

EMISSIONS TEST REPORT

EAGLE FOUNDRY COMPANY

PERMANENT TOTAL ENCLOSURE VERIFICATION ON AIR ARC AND FINISH END AREAS

Oregon Department of Environmental Quality Air Contaminant Discharge Permit No. 03-2631-ST-01

Prepared for:

Eagle Foundry Co. 23123 SE Eagle Creek Road Eagle Creek, OR 97022

Prepared by:

Bison Engineering, Inc. 3143 E Lyndale Avenue Helena, MT 59601 (406) 442-5768 www.bison-eng.com

Project Number: EFC223174 Test Date: April 18, 2023 Report Issued: May 10, 2023

EXECUTIVE SUMMARY

Eagle Foundry Company contracted Bison Engineering, Inc. to conduct permanent total enclosure (PTE) verifications at the Eagle Foundry Company facility in Eagle Creek, Oregon. PTE verification was performed on the air arc and finish end enclosures to demonstrate that all suspended particulate in each work area is captured by the associated baghouses. This report presents test data, describes the methods employed and details the quality assurance measures taken to ensure accurate data. Tables 1 through 4 summarize the test results.

Parameter	Units	Test Result	Criteria	Criteria Status
NEAR	N/A	0.001	≤ 0.05	Pass
Distance to any NDO from each emission point	Equivalent opening diameters	≥ 4 from each emission point to any NDO	≥ 4	Pass
Inward direction of air flow	N/A	Visually confirmed inward direction of flow at each NDO*	Continuous inward direction at each NDO	Pass

Table 1 Air Arc Area PTE Verification Results Summary
--

NEAR – natural draft opening to enclosure area ratio

NDO – natural draft opening

N/A – not applicable

 inH_2O – inches of water

ED – equivalent opening diameter

* Documented photographically

Table 2 presents the average differential pressure readings taken for the air arc enclosure. While not all readings were <-0.007 inH₂O, these readings may still demonstrate that the enclosure does capture 100% of emissions. All readings demonstrate a negative pressure differential, the average of all readings is <-0.007 inH₂O, inward flow was documented visually at all NDOs, and no visible particulate emissions were observed leaving the test enclosures.

Table 2 Air Arc Area Differential Pressures

NDO #	NDO Description	Units	Round 1 Average	Round 2 Average	Round 3 Average
A-1	South Loading Door	inH ₂ O	-0.0111	-0.0119	-0.0116
A-2	North Loading Door	inH20	-0.0043	-0.0042	-0.0083

Parameter	Units	Test Result	Criteria	Criteria Status
NEAR	N/A	0.002	≤ 0.05	Pass
Distance to any NDO from each emission point	Equivalent opening diameters	≥ 4 from each emission point to any NDO	≥ 4	Pass
Inward direction of air flow	N/A	Visually confirmed inward direction of flow at each NDO*	Continuous inward direction at each NDO	Pass

Table 3 Finish End Area PTE Verification Results Summary

* Documented photographically

Table 4 presents the average differential pressure readings taken for the finish end enclosure. While not all readings were <-0.007 inH₂O, these readings may still demonstrate that the enclosure does capture 100% of emissions. All readings demonstrate a negative pressure differential, the average of all readings is <-0.007 inH₂O, inward flow was documented visually at all NDOs, and no visible particulate emissions were observed leaving the test enclosures.

NDO #	NDO Description	Units	Round 1 Average	Round 2 Average	Round 3 Average
F-1	NE Loading Door	inH ₂ O	-0.0076	-0.0067	-0.0138
F-2	North Man Door	inH ₂ O	-0.0062	-0.0116	-0.0090
F-3	NW Loading Door	inH2O	-0.0051	-0.0075	-0.0102
F-4	West Loading Door	inH ₂ O	-0.0188	-0.0286	-0.0399
F-5	South Man Door	inH2O	-0.0062	-0.0046	-0.0114
F-6	Casting Loading Opening	inH ₂ O	-0.0115	-0.0074	-0.0085
F-7	SE Loading Door	inH2O	-0.0106	-0.0078	-0.0091

Table 4 Finish End Area Differential Pressures

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
TABLE OF CONTENTS	4
CERTIFICATION FROM RESPONSIBLE OFFICIAL	5
REVIEW AND CERTIFICATION	6
1.0 INTRODUCTION	7
1.1 Project Summary and Objectives	
1.2 Project Contacts	7
1.3 Testing Personnel	8
2.0 SOURCE DESCRIPTION	9
2.1 Facility Description	9
2.2 Emission Source Description	9
3.0 PTE VERIFICATION RESULTS	10
3.1 Air Arc Enclosure Results	
3.2 Finish End Enclosure Results	13
3.3 Operating Conditions	
3.4 Field Observations	
3.5 Conclusions	15
4.0 EMISSION TEST METHODS AND PROCEDURES	16
4.1 Testing Methods and Procedures	
4.2 Sample Handling and Analytical Procedures	16
4.3 Audit Samples	16

LIST OF TABLES

Table 1 Air Arc Area PTE Verification Results Summary	2
Table 2 Air Arc Area Differential Pressures	2
Table 3 Finish End Area PTE Verification Results Summary	3
Table 4 Finish End Area Differential Pressures	3
Table 5 NDO Dimensions	11
Table 6 Equivalent Opening Diameters	
Table 7 Differential Pressures	
Table 8 NDO Dimensions	
Table 9 Equivalent Opening Diameters	
Table 10 Differential Pressures	14

LIST OF APPENDICES

APPENDIX A:	Area Drawings and Test Data
APPENDIX B:	Inward Flow Direction Photos
APPENDIX C:	Calibrations and Certifications

CERTIFICATION FROM RESPONSIBLE OFFICIAL

I have reviewed the information being submitted in its entirety. Based on information and belief formed after reasonable inquiry, I certify that the statements and information contained in this submittal are true, accurate, and complete.

Greg Lasslett

Signature

05/15/2023

Date

Greg Lasslett

Name (printed)

Title

Eagle Foundry Co.

Company

REVIEW AND CERTIFICATION

All work, calculations, other activities, and tasks performed and documented in this report were carried out under my direction and supervision. This test project conforms to the requirements of Bison Engineering, Inc.'s quality manual and American Society for Testing and Materials (ASTM) D7036-04.

Project Manager:	Jacob Rankin, QSTI
Title:	Helena Source Team Lead
Signature:	Jacob Rankin
Date:	5/15/2023

I have reviewed all testing details, calculations, results, conclusions and other appropriate written material contained herein, and hereby certify that the presented material is authentic and accurate.

Reviewer:	Lynn Dunnington
Title:	Environmental Scientist/Reporting Lead
Signature:	hyn Durigton
-	
Date:	5/10/2023

1.0 INTRODUCTION

1.1 Project Summary and Objectives

Eagle Foundry Company (Eagle Foundry) contracted Bison Engineering, Inc. (Bison) to perform permanent total enclosure (PTE) verification on the air arc (cutting) and finish end (grinding) enclosures at the Eagle Foundry facility in Eagle Creek, Oregon. Bison performed the PTE verification in accordance with the pre-test protocol dated February 16, 2023, that was submitted to the Oregon Department of Environmental Quality (ODEQ). Testing was conducted to demonstrate increased capture efficiency. Bison employed U.S. Environmental Protection Agency (EPA) test methods as described in Title 40 Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A. Bison followed EPA Method 204 to determine whether the air arc and finish end work area enclosures inside their respective buildings meet the criteria to be considered PTEs, in which case particulate capture efficiency can be assumed to be 100 percent.

1.2 Project Contacts

Facility: Address:	Eagle Foundry Company 23123 SE Eagle Creek Road Eagle Creek, OR 97022
Contact:	Greg Lasslett
Phone:	(503) 637-3048
Email:	gregl@eaglefoundryco.com
Consultant:	Bison Engineering, Inc.
Address:	3143 E Lyndale Avenue
	Helena, MT 59601
Contact:	Jacob Rankin
Phone:	(406) 442-5768
Email:	jrankin@bison-eng.com
State Authority:	Oregon Department of Environmental Quality Northwest Region
Address:	700 NE Multnomah Street, Suite 600
	Portland, OR 97232
Contact:	Julia DeGagne
Phone:	(503) 866-9643
Email:	julia.degagne@deq.oregon.gov

1.3 Testing Personnel

The Bison on-site testing team was led by Jacob Rankin, Qualified Source Test Individual (QSTI), Helena Source Team Lead. Mr. Rankin was assisted during field testing by Adam Bender, Qualified Individual (QI), Environmental Scientist. Mr. Rankin served as project manager. Jennifer Kessler, QI, Environmental Scientist/Quality Manager, audited the test data and authored this report. Lynn Dunnington, Environmental Scientist/Reporting Lead, performed a final quality assurance review of the data and test report.

Greg Lasslett, Project Manager, was the primary contact for Eagle Foundry. Mr. Lasslett was on-site during testing.

ODEQ representative Thomas Rhodes was on-site during PTE verification.

2.0 SOURCE DESCRIPTION

2.1 Facility Description

Eagle Foundry owns and operates a white iron and steel alloy casting facility in Eagle Creek, Oregon. The facility specializes in custom castings for the aggregate industry and others.

2.2 Emission Source Description

After casting in the main foundry, steel alloy parts require air arc cutting to remove solidified metal risers from the cast part. Both steel and white iron parts are sent to the finishing building grinding enclosure. Within the enclosure parts are ground with grinding wheels to remove surface imperfections before they are considered finished and ready for sale. Cutting and grinding occur in two separate enclosures within buildings, each enclosure being equipped with a dedicated baghouse collection system.

The cutting, or air arc, enclosure is approximately 738 square feet (ft²) with two NDOs (gaps around one solid door on the north side of the enclosure and gaps in a freezer strip door on the south side). The associated collection system is powered by a 10,000 cubic feet per minute (cfm) baghouse. The particulate emitting point in the air arc enclosure is considered to be the cutting table located on the west side of the room, from which particulate matter becomes airborne when excess material from castings is cut off using a welding torch. The cutting table has a hood system above it to collect the particulate matter and direct it to the baghouse.

The grinding, or finish end, enclosure is approximately 5,225 ft² with seven NDOs. The associated collection system is powered by a 30,000 cfm baghouse. Within each building, an enclosure has been constructed around the respective process (cutting or grinding), creating a smaller volume and more tightly sealed space in which the process occurs, thereby maximizing capture of emissions. The particulate emitting point in the finish end enclosure are the eight grinding booths (3- swing grinder workstations and 5 - portable grinding workstations) located centrally in the enclosure, from which particulate matter becomes airborne when excess material from castings is ground off using various grinding tools. The swing grinder tools (3) are connected directly to the baghouse and all 8 grinding workstations (booths) have a dust pickup hood that is easily positioned close to the grinding operation on the work bench at any given time to collect particulate matter as it is generated. All the suction hoses lead to the same baghouse.

3.0 PTE VERIFICATION RESULTS

Bison followed EPA Method 204 to assess whether the air arc and finish end enclosures meet the criteria for a PTE. Area measurements were taken for each NDO in an "as-found" condition. Supporting data and photographic evidence of inward flow are included in the appendices to this report.

A Shortridge Instruments electronic micromanometer (serial number M22572) was used to measure differential pressure in lieu of calculating facial velocity. Some of the differential pressure measurements were greater than -0.007 inches of water and therefore did not meet acceptance criteria. Field personnel believe that the layout of the buildings and weather conditions at the time of the verification influenced these measurements.

3.1 Air Arc Enclosure Results

3.1.1 Natural Draft Opening to Enclosure Area Ratio

Bison field personnel calculated the total interior area of the air arc enclosure to be 3,573 ft². Using Method 204, Eq. 204-2 the NEAR was calculated as follows:

Eq. 204-2 NEAR = total area of all NDOs/total enclosure area NEAR= $3.5 \text{ ft}^2/3,573 \text{ ft}^2 = 0.001$

The NEAR for the air arc enclosure was calculated to be 0.001, which is less than the limit of 0.05 for permanent total enclosures as stipulated by Method 204, Section 8.2. Table 5 presents the NDO dimensions. The south loading door (A-1) has a hinged frame with freezer strips and a 1-inch gap at the bottom to allow air to flow underneath. The south loading door is closed during normal operations; area measurements were taken with the door closed. The door frame is 10 feet wide with a 1-inch gap between the bottom of the freezer strips and the ground. The north loading door (A-2) is a hinged door and remains closed during normal operations; the area of A-2 was measured with the door fully closed and includes four gap measurements; 0.75 inches between the door and each supporting wall, 0.75 inches between the top of the door and the ceiling, and 1-inch between the door and the floor; the door frame is 10 feet.

Table 5 NDO Dimensions

NDO #	NDO Description	Length (in)	Width (in)	Area (in²)
A-1	South Loading Door	120	1	120
A-2	North Loading Door	120	0.75	210
A-Z	(top/bottom)	120	1	210
		0.75	120	100
A-2	North Loading Door (sides)	0.75	120	180
Total area of all NDOs				510 (3.5 ft ²)

in – inches in² – square inches

3.1.2 Equivalent Opening Diameters

Method 204, Section 5.1 requires each NDO to be at least four equivalent opening diameters (ED) from each emitting point. Using the dimensions from Table 5, Bison calculated the number of EDs from each NDO to the emitting point in the air arc enclosure. Table 6 presents the calculated distances as ED. ED calculations are included in the appendices to this report. To determine ED for A-2, the sum of the side gap measurements (1.5") was used as the length measurement, and a width of 120" was used.

 Table 6 Equivalent Opening Diameters

NDO #	NDO Description	ED (in)	Distance to Emitting Point (in)	# of Diameters
A-1	South Loading Door	1.98	277	140
A-2	North Loading Door	2.96	199	67

3.1.3 Differential Pressure Measurements and Inward Flow

Bison conducted three rounds of five differential pressure measurements at each NDO. The five measurements were taken approximately one minute apart. After recording the five pressure measurements, field personnel moved to the next location and performed five measurements on that NDO. This procedure was repeated until three rounds of five measurements were complete. Table 7 presents averages of the differential pressure measurements.

 Table 7 Differential Pressures

NDO #	NDO Description	Units	Round 1 Average	Round 2 Average	Round 3 Average
A-1	South Loading Door	inH ₂ O	-0.0111	-0.0119	-0.0116
A-2	North Loading Door	inH ₂ O	-0.0043	-0.0042	-0.0083

Assuming the exhaust flow rate from the enclosure is >5,000 cfm (half the flowrate of the baghouse) and dividing that by the total area of all the NDOs, a facial velocity of ~1,400 feet per minute (fpm) would be expected. This facial velocity exceeds the 200 fpm criteria of Method 204. This suggests that quantifying the exhaust flow rate via Method 2 in addition to documenting a comprehensive total area of all NDOs could easily produce an average enclosure facial velocity in excess of 200 fpm.

Continuous inward direction of airflow at each NDO was confirmed by visual observation and documented photographically. Photographs are presented in an appendix to this report.

3.2 Finish End Enclosure Results

3.2.1 Natural Draft Opening to Enclosure Area Ratio

Bison field personnel calculated the total interior area of the finish end enclosure to be 19,594 ft². Using Method 204, Eq. 204-2 the NEAR was calculated as follows:

Eq. 204-2 NEAR = total area of all NDOs/total enclosure area NEAR= $30.6 \text{ ft}^2/19,594 \text{ ft}^2 = 0.002$

The NEAR for the finish end enclosure was calculated to be 0.002, which is less than the limit of 0.05 for permanent total enclosures as stipulated by Method 204, Section 8.2. Table 8 presents the NDO dimensions. All dimensions were measured with the NDOs in a normal operation orientation. The west loading door remains closed during normal operation, the NW and NE loading doors open episodically, and all other openings and doorways are covered with freezer strips. The openings and doorways with freezer strips are high traffic openings. The west loading door (F-4) is a roll-up door that is always closed and has a twoinch gap at the bottom. The NW (F-3) and NE (F-1) doors are sliding doors that have bristles around all edges of the door. A width of 0.25 inches was assumed for the draft opening of the bristles to be conservative and is applied on all four sides of both doors. The north man door (F-2), south man door (F-5), and SE loading door (F-7) all have a one-inch gap between the bottom of the freezer strips and the ground. Castings are fed into the grinding enclosure through the Casting Loading opening (F-6) on rollers underneath freezer strips; a maximum height of 14 inches was measured from the bottom of the freezer strips to the ground. Some sections of the freezer strips between the rollers were lower in height, but 14 inches was assumed across the length of the opening to be conservative.

NDO #	NDO Description	Length (in)	Width (in)	Area (in ²)
F-1	NE Loading Door	480	0.25	120
F-2	North Man Door	1	38	38
F-3	NW Loading Door	480	0.25	120
F-4	West Loading Door	2	144	288
F-5	South Man Door	1	43	43
F-6	Casting Loading Opening	14	264	3,696
F-7	SE Loading Door	1	108	108
Total area of all NDOs			4,413 (30.6 ft ²)	

Table 8 NDO Dimensions

3.2.2 Equivalent Opening Diameters

Method 204, Section 5.1 requires each NDO to be at least four equivalent opening diameters from each emitting point. Using the dimensions from Table 8, Bison calculated the number of ED from each NDO to the nearest emitting point (grinding booth) in the finish end enclosure. Table 9 presents the calculated distances as ED.

NDO #	NDO Description	ED (in)	Distance to Emitting Point (in)	# of Diameters
F-1	NE Loading Door	0.50	353	706.4
F-2	North Man Door	1.95	282	144.7
F-3	NW Loading Door	0.50	295	590.3
F-4	West Loading Door	3.95	212	53.7
F-5	South Man Door	1.95	189	96.7
F-6	Casting Loading Opening	26.59	174	6.5
F-7	SE Loading Door	1.98	262	132.2

Table 9 Equivalent Opening Diameters

3.2.3 Differential Pressure Measurements and Inward Flow

Bison conducted three rounds of five differential pressure measurements at each NDO. The five measurements were taken approximately one minute apart. After recording the five pressure measurements, field personnel moved to the next location and performed five measurements on that NDO. This procedure was repeated until three rounds of five measurements were complete. Table 10 presents averages of the differential pressure measurements. While several readings were greater than -0.007, the overall average of the readings were within the method requirement of less than -0.007.

NDO #	NDO Description	Units	Round 1 Average	Round 2 Average	Round 3 Average
F-1	NE Loading Door	inH ₂ O	-0.0076	-0.0067	-0.0138
F-2	North Man Door	inH ₂ O	-0.0062	-0.0116	-0.0090
F-3	NW Loading Door	inH ₂ O	-0.0051	-0.0075	-0.0102
F-4	West Loading Door	inH ₂ O	-0.0188	-0.0286	-0.0399
F-5	South Man Door	inH ₂ O	-0.0062	-0.0046	-0.0114
F-6	Casting Loading Opening	inH ₂ O	-0.0115	-0.0074	-0.0085
F-7	SE Loading Door	inH ₂ O	-0.0106	-0.0078	-0.0091

 Table 10 Differential Pressures

The grinding enclosure exhaust flow rate is rated at approximately 30,000 cfm. Dividing by the total area of all the NDOs, the resulting average facial velocity through the NDOs would be 980 fpm. Further measurements may prove that the grinding enclosure can pass the facial velocity criteria. Continuous inward direction of airflow at each NDO was confirmed by visual observation and documented photographically. Photographs are presented in an appendix to this report.

3.3 **Operating Conditions**

Eagle Foundry personnel ensured that the main foundry, air arc, and finish end areas were operating under normal conditions during the PTE verification.

3.4 Field Observations

Testing was performed as outlined in the test protocol. No adverse or unusual environmental conditions other than those noted in Section 3.0 are known to have influenced the outcome of these tests. No visible emissions were observed outside of the enclosures.

3.5 Conclusions

Three of the four Method 204 criteria were met to demonstrate that the air arc and finish end enclosures meet the definition of a PTE. Though differential pressure measurements were not all <-0.007 inH₂O, all measurements were negative, indicating inward flow. Additionally, inward flow was visually confirmed over a one-hour period. Fume generated in the enclosures was suspended and was not directed at any of the NDOs, meaning it did not appear to have any momentum that would allow it to overcome the inward flow. As a result, it is our professional opinion that these enclosures are capturing 100% of the emissions generated inside.

4.0 EMISSION TEST METHODS AND PROCEDURES

4.1 Testing Methods and Procedures

Bison testing personnel performed the following EPA methods as described in 40 CFR 60, Appendix A.

EPA Reference Method 204, "Criteria for and Verification of a Permanent or Temporary Total Enclosure." The objective of Method 204 is to determine whether a permanent or temporary enclosure meets the criteria for being considered a total enclosure. If all criteria are met, then the capture efficiency is assumed to be 100 percent.

4.2 Sample Handling and Analytical Procedures

Sampling procedures are cited in the appropriate methods and there was no deviation from those methods. No physical samples requiring off-site processing were generated during this test campaign.

4.3 Audit Samples

The stationary source audit program (SSAP) is effectively suspended as of March 2022 because there are currently no independent accredited audit sample providers (AASP).

APPENDIX A: AREA DRAWINGS AND TEST DATA

Eagle Foundry
Eagle Creek
Eagle Creek, Oregon
Air Arc (Cutting) Enclosure
04/18/23
204
PTE Verification

Bison Engineering, Inc. Method 204 Area Calculations

Enclosure Interior Dimensions

I	Location Description	Length (ft) Wie	dth (ft) A	rea (ft ²)
Ν	Wall	25.0	21.5	537.5
S	Wall	25.0	17.0	425.0
W	Wall	29.5	19.3	567.9
Е	Wall	29.5	19.3	567.9
	Floor	25.0	29.5	737.5
	Ceiling	25.0	29.5	737.5
		Total enclosu	ire area:	3,573 ft ²

Note: The ceiling is assumed to have the same surface area as the floor.

NDO Dimensions

NDO #	NDO Location Description	Length (in)	Width (in)	Area (in ²)
A-1	South Loading Door	120	1	120
	North Loading Door	0.75	120	90
A-2	(top/bottom)	120	1	120
A-2	North Loading Door	120	0.75	90
	(sides)	120	0.75	90

Total area of all NDOs: 3.5 ft^2

NEAR Calculation

Total area of NDOs (A _N):	3.5 ft^2	
Total enclosure area (A _T):	3,573 ft ²	
	0.001 ≤0.05	PASS

NEAR - NDO to enclosure area ratio

Total area of Normal Operation Draft Openings

Equivalent Diameter (ED)

NDO #	NDO Location Description	ED (in)	Distance to emitting* point (in)	# of ED	
A-1	South Loading Door	1.98	277	140	PASS
A-2	North Loading Door	2.96	199	67	PASS

* The emitting point is a cutting table located on the southern side of the building. The cutting table has a hood system above it to collect particulate matter and route it to the baghouse.

Note ED for the North Loading Door was calculated using the sum of the side gaps (1.5") for use as the length and using 120" as the width.

Example Calculations:

$NEAR = A_N / A_T =$		0.0010	
Where A _N	3.5 ft^2		
Where A _T	3573.25 ft ²		
ED= (2*Length*W Where Length= Where Width= (East Loading	120 in 1 in	Width) =	1.98 in

Bison Engineering, Inc. Method 204 Field Data

Client:	Eagle Foundry
Source:	Air Arc (Cutting) Enclosure
Location:	Eagle Creek, Oregon
Date:	4/18/2023

NDO Desc	ription	South Loading Door (A-1)			North Loading Door (A-2)		
Time (mr	n:ss)	12:47	13:31	13:36	12:43	13:29	13:33
Units	3		Inches of H ₂ O			Inches of H ₂ O	
	#1	-0.0124	-0.0118	-0.0081	-0.0012	-0.0054	-0.0059
	#2	-0.0151	-0.0160	-0.0158	-0.0043	-0.0020	-0.0135
Readings	#3	-0.0113	-0.0070	-0.0076	-0.0045	-0.0031	-0.0024
	#4	-0.0074	-0.0149	-0.0091	-0.0035	-0.0036	-0.0130
	#5	-0.0092	-0.0100	-0.0172	-0.0079	-0.0069	-0.0067
Average		-0.0111	-0.0119	-0.0116	-0.0043	-0.0042	-0.0083
Overall			-0.0115			-0.0056	

Note: Yellow shading indicates values between -0.01 and -0.007 to alert testing personnel of values approaching (but not exceeding) the limit of -0.007. Red shading indicates readings greater than -0.007.

E,	AGLE FOUNDRY AR ARC ENCLOSURE	W 5 - N E		INEERING, INC.
	A-1 SOUTH LOADING DOOR FREEZER STRIPS	WOPKBENCH W/ HOOD SYSTEM OVER TOP	A-2 NORTH LOADING DOOR SLIDING DOOR W/ NO BRISTLES	An Employee Owned Company
	7		7	Location: By: Date:
				Sheet:
EFC223174 2023 Eagle Foundry Air Ard	c and Finish End Areas PTE Verificatio	n Report		9. 21

www.bison-enq.com

COMPANY	Eagle Foundry
FACILITY	Eagle Creek
LOCATION	Eagle Creek, Oregon
SOURCE	Finish End (Grinding) Enclosure
DATE	04/18/23
METHOD	204
PARAMETER	PTE Verification

Bison Engineering, Inc. Method 204 Area Calculations

Enclosure Interior Dimensions

	Location Description	Length (ft) Wi	dth (ft)	Area (ft ²)
Ν	Wall	59.8	32.3	1,929.6
S	Wall	59.8	32.3	1,929.6
Е	Wall	87.3	30.3	2,641.8
W	Wall	87.3	30.3	2,641.8
	Floor	87.3	59.8	5,225.4
	Ceiling	87.3	59.8	5,225.4
_		Tetal analas		10 504 02

Total enclosure area: $19,5\overline{94}$ ft²

2

Note: The ceiling is assumed to have the same surface area as the floor.

NDO Dimensions

NDO #	NDO Location Description	Height (in)	Width (in)	Area (in ²))
F-1	NE Loading Door	480	0.25	120	
F-2	North Man Door	1	38	38	1
F-3	NW Loading Door	480	0.25	120	
F-4	West Loading Door	2	144	288	
F-5	South Man Door	1	43	43	
F-6	Casting Loading Opening	14	264	3,696	
F-7	SE Loading Door	1	108	108	
		Total area o	of all NDOs:	30.6	ft

Normal Operation Door Opening Normal Operation Door Opening

Equivalent Diameter (ED)

NDO #	NDO Location Description	ED (in)	Distance to emitting* point (in)	# of ED	
F-1	NE Loading Door	0.50	353	706.4	PASS
F-2	North Man Door	1.95	282	144.7	PASS
F-3	NW Loading Door	0.50	295	590.3	PASS
F-4	West Loading Door	3.95	212	53.7	PASS
F-5	South Man Door	1.95	189	96.7	PASS
F-6	Casting Loading Opening	26.59	174	6.5	PASS
F-7	SE Loading Door	1.98	262	132.2	PASS

*The emitting point is the grinding booths located in the center of the building. Each grinding booth has two suction hoses to collect particulate matter and route it to the baghouse.

Example Calculations:

$NEAR = A_N / A_T =$		0.002						
Where A _N	30.6 ft^2							
Where A _T	19593.81 ft ²							
ED= (2*Length*Width) / (Length + Width) =								
Where Length=	480 in							
Where Width=	0.25 in							

Where Width= 0 (NE Loading Door)

NEAR Calculation

Total area of NDOs (A _N):	30.6 ft^2	
Total enclosure area (A _T):	19,594 ft ²	
	0.002 ≤0.05	PASS

NEAR - NDO to enclosure area ratio

Bison Engineering, Inc. Method 204 Field Data

Client:	Eagle Foundry
Source:	Finish End (Grinding) Enclosure
Location:	Eagle Creek, Oregon
Date:	4/18/2023

NDO Desc	ription	NE	Loading Door (F-1)	North Man Door (F-2)		NW Loading Door (F-3)			West Loading Door (F-4)			
Time (mr	m:ss)	12:14	13:48	14:07	12:17	13:49	14:08	12:21	13:51	14:09	12:24	13:54	14:10
Units	Units Inches of H ₂ O Inches of H ₂ O		Inches of H ₂ O		Inches of H ₂ O								
	#1	-0.0075	-0.0042	-0.0088	-0.0044	-0.0078	-0.0062	-0.0033	-0.0060	-0.0092	-0.0167	-0.0255	-0.0424
	#2	-0.0074	-0.0075	-0.0070	-0.0138	-0.0261	-0.0064	-0.0049	-0.0052	-0.0128	-0.0149	-0.0336	-0.0509
Readings	#3	-0.0078	-0.0066	-0.0149	-0.0055	-0.0120	-0.0142	-0.0038	-0.0103	-0.0105	-0.0206	-0.0355	-0.0352
	#4	-0.0070	-0.0100	-0.0166	-0.0024	-0.0064	-0.0079	-0.0082	-0.0101	-0.0079	-0.0234	-0.0224	-0.0426
	#5	-0.0084	-0.0054	-0.0219	-0.0048	-0.0055	-0.0101	-0.0053	-0.0061	-0.0106	-0.0186	-0.0262	-0.0286
Avera	ge	-0.0076	-0.0067	-0.0138	-0.0062	-0.0116	-0.0090 -0.0051 -0.0075		-0.0102	-0.0188	-0.0286	-0.0399	
Overa	ıll		-0.0094			-0.0089			-0.0076			-0.0291	

NDO Description Sou		th Man Door (F-5)		Casting Loading Opening (F-6)			SE Loading Door (F-7)			
Time (m	n:ss)	12:26	13:58	14:12	12:28	14:00	14:13	12:29	14:02	14:14
Units		Inches of H ₂ O			Inches of H ₂ O			Inches of H ₂ O		
	#1	-0.0072	-0.0050	-0.0148	-0.0072	-0.0111	-0.0076	-0.0094	-0.0087	-0.0092
	#2	-0.0057	-0.0045	-0.0095	-0.0092	-0.0059	-0.0099	-0.0098	-0.0082	-0.0104
Readings	#3	-0.0071	-0.0054	-0.0167	-0.0137	-0.0055	-0.0096	-0.0077	-0.0057	-0.0065
	#4	-0.0034	-0.0040	-0.0074	-0.0143	-0.0066	-0.0064	-0.0109	-0.0067	-0.0073
	#5	-0.0075	-0.0039	-0.0086	-0.0132	-0.0079	-0.0089	-0.0150	-0.0096	-0.0120
Average -0.0062 -0.0046 -0.0114 -0.0115		-0.0115	-0.0074	-0.0085	-0.0106	-0.0078	-0.0091			
Overa	Overall -0.0074 -0.0091			-0.0091						

Note: Yellow shading indicates values between -0.01 and -0.007 to alert testing personnel of values approaching (but not exceeding) the limit of -0.007. Red shading indicates readings greater than -0.007.

APPENDIX B: INWARD FLOW DIRECTION PHOTOS

Bison Engineering, Inc. EPA Method 204 Documentation of Inward Flow Direction

Client:Eagle Foundry Co.Location:Eagle Creek, OregonEnclosure:Air Arc Building (Cutoff)Date:April 18, 2023

The following photographs document inward flow direction at NDOs A-1, South Loading door and A-2, North Loading door.

4-18-2023 15:40

A-2 – North Loading Door 4-18-2023 15:51

4-18-2023 16:00

4-18-2023 16:31

Inside Doorway

4-18-2023 15:31

4-18-2023 15:41

A-1 – South Loading Door 4-18-2023 15:52

4-18-2023 16:00

4-18-2023 16:10

4-18-2023 16:20

4-18-2023 16:31

Bison Engineering, Inc. EPA Method 204 Documentation of Inward Flow Direction

Client:Eagle Foundry Co.Location:Eagle Creek, OregonEnclosure:Finish End Building (Grinding)Date:April 18, 2023

The following photographs document inward flow direction at seven NDOs:

- F-1, NE Loading Door
- F-2, North Man Door
- F-3, NW Loading Door
- F-4, West Loading Door
- F-5, South Man Door
- F-6, Casting Loading Opening
- F-7, SE Loading Door

Inside Doorway

4-18-2023 14:25

F-1 – NE Loading Door 4-18-2023 14:35

4-18-2023 14:45

4-18-2023 14:55

4-18-2023 15:05

4-18-2023 15:15

4-18-2023 15:25

Inside Doorway

4-18-2023 14:25

F-2 – North Man Door 4-18-2023 14:36

4-18-2023 14:46

4-18-2023 14:57

4-18-2023 15:06

4-18-2023 15:15

Inside Doorway

4-18-2023 14:26

F-3 – NW Loading Door 4-18-2023 14:37

4-18-2023 14:46

4-18-2023 15:06

4-18-2023 15:16

4-18-2023 15:25

F-4 – West Loading Door Opening 4-18-2023 14:46

Inside Doorway

4-18-2023 14:26

4-18-2023 14:38

4-18-2023 14:58

4-18-2023 15:07

4-18-2023 15:16

Inside Doorway

4-18-2023 14:27

F-5 – South Man Door 4-18-2023 14:38

4-18-2023 14:47

4-18-2023 14:59

4-18-2023 15:17

4-18-2023 15:26

Outside Opening

Inside Opening

4-18-2023 14:27

F-6 – Casting Loading 4-18-2023 14:39

4-18-2023 14:48

4-18-2023 14:59

4-18-2023 15:17

4-18-2023 15:26

Inside Doorway

4-18-2023 14:28

F-7 – SE Loading Door 4-18-2023 14:39

4-18-2023 14:48

4-18-2023 15:00

4-18-2023 15:08

4-18-2023 15:17

APPENDIX C: CALIBRATIONS AND CERTIFICATIONS

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

BISON ENGINEERING, INC.

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 27th day of January 2022.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 4675.01 Valid to November 30, 2023

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

	AIRDATA MULTIMETER CER	TIFICATE OF CALIBRATION	1						
Customer ID: 022037			S/N: M22572						
Customer: BISON ENGINEER	ING, INC.	City:HELENA	State: MT						
Model #: ADM-850L	PO #: (Calibration Due Date: 02/2025							
Rh <u>35</u> %	Ambient Temperature	Pl_°F Barometric Pres	ssure <u>28,56</u> in Hg						
ABSOLUTE PRESSURE TEST (in Hg) TEST METER TOLERANCE = $\pm 2.0 \% \pm .1$ in Hg									
Pressure Standard: Heise #02-R	S/N: 41741/42451	Pressure Standard: Heise #12A-I	R S/N: 45605/48491						
Pressure Standard: Heise #04-R	S/N: 41743/42453	Pressure Standard: Heise #14-R	S/N: 43412/45043-2						
Pressure Standard: Heise #06-R	S/N: 41742/42452-1	Pressure Standard: Heise #16-R	S/N: 43413/45044						
Pressure Standard: Heise #08-R	S/N: 42186/43328	Pressure Standard: Heise #18-R	S/N: 44581/46845						
Pressure Standard: Heise #10-R	S/N: 42203/43352	Pressure Standard: Heise #20-R	S/N: 44582/46847						
Approx Set Point	Standard	Test Meter	% Diff						
14.0	14.00	3,9	-,71						
28.4	23,56	25.7	. 49						
40.0	40.00	40.2	,50						

DIFFERENTIAL PRESSURE TEST (in wc) TEST METER TOLERANCE = ± 2.0 % ± 0.001 in wc

Pressure Standard: Heise #01-L	S/N: 41739/42449		Pressure Standard: Heise #11-L	S/N: 43165/44551-1	
Pressure Standard: Heise #01-R	S/N: 41739/42446		Pressure Standard: Heise #11-R	S/N: 43165/44730	
Pressure Standard: Heise #02-L	S/N: 41741/42454		Pressure Standard: Heise #12A-L	S/N: 45605/48490-1	
Pressure Standard: Heise #03A-L	S/N: 45570/48461		Pressure Standard: Heise #13-L	S/N: 43415/45041	
Pressure Standard: Heise #03A-R	R S/N: 45570/48460		Pressure Standard: Heise #13-R	S/N: 43415/45039	
Pressure Standard: Heise #04-L	S/N: 41743/42456		Pressure Standard: Heise #14-L	S/N: 43412/45045	
Pressure Standard: Heise #05-L	S/N: 41740/42450		Pressure Standard: Heise #15-L	S/N: 43416/45042	
Pressure Standard: Heise #05-R	S/N: 41740/42447	\sim	Pressure Standard: Heise #15-R	S/N: 43416/45040-1	
Pressure Standard: Heise #06-L	S/N: 41742/42455		Pressure Standard: Heise #16-L	S/N: 43413/45046	
Pressure Standard: Heise #07-L	S/N: 42185/42186		Pressure Standard: Heise #17-L	S/N: 44579/46842	
Pressure Standard: Heise #07-R	S/N: 42185/43326		Pressure Standard: Heise #17-R	S/N: 44579/46841	
Pressure Standard: Heise #08-L	S/N: 42186/43329		Pressure Standard: Heise #18-L	S/N: 44581/46846	
Pressure Standard: Heise #09-L	S/N: 42202/43351		Pressure Standard: Heise #19-L	S/N: 44580/46844	
Pressure Standard: Heise #09-R	S/N: 42202/43350		Pressure Standard: Heise #19-R	S/N: 44580/46843	
Pressure Standard: Heise #10-L	S/N: 42203/43353		Pressure Standard: Heise #20-L	S/N: 44582/46848	
				0.111 1.002/10010	

Approx Set Point	Standard	Test Meter	% Diff
.0100	,0100	,0100	,00
.0500	.0515	,0514	-, 19
.1250	. 1254	1254	.00
.2250	, 2254	, 2253	04
1.000	1.008	1.006	-,20
2.000	2,008	2.004	-,20
3.600	3,604	3,590	-,39
4.400	4.401	4,399	-,05
27.00	27.01	27.02	,04
50.00	50.05	49.85	-,40
Over Pressure	NA		NA

			S/N:M22572
	LOW VELOCITY CC TEST METER TOLERA	NFIRMATION (FPM) NCE = ± 3.0% ± 7 FPM	Order #: 230186
Vel Eqv Tra Vel Eqv Tra	ans Std: S/N: M02009 ans Std: S/N: M02903 ans Std: S/N: M10839 ans Std: S/N: M10840	Vel Eqv Trans Std: S/N: M108 Vel Eqv Trans Std: S/N: M109 Vel Eqv Trans Std: S/N: M134 Vel Eqv Trans Std: S/N: M193	901
Approx Set Point	Standard	Test Meter	Diff
100	101	00	

14

ADM-880C, ADM-870C and ADM-860C AirData Multimeters are read in AirFoil Mode. ADM-850L AirData Multimeters are read in Pitot Tube Mode.

AIRDATA MULTIMETER CERTIFICATE OF CALIBRATION

TEMPERATURE TEST - AIRDATA MULTIMETER (° F) TEST METER TOLERANCE = ± 0.2° F

RTD Simulator: S/N 249	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 250	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 253	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 254	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 256	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 257	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 292	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 293	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 294	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 313	Set Point:	35.6° P	95° F	154.4° F
RTD Simulator: S/N 314	Set Point:	35.6° F	95° E	15 <u>4.4°</u> F
RTD Simulator: S/N 315	Set Point:	35.6° F	95° F	(154.4° F)
RTD Simulator: S/N 316	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 317	Set Point:	35.6° F	95° F	154.4° F
RTD Simulator: S/N 318	Set Point:	35.6° F	95° F	154.4° F

RTD Simulator Temperature

Equivalent Set Point	Test Meter	Diff
35.60	35.7	«]
95.00	95.0	, O
154.40	154.4	0

NOTES:

500

Procedure used: Procedure for Differential Pressure, Absolute Pressure and Temperature Calibration of AirData Multimeters SIP-CP01 Revision: 17 Dated: 12/10/15. There were no additions to or deviations from the calibration procedure during this calibration process.

This instrument has been calibrated using Calibration Standards which are traceable to NIST (National Institute of Standards and Technology). Test accuracy ratio is 4:1 for pressures and temperature. Quality Assurance Program and calibration procedures meet the requirements for ANSI/NCSL Z540-1, ISO 17025, MIL-STD 45662A and manufacturer's specifications. Calibration accuracy is certified when meters are used with properly functioning accessories only. All Uncertainties are expressed in expanded terms (twice the calculated uncertainty). This report shall not be reproduced, except in full, without the written approval of Shortridge Instruments, Inc. Results relate only to the item calibrated.

Limitations on use: See Shortridge Instruments, Inc. Instruction Manual for the use of AirData Multimeters

Any calibration due date shown is specified by the customer. The enclosed ADM Calibration Standards for Pressure and Temperature form is an integral part of this calibration and must remain with this Certificate of Calibration.

Calibration Technician(s):	B. fu	Calibration	n Date: 02/24/2023
Calibration Approved by:	m. Manue 3	Title: <u>Cl Meyr</u>	Date: 02/24/2023
	7855 Ea	Shortridge Instruments, Inc. Inst Redfield Road Scottsdale, Arizona 85260 44 • Fax (480) 443-1267 • www.shortridge.com	
ADM Calibration Rev 23-102-22-22 2023 Eagle Fou	ndry Air Arc and Finis	2 of 2 h End Areas PTE Verification Report	Order # 23018 8^{1} CSTM02242023

Shortridge Instruments, Inc. AirData Multimeter Calibration Equipment

Order Number:	2	3	0	86	

Serial Number: MZZ57Z Test Type:

Initial As-Received

Calibration Date: 04/28/22

Calibration Date: 11/19/21

Calibration Date: 09/01/22

Calibration Date: 03/26/22

Calibration Date: 03/07/22

Calibration Date: 08/01/22

Calibration Date: 09/28/22

Calibration Date: 01/27/22

Calibration Date: 10/26/21

Calibration Date: 07/07/22

Resolution: 0.01

Resolution: 0.001

Final

Due Date: 06/2023

Due Date: 02/2023

Due Date: 09/2023

Due Date: 05/2023

Due Date: 04/2023

Due Date: 08/2023

Due Date: 09/2023

Due Date: 03/2023

Due Date: 11/2022

Due Date: 07/2023

Uncertainty: < 0.0358

Uncertainty: < 0.0358

ADM #02-R	S/N: 41741/42451	Heise Model: PPM-2
ADM #04-R	S/N: 41743/42453	Heise Model: PPM-2
ADM #06-R	S/N: 41742/42452-1	Heise Model: PPM-2
ADM #08-R	S/N: 42186/43328	Heise Model: PPM-2
ADM #10-R	S/N: 42203/43352	Heise Model: PPM-2
ADM #12A-R	S/N: 45605/48491	Heise Model: PPM-2
ADM #14-R	S/N: 43412/45043-2	Heise Model: PPM-2
ADM #16-R	S/N: 43413/45044	Heise Model: PPM-2
ADM #18-R	S/N: 44581/46845	Heise Model: PPM-2
ADM #20-R	S/N: 44582/46847	Heise Model: PPM-2
#02-R, 04-R, 06-	R, 08-R, 10-R, 12A-R, 1	4-R, 16-R Rated Accu
#18-R, 20-R		Rated Accur

ABSOLUTE PRESSURE STANDARDS

Mfgd by Dresser Industries Calibrated by Ashcroft Mfgd & Calibrated by Ashcroft, Inc. Mfgd & Calibrated by Ashcroft, Inc.

racy: 0.05% fs (0.0305 in Hg) Range: 0-30 psia Rated Accuracy: 0.05% fs (0.0305 in Hg) Range: 0-60 in Hg

DIFFERENTIAL PRESSURE STANDARDS

ADM #01-L S/N: 41739/42449 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 04/28/22 Due Date: 06/2023 ADM #01-R S/N: 41739/42446 Mfgd by Dresser Industries Calibrated by Ashcroft Heise Model: PPM-1 Calibration Date: 04/29/22 Due Date: 06/2023 ADM #02-L S/N: 41741/42454 Mfgd by Dresser Industries Calibrated by Ashcroft Heise Model: PPM-1 Calibration Date: 04/28/22 Due Date: 06/2023 ADM #03A-L Mfgd by Dresser Industries Calibrated by Ashcroft S/N: 45570/48461 Heise Model: PPM-1 Calibration Date: 11/24/21 Due Date: 02/2023 ADM #03A-R S/N: 45570/48460 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 11/24/21 Due Date: 02/2023 ADM #04-L S/N: 41743/42456 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 11/23/21 Due Date: 02/2023 ADM #05-L S/N: 41740/42450 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 09/01/22 Due Date: 09/2023 ADM #05-R S/N: 41740/42447 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 09/01/22 Due Date: 09/2023 ADM #06-L S/N: 41742/42455 Mfod by Dresser Industries Calibrated by Ashcroft Heise Model: PPM-1 Calibration Date: 09/01/22 Due Date: 09/2023 ADM #07-L S/N: 42185/42186 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/29/22 Due Date: 05/2023 ADM #07-R Mfgd by Dresser Industries Calibrated by Ashcroft S/N: 42185/43326 Heise Model: PPM-1 Calibration Date: 03/29/22 Due Date: 05/2023 ADM #08-L S/N: 42186/43329 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/28/22 Due Date: 05/2023 ADM #09-L S/N: 42202/43351 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04/2023 ADM #09-R S/N: 42202/43350 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04/2023 ADM #10-L S/N: 42203/43353 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04/2023 ADM #11-L S/N: 43165/44551-1 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 08/04/22 Due Date: 08/2023 ADM #11-R S/N: 43165/44730 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 08/04/22 Due Date: 08/2023 ADM #12A-I Mfgd by Dresser Industries Calibrated by Ashcroft S/N: 45605/48490-1 Heise Model: PPM-1 Calibration Date: 08/03/22 Due Date: 08/2023 ADM #13-L S/N: 43415/45041 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 10/11/22 Due Date: 09/2023 ADM #13-R S/N: 43415/45039 Mfgd by Dresser Industries Calibrated by Ashcroft Heise Model: PPM-1 Calibration Date: 10/11/22 Due Date: 09/2023 ADM #14-L S/N: 43412/45045 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 10/11/22 Due Date: 09/2023 ADM #15-L S/N: 43416/45042 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 02/07/22 Due Date: 03/2023 ADM #15-R S/N: 43416/45040-1 Mfgd by Dresser Industries Calibrated by Ashcroft Heise Model: PPM-1 Calibration Date: 02/07/22 Due Date: 03/2023 ADM #16-L S/N: 43413/45046 Heise Model: PPM-1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 02/07/22 Due Date: 03/2023 ADM #17-I S/N: 44579/46842 Heise Model: PPM-1 Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11/2022 ADM #17-R S/N: 44579/46841 Heise Model: PPM-1 Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11/2022 ADM #18-L S/N: 44581/46846 Heise Model: PPM-1 Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11/2022 ADM #19-L S/N: 44580/46844 Mfgd & Calibrated by Ashcroft, Inc. Heise Model: PPM-1 Calibration Date: 07/14/22 Due Date: 07/2023 ADM #19-R S/N: 44580/46843 Heise Model: PPM-1 Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 07/14/22 Due Date: 07/2023 ADM #20-I S/N: 44582/46848 Heise Model: PPM-1 Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 07/14/22 Due Date: 07/2023 #01-L, 03A-L, 05-L, 07-L, 09-L, 11-L, 13-L, 15-L, 17-L, 19-L Rated Accuracy: > 0.07% fs (0.000175 in wc) Range: 0.0-0.25 in wc Res.: 0.00001 Uncertainty: < 0.00035 #01-R, 03A-R, 05-R, 07-R, 09-R, 11-R, 13-R, 15-R, 17-R, 19-R Rated Accuracy: > 0.06% fs (0.003 in wc) Range: 0.0-5.0 in wc Uncertainty: < 0.00348 Res.: 0.0001 #02-L, 04-L, 06-L, 08-L, 10-L, 12A-L, 14-L, 16-L, 18-L, 20-L Rated Accuracy: > 0.06% fs (0.03 in wc) Range: 0.0-50.0 in wc Res.: 0.001 Uncertainty: < 0.0346

> Shortridge Instruments, Inc. 7855 East Redfield Road Scottsdale, Arizona 85260 (480) 991-6744 • Fax (480) 443-1267 • www.shortridge.com

EFC223174

ADM Cal Stade Beragle Faradry Air Arc and Finish End Areas PT& Verification Report

Shortridge Instruments, Inc. AirData Multimeter Calibration Equipment

Customer Order Number, Meter Serial Number, and Test Type are referenced on page 1

LOW VELOCITY EQUIVALENT CONFIRMATION STANDARDS

 Vel Eqv Transfer Standard S/N: M02009
 Mo

 Vel Eqv Transfer Standard S/N: M02903
 Mo

 Vel Eqv Transfer Standard S/N: M10839
 Mo

 Vel Eqv Transfer Standard S/N: M10840
 Mo

 Vel Eqv Transfer Standard S/N: M10840
 Mo

 Vel Eqv Transfer Standard S/N: M10840
 Mo

 Vel Eqv Transfer Standard S/N: M10897
 Mo

 Vel Eqv Transfer Standard S/N: M10901
 Mo

 Vel Eqv Transfer Standard S/N: M13492
 Mo

 Vel Eqv Transfer Standard S/N: M134

Model ADM-870C Model ADM-870C

Mfgd & Calibrated by Shortridge Instruments, Inc. Mfgd & Calibrated by Shortridge Instruments, Inc. Mfgd & Calibrated by Shortridge Instruments, Inc. Mfg'd & Calibrated by Shortridge Instruments, inc. Mfgd & Calibrated by Shortridge Instruments, Inc. Range: 100-5000 fpm Resolution: 0.1

Calibration Date: 08/16/22 Due Date: 08/2023 Calibration Date: 12/28/22 Due Date: 12/2023 Calibration Date: 10/26/22 Due Date: 10/2023 Calibration Date: 10/26/22 Due Date: 10/2023 Calibration Date: 01/25/23 Due Date: 01/2024 Due Date: 12/2023 Calibration Date: 12/29/22 Calibration Date: 08/16/22 Due Date: 08/2023 Due Date: 06/2023 Calibration Date: 06/30/22 Uncertainty: <5.00 fpm at 100 fpm; <7.50 fpm at 500 fpm

TEMPERATURE STANDARDS

RTD Simulator S/N: 249	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 250	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 253	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 254	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 256	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 257	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 292	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 293	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 294	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 313	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 314	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 315	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 316	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 06/06/22	Due Date: 05/2026
RTD Simulator S/N: 317	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 05/23/22	Due Date: 05/2026
RTD Simulator S/N: 318	Model RTD-1000/500	Mfgd by General Resis	tance	Calibrated by IET Labs	Calibration Date: 05/23/22	Due Date: 05/2026
Rated Accuracy: 0.025% c	of setting	Range: 100.00 Ω to 11	111.10 🕻	2	Resolution: 0.01 Ω	Uncertainty: < 32 ppm
Thermometer #1 S/N 8A08	39/Thermistor S/N A410660	Model 1504/5610	Mfgd b	y Hart Scientific Calibrated by Fluke	Calibration Date: 02/24/22	Due Date: 02/2024
Thermometer #2 S/N 8B1	04/Thermistor S/N 871507	Model 1504/5610	Mfgd b	y Hart Scientific Calibrated by Fluke	Calibration Date: 12/07/22	Due Date: 11/2024
Thermometer #5 S/N B11	780/Thermistor S/N B10508	5 Model 1504/5610	Mfgd b	y Hart Scientific Calibrated by Fluke	Calibration Date: 05/16/22	Due Date: 05/2024
Thermometer #6 S/N B11	782/Thermistor S/N B10509	Model 1504/5610	Mfgd b	y Hart Scientific Calibrated by Fluke	Calibration Date: 06/09/22	Due Date: 06/2024
Thermometer #7 S/N B49	938/Thermistor S/N B48220	02 Model 1504/5610	Mfgd ar	nd Calibrated by Fluke	Calibration Date: 10/13/21	Due Date: 10/2023
Rated Accuracy(combined): 0.0324° F	Range: 32° F to 176°	F	Resolution: 0.001° F	Combined Uncertainty	with Baths: < 0.040° F
	,	-				
		070 Mend 9 Online	otod by i	Shortridgo Instrumenta Inc. Col	libration Date: 10/26/22	Due Date: 10/2023
Temp Transfer Standard S	S/N M00136 Model ADM	-870 Ivitgo & Calibr	aled by	Shortridge Instruments, Inc. Cal	instation bate. 10/20/22	Due Date. 10/2020

Temp Transfer Standard S/N M96100Model ADM-870Migu a Calibrated by Shringge instruments, Inc.Calibration Date: 03/15/22Date Date: 10/20/22Rated Accuracy: 0.03° FRange: 33° F to 158° FResolution: 0.01° FUncertainty: < 0.023° FTotal combined Uncertainty for MultiTemp and TemProbe testing: $\leq 0.046^{\circ}$ F

This form must remain with the Certificate of Calibration corresponding to the Customer Order Number and Meter Serial Number referenced on page 1.

Shortridge Instruments, Inc. 7855 East Redfield Road Scottsdale, Arizona 85260 (480) 991-6744 • Fax (480) 443-1267 • www.shortridge.com

EFC223174 ADM Ca**2023:Bagle F02:42**Air Arc and Finish End Areas PTE**2**/efrafication Report

	TEMPROBES CALIBRATION TEST REPORT							
Customer ID: 0220			Multimeter S	Serial Number: <u>MZ2572</u>				
Customer: BISON	ENGINEERI	NG, INC. City: HE	LENA State: M	T Order #: 230186				
Test By: 12, In		2.3 Calibrat	ion Due Date: 02 2025					
R	Rh: <u>76</u> % Ambient Temperature: 7) ° F Barometric Pressure 28.49 in Hg							
	TEMPERATURE TEST (° F) TEMPROBE TOLERANCE = $\pm 0.3^{\circ}$ F TEMPROBE MODEL NUMBER: <u>$HDI442$</u> TEMPROBE ID#: <u>$TP-MZZ572$</u>							
Test(s) with Customer's	Meter Test(s) v	vith In-house Temperature Calibra	ation Standard 🗹 🛛 All Within	Specification Yes 🗹 No 🗆				
Temperature Standard Thermometer #1 S/N 8A089 / Thermistor S/N A410660Set Point: 35° F95° F155° FTemperature Standard Thermometer #2 S/N 8B104 / Thermistor S/N 871507Set Point: 35° F95° F155° FTemperature Standard Thermometer #5 S/N B11780 / Thermistor S/N B10505Set Point: 35° F95° F155° FTemperature Standard Thermometer #6 S/N B11782 / Thermistor S/N B10509Set Point: 35° F95° F155° FTemperature Standard Thermometer #7 S/N B49938 / Thermistor S/N B482202Set Point: 35° F95° F155° FTemperature Standard AirData Multimeter S/N M00136Set Point: 35° F95° F155° FTemperature Standard AirData Multimeter S/N M96100Set Point: 35° F95° F155° F								
Approx Set Point	Uncertainty ° F	Thermometer/Thermistor ° F	TemProbe ° F	Offset ° F				
35 ° F	0.00324	35,0	35,0	,0				
95°F 0.00324 $95,0$ $94,9$ -,)								
155 ° F	0.00324	155.0	155.1	ι				
	TEMPERATURE TEST (° F) TEMPROBE TOLERANCE = ± 0.3° F							

TEMPROBE MODEL NUMBER: APT 446 TEMPROBE ID#: 1P-M22572

Test(s) with Customer's Meter Test(s) with In-house Temperature Calibration Standard I All Within Specification Yes V No

Temperature Standard Thermometer #1 S/N 8A089 / Thermistor S/N A410660 Temperature Standard Thermometer #2 S/N 8B104 / Thermistor S/N 871507 Temperature Standard Thermometer #5 S/N B11780 / Thermistor S/N B10505 Temperature Standard Thermometer #6 S/N B11782 / Thermistor S/N B10509 Temperature Standard Thermometer #7 S/N B49938 / Thermistor S/N B482202 Temperature Standard AirData Multimeter S/N M00136 Temperature Standard AirData Multimeter S/N M96100

Set Point 35° F	95° F 155° F
Set Point: 35° F	95° F 155° F
Set Point: 35° F	95° F (155° Đ
Set Point: 35° F	95° F 155° F
Set Point: 35° F	95° F 155° F
Set Point: 35° F	95° F 155° F
Set Point: 35° F	95° F 155° F

Approx Set Point	Uncertainty ° F	Thermometer/Thermistor ° F	TemProbe ° F	Offset ° F
35 ° F	0.00324	35,0	35.0	,0
95 ° F	0.00324	95,0	95,0	,0
155 ° F	0.00324	155,0	155.1	. l

Procedure used: Procedure for Calibration/Recalibration of MultiTemps and/or TemProbes SIP-CP14 Rev: 03 Dated: 07/31/14. There were no additions to or deviations from the calibration procedure during this calibration process.

Calibration standards used by Shortridge Instruments, Inc. are traceable to NIST (National Institute of Standards and Technology). Calibration is performed in accordance with ANSI/NCSL Z540-1, ISO 17025, MIL-STD 45662A and manufacturer's specifications. Calibration accuracy is certified when meters are used with properly functioning accessories only. This report shall not be reproduced, except in full, without the written approval of Shortridge Instruments, Inc. Results relate only to the item calibrated. Limitations on use: See Shortridge Instruments, Inc. Instruction Manual for the use of AirData Multimeters.

The enclosed ADM or HDM Calibration Standards form(s) is/are an integral part of this calibration and must remain with this Certificate of Calibration. Any calibration due date shown is specified by the customer.

Calibration Approved by: M. Romver

Date: 02/24/2023

Shortridge Instruments, Inc. 7855 East Redfield Road Scottsdale, Arizona 85260 (480) 991-6744 • Fax (480) 443-1267 • www.shortridge.com

TemProbes Cal Rev 02 04/25/2022 2023 Eagle Foundry Air Arc and Finish End Areas PTE Verification Report

Shortridge Instruments, Inc. AirData Multimeter Calibration Equipment

Order Number: <u>730186</u> Serial Number: <u>TP-M2257</u>Z Test Type:

S/N: 41741/42451

S/N: 41743/42453

S/N: 42186/43328

S/N: 42203/43352

S/N: 45605/48491

S/N: 43413/45044

S/N: 44581/46845

S/N: 44582/46847

S/N: 43412/45043-2

S/N: 41742/42452-1

ADM #02-R

ADM #04-R

ADM #06-R

ADM #08-R

ADM #10-R

ADM #12A-R

ADM #14-R

ADM #16-R

ADM #18-R

ADM #20-R

Initial As-Received Final

ABSOLUTE	PRESSURE	STANDARDS
----------	----------	------------------

Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 04/28/22 Mfgd by Dresser Industries Calibrated by Ashcroft Mfgd & Calibrated by Ashcroft, Inc. Mfgd & Calibrated by Ashcroft, Inc.

#02-R, 04-R, 06-R, 08-R, 10-R, 12A-R, 14-R, 16-R Rated Accuracy: 0.05% fs (0.0305 in Hg) Range: 0-30 psia #18-R, 20-R Rated Accuracy: 0.05% fs (0.0305 in Hg) Range: 0-60 in Hg

Heise Model: PPM-2

DIFFERENTIAL PRESSURE STANDARDS

Calibration Date: 11/19/21 Calibration Date: 09/01/22 Calibration Date: 03/26/22 Calibration Date: 03/07/22 Calibration Date: 08/01/22 Calibration Date: 09/28/22 Calibration Date: 01/27/22 Calibration Date: 10/26/21 Calibration Date: 07/07/22 Resolution: 0.01 Resolution: 0.001

Due Date: 06/2023 Due Date: 02/2023 Due Date: 09/2023 Due Date: 05/2023 Due Date: 04/2023 Due Date: 08/2023 Due Date: 09/2023 Due Date: 03/2023 Due Date: 11/2022 Due Date: 07/2023 Uncertainty: < 0.0358 Uncertainty: < 0.0358

ADM #01-L	S/N: 41739/42449	Heise Model: PPM-1	1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 04/28/22 Due Date: 0	6/2023
ADM #01-R	S/N: 41739/42446	Heise Model: PPM-1	1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 04/29/22 Due Date: 0	6/2023
ADM #02-L	S/N: 41741/42454	Heise Model: PPM-1	1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 04/28/22 Due Date: 0	6/2023
ADM #03A-L	S/N: 45570/48461	Heise Model: PPM-1	1 Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 11/24/21 Due Date: 0	2/2023
ADM #03A-R	S/N: 45570/48460	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 11/24/21 Due Date: 0	2/2023
ADM #04-L	S/N: 41743/42456	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 11/23/21 Due Date: 0	2/2023
ADM #05-L	S/N: 41740/42450	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 09/01/22 Due Date: 0	9/2023
ADM #05-R	S/N: 41740/42447	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 09/01/22 Due Date: 0	9/2023
ADM #06-L	S/N: 41742/42455	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 09/01/22 Due Date: 09	9/2023
ADM #07-L	S/N: 42185/42186	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/29/22 Due Date: 03	5/2023
ADM #07-R	S/N: 42185/43326	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/29/22 Due Date: 03	5/2023
ADM #08-L	S/N: 42186/43329	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/28/22 Due Date: 03	5/2023
ADM #09-L	S/N: 42202/43351	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04	4/2023
ADM #09-R	S/N: 42202/43350	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04	4/2023
ADM #10-L	S/N: 42203/43353	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 03/07/22 Due Date: 04	4/2023
ADM #11-L	S/N: 43165/44551-1	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 08/04/22 Due Date: 08	8/2023
ADM #11-R	S/N: 43165/44730	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 08/04/22 Due Date: 08	3/2023
ADM #12A-L	S/N: 45605/48490-1	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 08/03/22 Due Date: 08	3/2023
ADM #13-L	S/N: 43415/45041	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 10/11/22 Due Date: 09	9/2023
ADM #13-R	S/N: 43415/45039	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 10/11/22 Due Date: 09	9/2023
ADM #14-L	S/N: 43412/45045	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 10/11/22 Due Date: 09	9/2023
ADM #15-L	S/N: 43416/45042	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 02/07/22 Due Date: 03	3/2023
ADM #15-R	S/N: 43416/45040-1	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 02/07/22 Due Date: 03	3/2023
ADM #16-L	S/N: 43413/45046	Heise Model: PPM-1	Mfgd by Dresser Industries Calibrated by Ashcroft Calibration Date: 02/07/22 Due Date: 03	8/2023
ADM #17-L	S/N: 44579/46842	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11	/2022
ADM #17-R	S/N: 44579/46841	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11	/2022
ADM #18-L	S/N: 44581/46846	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 10/29/21 Due Date: 11	/2022
ADM #19-L	S/N: 44580/46844	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 07/14/22 Due Date: 07	/2023
ADM #19-R	S/N: 44580/46843	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 07/14/22 Due Date: 07	/2023
ADM #20-L	S/N: 44582/46848	Heise Model: PPM-1	Mfgd & Calibrated by Ashcroft, Inc. Calibration Date: 07/14/22 Due Date: 07	/2023
#01-L, 03A-L, 05	i-L, 07-L, 09-L, 11-L, 13	-L, 15-L, 17-L, 19-L	Rated Accuracy: > 0.07% fs (0.000175 in wc) Range: 0.0-0.25 in wc Res.: 0.00001 Uncertainty: < 0.0	00035
#01-R, 03A-R, 0	5-R, 07-R, 09-R, 11-R, 1	13-R, 15-R, 17-R, 19-R	R Rated Accuracy: > 0.06% fs (0.003 in wc) Range: 0.0-5.0 in wc Res.: 0.0001 Uncertainty: < 0.0	00348
#02-L, 04-L, 06-l	_, 08-L, 10-L, 12A-L, 14	-L, 16-L, 18-L, 20-L	Rated Accuracy: > 0.06% fs (0.03 in wc) Range: 0.0-50.0 in wc Res.: 0.001 Uncertainty: < 0.	.0346

Shortridge Instruments, Inc. 7855 East Redfield Road Scottsdale, Arizona 85260 (480) 991-6744 • Fax (480) 443-1267 • www.shortridge.com EFC223174 ADM Cal Strug Reveal of 2019 Air Arc and Finish End Areas PTE Verification Report

Shortridge Instruments, Inc. AirData Multimeter Calibration Equipment

Customer Order Number, Meter Serial Number, and Test Type are referenced on page 1

LOW VELOCITY EQUIVALENT CONFIRMATION STANDARDS

Vel Eqv Transfer Standard S/N: M02009 Vel Eqv Transfer Standard S/N: M02903 Vel Eqv Transfer Standard S/N: M10839 Vel Eqv Transfer Standard S/N: M10840 Model ADM-870C Vel Eqv Transfer Standard S/N: M10897 Vel Eqv Transfer Standard S/N: M10901 Vel Eqv Transfer Standard S/N: M13492 Vel Eqv Transfer Standard S/N: M19325 Rated Accuracy: Velocity ± 1.5 % ± 3.5 fpm

Model ADM-870C Model ADM-870C Model ADM-870C Model ADM-870C Model ADM-870C Model ADM-870C Model ADM-870C

Mfgd & Calibrated by Shortridge Instruments, Inc. Mfg'd & Calibrated by Shortridge Instruments, Inc. Mfg'd & Calibrated by Shortridge Instruments, inc. Mfg'd & Calibrated by Shortridge Instruments, inc. Mfgd & Calibrated by Shortridge Instruments, Inc. Range: 100-5000 fpm Resolution: 0.1

Due Date: 08/2023 Calibration Date: 08/16/22 Calibration Date: 12/28/22 Due Date: 12/2023 Calibration Date: 10/26/22 Due Date: 10/2023 Calibration Date: 10/26/22 Due Date: 10/2023 Calibration Date: 01/25/23 Due Date: 01/2024 Calibration Date: 12/29/22 Due Date: 12/2023 Calibration Date: 08/16/22 Due Date: 08/2023 Calibration Date: 06/30/22 Due Date: 06/2023

Uncertainty: <5.00 fpm at 100 fpm; <7.50 fpm at 500 fpm

TEMPERATURE STANDARDS

RTD Simulator S/N: 249	Model RTD-1000/500	Mfgd by General Resis	stance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 250	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 253	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 04/02/20	Due Date: 03/2024
RTD Simulator S/N: 254	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 256	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 257	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 05/04/20	Due Date: 04/2024
RTD Simulator S/N: 292	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 293	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 294	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 01/03/20	Due Date: 01/2024
RTD Simulator S/N: 313	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 314	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 315	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 03/25/22	Due Date: 03/2026
RTD Simulator S/N: 316	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 06/06/22	Due Date: 05/2026
RTD Simulator S/N: 317	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 05/23/22	Due Date: 05/2026
RTD Simulator S/N: 318	Model RTD-1000/500	Mfgd by General Resi	stance	Calibrated by IET Labs	Calibration Date: 05/23/22	Due Date: 05/2026
Rated Accuracy: 0.025% of	of setting	Range: 100.00 Ω to 1	1111.10 Ω	2	Resolution: 0.01 Ω	Uncertainty: < 32 ppm
Thermometer #1 S/N 8A0	89/Thermistor S/N A41066	0 Model 1504/5610	Mfgd by	/ Hart Scientific Calibrated by Fluk	e Calibration Date: 02/24/22	Due Date: 02/2024
Thermometer #2 S/N 8B1	04/Thermistor S/N 871507	Model 1504/5610	Mfgd by	Hart Scientific Calibrated by Fluk	e Calibration Date: 12/07/22	Due Date: 11/2024
Thermometer #5 S/N B11	780/Thermistor S/N B1050	5 Model 1504/5610	Mfad by	Hart Scientific Calibrated by Fluk	e Calibration Date: 05/16/22	Due Date: 05/2024
	782/Thermistor S/N B1050			/ Hart Scientific Calibrated by Fluk		Due Date: 06/2024
	938/Thermistor S/N B4822			d Calibrated by Fluke	Calibration Date: 10/13/21	Due Date: 10/2023
Rated Accuracy(combined		Range: 32° F to 176°	•	Resolution: 0.001° F	Combined Uncertainty	with Baths: ≤ 0.040° F
rated recordey(combined					· · · · · · · · · · · · · · · · · · ·	
Temp Transfer Standard S		5	,	9	alibration Date: 10/26/22	Due Date: 10/2023
Temp Transfer Standard	S/N M96100 Model ADN	I-870 Mfgd & Calib	rated by S	Shortridge Instruments, Inc. Ca	alibration Date: 03/15/22	Due Date: 03/2023

Calibration Date: 03/15/22 Uncertainty: < 0.023° F

Total combined Uncertainty for MultiTemp and TemProbe testing : < 0.046° F

Range: 33° F to 158° F

Rated Accuracy: 0.03° F

This form must remain with the Certificate of Calibration corresponding to the Customer Order Number and Meter Serial Number referenced on page 1.

Resolution: 0.01° F

Shortridge Instruments, Inc. 7855 East Redfield Road Scottsdale, Arizona 85260 (480) 991-6744 • Fax (480) 443-1267 • www.shortridge.com

EFC223174 ADM Cal 2023 Eagle Foundry Air Arc and Finish End Areas PTÉ Verification Report This is the last page of the report.