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							
40—					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43439° N	-124.24107° W (WGS 84)		
Drilling Method: Direct Pu	ush Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		SAND Portland cement CONCRETE (6 in.) SAND, light brown, fine grained	1.5		Run 1		Run 1 recovery 16 in. Probe refusal on concrete at 1.5 ft; driller uses destructive drill bit to penetrate to 2 ft Run 2 recovery 17 in.
5		contains wood debris at 8.5 ft, contains organics below 8.5 fttrace to some silt, gray below 10 ft		0.1	Run 3		Run 3 recovery 48 in.
15—		some silt below 15 ft		0.2	Run 4 DB-161-13		Run 4 recovery 60 in. Sight sheen between depths of 13 to 30 ft
20-					Run 5		Run 5 recovery 40 in.
25—				0.5	Run 6		Run 6 recovery 41 in.
30 30 30 30 30 30 30 30 30 30 30 30 30 3		(2/7/2018) Depth to groundwater not measured due to caving, observed to be at least 10 ft below existing grade	30.0	0.4	Run 7		Run 7 recovery 44 in.
40					C)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43417° N	-124.2412° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	00000	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light brown, fine grained, contains wood	4.0		Run 1		Run 1 recovery 37 in.
5 - - -		debris and organics		1.8	Run 2		Slight to moderate odor between depths of 5 to 8 ft \$\frac{\sum 7.3 \text{ ft (2/7/2018)}}{\sum 2 \text{ recovery 47 in.}}\$
10-		12-inthick layer of wood debris with some sand and trace silt at 9 fttrace to some silt, light brown-gray below 10 ft		1.2	DB-162-10		Run 2 recovery 47 in. Moderate to heavy odor between depths of 8 to 10 ft Moderate to heavy sheen between depths of 8 to 11 ft
- - 15-				1	Run 3		Run 3 recovery 49 in. Slight sheen between depths of 12 to 20 ft
-		Sandy SILT, some clay, gray, fine-grained sand	18.0		Run 4		Run 4 recovery 34 in.
20-		CLAY, trace silt, gray SAND, trace to some silt, light brown-gray, fine grained	20.5 21.0		DB-162-21 X		Run 5 recovery 39 in.
25-		(2/7/2018)	25.0				
PLATE.GDT 7/26/16	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
IRONMENTAL BOR	-						
<u> </u>					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/7/18	Coordinates:43.43433° N	-124.24137° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand	4.3		Run 1		Run 1 recovery 33 in.
5— — — —		SAND, light brown, fine grained		0.8	Run 2		Run 2 recovery 50 in.
10-	-	trace silt below 10 ft		1.3	DB-163-11 X		☑11.3 ft (2/8/2018) Run 3 recovery 60 in.
15— 15— —	-	(2/8/2018)	15.0				
20-	-						
25— ———————————————————————————————————	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
AL BORING GRI DATA	-						
ENVIRONMENTA — 40—	-				()	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates:43.43431° N	-124.24139° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, some silt, gray to dark brown, fine to medium grained, contains wood debris	3.5		Run 1		Run 1 recovery 35 in.
5— — — —		grained, contains wood debrislight brown below 5.5 ft (2/8/2018)	7.5	1.2	Run 2		Run 2 recovery 26 in.
10-		Practical refusal at 7.5 ft Groundwater not encountered					
15— ———————————————————————————————————	-						
20-							
25—	-						
LATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ENVIRONMENTAL BOI						0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates: 43.43437° N	-124.2414° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	00000	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand	4.0		Run 1		Run 1 recovery 40 in.
5-	-	SAND, light brown, fine grainedtrace silt, contains wood debris and organics below 5 ft	4.0		Run 2		Run 2 recovery 41 in.
10-		12-inthick layer of wood debris with some sand at 9 fttrace to some silt below 10 ft		1.4	DB-165-10		
- - 15-	-	grades to gray below 14 ft (2/8/2018)	15.0	1.3	Run 3		Run 3 recovery 60 in.
- - 20-	-	Depth to groundwater not measured due to caving, observed to be at least 8 ft below existing grade					
- - -	-						
25-	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
BORING GRI DATA	-						
ENVIRONMENTAL	-)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates: 43.4344° N	-124.24146° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

Reissued for Use

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - - 5-		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light brown, fine grained4-inthick layer of clayey sandy silt at 4 ft	3.0		Run 1		Run 1 recovery 36 in.
- - - 10-		trace silt, contains organic debris at 8.5 fttrace to some silt below 10 ft		1.2	Run 2		Run 2 recovery 44 in. Slight odor at 8.5 ft
- - - 15-		light gray below 14 ft (2/8/2018)	15.0	0.5	DB-166-11 X		Run 3 recovery 58 in.
20-	-	Depth to groundwater not measured due to caving, observed to be at least 10 ft below existing grade					
25—	-						
EMPLATE.GDT 7/26/18 08	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 10	-						
ENVIRONMENT -04	-				()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates:43.4343° N -	124.24133° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	00°C	Sandy GRAVEL, trace silt, fine- to coarse-grained sand SAND, gray to light brown, fine grained	2.5		Run 1		Run 1 recovery 34 in.
5— — —		trace gravel below 5 ft (2/8/2018)	7.0		Run 2 DB-167-6		Run 2 recovery 20 in.
10-	-	Practical refusal at 7 ft Groundwater not encountered					
15— - -	-						
20-	-						
25—	-						
LATE.GDT 7/26/18	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ENVIRONMENTAL BO	-)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates: 43.43443° N	-124.24132° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
5—		Sandy GRAVEL, trace silt, fine- to coarse-grained sand SAND Portland cement CONCRETE (6 in.) SAND, light brown, fine grained trace silt, contains wood debris below 5 ft	1.5 2.0 2.5	0.3	Run 1		Run 1 recovery 22 in. Run 2 recovery 14 in.
10-		trace to some silt below 10 ftsome silt, gray-brown below 12.5 ft		0.9	Run 3		Run 3 recovery 41 in. Run 4 recovery 60 in.
15		(2/8/2018)	15.0	0.9	DB-168-13		
20—							
A TEMPLATE.GDT 7/26/18 00							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
¥ — 40—					C)	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates: 43.43419° N	-124.24117° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-	00 00 00 00 00	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand Portland cement CONCRETE (6 in.) SAND, light brown, fine grained, contains wood debriscontains organics below 5 ft	2.5 3.5		Run 1		Run 1 recovery 31 in.
10-		trace silt, light brown-gray below 10.5 ft		0.3	Run 2		Run 2 recovery 43 in. Slight sheen between depths of 8 to 15 ft
15— 		trace to some silt, light gray below 13 ft SILT, some fine-grained sand to sandy, trace to some clay, gray	15.0	0.2	Run 3 DB-169-12 DB-169-16 Run 4		Run 3 recovery 60 in. Run 4 recovery 28 in.
20-		CLAY, some silt, gray SILT, some fine-grained sand to sandy, trace to some clay, gray (2/8/2018)	19.0	0.5			
25-	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18	-						
ENVIRONMENTAL BORIN	-					0	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation			
Date Started: 2/8/18	Coordinates:43.43414° N	-124.24111° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light brown, fine grained 6-inthick silty organic layer at 4.5 ftlight brown-gray, contains abundant wood debris below 5 ft	2.5		Run 1		Run 1 recovery 32 in.
10—				0.6	Run 2		Run 2 recovery 35 in.
		trace to some silt, gray-brown to gray, wood debris absent below 11 ftsome silt to silty, gray, contains organics below		1	Run 3 DB-170-13		Run 3 recovery 55 in. Slight sheen between depths of 12 to 20 ft
15— — — —	.	15 ft CLAY, trace to some silt, gray SAND, some silt to silty, gray, fine grained, contains	18.0 18.5	0.3	Run 4		Run 4 recovery 38 in.
20—		organics (2/8/2018)	20.0	0.7			
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
7AL BORING GRI DAT. 32.							
ENVIRONMENT -04					()	1.0

Logged By: C. Smerdon		Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordi	nates:43.43402° N	-124.24122° W (WGS 84)	
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, Igiht brown, fine grained			Run 1		Run 1 recovery 23 in.
5— — — — — —		trace silt, contains wood debris below 7 ftgrades to light brown-gray below 8 fttrace to some silt, gray below 10 ft		0.8	Run 2		Run 2 recovery 54 in.
- 10— 15—		Sandy SILT, some clay, gray, fine-grained sand, contains wood debris	14.0 15.0	0.8	Run 3 MO-171-13		Run 3 recovery 60 in.
- - - 20-		(2/8/2018)					
25—							
ATE.GDT 7/26/18 30							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BG					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation			
Date Started: 2/8/18	Coordinates:43.43379° N	-124.24112° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	e 7822DT	Weight:			
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	.0°	Sandy GRAVEL, trace silt, fine- to coarse-grained sand SAND, light brown, fine grained	1.5		Run 1		Run 1 recovery 32 in.
5— — —		trace silt, contains wood debris and organics below 5 ft		0.7	Run 2		Run 2 recovery 46 in.
10— -		light gray-brown, wood debris absent below 10 ft		0.3	Run 3 MO-172-12		Run 3 recovery 60 in.
15—		some silt below 14 ft (2/8/2018)	15.0	0.1	Run 3 MO-172-12		Null o recovery of in.
20-	-						
- - 25-	-						
30 – 30 – 30 – 30 – 30 – 30 – 30 – 30 –	-						
GRI DATA TEMPLATI	-						
RONMENTAL BORING	-						
¥40					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/8/18	Coordinates:43.43364° N	-124.24115° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ҒТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-		Sandy GRAVEL, some silt to silty, fine- to coarse-grained sand SAND, light brown, fine grained	3.5		Run 1		Run 1 recovery 17 in. ¥3.3 ft (2/8/2018)
- - -		light brown-gray below 7.5 fttrace to some silt below 10 ft		0.2	Run 2		Run 2 recovery 23 in.
10-				0.7	Run 3		Steel fragment encountered at 10 ft Run 3 recovery 60 in. Slight sheen between depths of 14 to 15 ft
15— — — — —		(2/8/2018)	15.0				
20-							
25 1 26/18							
GRI DATA TEMPLATE.GI							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
ā40					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Drilled by: Stratus Corporation			
Date Started: 2/8/18	Coordinates:43.43361° N	-124.24093° W (WGS 84)			
Drilling Method: Direct Pu	Hammer Type: Not Used				
Equipment: Geoprob	Weight:				
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	50°	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light brown, fine grained	2.0		Run 1		Run 1 recovery 37 in.
5— — — —				0	Run 2		Run 2 recovery 50 in.
10-		trace to some silt, light brown-gray below 10 ft		0	MO-174-9 X		Run 3 recovery 60 in.
15— 15— —		(2/9/2018) Groundwater not encountered	15.0	0.3			
20-							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
AL BORING GRI DATA 1							
ENVIRONMENTA					()	1.0

Logged By: C. Smerdon	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/9/18	Coordinates:43.4333° N -	124.24041° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-	2	Sandy GRAVEL, some silt, fine- to coarse-grained sand SAND, light brown, fine grained SAND, light brown, fine grained some some subsent below 2 ft services absent below 3 ft Portland cement CONCRETE (8 in.) SAND, trace silt, light brown, fine grained	0.5 4.0 4.6	0.4	Run 1		Run 1 recovery 31 in. ¥3.1 ft (2/9/2018)
- - - - 10-	- - -	gray, contains wood debris and organicstrace silt, light gray, organics and wood debris absent below 9.5 ft		0.2	Run 2 MO-175-9		Run 2 recovery 48 in.
- - - 15-	ИИ.	some silt below 12 ft Silty CLAY, some fine-grained sand, gray (2/9/2018)	14.0 15.0	0.8	Run 3		Run 3 recovery 60 in.
20-	-						
- - - 25-	-						
30-	-						
30 — 30 —	-						
- 40-	-				()	1.0

Logged By: C. Smerdon	Drilled by: Stratus (Corporation
Date Started: 2/9/18	Coordinates:43.4337° N	124.24023° W (WGS 84)
Drilling Method: Direct Pu	Hammer Type: Not Used	
Equipment: Geoprob	Weight:	
Hole Diameter: 3 in.	Drop:	
Note: See Legend for Expla	Energy Ratio:	

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	2.0	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, light brown, fine grained	- 1.5		Run 1		Run 1 recovery 36 in.
5- - -	- - -	trace silt light gray-brown contains organics		0.5	Run 2		₹4.3 ft (2/9/2018) Run 2 recovery 48 in.
10-	- - -	trace silt, light gray-brown, contains organics below 8.5 ftsome silt, gray below 13 ft		0.6	SH-176-10 X		Run 3 recovery 60 in.
15- -		(2/9/2018)	- 15.0	0			
20-	-						
- 25- -	-						
LATE.GDT 7/26/18	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
ENVIRONMENTAL BO	-					0	1.0

Logged By: C. Smerdon	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/9/18	Coordinates:43.43433° N	-124.24063° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING SH-176

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		New Portland cement CONCRETE (3 in.) SAND, trace to some gravel, trace silt, light brown to gray, fine grained gravel absent below 2 ft	0.2	0	Run 1		☑1.7 ft (2/9/2018) Run 1 recovery 34 in.
5-	, 20, 20,	2-inthick layer of sandy gravel at 5 ft12-inthick layer of sandy gravel at 6 ft		0	SH-177-5	X	Slight sheen and odor at 5 ft
-	<u>•</u> /->				Run 2		Run 2 recovery 45 in.
10-				0	Run 3		Run 3 recovery 60 in.
- - 15-		silty below 14.5 ft (2/12/2018)	15.0	0	-		Nation Cooking of the
-		(2.220.0)					
20-							
-							
25-							
E.GDT 7/26/18							
DATA TEMPLAT							
BORING GRI —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ਜ਼∟40_						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/9/18	Coordinates:43.43459° N	-124.24055° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING SH-177

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		SAND, brown, fine grained			Run 1		Run 1 recovery 30 in.
- - -		contains gravel and concrete fragments below 6 ft (2/12/2018) Refusal on obstruction at 7 ft	7.0	0	Run 2		Run 2 recovery 22 in.
10-		Groundwater not encountered					
15— — — —							
20—							
25 — — — — — — — — — — — — — — — — — — —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
MENTAL BORING GRI E							
ENVIRONA — 40—					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43465° N	-124.23872° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained		0	Run 1		Run 1 recovery 31 in.
5— — — —		(2/12/2018) Refusal on obstruction at 7 ft	- 7.0	0	Run 2		Run 2 recovery 18 in.
10— — —		Groundwater not encountered					
15— 15— —							
20-							
25— ———————————————————————————————————							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
AL BORING GRI DATA -							
ENVIRONMENTA — 04 — — — — — — — — — — — — — — — — — — —					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43463° N	-124.23869° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
_ _ _		Nordiand cement CONCRETE (5.5 in.) SAND, brown, fine grained	0.5		Run 1		Run 1 recovery 22 in.
5— — —		gray below 5 ftcontains wood debris below 6 ft		0 20 2.8	Run 2		∑5.8 ft (2/12/2018) Moderate odor between depths of 6 to 10 ft Run 2 recovery 27 in.
10-		wood debris absent below 9 ft		0.5	SL-180-10 X		Run 3 recovery 41 in.
15—		(2/12/2018)	15.0	0.2	SL-180-15		Autio recovery 41 iii.
20—							
5DT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							
MMENTAL BORING GF							
ENVIRON 40					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43464° N	-124.23874° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, ЕТ	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		¬ Portland cement CONCRETE (5.5 in.) ✓- SAND, brown, fine grained	0.5		Run 1		Run 1 recovery 32 in.
5—				0.4	Run 2		Run 2 recovery 41 in.
10—		gray below 10 ftdark gray below 12.5 ft		0.4	Run 3		Run 3 recovery 60 in.
15—		(2/12/2018) Depth to groundwater not measured due to caving, observed to be at least 5 ft below existing grade	15.0	0.1	SL-181-15 X		
20—		observed to be at least 5 π below existing grade					
25—							
1E.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
IRONMENTAL BORING							
<u>≥</u> 40—					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43458° N	-124.23873° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		New Portland cement CONCRETE (2.5 in.) / SAND, gray, fine grained	5.0	0.3	Run 1 NL-182-5		
- - - 10-		(2/12/2018) Refusal on obstruction at 5 ft	0.0				
20—							
25—							
-							
G GRI DATA TEMPLATE							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates: 43.43477° N	-124.2387° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING NL-182

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.5		Run 1		Run 1 recovery 10 in.
5— — — —		gray below 8 ft		0.3	Run 2		Run 2 recovery 32 in.
10—		dark gray below 14 ft		0.3	Run 3		Run 3 recovery 60 in.
15— — — —		(2/12/2018) Depth to groundwater not measured due to caving, observed to be at least 5 ft below existing grade	15.0	0.1	NL-183-15		
20-							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							
NTAL BORING GRI DAT							
ENVIRONMEN ———————————————————————————————————					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43476° N	-124.23865° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING NL-183

DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - - 5-	<u>-</u>	GRAVEL, some silt and fine-grained sand	4.0	1.4	Run 1		Run 1 recovery 28 in.
- - - 10-		Refusal on obstruction at 4 ft Groundwater not encountered					
- - - 15-							
20—							
ATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43428° N	-124.23917° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING MS-184

ОЕРТН, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	<u>, </u>	Sandy GRAVEL, trace to some silt, fine- to coarse-grained sand SAND, brown, fine grained	0.5		Run 1		₹0.5 ft (2/12/2018) Run 1 recovery 35 in.
5— —		2-inthick concrete layer at 4 ft		3.8	MS-185-4 X		Run 2 recovery 30 in.
10-	<u> </u>	6-inthick layer of gravelly sand with some silt at 8.5 ftgray, contains wood debris below 9 ft		1.5	Null 2	_	Ruli 2 lecovery 30 lil.
- - - 15-		trace to some silt, dark gray below 13 ft	15.0	2.1	Run 3		Run 3 recovery 60 in.
- - -		(2/12/2018)					
20—							
25— —							
30 0 1							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 5							
ONMENTAL BORING							
ENVIRO						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates: 43.43421° N	-124.23917° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING MS-185

ОЕРТН, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	S.	¬ Silty GRAVEL, some fine-grained sand, brown, - SAND, brown, fine grained	0.5		Run 1		Run 1 recovery 34 in.
5—		light gray below 9.5 ft		1.3	Run 2		Run 2 recovery 44 in.
10		(2/12/2018)	10.0	•	_		
15— — — —							
20—							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							
IMENTAL BORING GRII							
ENVIRON 40					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation				
Date Started: 2/12/18	Coordinates:43.43435° N	-124.23838° W (WGS 84)				
Drilling Method: Direct Pu	Drilling Method: Direct Push Probe					
Equipment: Geoprob	Weight:					
Hole Diameter: 3 in.	Drop:					
Note: See Legend for Expla	Energy Ratio:					

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-	. 5 (Asphalt concrete PAVEMENT (6 in.) over crushed rock BASE COURSE (6 in.) Sandy GRAVEL, trace to some silt, fine-grained sand (Fill) SAND, brown, fine grained, contains wood fragments	1.0		Run 1		Run 1 recovery 42 in.
5		gray below 8 ft		1.5	Run 2		Run 2 recovery 52 in.
10-				2.2	BP-187-11 X		Run 3 recovery 60 in.
15— ———————————————————————————————————		(2/12/2018) Depth to groundwater not measured due to caving, observed to be at least 5 ft below existing grade	15.0	0.3			
20—							
25— ———————————————————————————————————							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
FAL BORING GRI DATA 20 10 11 11 11 11 11							
ENVIRONMENT					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/12/18	Coordinates:43.43547° N	-124.23909° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING BP-187

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, light brown to gray, grass at ground surfacecontains organics and wood debris below 3 ft		0	Run 1		Run 1 recovery 32 in.
5— — — —		organics and wood debris absent below 7.5 ft		0	JP-188-6 X		∑7.5 ft (2/13/2018) Run 2 recovery 60 in.
10— — —		(2/13/2018)	10.0				
15— 15— —	-						
20-	-						
25— —	-						
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18	-						
L BORING GRI DATA T	-						
ENVIRONMENTAL -04	-					0	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43105° N	-124.23925° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained, grass at ground surfacecontains organics and wood debris below 3 ft			Run 1		Run 1 recovery 32 in.
5— — — —		dark gray, wood debris and organics absent below 7 ft light gray below 8.5 ft		0	Run 2 JP-189-7	X	₹7.5 ft (2/13/2018) Run 2 recovery 46 in.
10		(2/13/2018)	10.0	V			
15— — — —							
20-							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
MENTAL BORING GRI D							
ENVIRONE —						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43142° N	-124.23908° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - - 5-		SAND, brown, fine grainedcontains organics and wood debris below 4.5 ft		0	Run 1		Run 1 recovery 35 in.
- - - 10-		dark gray, abundant organics below 6 ftgray, organics absent below 8 ft (2/13/2018)	10.0	0	Run 2 JP-190-7		₹7.0 ft (2/13/2018) Run 2 recovery 48 in.
- - - 15-							
20—							
25—							
1 TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONME — 40—						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus	Drilled by: Stratus Corporation				
Date Started: 2/13/18	Coordinates:43.43139° N	-124.23854° W (WGS 84)				
Drilling Method: Direct Pu	Drilling Method: Direct Push Probe					
Equipment: Geoprob	Weight:					
Hole Diameter: 3 in.	Drop:					
Note: See Legend for Expla	Energy Ratio:					

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained, contains organicsorganics absent below 3.5 ft			Run 1		Run 1 recovery 39 in.
5— — — —		gray below 8 ft		0.6	Run 2 JP-191-8		₹6.0 ft (2/13/2018) Run 2 recovery 49 in.
10-				0.8	Run 3		Run 3 recovery 52 in.
15— - -		(2/13/2018)	15.0	2.1	_		
20— —							
25— - -							
MPLATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTALE						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43274° N	-124.24007° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

FIG. 91A

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained, contains organics			Run 1		☑1.5 ft (2/13/2018) Run 1 recovery 39 in.
5— — —				4.2	Run 2 TS-192-8		Slight odor between depths of 6 to 9 ft Run 2 recovery 42 in.
10-	ДП	gray below 10 ft6-inthick layer of silt with trace clay at 12.5 ft		1.3	Run 3	<u> </u>	Run 3 recovery 44 in.
15— - -		(2/13/2018)	- 15.0	0.5			
20-							
25—							
2LATE.GDT 7/26/18							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONMENTAL BC						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus 0	Corporation
Date Started: 2/13/18	Coordinates:43.43581° N	-124.24138° W (WGS 84)
Drilling Method: Direct Pu	Hammer Type: Not Used	
Equipment: Geoprob	Weight:	
Hole Diameter: 3 in.	Drop:	
Note: See Legend for Expla	Energy Ratio:	

DEPTH, FT	GRAPHICLOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained, contains roots, organics, and wood debris			Run 1		¥1.5 ft (2/13/2018) Run 1 recovery 25 in.
5— — —		organics absent below 5 ftgray below 6 ft		1.5	Run 2		Run 2 recovery 60 in.
10	ДЦ	6-inthick layer of silt with trace clay at 12.5 ft		1	Run 3		Slight odor between depths of 10 to 15 ft Run 3 recovery 60 in.
15— - -		dark gray below 13 ft (2/13/2018)	15.0	1	TS-193-15		
20-							
25—							
ATE.GDT 7/26/18 0.00							
RING GRI DATA TEMPI 1928 197							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18							1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43582° N	-124.24134° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, brown, fine grained, contains organicsorganics absent below 1 ft			Run 1		¥2.0 ft (2/13/2018) Run 1 recovery 36 in.
5— — —				1	Run 2		Run 2 recovery 44 in.
10-		gray below 11 ft3-inthick layer of silt with trace clay and sand at 13 ft		1.6	Run 3 TS-194-13		Run 3 recovery 47 in.
15— ———————————————————————————————————		(2/13/2018)	15.0	1			
20-							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
BORING GRI DATA TE							
ENVIRONMENTAL — — — — — — — — — — — — — — — — — — —					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43578° N	-124.24126° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, brown, fine grained, contains organicsorganics absent below 1 ft			Run 1		₹0.5 ft (2/13/2018) Run 1 recovery 32 in.
5 		contains wood debris below 7.5 ftdark gray, wood debris absent below 8.5 ft		0.5	Run 2		Run 2 recovery 32 in.
10-	JΠ	6-inthick layer of silt with some clay to clayey and trace sand, contains organics at 12.5 ft		1.6	TS-195-11 X		Slight odor at 9 ft Run 3 recovery 60 in.
15— ———————————————————————————————————		(2/13/2018)	- 15.0	1.1			
20-							
25—							
ATE.GDT 7/26/18							
ING GRI DATA TEMPL							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43576° N	-124.24134° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

DEPTH, FT GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- 50 - 50 - 1	Asphalt concrete PAVEMENT (6 in.) over crushed rock BASE COURSE (18 in.) SAND, brown, fine grained, contains organics	2.0		Run 1		Run 1 recovery 42 in. ¥3.2 ft (2/13/2018)
5-	gray below 5.5 ft		3.4	Run 2 CS-196-8		Run 2 recovery 41 in.
10-	dark gray below 10.5 ft8-inthick layer of clayey silt at 13 ft		0.3	Run 3	-	Run 3 recovery 43 in.
15	(2/13/2018)	15.0	0.8			
20-						
25—						
ME.GDT 7/26/18						
46 GRI DATA TEMPL/						
WIRONMENTAL BORIF						
DT 7/26/18					0	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43584° N	-124.2417° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING CS-196

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -	,O(•A•	Asphalt concrete PAVEMENT (6 in.) over crushed rock BASE COURSE (12 in.) SAND, brown, fine grained, contains organics	1.5		Run 1		Run 1 recovery 37 in.
5— — —		gray below 5.5 ft		0.5	Run 2	<u> </u>	Run 2 recovery 43 in.
10-		contains wood debris below 8 ftwood debris absent below 9 ft		0	Run 2 CS-197-7		
- - - 15-	717	6-inthick layer of clayey silt at 13 ft	15.0		Run 3		Run 3 recovery 60 in.
- -		(2/13/2018) Depth to groundwater not measured due to caving, observed to be at least 2 ft below existing grade	- -				
20-							
25—							
E.GDT 7/26/18							
RI DATA TEMPLAT							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
ENVIRONA — 40—						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43593° N	-124.24172° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.		Drop:		
Note: See Legend for Expla	Energy Ratio:			

BORING CS-197

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
	.) () ()	Asphalt concrete PAVEMENT (6 in.) over crushed rock BASE COURSE (15 in.) SAND, brown, fine grained1-inthick layer of gravel at 3 ft	1.7		Run 1		₹2.1 ft (2/13/2018) Run 1 recovery 35 in.
5— — — —		gray below 8 ft		1.5	Run 2		Run 2 recovery 39 in.
10-	1711 7	6-inthick layer of clayey silt at 13 ft		1.4	CS-198-9 X		Run 3 recovery 37 in.
15—		(2/13/2018)	15.0	1.3			
20-							
25— ———————————————————————————————————							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
AL BORING GRI DATA 1							
ENVIRONMENTA						0	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/13/18	Coordinates:43.43585° N	-124.24187° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.		Drop:		
Note: See Legend for Expla	Energy Ratio:			

BORING CS-198

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
		Asphalt concrete PAVEMENT (3 in.) SAND, brown, fine grained	0.3		Run 1		Run 1 recovery 26 in.
5—		gray below 7.5 ft		0.7	Run 2		Run 2 recovery 40 in.
10		dark gray at 9.5 ft Clayey SILT, gray to dark brown	12.0 13.5	1.2	DB-199-11 X		Run 3 recovery 34 in.
15— ———————————————————————————————————		SAND, trace silt, gray, fine grained (2/14/2018) Depth to groundwater not measured due to caving, observed to be at least 3 ft below existing grade	15.0	1			
20—							
25—							
EMPLATE.GDT 7/26/16							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 5							
ENVIRONMENTAL					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/14/18	Coordinates:43.43507° N	-124.24255° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING DB-199

Reissued for Use

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Nortland cement CONCRETE (4 in.)/ SAND, brown, fine grained	0.3		Run 1		Run 1 recovery 33 in.
5		dark brown below 4.5 ftgray below 6 ft		1.7	Run 2		Heavy odor and moderate sheen between depths of 6 to 9.5 ft Run 2 recovery 32 in.
10—				13	BP-200-8		
		6-inthick layer of silt with some clay to clayey and trace sand (2/14/2018)	15.0	0.9	Run 3 BP-200-13		Run 3 recovery 30 in.
		Depth to groundwater not measured due to caving, observed to be at least 3 ft below existing grade					
- -							
25-							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
BORING GRI DATA							
ENVIRONMENTAL 0-1 1					C)	1.0

Logged By: N. Utevsky	Drilled by: Stratus (Drilled by: Stratus Corporation		
Date Started: 2/14/18	Coordinates:43.43549° N	-124.23949° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	Hammer Type: Not Used		
Equipment: Geoprob	e 7822DT	Weight:		
Hole Diameter: 3 in.		Drop:		
Note: See Legend for Expla	Energy Ratio:			

BORING BP-200

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, brown, fine grainedcontains possible asbestos fibers at 2.5 ft			Run 1		Run 1 recovery 30 in. Sample not opened due to possible asbestos
5— — — —	-	(2/14/2018) Groundwater not encountered	5.0				
10-							
15— ———————————————————————————————————							
20-							
25—							
ATE.GDT 7/26/18 00							
RING GRI DATA TEMPI 25 1							
ENVIRONIMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18					(1.0

Logged By: N. Utevsky		Drilled by: Stratus Corporation			
Date Started: 2/14/18	Coordi	nates:43.43533° N	-124.23967° W (WGS 84)		
Drilling Method: Direct Pu	ısh Probe	e	Hammer Type: Not Used		
Equipment: Geoprob	Weight:				
Hole Diameter: 3 in.	Drop:				
Note: See Legend for Expla	Energy Ratio:				

BORING BP-201

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		SAND, brown, fine grained, contains organics, brick fragments, gravel, and scattered clay clods (Possible Fill)			Run 1		¥2.0 ft (2/14/2018) Run 1 recovery 23 in.
5—		fragments absent below 5 ft		0	BP-202-4 Run 2		Run 2 recovery 39 in.
10-		gray below 9 ft (2/14/2018)	10.0	0.5	BP-202-10		
- - 15-							
- - -							
20-							
25—							
PLATE.GDT 7/26/18							
ING GRI DATA TEM							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18 5							
<u>N</u> 40—					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus C	Drilled by: Stratus Corporation		
Date Started: 2/14/18	Coordinates:43.43531° N	-124.23965° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING BP-202

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
-		Portland cement CONCRETE (10.5 in.) SAND, brown, fine grained, contains organics	0.8		Run 1		Run 1 recovery 34 in.
5— — — —		up to trace gravel below 6 ftgray below 7 ft		1.3	Run 2		Run 2 recovery 40 in.
10-		(2/14/2018) Depth to groundwater not measured due to caving, observed to be at least 4 ft below existing grade	10.0	0.2	FO-203-9		
15—							
20—							
_							
25—							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/28/18 5							
L BORING GRI DATA							
ENVIRONMENTA					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/14/18	Coordinates:43.43616° N	-124.23934° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING FO-203

ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	ELEVATION, FT DEPTH, FT	PID, PPM	SAMPLE NO. AND DEPTH, FT	INSTALLATION	COMMENTS AND ADDITIONAL TESTS
- - -		SAND, brown, fine grained, contains wood debris and organics organics and wood debris absent below 4.5 ft			Run 1		Run 1 recovery 41 in.
5— — —		gray below 6 ft			Run 2		Run 2 recovery 42 in.
10-		(2/14/2018)	10.0	1.4			
15— — —							
20-							
25— —							
ENVIRONMENTAL BORING GRI DATA TEMPLATE.GDT 7/26/18							
L BORING GRI DATA T							
ENVIRONMENTA - 04					()	1.0

Logged By: N. Utevsky	Drilled by: Stratus 0	Drilled by: Stratus Corporation		
Date Started: 2/14/18	Coordinates:43.43631° N	-124.24091° W (WGS 84)		
Drilling Method: Direct Pu	Hammer Type: Not Used			
Equipment: Geoprob	Weight:			
Hole Diameter: 3 in.	Drop:			
Note: See Legend for Expla	Energy Ratio:			

BORING TS-204

APPENDIX B	
Analytical Laboratory Reports	

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ANALYTICAL REPORT

February 07, 2018

GRI - Beaverton, OR

Sample Delivery Group: L967603

Samples Received: 02/03/2018

Project Number: 5764-1195

5764-1195 Description:

Report To: Nora Utevsky

9750 SW Nimbus Avenue

Beaverton, OR 97008

Entire Report Reviewed By: Buan Ford

Brian Ford

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304. Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

Cp: Cover Page	1			
Tc: Table of Contents	2			
Ss: Sample Summary	3			
Cn: Case Narrative	5			
Sr: Sample Results	6			
BP-102-12 L967603-01	6			
BP-102-W L967603-02	9			
FO-111-8 L967603-03	12			
FO-111-W L967603-04	15			
BP-119-W L967603-05	18			
BP-119-8 L967603-06	21			
Qc: Quality Control Summary	24			
Total Solids by Method 2540 G-2011	24			
Volatile Organic Compounds (GC) by Method NWTPHGX	25			
Volatile Organic Compounds (GC/MS) by Method 8260B	27			
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	39			
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM				
GI: Glossary of Terms	45			
Al: Accreditations & Locations	46			

Sc: Sample Chain of Custody

47

BP-102-12 L967603-01 Solid			Collected by N. Utevsky	Collected date/time 01/29/18 16:43	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1070464	1	02/06/18 14:30	02/06/18 14:43	KDW
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069747	1	01/29/18 16:43	02/06/18 23:04	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1070279	1	01/29/18 16:43	02/06/18 14:19	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1070279	25	01/29/18 16:43	02/07/18 12:03	ACG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069926	20.8	02/05/18 08:38	02/05/18 16:02	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069800	3	02/03/18 22:40	02/04/18 16:47	KM
BP-102-W L967603-02 GW			Collected by N. Utevsky	Collected date/time 01/30/18 10:02	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069970	1	02/04/18 22:36	02/04/18 22:36	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/04/18 03:22	02/04/18 03:22	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/06/18 21:22	02/06/18 21:22	LRL
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069801	1	02/05/18 05:43	02/05/18 20:40	LM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069935	2	02/04/18 21:39	02/05/18 08:32	KM
			Collected by	Collected date/time	Received date/time
FO-111-8 L967603-03 Solid			N. Utevsky	01/30/18 15:00	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1070464	1	02/06/18 14:30	02/06/18 14:43	KDW
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069747	1	01/30/18 15:00	02/05/18 20:17	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1070279	25	01/30/18 15:00	02/06/18 13:58	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1070279	2500	01/30/18 15:00	02/07/18 02:22	JHH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069926	10	02/05/18 08:38	02/05/18 16:17	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069800	3	02/03/18 22:40	02/04/18 17:09	KM
			Collected by	Collected date/time	Received date/time
FO-111-W L967603-04 GW			N. Utevsky	01/31/18 09:20	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069970	1	02/04/18 23:00	02/04/18 23:00	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/04/18 03:41	02/04/18 03:41	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/06/18 21:42	02/06/18 21:42	LRL
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069801	1	02/05/18 05:43	02/05/18 20:56	LM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069935	1	02/04/18 21:39	02/05/18 03:45	KM
			Collected by	Collected date/time	Received date/time
BP-119-W L967603-05 GW			N. Utevsky	01/31/18 15:30	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069970	1	02/04/18 23:23	02/04/18 23:23	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/04/18 04:00	02/04/18 04:00	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069715	1	02/06/18 22:02	02/06/18 22:02	LRL
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069801	1	02/05/18 05:43	02/05/18 21:12	LM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069935	5	02/04/18 21:39	02/05/18 09:37	KM

Reissued for Use

SDG:

			Collected by	Collected date/time	Received date/time
BP-119-8 L967603-06 Solid			N. Utevsky	01/31/18 15:55	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1070464	1	02/06/18 14:30	02/06/18 14:43	KDW
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1069747	100	01/31/18 15:55	02/05/18 20:39	DWR
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1069771	100	01/31/18 15:55	02/03/18 23:18	JHH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1069926	200	02/05/18 08:38	02/05/18 17:01	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069800	100	02/03/18 22:40	02/06/18 04:14	DMG
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1069800	60	02/03/18 22:40	02/04/18 17:31	KM

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data

have been identified by the laboratory, and no information or data have been knowingly withheld that

Ss

Brian Ford Technical Service Representative

would affect the quality of the data.

Buar Ford

SDG:

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 16:43

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.3		1	02/06/2018 14:43	WG1070464

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	0.803		0.0422	0.125	1	02/06/2018 23:04	WG1069747
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		02/06/2018 23:04	WG1069747

Volatile Organic Compounds (GC/MS) by Method 8260R

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0125	0.0623	1	02/06/2018 14:19	WG1070279
Acrylonitrile	U		0.00223	0.0125	1	02/06/2018 14:19	WG1070279
Benzene	0.000374	J	0.000336	0.00125	1	02/06/2018 14:19	WG1070279
Bromobenzene	U	_	0.000354	0.00125	1	02/06/2018 14:19	WG1070279
Bromodichloromethane	U		0.000316	0.00125	1	02/06/2018 14:19	WG1070279
Bromoform	U		0.000528	0.00125	1	02/06/2018 14:19	WG1070279
Bromomethane	U		0.00167	0.00623	1	02/06/2018 14:19	WG1070279
n-Butylbenzene	U		0.000321	0.00125	1	02/06/2018 14:19	WG1070279
sec-Butylbenzene	U		0.000250	0.00125	1	02/06/2018 14:19	WG1070279
tert-Butylbenzene	U		0.000257	0.00125	1	02/06/2018 14:19	WG1070279
Carbon tetrachloride	U		0.000409	0.00125	1	02/06/2018 14:19	WG1070279
Chlorobenzene	U		0.000264	0.00125	1	02/06/2018 14:19	WG1070279
Chlorodibromomethane	U		0.000465	0.00125	1	02/06/2018 14:19	WG1070279
Chloroethane	U		0.00118	0.00623	1	02/06/2018 14:19	WG1070279
Chloroform	U		0.000285	0.00623	1	02/06/2018 14:19	WG1070279
Chloromethane	U		0.000467	0.00311	1	02/06/2018 14:19	WG1070279
2-Chlorotoluene	U		0.000375	0.00125	1	02/06/2018 14:19	WG1070279
4-Chlorotoluene	U		0.000299	0.00125	1	02/06/2018 14:19	WG1070279
1,2-Dibromo-3-Chloropropane	U		0.00131	0.00623	1	02/06/2018 14:19	WG1070279
1,2-Dibromoethane	U		0.000427	0.00125	1	02/06/2018 14:19	WG1070279
Dibromomethane	U		0.000476	0.00125	1	02/06/2018 14:19	WG1070279
1,2-Dichlorobenzene	U		0.000380	0.00125	1	02/06/2018 14:19	WG1070279
1,3-Dichlorobenzene	U		0.000298	0.00125	1	02/06/2018 14:19	WG1070279
1,4-Dichlorobenzene	U		0.000281	0.00125	1	02/06/2018 14:19	WG1070279
Dichlorodifluoromethane	U		0.000888	0.00623	1	02/06/2018 14:19	WG1070279
1,1-Dichloroethane	U		0.000248	0.00125	1	02/06/2018 14:19	WG1070279
1,2-Dichloroethane	U		0.000330	0.00125	1	02/06/2018 14:19	WG1070279
1,1-Dichloroethene	U		0.000377	0.00125	1	02/06/2018 14:19	WG1070279
cis-1,2-Dichloroethene	U		0.000293	0.00125	1	02/06/2018 14:19	WG1070279
trans-1,2-Dichloroethene	U		0.000329	0.00125	1	02/06/2018 14:19	WG1070279
1,2-Dichloropropane	U		0.000446	0.00125	1	02/06/2018 14:19	WG1070279
1,1-Dichloropropene	U		0.000395	0.00125	1	02/06/2018 14:19	WG1070279
1,3-Dichloropropane	U		0.000258	0.00125	1	02/06/2018 14:19	WG1070279
cis-1,3-Dichloropropene	U		0.000326	0.00125	1	02/06/2018 14:19	WG1070279
trans-1,3-Dichloropropene	U		0.000333	0.00125	1	02/06/2018 14:19	WG1070279
2,2-Dichloropropane	U		0.000347	0.00125	1	02/06/2018 14:19	WG1070279
Di-isopropyl ether	U		0.000309	0.00125	1	02/06/2018 14:19	WG1070279
Ethylbenzene	U		0.000370	0.00125	1	02/06/2018 14:19	WG1070279
Hexachloro-1,3-butadiene	U		0.000426	0.00125	1	02/06/2018 14:19	WG1070279
Isopropylbenzene	U		0.000303	0.00125	1	02/06/2018 14:19	WG1070279
p-Isopropyltoluene	U		0.000254	0.00125	1	02/06/2018 14:19	WG1070279
2-Butanone (MEK)	U		0.00583	0.0125	1	02/06/2018 14:19	WG1070279
Methylene Chloride	U		0.00125	0.00623	1	02/06/2018 14:19	WG1070279
4-Methyl-2-pentanone (MIBK)	U		0.00234	0.0125	1	02/06/2018 14:19	WG1070279

Ss

Gl

Sc

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: GRI - Beaverton, OR PROJECT: 5764-1195

SDG: L967603

DATE/TIME: 02/07/18 17:58 PAGE: 6 of 52

ONE LAB. NATIONWIDE.

Ss

Gl

Sc

Collected date/time: 01/29/18 16:43

967603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Methyl tert-butyl ether	U		0.000264	0.00125	1	02/06/2018 14:19	WG1070279
Naphthalene	0.0636	<u>J</u>	0.0311	0.156	25	02/07/2018 12:03	WG1070279
n-Propylbenzene	U		0.000257	0.00125	1	02/06/2018 14:19	WG1070279
Styrene	U		0.000291	0.00125	1	02/06/2018 14:19	WG1070279
1,1,1,2-Tetrachloroethane	U		0.000329	0.00125	1	02/06/2018 14:19	WG1070279
1,1,2,2-Tetrachloroethane	U		0.000455	0.00125	1	02/06/2018 14:19	WG1070279
1,1,2-Trichlorotrifluoroethane	U		0.000455	0.00125	1	02/06/2018 14:19	WG1070279
Tetrachloroethene	U		0.000344	0.00125	1	02/06/2018 14:19	WG1070279
Toluene	U		0.000541	0.00623	1	02/06/2018 14:19	WG1070279
1,2,3-Trichlorobenzene	U		0.000381	0.00125	1	02/06/2018 14:19	WG1070279
1,2,4-Trichlorobenzene	U		0.000483	0.00125	1	02/06/2018 14:19	WG1070279
1,1,1-Trichloroethane	U		0.000356	0.00125	1	02/06/2018 14:19	WG1070279
1,1,2-Trichloroethane	U		0.000345	0.00125	1	02/06/2018 14:19	WG1070279
Trichloroethene	U		0.000347	0.00125	1	02/06/2018 14:19	WG1070279
Trichlorofluoromethane	U		0.000476	0.00623	1	02/06/2018 14:19	WG1070279
1,2,3-Trichloropropane	U		0.000923	0.00311	1	02/06/2018 14:19	WG1070279
1,2,4-Trimethylbenzene	0.000299	<u>J</u>	0.000263	0.00125	1	02/06/2018 14:19	WG1070279
1,2,3-Trimethylbenzene	U		0.000357	0.00125	1	02/06/2018 14:19	WG1070279
1,3,5-Trimethylbenzene	0.000368	<u>J</u>	0.000331	0.00125	1	02/06/2018 14:19	WG1070279
Vinyl chloride	U		0.000362	0.00125	1	02/06/2018 14:19	WG1070279
Xylenes, Total	U		0.000869	0.00374	1	02/06/2018 14:19	WG1070279
(S) Toluene-d8	87.4			80.0-120		02/06/2018 14:19	WG1070279
(S) Toluene-d8	42.2	<u>J2</u>		80.0-120		02/07/2018 12:03	WG1070279
(S) Dibromofluoromethane	95.6			74.0-131		02/07/2018 12:03	WG1070279
(S) Dibromofluoromethane	117			74.0-131		02/06/2018 14:19	WG1070279
(S) 4-Bromofluorobenzene	130			64.0-132		02/06/2018 14:19	WG1070279
(S) 4-Bromofluorobenzene	102			64.0-132		02/07/2018 12:03	WG1070279

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	697	<u>J3</u>	34.1	104	20.8	02/05/2018 16:02	WG1069926
Residual Range Organics (RRO)	757	<u>J3</u>	85.4	259	20.8	02/05/2018 16:02	WG1069926
(S) o-Terphenyl	89.0			18.0-148		02/05/2018 16:02	WG1069926

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.0739		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Acenaphthene	0.0915		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Acenaphthylene	U		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Benzo(a)anthracene	0.00733	<u>J</u>	0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Benzo(a)pyrene	0.00403	<u>J</u>	0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Benzo(b)fluoranthene	U		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Benzo(g,h,i)perylene	0.00421	<u>J</u>	0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Benzo(k)fluoranthene	U		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Chrysene	0.00691	<u>J</u>	0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Dibenz(a,h)anthracene	U		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Fluoranthene	0.0217	<u>J</u>	0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Fluorene	0.0308		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
ndeno(1,2,3-cd)pyrene	U		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Naphthalene	0.165		0.00747	0.0747	3	02/04/2018 16:47	WG1069800
Phenanthrene	0.139		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
Pyrene	0.0641		0.00224	0.0224	3	02/04/2018 16:47	WG1069800
-Methylnaphthalene	0.321		0.00747	0.0747	3	02/04/2018 16:47	WG1069800

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1

Reissued for Use

DATE/TIME:

02/07/18 17:58

PROJECT: SDG: 5764-1195 L967603

PAGE: 7 of 52

Sample Narrative:

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 16:43

L967603-01 WG1069800: Dilution due to sample volume

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Methylnaphthalene	0.409		0.00747	0.0747	3	02/04/2018 16:47	WG1069800
2-Chloronaphthalene	U		0.00747	0.0747	3	02/04/2018 16:47	WG1069800
(S) Nitrobenzene-d5	63.5			14.0-149		02/04/2018 16:47	WG1069800
(S) 2-Fluorobiphenyl	70.1			34.0-125		02/04/2018 16:47	WG1069800
(S) p-Terphenyl-d14	60.1			23.0-120		02/04/2018 16:47	WG1069800

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 10:02

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	02/04/2018 22:36	WG1069970
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-122		02/04/2018 22:36	WG1069970

Ss

ı	_
	[°] Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	02/04/2018 03:22	WG1069715	
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/04/2018 03:22	WG1069715	
Acrylonitrile	U	_	1.87	10.0	1	02/04/2018 03:22	WG1069715	
Benzene	U		0.331	1.00	1	02/04/2018 03:22	WG1069715	
Bromobenzene	U		0.352	1.00	1	02/04/2018 03:22	WG1069715	
Bromodichloromethane	U		0.380	1.00	1	02/04/2018 03:22	WG1069715	
Bromoform	U		0.469	1.00	1	02/04/2018 03:22	WG1069715	
Bromomethane	U	<u>J3</u>	0.866	5.00	1	02/04/2018 03:22	WG1069715	
n-Butylbenzene	U	_	0.361	1.00	1	02/04/2018 03:22	WG1069715	
sec-Butylbenzene	U		0.365	1.00	1	02/04/2018 03:22	WG1069715	
tert-Butylbenzene	U		0.399	1.00	1	02/04/2018 03:22	WG1069715	
Carbon tetrachloride	U		0.379	1.00	1	02/04/2018 03:22	WG1069715	
Chlorobenzene	U		0.348	1.00	1	02/04/2018 03:22	WG1069715	
Chlorodibromomethane	U		0.327	1.00	1	02/04/2018 03:22	WG1069715	
Chloroethane	U	<u>J3</u>	0.453	5.00	1	02/04/2018 03:22	WG1069715	
Chloroform	U	_	0.324	5.00	1	02/04/2018 03:22	WG1069715	
Chloromethane	U	<u>J3 J4</u>	0.276	2.50	1	02/04/2018 03:22	WG1069715	
2-Chlorotoluene	U		0.375	1.00	1	02/04/2018 03:22	WG1069715	
4-Chlorotoluene	U		0.351	1.00	1	02/04/2018 03:22	WG1069715	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/04/2018 03:22	WG1069715	
1,2-Dibromoethane	U		0.381	1.00	1	02/04/2018 03:22	WG1069715	
Dibromomethane	U		0.346	1.00	1	02/04/2018 03:22	WG1069715	
1,2-Dichlorobenzene	U		0.349	1.00	1	02/04/2018 03:22	WG1069715	
1,3-Dichlorobenzene	U		0.220	1.00	1	02/04/2018 03:22	WG1069715	
1,4-Dichlorobenzene	U		0.274	1.00	1	02/04/2018 03:22	WG1069715	
Dichlorodifluoromethane	U		0.551	5.00	1	02/06/2018 21:22	WG1069715	
1,1-Dichloroethane	U		0.259	1.00	1	02/04/2018 03:22	WG1069715	
1,2-Dichloroethane	U		0.361	1.00	1	02/04/2018 03:22	WG1069715	
1,1-Dichloroethene	U	<u>J3</u>	0.398	1.00	1	02/04/2018 03:22	WG1069715	
cis-1,2-Dichloroethene	U	<u>==</u>	0.260	1.00	1	02/04/2018 03:22	WG1069715	
trans-1,2-Dichloroethene	U		0.396	1.00	1	02/04/2018 03:22	WG1069715	
1,2-Dichloropropane	U		0.306	1.00	1	02/04/2018 03:22	WG1069715	
1,1-Dichloropropene	U		0.352	1.00	1	02/04/2018 03:22	WG1069715	
1,3-Dichloropropane	U		0.366	1.00	1	02/04/2018 03:22	WG1069715	
cis-1,3-Dichloropropene	U		0.418	1.00	1	02/04/2018 03:22	WG1069715	
trans-1,3-Dichloropropene	U		0.419	1.00	1	02/04/2018 03:22	WG1069715	
2,2-Dichloropropane	U	<u>J3</u>	0.321	1.00	1	02/04/2018 03:22	WG1069715	
Di-isopropyl ether	U	<u>55</u>	0.320	1.00	1	02/04/2018 03:22	WG1069715	
Ethylbenzene	U		0.320	1.00	1	02/04/2018 03:22	WG1069715	
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/04/2018 03:22	WG1069715	
Isopropylbenzene	U		0.236	1.00	1	02/04/2018 03:22	WG1069715	
p-Isopropyltoluene	U		0.350	1.00	1	02/04/2018 03:22	WG1069715	
2-Butanone (MEK)	U		3.93	10.0	1	02/04/2018 03:22	WG1069715	
Methylene Chloride	U		1.00	5.00	1	02/04/2018 03:22	WG1069715	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	02/04/2018 03:22	WG1069715 WG1069715	
Methyl tert-butyl ether	U		0.367	1.00	1	02/04/2018 03:22	WG1069715 WG1069715	
Naphthalene	U		1.00	5.00	1	02/04/2018 03:22	WG1069715 WG1069715	
n-Propylbenzene	U		0.349	1.00	1	02/04/2018 03:22	WG1069715 WG1069715	
		BCL CRLOOSS				UZIU41ZU10 U3.ZZ		aissued for Lies
Document	INO: JT-680	-RGL-GRI-0000	1-00	Kev	rision: 1		K	eissued for Use

ACCOUNT: GRI - Beaverton, OR

PROJECT: 5764-1195

SDG: L967603

DATE/TIME: 02/07/18 17:58 PAGE: 9 of 52

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 10:02

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Styrene	U		0.307	1.00	1	02/04/2018 03:22	WG1069715
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/04/2018 03:22	WG1069715
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/04/2018 03:22	WG1069715
1,1,2-Trichlorotrifluoroethane	U	<u>J3</u>	0.303	1.00	1	02/04/2018 03:22	WG1069715
Tetrachloroethene	U		0.372	1.00	1	02/04/2018 03:22	WG1069715
Toluene	U		0.412	1.00	1	02/04/2018 03:22	WG1069715
1,2,3-Trichlorobenzene	U		0.230	1.00	1	02/04/2018 03:22	WG1069715
1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/04/2018 03:22	WG1069715
1,1,1-Trichloroethane	U		0.319	1.00	1	02/04/2018 03:22	WG1069715
1,1,2-Trichloroethane	U		0.383	1.00	1	02/04/2018 03:22	WG1069715
Trichloroethene	U		0.398	1.00	1	02/04/2018 03:22	WG1069715
Trichlorofluoromethane	U	<u>J3</u>	1.20	5.00	1	02/04/2018 03:22	WG1069715
1,2,3-Trichloropropane	U		0.807	2.50	1	02/04/2018 03:22	WG1069715
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/04/2018 03:22	WG1069715
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/04/2018 03:22	WG1069715
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/04/2018 03:22	WG1069715
Vinyl chloride	U	<u>J3 J4</u>	0.259	1.00	1	02/04/2018 03:22	WG1069715
Xylenes, Total	U		1.06	3.00	1	02/04/2018 03:22	WG1069715
(S) Toluene-d8	99.0			80.0-120		02/06/2018 21:22	WG1069715
(S) Toluene-d8	102			80.0-120		02/04/2018 03:22	WG1069715
(S) Dibromofluoromethane	88.1			76.0-123		02/04/2018 03:22	WG1069715
(S) Dibromofluoromethane	93.1			76.0-123		02/06/2018 21:22	WG1069715
(S) 4-Bromofluorobenzene	98.1			80.0-120		02/04/2018 03:22	WG1069715
(S) 4-Bromofluorobenzene	106			80.0-120		02/06/2018 21:22	WG1069715

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	42.8	<u>J</u>	33.0	100	1	02/05/2018 20:40	WG1069801
Residual Range Organics (RRO)	U		82.5	250	1	02/05/2018 20:40	WG1069801
(S) o-Terphenyl	86.1			31.0-160		02/05/2018 20:40	WG1069801

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

·	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0280	0.100	2	02/05/2018 08:32	WG1069935
Acenaphthene	U		0.0200	0.100	2	02/05/2018 08:32	WG1069935
Acenaphthylene	U		0.0240	0.100	2	02/05/2018 08:32	WG1069935
Benzo(a)anthracene	U		0.00820	0.100	2	02/05/2018 08:32	WG1069935
Benzo(a)pyrene	U		0.0232	0.100	2	02/05/2018 08:32	WG1069935
Benzo(b)fluoranthene	0.00680	<u>B J</u>	0.00424	0.100	2	02/05/2018 08:32	WG1069935
Benzo(g,h,i)perylene	0.00662	ВJ	0.00454	0.100	2	02/05/2018 08:32	WG1069935
Benzo(k)fluoranthene	U		0.0272	0.100	2	02/05/2018 08:32	WG1069935
Chrysene	U		0.0216	0.100	2	02/05/2018 08:32	WG1069935
Dibenz(a,h)anthracene	U		0.00792	0.100	2	02/05/2018 08:32	WG1069935
Fluoranthene	U		0.0314	0.100	2	02/05/2018 08:32	WG1069935
Fluorene	U		0.0170	0.100	2	02/05/2018 08:32	WG1069935
Indeno(1,2,3-cd)pyrene	U		0.0296	0.100	2	02/05/2018 08:32	WG1069935
Naphthalene	0.0978	<u>B J</u>	0.0396	0.500	2	02/05/2018 08:32	WG1069935
Phenanthrene	U		0.0164	0.100	2	02/05/2018 08:32	WG1069935
Pyrene	U		0.0234	0.100	2	02/05/2018 08:32	WG1069935
1-Methylnaphthalene	U		0.0164	0.500	2	02/05/2018 08:32	WG1069935
2-Methylnaphthalene	U		0.0180	0.500	2	02/05/2018 08:32	WG1069935
2-Chloronaphthalene	U		0.0129	0.500	2	02/05/2018 08:32	WG1069935
(S) Nitrobenzene-d5	82.0			31.0-160		02/05/2018 08:32	WG1069935

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

PROJECT: 5764-1195

SDG: L967603

DATE/TIME: 02/07/18 17:58

PAGE: 10 of 52

ACCOUNT: GRI - Beaverton, OR

Gl

Ss

Cn

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 10:02

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	5	1 (-	/ - /					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
(S) 2-Fluorobiphenyl	102			48.0-148		02/05/2018 08:32	WG1069935	
(S) p-Terphenyl-d14	73.4			37.0-146		02/05/2018 08:32	WG1069935	

L967603-02 WG1069935: Dilution due to matrix impact during extraction procedure

Analyte

Gasoline Range Organics-NWTPH

(S) a,a,a-Trifluorotoluene(FID)

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Batch

Batch

WG1069747

WG1069747

Collected date/time: 01/30/18 15:00

RDL (dry)

mg/kg

0.122

77.0-120

RDL (dry)

Dilution

Dilution

1

Analysis

Analysis

date / time

02/05/2018 20:17

02/05/2018 20:17

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC) by Method NWTPHGX

Result (dry)

mg/kg

1.66

94.2

Volatile Organic Compounds (GC/MS) by Method 8260B Result (dry)

Qualifier

Qualifier

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	81.8		1	02/06/2018 14:43	WG1070464

MDL (dry)

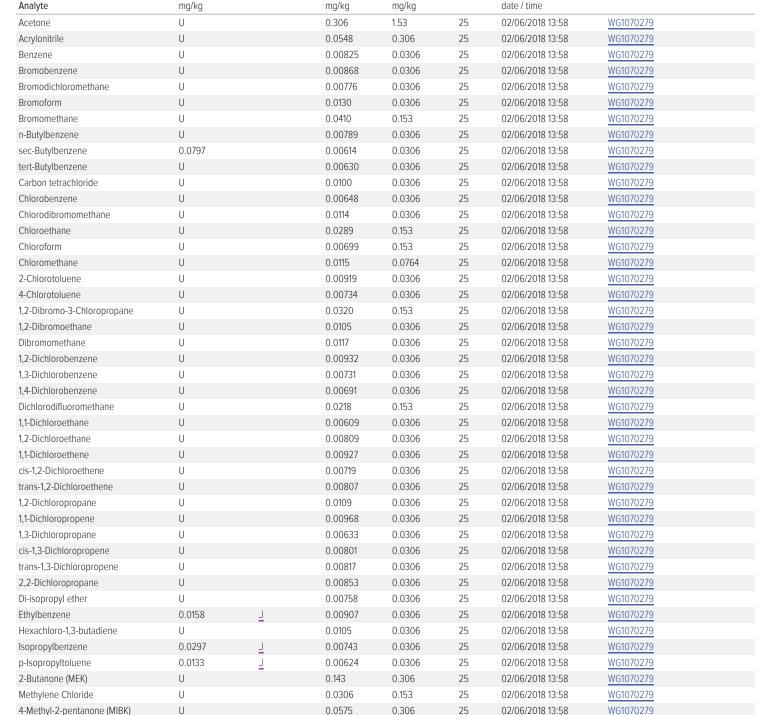
mg/kg

0.0414

MDL (dry)

Тс

Ss



J1
6 OC

|--|

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1

Reissued for Use

PROJECT: 5764-1195

SDG: L967603 DATE/TIME:

02/07/18 17:58

PAGE: 12 of 52 Methyl tert-butyl ether

Analyte

Naphthalene

SAMPLE RESULTS - 03

MDL (dry)

mg/kg

3.06

0.00648

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 15:00

L967603

Volatile Organic Compounds (GC/MS) by Method 8260B Result (dry)

mg/kg

U

46.8

Qualifier

907003				
				1
RDL (dry)	Dilution	Analysis	Batch	Cp
mg/kg		date / time		
0.0306	25	02/06/2018 13:58	WG1070279	² Tc
15.3	2500	02/07/2018 02:22	WG1070279	
0.0306	25	02/06/2018 13:58	WG1070279	3_
0.0306	25	02/06/2018 13:58	WG1070279	Ss

n-Propylbenzene	0.00794	<u>J</u>	0.00630	0.0306	25	02/06/2018 13:58	WG1070279
Styrene	U		0.00715	0.0306	25	02/06/2018 13:58	WG1070279
1,1,1,2-Tetrachloroethane	U		0.00807	0.0306	25	02/06/2018 13:58	WG1070279
1,1,2,2-Tetrachloroethane	U		0.0112	0.0306	25	02/06/2018 13:58	WG1070279
1,1,2-Trichlorotrifluoroethane	U		0.0112	0.0306	25	02/06/2018 13:58	WG1070279
Tetrachloroethene	U		0.00844	0.0306	25	02/06/2018 13:58	WG1070279
Toluene	U		0.0132	0.153	25	02/06/2018 13:58	WG1070279
1,2,3-Trichlorobenzene	U		0.00935	0.0306	25	02/06/2018 13:58	WG1070279
1,2,4-Trichlorobenzene	U		0.0119	0.0306	25	02/06/2018 13:58	WG1070279
1,1,1-Trichloroethane	U		0.00874	0.0306	25	02/06/2018 13:58	WG1070279
1,1,2-Trichloroethane	U		0.00846	0.0306	25	02/06/2018 13:58	WG1070279
Trichloroethene	U		0.00853	0.0306	25	02/06/2018 13:58	WG1070279
Trichlorofluoromethane	U		0.0117	0.153	25	02/06/2018 13:58	WG1070279
1,2,3-Trichloropropane	U		0.0226	0.0764	25	02/06/2018 13:58	WG1070279
1,2,4-Trimethylbenzene	0.0546		0.00646	0.0306	25	02/06/2018 13:58	WG1070279
1,2,3-Trimethylbenzene	0.0263	<u>J</u>	0.00878	0.0306	25	02/06/2018 13:58	WG1070279
1,3,5-Trimethylbenzene	0.0261	<u>J</u>	0.00813	0.0306	25	02/06/2018 13:58	WG1070279
Vinyl chloride	U		0.00890	0.0306	25	02/06/2018 13:58	WG1070279
Xylenes, Total	0.0325	<u>J</u>	0.0213	0.0917	25	02/06/2018 13:58	WG1070279
(S) Toluene-d8	101			80.0-120		02/07/2018 02:22	WG1070279
(S) Toluene-d8	73.0	<u>J2</u>		80.0-120		02/06/2018 13:58	WG1070279
(S) Dibromofluoromethane	100			74.0-131		02/06/2018 13:58	WG1070279
(S) Dibromofluoromethane	102			74.0-131		02/07/2018 02:22	WG1070279
(S) 4-Bromofluorobenzene	103			64.0-132		02/07/2018 02:22	WG1070279
(S) 4-Bromofluorobenzene	100			64.0-132		02/06/2018 13:58	WG1070279

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	375	<u>J3</u>	16.1	48.9	10	02/05/2018 16:17	WG1069926
Residual Range Organics (RRO)	477	<u>J3</u>	40.3	122	10	02/05/2018 16:17	WG1069926
(S) o-Terphenyl	93.6			18.0-148		02/05/2018 16:17	WG1069926

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.173		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Acenaphthene	0.267		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Acenaphthylene	U		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Benzo(a)anthracene	0.0626		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Benzo(a)pyrene	0.0234		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Benzo(b)fluoranthene	0.0275		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Benzo(g,h,i)perylene	0.00965	<u>J</u>	0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Benzo(k)fluoranthene	0.00710	<u>J</u>	0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Chrysene	0.0914		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Dibenz(a,h)anthracene	0.00453	<u>J</u>	0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Fluoranthene	0.222		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Fluorene	0.188		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Indeno(1,2,3-cd)pyrene	0.00405	<u>J</u>	0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Naphthalene	0.372		0.00734	0.0734	3	02/04/2018 17:09	WG1069800
Phenanthrene	0.455		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
Pyrene	0.287		0.00220	0.0220	3	02/04/2018 17:09	WG1069800
I-Methylnaphthalene	0.0774		0.00734	0.0734	3	02/04/2018 17:09	WG1069800

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: GRI - Beaverton, OR PROJECT: 5764-1195

SDG: L967603 DATE/TIME:

02/07/18 17:58

PAGE: 13 of 52 Sample Narrative:

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 15:00

L967603-03 WG1069800: Dilution due to sample volume

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	'	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Methylnaphthalene	0.121		0.00734	0.0734	3	02/04/2018 17:09	WG1069800
2-Chloronaphthalene	U		0.00734	0.0734	3	02/04/2018 17:09	WG1069800
(S) Nitrobenzene-d5	83.7			14.0-149		02/04/2018 17:09	WG1069800
(S) 2-Fluorobiphenyl	76.2			34.0-125		02/04/2018 17:09	WG1069800
(S) p-Terphenyl-d14	72.7			23.0-120		02/04/2018 17:09	WG1069800

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 09:20

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	02/04/2018 23:00	WG1069970
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-122		02/04/2018 23:00	WG1069970

Ss

⁵ C,
21

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	·	ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	02/04/2018 03:41	WG1069715
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/04/2018 03:41	WG1069715
Acrylonitrile	U	_	1.87	10.0	1	02/04/2018 03:41	WG1069715
Benzene	U		0.331	1.00	1	02/04/2018 03:41	WG1069715
Bromobenzene	U		0.352	1.00	1	02/04/2018 03:41	WG1069715
Bromodichloromethane	U		0.380	1.00	1	02/04/2018 03:41	WG1069715
Bromoform	U		0.469	1.00	1	02/04/2018 03:41	WG1069715
Bromomethane	U	<u>J3</u>	0.866	5.00	1	02/04/2018 03:41	WG1069715
n-Butylbenzene	U	_	0.361	1.00	1	02/04/2018 03:41	WG1069715
sec-Butylbenzene	U		0.365	1.00	1	02/04/2018 03:41	WG1069715
tert-Butylbenzene	U		0.399	1.00	1	02/04/2018 03:41	WG1069715
Carbon tetrachloride	U		0.379	1.00	1	02/04/2018 03:41	WG1069715
Chlorobenzene	U		0.348	1.00	1	02/04/2018 03:41	WG1069715
Chlorodibromomethane	U		0.327	1.00	1	02/04/2018 03:41	WG1069715
Chloroethane	U	<u>J3</u>	0.453	5.00	1	02/04/2018 03:41	WG1069715
Chloroform	U	<u> </u>	0.324	5.00	1	02/04/2018 03:41	WG1069715
Chloromethane	U	<u>J3 J4</u>	0.276	2.50	1	02/04/2018 03:41	WG1069715
2-Chlorotoluene	U	<u>55 5 .</u>	0.375	1.00	1	02/04/2018 03:41	WG1069715
4-Chlorotoluene	U		0.351	1.00	1	02/04/2018 03:41	WG1069715
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/04/2018 03:41	WG1069715
1,2-Dibromoethane	U		0.381	1.00	1	02/04/2018 03:41	WG1069715
Dibromomethane	U		0.346	1.00	1	02/04/2018 03:41	WG1069715
1,2-Dichlorobenzene	U		0.349	1.00	1	02/04/2018 03:41	WG1069715
1,3-Dichlorobenzene	U		0.220	1.00	1	02/04/2018 03:41	WG1069715
1,4-Dichlorobenzene	U		0.274	1.00	1	02/04/2018 03:41	WG1069715
Dichlorodifluoromethane	U		0.551	5.00	1	02/06/2018 21:42	WG1069715
1,1-Dichloroethane	U		0.259	1.00	1	02/04/2018 03:41	WG1069715
1,2-Dichloroethane	U		0.259	1.00	1	02/04/2018 03:41	WG1069715
1,1-Dichloroethene	U	12	0.398	1.00	1	02/04/2018 03:41	WG1069715
cis-1,2-Dichloroethene	U	<u>J3</u>	0.260	1.00	1	02/04/2018 03:41	WG1069715
trans-1,2-Dichloroethene	U		0.260	1.00	1	02/04/2018 03:41	
,	U						WG1069715
1,2-Dichloropropane			0.306	1.00	1	02/04/2018 03:41	WG1069715
1,1-Dichloropropene	U		0.352	1.00	1	02/04/2018 03:41	WG1069715
1,3-Dichloropropane			0.366	1.00	1	02/04/2018 03:41	WG1069715
cis-1,3-Dichloropropene	U		0.418 0.419	1.00	1	02/04/2018 03:41	WG1069715
trans-1,3-Dichloropropene	U	12		1.00	1	02/04/2018 03:41	WG1069715
2,2-Dichloropropane	U	<u>J3</u>	0.321	1.00	1	02/04/2018 03:41	WG1069715
Di-isopropyl ether	U		0.320	1.00	1	02/04/2018 03:41	WG1069715
Ethylbenzene	U		0.384	1.00	1	02/04/2018 03:41	WG1069715
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/04/2018 03:41	WG1069715
Isopropylbenzene	U		0.326	1.00	1	02/04/2018 03:41	WG1069715
p-Isopropyltoluene	U		0.350	1.00	1	02/04/2018 03:41	WG1069715
2-Butanone (MEK)	U		3.93	10.0	1	02/04/2018 03:41	WG1069715
Methylene Chloride	U		1.00	5.00	1	02/04/2018 03:41	WG1069715
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	02/04/2018 03:41	WG1069715
Methyl tert-butyl ether	U		0.367	1.00	1	02/04/2018 03:41	WG1069715
Naphthalene	U		1.00	5.00	1	02/04/2018 03:41	WG1069715
n-Propylbenzene	U		0.349	1.00	1	02/04/2018 03:41	WG1069715
Document	No: J1-680-R	GL-GRI-00001	-00	Revisio	n: 1		Reissued for Use

PROJECT:

5764-1195

SDG: DATE/TIME:

02/07/18 17:58

L967603

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 01/31/18 09:20

L967603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Styrene	U		0.307	1.00	1	02/04/2018 03:41	WG1069715
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/04/2018 03:41	WG1069715
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/04/2018 03:41	WG1069715
1,1,2-Trichlorotrifluoroethane	U	<u>J3</u>	0.303	1.00	1	02/04/2018 03:41	WG1069715
Tetrachloroethene	U		0.372	1.00	1	02/04/2018 03:41	WG1069715
Toluene	U		0.412	1.00	1	02/04/2018 03:41	WG1069715
1,2,3-Trichlorobenzene	U		0.230	1.00	1	02/04/2018 03:41	WG1069715
1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/04/2018 03:41	WG1069715
1,1,1-Trichloroethane	U		0.319	1.00	1	02/04/2018 03:41	WG1069715
1,1,2-Trichloroethane	U		0.383	1.00	1	02/04/2018 03:41	WG1069715
Trichloroethene	U		0.398	1.00	1	02/04/2018 03:41	WG1069715
Trichlorofluoromethane	U	<u>J3</u>	1.20	5.00	1	02/04/2018 03:41	WG1069715
1,2,3-Trichloropropane	U		0.807	2.50	1	02/04/2018 03:41	WG1069715
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/04/2018 03:41	WG1069715
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/04/2018 03:41	WG1069715
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/04/2018 03:41	WG1069715
Vinyl chloride	U	<u>J3 J4</u>	0.259	1.00	1	02/04/2018 03:41	WG1069715
Xylenes, Total	U		1.06	3.00	1	02/04/2018 03:41	WG1069715
(S) Toluene-d8	96.6			80.0-120		02/06/2018 21:42	WG1069715
(S) Toluene-d8	100			80.0-120		02/04/2018 03:41	WG1069715
(S) Dibromofluoromethane	89.0			76.0-123		02/04/2018 03:41	WG1069715
(S) Dibromofluoromethane	94.7			76.0-123		02/06/2018 21:42	WG1069715
(S) 4-Bromofluorobenzene	96.7			80.0-120		02/04/2018 03:41	WG1069715
(S) 4-Bromofluorobenzene	100			80.0-120		02/06/2018 21:42	WG1069715

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	41.6	<u>J</u>	33.0	100	1	02/05/2018 20:56	WG1069801
Residual Range Organics (RRO)	U		82.5	250	1	02/05/2018 20:56	WG1069801
(S) o-Terphenyl	90.4			31.0-160		02/05/2018 20:56	WG1069801

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

·	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0140	0.0500	1	02/05/2018 03:45	WG1069935
Acenaphthene	U		0.0100	0.0500	1	02/05/2018 03:45	WG1069935
Acenaphthylene	U		0.0120	0.0500	1	02/05/2018 03:45	WG1069935
Benzo(a)anthracene	U		0.00410	0.0500	1	02/05/2018 03:45	WG1069935
Benzo(a)pyrene	U		0.0116	0.0500	1	02/05/2018 03:45	WG1069935
Benzo(b)fluoranthene	0.00721	<u>B J</u>	0.00212	0.0500	1	02/05/2018 03:45	WG1069935
Benzo(g,h,i)perylene	0.00248	ВJ	0.00227	0.0500	1	02/05/2018 03:45	WG1069935
Benzo(k)fluoranthene	U		0.0136	0.0500	1	02/05/2018 03:45	WG1069935
Chrysene	U		0.0108	0.0500	1	02/05/2018 03:45	WG1069935
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	02/05/2018 03:45	WG1069935
Fluoranthene	U		0.0157	0.0500	1	02/05/2018 03:45	WG1069935
Fluorene	U		0.00850	0.0500	1	02/05/2018 03:45	WG1069935
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	02/05/2018 03:45	WG1069935
Naphthalene	0.0242	<u>B J</u>	0.0198	0.250	1	02/05/2018 03:45	WG1069935
Phenanthrene	U		0.00820	0.0500	1	02/05/2018 03:45	WG1069935
Pyrene	U		0.0117	0.0500	1	02/05/2018 03:45	WG1069935
1-Methylnaphthalene	U		0.00821	0.250	1	02/05/2018 03:45	WG1069935
2-Methylnaphthalene	U		0.00902	0.250	1	02/05/2018 03:45	WG1069935
2-Chloronaphthalene	U		0.00647	0.250	1	02/05/2018 03:45	WG1069935
(S) Nitrobenzene-d5	93.0			31.0-160		02/05/2018 03:45	WG1069935

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

PROJECT: 5764-1195

SDG:

DATE/TIME: 02/07/18 17:58 PAGE: 16 of 52

ACCOUNT: GRI - Beaverton, OR

L967603

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 09:20

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

		•						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
(S) 2-Fluorobiphenyl	120			48.0-148		02/05/2018 03:45	WG1069935	
(S) p-Terphenyl-d14	108			37.0-146		02/05/2018 03:45	WG1069935	

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:30

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260B

Qualifier

MDL

Result

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	92.9	7	31.6	100	1	02/04/2018 23:23	WG1069970
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-122		02/04/2018 23:23	WG1069970

Dilution

Analysis

Batch

RDL

Ss

	Result	Qualifier	MDL	KDL	Dilution	Allalysis	Batti
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	02/04/2018 04:00	WG1069715
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/04/2018 04:00	WG1069715
Acrylonitrile	U	_	1.87	10.0	1	02/04/2018 04:00	WG1069715
Benzene	U		0.331	1.00	1	02/04/2018 04:00	WG1069715
Bromobenzene	U		0.352	1.00	1	02/04/2018 04:00	WG1069715
Bromodichloromethane	U		0.380	1.00	1	02/04/2018 04:00	WG1069715
Bromoform	U		0.469	1.00	1	02/04/2018 04:00	WG1069715
Bromomethane	U	<u>J3</u>	0.866	5.00	1	02/04/2018 04:00	WG1069715
n-Butylbenzene	U	_	0.361	1.00	1	02/04/2018 04:00	WG1069715
sec-Butylbenzene	U		0.365	1.00	1	02/04/2018 04:00	WG1069715
tert-Butylbenzene	U		0.399	1.00	1	02/04/2018 04:00	WG1069715
Carbon tetrachloride	U		0.379	1.00	1	02/04/2018 04:00	WG1069715
Chlorobenzene	U		0.348	1.00	1	02/04/2018 04:00	WG1069715
Chlorodibromomethane	U		0.327	1.00	1	02/04/2018 04:00	WG1069715
Chloroethane	U	<u>J3</u>	0.453	5.00	1	02/04/2018 04:00	WG1069715
Chloroform	U		0.324	5.00	1	02/04/2018 04:00	WG1069715
Chloromethane	U	<u>J3 J4</u>	0.276	2.50	1	02/04/2018 04:00	WG1069715
2-Chlorotoluene	U	<u>55 5 .</u>	0.375	1.00	1	02/04/2018 04:00	WG1069715
4-Chlorotoluene	U		0.351	1.00	1	02/04/2018 04:00	WG1069715
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/04/2018 04:00	WG1069715
1.2-Dibromoethane	U		0.381	1.00	1	02/04/2018 04:00	WG1069715
Dibromomethane	U		0.346	1.00	1	02/04/2018 04:00	WG1069715
1.2-Dichlorobenzene	U		0.349	1.00	1	02/04/2018 04:00	WG1069715
1,3-Dichlorobenzene	U		0.220	1.00	1	02/04/2018 04:00	WG1069715
1,4-Dichlorobenzene	U		0.274	1.00	1	02/04/2018 04:00	WG1069715
Dichlorodifluoromethane	U		0.551	5.00	1	02/06/2018 22:02	WG1069715
1,1-Dichloroethane	U		0.259	1.00	1	02/04/2018 04:00	WG1069715
1,2-Dichloroethane	U		0.361	1.00	1	02/04/2018 04:00	WG1069715
1,1-Dichloroethene	U	<u>J3</u>	0.398	1.00	1	02/04/2018 04:00	WG1069715
cis-1,2-Dichloroethene	U		0.260	1.00	1	02/04/2018 04:00	WG1069715
trans-1,2-Dichloroethene	U		0.396	1.00	1	02/04/2018 04:00	WG1069715
1,2-Dichloropropane	U		0.306	1.00	1	02/04/2018 04:00	WG1069715
1,1-Dichloropropene	U		0.352	1.00	1	02/04/2018 04:00	WG1069715
1,3-Dichloropropane	U		0.366	1.00	1	02/04/2018 04:00	WG1069715
cis-1,3-Dichloropropene	U		0.418	1.00	1	02/04/2018 04:00	WG1069715
trans-1,3-Dichloropropene	U		0.419	1.00	1	02/04/2018 04:00	WG1069715
2,2-Dichloropropane	U	<u>J3</u>	0.321	1.00	1	02/04/2018 04:00	WG1069715
Di-isopropyl ether	U	_	0.320	1.00	1	02/04/2018 04:00	WG1069715
Ethylbenzene	U		0.384	1.00	1	02/04/2018 04:00	WG1069715
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/04/2018 04:00	WG1069715
Isopropylbenzene	U		0.326	1.00	1	02/04/2018 04:00	WG1069715
p-Isopropyltoluene	U		0.350	1.00	1	02/04/2018 04:00	WG1069715
2-Butanone (MEK)	U		3.93	10.0	1	02/04/2018 04:00	WG1069715
Methylene Chloride	U		1.00	5.00	1	02/04/2018 04:00	WG1069715
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	02/04/2018 04:00	WG1069715
7 10 - 11 - 1 (111-17)							

Document No: J1-680-RGL-GRI-00001-00

0.367

1.00

0.349

Revision: 1

1.00

5.00

1.00

Reissued for Use

PROJECT: SDG: 5764-1195 L967603

02/04/2018 04:00

02/04/2018 04:00

02/04/2018 04:00

PAGE: 18 of 52

ACCOUNT: GRI - Beaverton, OR

U

24.9

0.686

Methyl tert-butyl ether

Naphthalene

n-Propylbenzene

DATE/TIME: 02/07/18 17:58

WG1069715

WG1069715

WG1069715

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 01/31/18 15:30

(S) 4-Bromofluorobenzene

(S) 4-Bromofluorobenzene

101

97.8

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Styrene	U		0.307	1.00	1	02/04/2018 04:00	WG1069715
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/04/2018 04:00	WG1069715
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/04/2018 04:00	WG1069715
1,1,2-Trichlorotrifluoroethane	U	<u>J3</u>	0.303	1.00	1	02/04/2018 04:00	WG1069715
Tetrachloroethene	U		0.372	1.00	1	02/04/2018 04:00	WG1069715
Toluene	U		0.412	1.00	1	02/04/2018 04:00	WG1069715
1,2,3-Trichlorobenzene	U		0.230	1.00	1	02/04/2018 04:00	WG1069715
1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/04/2018 04:00	WG1069715
1,1,1-Trichloroethane	U		0.319	1.00	1	02/04/2018 04:00	WG1069715
1,1,2-Trichloroethane	U		0.383	1.00	1	02/04/2018 04:00	WG1069715
Trichloroethene	U		0.398	1.00	1	02/04/2018 04:00	WG1069715
Trichlorofluoromethane	U	<u>J3</u>	1.20	5.00	1	02/04/2018 04:00	WG1069715
1,2,3-Trichloropropane	U		0.807	2.50	1	02/04/2018 04:00	WG1069715
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/04/2018 04:00	WG1069715
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/04/2018 04:00	WG1069715
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/04/2018 04:00	WG1069715
Vinyl chloride	U	<u>J3 J4</u>	0.259	1.00	1	02/04/2018 04:00	WG1069715
Xylenes, Total	U		1.06	3.00	1	02/04/2018 04:00	WG1069715
(S) Toluene-d8	104			80.0-120		02/04/2018 04:00	WG1069715
(S) Toluene-d8	95.5			80.0-120		02/06/2018 22:02	WG1069715
(S) Dibromofluoromethane	88.9			76.0-123		02/04/2018 04:00	WG1069715
(S) Dibromofluoromethane	95.4			76.0-123		02/06/2018 22:02	WG1069715

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1340		33.0	100	1	02/05/2018 21:12	WG1069801
Residual Range Organics (RRO)	1250		82.5	250	1	02/05/2018 21:12	WG1069801
(S) o-Terphenyl	96.2			31.0-160		02/05/2018 21:12	WG1069801

02/06/2018 22:02

02/04/2018 04:00

WG1069715

WG1069715

80.0-120

80.0-120

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	0.436		0.0700	0.250	5	02/05/2018 09:37	WG1069935
Acenaphthene	4.39		0.0500	0.250	5	02/05/2018 09:37	WG1069935
Acenaphthylene	U		0.0600	0.250	5	02/05/2018 09:37	WG1069935
Benzo(a)anthracene	U		0.0205	0.250	5	02/05/2018 09:37	WG1069935
Benzo(a)pyrene	U		0.0580	0.250	5	02/05/2018 09:37	WG1069935
Benzo(b)fluoranthene	0.0140	<u>B J</u>	0.0106	0.250	5	02/05/2018 09:37	WG1069935
Benzo(g,h,i)perylene	0.0260	<u>B J</u>	0.0114	0.250	5	02/05/2018 09:37	WG1069935
Benzo(k)fluoranthene	U		0.0680	0.250	5	02/05/2018 09:37	WG1069935
Chrysene	U		0.0540	0.250	5	02/05/2018 09:37	WG1069935
Dibenz(a,h)anthracene	U		0.0198	0.250	5	02/05/2018 09:37	WG1069935
Fluoranthene	U		0.0785	0.250	5	02/05/2018 09:37	WG1069935
Fluorene	3.45		0.0425	0.250	5	02/05/2018 09:37	WG1069935
Indeno(1,2,3-cd)pyrene	U		0.0740	0.250	5	02/05/2018 09:37	WG1069935
Naphthalene	42.3		0.0990	1.25	5	02/05/2018 09:37	WG1069935
Phenanthrene	4.10		0.0410	0.250	5	02/05/2018 09:37	WG1069935
Pyrene	0.159	<u>J</u>	0.0585	0.250	5	02/05/2018 09:37	WG1069935
1-Methylnaphthalene	103		0.0410	1.25	5	02/05/2018 09:37	WG1069935
2-Methylnaphthalene	95.5		0.0451	1.25	5	02/05/2018 09:37	WG1069935
2-Chloronaphthalene	U		0.0324	1.25	5	02/05/2018 09:37	WG1069935
(S) Nitrobenzene-d5	81.0			31.0-160		02/05/2018 09:37	WG1069935

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

PROJECT:

SDG:

DATE/TIME:

PAGE: 19 of 52

ACCOUNT: GRI - Beaverton, OR

5764-1195

L967603 02/07/18 17:58

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:30

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	<u> </u>	`	, ,					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
(S) 2-Fluorobiphenyl	100			48.0-148		02/05/2018 09:37	WG1069935	
(S) p-Terphenyl-d14	77.5			37.0-146		02/05/2018 09:37	WG1069935	

L967603-05 WG1069935: Dilution due to matrix

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.6		1	02/06/2018 14:43	WG1070464

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	161		3.79	11.2	100	02/05/2018 20:39	WG1069747
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		02/05/2018 20:39	WG1069747

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		1.12	5.58	100	02/03/2018 23:18	WG1069771
Acrylonitrile	U		0.200	1.12	100	02/03/2018 23:18	WG1069771
Benzene	U		0.0301	0.112	100	02/03/2018 23:18	WG1069771
Bromobenzene	U		0.0317	0.112	100	02/03/2018 23:18	WG1069771
Bromodichloromethane	U		0.0284	0.112	100	02/03/2018 23:18	WG1069771
Bromoform	U		0.0473	0.112	100	02/03/2018 23:18	WG1069771
Bromomethane	U		0.150	0.558	100	02/03/2018 23:18	WG1069771
n-Butylbenzene	0.751		0.0288	0.112	100	02/03/2018 23:18	WG1069771
sec-Butylbenzene	0.101	J	0.0224	0.112	100	02/03/2018 23:18	WG1069771
ert-Butylbenzene	U	_	0.0230	0.112	100	02/03/2018 23:18	WG1069771
Carbon tetrachloride	U		0.0366	0.112	100	02/03/2018 23:18	WG1069771
Chlorobenzene	U		0.0237	0.112	100	02/03/2018 23:18	WG1069771
Chlorodibromomethane	U		0.0416	0.112	100	02/03/2018 23:18	WG1069771
Chloroethane	U		0.106	0.558	100	02/03/2018 23:18	WG1069771
Chloroform	U		0.0256	0.558	100	02/03/2018 23:18	WG1069771
Chloromethane	U		0.0419	0.279	100	02/03/2018 23:18	WG1069771
2-Chlorotoluene	U		0.0336	0.112	100	02/03/2018 23:18	WG1069771
-Chlorotoluene	U		0.0268	0.112	100	02/03/2018 23:18	WG1069771
,2-Dibromo-3-Chloropropane	U		0.117	0.558	100	02/03/2018 23:18	WG1069771
,2-Dibromoethane	U		0.0383	0.112	100	02/03/2018 23:18	WG1069771
Dibromomethane	U		0.0427	0.112	100	02/03/2018 23:18	WG1069771
,2-Dichlorobenzene	U		0.0341	0.112	100	02/03/2018 23:18	WG1069771
,3-Dichlorobenzene	U		0.0267	0.112	100	02/03/2018 23:18	WG1069771
,4-Dichlorobenzene	U		0.0252	0.112	100	02/03/2018 23:18	WG1069771
Dichlorodifluoromethane	U		0.0796	0.558	100	02/03/2018 23:18	WG1069771
,1-Dichloroethane	U		0.0222	0.112	100	02/03/2018 23:18	WG1069771
,2-Dichloroethane	U		0.0296	0.112	100	02/03/2018 23:18	WG1069771
,1-Dichloroethene	U		0.0338	0.112	100	02/03/2018 23:18	WG1069771
cis-1,2-Dichloroethene	U		0.0262	0.112	100	02/03/2018 23:18	WG1069771
rans-1,2-Dichloroethene	U		0.0295	0.112	100	02/03/2018 23:18	WG1069771
I,2-Dichloropropane	U		0.0400	0.112	100	02/03/2018 23:18	WG1069771
,1-Dichloropropene	U		0.0354	0.112	100	02/03/2018 23:18	WG1069771
,3-Dichloropropane	U		0.0231	0.112	100	02/03/2018 23:18	WG1069771
cis-1,3-Dichloropropene	U		0.0293	0.112	100	02/03/2018 23:18	WG1069771
rans-1,3-Dichloropropene	U	<u>J4</u>	0.0298	0.112	100	02/03/2018 23:18	WG1069771
2,2-Dichloropropane	U	<u></u>	0.0312	0.112	100	02/03/2018 23:18	WG1069771
Di-isopropyl ether	U		0.0277	0.112	100	02/03/2018 23:18	WG1069771
Ethylbenzene	0.0402	J	0.0377	0.112	100	02/03/2018 23:18	WG1069771
Hexachloro-1,3-butadiene	U	<u> </u>	0.0332	0.112	100	02/03/2018 23:18	WG1069771
sopropylbenzene	0.0773		0.0382	0.112	100	02/03/2018 23:18	WG1069771
p-Isopropyltoluene	0.0773	<u>J</u>	0.0271	0.112	100	02/03/2018 23:18	WG1069771
2-Butanone (MEK)	U.0310	<u> </u>	0.523	1.12	100	02/03/2018 23:18	WG1069771
Methylene Chloride	U		0.525	0.558	100	02/03/2018 23:18	WG1069771
victifylene Chlonde	U		0.112	1.12	100	UZ/UJ/ZU10 ZJ.10	¥VO1003771

Gl

Sc

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: GRI - Beaverton, OR PROJECT: 5764-1195

SDG: L967603

DATE/TIME: 02/07/18 17:58

PAGE: 21 of 52

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 01/31/18 15:55

967603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		L
Methyl tert-butyl ether	U		0.0237	0.112	100	02/03/2018 23:18	WG1069771	
Naphthalene	12.7		0.112	0.558	100	02/03/2018 23:18	WG1069771	
n-Propylbenzene	0.549		0.0230	0.112	100	02/03/2018 23:18	WG1069771	
Styrene	U		0.0261	0.112	100	02/03/2018 23:18	WG1069771	
1,1,1,2-Tetrachloroethane	U		0.0295	0.112	100	02/03/2018 23:18	WG1069771	_ [
1,1,2,2-Tetrachloroethane	U		0.0408	0.112	100	02/03/2018 23:18	WG1069771	
1,1,2-Trichlorotrifluoroethane	U		0.0408	0.112	100	02/03/2018 23:18	WG1069771	
Tetrachloroethene	U		0.0308	0.112	100	02/03/2018 23:18	WG1069771	
Toluene	U		0.0485	0.558	100	02/03/2018 23:18	WG1069771	
1,2,3-Trichlorobenzene	U		0.0342	0.112	100	02/03/2018 23:18	WG1069771	
1,2,4-Trichlorobenzene	U		0.0433	0.112	100	02/03/2018 23:18	WG1069771	
1,1,1-Trichloroethane	U		0.0319	0.112	100	02/03/2018 23:18	WG1069771	
1,1,2-Trichloroethane	U		0.0309	0.112	100	02/03/2018 23:18	WG1069771	
Trichloroethene	U		0.0312	0.112	100	02/03/2018 23:18	WG1069771	
Trichlorofluoromethane	U		0.0427	0.558	100	02/03/2018 23:18	WG1069771	
1,2,3-Trichloropropane	U		0.0827	0.279	100	02/03/2018 23:18	WG1069771	
1,2,4-Trimethylbenzene	0.0239	<u>J</u>	0.0236	0.112	100	02/03/2018 23:18	WG1069771	
1,2,3-Trimethylbenzene	0.114		0.0320	0.112	100	02/03/2018 23:18	WG1069771	
1,3,5-Trimethylbenzene	U		0.0297	0.112	100	02/03/2018 23:18	WG1069771	
Vinyl chloride	U		0.0325	0.112	100	02/03/2018 23:18	WG1069771	l l
Xylenes, Total	0.0872	<u>J</u>	0.0779	0.335	100	02/03/2018 23:18	WG1069771	
(S) Toluene-d8	98.0			80.0-120		02/03/2018 23:18	WG1069771	
(S) Dibromofluoromethane	102			74.0-131		02/03/2018 23:18	WG1069771	
(S) 4-Bromofluorobenzene	106			64.0-132		02/03/2018 23:18	WG1069771	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	27600	<u>J3</u>	295	893	200	02/05/2018 17:01	WG1069926
Residual Range Organics (RRO)	14000	<u>J3</u>	737	2230	200	02/05/2018 17:01	WG1069926
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		02/05/2018 17:01	WG1069926

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	30.7		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Acenaphthene	30.6		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Acenaphthylene	U		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Benzo(a)anthracene	5.94		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Benzo(a)pyrene	2.27		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Benzo(b)fluoranthene	1.15		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Benzo(g,h,i)perylene	0.998		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Benzo(k)fluoranthene	0.0605	<u>J</u>	0.0402	0.402	60	02/04/2018 17:31	WG1069800
Chrysene	10.0		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Dibenz(a,h)anthracene	0.275	<u>J</u>	0.0402	0.402	60	02/04/2018 17:31	WG1069800
Fluoranthene	4.45		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Fluorene	28.8		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Indeno(1,2,3-cd)pyrene	0.179	<u>J</u>	0.0402	0.402	60	02/04/2018 17:31	WG1069800
Naphthalene	92.0		0.134	1.34	60	02/04/2018 17:31	WG1069800
Phenanthrene	124		0.0402	0.402	60	02/04/2018 17:31	WG1069800
Pyrene	28.2		0.0402	0.402	60	02/04/2018 17:31	WG1069800
1-Methylnaphthalene	138		0.223	2.23	100	02/06/2018 04:14	WG1069800

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: GRI - Beaverton, OR PROJECT: 5764-1195

SDG: L967603 DATE/TIME: 02/07/18 17:58

PAGE: 22 of 52

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:55

L967603

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

•		,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2-Methylnaphthalene	202		0.223	2.23	100	02/06/2018 04:14	WG1069800
2-Chloronaphthalene	U		0.134	1.34	60	02/04/2018 17:31	WG1069800
(S) Nitrobenzene-d5	143	<u>J7</u>		14.0-149		02/04/2018 17:31	WG1069800
(S) Nitrobenzene-d5	84.7	<u>J7</u>		14.0-149		02/06/2018 04:14	WG1069800
(S) 2-Fluorobiphenyl	128	<u>J7</u>		34.0-125		02/06/2018 04:14	WG1069800
(S) 2-Fluorobiphenyl	124	<u>J7</u>		34.0-125		02/04/2018 17:31	WG1069800
(S) p-Terphenyl-d14	135	<u>J7</u>		23.0-120		02/04/2018 17:31	WG1069800
(S) p-Terphenyl-d14	135	J7		23.0-120		02/06/2018 04:14	WG1069800

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L967603-01,03,06

Method Blank (MB)

(MB) R3284523-1 02	MB) R3284523-1 02/06/18 14:43										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	%		%	%							
Total Solids	0.001										

L967090-02 Original Sample (OS) • Duplicate (DUP)

(OS) L967090-02 02/0	OS) L967090-02 02/06/18 14:43 • (DUP) R3284523-3 02/06/18 14:43											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	%	%		%		%						
Total Solids	68.1	68.3	1	0		5						

Laboratory Control Sample (LCS)

50.0

50.0

100

85-115

Total Solids

(LCS) R3284523-2 02/06	(LCS) R3284523-2 02/06/18 14:43										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							

Sc

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Reissued for Use

PAGE:

25 of 52

Volatile Organic Compounds (GC) by Method NWTPHGX

L967603-01,03,06

Method Blank (MB)

(MB) R3284327-3 02/05/18 14:06										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
TPHG C6 - C12	U		0.0339	0.100						
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284327-1 02/05	S) R3284327-1 02/05/18 12:58 • (LCSD) R3284327-2 02/05/18 13:19												
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits													
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
TPHG C6 - C12	5.50	4.30	4.16	78.3	75.6	70.0-133			3.47	20			
(S) a,a,a-Trifluorotoluene(FID)				101	100	77.0-120							

L967411-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

		(MSD) R3284327-5	

(OS) L96/411-02 02/05/18	3 15:21 • (MS) R3	284327-4 02/	05/18 22:07 •	(MSD) R32843	27-5 02/05/18	3 22:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPHG C6 - C12	5.50	91.7	213	204	88.5	81.8	25	10.0-146			4.39	30
(S) a,a,a-Trifluorotoluene(FID)					99.0	99.1		77.0-120				

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method NWTPHGX

L967603-02,04,05

Method Blank (MB)

(MB) R3284123-3 02/04/18 18:43										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Gasoline Range Organics-NWTPH	U		31.6	100						
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-122						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284123-1 02/04/18 17:34 • (LCSD) R3284123-2 02/04/18 17:57													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Gasoline Range Organics-NWTPH	5500	4830	4910	87.9	89.3	72.0-134			1.59	20			
(S) a,a,a-Trifluorotoluene(FID)				101	101	77.0-122							

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L967603-02,04,05

Method Blank (MB)						
(MB) R3284308-3 02/03/1	8 21:44					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Acetone	U		10.0	50.0		
Acrolein	U		8.87	50.0		
Acrylonitrile	U		1.87	10.0		
Benzene	U		0.331	1.00		
Bromobenzene	U		0.352	1.00		
Bromodichloromethane	U		0.380	1.00		L
Bromoform	U		0.469	1.00		
Bromomethane	U		0.866	5.00		
n-Butylbenzene	U		0.361	1.00		
sec-Butylbenzene	U		0.365	1.00		
tert-Butylbenzene	U		0.399	1.00		
Carbon tetrachloride	U		0.379	1.00		
Chlorobenzene	U		0.348	1.00		
Chlorodibromomethane	U		0.327	1.00		
Chloroethane	U		0.453	5.00		
Chloroform	U		0.324	5.00		L
Chloromethane	U		0.276	2.50		
2-Chlorotoluene	U		0.375	1.00		
4-Chlorotoluene	U		0.351	1.00		
1,2-Dibromo-3-Chloropropane	U		1.33	5.00		
1,2-Dibromoethane	U		0.381	1.00		
Dibromomethane	U		0.346	1.00		
1,2-Dichlorobenzene	U		0.349	1.00		
1,3-Dichlorobenzene	U		0.220	1.00		
1,4-Dichlorobenzene	U		0.274	1.00		
Dichlorodifluoromethane	U		0.551	5.00		
1,1-Dichloroethane	U		0.259	1.00		
1,2-Dichloroethane	U		0.361	1.00		
1,1-Dichloroethene	U		0.398	1.00		
cis-1,2-Dichloroethene	U		0.260	1.00		
trans-1,2-Dichloroethene	U		0.396	1.00		
1,2-Dichloropropane	U		0.306	1.00		
1,1-Dichloropropene	U		0.352	1.00		
1,3-Dichloropropane	U		0.366	1.00		
cis-1,3-Dichloropropene	U		0.418	1.00		
trans-1,3-Dichloropropene	U		0.419	1.00		
2,2-Dichloropropane	U		0.321	1.00		
Di-isopropyl ether	U		0.320	1.00		
Ethylbenzene	U		0.384	1.00		
Hexachloro-1,3-butadiene	U		0.256	1.00		
Document	No: J1-680-F	RGL-GRI-00001	-00		Revision: 1	Reissued for Use

SDG:

L967603

DATE/TIME:

02/07/18 17:58

PAGE: 27 of 52

PROJECT:

5764-1195

WG1069715

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-02,04,05

Method Blank (MB)

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

103

88.4

99.7

(MB) R3284308-3 02/03/1	18 21:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Isopropylbenzene	U		0.326	1.00	
p-Isopropyltoluene	U		0.350	1.00	
2-Butanone (MEK)	U		3.93	10.0	
Methylene Chloride	U		1.00	5.00	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	
Methyl tert-butyl ether	U		0.367	1.00	
Naphthalene	U		1.00	5.00	
n-Propylbenzene	U		0.349	1.00	
Styrene	U		0.307	1.00	
1,1,1,2-Tetrachloroethane	U		0.385	1.00	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	
Tetrachloroethene	U		0.372	1.00	
Toluene	U		0.412	1.00	
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	
1,2,3-Trichlorobenzene	U		0.230	1.00	
1,2,4-Trichlorobenzene	U		0.355	1.00	
1,1,1-Trichloroethane	U		0.319	1.00	
1,1,2-Trichloroethane	U		0.383	1.00	
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	
1,2,3-Trichloropropane	U		0.807	2.50	
1,2,3-Trimethylbenzene	U		0.321	1.00	
1,2,4-Trimethylbenzene	U		0.373	1.00	
1,3,5-Trimethylbenzene	U		0.387	1.00	
Vinyl chloride	U		0.259	1.00	
Xylenes, Total	U		1.06	3.00	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

80.0-120

76.0-123 80.0-120

(LCS) R3284308-1 02/03/1	18 20:48 • (LCS	D) R3284308	-2 02/03/18 21:	:07						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	125	160	145	128	116	10.0-160			10.0	23
Acrolein	125	359	345	287	276	10.0-160	<u>J4</u>	<u>J4</u>	3.90	20
Acrylonitrile	125	112	106	89.6	85.0	60.0-142			5.22	20
Benzene	25.0	22.0	19.2	88.0	76.8	69.0-123			13.6	20

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L967603
 02/07/18 17:58
 28 of 52

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

'Sr

[°]Qc

Gl

ΑI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-02,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3284308-1 02/03/18 20:48 • (LCSD) R3284308-2 02/03/18 21:07 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ug/l ug/l % % % % % ug/l Bromobenzene 25.0 22.8 20.8 91.3 83.2 79.0-120 9.18 20 20 23.0 21.4 92.1 85.8 76.0-120 7.15 Bromodichloromethane 25.0 Bromoform 25.0 25.1 23.9 100 95.5 67.0-132 4.94 20 25.0 21.1 17.1 84.4 68.4 18.0-160 <u>J3</u> 20.8 20 Bromomethane 25.0 25.4 21.7 102 86.7 72.0-126 15.8 20 n-Butylbenzene 25.0 21.2 98.3 84.9 74.0-121 14.7 20 sec-Butylbenzene 24.6 25.0 24.9 99.7 85.8 75.0-122 15.0 20 tert-Butylbenzene 21.4 Carbon tetrachloride 25.0 22.9 18.7 91.6 74.9 63.0-122 20.0 20 102 91.9 79.0-121 10.9 20 Chlorobenzene 25.0 25.6 23.0 20 101 Chlorodibromomethane 25.0 25.2 23.8 95.2 75.0-125 5.58 <u>J3</u> 20 Chloroethane 25.0 20.6 15.3 82.5 61.3 47.0-152 29.6 20 Chloroform 25.0 22.2 19.5 88.9 78.1 72.0-121 13.0 Chloromethane 25.0 18.0 10.6 71.8 42.3 48.0-139 J3 J4 51.8 20 25.0 95.6 20 2-Chlorotoluene 23.9 21.0 84.0 74.0-122 13.0 25.0 23.7 94.8 83.2 79.0-120 20 4-Chlorotoluene 20.8 13.0 1,2-Dibromo-3-Chloropropane 25.0 24.0 23.5 95.9 93.8 64.0-127 2.19 20 77.0-123 4.97 20 1,2-Dibromoethane 25.0 25.3 24.1 101 96.2 Dibromomethane 25.0 25.0 24.0 99.8 96.1 78.0-120 3.83 20 80.0-120 20 1,2-Dichlorobenzene 25.0 24.9 22.6 99.8 90.5 9.78 25.0 24.6 21.8 98.6 87.3 72.0-123 12.1 20 1,3-Dichlorobenzene 20 1,4-Dichlorobenzene 25.0 23.6 21.3 94.3 85.2 77.0-120 10.2 25.0 22.1 18.8 88.4 75.3 70.0-126 16.0 20 1,1-Dichloroethane 1,2-Dichloroethane 25.0 21.4 20.0 85.7 79.9 67.0-126 6.90 20 25.0 22.6 18.4 90.5 73.7 64.0-129 <u>J3</u> 20.5 20 1,1-Dichloroethene cis-1,2-Dichloroethene 25.0 22.2 19.7 88.9 78.9 73.0-120 11.9 20 25.0 22.4 18.8 89.7 75.0 71.0-121 17.8 20 trans-1,2-Dichloroethene 20 1,2-Dichloropropane 25.0 23.4 21.3 93.5 85.1 75.0-125 9.38 1,1-Dichloropropene 25.0 22.7 19.2 90.6 76.7 71.0-129 16.7 20 20 1,3-Dichloropropane 25.0 24.5 23.4 98.1 93.8 80.0-121 4.55 25.0 24.4 22.2 97.5 88.9 79.0-123 9.17 20 cis-1,3-Dichloropropene 107 20 trans-1,3-Dichloropropene 25.0 26.7 24.9 99.6 74.0-127 6.86 20 25.0 23.0 18.5 91.9 74.1 60.0-125 <u>J3</u> 21.5 2,2-Dichloropropane Di-isopropyl ether 25.0 20.9 19.0 83.7 76.0 59.0-133 9.59 20 25.0 26.0 22.8 104 91.3 77.0-120 13.0 20 Ethylbenzene 25.0 28.2 23.4 113 93.6 64.0-131 18.7 20 Hexachloro-1,3-butadiene 21.3 99.3 85.2 75.0-120 15.3 20 Isopropylbenzene 25.0 24.8 21.8 101 87.1 74.0-126 15.2 20 p-Isopropyltoluene 25.0 25.4 2-Butanone (MEK) 125 140 136 112 109 37.0-158 3.06 20 25.0 19.5 17.4 78.1 69.6 66.0-121 20 Methylene Chloride 11.6 125 123 119 98.1 95.1 59.0-143 3.10 20 4-Methyl-2-pentanone (MIBK)

ACCOUNT:
GRI - Beaverton, OR

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

L967603

PROJECT:

5764-1195

SDG: DATE/TIME:

02/07/18 17:58

Reissued for Use

PAGE: 29 of 52

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-02,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	2
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	ا ا
Methyl tert-butyl ether	25.0	21.5	19.9	85.8	79.7	64.0-123			7.36	20	
Naphthalene	25.0	24.4	22.9	97.6	91.6	62.0-128			6.29	20	3
n-Propylbenzene	25.0	25.0	21.7	100	86.7	79.0-120			14.5	20	
Styrene	25.0	25.0	22.5	99.8	90.1	78.0-124			10.3	20	[2
1,1,1,2-Tetrachloroethane	25.0	25.6	23.4	102	93.8	75.0-122			8.88	20	
1,1,2,2-Tetrachloroethane	25.0	23.3	22.5	93.2	89.9	71.0-122			3.69	20	
Tetrachloroethene	25.0	26.4	23.3	106	93.1	70.0-127			12.6	20	5
Toluene	25.0	24.8	21.5	99.1	85.8	77.0-120			14.3	20	L
1,1,2-Trichlorotrifluoroethane	25.0	24.4	19.6	97.7	78.3	61.0-136		<u>J3</u>	22.1	20	6
1,2,3-Trichlorobenzene	25.0	26.5	23.9	106	95.6	61.0-133			10.4	20	
1,2,4-Trichlorobenzene	25.0	26.4	24.1	106	96.3	69.0-129			9.37	20	
1,1,1-Trichloroethane	25.0	23.2	19.7	92.6	78.6	68.0-122			16.4	20	7
1,1,2-Trichloroethane	25.0	25.1	23.7	101	94.7	78.0-120			5.97	20	
Trichloroethene	25.0	25.8	22.1	103	88.5	78.0-120			15.3	20	8
Trichlorofluoromethane	25.0	24.2	18.4	96.7	73.6	56.0-137		<u>J3</u>	27.1	20	
1,2,3-Trichloropropane	25.0	24.6	23.3	98.4	93.3	72.0-124			5.29	20	
1,2,3-Trimethylbenzene	25.0	24.1	21.5	96.4	86.2	75.0-120			11.2	20	9
1,2,4-Trimethylbenzene	25.0	23.9	21.5	95.5	86.0	75.0-120			10.5	20	
1,3,5-Trimethylbenzene	25.0	23.9	21.1	95.7	84.3	75.0-120			12.6	20	

64.0-133

77.0-120

80.0-120

76.0-123

80.0-120

47.0

11.9

20 20

J3 J4

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

14.0

68.1

90.5

102

101

87.6

96.9

56.0

90.8

101

87.9

97.2

LCS) R3284396-1 02/06/	8 13:57 • (LCSD) R3284396-2	02/06/18 14:17
------------------------	-----------------	--------------	----------------

25.0

75.0

22.6

76.7

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Dichlorodifluoromethane	25.0	25.9	25.1	104	100	49.0-155			3.34	20
(S) Toluene-d8				99.8	99.2	80.0-120				
(S) Dibromofluoromethane				93.6	91.9	76.0-123				
(S) 4-Bromofluorobenzene				107	107	80.0-120				

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: GRI - Beaverton, OR 5764-1195 L967603 02/07/18 17:58 30 of 52

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L967603-06

Method Blank (MB)						
(MB) R3284295-3 02/03/1	18 13:07					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Acetone	U		0.0100	0.0500		
Acrylonitrile	U		0.00179	0.0100		
Benzene	U		0.000270	0.00100		
Bromobenzene	U		0.000284	0.00100		
Bromodichloromethane	U		0.000254	0.00100		
Bromoform	U		0.000424	0.00100		
Bromomethane	U		0.00134	0.00500		
n-Butylbenzene	U		0.000258	0.00100		
sec-Butylbenzene	U		0.000201	0.00100		
tert-Butylbenzene	U		0.000206	0.00100		
Carbon tetrachloride	U		0.000328	0.00100		
Chlorobenzene	U		0.000212	0.00100		
Chlorodibromomethane	U		0.000373	0.00100		
Chloroethane	U		0.000946	0.00500		
Chloroform	U		0.000229	0.00500		
Chloromethane	U		0.000375	0.00250		
2-Chlorotoluene	U		0.000301	0.00100		
4-Chlorotoluene	U		0.000240	0.00100		
1,2-Dibromo-3-Chloropropane	U		0.00105	0.00500		
1,2-Dibromoethane	U		0.000343	0.00100		
Dibromomethane	U		0.000382	0.00100		
1,2-Dichlorobenzene	U		0.000305	0.00100		
1,3-Dichlorobenzene	U		0.000239	0.00100		
1,4-Dichlorobenzene	U		0.000226	0.00100		
Dichlorodifluoromethane	U		0.000713	0.00500		
1,1-Dichloroethane	U		0.000199	0.00100		
1,2-Dichloroethane	U		0.000265	0.00100		
1,1-Dichloroethene	U		0.000303	0.00100		
cis-1,2-Dichloroethene	U		0.000235	0.00100		
trans-1,2-Dichloroethene	U		0.000264	0.00100		
1,2-Dichloropropane	U		0.000358	0.00100		
1,1-Dichloropropene	U		0.000317	0.00100		
1,3-Dichloropropane	U		0.000207	0.00100		
cis-1,3-Dichloropropene	U		0.000262	0.00100		
trans-1,3-Dichloropropene	U		0.000267	0.00100		
2,2-Dichloropropane	U		0.000279	0.00100		
Di-isopropyl ether	U		0.000248	0.00100		
Ethylbenzene	U		0.000297	0.00100		
Hexachloro-1,3-butadiene	U		0.000342	0.00100		
Isopropylbenzene	U		0.000243	0.00100		
Document	No: J1-680-F	RGL-GRI-00001	-00		Revision: 1	Reissued for Use

SDG:

L967603

DATE/TIME:

02/07/18 17:58

PAGE:

31 of 52

PROJECT:

5764-1195

WG1069771

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-06

Method Blank (MB)

(S) 4-Bromofluorobenzene

102

(MB) R3284295-3 02/03/	18 13:07				-
	MB Result	MB Qualifier	MB MDL	MB RDL	Ē
Analyte	mg/kg		mg/kg	mg/kg	ľ
p-Isopropyltoluene	U		0.000204	0.00100	- L
2-Butanone (MEK)	U		0.00468	0.0100	1
Methylene Chloride	U		0.00100	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00188	0.0100	4
Methyl tert-butyl ether	U		0.000212	0.00100	
Naphthalene	U		0.00100	0.00500	1 -
n-Propylbenzene	U		0.000206	0.00100	
Styrene	U		0.000234	0.00100	L
1,1,1,2-Tetrachloroethane	U		0.000264	0.00100	6
1,1,2,2-Tetrachloroethane	U		0.000365	0.00100	
Tetrachloroethene	U		0.000276	0.00100	
Toluene	U		0.000434	0.00500	7
1,1,2-Trichlorotrifluoroethane	U		0.000365	0.00100	
1,2,3-Trichlorobenzene	U		0.000306	0.00100	8
1,2,4-Trichlorobenzene	U		0.000388	0.00100	
1,1,1-Trichloroethane	U		0.000286	0.00100	
1,1,2-Trichloroethane	U		0.000277	0.00100	9
Trichloroethene	U		0.000279	0.00100	L
Trichlorofluoromethane	U		0.000382	0.00500	
1,2,3-Trichloropropane	U		0.000741	0.00250	
1,2,3-Trimethylbenzene	U		0.000287	0.00100	
1,2,4-Trimethylbenzene	U		0.000211	0.00100	
1,3,5-Trimethylbenzene	U		0.000266	0.00100	
Vinyl chloride	U		0.000291	0.00100	
Xylenes, Total	U		0.000698	0.00300	
(S) Toluene-d8	102			80.0-120	
(S) Dibromofluoromethane	108			74.0-131	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

64.0-132

(LCS) R3284295-1 02/03	/18 12:04 • (LCS	D) R3284295	-2 02/03/18 12:	25						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.125	0.166	0.167	133	134	11.0-160			0.657	23
Acrylonitrile	0.125	0.131	0.129	105	104	61.0-143			1.14	20
Benzene	0.0250	0.0268	0.0265	107	106	71.0-124			0.993	20
Bromobenzene	0.0250	0.0284	0.0281	114	112	78.0-120			1.09	20
Bromodichloromethane	0.0250	0.0279	0.0269	112	107	75.0-120			3.77	20

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L967603
 02/07/18 17:58
 32 of 52

ONE LAB. NATIONWIDE.

PAGE:

33 of 52

Volatile Organic Compounds (GC/MS) by Method 8260B

	0 40 0 4 //	D) D000 46	0 00/00/45 :=	0.5							
(LCS) R3284295-1 02/03/18	8 12:04 • (LCS) Spike Amount		 -2 02/03/18 12: LCSD Result 	25 LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	LCS Qualifier	LC3D Qualifier	%	%	
Bromoform	0.0250	0.0264	0.0260	106	104	65.0-133			1.62	20	
Bromomethane	0.0250	0.0287	0.0285	115	114	26.0-160			0.678	20	
n-Butylbenzene	0.0250	0.0288	0.0282	115	113	73.0-126			2.00	20	
sec-Butylbenzene	0.0250	0.0288	0.0288	115	115	75.0-121			0.257	20	
ert-Butylbenzene	0.0250	0.0280	0.0280	112	112	74.0-122			0.131	20	
Carbon tetrachloride	0.0250	0.0248	0.0243	99.2	97.1	66.0-123			2.21	20	
Chlorobenzene	0.0250	0.0275	0.0262	110	105	79.0-121			4.80	20	
Chlorodibromomethane	0.0250	0.0269	0.0262	108	105	74.0-128			2.79	20	
Chloroethane	0.0250	0.0290	0.0278	116	111	51.0-147			4.38	20	
Chloroform	0.0250	0.0281	0.0279	112	112	73.0-123			0.545	20	
Chloromethane	0.0250	0.0228	0.0217	91.4	86.6	51.0-138			5.37	20	
2-Chlorotoluene	0.0250	0.0278	0.0277	111	111	72.0-124			0.259	20	
4-Chlorotoluene	0.0250	0.0284	0.0279	114	112	78.0-120			1.66	20	
	0.0250	0.0229	0.0275	91.8	90.3	65.0-126			1.66	20	
I,2-Dibromoethane	0.0250	0.0282	0.0271	113	108	78.0-122			4.18	20	
Dibromomethane	0.0250	0.0261	0.0252	104	101	79.0-120			3.53	20	
	0.0250	0.0263	0.0257	105	103	80.0-120			2.20	20	
,3-Dichlorobenzene	0.0250	0.0203	0.0257	109	107	72.0-123			2.16	20	
	0.0250	0.0273	0.0267	107	104	77.0-120			2.28	20	
	0.0250	0.0259	0.0257	104	103	49.0-155			0.884	20	
,1-Dichloroethane	0.0250	0.0259	0.0257	104	105	70.0-133			1.22	20	
,2-Dichloroethane	0.0250	0.0203	0.0202	124	125	69.0-128			0.432	20	
,1-Dichloroethene	0.0250	0.0311	0.0312	115	115	63.0-128			0.432	20	
	0.0250	0.0268	0.0260	105	104	74.0-123			1.14	20	
	0.0250	0.0263	0.0250	101	104	72.0-123			0.0700	20	
		0.0253	0.0253	108		75.0-126			1.98	20	
,2-Dichloropropane	0.0250				106						
	0.0250	0.0267	0.0270	107	108	72.0-130			1.06	20	
,3-Dichloropropane	0.0250	0.0304	0.0288	121	115	80.0-121			5.41	20	
	0.0250	0.0304	0.0291	122	116	80.0-125	1.4		4.45	20	
	0.0250	0.0327	0.0313	131	125	75.0-129	<u>J4</u>		4.64	20	
	0.0250	0.0249	0.0240	99.6	96.0	60.0-129			3.74	20	
Di-isopropyl ether	0.0250	0.0251	0.0249	100	99.7	62.0-133			0.688	20	
thylbenzene	0.0250	0.0260	0.0251	104	100	77.0-120			3.44	20	
Hexachloro-1,3-butadiene	0.0250	0.0240	0.0236	96.1	94.4	68.0-128			1.75	20	
sopropylbenzene	0.0250	0.0275	0.0278	110	111	75.0-120			0.743	20	
	0.0250	0.0280	0.0276	112	110	74.0-125			1.55	20	
	0.125	0.161	0.160	129	128	37.0-159			0.472	20	
	0.0250	0.0243	0.0243	97.3	97.3	67.0-123			0.0756	20	
	0.125	0.127	0.123	102	98.5	60.0-144			3.39	20	
Methyl tert-butyl ether	0.0250	0.0273 GL-GRI-0000 1	0.0269	109	108	66.0-125 Revision			1.39	20	Reissued for Use

ACCOUNT: PROJECT: DATE/TIME: SDG: GRI - Beaverton, OR 5764-1195 L967603 02/07/18 17:58

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284295-1 02/03/18 12:04 • (LCSD) R3284295-2 02/03/18 12:25

(200) 11020 1200 1 02/00/	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Naphthalene	0.0250	0.0243	0.0239	97.2	95.8	64.0-125			1.49	20
n-Propylbenzene	0.0250	0.0284	0.0275	113	110	78.0-120			3.15	20
Styrene	0.0250	0.0285	0.0282	114	113	78.0-124			1.11	20
1,1,1,2-Tetrachloroethane	0.0250	0.0233	0.0223	93.1	89.3	74.0-124			4.16	20
1,1,2,2-Tetrachloroethane	0.0250	0.0281	0.0281	112	112	73.0-120			0.103	20
Tetrachloroethene	0.0250	0.0256	0.0244	102	97.7	70.0-127			4.58	20
Toluene	0.0250	0.0258	0.0247	103	99.0	77.0-120			4.19	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0263	0.0257	105	103	64.0-135			2.48	20
1,2,3-Trichlorobenzene	0.0250	0.0238	0.0231	95.0	92.3	68.0-126			2.92	20
1,2,4-Trichlorobenzene	0.0250	0.0242	0.0235	96.8	94.0	70.0-127			2.97	20
1,1,1-Trichloroethane	0.0250	0.0273	0.0271	109	108	69.0-125			0.754	20
1,1,2-Trichloroethane	0.0250	0.0276	0.0268	111	107	78.0-120			3.09	20
Trichloroethene	0.0250	0.0253	0.0247	101	98.6	79.0-120			2.46	20
Trichlorofluoromethane	0.0250	0.0272	0.0270	109	108	59.0-136			0.791	20
1,2,3-Trichloropropane	0.0250	0.0264	0.0265	106	106	73.0-124			0.497	20
1,2,3-Trimethylbenzene	0.0250	0.0277	0.0268	111	107	76.0-120			3.35	20
1,2,4-Trimethylbenzene	0.0250	0.0272	0.0273	109	109	75.0-120			0.253	20
1,3,5-Trimethylbenzene	0.0250	0.0277	0.0277	111	111	75.0-120			0.0525	20
Vinyl chloride	0.0250	0.0270	0.0264	108	106	63.0-134			2.29	20
Xylenes, Total	0.0750	0.0769	0.0736	103	98.1	77.0-120			4.39	20
(S) Toluene-d8				101	98.4	80.0-120				
(S) Dibromofluoromethane				98.8	101	74.0-131				

64.0-132

103

105

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L967603-01,03

Method Blank (MB)

Analyte mg/kg Acetone U Acrylonitrile U Benzene U Bromobenzene U Bromodichloromethane U Bromomethane U Bromomethane U Bromomethane U Bromomethane U Carbon tetrachloride U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chlorodibromomethane U Chloroform U Chloroform U Chloromethane U Chlorotoluene U 4-Chlorotoluene U 4-Chlorotoluene	Result MB Qualifier MB MDI mg/kg /kg 0.0100 0.00179	MB RDL mg/kg 0.0500	
Acetone U Acrylonitrile U Benzene U Bromobenzene U Bromodichloromethane U Bromomethane U Bromomethane U Bromomethane U Bromomethane U Bromomethane U Carbon tetrachloride U Chlorobenzene U Chloroform U Chloroform U Chloroform U Chloromethane U C-Chlorotoluene U	0.0100		
Acrylonitrile U Benzene U Bromobenzene U Bromodichloromethane U Bromodichloromethane U Bromomethane U Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorodibromomethane U Chlorodform U Chloroform U Chloromethane U 2-Chlorotoluene U		0.0500	
Benzene U Bromobenzene U Bromodichloromethane U Bromoform U Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorodibromomethane U Chloroform U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00179	0.0500	
Bromobenzene U Bromodichloromethane U Bromoform U Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorodibromomethane U Chloroform U Chloromethane U 2-Chlorotoluene U		0.0100	
Bromodichloromethane U Bromoform U Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorodibromomethane U Chloroform U Chloromethane U 2-Chlorotoluene U U	0.0002	0.00100	
Bromoform U Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00028	4 0.00100	
Bromomethane U n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.0002	4 0.00100	
n-Butylbenzene U sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorodibromomethane U Chloroform U Chloromethane U Cchloromethane U Cchloromethane U	0.00042	4 0.00100	
sec-Butylbenzene U tert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00134	0.00500	
tert-Butylbenzene U Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.0002	8 0.00100	
Carbon tetrachloride U Chlorobenzene U Chlorodibromomethane U Chloroethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00020	1 0.00100	
Chlorobenzene U Chlorodibromomethane U Chloroethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00020	6 0.00100	
Chlorodibromomethane U Chloroethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00032	8 0.00100	
Chloroethane U Chloroform U Chloromethane U 2-Chlorotoluene U	0.00021	2 0.00100	
Chloroform U Chloromethane U 2-Chlorotoluene U	0.0003	3 0.00100	
Chloromethane U 2-Chlorotoluene U	0.00094	6 0.00500	
2-Chlorotoluene U	0.00022	9 0.00500	
	0.0003	5 0.00250	
4-Chlorotoluene U	0.00030	1 0.00100	
	0.00024	0.00100	
1,2-Dibromo-3-Chloropropane U	0.00105	0.00500	
1,2-Dibromoethane U	0.00034	3 0.00100	
Dibromomethane U	0.00038	2 0.00100	
1,2-Dichlorobenzene U	0.00030	5 0.00100	
1,3-Dichlorobenzene U	0.00023	9 0.00100	
1,4-Dichlorobenzene U	0.00022	6 0.00100	
Dichlorodifluoromethane U	0.00071	0.00500	
1,1-Dichloroethane U	0.00019	0.00100	
1,2-Dichloroethane U	0.00026	5 0.00100	
1,1-Dichloroethene U	0.00030	3 0.00100	
cis-1,2-Dichloroethene U	0.00023	5 0.00100	
trans-1,2-Dichloroethene U	0.00026	4 0.00100	
1,2-Dichloropropane U	0.0003	8 0.00100	
1,1-Dichloropropene U	0.00031	7 0.00100	
1,3-Dichloropropane U	0.00020	7 0.00100	
cis-1,3-Dichloropropene U	0.00026	2 0.00100	
trans-1,3-Dichloropropene U	0.00026	7 0.00100	
2,2-Dichloropropane U	0.00027	9 0.00100	
Di-isopropyl ether U	0.00024		
Ethylbenzene U	0.00029	7 0.00100	
Hexachloro-1,3-butadiene U			
Isopropylbenzene U	0.00034	2 0.00100	

SDG:

L967603

DATE/TIME:

02/07/18 17:58

PAGE:

35 of 52

PROJECT:

5764-1195

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-01,03

Method Blank (MB)

(S) 4-Bromofluorobenzene

103

(MB) R3284470-3 02/06/	18 11:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
p-Isopropyltoluene	U		0.000204	0.00100	
2-Butanone (MEK)	U		0.00468	0.0100	
Methylene Chloride	U		0.00100	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00188	0.0100	
Methyl tert-butyl ether	U		0.000212	0.00100	
Naphthalene	U		0.00100	0.00500	
n-Propylbenzene	U		0.000206	0.00100	
Styrene	U		0.000234	0.00100	
1,1,1,2-Tetrachloroethane	U		0.000264	0.00100	
1,1,2,2-Tetrachloroethane	U		0.000365	0.00100	
Tetrachloroethene	U		0.000276	0.00100	
Toluene	U		0.000434	0.00500	
1,1,2-Trichlorotrifluoroethane	U		0.000365	0.00100	
1,2,3-Trichlorobenzene	U		0.000306	0.00100	
1,2,4-Trichlorobenzene	U		0.000388	0.00100	
1,1,1-Trichloroethane	U		0.000286	0.00100	
1,1,2-Trichloroethane	U		0.000277	0.00100	
Trichloroethene	U		0.000279	0.00100	
Trichlorofluoromethane	U		0.000382	0.00500	
1,2,3-Trichloropropane	U		0.000741	0.00250	
1,2,3-Trimethylbenzene	U		0.000287	0.00100	
1,2,4-Trimethylbenzene	U		0.000211	0.00100	
1,3,5-Trimethylbenzene	U		0.000266	0.00100	
Vinyl chloride	U		0.000291	0.00100	
Xylenes, Total	U		0.000698	0.00300	
(S) Toluene-d8	103			80.0-120	
(S) Dibromofluoromethane	104			74.0-131	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

64.0-132

(LCS) R3284470-1 02/06/18 10:06 • (LCSD) R3284470-2 02/06/18 10:27											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.125	0.157	0.134	126	107	11.0-160			15.9	23	
Acrylonitrile	0.125	0.125	0.115	99.9	92.0	61.0-143			8.23	20	
Benzene	0.0250	0.0257	0.0249	103	99.7	71.0-124			2.85	20	
Bromobenzene	0.0250	0.0253	0.0257	101	103	78.0-120			1.38	20	
Bromodichloromethane	0.0250	0.0253	0.0252	101	101	75.0-120			0.367	20	

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L967603
 02/07/18 17:58
 36 of 52

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-01,03

Laboratory Control	Sample (L	CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)						1
(LCS) R3284470-1 02/06/	18 10:06 • (LCS	D) R3284470-	2 02/06/18 10:	27								_ [
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		2
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Bromoform	0.0250	0.0236	0.0229	94.6	91.7	65.0-133			3.09	20		
Bromomethane	0.0250	0.0284	0.0275	114	110	26.0-160			3.17	20		3
n-Butylbenzene	0.0250	0.0272	0.0271	109	109	73.0-126			0.261	20		L
sec-Butylbenzene	0.0250	0.0275	0.0279	110	111	75.0-121			1.45	20		4
tert-Butylbenzene	0.0250	0.0267	0.0272	107	109	74.0-122			1.61	20		
Carbon tetrachloride	0.0250	0.0248	0.0239	99.4	95.4	66.0-123			4.06	20		L
Chlorobenzene	0.0250	0.0240	0.0245	95.9	98.0	79.0-121			2.18	20		
Chlorodibromomethane	0.0250	0.0241	0.0233	96.3	93.4	74.0-128			3.07	20		
Chloroethane	0.0250	0.0287	0.0277	115	111	51.0-147			3.41	20		
Chloroform	0.0250	0.0276	0.0265	111	106	73.0-123			4.28	20		
Chloromethane	0.0250	0.0227	0.0219	90.8	87.8	51.0-138			3.36	20		
2-Chlorotoluene	0.0250	0.0263	0.0268	105	107	72.0-124			1.81	20		7
4-Chlorotoluene	0.0250	0.0256	0.0260	102	104	78.0-120			1.79	20		
1,2-Dibromo-3-Chloropropane	0.0250	0.0219	0.0219	87.7	87.4	65.0-126			0.238	20		
1,2-Dibromoethane	0.0250	0.0232	0.0233	92.8	93.2	78.0-122			0.379	20		
Dibromomethane	0.0250	0.0236	0.0233	94.5	93.2	79.0-120			1.35	20		
1,2-Dichlorobenzene	0.0250	0.0250	0.0251	100	101	80.0-120			0.423	20		Ś
1,3-Dichlorobenzene	0.0250	0.0258	0.0258	103	103	72.0-123			0.134	20		
1,4-Dichlorobenzene	0.0250	0.0247	0.0246	98.8	98.2	77.0-120			0.603	20		
Dichlorodifluoromethane	0.0250	0.0259	0.0253	104	101	49.0-155			2.57	20		
1,1-Dichloroethane	0.0250	0.0260	0.0254	104	101	70.0-128			2.39	20		
1,2-Dichloroethane	0.0250	0.0282	0.0272	113	109	69.0-128			3.83	20		
1,1-Dichloroethene	0.0250	0.0289	0.0279	116	112	63.0-131			3.35	20		
cis-1,2-Dichloroethene	0.0250	0.0262	0.0256	105	102	74.0-123			2.57	20		
trans-1,2-Dichloroethene	0.0250	0.0256	0.0252	102	101	72.0-122			1.60	20		
1,2-Dichloropropane	0.0250	0.0251	0.0247	100	98.7	75.0-126			1.62	20		
1,1-Dichloropropene	0.0250	0.0261	0.0252	104	101	72.0-130			3.38	20		
1,3-Dichloropropane	0.0250	0.0251	0.0249	101	99.6	80.0-121			1.02	20		
cis-1,3-Dichloropropene	0.0250	0.0255	0.0259	102	104	80.0-125			1.56	20		
trans-1,3-Dichloropropene	0.0250	0.0265	0.0260	106	104	75.0-129			1.82	20		
2,2-Dichloropropane	0.0250	0.0254	0.0242	102	96.7	60.0-129			4.92	20		
Di-isopropyl ether	0.0250	0.0246	0.0236	98.5	94.2	62.0-133			4.41	20		
Ethylbenzene	0.0250	0.0234	0.0241	93.4	96.3	77.0-120			3.05	20		
Hexachloro-1,3-butadiene	0.0250	0.0242	0.0236	96.9	94.6	68.0-128			2.37	20		
Isopropylbenzene	0.0250	0.0267	0.0267	107	107	75.0-120			0.0243	20		
p-Isopropyltoluene	0.0250	0.0270	0.0268	108	107	74.0-125			0.431	20		
2-Butanone (MEK)	0.125	0.140	0.126	112	101	37.0-159			10.4	20		
Methylene Chloride	0.0250	0.0241	0.0236	96.4	94.3	67.0-133			2.13	20		
4-Methyl-2-pentanone (MIBK)	0.0230	0.0241	0.0230	91.4	86.9	60.0-144			5.04	20		
Methyl tert-butyl ether	0.0250	0.0266	0.0254	106	101	66.0-125			4.80	20		
	No: J1-680-R			100		Revision	: 1		1.00		Reissued for Use	

ACCOUNT: PROJECT: DATE/TIME: SDG: GRI - Beaverton, OR 5764-1195 L967603 02/07/18 17:58

PAGE: 37 of 52

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L967603-01,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

/I CC) D2204470 1	02/06/10 10:06	(LCSD) R3284470-2	02/06/10 10:27
TLUST R328447U-1	- UZ/Ub/18 1U:Ub •	1LUSD) R3Z8447U-Z	UZ/Ub/18 1U:Z/

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Naphthalene	0.0250	0.0245	0.0238	98.0	95.2	64.0-125			2.87	20	
n-Propylbenzene	0.0250	0.0264	0.0264	106	106	78.0-120			0.0904	20	
Styrene	0.0250	0.0256	0.0253	103	101	78.0-124			1.45	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0223	0.0228	89.4	91.1	74.0-124			1.92	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0256	0.0252	103	101	73.0-120			1.64	20	
Tetrachloroethene	0.0250	0.0229	0.0235	91.4	94.0	70.0-127			2.82	20	
Toluene	0.0250	0.0227	0.0232	90.9	92.8	77.0-120			2.04	20	
1,1,2-Trichlorotrifluoroethane	0.0250	0.0284	0.0265	113	106	64.0-135			6.74	20	
1,2,3-Trichlorobenzene	0.0250	0.0242	0.0236	96.8	94.5	68.0-126			2.40	20	
1,2,4-Trichlorobenzene	0.0250	0.0245	0.0243	97.9	97.3	70.0-127			0.529	20	
1,1,1-Trichloroethane	0.0250	0.0271	0.0266	109	106	69.0-125			2.09	20	
1,1,2-Trichloroethane	0.0250	0.0239	0.0235	95.5	94.0	78.0-120			1.52	20	
Trichloroethene	0.0250	0.0244	0.0243	97.4	97.3	79.0-120			0.133	20	
Trichlorofluoromethane	0.0250	0.0283	0.0272	113	109	59.0-136			3.75	20	
1,2,3-Trichloropropane	0.0250	0.0238	0.0233	95.2	93.4	73.0-124			1.88	20	
1,2,3-Trimethylbenzene	0.0250	0.0260	0.0261	104	105	76.0-120			0.687	20	
1,2,4-Trimethylbenzene	0.0250	0.0259	0.0259	104	104	75.0-120			0.211	20	
1,3,5-Trimethylbenzene	0.0250	0.0268	0.0271	107	108	75.0-120			0.977	20	
Vinyl chloride	0.0250	0.0265	0.0255	106	102	63.0-134			3.76	20	
Xylenes, Total	0.0750	0.0708	0.0718	94.4	95.7	77.0-120			1.40	20	
(S) Toluene-d8				98.8	101	80.0-120					
(S) Dibromofluoromethane				107	103	74.0-131					

64.0-132

100

101

PROJECT:

5764-1195

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L967603-02,04,05

Method Blank (MB)

(MB) R3284340-1 02/05/18	3 15:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		33.3	100
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	78.6			31.0-160

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284340-2 02/05/	'18 15:33 • (LCS	D) R3284340-	3 02/05/18 15:	49						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	792	778	106	104	50.0-150			1.72	20
Residual Range Organics (RRO)	750	642	660	85.6	88.0	50.0-150			2.80	20
(S) o-Terphenyl				98.8	96.4	31.0-160				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L967603-01,03,06

Method Blank (MB)

(MB) R3284028-1 02/05/18	3 11:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	85.2			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284028-2 02/05/18 12:05 • (LCSD) R3284028-3 02/05/18 12:19										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Diesel Range Organics (DRO)	30.0	22.0	28.4	73.4	94.7	50.0-150		<u>J3</u>	25.4	20
Residual Range Organics (RRO)	30.0	23.7	30.6	78.9	102	50.0-150		<u>J3</u>	25.4	20
(S) o-Terphenyl				72.5	90.9	18.0-148				

(OS) L967646-02	02/05/18 14:50 •	(MS) R3284028-4	02/05/18 15:04 •	(MSD) R3284028-5	02/05/18 15:19

(OS) L96/646-02 02/05/18	3 14:50 • (MS) R3284028-4 02/05/18 15:04 • (MSD) R3284028-5 02/05/18 15:19												9
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	;
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Diesel Range Organics (DRO)	30.0	ND	29.3	27.2	95.4	88.5	1	50.0-150			7.36	20	
Residual Range Organics (RRO)	30.0	ND	29.9	28.3	92.6	87.2	1	50.0-150			5.52	20	
(S) o-Terphenyl					85.5	73.2		18.0-148					

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L967603-01,03,06

Method Blank (MB)

(MB) R3283931-3 02/04/18 02:41								
	MB Result	MB Qualifier	MB MDL	MB RDL		2		
Analyte	mg/kg		mg/kg	mg/kg		² T		
Anthracene	U		0.000600	0.00600		<u> </u>		
Acenaphthene	U		0.000600	0.00600		3 5		
Acenaphthylene	U		0.000600	0.00600		Ľ		
Benzo(a)anthracene	U		0.000600	0.00600		4		
Benzo(a)pyrene	U		0.000600	0.00600		1		
Benzo(b)fluoranthene	U		0.000600	0.00600		<u> </u>		
Benzo(g,h,i)perylene	U		0.000600	0.00600		5		
Benzo(k)fluoranthene	U		0.000600	0.00600		Ľ		
Chrysene	U		0.000600	0.00600		6		
Dibenz(a,h)anthracene	U		0.000600	0.00600		6		
Fluoranthene	U		0.000600	0.00600				
Fluorene	U		0.000600	0.00600		7		
Indeno(1,2,3-cd)pyrene	U		0.000600	0.00600				
Naphthalene	U		0.00200	0.0200		8		
Phenanthrene	U		0.000600	0.00600		1		
Pyrene	U		0.000600	0.00600				
1-Methylnaphthalene	U		0.00200	0.0200		9 5		
2-Methylnaphthalene	U		0.00200	0.0200		Ľ		
2-Chloronaphthalene	U		0.00200	0.0200				
(S) Nitrobenzene-d5	73.6			14.0-149				
(S) 2-Fluorobiphenyl	73.0			34.0-125				
(S) p-Terphenyl-d14	71.1			23.0-120				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

GRI - Beaverton, OR

LCS) R3283931-1 02/04/18 01:57 • (LCSD) R3283931-2 02/04/18 02:19											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Anthracene	0.0800	0.0802	0.0812	100	101	50.0-125			1.26	20	
Acenaphthene	0.0800	0.0684	0.0711	85.6	88.9	52.0-120			3.87	20	
Acenaphthylene	0.0800	0.0688	0.0719	86.0	89.9	51.0-120			4.47	20	
Benzo(a)anthracene	0.0800	0.0669	0.0680	83.6	84.9	46.0-121			1.62	20	
Benzo(a)pyrene	0.0800	0.0706	0.0716	88.3	89.5	42.0-121			1.34	20	
Benzo(b)fluoranthene	0.0800	0.0670	0.0681	83.8	85.1	42.0-123			1.57	20	
Benzo(g,h,i)perylene	0.0800	0.0755	0.0743	94.4	92.9	43.0-128			1.58	20	
Benzo(k)fluoranthene	0.0800	0.0739	0.0732	92.3	91.5	45.0-128			0.938	20	
Chrysene	0.0800	0.0724	0.0740	90.5	92.5	48.0-127			2.11	20	
Dibenz(a,h)anthracene	0.0800	0.0735	0.0732	91.9	91.5	43.0-132			0.382	20	
Fluoranthene	0.0800	0.0763	0.0759	95.4	94.9	49.0-129			0.510	20	

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L967603

02/07/18 17:58

41 of 52

5764-1195

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L967603-01.03.06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) R3283931-1	02/04/18 01:57 •	(LCSD) R3283931-2	02/04/18 02:19

GRI - Beaverton, OR

. ,	,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Fluorene	0.0800	0.0658	0.0680	82.2	85.0	50.0-120			3.35	20	
Indeno(1,2,3-cd)pyrene	0.0800	0.0743	0.0739	92.8	92.4	44.0-131			0.505	20	
Naphthalene	0.0800	0.0655	0.0681	81.9	85.2	50.0-120			3.89	20	
Phenanthrene	0.0800	0.0700	0.0688	87.5	86.0	48.0-120			1.76	20	
Pyrene	0.0800	0.0721	0.0709	90.2	88.7	48.0-135			1.71	20	
1-Methylnaphthalene	0.0800	0.0752	0.0780	94.0	97.5	52.0-122			3.57	20	
2-Methylnaphthalene	0.0800	0.0705	0.0730	88.2	91.3	52.0-120			3.47	20	
2-Chloronaphthalene	0.0800	0.0679	0.0701	84.9	87.6	50.0-120			3.06	20	
(S) Nitrobenzene-d5				83.7	83.6	14.0-149					
(S) 2-Fluorobiphenyl				80.5	80.6	34.0-125					
(S) p-Terphenyl-d14				81.2	79.0	23.0-120					

L967387-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0800	ND	0.0639	0.0670	79.9	83.7	1	20.0-136			4.67	24
Acenaphthene	0.0800	ND	0.0556	0.0634	69.5	79.2	1	29.0-124			13.0	20
Acenaphthylene	0.0800	ND	0.0585	0.0660	73.2	82.6	1	35.0-120			12.0	20
Benzo(a)anthracene	0.0800	ND	0.0557	0.0625	69.6	78.2	1	13.0-132			11.6	27
Benzo(a)pyrene	0.0800	ND	0.0560	0.0635	70.0	79.3	1	14.0-138			12.5	27
Benzo(b)fluoranthene	0.0800	ND	0.0501	0.0572	62.7	71.5	1	10.0-129			13.2	31
Benzo(g,h,i)perylene	0.0800	ND	0.0566	0.0626	69.6	77.0	1	10.0-133			9.99	30
Benzo(k)fluoranthene	0.0800	ND	0.0574	0.0645	71.8	80.6	1	15.0-131			11.6	27
Chrysene	0.0800	ND	0.0592	0.0665	74.0	83.2	1	15.0-137			11.7	25
Dibenz(a,h)anthracene	0.0800	ND	0.0594	0.0639	74.3	79.9	1	15.0-132			7.25	27
Fluoranthene	0.0800	ND	0.0568	0.0621	71.0	77.6	1	13.0-139			9.01	28
Fluorene	0.0800	ND	0.0529	0.0597	66.1	74.6	1	27.0-122			12.1	22
ndeno(1,2,3-cd)pyrene	0.0800	ND	0.0574	0.0623	71.8	77.9	1	11.0-133			8.18	29
Naphthalene	0.0800	ND	0.0568	0.0634	71.0	79.3	1	18.0-136			11.0	21
Phenanthrene	0.0800	ND	0.0531	0.0609	66.4	76.1	1	15.0-133			13.7	25
Pyrene	0.0800	ND	0.0557	0.0636	67.8	77.8	1	11.0-146			13.3	29
-Methylnaphthalene	0.0800	ND	0.0638	0.0661	79.7	82.6	1	24.0-137			3.49	22
2-Methylnaphthalene	0.0800	ND	0.0602	0.0621	75.3	77.6	1	23.0-136			3.01	22
?-Chloronaphthalene	0.0800	ND	0.0609	0.0632	76.1	78.9	1	36.0-120			3.71	20
(S) Nitrobenzene-d5					68.7	77.6		14.0-149				
(S) 2-Fluorobiphenyl					69.9	71.5		34.0-125				
(S) p-Terphenyl-d14					64.1	70.4		23.0-120				

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L967603

02/07/18 17:58

5764-1195

3

<u>г</u>

42 of 52

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L967603-02,04,05

Method Blank (MB)

(MB) R3284224-3 02/05/18 03:01							
	MB Result	MB Qualifier	MB MDL	MB RDL		2	
Analyte	ug/l		ug/l	ug/l		² T	
Anthracene	U		0.0140	0.0500			
Acenaphthene	U		0.0100	0.0500		³S	
Acenaphthylene	U		0.0120	0.0500		L	
Benzo(a)anthracene	U		0.00410	0.0500		4	
Benzo(a)pyrene	U		0.0116	0.0500		⁴ C	
Benzo(b)fluoranthene	0.00299	<u>J</u>	0.00212	0.0500		<u> </u>	
Benzo(g,h,i)perylene	0.00295	<u>J</u>	0.00227	0.0500		⁵ S	
Benzo(k)fluoranthene	U		0.0136	0.0500		Ľ	
Chrysene	U		0.0108	0.0500		6	
Dibenz(a,h)anthracene	U		0.00396	0.0500		_e C	
Fluoranthene	U		0.0157	0.0500			
Fluorene	U		0.00850	0.0500		⁷ G	
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500			
Naphthalene	0.0206	<u>J</u>	0.0198	0.250		8	
Phenanthrene	U		0.00820	0.0500		⁸ A	
Pyrene	U		0.0117	0.0500		<u> </u>	
1-Methylnaphthalene	U		0.00821	0.250		⁹ S	
2-Methylnaphthalene	U		0.00902	0.250			
2-Chloronaphthalene	U		0.00647	0.250			
(S) Nitrobenzene-d5	91.9			31.0-160			
(S) 2-Fluorobiphenyl	120			48.0-148			
(S) p-Terphenyl-d14	107			37.0-146			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284224-1 02/05/18 02:17 • (LCSD) R3284224-2 02/05/18 02:39											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	2.31	2.43	116	121	64.0-142			4.93	20	
Acenaphthene	2.00	2.08	2.16	104	108	66.0-132			3.86	20	
Acenaphthylene	2.00	2.09	2.19	105	109	65.0-132			4.48	20	
Benzo(a)anthracene	2.00	1.95	2.05	97.7	102	59.0-134			4.67	20	
Benzo(a)pyrene	2.00	2.18	2.28	109	114	61.0-145			4.55	20	
Benzo(b)fluoranthene	2.00	2.02	2.11	101	106	57.0-136			4.71	20	
Benzo(g,h,i)perylene	2.00	2.24	2.35	112	118	54.0-140			4.73	20	
Benzo(k)fluoranthene	2.00	2.25	2.36	112	118	57.0-141			5.01	20	
Chrysene	2.00	2.18	2.30	109	115	63.0-140			5.26	20	
Dibenz(a,h)anthracene	2.00	2.23	2.34	111	117	49.0-141			4.73	20	
Fluoranthene	2.00	2.42	2.54	121	127	65.0-143			4.77	20	

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

GRI - Beaverton, OR

5764-1195

L967603

02/07/18 17:58

43 of 52

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L967603-02,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3284224-1 02/05/18 02:17 • (LCSD) R3284224-2 (02/05/18 02:39
---	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Fluorene	2.00	2.11	2.22	105	111	64.0-129			5.34	20
Indeno(1,2,3-cd)pyrene	2.00	2.23	2.34	111	117	53.0-141			4.83	20
Naphthalene	2.00	2.15	2.24	108	112	68.0-129			3.66	20
Phenanthrene	2.00	1.99	2.08	99.3	104	62.0-132			4.50	20
Pyrene	2.00	1.96	2.05	98.1	102	58.0-156			4.40	20
1-Methylnaphthalene	2.00	2.37	2.45	119	123	68.0-137			3.27	20
2-Methylnaphthalene	2.00	2.29	2.36	114	118	68.0-134			3.26	20
2-Chloronaphthalene	2.00	2.24	2.35	112	118	65.0-129			4.99	20
(S) Nitrobenzene-d5				89.4	99.9	31.0-160				
(S) 2-Fluorobiphenyl				119	126	48.0-148				
(S) p-Terphenyl-d14				108	116	37.0-146				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

2___

Ss

Cn

Sr

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].	I.
MDL	Method Detection Limit.	
MDL (dry)	Method Detection Limit.	L
RDL	Reported Detection Limit.	Γ
RDL (dry)	Reported Detection Limit.	
Rec.	Recovery.	L
RPD	Relative Percent Difference.	
SDG	Sample Delivery Group.	L
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.	
U	Not detected at the Reporting Limit (or MDL where applicable).	Ī
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.	
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.	
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.	Ī
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.	
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.	
	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"	

	or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the magning of any data qualifiers used in the report.

	be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.

(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect

		•								
Sample Chain of Custody (Sc)	date of collect chain of custo	tion, the persedy also docu	on collect ments all	ting the	samples, and the contract of t	es were initially cone analyses that mmercial shipper oratory for analys	the laborator rs) that have h	y is requeste	d to perform.	This

Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
	each sample will provide the name and method number for the analysis reported.

Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
	amos of proparation analysis.

Description

Result

	and the second s
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG:

L967603

ACCREDITATIONS & LOCATIONS

State Accreditations

Otato / tool ountainorio	
Alabama	40660
Alaska	UST-080
Arizona	AZ0612
Arkansas	88-0469
California	01157CA
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹	90010
Kentucky ²	16
Louisiana	Al30792
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086
Nebraska	NE-OS-15-05

Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ²	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	221
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-07-TX
Texas ⁵	LAB0152
Utah	6157585858
Vermont	VT2006
Virginia	109
Washington	C1915
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC	100789
DOD	1461.01
USDA	S-67674

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1

Reissued for Use

PROJECT: 5764-1195 SDG: L967603 DATE/TIME: 02/07/18 17:58

PAGE: 46 of 52

¹Cp

To be with the second s			Billing Information:							Analysis		Chain of Custo	dy Page 1 of L				
GRI - Beaverton, OR			Patty Norgaard										200	ma.	CCC		
9750 SW Nimbus Avenue Beaverton, OR 97008			9750 SW Beavert	Chk								LAID 5	COL				
Report to: Nora Utevsky			Email To:	i.com				es	H			12065 Lebanos & Mount Juliet, TN	37122				
Project S764-	-1195			City/State Coos Bay / OR				res	AeOH	NoPr	/Med			Phone: 615-758- Phone: 800-767- Fax: 615-758-585	5859		
Phone: 503-641-3478		Client Project # 5764 — 1195			Lab Project # GRIBOR-5764			6ozClr-NoPres	4/Syr/h	PAHs 16ozClr-NoPres	:04/Syr			F16			
N. Utensky	Site/Facility IC	Site/Facility ID #				1	Metals 16ozClr-NoPres	644	IaHS0	AHS 1	/NaHS			Acctnum: GF	RIBOR		
Collected by (signature):	 	Lab MUST Be	C. Daniel William	Quote#		1	tals	NOSGT	W.	MD	10ml			31816			
Immediately Packed on Ice N Y _X	Same Di Next Da Two Day Three D	y 5 Day y 10 D	y (Rad Only) ay (Rad Only)	Date Res	Date Results Needed			HDX NC	NWTPHGX 40ml/NaHS04/Syr/MeOH	SV8270PAHSIMD	V8260 VOCs 40ml/NaHS04/Syr/MeOH			Prelogin: P6 TSR: 110 - Bri			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	M6010PP	NWTPHDX	TWN	37827	/8260			Shipped Via:	FedEX Ground		
BP-101-W		Ghs)		1/20/18	1428	12	100			01				*			
BP-101-7	6	SS	7	1/29/18	1514	5				903	360				500000		
BP-101-30	6	SS	30	1/29/19	1539	5		123		648	75.5		198		1 B/1 B/1 B/1		
BP-102-12	G	SS	12	1/29/18	1643	5	NE		BE		-				01		
RP-162-20	G	SS	20	1/29/18	1636	5		S _{fa}	1589	170%			- BOIL	- 114 %	The state of		
BP-103-13	G	SS	13	1/30/18	858	5				2	alle!			1/4/2			
BP-104-13	G	SS	13	1/50/18	948	5		EX.	EAR	100					Talling real and		
BP-104-20	G	SS	20	1/50/19	948	S	23	100									
Pr-102-W	2 2/2 10	(BS	Zel-	1/30/18	1002	12			200						ol		
BP-106-13	G	SS	13	1/30/14	1104	5	U.ST		150		E.E.			V	124 15		
* Matrix: SS - Soil AiR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: ** Se Samples retur		-1 em	iw lin	th an	al'	Yti	cal	re0	VENT Flow		Temp Other	COC Seal COC Sign Bottles Correct	Ample Receipt C Present/Intacted/Accurate: arrive intact: bottles used:			
OT - Other	1920000 Prystrocols (8)	dExCou	ırier	Tr	acking# 4	196		326	61	3:	339		7-in (1) (0)	If Applical			
Relinquished by : (Signature) Date: 2/2/1		18	0800 Re	ceived by: (Signa	ture)				Trip Bla	nk Recei	ved Q No Hd / Meah		Headspace: tion Correct/Ch	necked: Y N			
Relinquished by : (Signature)	-0000				ceived by: (Signa	ture)	201	7		Temp:		C Bottles Received:	If preserva	tion required by Lo	gin: Date/Time		
Relinquished by : (Signature) _i	STEEL ST	Date:	T	ime: Re	eceived for lab by	(Signat	ture)		834	1.0 2.3	18	Time: 845	Hold:		Condition; NCF / OK		
Document No: J1-680-I	Document No: J1-680-RGL-GRI-00001-00				Revi	sion:	1 10	10			770	Tallinas yvze	TEXT BY	Reissued for Use			

GRI - Beaverton, OR 9750 SW Nimbus Avenue		Billing Info	1 3	100		Analysis / Container / Preservative							Chain of Custody Page 2of				
		Patty Norgaard Pre Chk								The second					34	FSC	
Beaverton, OR 97008			Beavert	Beaverton, OR 97008												L-A-B S	
Report to: Nora Utevsky			Email To:	Email To: nutevsky@gri.com; mmarshall@gri.com						S	T					12065 Lebanon I	a minutery of Zames
Project Description: 5764	50	1195	City/State Collected: Cos Bay/OR			OR	Se .	res	МеОн	-NoPr	/MeOi				Mount Juliet, TN #7122 Phone: 613-758-5558 Phone: 800-767-5859 Fax: 615-758-5859		
Phone: 503-641-3478 Fax:	5764	t#"		Lab Project # GRIBOR-5764	1	100	16ozClr-NoPres	6ozClr-NoPres	4/5yr/1	.6ozClr	40ml/NaHS04/Syr/MeOH					1# 96	7603
Collected by (print): Viewsky	Site/Facility I	D#		P.O. #	4 17	19.1	16ozd	++	JaHS0	AHS 1	'NaHS				Table #		
Collected by (signature):	- Committee of the comm	Rush? (Lab MUST Be Notified) Same Day Five Day						NOSGT	NWTPHGX 40ml/NaHS04/Syr/MeOH	SV8270PAHSIMD PAHS 16ozCir-NoPres	s 40ml/				Acctnum: GRIBOR Template T131816 Prelogin: P635781		
Immediately Packed on Ice N Y	Two Da	y10 Da	(Rad Only) y (Rad Only)	Date Kesu	lts Needed	No. of	M6010PP Metals	NWTPHDX	PHGX	70PAH	V8260 VOCs				533	TSR: 110 - Bri	an Ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	M60	TWN	TW	. 182	826				0.000000	Shipped Via: F	edEX Ground
BP-107-12	6	SS	12	1/30/18	1140	5		-13		0)				9.50		Remarks **	Sample # (lab only)
BV-108-13	6	SS	13	1/30/18	1309	5			300	Tree at		2.9		1000			
BY-108-17	6	SS	17	1/30/18	1302	5			SUE S			100					
BP-109-W		69W		1/30/18	1320	12	1.525	53					0204-3				
FOM-110-W		6/83		1/30/14	1415	12	118			775		2.70	700	1000		2000	RE KEP
FO-111-8	6	SS	8	1130/10	1500	5		200	LES I		900	150			15.64		The second
FO-112-9	G	SS	9	1/20/12	1537	5		72.22		12.					10.7		13
FO-113-8	6	SS	8	130/18	A DESCRIPTION OF THE PERSON OF	5			Cinc.	33			190		100		
FO-114-13	6	SS	13	1/20/A	1636						50.00		200	550		120	
FO-116-14	G	SS	14	1/3/14	Oals	5								2000		1	
Matrix: SS - Soil AIR - Air F - Filter	Remarks:			1011	2		5-63		-	- 12					Sample	DIES - 1	
GW - Groundwater B - Bioassay WW - WasteWater	*5	ee v	10te	on t	on Page I					pH		Temp		COC Se	al Pres	Receipt Ch ent/Intact: curate:	AP Y N
VW - Wastewater VW - Drinking Water VT - Other Samples returned via: UPS FedEx Course		er	Trac	sking#	100	50			Flow		Other	HISTORY.	Correc	a arriv t bottl ient vo	e intact: es used: lume sent:	1 A	
Relinquished by : (Signature) Date:		Date: 2/2/1	8	me: Reci	eived by: (Signati	ire)			Tr	ip Blank	Receiv		/ No)L / MeoH	VOA Zer Preserv	to Head	f Applicablespace; Correct/Che	-44
Relinquished by : (Signature)		Date:	-	me: Reco	elved by: (Signatu	ire)	in the second		Te	mp:	, °C	Bottles	Received:	If preser	vation re	quired by Logi	n: Date/Time
Relinquished by : (Signature)	456	Date:	Tir	ne: Rece	eived for hip by:	Signatū	je)	0	o C Da	te:		Time:	0()	Hold:		CONTRACTOR OF THE PARTY OF THE	
					11	13	2	83	9 2	1.3.	18	0	845	Tiold,			Candition:

Bill		Billing Infor	illing Information:			No.			Analysis / Container / Preservative				Chain of Custody Page 3				
GRI - Beaverton, OR 9750 SW Nimbus Avenue			Patty No. 9750 SW		ie	Pres D D			ESC. S.C.I.E.N.C.I.E.			SC					
Beaverton, OR 97008									Pier								ENOSE !
Report to: Nora Utevsky			Email To: n	utevsky@gri.com;	mmarshall@gri.	com	3			TW-25	HNO3				Mount Phone:	ebanon Rd Juliet, TN 371 615-758-5856 800-767-5856	1200
Project Description:				City/State Collected:			HNO	DH-C		NoPr	DPE-1				Fax: 61	5-758-5859	回外沿街
Phone: 503-641-3478 Fax:	Client Project (5764			GRIBOR-5764			250mlHDPE-HN03	ımi Ami	HCI	nlAmb-	250mlH	DH			L#		1603
Collected by (print):	Site/Facility ID	H		P.O. #			250r	T 100		is 40r	010	40mlAmb-HC				um: GRIE	STANIS OF STANIS
Collected by (signature): Immediately	Same Da Next Day Two Day	y 5 Day		Quote # Date Resu	lts Needed	No.	s PP metals	NWTPHDX NOSGT 100ml Amb-HCl	HGX 40mlAmb	PAHSIMLVID PAHS 40mlAmb-NoPres-WT	PP Metals 6010 250mlHDPE-HNO3	V8260 VOCs 40m			Prelo	elate:T13: gin: P63! 110 - Brian -/9	780
Packed on Ice N Y Sample ID	Three Di	Matrix *	Depth	Date	Time	Cntrs	FF Diss	NWTP	NWTPHGX	PAHSI	Total	V8260			-	ed Via: Fe	dEX Ground Sample # (lab only)
FO-111-W		GW		1/31/18	0970	HZ	ı									*	OY
40-117-13	G	ANBEK	13	1/31/18	1021	5		5550	10000		1000		100		SE 15	300	
FO-118-W		GW	Lx	1/3/19	1051	12	1000	1000	500	[E578]			E-1703				
FO-118-4	6	D-GW	4	1731/18	1115	12	1000		333		100				101	17.9	05
BP-119-W		GW	1000	1/31/18	1530	_	1300	100	TOST	170	1000		79.3	1000	18 KE		Olo
BP-119-8	6	SGW	8	1.1 10	1555	_	1955		2010		100			Line Street			Do
89-119-17	G	SOGW	17	131/18	1545	_	-		933		3/05			905	F		
60-119-33	6	SEGW	33	13/18	1500	-	-	100	324		17506			0.00	15 6	0.00	
BP-120-8	G	SSGW	8	2/1/18	094	0 5	100		100	0.00	150			500		1	
BP-120-11	G	SSGW	71	12/1/18	0945	5	100	80				118			Sample R	19	The own lots
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	*5	el v	iote o	n po	2	2	1		pl Flo	H	Temp Other		COC Sea COC Sig Bottles Correct	ned/Accu arrive bottles	t/Intact rate: intact: used:	No AND
DW - Drinking Water OT - Other	Samples retu UPSF	irned via: edExCo	urier	The second second second	racking #					la.	trate w	Ď.	Na	VOA Zer	ent volu If To Headsp Vation Co	Applicat	le A N
Relinquished by : (Signature)	~	Date: 2/2	/18	0800 R	eceived by: (Sign	ature)		- Juni	A	прв	lank Rec	4 HEL	/ MeoH				
Relinquished by : (Signature)	7	Date:		Time: R	eceived by: (Sign	ature)				Temp	H2	*C Bottles R	45	If preserv	vation requ	iired by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:		Time: R	eceived for lab B	y: (Sign	(artire)	83	4	Date:	348	Time:	745	Hold:			Condition: NCF / OK

	Billing Information: Analysis / Container / Preservative				Ι,	,		Analysis	/ Conta	iner / Pre	Chain of Custod	y Page Yof L				
GRI - Beaverton, OR			Patty No			Pres	2	d		201	168	100			MA T	700
9750 SW Nimbus Avenue			The second secon	/ Nimbus Aven	ue	Cnk	V	V	1000		V		E S	1928)		- 1
Beaverton, OR 97008			Beavert	on, OR 97008			250								L-A-B S	G-I-E-N-G-E-S
Report to: Nora Utevsky			Email To:	nutevsky@gri.com	: mmarshall@gri	.ce n				TW-	103				12065 Lebanon Re Mount Juliet, TN 3	
Project Description: 5764-1	195			City/State Collected: CO	105 Bay	/OR	HNO3	HC		oPres	PE-HI				Phone: 615-758-5 Phone: 800-767-5 Fax: 615-758-5855	859 117 270 300
Phone: 503-641-3478	Client Project			Lab Project # GRIBOR-5764	1		250mIHDPE-HNO	Amb-HC		N-qui	Metals 6010 250mlHDPE-HNO3	U			L# 9,0	604
Collected by (print): N. Utewsky	Site/Facility I	D#		P.O. #			Somfl	100ml	Ib HCI	40mlA	10 250	40mlAmb-HC			Table #	
Collected by (signature):	Rush?	Lab MUST Be	Notified)	Quote #		8	FF Diss PP metals 2 NWTPHDX NOSGT		Hs	601	ntA			Acctnum: GR Template:T13		
Goin 1 Ptu	Same 0	ay Five [metals	KOS	10m	NWTPHGX 40mlamb HCI PAHSIMLVID PAHS 40mlAmb-NoPres-WT	tals	404			Prelogin: P63	
Immediately	Next Da	y 10 Da	(Rad Only) y (Rad Only)	Date Resu	lts Needed	No.	PP m	X	PHGX 4		d	000		123	TSR: 110 - Bris	
Packed on Ice NYX	Three C	lay				of	Diss F	IPH				v8260 vOcs				9-186-
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	FF D	M	3	AH	Total	/826			Shipped Via: F	Sample # (lab only)
BP-121-W	6	GW	A TAKE	2/1/18	1115	12			-						*	Sample is trad dray)
BP-121-9	6	35 GW	9	2/1/18	1110	5	696		100	1270				137	1	
BP-122-7	6	55gW	7	2/1/19	1145	5	23.		ST. FO		(Act)	- 4				
BP-123-8	6	55 GW	8	2/1/18	1245	5	No.		HE			100	DISC.	100		
BP-125-13	G	SSGW	13	2/1/18	1445	5	BRAD.	P.O.				120	500		100	
BP-126-6	G	SSOW	6	2/1/18	1520	5			1	7.73	BAL		6.62			
BP-127-8	G	SSGW	8	2/1/18	1605	5			Page 1						24 1 2 2	
BP-127-13	6	5 GW	13	2/1/18	1610	5	100	1	-					0.00	- Total	
		GW			1.4	1			(0E-7)	4.0	163	Carl I	500 370			
		GW	Manie					1800	0	energy.			188			134
* Matrix: SS - Soll AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	ice	NOH	2 on	Page	1				рH		Temp		COC Seal	ample Receipt Cr Present/Intact ed/Accurate: arrive intact:	necklist
DW - Drinking Water OT - Other	Flow Other Co					Sufficient	bottles used: nt volume sent; If Applicab									
Relinquished by : (Signature)		Date:		ime: Rec	eived by: (Signat	ure)		Trip Blank Received: Figs No Prese			VOA Zero Preservat	Headspace: tion Correct/Che	AN			
Relinquished by : (Signature)		Date:	-		elved by: (Signat	ure)		A		lemp:		71	s Received:	If preservat	tion required by Log	in: Date/Time
Relinquished by : (Signature)		Date			about 6.00	100			40 CONT. 1	1.5	Ip.		トリク			
ne-industried by . (Signature)		Date:		me; Rec	eived for lab by	Signatu	13	28	34 6	2-3	-18	Time	845	Hold:		Cogdition: NCF / OK

Matt Shacklock

From:

Friday, February 02, 2018 2:48 PM Sent:

Login; Due SVOC; Due VOC ö Ü

Brian Ford

Incoming RUSH - GRIBOR - arriving tomorrow, 02/03

(T131815 and T131816) - please note we are NOT logging the Metals for these even though it's in the template and we All samples on the COC are unchecked for analysis. Please log as follows as R3 due Wednesday, 02/07. may receive the containers.

Soils - log for NWTPHDXNOSGT, NWTPHGX, SV8270PAHSIMD, V8260, TERRACORE and TS

BP-102-12

FO-111-8

BP-119-8

Waters - log for NWTPHDXNOSGT, NWTPHGX, PAHSIMLVID and V8260

BP-102-W

FO-111-W

BP-119-W

All other samples will be PLACED ON HOLD pending results of the original RUSH samples above.

COC may not be marked RUSH

Thanks,

Jason Romer

Project Manager

Iromer@esclabsciences.com | www.esclabsciences.com ESC Lab Sciences-a subsidiary of Pace Analytical 800.767.5859 Ext. 9713 | Direct 615.773.9713 12065 Lebanon Road | Mt. Juliet, TN 37122

Subject:

100	Login #:9667603 Clie	Client: GRIBOR	Date:2/3	Evaluated by:Matt S
N	Non-Conformance (check applicable items)	(applicable items)		
	Cample Integrity	Chain of Custody Clarification	ion	
	Parameter(s) past holding	Login Clarification Needed		If Broken Container:
	Improper	Chain of custody is incomplete	te	Insufficient packing material around container
	Improper container type	Please specify Metals requested	rted.	Insufficient packing material inside cooler
	Improper	Please specify TCLP requested.	ed.	Improper handling by carrier (FedEx / UPS / Couri
	Inc. (Figure 1 cample volume	Received additional samples not listed on coc.	s not listed on coc.	Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on coc	not match ids on	Container lid not intact
	Vials received with headspace.	ce. Trip Blank not received.		If no Chain of Custody:
×	Broken container	Client did not "X" analysis.		Received by:
	Broken container:	Chain of Custody is missing		Date/Time:
	Sufficient sample remains			Temp./Cont. Rec./pH:
				Carrier:
				Tracking#

Login Comments:

- 1 of 6 vials for FO-111-W received broken Received TB broken

Client informed by:	Call	Email	×	Voice Mail	Date: 02/05/18	Time: 0900
FSR Initials: ICR	Client Conta	act: Nora Ute	vsky			

Login Instructions:

- Analyze from remaining containers received intact Client informed. 1)

ANALYTICAL REPORT

February 14, 2018

GRI - Beaverton, OR

Sample Delivery Group: L968449

Samples Received: 02/03/2018

Project Number: 5764-1195

5764-1195 Description:

Report To: Nora Utevsky

9750 SW Nimbus Avenue

Beaverton, OR 97008

Entire Report Reviewed By: Buan Ford

Brian Ford

Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304. Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use 12065 Lebanon Rd

	TABLE OF CONTENTS	
Cp: Cover Page		1
Tc: Table of Contents		2
Ss: Sample Summary		4
Cn: Case Narrative		9
Sr: Sample Results		10
BP-102-12 L968449-01		10
BP-102-W L968449-02		11
FO-111-W L968449-03		12
BP-119-W L968449-04		13
BP-119-8 L968449-05		14
BP-101-7 L968449-06		15
BP-101-30 L968449-07		16
BP-102-20 L968449-08		17
BP-103-13 L968449-09		18
BP-104-13 L968449-10		19
BP-104-20 L968449-11		20
BP-106-13 L968449-12		21
BP-107-12 L968449-13		22
BP-108-13 L968449-14		23
BP-108-17 L968449-15		24
BP-109-W L968449-16		25
FO-110-W L968449-17		28
FO-113-8 L968449-18		31
FO-114-13 L968449-19		32
FO-116-14 L968449-20		34
FO-118-W L968449-21		36
FO-118-4 L968449-22		38
BP-119-17 L968449-23		40
BP-119-33 L968449-24		42
BP-121-W L968449-25		43
BP-121-9 L968449-26		44
BP-125-13 L968449-27		45
BP-126-6 L968449-28		46
BP-127-8 L968449-29		47
Qc: Quality Control Summary		48
Total Solids by Method 2540	G-2011	48
Mercury by Method 7470A		53
Mercury by Method 7471A		54
Metals (ICP) by Method 6010E	3	55
Metals (ICPMS) by Method 60		58
ument No: J1-680-RGL-GRI-00001-00	Revision: 1	Reissued for Use
ACCOUNT:	PROJECT: SDG:	DATE/TIME:

PROJECT:

5764-1195

SDG:

L968449

DATE/TIME:

02/14/18 09:57

PAGE:

2 of 81

ACCOUNT:

GRI - Beaverton, OR

¹Cp

Volatile Organic Compounds (GC/MS) by Method 8260B	60
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	70
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	71
GI: Glossary of Terms	75
Al: Accreditations & Locations	76
Sc: Sample Chain of Custody	77

BP-102-12 L968449-01 Solid			Collected by N. Utevsky	Collected date/time 01/29/18 16:43	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1070464	1	02/06/18 14:30	02/06/18 14:43	JAV
Mercury by Method 7471A	WG1072718	1	02/12/18 19:37	02/13/18 08:40	ABL
Metals (ICP) by Method 6010B	WG1073100	1	02/13/18 14:48	02/13/18 19:51	ST
BP-102-W L968449-02 GW			Collected by N. Utevsky	Collected date/time 01/30/18 10:02	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Mercury by Method 7470A	WG1071210	1	02/08/18 12:11	02/09/18 08:32	TRB
Metals (ICP) by Method 6010B	WG1071350	1	02/08/18 12:08	02/08/18 21:58	TRB
Metals (ICPMS) by Method 6020	WG1071019	1	02/07/18 19:22	02/08/18 17:43	LAT
FO-111-W L968449-03 GW			Collected by N. Utevsky	Collected date/time 01/31/18 09:20	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Mercury by Method 7470A	WG1071210	1	02/08/18 12:11	02/09/18 08:34	TRB
Metals (ICP) by Method 6010B	WG1071210	1	02/08/18 12:08	02/08/18 22:02	TRB
Metals (ICPMS) by Method 6020	WG1071019	1	02/07/18 19:22	02/08/18 17:46	LAT
			Collected by	Collected date/time	Received date/time
BP-119-W L968449-04 GW			N. Utevsky	01/31/18 15:30	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Mercury by Method 7470A	WG1071210	1	02/08/18 12:11	02/09/18 08:36	TRB
Metals (ICP) by Method 6010B	WG1071350	1	02/08/18 12:08	02/08/18 22:05	TRB
Metals (ICPMS) by Method 6020	WG1071019	1	02/07/18 19:22	02/08/18 17:50	LAT
BP-119-8 L968449-05 Solid			Collected by N. Utevsky	Collected date/time 01/31/18 15:55	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1070464	1	02/06/18 14:30	02/06/18 14:43	JAV
Mercury by Method 7471A	WG1072718	1	02/12/18 19:37	02/13/18 08:43	RDS
Metals (ICP) by Method 6010B	WG1073100	1	02/13/18 14:48	02/13/18 20:01	ST
			Collected by	Collected date/time	Received date/time
BP-101-7 L968449-06 Solid			N. Utevsky	01/29/18 15:14	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 13:22	DMG
BP-101-30 L968449-07 Solid			Collected by N. Utevsky	Collected date/time 01/29/18 15:39	Received date/time 02/03/18 08:45
	Detal	Dilair		Angle:-!-	A L ·
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 13:43	DMG
Dogument No. 11 690 PCL CRI 00001 00	D	1		Б.:	second for Hea

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1 PROJECT:

5764-1195

SDG: L968449

DATE/TIME: 02/14/18 09:57

Reissued for Use

PAGE: 4 of 81

r	4	á	
à		P	
7	_	-	

СQс

Gl

Sc

BP-102-20 L968449-08 Solid			Collected by N. Utevsky	Collected date/time 01/29/18 16:36	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 14:04	DMG
			Collected by	Collected date/time	Received date/time
BP-103-13 L968449-09 Solid			N. Utevsky	01/30/18 08:58	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 14:24	DMG
			Collected by N. Utevsky	Collected date/time 01/30/18 09:48	Received date/time 02/03/18 08:45
BP-104-13 L968449-10 Solid			N. Otevsky	01/30/10 03.40	02/03/10 00:43
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 14:45	DMG
			Collected by	Collected date/time	Received date/time
BP-104-20 L968449-11 Solid			N. Utevsky	01/30/18 09:48	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 15:06	DMG
			Collected by	Collected date/time	Received date/time
BP-106-13 L968449-12 Solid			N. Utevsky	01/30/18 11:04	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 15:27	DMG
			Collected by	Collected date/time	Received date/time
BP-107-12 L968449-13 Solid			N. Utevsky	01/30/18 11:40	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072596	1	02/12/18 11:04	02/12/18 11:15	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 15:47	DMG
			Collected by	Collected date/time	Received date/time
BP-108-13 L968449-14 Solid			N. Utevsky	01/30/18 13:09	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072598	1	02/12/18 10:51	02/12/18 11:03	JD
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1071154	2	02/08/18 08:34	02/09/18 14:05	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 16:08	DMG

BP-108-17 L968449-15 Solid			Collected by N. Utevsky	Collected date/time 01/30/18 13:02	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072598	1	02/12/18 10:51	02/12/18 11:03	JD
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 16:29	DMG
			Collected by	Collected date/time	Received date/time
BP-109-W L968449-16 GW			N. Utevsky	01/30/18 13:20	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Mercury by Method 7470A	WG1071210	1	02/08/18 12:11	02/09/18 07:42	TRB
Metals (ICP) by Method 6010B	WG1071350	1	02/08/18 12:08	02/08/18 22:15	TRB
Metals (ICPMS) by Method 6020	WG1071568	1	02/09/18 07:49	02/09/18 12:17	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071702	1	02/08/18 23:49	02/08/18 23:49	BMB
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071139	1	02/07/18 22:00	02/08/18 12:52	DMG
			Collected by	Collected date/time	Received date/time
FO-110-W L968449-17 GW			N. Utevsky	01/30/18 14:15	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst
Manager Inc. Madde at 7470 A	WC4074240	1		date/time	TDD
Mercury by Method 7470A	WG1071210	1	02/08/18 12:11	02/09/18 08:38	TRB
Metals (ICP) by Method 6010B	WG1071350	1	02/08/18 12:08	02/08/18 22:18	TRB
Metals (ICPMS) by Method 6020	WG1071568	1	02/09/18 07:49	02/09/18 12:33	JPD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071702	1	02/09/18 00:08	02/09/18 00:08	BMB
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071139	3	02/07/18 22:02	02/08/18 13:15	DMG
			Collected by	Collected date/time	Received date/time
FO-113-8 L968449-18 Solid			N. Utevsky	01/30/18 16:03	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072598	1	02/12/18 10:51	02/12/18 11:03	JD
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 16:50	DMG
			Collected by	Collected date/time	Received date/time
FO-114-13 L968449-19 Solid			N. Utevsky	01/30/18 16:36	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1072598	1	02/12/18 10:51	02/12/18 11:03	JD
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071579	1	01/30/18 16:36	02/10/18 14:26	ACG
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 17:11	DMG
			Collected by	Collected date/time	Received date/time
FO-116-14 L968449-20 Solid			N. Utevsky	01/31/18 09:13	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1072601	1	02/12/18 10:00	02/12/18 10:15	KDW
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071579	1	01/31/18 09:13	02/10/18 14:47	ACG
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 17:31	DMG

DATE/TIME:

02/14/18 09:57

PAGE:

7 of 81

SDG:

L968449

Ss

[†]Cn

Sr

[°]Qc

GI

Sc

	SAMPLE SC		X I		2 2 10 11 11 01 11 10 10
FO-118-W L968449-21 GW			Collected by N. Utevsky	Collected date/time 01/31/18 10:57	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071702	1	02/09/18 00:27	02/09/18 00:27	ВМВ
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071139	3	02/07/18 22:00	02/08/18 13:39	DMG
FO-118-4 L968449-22 Solid			Collected by N. Utevsky	Collected date/time 01/31/18 11:15	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Metriod	Datell	Dilution	date/time	date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072601	1	02/12/18 10:00	02/12/18 10:15	KDW
Mercury by Method 7471A	WG1072718	1	02/12/18 19:37	02/13/18 08:30	ABL
Metals (ICP) by Method 6010B	WG1073100	1	02/13/18 14:48	02/13/18 20:04	ST
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1071154	1	02/08/18 08:34	02/09/18 12:57	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 17:52	DMG
			Collected by	Collected date/time	Received date/time
BP-119-17 L968449-23 Solid			N. Utevsky	01/31/18 15:45	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072601	1	02/12/18 10:00	02/12/18 10:15	KDW
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1071579	1	01/31/18 15:45	02/10/18 15:09	ACG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1071154	1	02/08/18 08:34	02/09/18 13:10	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 18:13	DMG
BP-119-33 L968449-24 Solid			Collected by N. Utevsky	Collected date/time 01/31/18 15:00	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	•
Total Solids by Method 2540 G-2011	WG1072601	1	02/12/18 10:00	02/12/18 10:15	KDW
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1071154	1	02/08/18 08:34	02/09/18 13:24	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 19:15	DMG
			Collected by	Collected date/time	Received date/time
BP-121-W L968449-25 GW			N. Utevsky	02/01/18 11:15	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071139	3	02/07/18 22:00	02/08/18 14:02	DMG
			Collected by	Collected date/time	Received date/time
BP-121-9 L968449-26 Solid			N. Utevsky	02/01/18 11:10	02/03/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1072603	1	02/12/18 10:17	02/12/18 10:29	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 19:36	DMG
			Callacted	Callasted de la	Donoise de de la fina
BP-125-13 L968449-27 Solid			Collected by N. Utevsky	Collected date/time 02/01/18 14:45	Received date/time 02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1072603	1	02/12/18 10:17	02/12/18 10:29	KDW
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1071154	1	02/08/18 08:34	02/09/18 13:38	ACM
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM Document No: J1-680-RGL-GRI-00001-00	WG1071161 Revision	1	02/07/18 23:51	02/08/18 19:56 Reis	DMG ssued for Use
ACCOUNT.	DDO IECT:		SDC:	DATE THAT	5.000 101 030

PROJECT:

5764-1195

ACCOUNT:

GRI - Beaverton, OR

			Collected by	Collected date/time	Received date/time
BP-126-6 L968449-28 Solid			N. Utevsky	02/01/18 15:20	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1072603	1	02/12/18 10:17	02/12/18 10:29	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	20	02/07/18 23:51	02/08/18 20:38	DMG
			Collected by	Collected date/time	Received date/time
BP-127-8 L968449-29 Solid			N. Utevsky	02/01/18 16:05	02/03/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1072603	1	02/12/18 10:17	02/12/18 10:29	KDW
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1071161	1	02/07/18 23:51	02/08/18 20:17	DMG

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Technical Service Representative

Buar Ford

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 16:43

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.3		1	02/06/2018 14:43	WG1070464

Ss

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0416	В	0.00349	0.0249	1	02/13/2018 08:40	WG1072718

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Antimony	U		0.934	2.49	1	02/13/2018 19:51	WG1073100
Arsenic	3.68		0.810	2.49	1	02/13/2018 19:51	WG1073100
Beryllium	0.146	<u>J</u>	0.0872	0.249	1	02/13/2018 19:51	WG1073100
Cadmium	U		0.0872	0.623	1	02/13/2018 19:51	WG1073100
Chromium	11.6		0.174	1.25	1	02/13/2018 19:51	WG1073100
Copper	10.8		0.660	2.49	1	02/13/2018 19:51	WG1073100
Lead	4.61		0.237	0.623	1	02/13/2018 19:51	WG1073100
Nickel	9.84		0.610	2.49	1	02/13/2018 19:51	WG1073100
Selenium	U		0.922	2.49	1	02/13/2018 19:51	WG1073100
Silver	U		0.349	1.25	1	02/13/2018 19:51	WG1073100
Thallium	U		0.810	2.49	1	02/13/2018 19:51	WG1073100
Zinc	26.7		0.735	6.23	1	02/13/2018 19:51	WG1073100

Analyte

Beryllium

Cadmium Chromium

Copper Nickel

Selenium

Silver

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Qualifier

MDL

ug/l

0.700

0.700

1.40

5.30

4.90

7.40

2.80

5.90

Collected date/time: 01/30/18 10:02 Mercury by Method 7470A

Metals (ICP) by Method 6010B

Result

ug/l

U

U

36.8

19.4

19.3

U

U

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.0545	<u>J J3</u>	0.0490	0.200	1	02/09/2018 08:32	WG1071210

Dilution

1

1

1

Analysis

date / time

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

02/08/2018 21:58

Batch

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

RDL

ug/l

2.00

2.00

10.0

10.0

10.0

10.0

5.00

50.0

<u>Cp</u>

²Tc

³Ss

Zinc 62.5 Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	02/08/2018 17:43	WG1071019
Arsenic	10.5		0.250	2.00	1	02/08/2018 17:43	WG1071019
Lead	10.3		0.240	2.00	1	02/08/2018 17:43	WG1071019
Thallium	0.372	J	0.190	2.00	1	02/08/2018 17:43	WG1071019

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 09:20

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.0492	J J3	0.0490	0.200	1	02/09/2018 08:34	WG1071210

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Beryllium	U		0.700	2.00	1	02/08/2018 22:02	WG1071350
Cadmium	U		0.700	2.00	1	02/08/2018 22:02	WG1071350
Chromium	U		1.40	10.0	1	02/08/2018 22:02	WG1071350
Copper	U		5.30	10.0	1	02/08/2018 22:02	WG1071350
Nickel	U		4.90	10.0	1	02/08/2018 22:02	WG1071350
Selenium	U		7.40	10.0	1	02/08/2018 22:02	WG1071350
Silver	U		2.80	5.00	1	02/08/2018 22:02	WG1071350
Zinc	U		5.90	50.0	1	02/08/2018 22:02	WG1071350

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	02/08/2018 17:46	WG1071019
Arsenic	1.88	<u>J</u>	0.250	2.00	1	02/08/2018 17:46	WG1071019
Lead	0.827	<u>J</u>	0.240	2.00	1	02/08/2018 17:46	WG1071019
Thallium	U		0.190	2.00	1	02/08/2018 17:46	WG1071019

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:30

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	0.0542	<u>J J3</u>	0.0490	0.200	1	02/09/2018 08:36	WG1071210

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Beryllium	U		0.700	2.00	1	02/08/2018 22:05	WG1071350
Cadmium	U		0.700	2.00	1	02/08/2018 22:05	WG1071350
Chromium	3.13	<u>J</u>	1.40	10.0	1	02/08/2018 22:05	WG1071350
Copper	U		5.30	10.0	1	02/08/2018 22:05	WG1071350
Nickel	U		4.90	10.0	1	02/08/2018 22:05	WG1071350
Selenium	U		7.40	10.0	1	02/08/2018 22:05	WG1071350
Silver	U		2.80	5.00	1	02/08/2018 22:05	WG1071350
Zinc	U		5.90	50.0	1	02/08/2018 22:05	WG1071350

СQс

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	02/08/2018 17:50	WG1071019
Arsenic	4.74		0.250	2.00	1	02/08/2018 17:50	WG1071019
Lead	0.716	<u>J</u>	0.240	2.00	1	02/08/2018 17:50	WG1071019
Thallium	U		0.190	2.00	1	02/08/2018 17:50	WG1071019

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:55

L968449

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.6		1	02/06/2018 14:43	WG1070464

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0119	<u>B J</u>	0.00313	0.0223	1	02/13/2018 08:43	WG1072718

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Antimony	U		0.837	2.23	1	02/13/2018 20:01	WG1073100
Arsenic	2.86		0.726	2.23	1	02/13/2018 20:01	WG1073100
Beryllium	0.105	<u>J</u>	0.0782	0.223	1	02/13/2018 20:01	WG1073100
Cadmium	U		0.0782	0.558	1	02/13/2018 20:01	WG1073100
Chromium	6.28		0.156	1.12	1	02/13/2018 20:01	WG1073100
Copper	2.22	<u>J</u>	0.592	2.23	1	02/13/2018 20:01	WG1073100
Lead	2.42		0.212	0.558	1	02/13/2018 20:01	WG1073100
Nickel	6.76		0.547	2.23	1	02/13/2018 20:01	WG1073100
Selenium	U		0.826	2.23	1	02/13/2018 20:01	WG1073100
Silver	U		0.313	1.12	1	02/13/2018 20:01	WG1073100
Thallium	U		0.726	2.23	1	02/13/2018 20:01	WG1073100
Zinc	11.4		0.659	5.58	1	02/13/2018 20:01	WG1073100

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 15:14

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	56.6	<u>J3</u>	1	02/12/2018 11:15	WG1072596

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00130	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Acenaphthene	0.00496	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Acenaphthylene	0.00951	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Benzo(a)anthracene	0.00116	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Benzo(a)pyrene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Benzo(b)fluoranthene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Benzo(g,h,i)perylene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Benzo(k)fluoranthene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Chrysene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Dibenz(a,h)anthracene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Fluoranthene	0.00216	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Fluorene	0.00120	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Naphthalene	0.0785		0.00354	0.0354	1	02/08/2018 13:22	WG1071161
Phenanthrene	0.00455	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
Pyrene	0.00179	<u>J</u>	0.00106	0.0106	1	02/08/2018 13:22	WG1071161
1-Methylnaphthalene	0.0160	<u>J</u>	0.00354	0.0354	1	02/08/2018 13:22	WG1071161
2-Methylnaphthalene	0.0128	<u>J</u>	0.00354	0.0354	1	02/08/2018 13:22	WG1071161
2-Chloronaphthalene	U		0.00354	0.0354	1	02/08/2018 13:22	WG1071161
(S) Nitrobenzene-d5	72.4			14.0-149		02/08/2018 13:22	WG1071161
(S) 2-Fluorobiphenyl	75.3			34.0-125		02/08/2018 13:22	WG1071161
(S) p-Terphenyl-d14	56.9			23.0-120		02/08/2018 13:22	WG1071161

ACCOUNT:

GRI - Beaverton, OR

(S) p-Terphenyl-d14

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 15:39

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.2		1	02/12/2018 11:15	WG1072596

Ss

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Acenaphthene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Acenaphthylene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Benzo(a)anthracene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Benzo(a)pyrene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Benzo(b)fluoranthene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Benzo(g,h,i)perylene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Benzo(k)fluoranthene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Chrysene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Dibenz(a,h)anthracene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Fluoranthene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Fluorene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Naphthalene	U		0.00237	0.0237	1	02/08/2018 13:43	WG1071161
Phenanthrene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
Pyrene	U		0.000712	0.00712	1	02/08/2018 13:43	WG1071161
1-Methylnaphthalene	U		0.00237	0.0237	1	02/08/2018 13:43	WG1071161
2-Methylnaphthalene	U		0.00237	0.0237	1	02/08/2018 13:43	WG1071161
2-Chloronaphthalene	U		0.00237	0.0237	1	02/08/2018 13:43	WG1071161
(S) Nitrobenzene-d5	125			14.0-149		02/08/2018 13:43	WG1071161
(S) 2-Fluorobiphenyl	95.6			34.0-125		02/08/2018 13:43	WG1071161

23.0-120

02/08/2018 13:43

WG1071161

86.5

ONE LAB. NATIONWIDE.

Collected date/time: 01/29/18 16:36

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	82.3		1	02/12/2018 11:15	WG1072596	

⁴ Cn	

Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
mg/kg		mg/kg	mg/kg		date / time	
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.00243	0.0243	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.000729	0.00729	1	02/08/2018 14:04	WG1071161
U		0.00243	0.0243	1	02/08/2018 14:04	WG1071161
U		0.00243	0.0243	1	02/08/2018 14:04	WG1071161
U		0.00243	0.0243	1	02/08/2018 14:04	WG1071161
119			14.0-149		02/08/2018 14:04	WG1071161
93.3			34.0-125		02/08/2018 14:04	WG1071161
86.1			23.0-120		02/08/2018 14:04	WG1071161
	mg/kg U U U U U U U U U U U U U U U U U U	mg/kg U U U U U U U U U U U U U U U U U U	mg/kg mg/kg U 0.000729 U 0.000243 U 0.00243 U 0.00243 U 0.00243 U 0.00243 U 0.00243 U 0.00243	mg/kg mg/kg mg/kg U 0.000729 0.00729 U 0.000729 0.00729 <td>mg/kg mg/kg mg/kg U 0.000729 0.00729 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 <td< td=""><td>mg/kg mg/kg mg/kg date / time U 0.000729 0.00729 1 02/08/2018 14:04 U 0.000729 0.00729</td></td<></td>	mg/kg mg/kg mg/kg U 0.000729 0.00729 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 U 0.00243 0.0243 1 <td< td=""><td>mg/kg mg/kg mg/kg date / time U 0.000729 0.00729 1 02/08/2018 14:04 U 0.000729 0.00729</td></td<>	mg/kg mg/kg mg/kg date / time U 0.000729 0.00729 1 02/08/2018 14:04 U 0.000729 0.00729

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 08:58

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	74.8		1	02/12/2018 11:15	WG1072596

⁴Cn	

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00149	<u>J</u>	0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Acenaphthene	0.00829		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Acenaphthylene	0.0135		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Benzo(a)anthracene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Benzo(a)pyrene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Benzo(b)fluoranthene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Benzo(g,h,i)perylene	0.00127	<u>J</u>	0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Benzo(k)fluoranthene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Chrysene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Dibenz(a,h)anthracene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Fluoranthene	0.00277	<u>J</u>	0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Fluorene	0.00258	<u>J</u>	0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Naphthalene	0.106		0.00267	0.0267	1	02/08/2018 14:24	WG1071161
Phenanthrene	0.00819		0.000802	0.00802	1	02/08/2018 14:24	WG1071161
Pyrene	0.00266	<u>J</u>	0.000802	0.00802	1	02/08/2018 14:24	WG1071161
1-Methylnaphthalene	0.00950	<u>J</u>	0.00267	0.0267	1	02/08/2018 14:24	WG1071161
2-Methylnaphthalene	0.0121	<u>J</u>	0.00267	0.0267	1	02/08/2018 14:24	WG1071161
2-Chloronaphthalene	U		0.00267	0.0267	1	02/08/2018 14:24	WG1071161
(S) Nitrobenzene-d5	81.7			14.0-149		02/08/2018 14:24	WG1071161
(S) 2-Fluorobiphenyl	65.5			34.0-125		02/08/2018 14:24	WG1071161
(S) p-Terphenyl-d14	50.6			23.0-120		02/08/2018 14:24	WG1071161

ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 09:48

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	23.3		1	02/12/2018 11:15	WG1072596

[°] Ss

Semi Volatile Organic	Compounds	(GC/MS) by	/ Method	8270D-SIM
	Pocult (dn/)	Qualifier	MDL (dn/)	DDI (dn/)

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Acenaphthene	0.00542	<u>J</u>	0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Acenaphthylene	0.0206	<u>J</u>	0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Benzo(a)anthracene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Benzo(a)pyrene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Benzo(b)fluoranthene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Benzo(g,h,i)perylene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Benzo(k)fluoranthene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Chrysene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Dibenz(a,h)anthracene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Fluoranthene	0.00442	<u>J</u>	0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Fluorene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Naphthalene	0.199		0.00859	0.0859	1	02/08/2018 14:45	WG1071161
Phenanthrene	0.00907	<u>J</u>	0.00258	0.0258	1	02/08/2018 14:45	WG1071161
Pyrene	0.00374	<u>J</u>	0.00258	0.0258	1	02/08/2018 14:45	WG1071161
1-Methylnaphthalene	U		0.00859	0.0859	1	02/08/2018 14:45	WG1071161
2-Methylnaphthalene	U		0.00859	0.0859	1	02/08/2018 14:45	WG1071161
2-Chloronaphthalene	U		0.00859	0.0859	1	02/08/2018 14:45	WG1071161
(S) Nitrobenzene-d5	85.4			14.0-149		02/08/2018 14:45	WG1071161
(S) 2-Fluorobiphenyl	61.8			34.0-125		02/08/2018 14:45	WG1071161
(S) p-Terphenyl-d14	48.9			23.0-120		02/08/2018 14:45	WG1071161

Analyte

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

Batch

Collected date/time: 01/30/18 09:48

RDL (dry)

mg/kg

Dilution

Analysis

date / time

Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Qualifier

Result (dry)

mg/kg

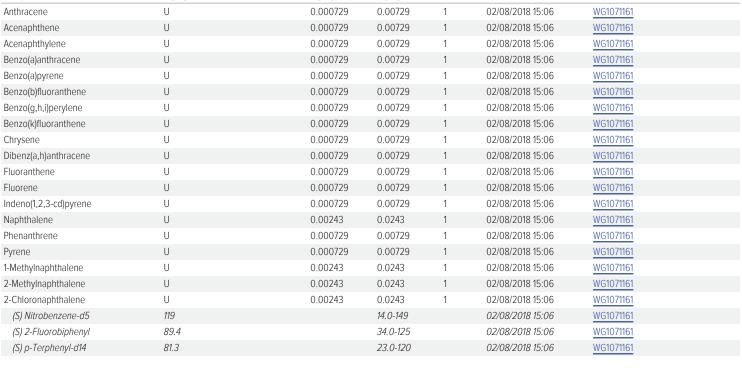
	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.3		1	02/12/2018 11:15	WG1072596

MDL (dry)

mg/kg

Ss

Cn



ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 11:04

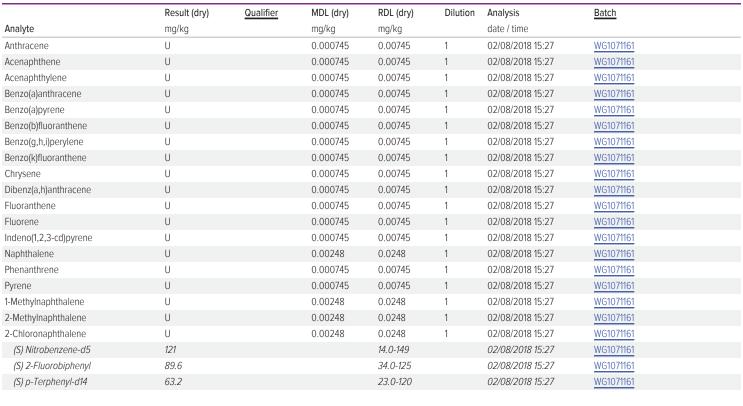
Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	80.5		1	02/12/2018 11:15	WG1072596	

Ss

⁴ Cn	
	ı



ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 11:40

Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.4		1	02/12/2018 11:15	WG1072596

Ср

1		
	⁴Cn	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Acenaphthene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Acenaphthylene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Benzo(a)anthracene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Benzo(a)pyrene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Benzo(b)fluoranthene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Benzo(g,h,i)perylene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Benzo(k)fluoranthene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Chrysene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Dibenz(a,h)anthracene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Fluoranthene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Fluorene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Naphthalene	U		0.00240	0.0240	1	02/08/2018 15:47	WG1071161
Phenanthrene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
Pyrene	U		0.000720	0.00720	1	02/08/2018 15:47	WG1071161
1-Methylnaphthalene	U		0.00240	0.0240	1	02/08/2018 15:47	WG1071161
2-Methylnaphthalene	U		0.00240	0.0240	1	02/08/2018 15:47	WG1071161
2-Chloronaphthalene	U		0.00240	0.0240	1	02/08/2018 15:47	WG1071161
(S) Nitrobenzene-d5	123			14.0-149		02/08/2018 15:47	WG1071161
(S) 2-Fluorobiphenyl	94.7			34.0-125		02/08/2018 15:47	WG1071161
(S) p-Terphenyl-d14	89.9			23.0-120		02/08/2018 15:47	WG1071161

105

Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

Batch

WG1071154 WG1071154

WG1071154

Collected date/time: 01/30/18 13:09

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

Result (dry)

mg/kg

85.1

389

51.8

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	26.6		1	02/12/2018 11:03	WG1072598

RDL (dry)

mg/kg

30.1

75.3

18.0-148

Dilution

2

2

Analysis

date / time

02/09/2018 14:05

02/09/2018 14:05

02/09/2018 14:05

MDL (dry)

mg/kg

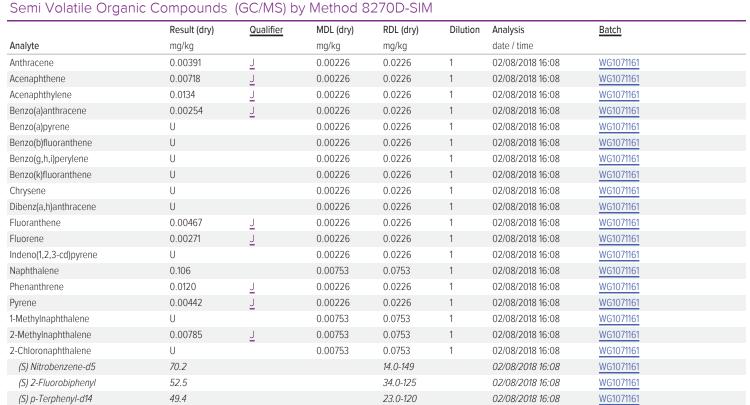
9.93

24.8

Тс

Ss

Cn


7 Gl
OI

ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 13:02

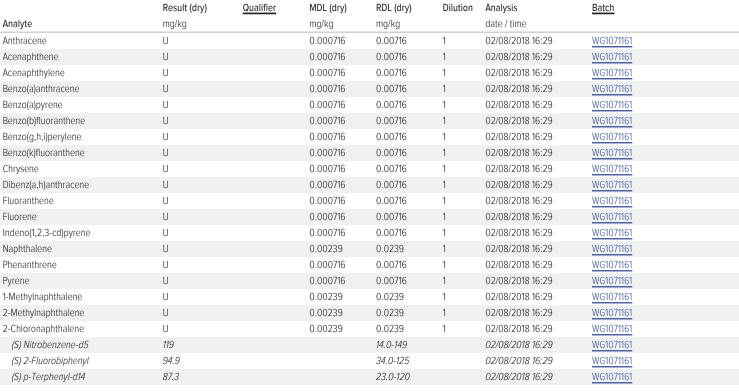
Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>	
Analyte	%			date / time		
Total Solids	83.7		1	02/12/2018 11:03	WG1072598	

Ss

1		
	⁴Cn	



ACCOUNT:

GRI - Beaverton, OR

PROJECT:

5764-1195

Analyte

Beryllium

Cadmium Chromium

Copper Nickel

Selenium

Silver

Zinc

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 13:20

Mercury by Method 7470A

Metals (ICP) by Method 6010B

Result

ug/l

U

U

U

U

U

U

7.90

5.00

Qualifier

J

MDL

ug/l

0.700

0.700

1.40

5.30

4.90

7.40

2.80

5.90

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Mercury	U	<u>J3</u>	0.0490	0.200	1	02/09/2018 07:42	WG1071210

Dilution

1

1

1

Analysis

date / time

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

02/08/2018 22:15

Batch

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

RDL

ug/l

2.00

2.00

10.0

10.0

10.0

10.0

5.00

50.0

Ss

Cn

Metals	(ICPIVIS)	by IVI	etnoa	6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	0.828	<u>J</u>	0.754	2.00	1	02/09/2018 12:17	WG1071568
Arsenic	3.01		0.250	2.00	1	02/09/2018 12:17	WG1071568
Lead	1.84	<u>B J</u>	0.240	2.00	1	02/09/2018 12:17	WG1071568
Thallium	0.280	<u>B J</u>	0.190	2.00	1	02/09/2018 12:17	WG1071568

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	02/08/2018 23:49	WG1071702
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/08/2018 23:49	WG1071702
Acrylonitrile	U		1.87	10.0	1	02/08/2018 23:49	WG1071702
Benzene	U		0.331	1.00	1	02/08/2018 23:49	WG1071702
Bromobenzene	U		0.352	1.00	1	02/08/2018 23:49	WG1071702
Bromodichloromethane	U		0.380	1.00	1	02/08/2018 23:49	WG1071702
Bromoform	U		0.469	1.00	1	02/08/2018 23:49	WG1071702
Bromomethane	U		0.866	5.00	1	02/08/2018 23:49	WG1071702
n-Butylbenzene	U		0.361	1.00	1	02/08/2018 23:49	WG1071702
sec-Butylbenzene	U		0.365	1.00	1	02/08/2018 23:49	WG1071702
tert-Butylbenzene	U		0.399	1.00	1	02/08/2018 23:49	WG1071702
Carbon tetrachloride	U		0.379	1.00	1	02/08/2018 23:49	WG1071702
Chlorobenzene	U		0.348	1.00	1	02/08/2018 23:49	WG1071702
Chlorodibromomethane	U		0.327	1.00	1	02/08/2018 23:49	WG1071702
Chloroethane	U		0.453	5.00	1	02/08/2018 23:49	WG1071702
Chloroform	U		0.324	5.00	1	02/08/2018 23:49	WG1071702
Chloromethane	U		0.276	2.50	1	02/08/2018 23:49	WG1071702
2-Chlorotoluene	U		0.375	1.00	1	02/08/2018 23:49	WG1071702
4-Chlorotoluene	U		0.351	1.00	1	02/08/2018 23:49	WG1071702
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/08/2018 23:49	WG1071702
1,2-Dibromoethane	U		0.381	1.00	1	02/08/2018 23:49	WG1071702
Dibromomethane	U		0.346	1.00	1	02/08/2018 23:49	WG1071702
1,2-Dichlorobenzene	U		0.349	1.00	1	02/08/2018 23:49	WG1071702
1,3-Dichlorobenzene	U		0.220	1.00	1	02/08/2018 23:49	WG1071702
1,4-Dichlorobenzene	U		0.274	1.00	1	02/08/2018 23:49	WG1071702
Dichlorodifluoromethane	U		0.551	5.00	1	02/08/2018 23:49	WG1071702
1,1-Dichloroethane	U		0.259	1.00	1	02/08/2018 23:49	WG1071702
1,2-Dichloroethane	U		0.361	1.00	1	02/08/2018 23:49	WG1071702
1,1-Dichloroethene	U		0.398	1.00	1	02/08/2018 23:49	WG1071702

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

PROJECT: 5764-1195

SDG: L968449

DATE/TIME: 02/14/18 09:57

PAGE: 25 of 81

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 01/30/18 13:20

(S) Dibromofluoromethane 84.3

94.0

(S) 4-Bromofluorobenzene

	Darrella	01:6:	MDI	DDI	Dilina
Volatile Organic	Compound	ls (GC/MS) I	by Metho	od 8260B	

	<u>'</u>	, ,	<u></u>				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
cis-1,2-Dichloroethene	U		0.260	1.00	1	02/08/2018 23:49	WG1071702
trans-1,2-Dichloroethene	U		0.396	1.00	1	02/08/2018 23:49	WG1071702
1,2-Dichloropropane	U		0.306	1.00	1	02/08/2018 23:49	WG1071702
1,1-Dichloropropene	U		0.352	1.00	1	02/08/2018 23:49	WG1071702
1,3-Dichloropropane	U		0.366	1.00	1	02/08/2018 23:49	WG1071702
cis-1,3-Dichloropropene	U		0.418	1.00	1	02/08/2018 23:49	WG1071702
trans-1,3-Dichloropropene	U		0.419	1.00	1	02/08/2018 23:49	WG1071702
2,2-Dichloropropane	U		0.321	1.00	1	02/08/2018 23:49	WG1071702
Di-isopropyl ether	U		0.320	1.00	1	02/08/2018 23:49	WG1071702
Ethylbenzene	U		0.384	1.00	1	02/08/2018 23:49	WG1071702
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/08/2018 23:49	WG1071702
Isopropylbenzene	U		0.326	1.00	1	02/08/2018 23:49	WG1071702
p-Isopropyltoluene	U		0.350	1.00	1	02/08/2018 23:49	WG1071702
2-Butanone (MEK)	U		3.93	10.0	1	02/08/2018 23:49	WG1071702
Methylene Chloride	U		1.00	5.00	1	02/08/2018 23:49	WG1071702
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	02/08/2018 23:49	WG1071702
Methyl tert-butyl ether	U		0.367	1.00	1	02/08/2018 23:49	WG1071702
Naphthalene	U		1.00	5.00	1	02/08/2018 23:49	WG1071702
n-Propylbenzene	U		0.349	1.00	1	02/08/2018 23:49	WG1071702
Styrene	U		0.307	1.00	1	02/08/2018 23:49	WG1071702
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/08/2018 23:49	WG1071702
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/08/2018 23:49	WG1071702
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	02/08/2018 23:49	WG1071702
Tetrachloroethene	U		0.372	1.00	1	02/08/2018 23:49	WG1071702
Toluene	U		0.412	1.00	1	02/08/2018 23:49	WG1071702
1,2,3-Trichlorobenzene	U		0.230	1.00	1	02/08/2018 23:49	WG1071702
1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/08/2018 23:49	WG1071702
1,1,1-Trichloroethane	U		0.319	1.00	1	02/08/2018 23:49	WG1071702
1,1,2-Trichloroethane	U		0.383	1.00	1	02/08/2018 23:49	WG1071702
Trichloroethene	U		0.398	1.00	1	02/08/2018 23:49	WG1071702
Trichlorofluoromethane	U		1.20	5.00	1	02/08/2018 23:49	WG1071702
1,2,3-Trichloropropane	U		0.807	2.50	1	02/08/2018 23:49	WG1071702
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/08/2018 23:49	WG1071702
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/08/2018 23:49	WG1071702
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/08/2018 23:49	WG1071702
Vinyl chloride	U		0.259	1.00	1	02/08/2018 23:49	WG1071702
Xylenes, Total	U		1.06	3.00	1	02/08/2018 23:49	WG1071702
(S) Toluene-d8	106			80.0-120		02/08/2018 23:49	WG1071702
(C) D:h fl th	042			70 0 100		03/00/3010 33:40	WC1071700

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Anthracene	U	<u>T8</u>	0.0140	0.0500	1	02/08/2018 12:52	WG1071139	
Acenaphthene	U	<u>T8</u>	0.0100	0.0500	1	02/08/2018 12:52	WG1071139	
Acenaphthylene	U	<u>T8</u>	0.0120	0.0500	1	02/08/2018 12:52	WG1071139	
Benzo(a)anthracene	U	<u>T8</u>	0.00410	0.0500	1	02/08/2018 12:52	WG1071139	
Benzo(a)pyrene	U	<u>T8</u>	0.0116	0.0500	1	02/08/2018 12:52	WG1071139	
Benzo(b)fluoranthene	0.00535	<u>J T8</u>	0.00212	0.0500	1	02/08/2018 12:52	WG1071139	
Benzo(g,h,i)perylene	0.00313	<u>J T8</u>	0.00227	0.0500	1	02/08/2018 12:52	WG1071139	
Benzo(k)fluoranthene	U	<u>T8</u>	0.0136	0.0500	1	02/08/2018 12:52	WG1071139	
Chrysene	U	<u>T8</u>	0.0108	0.0500	1	02/08/2018 12:52	WG1071139	
Dibenz(a,h)anthracene	U	<u>T8</u>	0.00396	0.0500	1	02/08/2018 12:52	WG1071139	
Fluoranthene	U	<u>T8</u>	0.0157	0.0500	1	02/08/2018 12:52	WG1071139	
Fluorene	U	<u>T8</u>	0.00850	0.0500	1	02/08/2018 12:52	WG1071139	

76.0-123

80.0-120

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1

Reissued for Use

PAGE:

26 of 81

 PROJECT:
 SDG:
 DATE/TIME:

 5764-1195
 L968449
 02/14/18 09:57

02/08/2018 23:49

02/08/2018 23:49

WG1071702

WG1071702

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 13:20

L968449

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Cerri Volatile Org			o,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Indeno(1,2,3-cd)pyrene	U	<u>T8</u>	0.0148	0.0500	1	02/08/2018 12:52	WG1071139
Naphthalene	U	<u>T8</u>	0.0198	0.250	1	02/08/2018 12:52	WG1071139
Phenanthrene	U	<u>T8</u>	0.00820	0.0500	1	02/08/2018 12:52	WG1071139
Pyrene	U	<u>T8</u>	0.0117	0.0500	1	02/08/2018 12:52	WG1071139
1-Methylnaphthalene	U	<u>T8</u>	0.00821	0.250	1	02/08/2018 12:52	WG1071139
2-Methylnaphthalene	U	<u>T8</u>	0.00902	0.250	1	02/08/2018 12:52	WG1071139
2-Chloronaphthalene	U	<u>T8</u>	0.00647	0.250	1	02/08/2018 12:52	WG1071139
(S) Nitrobenzene-d5	138			31.0-160		02/08/2018 12:52	WG1071139
(S) 2-Fluorobiphenyl	129			48.0-148		02/08/2018 12:52	WG1071139
(S) p-Terphenyl-d14	117			37.0-146		02/08/2018 12:52	WG1071139

Analyte

Beryllium

Cadmium Chromium

Copper Nickel

Selenium

Silver

Zinc

SAMPLE RESULTS - 17

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 14:15

Mercury by Method 7470A

Metals (ICP) by Method 6010B

Result

ug/l

1.35

1.08

119

92.5

82.3

U

U

1050

Qualifier

MDL

ug/l

0.700

0.700

1.40

5.30

4.90

7.40

2.80

5.90

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Mercury	0.0553	J J3	0.0490	0.200	1	02/09/2018 08:38	WG1071210	

Dilution

1

Analysis

date / time

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

02/08/2018 22:18

Batch

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

WG1071350

RDL

ug/l

2.00

2.00

10.0

10.0

10.0

10.0

5.00

50.0

Ss

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Antimony	U		0.754	2.00	1	02/09/2018 12:33	WG1071568
Arsenic	12.4		0.250	2.00	1	02/09/2018 12:33	WG1071568
Lead	19.3		0.240	2.00	1	02/09/2018 12:33	WG1071568
Thallium	0.342	<u>B J</u>	0.190	2.00	1	02/09/2018 12:33	WG1071568

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	02/09/2018 00:08	WG1071702
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/09/2018 00:08	WG1071702
Acrylonitrile	U		1.87	10.0	1	02/09/2018 00:08	WG1071702
Benzene	U		0.331	1.00	1	02/09/2018 00:08	WG1071702
Bromobenzene	U		0.352	1.00	1	02/09/2018 00:08	WG1071702
Bromodichloromethane	U		0.380	1.00	1	02/09/2018 00:08	WG1071702
Bromoform	U		0.469	1.00	1	02/09/2018 00:08	WG1071702
Bromomethane	U		0.866	5.00	1	02/09/2018 00:08	WG1071702
n-Butylbenzene	U		0.361	1.00	1	02/09/2018 00:08	WG1071702
sec-Butylbenzene	U		0.365	1.00	1	02/09/2018 00:08	WG1071702
tert-Butylbenzene	U		0.399	1.00	1	02/09/2018 00:08	WG1071702
Carbon tetrachloride	U		0.379	1.00	1	02/09/2018 00:08	WG1071702
Chlorobenzene	U		0.348	1.00	1	02/09/2018 00:08	WG1071702
Chlorodibromomethane	U		0.327	1.00	1	02/09/2018 00:08	WG1071702
Chloroethane	U		0.453	5.00	1	02/09/2018 00:08	WG1071702
Chloroform	U		0.324	5.00	1	02/09/2018 00:08	WG1071702
Chloromethane	U		0.276	2.50	1	02/09/2018 00:08	WG1071702
2-Chlorotoluene	U		0.375	1.00	1	02/09/2018 00:08	WG1071702
4-Chlorotoluene	U		0.351	1.00	1	02/09/2018 00:08	WG1071702
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/09/2018 00:08	WG1071702
1,2-Dibromoethane	U		0.381	1.00	1	02/09/2018 00:08	WG1071702
Dibromomethane	U		0.346	1.00	1	02/09/2018 00:08	WG1071702
1,2-Dichlorobenzene	U		0.349	1.00	1	02/09/2018 00:08	WG1071702
1,3-Dichlorobenzene	U		0.220	1.00	1	02/09/2018 00:08	WG1071702
1,4-Dichlorobenzene	U		0.274	1.00	1	02/09/2018 00:08	WG1071702
Dichlorodifluoromethane	U		0.551	5.00	1	02/09/2018 00:08	WG1071702
1,1-Dichloroethane	U		0.259	1.00	1	02/09/2018 00:08	WG1071702
1,2-Dichloroethane	U		0.361	1.00	1	02/09/2018 00:08	WG1071702
1,1-Dichloroethene	U		0.398	1.00	1	02/09/2018 00:08	WG1071702

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

PROJECT:

SDG:

DATE/TIME:

PAGE: 28 of 81

ACCOUNT: GRI - Beaverton, OR

5764-1195

L968449

02/14/18 09:57

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 01/30/18 14:15

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

83.3

97.4

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
cis-1,2-Dichloroethene	U		0.260	1.00	1	02/09/2018 00:08	WG1071702
trans-1,2-Dichloroethene	U		0.396	1.00	1	02/09/2018 00:08	WG1071702
1,2-Dichloropropane	U		0.306	1.00	1	02/09/2018 00:08	WG1071702
1,1-Dichloropropene	U		0.352	1.00	1	02/09/2018 00:08	WG1071702
1,3-Dichloropropane	U		0.366	1.00	1	02/09/2018 00:08	WG1071702
cis-1,3-Dichloropropene	U		0.418	1.00	1	02/09/2018 00:08	WG1071702
trans-1,3-Dichloropropene	U		0.419	1.00	1	02/09/2018 00:08	WG1071702
2,2-Dichloropropane	U		0.321	1.00	1	02/09/2018 00:08	WG1071702
Di-isopropyl ether	U		0.320	1.00	1	02/09/2018 00:08	WG1071702
Ethylbenzene	U		0.384	1.00	1	02/09/2018 00:08	WG1071702
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/09/2018 00:08	WG1071702
Isopropylbenzene	U		0.326	1.00	1	02/09/2018 00:08	WG1071702
p-Isopropyltoluene	U		0.350	1.00	1	02/09/2018 00:08	WG1071702
2-Butanone (MEK)	U		3.93	10.0	1	02/09/2018 00:08	WG1071702
Methylene Chloride	U		1.00	5.00	1	02/09/2018 00:08	WG1071702
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	02/09/2018 00:08	WG1071702
Methyl tert-butyl ether	U		0.367	1.00	1	02/09/2018 00:08	WG1071702
Naphthalene	U		1.00	5.00	1	02/09/2018 00:08	WG1071702
n-Propylbenzene	U		0.349	1.00	1	02/09/2018 00:08	WG1071702
Styrene	U		0.307	1.00	1	02/09/2018 00:08	WG1071702
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/09/2018 00:08	WG1071702
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/09/2018 00:08	WG1071702
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	02/09/2018 00:08	WG1071702
Tetrachloroethene	U		0.372	1.00	1	02/09/2018 00:08	WG1071702
Toluene	U		0.412	1.00	1	02/09/2018 00:08	WG1071702
1,2,3-Trichlorobenzene	U		0.230	1.00	1	02/09/2018 00:08	WG1071702
1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/09/2018 00:08	WG1071702
1,1,1-Trichloroethane	U		0.319	1.00	1	02/09/2018 00:08	WG1071702
1,1,2-Trichloroethane	U		0.383	1.00	1	02/09/2018 00:08	WG1071702
Trichloroethene	U		0.398	1.00	1	02/09/2018 00:08	WG1071702
Trichlorofluoromethane	U		1.20	5.00	1	02/09/2018 00:08	WG1071702
1,2,3-Trichloropropane	U		0.807	2.50	1	02/09/2018 00:08	WG1071702
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/09/2018 00:08	WG1071702
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/09/2018 00:08	WG1071702
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/09/2018 00:08	WG1071702
Vinyl chloride	U		0.259	1.00	1	02/09/2018 00:08	WG1071702
Xylenes, Total	U		1.06	3.00	1	02/09/2018 00:08	WG1071702
(S) Toluene-d8	104			80.0-120		02/09/2018 00:08	WG1071702

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U	<u>T8</u>	0.0420	0.150	3	02/08/2018 13:15	WG1071139
Acenaphthene	U	<u>T8</u>	0.0300	0.150	3	02/08/2018 13:15	WG1071139
Acenaphthylene	U	<u>T8</u>	0.0360	0.150	3	02/08/2018 13:15	WG1071139
Benzo(a)anthracene	U	<u>T8</u>	0.0123	0.150	3	02/08/2018 13:15	WG1071139
Benzo(a)pyrene	U	<u>T8</u>	0.0348	0.150	3	02/08/2018 13:15	WG1071139
Benzo(b)fluoranthene	0.0255	<u>J T8</u>	0.00636	0.150	3	02/08/2018 13:15	WG1071139
Benzo(g,h,i)perylene	0.0986	<u>J T8</u>	0.00681	0.150	3	02/08/2018 13:15	WG1071139
Benzo(k)fluoranthene	U	<u>T8</u>	0.0408	0.150	3	02/08/2018 13:15	WG1071139
Chrysene	0.0355	<u>J T8</u>	0.0324	0.150	3	02/08/2018 13:15	WG1071139
Dibenz(a,h)anthracene	U	<u>T8</u>	0.0119	0.150	3	02/08/2018 13:15	WG1071139
Fluoranthene	U	<u>T8</u>	0.0471	0.150	3	02/08/2018 13:15	WG1071139
Fluorene	U	<u>T8</u>	0.0255	0.150	3	02/08/2018 13:15	WG1071139

76.0-123

80.0-120

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

WG1071702

WG1071702

02/09/2018 00:08

02/09/2018 00:08

ACCOUNT: DATE/TIME: PROJECT: SDG: GRI - Beaverton, OR 5764-1195 L968449 02/14/18 09:57

PAGE: 29 of 81

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 14:15

L968449

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Indeno(1,2,3-cd)pyrene	U	<u>T8</u>	0.0444	0.150	3	02/08/2018 13:15	WG1071139
Naphthalene	U	<u>T8</u>	0.0594	0.750	3	02/08/2018 13:15	WG1071139
Phenanthrene	U	<u>T8</u>	0.0246	0.150	3	02/08/2018 13:15	WG1071139
Pyrene	0.0512	<u>J T8</u>	0.0351	0.150	3	02/08/2018 13:15	WG1071139
1-Methylnaphthalene	U	<u>T8</u>	0.0246	0.750	3	02/08/2018 13:15	WG1071139
2-Methylnaphthalene	U	<u>T8</u>	0.0271	0.750	3	02/08/2018 13:15	WG1071139
2-Chloronaphthalene	U	<u>T8</u>	0.0194	0.750	3	02/08/2018 13:15	WG1071139
(S) Nitrobenzene-d5	110			31.0-160		02/08/2018 13:15	WG1071139
(S) 2-Fluorobiphenyl	96.6			48.0-148		02/08/2018 13:15	WG1071139
(S) p-Terphenyl-d14	<i>75.3</i>			37.0-146		02/08/2018 13:15	WG1071139

L968449-17 WG1071139: Cannot be analyzed at a lower dilution due to extract emulsion.

(S) 2-Fluorobiphenyl

(S) p-Terphenyl-d14

SAMPLE RESULTS - 18

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 16:03

Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.0		1	02/12/2018 11:03	WG1072598

Ss

⁴ Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Acenaphthene	0.00185	<u>J</u>	0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Acenaphthylene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Benzo(a)anthracene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Benzo(a)pyrene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Benzo(b)fluoranthene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Benzo(g,h,i)perylene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Benzo(k)fluoranthene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Chrysene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Dibenz(a,h)anthracene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Fluoranthene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Fluorene	0.00104	<u>J</u>	0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Naphthalene	U		0.00241	0.0241	1	02/08/2018 16:50	WG1071161
Phenanthrene	U		0.000723	0.00723	1	02/08/2018 16:50	WG1071161
Pyrene	0.000835	<u>J</u>	0.000723	0.00723	1	02/08/2018 16:50	WG1071161
1-Methylnaphthalene	U		0.00241	0.0241	1	02/08/2018 16:50	WG1071161
2-Methylnaphthalene	U		0.00241	0.0241	1	02/08/2018 16:50	WG1071161
2-Chloronaphthalene	U		0.00241	0.0241	1	02/08/2018 16:50	WG1071161
(S) Nitrobenzene-d5	119			14.0-149		02/08/2018 16:50	WG1071161

34.0-125

23.0-120

89.0

64.9

WG1071161

WG1071161

02/08/2018 16:50

02/08/2018 16:50

ONE LAB. NATIONWIDE.

Batch

Collected date/time: 01/30/18 16:36

RDL (dry)

Dilution

Analysis

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry)

Qualifier

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.7		1	02/12/2018 11:03	WG1072598

MDL (dry)

Ss

⁴ Cn

	Result (dry)	Qualifier	MDL (ary)	RDL (ary)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	0.0186	J	0.0132	0.0660	1	02/10/2018 14:26	WG1071579
Acrylonitrile	U		0.00236	0.0132	1	02/10/2018 14:26	WG1071579
Benzene	U		0.000357	0.00132	1	02/10/2018 14:26	WG1071579
Bromobenzene	U		0.000375	0.00132	1	02/10/2018 14:26	WG1071579
Bromodichloromethane	U		0.000335	0.00132	1	02/10/2018 14:26	WG1071579
Bromoform	U		0.000560	0.00132	1	02/10/2018 14:26	WG1071579
Bromomethane	U		0.00177	0.00660	1	02/10/2018 14:26	WG1071579
n-Butylbenzene	U		0.000341	0.00132	1	02/10/2018 14:26	WG1071579
sec-Butylbenzene	U		0.000265	0.00132	1	02/10/2018 14:26	WG1071579
tert-Butylbenzene	U		0.000272	0.00132	1	02/10/2018 14:26	WG1071579
Carbon tetrachloride	U		0.000433	0.00132	1	02/10/2018 14:26	WG1071579
Chlorobenzene	U		0.000280	0.00132	1	02/10/2018 14:26	WG1071579
Chlorodibromomethane	U		0.000493	0.00132	1	02/10/2018 14:26	WG1071579
Chloroethane	U		0.00125	0.00660	1	02/10/2018 14:26	WG1071579
Chloroform	U		0.000302	0.00660	1	02/10/2018 14:26	WG1071579
Chloromethane	U		0.000495	0.00330	1	02/10/2018 14:26	WG1071579
2-Chlorotoluene	U		0.000398	0.00132	1	02/10/2018 14:26	WG1071579
4-Chlorotoluene	U		0.000317	0.00132	1	02/10/2018 14:26	WG1071579
1,2-Dibromo-3-Chloropropane	U		0.00139	0.00660	1	02/10/2018 14:26	WG1071579
1,2-Dibromoethane	U		0.000453	0.00132	1	02/10/2018 14:26	WG1071579
Dibromomethane	U		0.000505	0.00132	1	02/10/2018 14:26	WG1071579
1,2-Dichlorobenzene	U		0.000403	0.00132	1	02/10/2018 14:26	WG1071579
1,3-Dichlorobenzene	U		0.000316	0.00132	1	02/10/2018 14:26	WG1071579
1,4-Dichlorobenzene	U		0.000299	0.00132	1	02/10/2018 14:26	WG1071579
Dichlorodifluoromethane	U		0.000942	0.00660	1	02/10/2018 14:26	WG1071579
1,1-Dichloroethane	U		0.000263	0.00132	1	02/10/2018 14:26	WG1071579
1,2-Dichloroethane	U		0.000350	0.00132	1	02/10/2018 14:26	WG1071579
1,1-Dichloroethene	U		0.000400	0.00132	1	02/10/2018 14:26	WG1071579
cis-1,2-Dichloroethene	U		0.000310	0.00132	1	02/10/2018 14:26	WG1071579
trans-1,2-Dichloroethene	U		0.000349	0.00132	1	02/10/2018 14:26	WG1071579
1,2-Dichloropropane	U		0.000473	0.00132	1	02/10/2018 14:26	WG1071579
1,1-Dichloropropene	U		0.000419	0.00132	1	02/10/2018 14:26	WG1071579
1,3-Dichloropropane	U		0.000273	0.00132	1	02/10/2018 14:26	WG1071579
cis-1,3-Dichloropropene	U		0.000346	0.00132	1	02/10/2018 14:26	WG1071579
trans-1,3-Dichloropropene	U		0.000353	0.00132	1	02/10/2018 14:26	WG1071579
2,2-Dichloropropane	U		0.000369	0.00132	1	02/10/2018 14:26	WG1071579
Di-isopropyl ether	U		0.000328	0.00132	1	02/10/2018 14:26	WG1071579
Ethylbenzene	U		0.000392	0.00132	1	02/10/2018 14:26	WG1071579
Hexachloro-1,3-butadiene	U		0.000452	0.00132	1	02/10/2018 14:26	WG1071579
Isopropylbenzene	U		0.000321	0.00132	1	02/10/2018 14:26	WG1071579
p-lsopropyltoluene	U		0.000269	0.00132	1	02/10/2018 14:26	WG1071579
2-Butanone (MEK)	U		0.00618	0.0132	1	02/10/2018 14:26	WG1071579
Methylene Chloride	U		0.00132	0.00660	1	02/10/2018 14:26	WG1071579
4-Methyl-2-pentanone (MIBK)	U		0.00248	0.0132	1	02/10/2018 14:26	WG1071579
Methyl tert-butyl ether	U		0.000280	0.00132	1	02/10/2018 14:26	WG1071579
Naphthalene	U		0.00132	0.00660	1	02/10/2018 14:26	WG1071579
n-Propylbenzene	U		0.000272	0.00132	1	02/10/2018 14:26	WG1071579
Styrene	U		0.000309	0.00132	1	02/10/2018 14:26	WG1071579
1,1,1,2-Tetrachloroethane	U		0.000349	0.00132	1	02/10/2018 14:26	WG1071579
1,1,2,2-Tetrachloroethane	U		0.000482	0.00132	1	02/10/2018 14:26	WG1071579
		0001-00					
Document No	: J1-680-RGL-GRI-0	0001-00	K	tevision: 1			Reissued for Use

ACCOUNT:

GRI - Beaverton, OR

SDG:

L968449

ONE LAB. NATIONWIDE.

Collected date/time: 01/30/18 16:36

1968449

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000482	0.00132	1	02/10/2018 14:26	WG1071579
Tetrachloroethene	U		0.000365	0.00132	1	02/10/2018 14:26	WG1071579
Toluene	U		0.000573	0.00660	1	02/10/2018 14:26	WG1071579
1,2,3-Trichlorobenzene	U		0.000404	0.00132	1	02/10/2018 14:26	WG1071579
1,2,4-Trichlorobenzene	U		0.000512	0.00132	1	02/10/2018 14:26	WG1071579
1,1,1-Trichloroethane	U		0.000378	0.00132	1	02/10/2018 14:26	WG1071579
1,1,2-Trichloroethane	U		0.000366	0.00132	1	02/10/2018 14:26	WG1071579
Trichloroethene	U		0.000369	0.00132	1	02/10/2018 14:26	WG1071579
Trichlorofluoromethane	U		0.000505	0.00660	1	02/10/2018 14:26	WG1071579
1,2,3-Trichloropropane	U		0.000979	0.00330	1	02/10/2018 14:26	WG1071579
1,2,4-Trimethylbenzene	U		0.000279	0.00132	1	02/10/2018 14:26	WG1071579
1,2,3-Trimethylbenzene	U		0.000379	0.00132	1	02/10/2018 14:26	WG1071579
1,3,5-Trimethylbenzene	U		0.000351	0.00132	1	02/10/2018 14:26	WG1071579
Vinyl chloride	U		0.000384	0.00132	1	02/10/2018 14:26	WG1071579
Xylenes, Total	U		0.000922	0.00396	1	02/10/2018 14:26	WG1071579
(S) Toluene-d8	93.4			80.0-120		02/10/2018 14:26	WG1071579
(S) Dibromofluoromethane	113			74.0-131		02/10/2018 14:26	WG1071579
(S) 4-Bromofluorobenzene	106			64.0-132		02/10/2018 14:26	WG1071579

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Acenaphthene	0.0180		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Acenaphthylene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Benzo(a)anthracene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Benzo(a)pyrene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Benzo(b)fluoranthene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Benzo(g,h,i)perylene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Benzo(k)fluoranthene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Chrysene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Dibenz(a,h)anthracene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Fluoranthene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Fluorene	0.00122	<u>J</u>	0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Naphthalene	0.0107	<u>J</u>	0.00264	0.0264	1	02/08/2018 17:11	WG1071161
Phenanthrene	0.000870	<u>J</u>	0.000792	0.00792	1	02/08/2018 17:11	WG1071161
Pyrene	U		0.000792	0.00792	1	02/08/2018 17:11	WG1071161
1-Methylnaphthalene	U		0.00264	0.0264	1	02/08/2018 17:11	WG1071161
2-Methylnaphthalene	U		0.00264	0.0264	1	02/08/2018 17:11	WG1071161
2-Chloronaphthalene	U		0.00264	0.0264	1	02/08/2018 17:11	WG1071161
(S) Nitrobenzene-d5	80.1			14.0-149		02/08/2018 17:11	WG1071161
(S) 2-Fluorobiphenyl	70.2			34.0-125		02/08/2018 17:11	WG1071161
(S) p-Terphenyl-d14	51.4			23.0-120		02/08/2018 17:11	WG1071161

ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 09:13

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.4		1	02/12/2018 10:15	WG1072601

Ss

4	1
[†] Cn	ı
•••	ı

Mary No. Mary Mar		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Ixendomishe U 0,00075 0,0720 1 0,070708 1477 W0079759 1867879 1867879 1 0,070708 1477 W0079759 1867879 1867879 187879 1 0,070708 1477 W0079759 1867879 18787	Analyte	mg/kg		mg/kg	mg/kg		date / time	
International U 0.000224 0.00020 1 0.000208 147 WISDITES (TRONOCIO MINERAL MEDITES (TRONOCIO MIN	cetone	0.0133	<u>J V3</u>	0.0120	0.0599	1	02/10/2018 14:47	WG1071579
Improvement U	crylonitrile	U		0.00215	0.0120	1	02/10/2018 14:47	WG1071579
remodeldinomethane U 0,000305 0,00120 1 0,270,2018 14-47 Wi5107579 remodelm U 0,00051 0,00059 1 0,270,2018 14-47 Wi5107579	enzene	U		0.000324	0.00120	1	02/10/2018 14:47	WG1071579
remolom U 0,000508 0,00120 1 0,270,02018 14-47 WG07559 mnomethaline U 0,000509 0,00720 1 0,07507018 14-47 WG07559 set-Balyberszene U 0,000309 0,00720 1 0,00702018 14-47 WG07559 set-Balyberszene U 0,000241 0,00070 1 0,00702018 14-47 WG07559 alter Balyberszene U 0,000247 0,00020 1 0,00702018 14-47 WG07559 alter Balyberszene U 0,000247 0,00020 1 0,00702018 14-47 WG07559 alter Balyberszene U 0,000247 0,00020 1 0,00702018 14-47 WG07559 alter Balyberszene U 0,000247 0,00020 1 0,00702018 14-47 WG07559 histocherszene U 0,000248 0,00020 1 0,00702018 14-47 WG07559 histocherszene U 0,000248 0,00020 1 0,00702018 14-47 WG07559	romobenzene	U		0.000340	0.00120	1	02/10/2018 14:47	WG1071579
remomethane U 0,00161 0,00599 1 0,00599 1 0,005079 Bugbberzene U 0,000074 0,00720 1 0,0707018 14-77 WE007559 ri-Bugbberzene U 0,000074 0,00720 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000074 0,00720 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000074 0,00720 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000075 0,00599 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00700 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,000078 0,00707 0 1 0,0707018 14-77 WE007559 ribosobierzene U 0,00007	romodichloromethane	U		0.000305	0.00120	1	02/10/2018 14:47	WG1071579
-Bulytherwinene U 0 0.000309 0.0070 1 0.2700/2018 1447 Wi510/15-29 to c. Bulytherwinene U 0.000247 0.00020 1 0.2700/2018 1447 Wi510/15-29 alton tetachloride U 0.000247 0.00020 1 0.2700/2018 1447 Wi510/15-29 alton tetachloride U 0.000333 0.00020 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.000333 0.00020 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.000334 0.00020 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.000347 0.00020 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.000347 0.00025 0.00059 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.00035 0.00039 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.00035 0.00030 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.00038 0.00020 1 0.2700/2018 1447 Wi510/15-29 literachloride U 0.00038 0.000	romoform	U		0.000508	0.00120	1	02/10/2018 14:47	WG1071579
ex-Buly/benzene U 0.000241 0.00120 1 0.0102018 14.47 WG1071579 et-buly/benzene U 0.000247 0.00120 1 0.02102018 14.47 WG1071579 attorn tetrachioride U 0.000333 0.00120 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000254 0.00120 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000254 0.00120 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000373 0.00599 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000075 0.00599 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000075 0.00599 1 0.02102018 14.47 WG1071579 hitrorbenne U 0.000075 0.00599 1 0.02102018 14.47 WG1071579	romomethane	U		0.00161	0.00599	1	02/10/2018 14:47	WG1071579
ent-Burglebenzene U 0,000247 0,000251 0,000251 0,000251 0,000261 1,02102018 14.47 0,0017579 historichericance U 0,000254 0,000204 1,00180218 14.47 0,0017579 historichericance U 0,000254 0,0002051 1,02102018 14.47 0,0017579 historichericance U 0,000257 0,000399 1,02102018 14.47 0,0017579 historichericance U 0,000275 0,000399 1,02102018 14.47 0,0017579 historichericance U 0,000255 0,000399 1,02102018 14.47 0,0017579 historichericance U 0,000256 0,000390 1,02102018 14.47 0,0017579 historichericance U 0,000268 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000268 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000410 0,000278 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000410 0,000278 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000410 0,000278 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000428 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000428 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000287 0,00020 1,0002018 14.47 0,0017579 historichericance U 0,000287 0,00020 1,02102018 14.47 0,0017579 historichericance U 0,000288 0,00020 1,0002018 14.47 0,0017579 historichericance U 0,000288 0,00020 1,0002018 14.47 0,0017579 his	-Butylbenzene	U		0.000309	0.00120	1	02/10/2018 14:47	WG1071579
arbon tetrachloride U 0,000393 0,00120 1 0,2012018 14:47 WG1071579 hidrochervene U 0,000574 0,00120 1 0,2012018 14:47 WG1071579 hidrochervene U 0,000447 0,00120 1 0,2012018 14:47 WG1071579 hidrocherme U 0,000473 0,00599 1 0,2012018 14:47 WG1071579 hidrocherme U 0,000450 0,000205 1 0,2012018 14:47 WG1071579 hidrocherme U 0,000450 0,000201 1 0,2012018 14:47 WG1071579 hidrocherme U 0,000218 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000218 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000418 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000418 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000418 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000458 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000458 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000458 0,00120 1 0,2012018 14:47 WG1071579 2-Dibromo-3-Citioropropane U 0,000277 0,00120 1 0,2012018 14:47 WG1071579 1-Dibromo-dehane U 0,000278 0,00120 1 0,2012018 14:47 WG1071579 1-Dibromo-dehane U 0,000278 0,00120 1 0,2012018 14:47 WG1071579 1-Dibrioropropane U 0,000278 0,00120 1 0,2012018 14:47 WG1071579 1-Dibrioropropane U 0,000288 0,00120 1 0,2012018	ec-Butylbenzene	U		0.000241	0.00120	1	02/10/2018 14:47	WG1071579
Interocherzene	ert-Butylbenzene	U		0.000247	0.00120	1	02/10/2018 14:47	WG1071579
Indicate U	arbon tetrachloride	U		0.000393	0.00120	1	02/10/2018 14:47	WG1071579
Inforcethane U	hlorobenzene	U		0.000254	0.00120	1	02/10/2018 14:47	WG1071579
Internationary U	hlorodibromomethane	U		0.000447	0.00120	1	02/10/2018 14:47	
hioronform U 0,000775 0,00599 1 0,7/02018 14.47 WG1071579 hioronethane U 0,000650 0,00000 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000288 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000288 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000288 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000416 0,000599 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000418 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000418 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000418 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000387 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000387 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluene U 0,000387 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluenene U 0,000387 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluenenene U 0,000387 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluenenene U 0,000388 0,00120 1 0,27/02018 14.47 WG1071579 Chlorotoluenenenenenenenenenenenenenenenenenenen	hloroethane	U				1		
Chioronethane U								
Chiorotoluene						•		
Chlorotoluene								
2-Dibromo-3-Chloropropane U 0,00011 0,00011 0,00120 1,02/10/2018 14.47 W61071579 2-Dibromoethane U 0,000411 0,000120 1,02/10/2018 14.47 W61071579 2-Dichlorobenzene U 0,000287 0,00120 1,02/10/2018 14.47 W61071579 3-Dichlorobenzene U 0,000287 0,00120 1,02/10/2018 14.47 W61071579 3-Dichlorobenzene U 0,000287 0,00120 1,02/10/2018 14.47 W61071579 4-Dichlorobenzene U 0,000287 0,00120 1,02/10/2018 14.47 W61071579 4-Dichlorobenzene U 0,000287 0,00120 1,02/10/2018 14.47 W61071579 1-Dichloroethane U 0,000283 0,00120 1,02/10/2018 14.47 W61071579 1-Dichloroethane U 0,000383 0,00120 1,02/10/2018 14.47 W61071579 1-Dichloroethane U 0,000383 0,00120 1,02/10/2018 14.47 W61071579 1-Dichloroethane U 0,000383 0,00120 1,02/10/2018 14.47 W61071579 3-12-Dichloroethane U 0,000383 0,00120 1,02/10/2018 14.47 W61071579 3-12-Dichloroethane U 0,000383 0,00120 1,02/10/2018 14.47 W61071579 3-13-Dichloroethane U 0,0003880 0,00120 1,02/10/2018 14.47 W61071579 3-Dichloropropane U 0,0003880 0,00120 1,02/10/2018 14.47 W61071579 3-Dichloropropane U 0,0003880 0,00120 1,02/10/2018 14.47 W61071579 3-Dichloropropane U 0,000384 0,00120 1,02/10/2018 14.47 W61071579 3-Dichloropropane U 0,000385 0,00120 1,001200 1						•		
2-Dibromoethane U 0.000411 0.00120 1 02/0/2018 14.47 WiG1071579 bibromomethane U 0.000458 0.00120 1 02/0/2018 14.47 WiG1071579 1.2 Dichlorobenzene U 0.000366 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000367 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000271 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000271 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000271 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobenzene U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobethane U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobethane U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobethane U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobethane U 0.000373 0.00120 1 02/0/2018 14.47 WiG1071579 1.3 Dichlorobethane U 0.000373 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000373 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/2018 14.47 WiG1071579 1.3 Dichloropropane U 0.000374 0.00120 1 02/0/0/201								
Bromomethane U								
2-Dichlorobenzene U								
3-Dichlorobenzene U						•		
4-Dichlorobenzene U 0.000271 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorodifluoromethane U 0.000855 0.00599 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.0000239 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000318 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000318 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000363 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000363 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000363 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichlorocethane U 0.000371 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000371 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000384 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.0003856 0.00120 1 02/10/								
Chilorodifluoromethane U						•		
Company Comp								
2-Dichloroethane U 0.000318 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroethene U 0.000363 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroethene U 0.000282 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroethene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000384 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloroptopane U 0.000251 0.0020 1 02/10/2018 14:47 WG1071579 1-Dichloroptop								
Polichloroethene U								
s-1,2-Dichloroethene U 0.000282 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,2-Dichloroethene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 2-Dichloropropane U 0.000429 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000348 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 3-S-1,3-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000251 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000251 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000254 0.00120 1 02/10/2018 14						•		
ans-1,2-Dichloroethene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 2-Dichloropropane U 0.000429 0.00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropane U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000248 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.0003356 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000256 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000256 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000254 0.00120 1 02/10/2018 14:47 WG10								
2-Dichloropropane U 0,000429 0,00120 1 02/10/2018 14:47 WG1071579 1-Dichloropropene U 0,000380 0,00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0,000248 0,00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0,000314 0,00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0,000320 0,00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0,000334 0,00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0,000334 0,00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0,000356 0,00120 1 02/10/2018 14:47 WG1071579 acxachloro-1,3-butadiene U 0,000356 0,00120 1 02/10/2018 14:47 WG1071579 acxachloro-1,3-butadiene U 0,000410 0,00020 1 0,2/10/2018 14:47 WG1071579 acxachloro-1,3-butadiene U 0,000291 0,00120 1 0,2/10/2018 14:47 WG1071579 al-butanone (MEK) U 0,000245 0,00120 1 0,2/10/2018 14:47 WG1071579 al-butanone (MEK) U 0,000255 0,00120 1 0,2/10/2018 14:47 WG1071579 ackachloroethone U 0,000254 0,00120 1 0,2/10/2018 14:47 WG1071579 aphthalene U 0,000254 0,00120 1 0,2/10/2018 14:47 WG1071579 aphthalene U 0,000254 0,00120 1 0,2/10/2018 14:47 WG1071579 aphthalene U 0,000267 0,00120 1 0,00120 1 0,2/10/2018 14:47 WG1071579 aphthalene U 0,000281 0,00120 1 0,001	- ,							
1-Dichloropropene U 0.000380 0.00120 1 02/10/2018 14:47 WG1071579 3-Dichloropropane U 0.000248 0.00120 1 02/10/2018 14:47 WG1071579 s-1,3-Dichloropropene U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000320 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 -2-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 -1-i-isopropyl ether U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 -1-i-isopropyl ether U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579								
3-Dichloropropane U 0.000248 0.00120 1 02/10/2018 14:47 WG1071579 s-1,3-Dichloropropene U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000320 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000256 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.0120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 despite the U 0.000250 0.00120 1 02/10/2018 14:47 WG1071579 despite des								
Se-1,3-Dichloropropene U 0.000314 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000320 0.00120 1 02/10/2018 14:47 WG1071579 ans-1,3-Dichloropropene U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 i-isopropyl ether U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 thylbenzene U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579	, ,					•		
ans-1,3-Dichloropropene U 0.000320 0.00120 1 02/10/2018 14:47 WG1071579 L2-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 Lisopropyl ether U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.00120 0.00599 1 02/10/2018 14:47						1		
2-Dichloropropane U 0.000334 0.00120 1 02/10/2018 14:47 WG1071579 ti-isopropyl ether U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 thylbenzene U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 topropylbenzene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropyltoluene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 -Butanone (MEK) U 0.00561 0.0120 1 02/10/2018 14:47 WG1071579 -Methylene Chloride U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 -Methyl-2-pentanone (MIBK) U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 -Methyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropylbenzene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 -Methyl-1-pentanone (MIBK) U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropylbenzene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropylbenzene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 -Isopropylbenzene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579						1		
i-isopropyl ether U 0.000297 0.00120 1 02/10/2018 14:47 WG1071579 thylbenzene U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 exachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.00561 0.0120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 opropylbenzene U 0.000317				0.000320		1		
thylbenzene U 0.000356 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.00120 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 lexachloro-1,3-butadiene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579	, ,					1	02/10/2018 14:47	WG1071579
exachloro-1,3-butadiene U 0.000410 0.00120 1 02/10/2018 14:47 WG1071579 copropylbenzene U 0.000291 0.00120 1 02/10/2018 14:47 WG1071579 clsopropyltoluene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 clethylene (MEK) U 0.00561 0.0120 1 02/10/2018 14:47 WG1071579 clethylene Chloride U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 clethylene Chloride U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000264 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000264 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579 clethyl tert-butyl ether U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	i-isopropyl ether	U		0.000297	0.00120	1	02/10/2018 14:47	WG1071579
Description of the property						1	02/10/2018 14:47	WG1071579
-Isopropyltoluene U 0.000245 0.00120 1 02/10/2018 14:47 WG1071579 -Butanone (MEK) U 0.00561 0.0120 1 02/10/2018 14:47 WG1071579 -Iethylene Chloride U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 -Methyl-2-pentanone (MIBK) U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 -Iethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 -aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 -Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 -tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 -1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	exachloro-1,3-butadiene	U		0.000410	0.00120	1	02/10/2018 14:47	WG1071579
Butanone (MEK) U 0.00561 0.0120 1 02/10/2018 14:47 WG1071579 lethylene Chloride U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 -Methyl-2-pentanone (MIBK) U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 lethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 -Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	opropylbenzene	U		0.000291	0.00120	1	02/10/2018 14:47	WG1071579
Idethylene Chloride U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 Methyl-2-pentanone (MIBK) U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 Iethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	-lsopropyltoluene	U		0.000245	0.00120	1	02/10/2018 14:47	WG1071579
Methyl-2-pentanone (MIBK) U 0.00225 0.0120 1 02/10/2018 14:47 WG1071579 Jethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	-Butanone (MEK)	U		0.00561	0.0120	1	02/10/2018 14:47	WG1071579
tethyl tert-butyl ether U 0.000254 0.00120 1 02/10/2018 14:47 WG1071579 aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	ethylene Chloride	U		0.00120	0.00599	1	02/10/2018 14:47	WG1071579
aphthalene U 0.00120 0.00599 1 02/10/2018 14:47 WG1071579 Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	-Methyl-2-pentanone (MIBK)	U		0.00225	0.0120	1	02/10/2018 14:47	WG1071579
Propylbenzene U 0.000247 0.00120 1 02/10/2018 14:47 WG1071579 tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	lethyl tert-butyl ether	U		0.000254	0.00120	1	02/10/2018 14:47	WG1071579
tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	aphthalene	U		0.00120	0.00599	1	02/10/2018 14:47	WG1071579
tyrene U 0.000281 0.00120 1 02/10/2018 14:47 WG1071579 1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579	·	U		0.000247	0.00120	1	02/10/2018 14:47	
1,1,2-Tetrachloroethane U 0.000317 0.00120 1 02/10/2018 14:47 WG1071579		U		0.000281	0.00120	1	02/10/2018 14:47	
						1		
						1		
Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use	Document No:	11-680-RGL-GRL	00001-00	R	Revision 1			Reissued for Use

ACCOUNT:

GRI - Beaverton, OR

PROJECT: 5764-1195

SDG: L968449 DATE/TIME:

02/14/18 09:57

PAGE: 34 of 81

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 09:13

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000438	0.00120	1	02/10/2018 14:47	WG1071579
Tetrachloroethene	U		0.000331	0.00120	1	02/10/2018 14:47	WG1071579
Toluene	0.000567	<u>J V3</u>	0.000520	0.00599	1	02/10/2018 14:47	WG1071579
1,2,3-Trichlorobenzene	U		0.000367	0.00120	1	02/10/2018 14:47	WG1071579
1,2,4-Trichlorobenzene	U		0.000465	0.00120	1	02/10/2018 14:47	WG1071579
1,1,1-Trichloroethane	U		0.000343	0.00120	1	02/10/2018 14:47	WG1071579
1,1,2-Trichloroethane	U		0.000332	0.00120	1	02/10/2018 14:47	WG1071579
Trichloroethene	U		0.000334	0.00120	1	02/10/2018 14:47	WG1071579
Trichlorofluoromethane	U		0.000458	0.00599	1	02/10/2018 14:47	WG1071579
1,2,3-Trichloropropane	U		0.000888	0.00300	1	02/10/2018 14:47	WG1071579
1,2,4-Trimethylbenzene	0.000361	<u>J V3</u>	0.000253	0.00120	1	02/10/2018 14:47	WG1071579
1,2,3-Trimethylbenzene	U		0.000344	0.00120	1	02/10/2018 14:47	WG1071579
1,3,5-Trimethylbenzene	U		0.000319	0.00120	1	02/10/2018 14:47	WG1071579
Vinyl chloride	U		0.000349	0.00120	1	02/10/2018 14:47	WG1071579
Xylenes, Total	U		0.000837	0.00360	1	02/10/2018 14:47	WG1071579
(S) Toluene-d8	92.2			80.0-120		02/10/2018 14:47	WG1071579
(S) Dibromofluoromethane	107			74.0-131		02/10/2018 14:47	WG1071579
(S) 4-Bromofluorobenzene	114			64.0-132		02/10/2018 14:47	WG1071579

Sample Narrative:

L968449-20 WG1071579: Previous run also had low IS/SURR recovery. Matrix effect.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Acenaphthene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Acenaphthylene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Benzo(a)anthracene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Benzo(a)pyrene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Benzo(b)fluoranthene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Benzo(g,h,i)perylene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Benzo(k)fluoranthene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Chrysene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Dibenz(a,h)anthracene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Fluoranthene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Fluorene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
ndeno(1,2,3-cd)pyrene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Naphthalene	U		0.00240	0.0240	1	02/08/2018 17:31	WG1071161
Phenanthrene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
Pyrene	U		0.000719	0.00719	1	02/08/2018 17:31	WG1071161
1-Methylnaphthalene	U		0.00240	0.0240	1	02/08/2018 17:31	WG1071161
2-Methylnaphthalene	U		0.00240	0.0240	1	02/08/2018 17:31	WG1071161
2-Chloronaphthalene	U		0.00240	0.0240	1	02/08/2018 17:31	WG1071161
(S) Nitrobenzene-d5	116			14.0-149		02/08/2018 17:31	WG1071161
(S) 2-Fluorobiphenyl	90.0			34.0-125		02/08/2018 17:31	WG1071161
(S) p-Terphenyl-d14	93.8			23.0-120		02/08/2018 17:31	WG1071161

ACCOUNT:

ONE LAB. NATIONWIDE.

Ss

Gl

Sc

Collected date/time: 01/31/18 10:57

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	02/09/2018 00:27	WG1071702
Acrolein	U	<u>J4</u>	8.87	50.0	1	02/09/2018 00:27	WG1071702
Acrylonitrile	U		1.87	10.0	1	02/09/2018 00:27	WG1071702
Benzene	U		0.331	1.00	1	02/09/2018 00:27	WG1071702
Bromobenzene	U		0.352	1.00	1	02/09/2018 00:27	WG1071702
Bromodichloromethane	U		0.380	1.00	1	02/09/2018 00:27	WG1071702
Bromoform	U		0.469	1.00	1	02/09/2018 00:27	WG1071702
Bromomethane	U		0.866	5.00	1	02/09/2018 00:27	WG1071702
n-Butylbenzene	U		0.361	1.00	1	02/09/2018 00:27	WG1071702
sec-Butylbenzene	U		0.365	1.00	1	02/09/2018 00:27	WG1071702
tert-Butylbenzene	U		0.399	1.00	1	02/09/2018 00:27	WG1071702
Carbon tetrachloride	U		0.379	1.00	1	02/09/2018 00:27	WG1071702
Chlorobenzene	U		0.348	1.00	1	02/09/2018 00:27	WG1071702
Chlorodibromomethane	U		0.327	1.00	1	02/09/2018 00:27	WG1071702
Chloroethane	U		0.453	5.00	1	02/09/2018 00:27	WG1071702
Chloroform	U		0.324	5.00	1	02/09/2018 00:27	WG1071702
Chloromethane	U		0.276	2.50	1	02/09/2018 00:27	WG1071702
2-Chlorotoluene	U		0.375	1.00	1	02/09/2018 00:27	WG1071702
4-Chlorotoluene	U		0.351	1.00	1	02/09/2018 00:27	WG1071702
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	02/09/2018 00:27	WG1071702
1,2-Dibromoethane	U		0.381	1.00	1	02/09/2018 00:27	WG1071702
Dibromomethane	U		0.346	1.00	1	02/09/2018 00:27	WG1071702
1,2-Dichlorobenzene	U		0.349	1.00	1	02/09/2018 00:27	WG1071702
1,3-Dichlorobenzene	U		0.220	1.00	1	02/09/2018 00:27	WG1071702
1,4-Dichlorobenzene	U		0.274	1.00	1	02/09/2018 00:27	WG1071702
Dichlorodifluoromethane	U		0.551	5.00	1	02/09/2018 00:27	WG1071702
1,1-Dichloroethane	U		0.259	1.00	1	02/09/2018 00:27	WG1071702
1,2-Dichloroethane	U		0.361	1.00	1	02/09/2018 00:27	WG1071702
1,1-Dichloroethene	U		0.398	1.00	1	02/09/2018 00:27	WG1071702
cis-1,2-Dichloroethene	U		0.260	1.00	1	02/09/2018 00:27	WG1071702
trans-1,2-Dichloroethene	U		0.396	1.00	1	02/09/2018 00:27	WG1071702
1,2-Dichloropropane	U		0.306	1.00	1	02/09/2018 00:27	WG1071702
1,1-Dichloropropene	U		0.352	1.00	1	02/09/2018 00:27	WG1071702
1,3-Dichloropropane	U		0.366	1.00	1	02/09/2018 00:27	WG1071702
cis-1,3-Dichloropropene	U		0.418	1.00	1	02/09/2018 00:27	WG1071702
trans-1,3-Dichloropropene	U		0.419	1.00	1	02/09/2018 00:27	WG1071702 WG1071702
2,2-Dichloropropane	U		0.321	1.00	1	02/09/2018 00:27	WG1071702
Di-isopropyl ether	U		0.321	1.00	1	02/09/2018 00:27	WG1071702 WG1071702
Ethylbenzene	U		0.384	1.00	1	02/09/2018 00:27	WG1071702
Hexachloro-1,3-butadiene	U		0.256	1.00	1	02/09/2018 00:27	WG1071702 WG1071702
Isopropylbenzene	U		0.236	1.00	1	02/09/2018 00:27	WG1071702 WG1071702
p-Isopropyltoluene	U		0.350	1.00	1	02/09/2018 00:27	WG1071702 WG1071702
	U		3.93	10.0	1	02/09/2018 00:27	WG1071702 WG1071702
2-Butanone (MEK)					1		
Methylene Chloride	U		1.00	5.00	1	02/09/2018 00:27	WG1071702
4-Methyl-2-pentanone (MIBK)			2.14 0.367	10.0	1	02/09/2018 00:27 02/09/2018 00:27	WG1071702
Methyl tert-butyl ether	U			1.00	1		WG1071702
Naphthalene n Propylhonzono	U		1.00	5.00	1	02/09/2018 00:27	WG1071702
n-Propylbenzene	U		0.349	1.00	1	02/09/2018 00:27	WG1071702
Styrene 1112 Tetrachlereethane	U		0.307	1.00	1	02/09/2018 00:27	WG1071702
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	02/09/2018 00:27	WG1071702
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	02/09/2018 00:27	WG1071702
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	02/09/2018 00:27	WG1071702
Tetrachloroethene	U		0.372	1.00	1	02/09/2018 00:27	WG1071702
Toluene	U		0.412	1.00	1	02/09/2018 00:27	WG1071702
	U		0.230	1.00	1	02/09/2018 00:27	WG1071702
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	U		0.355	1.00	1	02/09/2018 00:27	WG1071702

Document No: J1-680-RGL-GRI-00001-00

ACCOUNT:

GRI - Beaverton, OR

Revision: 1 PROJECT:

5764-1195

SDG:

L968449

Reissued for Use

DATE/TIME: 02/14/18 09:57 PAGE:

36 of 81

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 10:57

L968449

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,1,1-Trichloroethane	U		0.319	1.00	1	02/09/2018 00:27	WG1071702
1,1,2-Trichloroethane	U		0.383	1.00	1	02/09/2018 00:27	WG1071702
Trichloroethene	U		0.398	1.00	1	02/09/2018 00:27	WG1071702
Trichlorofluoromethane	U		1.20	5.00	1	02/09/2018 00:27	WG1071702
1,2,3-Trichloropropane	U		0.807	2.50	1	02/09/2018 00:27	WG1071702
1,2,4-Trimethylbenzene	U		0.373	1.00	1	02/09/2018 00:27	WG1071702
1,2,3-Trimethylbenzene	U		0.321	1.00	1	02/09/2018 00:27	WG1071702
1,3,5-Trimethylbenzene	U		0.387	1.00	1	02/09/2018 00:27	WG1071702
Vinyl chloride	U		0.259	1.00	1	02/09/2018 00:27	WG1071702
Xylenes, Total	U		1.06	3.00	1	02/09/2018 00:27	WG1071702
(S) Toluene-d8	107			80.0-120		02/09/2018 00:27	WG1071702
(S) Dibromofluoromethane	85.6			76.0-123		02/09/2018 00:27	WG1071702
(S) 4-Bromofluorobenzene	95.0			80.0-120		02/09/2018 00:27	WG1071702

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0420	0.150	3	02/08/2018 13:39	WG1071139
Acenaphthene	U		0.0300	0.150	3	02/08/2018 13:39	WG1071139
Acenaphthylene	U		0.0360	0.150	3	02/08/2018 13:39	WG1071139
Benzo(a)anthracene	U		0.0123	0.150	3	02/08/2018 13:39	WG1071139
Benzo(a)pyrene	U		0.0348	0.150	3	02/08/2018 13:39	WG1071139
Benzo(b)fluoranthene	U		0.00636	0.150	3	02/08/2018 13:39	WG1071139
Benzo(g,h,i)perylene	U		0.00681	0.150	3	02/08/2018 13:39	WG1071139
Benzo(k)fluoranthene	U		0.0408	0.150	3	02/08/2018 13:39	WG1071139
Chrysene	U		0.0324	0.150	3	02/08/2018 13:39	WG1071139
Dibenz(a,h)anthracene	U		0.0119	0.150	3	02/08/2018 13:39	WG1071139
Fluoranthene	U		0.0471	0.150	3	02/08/2018 13:39	WG1071139
Fluorene	U		0.0255	0.150	3	02/08/2018 13:39	WG1071139
Indeno(1,2,3-cd)pyrene	U		0.0444	0.150	3	02/08/2018 13:39	WG1071139
Naphthalene	0.0599	<u>J</u>	0.0594	0.750	3	02/08/2018 13:39	WG1071139
Phenanthrene	U		0.0246	0.150	3	02/08/2018 13:39	WG1071139
Pyrene	U		0.0351	0.150	3	02/08/2018 13:39	WG1071139
1-Methylnaphthalene	U		0.0246	0.750	3	02/08/2018 13:39	WG1071139
2-Methylnaphthalene	U		0.0271	0.750	3	02/08/2018 13:39	WG1071139
2-Chloronaphthalene	U		0.0194	0.750	3	02/08/2018 13:39	WG1071139
(S) Nitrobenzene-d5	116			31.0-160		02/08/2018 13:39	WG1071139
(S) 2-Fluorobiphenyl	108			48.0-148		02/08/2018 13:39	WG1071139
(S) p-Terphenyl-d14	91.8			37.0-146		02/08/2018 13:39	WG1071139

Sample Narrative:

L968449-21 WG1071139: Cannot be analyzed at a lower dilution due to extract emulsion.

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 11:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.6		1	02/12/2018 10:15	WG1072601

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.00807	ВЈ	0.00339	0.0242	1	02/13/2018 08:30	WG1072718

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Antimony	U		0.908	2.42	1	02/13/2018 20:04	WG1073100
Arsenic	3.12		0.787	2.42	1	02/13/2018 20:04	WG1073100
Beryllium	0.106	<u>J</u>	0.0848	0.242	1	02/13/2018 20:04	WG1073100
Cadmium	U		0.0848	0.606	1	02/13/2018 20:04	WG1073100
Chromium	7.50		0.170	1.21	1	02/13/2018 20:04	WG1073100
Copper	2.84		0.642	2.42	1	02/13/2018 20:04	WG1073100
Lead	6.54		0.230	0.606	1	02/13/2018 20:04	WG1073100
Nickel	5.30		0.593	2.42	1	02/13/2018 20:04	WG1073100
Selenium	U		0.896	2.42	1	02/13/2018 20:04	WG1073100
Silver	U		0.339	1.21	1	02/13/2018 20:04	WG1073100
Thallium	U		0.787	2.42	1	02/13/2018 20:04	WG1073100
Zinc	28.1		0.715	6.06	1	02/13/2018 20:04	WG1073100

СQс

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.45	J	1.60	4.84	1	02/09/2018 12:57	WG1071154
Residual Range Organics (RRO)	U		4.00	12.1	1	02/09/2018 12:57	WG1071154
(S) o-Terphenyl	65.5			18.0-148		02/09/2018 12:57	WG1071154

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Acenaphthene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Acenaphthylene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Benzo(a)anthracene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Benzo(a)pyrene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Benzo(b)fluoranthene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Benzo(g,h,i)perylene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Benzo(k)fluoranthene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Chrysene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Dibenz(a,h)anthracene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Fluoranthene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Fluorene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Naphthalene	U		0.00242	0.0242	1	02/08/2018 17:52	WG1071161
Phenanthrene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
Pyrene	U		0.000727	0.00727	1	02/08/2018 17:52	WG1071161
1-Methylnaphthalene	U		0.00242	0.0242	1	02/08/2018 17:52	WG1071161
2-Methylnaphthalene	U		0.00242	0.0242	1	02/08/2018 17:52	WG1071161
2-Chloronaphthalene	U		0.00242	0.0242	1	02/08/2018 17:52	WG1071161
(S) Nitrobenzene-d5	108			14.0-149		02/08/2018 17:52	WG1071161
(S) 2-Fluorobiphenyl	79.3			34.0-125		02/08/2018 17:52	WG1071161

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: GRI - Beaverton, OR PROJECT: 5764-1195

SDG: L968449

DATE/TIME: 02/14/18 09:57

PAGE: 38 of 81

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 11:15

L968449

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	<u> </u>							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
(S) p-Terphenyl-d14	62.6			23.0-120		02/08/2018 17:52	WG1071161	

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:45

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.3		1	02/12/2018 10:15	WG1072601

³Ss

⁴ Cn

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	0.0188	J	0.0120	0.0600	1	02/10/2018 15:09	WG1071579
Acrylonitrile	U		0.00215	0.0120	1	02/10/2018 15:09	WG1071579
Benzene	U		0.000324	0.00120	1	02/10/2018 15:09	WG1071579
Bromobenzene	U		0.000341	0.00120	1	02/10/2018 15:09	WG1071579
Bromodichloromethane	U		0.000305	0.00120	1	02/10/2018 15:09	WG1071579
Bromoform	U		0.000509	0.00120	1	02/10/2018 15:09	WG1071579
Bromomethane	U		0.00161	0.00600	1	02/10/2018 15:09	WG1071579
n-Butylbenzene	U		0.000310	0.00120	1	02/10/2018 15:09	WG1071579
sec-Butylbenzene	U		0.000241	0.00120	1	02/10/2018 15:09	WG1071579
tert-Butylbenzene	U		0.000247	0.00120	1	02/10/2018 15:09	WG1071579
Carbon tetrachloride	U		0.000394	0.00120	1	02/10/2018 15:09	WG1071579
Chlorobenzene	U		0.000255	0.00120	1	02/10/2018 15:09	WG1071579
Chlorodibromomethane	U		0.000448	0.00120	1	02/10/2018 15:09	WG1071579
Chloroethane	U		0.00114	0.00600	1	02/10/2018 15:09	WG1071579
Chloroform	U		0.000275	0.00600	1	02/10/2018 15:09	WG1071579
Chloromethane	U		0.000450	0.00300	1	02/10/2018 15:09	WG1071579
2-Chlorotoluene	U		0.000361	0.00120	1	02/10/2018 15:09	WG1071579
4-Chlorotoluene	U		0.000288	0.00120	1	02/10/2018 15:09	WG1071579
1,2-Dibromo-3-Chloropropane	U		0.000266	0.00600	1	02/10/2018 15:09	WG1071579
1.2-Dibromoethane	U		0.000412	0.00120	1	02/10/2018 15:09	WG1071579
Dibromomethane	U		0.000459	0.00120	1	02/10/2018 15:09	WG1071579
1,2-Dichlorobenzene	U		0.000433	0.00120	1	02/10/2018 15:09	WG1071579
1,3-Dichlorobenzene	U		0.000300	0.00120	1	02/10/2018 15:09	WG1071579
1,4-Dichlorobenzene	U		0.000287	0.00120	1	02/10/2018 15:09	WG1071579
Dichlorodifluoromethane	U		0.000271	0.00120	1	02/10/2018 15:09	
	U		0.000830	0.00000	1	02/10/2018 15:09	WG1071579 WG1071579
1,1-Dichloroethane 1,2-Dichloroethane	U		0.000239	0.00120	1		
,				0.00120	1	02/10/2018 15:09	WG1071579
1,1-Dichloroethene	U		0.000364			02/10/2018 15:09	WG1071579
cis-1,2-Dichloroethene	U		0.000282	0.00120	1	02/10/2018 15:09	WG1071579
trans-1,2-Dichloroethene	U		0.000317	0.00120	1	02/10/2018 15:09	WG1071579
1,2-Dichloropropane	U		0.000430	0.00120	1	02/10/2018 15:09	WG1071579
1,1-Dichloropropene	U		0.000381	0.00120	1	02/10/2018 15:09	WG1071579
1,3-Dichloropropane	U		0.000249	0.00120	1	02/10/2018 15:09	WG1071579
cis-1,3-Dichloropropene	U		0.000315	0.00120	1	02/10/2018 15:09	WG1071579
trans-1,3-Dichloropropene	U		0.000321	0.00120	1	02/10/2018 15:09	WG1071579
2,2-Dichloropropane	U		0.000335	0.00120	1	02/10/2018 15:09	WG1071579
Di-isopropyl ether	U		0.000298	0.00120	1	02/10/2018 15:09	WG1071579
Ethylbenzene	U		0.000357	0.00120	1	02/10/2018 15:09	WG1071579
Hexachloro-1,3-butadiene	U		0.000411	0.00120	1	02/10/2018 15:09	<u>WG1071579</u>
Isopropylbenzene	U		0.000292	0.00120	1	02/10/2018 15:09	WG1071579
p-Isopropyltoluene	U		0.000245	0.00120	1	02/10/2018 15:09	WG1071579
2-Butanone (MEK)	U		0.00562	0.0120	1	02/10/2018 15:09	<u>WG1071579</u>
Methylene Chloride	U		0.00120	0.00600	1	02/10/2018 15:09	<u>WG1071579</u>
4-Methyl-2-pentanone (MIBK)	U		0.00226	0.0120	1	02/10/2018 15:09	<u>WG1071579</u>
Methyl tert-butyl ether	U		0.000255	0.00120	1	02/10/2018 15:09	<u>WG1071579</u>
Naphthalene	U		0.00120	0.00600	1	02/10/2018 15:09	<u>WG1071579</u>
n-Propylbenzene	U		0.000247	0.00120	1	02/10/2018 15:09	<u>WG1071579</u>
Styrene	U		0.000281	0.00120	1	02/10/2018 15:09	WG1071579
1,1,1,2-Tetrachloroethane	U		0.000317	0.00120	1	02/10/2018 15:09	WG1071579
1,1,2,2-Tetrachloroethane	U		0.000438	0.00120	1	02/10/2018 15:09	WG1071579
Document No. 1	1-680-RGL-GRI-(00001-00	R	evision: 1			Reissued for Use

ACCOUNT:

GRI - Beaverton, OR

PROJECT: 5764-1195

SDG: L968449

DATE/TIME: 02/14/18 09:57

PAGE: 40 of 81

ONE LAB. NATIONWIDE.

Collected date/time: 01/31/18 15:45

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
1,1,2-Trichlorotrifluoroethane	U		0.000438	0.00120	1	02/10/2018 15:09	WG1071579
Tetrachloroethene	U		0.000331	0.00120	1	02/10/2018 15:09	WG1071579
Toluene	U		0.000521	0.00600	1	02/10/2018 15:09	WG1071579
1,2,3-Trichlorobenzene	U		0.000367	0.00120	1	02/10/2018 15:09	WG1071579
1,2,4-Trichlorobenzene	U		0.000466	0.00120	1	02/10/2018 15:09	WG1071579
1,1,1-Trichloroethane	U		0.000343	0.00120	1	02/10/2018 15:09	WG1071579
1,1,2-Trichloroethane	U		0.000333	0.00120	1	02/10/2018 15:09	WG1071579
Trichloroethene	U		0.000335	0.00120	1	02/10/2018 15:09	WG1071579
Trichlorofluoromethane	U		0.000459	0.00600	1	02/10/2018 15:09	WG1071579
1,2,3-Trichloropropane	U		0.000890	0.00300	1	02/10/2018 15:09	WG1071579
1,2,4-Trimethylbenzene	U		0.000253	0.00120	1	02/10/2018 15:09	WG1071579
1,2,3-Trimethylbenzene	U		0.000345	0.00120	1	02/10/2018 15:09	WG1071579
1,3,5-Trimethylbenzene	U		0.000319	0.00120	1	02/10/2018 15:09	WG1071579
Vinyl chloride	U		0.000349	0.00120	1	02/10/2018 15:09	WG1071579
Xylenes, Total	U		0.000838	0.00360	1	02/10/2018 15:09	WG1071579
(S) Toluene-d8	90.7			80.0-120		02/10/2018 15:09	WG1071579
(S) Dibromofluoromethane	112			74.0-131		02/10/2018 15:09	WG1071579
(S) 4-Bromofluorobenzene	112			64.0-132		02/10/2018 15:09	WG1071579

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.58	4.80	1	02/09/2018 13:10	WG1071154
Residual Range Organics (RRO)	5.79	<u>J</u>	3.96	12.0	1	02/09/2018 13:10	WG1071154
(S) o-Terphenyl	63.6			18.0-148		02/09/2018 13:10	WG1071154

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00241	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Acenaphthene	0.00376	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Acenaphthylene	0.000818	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Benzo(a)anthracene	0.00109	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Benzo(a)pyrene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Benzo(b)fluoranthene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Benzo(g,h,i)perylene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Benzo(k)fluoranthene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Chrysene	0.000728	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Dibenz(a,h)anthracene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Fluoranthene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Fluorene	0.00339	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Naphthalene	0.0129	<u>J</u>	0.00240	0.0240	1	02/08/2018 18:13	WG1071161
Phenanthrene	0.00928		0.000720	0.00720	1	02/08/2018 18:13	WG1071161
Pyrene	0.00229	<u>J</u>	0.000720	0.00720	1	02/08/2018 18:13	WG1071161
1-Methylnaphthalene	0.0451		0.00240	0.0240	1	02/08/2018 18:13	WG1071161
2-Methylnaphthalene	0.0520		0.00240	0.0240	1	02/08/2018 18:13	WG1071161
2-Chloronaphthalene	U		0.00240	0.0240	1	02/08/2018 18:13	WG1071161
(S) Nitrobenzene-d5	117			14.0-149		02/08/2018 18:13	WG1071161
(S) 2-Fluorobiphenyl	85.7			34.0-125		02/08/2018 18:13	WG1071161
(S) p-Terphenyl-d14	81.4			23.0-120		02/08/2018 18:13	WG1071161

Document No: J1-680-RGL-GRI-00001-00 ACCOUNT:

Revision: 1

Reissued for Use

Sc

DATE/TIME: PROJECT: SDG: GRI - Beaverton, OR 5764-1195 L968449 02/14/18 09:57 Analyte

Diesel Range Organics (DRO)

(S) o-Terphenyl

Residual Range Organics (RRO)

SAMPLE RESULTS - 24

ONE LAB. NATIONWIDE.

Batch

WG1071154

WG1071154

WG1071154

Collected date/time: 01/31/18 15:00

Total Solids by Method 2540 G-2011

RDL (dry)

mg/kg

4.71

11.8

18.0-148

Dilution

Analysis

date / time

02/09/2018 13:24

02/09/2018 13:24

02/09/2018 13:24

MDL (dry)

mg/kg

1.56

3.89

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.8		1	02/12/2018 10:15	WG1072601

Ss

⁴ Cn	

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Result (dry)

mg/kg

U

U

97.9

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Qualifier

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.000724	<u>J</u>	0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Acenaphthene	0.00140	<u>J</u>	0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Acenaphthylene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Benzo(a)anthracene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Benzo(a)pyrene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Benzo(b)fluoranthene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Benzo(g,h,i)perylene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Benzo(k)fluoranthene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Chrysene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Dibenz(a,h)anthracene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Fluoranthene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Fluorene	0.00128	<u>J</u>	0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Naphthalene	U		0.00236	0.0236	1	02/08/2018 19:15	WG1071161
Phenanthrene	0.00314	<u>J</u>	0.000707	0.00707	1	02/08/2018 19:15	WG1071161
Pyrene	U		0.000707	0.00707	1	02/08/2018 19:15	WG1071161
1-Methylnaphthalene	0.00855	<u>J</u>	0.00236	0.0236	1	02/08/2018 19:15	WG1071161
2-Methylnaphthalene	0.00959	<u>J</u>	0.00236	0.0236	1	02/08/2018 19:15	WG1071161
2-Chloronaphthalene	U		0.00236	0.0236	1	02/08/2018 19:15	WG1071161
(S) Nitrobenzene-d5	115			14.0-149		02/08/2018 19:15	WG1071161
(S) 2-Fluorobiphenyl	90.5			34.0-125		02/08/2018 19:15	WG1071161
(S) p-Terphenyl-d14	90.1			23.0-120		02/08/2018 19:15	WG1071161

ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Collected date/time: 02/01/18 11:15

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	<u></u>
Anthracene	U		0.0420	0.150	3	02/08/2018 14:02	WG1071139
Acenaphthene	U		0.0300	0.150	3	02/08/2018 14:02	WG1071139
Acenaphthylene	U		0.0360	0.150	3	02/08/2018 14:02	WG1071139
Benzo(a)anthracene	U		0.0123	0.150	3	02/08/2018 14:02	WG1071139
Benzo(a)pyrene	U		0.0348	0.150	3	02/08/2018 14:02	WG1071139
Benzo(b)fluoranthene	U		0.00636	0.150	3	02/08/2018 14:02	WG1071139
Benzo(g,h,i)perylene	U		0.00681	0.150	3	02/08/2018 14:02	WG1071139
Benzo(k)fluoranthene	U		0.0408	0.150	3	02/08/2018 14:02	WG1071139
Chrysene	U		0.0324	0.150	3	02/08/2018 14:02	WG1071139
Dibenz(a,h)anthracene	U		0.0119	0.150	3	02/08/2018 14:02	WG1071139
Fluoranthene	U		0.0471	0.150	3	02/08/2018 14:02	WG1071139
Fluorene	U		0.0255	0.150	3	02/08/2018 14:02	WG1071139
Indeno(1,2,3-cd)pyrene	U		0.0444	0.150	3	02/08/2018 14:02	WG1071139
Naphthalene	0.0872	<u>J</u>	0.0594	0.750	3	02/08/2018 14:02	WG1071139
Phenanthrene	U		0.0246	0.150	3	02/08/2018 14:02	WG1071139
Pyrene	U		0.0351	0.150	3	02/08/2018 14:02	WG1071139
1-Methylnaphthalene	0.0370	<u>J</u>	0.0246	0.750	3	02/08/2018 14:02	WG1071139
2-Methylnaphthalene	0.0355	<u>J</u>	0.0271	0.750	3	02/08/2018 14:02	WG1071139
2-Chloronaphthalene	U		0.0194	0.750	3	02/08/2018 14:02	WG1071139
(S) Nitrobenzene-d5	118			31.0-160		02/08/2018 14:02	WG1071139
(S) 2-Fluorobiphenyl	109			48.0-148		02/08/2018 14:02	WG1071139

37.0-146

(S) p-Terphenyl-d14

L968449-25 WG1071139: Cannot be analyzed at a lower dilution due to extract emulsion.

92.7

GRI - Beaverton, OR

02/08/2018 14:02

WG1071139

ONE LAB. NATIONWIDE.

Collected date/time: 02/01/18 11:10

L968449

Total Solids by Method 2540 G-2011

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.8		1	02/12/2018 10:29	WG1072603

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Acenaphthene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Acenaphthylene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Benzo(a)anthracene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Benzo(a)pyrene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Benzo(b)fluoranthene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Benzo(g,h,i)perylene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Benzo(k)fluoranthene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Chrysene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Dibenz(a,h)anthracene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Fluoranthene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Fluorene	0.000754	<u>J</u>	0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Naphthalene	U		0.00239	0.0239	1	02/08/2018 19:36	WG1071161
Phenanthrene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
Pyrene	U		0.000716	0.00716	1	02/08/2018 19:36	WG1071161
1-Methylnaphthalene	U		0.00239	0.0239	1	02/08/2018 19:36	WG1071161
2-Methylnaphthalene	U		0.00239	0.0239	1	02/08/2018 19:36	WG1071161
2-Chloronaphthalene	U		0.00239	0.0239	1	02/08/2018 19:36	WG1071161
(S) Nitrobenzene-d5	123			14.0-149		02/08/2018 19:36	WG1071161
(S) 2-Fluorobiphenyl	92.8			34.0-125		02/08/2018 19:36	WG1071161
(S) p-Terphenyl-d14	86.6			23.0-120		02/08/2018 19:36	WG1071161

ONE LAB. NATIONWIDE.

Collected date/time: 02/01/18 14:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.9		1	02/12/2018 10:29	WG1072603

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.59	4.83	1	02/09/2018 13:38	WG1071154
Residual Range Organics (RRO)	U		3.98	12.1	1	02/09/2018 13:38	WG1071154
(S) o-Terphenyl	82.9			18.0-148		02/09/2018 13:38	WG1071154

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00170	J	0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Acenaphthene	0.0327		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Acenaphthylene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Benzo(a)anthracene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Benzo(a)pyrene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Benzo(b)fluoranthene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Benzo(g,h,i)perylene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Benzo(k)fluoranthene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Chrysene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Dibenz(a,h)anthracene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Fluoranthene	0.00377	<u>J</u>	0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Fluorene	0.0109		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
ndeno(1,2,3-cd)pyrene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Naphthalene	0.0200	<u>J</u>	0.00241	0.0241	1	02/08/2018 19:56	WG1071161
Phenanthrene	U		0.000724	0.00724	1	02/08/2018 19:56	WG1071161
Pyrene	0.00255	<u>J</u>	0.000724	0.00724	1	02/08/2018 19:56	WG1071161
1-Methylnaphthalene	0.00320	<u>J</u>	0.00241	0.0241	1	02/08/2018 19:56	WG1071161
2-Methylnaphthalene	0.00403	<u>J</u>	0.00241	0.0241	1	02/08/2018 19:56	WG1071161
2-Chloronaphthalene	U		0.00241	0.0241	1	02/08/2018 19:56	WG1071161
(S) Nitrobenzene-d5	122			14.0-149		02/08/2018 19:56	WG1071161
(S) 2-Fluorobiphenyl	86.5			34.0-125		02/08/2018 19:56	WG1071161
(S) p-Terphenyl-d14	74.5			23.0-120		02/08/2018 19:56	WG1071161

Cn

Analyte

Anthracene

Acenaphthene

Acenaphthylene

Benzo(a)pyrene

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(q,h,i)perylene

Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

2-Chloronaphthalene

(S) Nitrobenzene-d5

(S) 2-Fluorobiphenyl

SAMPLE RESULTS - 28

ONE LAB. NATIONWIDE.

Batch

WG1071161

WG1071161 WG1071161

WG1071161

WG1071161

WG1071161

Collected date/time: 02/01/18 15:20

RDL (dry)

mg/kg

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.139

0.465

0.139

0.139

0.465

0.465

0.465

14.0-149

34.0-125

23.0-120

Dilution

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Analysis

date / time

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

02/08/2018 20:38

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.1		1	02/12/2018 10:29	WG1072603

MDL (dry)

mg/kg

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0139

0.0465

0.0139

0.0139

0.0465

0.0465

0.0465

Ss

⁴ Cn	
	ı

L968449-28 WG1071161: Cannot be analyzed at a lower dilution due to non-target matrix interference.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Qualifier

J

J

J

J

J

<u>J7</u>

<u>J7</u>

<u>J7</u>

Result (dry)

mg/kg

0.0147

0.0205

0.0257

0.0163

0.0432

0.449

0.0201

0.0152

0.0224

0.0150

0.0199

U

U

U

U

U

U

U

95.0

82.0

79.2

U

SAMPLE RESULTS - 29

ONE LAB. NATIONWIDE.

Collected date/time: 02/01/18 16:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.0		1	02/12/2018 10:29	WG1072603

Semi	Volatile	Organic	Compounds	(GC/MS)	by Method	82/0D-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Acenaphthene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Acenaphthylene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Benzo(a)anthracene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Benzo(a)pyrene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Benzo(b)fluoranthene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Benzo(g,h,i)perylene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Benzo(k)fluoranthene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Chrysene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Dibenz(a,h)anthracene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Fluoranthene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Fluorene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Indeno(1,2,3-cd)pyrene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Naphthalene	U		0.00244	0.0244	1	02/08/2018 20:17	WG1071161
Phenanthrene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
Pyrene	U		0.000732	0.00732	1	02/08/2018 20:17	WG1071161
1-Methylnaphthalene	U		0.00244	0.0244	1	02/08/2018 20:17	WG1071161
2-Methylnaphthalene	U		0.00244	0.0244	1	02/08/2018 20:17	WG1071161
2-Chloronaphthalene	U		0.00244	0.0244	1	02/08/2018 20:17	WG1071161
(S) Nitrobenzene-d5	124			14.0-149		02/08/2018 20:17	WG1071161
(S) 2-Fluorobiphenyl	91.7			34.0-125		02/08/2018 20:17	WG1071161
(S) p-Terphenyl-d14	82.7			23.0-120		02/08/2018 20:17	WG1071161

ACCOUNT:

GRI - Beaverton, OR

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L968449-01,05

Method Blank (MB)

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %
 %

 Total Solids
 0.001

L967090-02 Original Sample (OS) • Duplicate (DUP)

(OS) L967090-02 02/06/18 14:43 • (DUP) R3284523-3 02/06/18 14:43

(00) 2007 000 02 02/00/10	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	68.1	68.3	1	0		5

Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3284523-2 02/06/18 14:43

(200) 11020 1020 2 02/0	0, 10 1 11 10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L968449-06,07,08,09,10,11,12,13

Method Blank (MB)

Total Solids

(MB) R3285819-1 02/12/	18 11:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	

L968449-06 Original Sample (OS) • Duplicate (DUP)

(OS) L96	8449-06 C)2/12/18 11:15 -	· (DUP)	R3285819-3	02/12/18 11:15

0.002

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	56.6	60.3	1	6	J3	5

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3285819-2 02/12/18 11:15

(100) 110200013 2 02/12/	Spike Amount	LCS Resul	t LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85-115

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L968449-14,15,18,19

Method Blank (MB)

Total Solids

(MB) R3285867-1 0)2/12/18 11:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.001			

3

L968449-15 Original Sample (OS) • Duplicate (DUP)

84.4

83.7

(OS) L968449-15 0	2/12/18 11:03 • (DUP) R	3285867-3	02/12/18 11:0)3		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%

Laboratory Control Sample (LCS)

(LCS) R3285867-2 02/12	2/18 11:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

5

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L968449-20,22,23,24

Method Blank (MB)

(MB) R3285816-1 02	2/12/18 10:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.003			

L968449-20 Original Sample (OS) • Duplicate (DUP)

(OS) L968449-20 02/12/18 10:15 • (DUP) R3285816-3 02/12/18 10:15							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	83.4	83.4	1	0		5	

Laboratory Control Sample (LCS)

(LCS) R3285816-2 02/1	2/18 10:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L968449-26,27,28,29

Method Blank (MB)

(MB) R3285818-1 02	2/12/18 10:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.002			

Cn

L968449-26 Original Sample (OS) • Duplicate (DUP)

(OS) L968449-26 02	2/12/18 10:29 • (DUI	P) R3285818-3	02/12/18 10	Ͻ:29		
	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.8	84.9	1	1		5

Laboratory Control Sample (LCS)

(LCS) R3285818-2 02/12	2/18 10:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

ONE LAB. NATIONWIDE.

Mercury by Method 7470A

L968449-02,03,04,16,17

Method Blank (MB)

Mercury

(MB) R3285187-1 02/09/18 07:35 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Mercury U 0.0490 0.200

Cn

(LCS) R3285187-2 02/09/18 07:38 • (LCSD) R3285187-5 02/09/18 09:53

3.00

	Spike Amount	LCS Result	LCSD Result	LCS Rec.
Analyto	ua/l	ua/l	ua/l	0/_

2.44

Result	LCSD Result	LCS Rec.
	ua/l	%

81.2

LCSD Rec.	Rec. Limits
%	%

80-120

LCS Qualifier	LCSD Qualifier	RPD	
		%	

<u>J3</u>

3.01

(OS) I 968449-16 02/09/18 07:42 • (MS) R3285187-3 02/09/18 07:45 • (MSD) R3285187-4 02/09/18 07:47

(03) 1300	145 10 02/05/1	10 07.42 - (1115) 1	(3203107 3 02	103/10 07.40	5 · (IVISB) 1(5205)	107 + 02/03/	10 07.47
		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Re

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Mercury	3.00	U	2.46	2.28	82.1	76.1	1	75-125			7.63	20

100

GI

ONE LAB. NATIONWIDE.

Mercury by Method 7471A

L968449-01,05,22

Method Blank (MB)

Mercury

(MB) R3285854-1 02/13/18 08:22 MB Result MB Qualifier MB MDL MB RDL Analyte mg/kg mg/kg mg/kg

0.0200

0.0028

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285854-2 02/13/18 08:25 • (LCSD) R3285854-3 02/13/18 08:27

0.00343

(/		- ,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Mercury	0.300	0.264	0.252	87.9	84.1	80-120			4.46	20

DS) L968449-22 02/13/18 08:30 • (MS) R3285854-4 02/13/18 08:32 • (MSD) R3285854-5 02/13/18 08:35												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.363	0.00807	0.325	0.323	87.2	86.7	1	75-125			0.531	20

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L968449-02,03,04,16,17

Method Blank (MB)

(MB) R3285110-1 (MB) R3285110-1 02/08/18 21:36												
	MB Result	MB Qualifier	MB MDL	MB RDL									
Analyte	ug/l		ug/l	ug/l									
Beryllium	U		0.700	2.00									
Cadmium	U		0.700	2.00									
Chromium	U		1.40	10.0									
Copper	U		5.30	10.0									
Nickel	U		4.90	10.0									
Selenium	U		7.40	10.0									
Silver	U		2.80	5.00									
Zinc	U		5.90	50.0									

6 _

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285110-2 0	2/08/18 21:39 • (LCSE	D) R3285110-3	3 02/08/18 21:4	2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Beryllium	1000	994	994	99.4	99.4	80-120			0.0055	20	
Cadmium	1000	1030	1020	103	102	80-120			0.367	20	ſ
Chromium	1000	983	972	98.3	97.2	80-120			1.11	20	
Copper	1000	980	970	98	97	80-120			1.05	20	l
Nickel	1000	979	981	97.9	98.1	80-120			0.253	20	
Selenium	1000	1000	1010	100	101	80-120			0.842	20	
Silver	200	183	182	91.6	91	80-120			0.653	20	
Zinc	1000	1050	1040	105	104	80-120			0.526	20	

L968592-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968592-01 02/08/18 21:46 • (MS) R3285110-5 02/08/18 21:52 • (MSD) R3285110-6 02/08/18 21:55												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Beryllium	1000	ND	1020	1010	102	101	1	75-125			0.632	20
Cadmium	1000	ND	1060	1050	106	105	1	75-125			0.269	20
Chromium	1000	ND	1010	988	101	98.8	1	75-125			2.01	20
Copper	1000	17.2	1030	1010	101	99	1	75-125			1.79	20
Nickel	1000	ND	998	989	99.8	98.9	1	75-125			0.812	20
Selenium	1000	ND	1050	1030	105	103	1	75-125			1.04	20
Silver	200	ND	187	183	93.4	91.6	1	75-125			1.97	20
Zinc	1000	ND	1080	1080	105	106	1	75-125			0.158	20

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L968449
 02/14/18 09:57
 55 of 81

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L968449-01,05,22

Method Blank (MB)

Zinc

(MB) R3286110-1 02/13/	1B) R3286110-1 02/13/18 19:22								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Antimony	U		0.75	2.00					
Arsenic	U		0.65	2.00					
Beryllium	U		0.07	0.200					
Cadmium	U		0.07	0.500					
Chromium	U		0.14	1.00					
Copper	U		0.53	2.00					
Lead	U		0.19	0.500					
Nickel	U		0.49	2.00					
Selenium	U		0.74	2.00					
Silver	U		0.28	1.00					
Thallium	U		0.65	2.00					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

0.59

5.00

(LCS) R3286110-2 02/13/18 19:25 • (LCSD) R3286110-3 02/13/18 19:28													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		Į	
Antimony	100	98.8	101	98.8	101	80-120			2.33	20			
Arsenic	100	95.2	96.8	95.2	96.8	80-120			1.73	20			
Beryllium	100	99.8	102	99.8	102	80-120			2.19	20			
Cadmium	100	97.8	99.6	97.8	99.6	80-120			1.75	20			
Chromium	100	100	103	100	103	80-120			2.47	20			
Copper	100	99.5	101	99.5	101	80-120			1.56	20			
Lead	100	100	102	100	102	80-120			1.93	20			
Nickel	100	100	102	100	102	80-120			1.68	20			
Selenium	100	95.8	97.3	95.8	97.3	80-120			1.57	20			
Silver	20.0	19.5	19.9	97.5	99.4	80-120			1.98	20			
Thallium	100	97.8	99.8	97.8	99.8	80-120			2.05	20			
Zinc	100	98.7	101	98.7	101	80-120			1.88	20			

L968899-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968899-01 02/13/18 19:31 • (MS) R3286110-6 02/13/18 19:41 • (MSD) R3286110-7 02/13/18 19:44													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Antimony	100	0.828	59.3	63.7	58.5	62.9	1	75-125	<u>J6</u>	<u>J6</u>	7.21	20	
Arsenic	100	0.698	94.6	101	93.9	99.9	1	75-125			6.09	20	
Beryllium	100	0.325	94.1	99.3	93.8	99	1	75-125			5.41	20	

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

GRI - Beaverton, OR

5764-1195

SDG: L968449

02/14/18 09:57

56 of 81

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L968449-01,05,22

L968899-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968899-01	02/12/10 10:31 -	(MS) D3286110 6	02/12/19 10://1 .	(MSD)	D3296110 7	02/12/10 10:44
1031 L3000335-01	02/13/10 13.31	111131 13200110-0	02/13/10 13.41	UVISE	N3200110-/	02/13/10 13.44

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Cadmium	100	0.0972	97.8	103	97.7	103	1	75-125			5.28	20
Chromium	100	45.3	145	144	99.8	98.3	1	75-125			1.03	20
Copper	100	20.8	120	120	98.7	99.4	1	75-125			0.541	20
Lead	100	2.96	103	107	99.8	104	1	75-125			4.07	20
Nickel	100	49.5	156	149	107	99.2	1	75-125			4.82	20
Selenium	100	U	95.1	102	95.1	102	1	75-125			6.96	20
Silver	20.0	U	20.3	21.3	101	106	1	75-125			4.63	20
Thallium	100	U	90.4	94.8	90.4	94.8	1	75-125			4.75	20
Zinc	100	35.4	126	126	90.6	90.5	1	75-125			0.0581	20

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L968449-02,03,04

Method Blank (MB)

(MB) R3285060-1 02	2/08/18 15:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Antimony	U		0.754	2.00	
Arsenic	U		0.250	2.00	
Lead	U		0.240	2.00	
Thallium	U		0.190	2.00	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285060-2 02/08	3/18 15:57 • (LCSD) R3285060-3	02/08/18 16:01
------------------------	--------------------	--------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Antimony	50.0	46.4	44.2	92.8	88.4	80-120			4.92	20
Arsenic	50.0	47.6	47.4	95.3	94.8	80-120			0.482	20
Lead	50.0	48.7	48.5	97.4	97	80-120			0.41	20
Thallium	50.0	48.7	47.9	97.4	95.7	80-120			1.7	20

L968393-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968393-14 02/08/18 16:05 • (MS) R3285060-5 02/08/18 16:13 • (MSD) R3285060-6 02/08/18 16:16

(,			_,	(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Antimony	50.0	ND	45.4	47.3	90.8	94.6	1	75-125			4.13	20
Arsenic	50.0	ND	48.2	47.9	94.9	94.3	1	75-125			0.598	20
Lead	50.0	ND	48.4	48.8	96.9	97.5	1	75-125			0.707	20
Thallium	50.0	ND	48.3	48.3	96.6	96.7	1	75-125			0.025	20

WG1071568

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L968449-16,17

Method Blank (MB)

(MB) R3285313-1 02/	/09/18 12:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Antimony	U		0.754	2.00
Arsenic	U		0.250	2.00
Lead	0.699	<u>J</u>	0.240	2.00
Thallium	0.290	<u>J</u>	0.190	2.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285313-2 02/09/18 12:10 • (LCSD)	R3285313-3 02/09/18 12:14
--	---------------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Antimony	50.0	53.9	53.1	108	106	80-120			1.57	20
Arsenic	50.0	53.0	53.0	106	106	80-120			0.0793	20
Lead	50.0	54.2	52.1	108	104	80-120			3.87	20
Thallium	50.0	52.6	52.4	105	105	80-120			0.375	20

L968449-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968449-16 02/09/18 12:17 • (MS) R3285313-5 02/09/18 12:25 • (MSD) R3285313-6 02/09/18 12:29

' '	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Antimony	50.0	0.828	52.7	53.4	104	105	1	75-125			1.41	20
Arsenic	50.0	3.01	54.7	55.9	103	106	1	75-125			2.04	20
Lead	50.0	1.84	52.5	52.8	101	102	1	75-125			0.602	20
Thallium	50.0	0.280	50.9	52.3	101	104	1	75-125			2.69	20

ACCOUNT:

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L968449-19,20,23

Method Blank (MB)						
(MB) R3285308-3 02/08/1	18 21:12					
	MB Result	MB Qualifier	MB MDL	MB RDL		ŗ
Analyte	mg/kg		mg/kg	mg/kg		
Acetone	U		0.0100	0.0500		
Acrylonitrile	U		0.00179	0.0100		
Benzene	U		0.000270	0.00100		
Bromobenzene	U		0.000284	0.00100		Г
Bromodichloromethane	U		0.000254	0.00100		
Bromoform	U		0.000424	0.00100		<u>_</u>
Bromomethane	U		0.00134	0.00500		
n-Butylbenzene	U		0.000258	0.00100		
sec-Butylbenzene	U		0.000201	0.00100		
tert-Butylbenzene	U		0.000206	0.00100		
Carbon tetrachloride	U		0.000328	0.00100		
Chlorobenzene	U		0.000212	0.00100		
Chlorodibromomethane	U		0.000373	0.00100		
Chloroethane	U		0.000946	0.00500		
Chloroform	U		0.000229	0.00500		
Chloromethane	U		0.000375	0.00250		<u> </u>
2-Chlorotoluene	U		0.000301	0.00100		
4-Chlorotoluene	U		0.000240	0.00100		
1,2-Dibromo-3-Chloropropane	U		0.00105	0.00500		
1,2-Dibromoethane	U		0.000343	0.00100		
Dibromomethane	U		0.000382	0.00100		
1,2-Dichlorobenzene	U		0.000305	0.00100		
1,3-Dichlorobenzene	U		0.000239	0.00100		
1,4-Dichlorobenzene	U		0.000226	0.00100		
Dichlorodifluoromethane	U		0.000713	0.00500		
1,1-Dichloroethane	U		0.000199	0.00100		
1,2-Dichloroethane	U		0.000265	0.00100		
1,1-Dichloroethene	U		0.000303	0.00100		
cis-1,2-Dichloroethene	U		0.000235	0.00100		
trans-1,2-Dichloroethene	U		0.000264	0.00100		
1,2-Dichloropropane	U		0.000358	0.00100		
1,1-Dichloropropene	U		0.000317	0.00100		
1,3-Dichloropropane	U		0.000207	0.00100		
cis-1,3-Dichloropropene	U		0.000262	0.00100		
trans-1,3-Dichloropropene	U		0.000267	0.00100		
2,2-Dichloropropane	U		0.000279	0.00100		
Di-isopropyl ether	U		0.000248	0.00100		
Ethylbenzene	U		0.000297	0.00100		
Hexachloro-1,3-butadiene	U		0.000342	0.00100		
Isopropylbenzene	U		0.000243	0.00100		
Document	No: J1-680-R	GL-GRI-00001	-00		Revision: 1 Reissued for	Use

SDG:

L968449

DATE/TIME:

02/14/18 09:57

PAGE:

60 of 81

PROJECT:

5764-1195

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-19,20,23

Method Blank (MB)

(S) 4-Bromofluorobenzene 102

(MB) R3285308-3 02/08/	18 21:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
p-Isopropyltoluene	U		0.000204	0.00100	L
2-Butanone (MEK)	U		0.00468	0.0100	3
Methylene Chloride	U		0.00100	0.00500	L
4-Methyl-2-pentanone (MIBK)	U		0.00188	0.0100	4
Methyl tert-butyl ether	U		0.000212	0.00100	
Naphthalene	U		0.00100	0.00500	L
n-Propylbenzene	U		0.000206	0.00100	5
Styrene	U		0.000234	0.00100	L
1,1,1,2-Tetrachloroethane	U		0.000264	0.00100	6
1,1,2,2-Tetrachloroethane	U		0.000365	0.00100	
Tetrachloroethene	U		0.000276	0.00100	
Toluene	U		0.000434	0.00500	7
1,1,2-Trichlorotrifluoroethane	U		0.000365	0.00100	L
1,2,3-Trichlorobenzene	U		0.000306	0.00100	8
1,2,4-Trichlorobenzene	U		0.000388	0.00100	
1,1,1-Trichloroethane	U		0.000286	0.00100	<u> </u>
1,1,2-Trichloroethane	U		0.000277	0.00100	9
Trichloroethene	U		0.000279	0.00100	L
Trichlorofluoromethane	U		0.000382	0.00500	
1,2,3-Trichloropropane	U		0.000741	0.00250	
1,2,3-Trimethylbenzene	U		0.000287	0.00100	
1,2,4-Trimethylbenzene	U		0.000211	0.00100	
1,3,5-Trimethylbenzene	U		0.000266	0.00100	
Vinyl chloride	U		0.000291	0.00100	
Xylenes, Total	U		0.000698	0.00300	
(S) Toluene-d8	103			80.0-120	
(S) Dibromofluoromethane	99.6			74.0-131	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

64.0-132

(LCS) R3285308-1 02/08	_CS) R3285308-1 02/08/18 20:12 • (LCSD) R3285308-2 02/08/18 20:32											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Acetone	0.125	0.114	0.107	91.5	85.7	11.0-160			6.54	23		
Acrylonitrile	0.125	0.142	0.132	113	106	61.0-143			6.78	20		
Benzene	0.0250	0.0256	0.0251	102	100	71.0-124			1.85	20		
Bromobenzene	0.0250	0.0245	0.0249	98.1	99.6	78.0-120			1.53	20		
Bromodichloromethane	0.0250	0.0251	0.0254	100	102	75.0-120			1.33	20		

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L968449
 02/14/18 09:57
 61 of 81

ONE LAB. NATIONWIDE.

PAGE:

62 of 81

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-19,20,23

(LCS) R3285308-1 02/08/1					LCCD D-	De a Limita	1.00.0	I CCD Olife	DDD	DDD Limite	
Analyte	Spike Amount mg/kg	mg/kg	LCSD Result mg/kg	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits %	
Bromoform	0.0250	0.0268	0.0271	107	109	65.0-133			1.40	20	
Bromomethane	0.0250	0.0208	0.0271	97.1	95.3	26.0-160			1.40	20	
n-Butylbenzene	0.0250	0.0243	0.0255	104	102	73.0-126			2.37	20	
sec-Butylbenzene	0.0250	0.0201	0.0255	109	106	75.0-120			2.67	20	
ert-Butylbenzene	0.0250	0.0272	0.0263	105	105	74.0-121			0.355	20	
Carbon tetrachloride	0.0250	0.0265	0.0202	106	92.4	66.0-123			13.5	20	
Chlorobenzene	0.0250	0.0258	0.0251	103	106	79.0-121			2.59	20	
Chlorodibromomethane	0.0250	0.0258	0.0268	105	107	74.0-121			2.53	20	
Chloroethane	0.0250	0.0202	0.0208	96.7	93.6	51.0-147			3.20	20	
Chloroform	0.0250	0.0242	0.0254			73.0-147			1.12	20	
	0.0250	0.0256	0.0253	102 105	101 102	51.0-138			2.91	20	
Chloromethane											
2-Chlorotoluene	0.0250	0.0248	0.0250	99.3	100	72.0-124			0.911	20	
1-Chlorotoluene	0.0250	0.0250	0.0252	100	101	78.0-120			0.781	20	
,2-Dibromo-3-Chloropropane	0.0250	0.0283	0.0268	113	107	65.0-126			5.40	20	
,2-Dibromoethane	0.0250	0.0279	0.0280	112	112	78.0-122			0.520	20	
Dibromomethane	0.0250	0.0270	0.0267	108	107	79.0-120			0.864	20	
,2-Dichlorobenzene	0.0250	0.0256	0.0259	102	104	80.0-120			1.04	20	
,3-Dichlorobenzene	0.0250	0.0244	0.0249	97.8	99.5	72.0-123			1.80	20	
,4-Dichlorobenzene	0.0250	0.0236	0.0241	94.4	96.4	77.0-120			2.13	20	
Dichlorodifluoromethane	0.0250	0.0272	0.0250	109	99.9	49.0-155			8.42	20	
,1-Dichloroethane	0.0250	0.0258	0.0255	103	102	70.0-128			1.13	20	
2-Dichloroethane	0.0250	0.0246	0.0244	98.3	97.8	69.0-128			0.562	20	
1-Dichloroethene	0.0250	0.0240	0.0228	95.8	91.1	63.0-131			5.02	20	
is-1,2-Dichloroethene	0.0250	0.0266	0.0265	106	106	74.0-123			0.235	20	
rans-1,2-Dichloroethene	0.0250	0.0253	0.0248	101	99.1	72.0-122			1.98	20	
,2-Dichloropropane	0.0250	0.0261	0.0261	104	104	75.0-126			0.0162	20	
,1-Dichloropropene	0.0250	0.0261	0.0251	104	100	72.0-130			3.81	20	
,3-Dichloropropane	0.0250	0.0271	0.0275	108	110	80.0-121			1.48	20	
cis-1,3-Dichloropropene	0.0250	0.0265	0.0274	106	110	80.0-125			3.21	20	
rans-1,3-Dichloropropene	0.0250	0.0274	0.0281	110	113	75.0-129			2.51	20	
2,2-Dichloropropane	0.0250	0.0240	0.0233	96.0	93.1	60.0-129			3.10	20	
i-isopropyl ether	0.0250	0.0269	0.0270	108	108	62.0-133			0.404	20	
thylbenzene	0.0250	0.0256	0.0260	103	104	77.0-120			1.23	20	
lexachloro-1,3-butadiene	0.0250	0.0278	0.0272	111	109	68.0-128			2.24	20	
sopropylbenzene	0.0250	0.0270	0.0267	108	107	75.0-120			1.12	20	
-Isopropyltoluene	0.0250	0.0269	0.0266	108	106	74.0-125			0.980	20	
-Butanone (MEK)	0.125	0.134	0.124	107	99.6	37.0-159			7.49	20	
Methylene Chloride	0.0250	0.0238	0.0235	95.1	94.1	67.0-123			1.09	20	
1-Methyl-2-pentanone (MIBK)	0.125	0.149	0.144	120	115	60.0-144			3.57	20	
Methyl tert-butyl ether	0.0250	0.0266	0.0260	106	104	66.0-125			2.21	20	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 GRI - Beaverton, OR
 5764-1195
 L968449
 02/14/18 09:57

(S) Dibromofluoromethane (S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-19,20,23

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285308-1 02/08/18 20:12 • (LCSD) R3285308-2 02/08/18 20:32

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Naphthalene	0.0250	0.0297	0.0294	119	118	64.0-125			0.918	20	
n-Propylbenzene	0.0250	0.0252	0.0250	101	100	78.0-120			0.644	20	
Styrene	0.0250	0.0257	0.0261	103	104	78.0-124			1.52	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0257	0.0266	103	107	74.0-124			3.61	20	- 1
1,1,2,2-Tetrachloroethane	0.0250	0.0272	0.0268	109	107	73.0-120			1.41	20	
Tetrachloroethene	0.0250	0.0253	0.0252	101	101	70.0-127			0.360	20	
Toluene	0.0250	0.0244	0.0247	97.8	98.8	77.0-120			1.04	20	
1,1,2-Trichlorotrifluoroethane	0.0250	0.0239	0.0228	95.5	91.1	64.0-135			4.67	20	
1,2,3-Trichlorobenzene	0.0250	0.0271	0.0278	108	111	68.0-126			2.42	20	
1,2,4-Trichlorobenzene	0.0250	0.0268	0.0270	107	108	70.0-127			0.889	20	
1,1,1-Trichloroethane	0.0250	0.0252	0.0243	101	97.1	69.0-125			3.56	20	
1,1,2-Trichloroethane	0.0250	0.0268	0.0276	107	110	78.0-120			2.86	20	
Trichloroethene	0.0250	0.0267	0.0257	107	103	79.0-120			3.63	20	
Trichlorofluoromethane	0.0250	0.0229	0.0215	91.5	86.2	59.0-136			6.04	20	
1,2,3-Trichloropropane	0.0250	0.0272	0.0263	109	105	73.0-124			3.48	20	
1,2,3-Trimethylbenzene	0.0250	0.0260	0.0262	104	105	76.0-120			0.715	20	
1,2,4-Trimethylbenzene	0.0250	0.0268	0.0270	107	108	75.0-120			0.592	20	
1,3,5-Trimethylbenzene	0.0250	0.0262	0.0262	105	105	75.0-120			0.115	20	
Vinyl chloride	0.0250	0.0252	0.0239	101	95.6	63.0-134			5.43	20	
Xylenes, Total	0.0750	0.0778	0.0791	104	105	77.0-120			1.66	20	
(S) Toluene-d8				102	105	80.0-120					

L968674-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

99.3

99.8

98.4

100

10.511968674=03	11 //H9/IX H3: /4 •	11/1/51 P 3 /85 3 118=4	0 7/09/18 06:04 • 10/50	1 R 3 78 5 3 0 8 5 10 7 / 0 9 / 18 0 6 7 7 4
(00) 2000074 00	02/03/10 03.24	(1113) 113203300 4	02/03/10 00:04 (1013D)) R3285308-5 02/09/18 06:24
, ,		` '	,	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	0.144	U	5.28	6.14	71.1	82.7	51.5	10.0-160			15.1	36
Acrylonitrile	0.144	U	7.55	7.70	102	104	51.5	14.0-160			2.04	33
Benzene	0.0288	U	1.35	1.38	91.0	92.6	51.5	13.0-146			1.83	27
Bromobenzene	0.0288	U	1.36	1.39	91.8	93.8	51.5	10.0-149			2.21	33
Bromodichloromethane	0.0288	U	1.37	1.36	92.0	91.7	51.5	15.0-142			0.377	28
Bromoform	0.0288	U	1.40	1.40	94.5	94.0	51.5	10.0-147			0.592	31
Bromomethane	0.0288	U	0.929	0.958	62.6	64.5	51.5	10.0-160			3.05	32
n-Butylbenzene	0.0288	U	1.34	1.35	90.1	91.2	51.5	10.0-154			1.15	37
sec-Butylbenzene	0.0288	U	1.41	1.43	95.0	96.4	51.5	10.0-151			1.43	36
tert-Butylbenzene	0.0288	U	1.41	1.44	95.2	97.1	51.5	10.0-152			1.99	35

74.0-131

64.0-132

Document No: J1-680-RGL-GRI-00001-00

Revision: 1

Reissued for Use

ACCOUNT: PROJECT:
GRI - Beaverton, OR 5764-1195

SDG: DATE/TIME: L968449 02/14/18 09:57

PAGE: 63 of 81

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L968449-19,20,23

L968674-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	4	
	11 _ 1	

 ¹ Cp
² Tc
3
[°] Ss
4
⁺Cn
5_
³Sr
6
⁶ Qc
-
[′] Gl
0
⁸ Al
AI
9 Sc
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

PAGE:

64 of 81

	Spike Amount	Original Result	MS Result (dry)	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
	(dry)	(dry)	MS Result (dry)	(dry)			Dilution		MS Qualifier	MSD Qualifier			
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Carbon tetrachloride	0.0288	U	1.28	1.30	86.2	87.6	51.5	13.0-140			1.63	30	
Chlorobenzene	0.0288	U	1.40	1.45	94.4	97.4	51.5	10.0-149			3.12	31	
Chlorodibromomethane	0.0288	U	1.41	1.47	95.1	98.6	51.5	12.0-147			3.65	29	'
Chloroethane	0.0288	U	0.420	0.408	28.3	27.4	51.5	10.0-159			2.90	33	
Chloroform	0.0288	U	1.38	1.40	92.7	94.0	51.5	18.0-148			1.37	28	
Chloromethane	0.0288	0.0531	1.24	1.29	79.7	83.4	51.5	10.0-146			4.29	29	
2-Chlorotoluene	0.0288	U	1.35	1.38	91.0	93.2	51.5	10.0-151			2.37	35	
4-Chlorotoluene	0.0288	U	1.37	1.39	92.5	93.6	51.5	10.0-150			1.15	35	
1,2-Dibromo-3-Chloropropane	0.0288	U	1.41	1.39	94.8	93.7	51.5	10.0-149			1.11	34	ļ
1,2-Dibromoethane	0.0288	U	1.52	1.59	102	107	51.5	14.0-145			4.13	28	
Dibromomethane	0.0288	U	1.48	1.49	99.6	100	51.5	18.0-144			0.595	27	
1,2-Dichlorobenzene	0.0288	U	1.43	1.45	96.4	97.4	51.5	10.0-153			1.04	34	
1,3-Dichlorobenzene	0.0288	U	1.32	1.35	88.9	90.7	51.5	10.0-150			2.04	35	
1,4-Dichlorobenzene	0.0288	U	1.28	1.31	86.4	88.3	51.5	10.0-148			2.15	34	
Dichlorodifluoromethane	0.0288	U	1.30	1.30	87.4	87.5	51.5	10.0-160			0.0740	30	
1,1-Dichloroethane	0.0288	U	1.36	1.38	91.6	93.0	51.5	19.0-148			1.53	28	
1,2-Dichloroethane	0.0288	U	1.39	1.39	93.5	93.4	51.5	17.0-147			0.101	27	
1,1-Dichloroethene	0.0288	U	1.07	1.08	72.0	72.7	51.5	10.0-150			1.05	31	
cis-1,2-Dichloroethene	0.0288	U	1.44	1.45	97.2	97.9	51.5	16.0-145			0.669	28	
trans-1,2-Dichloroethene	0.0288	U	1.29	1.31	86.6	88.4	51.5	11.0-142			1.97	29	
1,2-Dichloropropane	0.0288	U	1.41	1.43	95.3	96.4	51.5	17.0-148			1.22	28	
1,1-Dichloropropene	0.0288	U	1.36	1.36	91.7	91.8	51.5	10.0-150			0.0841	30	
1,3-Dichloropropane	0.0288	U	1.53	1.57	103	106	51.5	16.0-148			2.79	27	
cis-1,3-Dichloropropene	0.0288	U	1.48	1.52	99.3	103	51.5	13.0-150			3.27	28	
trans-1,3-Dichloropropene	0.0288	U	1.47	1.53	99.0	103	51.5	10.0-152			3.94	29	
2,2-Dichloropropane	0.0288	U	1.11	1.10	74.6	74.0	51.5	16.0-143			0.864	30	
Di-isopropyl ether	0.0288	U	1.51	1.53	102	103	51.5	16.0-149			1.47	28	
Ethylbenzene	0.0288	U	1.35	1.42	90.9	95.5	51.5	10.0-147			4.99	31	
Hexachloro-1,3-butadiene	0.0288	U	1.53	1.54	103	103	51.5	10.0-154			0.420	40	
Isopropylbenzene	0.0288	U	1.40	1.43	94.5	96.1	51.5	10.0-147			1.67	33	
p-lsopropyltoluene	0.0288	U	1.41	1.43	95.1	96.0	51.5	10.0-156			0.993	37	
2-Butanone (MEK)	0.144	U	6.55	7.08	88.1	95.4	51.5	10.0-160			7.87	33	
Methylene Chloride	0.0288	U	1.26	1.28	85.1	85.9	51.5	16.0-139			0.937	29	
4-Methyl-2-pentanone (MIBK)	0.144	U	7.78	8.01	105	108	51.5	12.0-160			2.92	32	
Methyl tert-butyl ether	0.0288	U	1.52	1.53	102	103	51.5	21.0-145			1.08	29	
Naphthalene	0.0288	U	1.49	1.61	101	109	51.5	10.0-153			7.70	36	
n-Propylbenzene	0.0288	U	1.31	1.32	88.2	88.9	51.5	10.0-151			0.837	34	
Styrene	0.0288	U	1.44	1.46	97.2	98.2	51.5	10.0-155			1.02	34	
1,1,1,2-Tetrachloroethane	0.0288	U	1.41	1.47	94.9	98.8	51.5	10.0-133			4.03	30	
1,1,1,2 ICHUCHIOIOCHIUIIC	0.0200	9	1. 11	1. 17	5 1.5	50.0	51.5	10.0 17/			1.00	50	

SDG:

L968449

DATE/TIME:

02/14/18 09:57

PROJECT:

5764-1195

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-19,20,23

L968674-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968674-03 02/09/18 03:24 • (MS) R3285308-4 02/09/18 06:04 • (MSD) R3285308-5 02/09/18 06:24

¹ Cp

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	2
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
1,1,2,2-Tetrachloroethane	0.0288	U	1.39	1.37	93.4	92.5	51.5	10.0-155			0.975	31	3
Tetrachloroethene	0.0288	U	1.25	1.29	84.5	86.6	51.5	10.0-144			2.53	32	
Toluene	0.0288	U	1.30	1.36	87.6	91.3	51.5	10.0-144			4.12	28	-
1,1,2-Trichlorotrifluoroethane	0.0288	U	1.12	1.21	75.2	81.5	51.5	10.0-153			8.08	33	4
1,2,3-Trichlorobenzene	0.0288	U	1.47	1.56	98.9	105	51.5	10.0-153			5.78	40	L
1,2,4-Trichlorobenzene	0.0288	U	1.43	1.51	96.2	101	51.5	10.0-156			5.29	40	5
1,1,1-Trichloroethane	0.0288	U	1.26	1.29	85.0	86.8	51.5	18.0-145			2.03	29	
1,1,2-Trichloroethane	0.0288	U	1.50	1.53	101	103	51.5	12.0-151			2.26	28	
Trichloroethene	0.0288	U	1.37	1.42	92.2	95.6	51.5	11.0-148			3.63	29	6
Trichlorofluoromethane	0.0288	U	0.964	0.955	64.9	64.3	51.5	10.0-157			0.984	34	
1,2,3-Trichloropropane	0.0288	U	1.43	1.44	96.4	97.1	51.5	10.0-154			0.721	32	7
1,2,3-Trimethylbenzene	0.0288	U	1.54	1.57	104	106	51.5	10.0-150			1.92	33	
1,2,4-Trimethylbenzene	0.0288	U	1.45	1.49	97.9	100	51.5	10.0-151			2.47	34	
1,3,5-Trimethylbenzene	0.0288	U	1.39	1.42	93.4	95.5	51.5	10.0-150			2.15	33	8
Vinyl chloride	0.0288	U	1.15	1.18	77.4	79.1	51.5	10.0-150			2.19	29	
Xylenes, Total	0.0865	U	4.12	4.28	92.4	96.1	51.5	10.0-150			3.85	31	9
(S) Toluene-d8					104	106		80.0-120					
(S) Dibromofluoromethane					98.7	97.8		74.0-131					
(S) 4-Bromofluorobenzene					98.8	98.4		64.0-132					

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L968449-16,17,21

Method Blank (MB)						
(MB) R3285497-3 02/08/1	8 21:32					
	MB Result	MB Qualifier	MB MDL	MB RDL		ř
Analyte	ug/l		ug/l	ug/l		
Acetone	U		10.0	50.0		Ļ
Acrolein	U		8.87	50.0		
Acrylonitrile	U		1.87	10.0		L
Benzene	U		0.331	1.00		Г
Bromobenzene	U		0.352	1.00		
Bromodichloromethane	U		0.380	1.00		L
Bromoform	U		0.469	1.00		
Bromomethane	U		0.866	5.00		
n-Butylbenzene	U		0.361	1.00		
sec-Butylbenzene	U		0.365	1.00		
tert-Butylbenzene	U		0.399	1.00		
Carbon tetrachloride	U		0.379	1.00		
Chlorobenzene	U		0.348	1.00		
Chlorodibromomethane	U		0.327	1.00		Ī
Chloroethane	U		0.453	5.00		
Chloroform	U		0.324	5.00		L
Chloromethane	U		0.276	2.50		-
2-Chlorotoluene	U		0.375	1.00		
4-Chlorotoluene	U		0.351	1.00		
1,2-Dibromo-3-Chloropropane	U		1.33	5.00		
1,2-Dibromoethane	U		0.381	1.00		
Dibromomethane	U		0.346	1.00		
1,2-Dichlorobenzene	U		0.349	1.00		
1,3-Dichlorobenzene	U		0.220	1.00		
1,4-Dichlorobenzene	U		0.274	1.00		
Dichlorodifluoromethane	U		0.551	5.00		
1,1-Dichloroethane	U		0.259	1.00		
1,2-Dichloroethane	U		0.361	1.00		
1,1-Dichloroethene	U		0.398	1.00		
cis-1,2-Dichloroethene	U		0.260	1.00		
trans-1,2-Dichloroethene	U		0.396	1.00		
1,2-Dichloropropane	U		0.306	1.00		
1,1-Dichloropropene	U		0.352	1.00		
1,3-Dichloropropane	U		0.366	1.00		
cis-1,3-Dichloropropene	U		0.418	1.00		
trans-1,3-Dichloropropene	U		0.419	1.00		
2,2-Dichloropropane	U		0.321	1.00		
Di-isopropyl ether	U		0.320	1.00		
Ethylbenzene	U		0.384	1.00		
Hexachloro-1,3-butadiene	U		0.256	1.00		
Document	No: J1-680-R	GL-GRI-00001-	-00		Revision: 1 Reissued for Use	

SDG:

L968449

DATE/TIME:

02/14/18 09:57

PAGE:

66 of 81

PROJECT:

5764-1195

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-16,17,21

Method Blank (MB)

(MB) R3285497-3 02/08/1	18 21:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Isopropylbenzene	U		0.326	1.00	
p-Isopropyltoluene	U		0.350	1.00	
2-Butanone (MEK)	U		3.93	10.0	
Methylene Chloride	U		1.00	5.00	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	
Methyl tert-butyl ether	U		0.367	1.00	
Naphthalene	U		1.00	5.00	
n-Propylbenzene	U		0.349	1.00	
Styrene	U		0.307	1.00	
1,1,1,2-Tetrachloroethane	U		0.385	1.00	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	
Tetrachloroethene	U		0.372	1.00	
Toluene	U		0.412	1.00	
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	
1,2,3-Trichlorobenzene	U		0.230	1.00	
1,2,4-Trichlorobenzene	U		0.355	1.00	
1,1,1-Trichloroethane	U		0.319	1.00	
1,1,2-Trichloroethane	U		0.383	1.00	
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	
1,2,3-Trichloropropane	U		0.807	2.50	
1,2,3-Trimethylbenzene	U		0.321	1.00	
1,2,4-Trimethylbenzene	U		0.373	1.00	
1,3,5-Trimethylbenzene	U		0.387	1.00	
/inyl chloride	U		0.259	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	108			80.0-120	
(S) Dibromofluoromethane	82.5			76.0-123	
(S) 4-Bromofluorobenzene	94.7			80.0-120	

Laboratory Control Sample (LCS)

(LCS) R3285497-1 02/08/	18 20:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Acetone	125	107	85.4	10.0-160	
Acrolein	125	480	384	10.0-160	<u>J4</u>
Acrylonitrile	125	91.3	73.0	60.0-142	
Benzene	25.0	20.7	82.7	69.0-123	

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L968449
 02/14/18 09:57
 67 of 81

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

ACCOUNT:

GRI - Beaverton, OR

L968449-16,17,21

Laboratory Control	Sample (Le	CS)				1
(LCS) R3285497-1 02/08/	18 20:36					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Bromobenzene	25.0	20.2	80.9	79.0-120		
Bromodichloromethane	25.0	20.7	82.8	76.0-120		
Bromoform	25.0	21.3	85.3	67.0-132		
Bromomethane	25.0	9.63	38.5	18.0-160		T ₂
n-Butylbenzene	25.0	22.5	89.9	72.0-126		
sec-Butylbenzene	25.0	22.7	90.7	74.0-121		L
tert-Butylbenzene	25.0	23.0	91.9	75.0-122		
Carbon tetrachloride	25.0	21.5	85.9	63.0-122		
Chlorobenzene	25.0	24.7	99.0	79.0-121		
Chlorodibromomethane	25.0	23.4	93.5	75.0-125		
Chloroethane	25.0	19.8	79.3	47.0-152		
Chloroform	25.0	20.2	80.9	72.0-121		
Chloromethane	25.0	13.8	55.1	48.0-139		
2-Chlorotoluene	25.0	21.8	87.1	74.0-122		
4-Chlorotoluene	25.0	21.5	86.2	79.0-120		
1,2-Dibromo-3-Chloropropane	25.0	19.5	77.8	64.0-127		
1,2-Dibromoethane	25.0	23.9	95.5	77.0-123		9
Dibromomethane	25.0	22.3	89.1	78.0-120		
1,2-Dichlorobenzene	25.0	22.3	89.1	80.0-120		
1,3-Dichlorobenzene	25.0	22.3	89.0	72.0-123		
1,4-Dichlorobenzene	25.0	21.3	85.3	77.0-120		
Dichlorodifluoromethane	25.0	22.3	89.3	49.0-155		
1,1-Dichloroethane	25.0	20.5	81.8	70.0-126		
1,2-Dichloroethane	25.0	18.4	73.7	67.0-126		
1,1-Dichloroethene	25.0	21.4	85.7	64.0-129		
cis-1,2-Dichloroethene	25.0	20.0	79.9	73.0-120		
trans-1,2-Dichloroethene	25.0	21.6	86.3	71.0-121		
1,2-Dichloropropane	25.0	21.8	87.3	75.0-125		
1,1-Dichloropropene	25.0	21.1	84.5	71.0-129		
1,3-Dichloropropane	25.0	22.7	90.8	80.0-121		
cis-1,3-Dichloropropene	25.0	23.4	93.4	79.0-123		
trans-1,3-Dichloropropene	25.0	24.6	98.2	74.0-127		
2,2-Dichloropropane	25.0	20.6	82.4	60.0-125		
Di-isopropyl ether	25.0	19.3	77.2	59.0-133		
Ethylbenzene	25.0	25.8	103	77.0-120		
Hexachloro-1,3-butadiene	25.0	24.7	98.7	64.0-131		
Isopropylbenzene	25.0	23.1	92.5	75.0-120		
p-lsopropyltoluene	25.0	22.8	91.2	74.0-126		
2-Butanone (MEK)	125	112	89.5	37.0-158		
Methylene Chloride	25.0	17.9	71.6	66.0-121		
Document	No: J1-680-R0	GL-GRI-00001	-00		Revision: 1	Reissued for Use

SDG:

L968449

DATE/TIME:

02/14/18 09:57

PAGE:

68 of 81

PROJECT:

5764-1195

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L968449-16,17,21

Laboratory Control Sample (LCS)

(LCS) R3285497-1 02/08/	/18 20:36				
,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
4-Methyl-2-pentanone (MIBK)	125	111	88.8	59.0-143	
Methyl tert-butyl ether	25.0	18.8	75.2	64.0-123	
Naphthalene	25.0	20.0	80.2	62.0-128	
n-Propylbenzene	25.0	23.1	92.4	79.0-120	
Styrene	25.0	22.6	90.6	78.0-124	
1,1,1,2-Tetrachloroethane	25.0	24.7	98.7	75.0-122	
1,1,2,2-Tetrachloroethane	25.0	19.9	79.4	71.0-122	
Tetrachloroethene	25.0	27.1	108	70.0-127	
Toluene	25.0	25.0	99.9	77.0-120	
1,1,2-Trichlorotrifluoroethane	25.0	22.7	90.6	61.0-136	
1,2,3-Trichlorobenzene	25.0	22.8	91.2	61.0-133	
1,2,4-Trichlorobenzene	25.0	22.9	91.5	69.0-129	
1,1,1-Trichloroethane	25.0	21.4	85.8	68.0-122	
1,1,2-Trichloroethane	25.0	23.6	94.4	78.0-120	
Trichloroethene	25.0	24.3	97.4	78.0-120	
Trichlorofluoromethane	25.0	22.2	88.8	56.0-137	
1,2,3-Trichloropropane	25.0	20.5	82.2	72.0-124	
1,2,3-Trimethylbenzene	25.0	21.9	87.5	75.0-120	
1,2,4-Trimethylbenzene	25.0	21.9	87.6	75.0-120	
1,3,5-Trimethylbenzene	25.0	22.0	87.9	75.0-120	
Vinyl chloride	25.0	20.1	80.4	64.0-133	
Xylenes, Total	75.0	75.9	101	77.0-120	

108

82.4

96.4

80.0-120

76.0-123

80.0-120

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

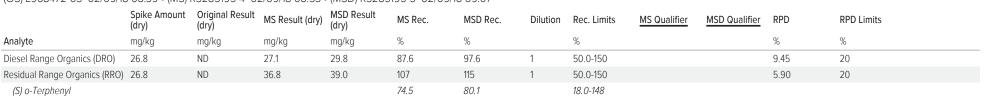
L968449-14,22,23,24,27

Method Blank (MB)

(MB) R3285195-1 02/09/18	07:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	92.2			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285195-2 02/09/18 08:12 • (LCSD) R3285195-3 02/09/18 08:26										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Diesel Range Organics (DRO)	25.0	23.1	22.9	92.2	91.6	50.0-150			0.633	20
Residual Range Organics (RRO)	25.0	25.1	26.7	101	107	50.0-150			5.99	20
(S) o-Terphenyl				87.2	83.6	18.0-148				



L968472-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L968472-03 02/09/18 08:39 • (MS) R3285195-4 02/09/18 08:53 • (MSD) R3285195-5 02/09/18 09:07

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L968449-16,17,21,25

Method Blank (MB)

(MB) R3284911-3 02/08	3/18 09:41				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	² T
Anthracene	U		0.0140	0.0500	
Acenaphthene	U		0.0100	0.0500	³S
Acenaphthylene	U		0.0120	0.0500	L
Benzo(a)anthracene	U		0.00410	0.0500	4
Benzo(a)pyrene	U		0.0116	0.0500	⁴ C
Benzo(b)fluoranthene	U		0.00212	0.0500	<u> </u>
Benzo(g,h,i)perylene	U		0.00227	0.0500	⁵ S
Benzo(k)fluoranthene	U		0.0136	0.0500	Ľ
Chrysene	U		0.0108	0.0500	6
Dibenz(a,h)anthracene	U		0.00396	0.0500	_e C
Fluoranthene	U		0.0157	0.0500	
Fluorene	U		0.00850	0.0500	⁷ G
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	
Naphthalene	U		0.0198	0.250	8
Phenanthrene	U		0.00820	0.0500	⁸ A
Pyrene	U		0.0117	0.0500	<u> </u>
1-Methylnaphthalene	U		0.00821	0.250	⁹ S
2-Methylnaphthalene	U		0.00902	0.250	
2-Chloronaphthalene	U		0.00647	0.250	
(S) Nitrobenzene-d5	132			31.0-160	
(S) 2-Fluorobiphenyl	119			48.0-148	
(S) p-Terphenyl-d14	116			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

GRI - Beaverton, OR

(LCS) R3284911-1 02/08/	18 08:52 • (LCSE	D) R3284911-2	02/08/18 09:17	7							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Anthracene	2.00	2.17	2.33	109	117	64.0-142			7.06	20	
Acenaphthene	2.00	2.04	2.16	102	108	66.0-132			5.87	20	
Acenaphthylene	2.00	2.06	2.19	103	110	65.0-132			6.33	20	
Benzo(a)anthracene	2.00	2.04	2.11	102	105	59.0-134			3.44	20	
Benzo(a)pyrene	2.00	2.12	2.23	106	111	61.0-145			4.91	20	
Benzo(b)fluoranthene	2.00	1.97	2.04	98.7	102	57.0-136			3.14	20	
Benzo(g,h,i)perylene	2.00	2.38	2.53	119	126	54.0-140			6.03	20	
Benzo(k)fluoranthene	2.00	2.10	2.25	105	112	57.0-141			6.73	20	
Chrysene	2.00	2.09	2.29	105	114	63.0-140			8.90	20	
Dibenz(a,h)anthracene	2.00	2.33	2.39	117	120	49.0-141			2.53	20	
Fluoranthene	2.00	2.42	2.56	121	128	65.0-143			5.46	20	

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:

L968449

02/14/18 09:57

71 of 81

5764-1195

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L968449-16,17,21,25

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

C3) N3204311-1 02/00/10 00.32 • (LC3D) N3204311-2 02/00/10 03.17												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Fluorene	2.00	1.82	1.96	90.9	98.1	64.0-129			7.56	20		
Indeno(1,2,3-cd)pyrene	2.00	2.38	2.48	119	124	53.0-141			4.21	20		
Naphthalene	2.00	1.92	2.05	96.2	102	68.0-129			6.30	20		
Phenanthrene	2.00	1.88	2.01	94.1	101	62.0-132			6.67	20		
Pyrene	2.00	1.91	2.02	95.4	101	58.0-156			5.43	20		
1-Methylnaphthalene	2.00	2.05	2.17	102	109	68.0-137			5.94	20		
2-Methylnaphthalene	2.00	1.96	2.09	98.0	105	68.0-134			6.55	20		
2-Chloronaphthalene	2.00	1.98	2.23	99.2	112	65.0-129			11.8	20		
(S) Nitrobenzene-d5				123	129	31.0-160						
(S) 2-Fluorobiphenyl				109	115	48.0-148						
(S) p-Terphenyl-d14				107	114	37.0-146						

PAGE:

72 of 81

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-\$PM8449-06,07,08,09,10,11,12,13,14,15,18,19,20,22,23,24,26,27,28,29

Method Blank (MB)

(MB) R3285294-3 02/0	08/18 13:02				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	² T
Anthracene	U		0.000600	0.00600	
Acenaphthene	U		0.000600	0.00600	3 5
Acenaphthylene	U		0.000600	0.00600	~
Benzo(a)anthracene	U		0.000600	0.00600	4
Benzo(a)pyrene	U		0.000600	0.00600	4
Benzo(b)fluoranthene	U		0.000600	0.00600	느
Benzo(g,h,i)perylene	U		0.000600	0.00600	⁵ S
Benzo(k)fluoranthene	U		0.000600	0.00600	Ľ
Chrysene	U		0.000600	0.00600	6
Dibenz(a,h)anthracene	U		0.000600	0.00600	6
Fluoranthene	U		0.000600	0.00600	
Fluorene	U		0.000600	0.00600	7 (
Indeno(1,2,3-cd)pyrene	U		0.000600	0.00600	L
Naphthalene	U		0.00200	0.0200	8
Phenanthrene	U		0.000600	0.00600	A
Pyrene	U		0.000600	0.00600	\vdash
1-Methylnaphthalene	U		0.00200	0.0200	9 5
2-Methylnaphthalene	U		0.00200	0.0200	L
2-Chloronaphthalene	U		0.00200	0.0200	
(S) Nitrobenzene-d5	114			14.0-149	
(S) 2-Fluorobiphenyl	88.7			34.0-125	
(S) p-Terphenyl-d14	87.6			23.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3285294-1 02/0	08/18 12:20 • (LCS	D) R3285294	-2 02/08/18 12:	:41							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Anthracene	0.0800	0.0763	0.0791	95.3	98.9	50.0-125			3.70	20	
Acenaphthene	0.0800	0.0732	0.0759	91.4	94.8	52.0-120			3.63	20	
Acenaphthylene	0.0800	0.0799	0.0827	99.9	103	51.0-120			3.46	20	
Benzo(a)anthracene	0.0800	0.0891	0.0926	111	116	46.0-121			3.81	20	
Benzo(a)pyrene	0.0800	0.0793	0.0829	99.1	104	42.0-121			4.45	20	
Benzo(b)fluoranthene	0.0800	0.0907	0.0869	113	109	42.0-123			4.23	20	
Benzo(g,h,i)perylene	0.0800	0.0816	0.0788	102	98.5	43.0-128			3.49	20	
Benzo(k)fluoranthene	0.0800	0.0715	0.0696	89.3	87.1	45.0-128			2.57	20	
Chrysene	0.0800	0.0703	0.0729	87.9	91.1	48.0-127			3.61	20	
Dibenz(a,h)anthracene	0.0800	0.0835	0.0864	104	108	43.0-132			3.42	20	
Fluoranthene	0.0800	0.0783	0.0778	97.9	97.2	49.0-129			0.671	20	

 Document No: J1-680-RGL-GRI-00001-00
 Revision: 1
 Reissued for Use

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GRI - Beaverton, OR
 5764-1195
 L968449
 02/14/18 09:57
 73 of 81

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-\$BM8449-06,07,08,09,10,11,12,13,14,15,18,19,20,22,23,24,26,27,28,29

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(ICS) R3285294-1	02/08/18 12:20	• (LCSD) R3285294-2	02/08/18 12:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Fluorene	0.0800	0.0759	0.0790	94.9	98.7	50.0-120			3.96	20	
Indeno(1,2,3-cd)pyrene	0.0800	0.0820	0.0854	102	107	44.0-131			4.08	20	
Naphthalene	0.0800	0.0751	0.0771	93.9	96.4	50.0-120			2.65	20	
Phenanthrene	0.0800	0.0762	0.0784	95.3	98.0	48.0-120			2.89	20	
Pyrene	0.0800	0.0748	0.0742	93.5	92.7	48.0-135			0.849	20	
1-Methylnaphthalene	0.0800	0.0805	0.0814	101	102	52.0-122			1.15	20	
2-Methylnaphthalene	0.0800	0.0759	0.0777	94.9	97.2	52.0-120			2.35	20	
2-Chloronaphthalene	0.0800	0.0740	0.0760	92.5	95.0	50.0-120			2.65	20	
(S) Nitrobenzene-d5				122	122	14.0-149					
(S) 2-Fluorobiphenyl				93.9	98.6	34.0-125					
(S) p-Terphenyl-d14				94.7	97.9	23.0-120					

L968449-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0960	0.00241	0.0593	0.0621	59.2	62.1	1	20.0-136			4.60	24	
Acenaphthene	0.0960	0.00376	0.0690	0.0701	67.9	69.1	1	29.0-124			1.58	20	
Acenaphthylene	0.0960	0.000818	0.0757	0.0768	78.0	79.1	1	35.0-120			1.40	20	
Benzo(a)anthracene	0.0960	0.00109	0.0566	0.0608	57.8	62.2	1	13.0-132			7.20	27	
Benzo(a)pyrene	0.0960	U	0.0497	0.0530	51.8	55.2	1	14.0-138			6.32	27	
Benzo(b)fluoranthene	0.0960	U	0.0500	0.0550	52.0	57.2	1	10.0-129			9.55	31	
Benzo(g,h,i)perylene	0.0960	U	0.0436	0.0493	45.4	51.3	1	10.0-133			12.3	30	
Benzo(k)fluoranthene	0.0960	U	0.0435	0.0462	45.3	48.1	1	15.0-131			6.06	27	
Chrysene	0.0960	0.000728	0.0480	0.0514	49.2	52.8	1	15.0-137			6.94	25	
Dibenz(a,h)anthracene	0.0960	U	0.0495	0.0531	51.5	55.3	1	15.0-132			7.15	27	
Fluoranthene	0.0960	U	0.0546	0.0585	56.8	60.9	1	13.0-139			7.01	28	
Fluorene	0.0960	0.00339	0.0674	0.0687	66.7	68.0	1	27.0-122			1.87	22	
Indeno(1,2,3-cd)pyrene	0.0960	U	0.0453	0.0499	47.2	51.9	1	11.0-133			9.52	29	
Naphthalene	0.0960	0.0129	0.0891	0.0879	79.4	78.1	1	18.0-136			1.39	21	
Phenanthrene	0.0960	0.00928	0.0708	0.0702	64.1	63.5	1	15.0-133			0.802	25	
Pyrene	0.0960	0.00229	0.0529	0.0560	52.7	55.9	1	11.0-146			5.63	29	
1-Methylnaphthalene	0.0960	0.0451	0.116	0.112	73.8	69.6	1	24.0-137			3.54	22	
2-Methylnaphthalene	0.0960	0.0520	0.117	0.113	67.5	63.7	1	23.0-136			3.18	22	
2-Chloronaphthalene	0.0960	U	0.0689	0.0703	71.7	73.2	1	36.0-120			2.08	20	
(S) Nitrobenzene-d5					117	116		14.0-149					
(S) 2-Fluorobiphenyl					81.1	84.3		34.0-125					
(S) p-Terphenyl-d14					61.2	73.4		23.0-120					

Document No: J1-680-RGL-GRI-00001-00 Revision: 1 Reissued for Use

ACCOUNT: PROJECT: GRI - Beaverton, OR 5764-1195

SDG: L968449

DATE/TIME: 02/14/18 09:57

PAGE: 74 of 81

