

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, August 25, 2022 Brian Bartlett Stimson Lumber Co. PO Box 68 Forest Grove, OR 97204

RE: A2H0036 - CAO - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2H0036, which was received by the laboratory on 8/2/2022 at 9:40:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1

19.1 degC

Cooler#2

21.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Forest Grove, OR 97204

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]

Project Manager: Brian Bartlett A2H0036 - 08 25 22 0934

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Press Pit	А2Н0036-01	Water	08/01/22 10:21	08/02/22 09:40
Whitewater Chest	A2H0036-02	Water	08/01/22 10:04	08/02/22 09:40
Machine Chest	А2Н0036-03	Water	08/01/22 11:11	08/02/22 09:40
Hydrosieves	A2H0036-04	Water	08/01/22 10:49	08/02/22 09:40
Header Box	A2H0036-05	Water	08/01/22 09:51	08/02/22 09:40

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

ANALYTICAL CASE NARRATIVE

Work Order: A2H0036

Temperature Exceedance-

Samples were received at 19.1, 21.3 $^{\circ}$ C, which exceeds the regulatory requirements for proper storage at less than or equal to 6 $^{\circ}$ C.

Affected samples or specific analyses have been qualified with "TEMP" in this report.

Jennifer Sutton Sample Control 8/2/22

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnel la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	60D			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Press Pit (A2H0036-01)				Matrix: Wate	er	Batch:	22H0139	TEMP
Acetone	104	100	200	ug/L	10	08/03/22 21:41	EPA 8260D	J
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	5 I	08/03/22 21:41	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	5 1	08/03/22 21:41	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	5 I	08/03/22 21:41	EPA 8260D	
Whitewater Chest (A2H0036-02)				Matrix: Wate	er	Batch:	22H0139	TEMP
Acetone	127	100	200	ug/L	10	08/03/22 22:03	EPA 8260D	J
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	5 1	08/03/22 22:03	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	5 1	08/03/22 22:03	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	5 I	08/03/22 22:03	EPA 8260D	
Machine Chest (A2H0036-03)				Matrix: Wate	er	Batch:	22H0139	TEMP
Acetone	321	100	200	ug/L	10	08/03/22 22:25	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	105 %	Limits: 80-120 %	5 1	08/03/22 22:25	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	5 1	08/03/22 22:25	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	5 I	08/03/22 22:25	EPA 8260D	
Hydrosieves (A2H0036-04)				Matrix: Wate	er	Batch:	22H0139	TEMP
Acetone	125	100	200	ug/L	10	08/03/22 23:10	EPA 8260D	J
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	5 <i>1</i>	08/03/22 23:10	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	5 1	08/03/22 23:10	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	5 1	08/03/22 23:10	EPA 8260D	
Header Box (A2H0036-05)				Matrix: Wate	er	Batch:	22H0139	TEMP
Acetone	195	100	200	ug/L	10	08/03/22 22:48	EPA 8260D	J
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	5 1	08/03/22 22:48	EPA 8260D	
Toluene-d8 (Surr)			99 %	80-120 %	5 1	08/03/22 22:48	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	5 1	08/03/22 22:48	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]

Forest Grove, OR 97204 Project Manager: Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Aldehyde	es by EPA Me	thod 8315A	L			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Press Pit (A2H0036-01)				Matrix: W	ater	Batch: \	W2H0339	
Batch: W2H0339								
Formaldehyde	18000		3000	ug/l	1	08/04/22 14:42	EPA 8315A	M-02
Whitewater Chest (A2H0036-02)				Matrix: W	ater	Batch: \	W2H0339	
Batch: W2H0339				•				
Formaldehyde	16000		3000	ug/l	1	08/04/22 14:58	EPA 8315A	M-02
Machine Chest (A2H0036-03RE1)				Matrix: W	ater	Batch: \	W2H0339	
Batch: W2H0339								
Formaldehyde	55000		15000	ug/l	5	08/04/22 18:34	EPA 8315A	M-02, M-06
Hydrosieves (A2H0036-04)				Matrix: W	ater	Batch: \	W2H0339	
Batch: W2H0339						_		
Formaldehyde	19000		3000	ug/l	1	08/04/22 15:31	EPA 8315A	M-02
Header Box (A2H0036-05RE1)				Matrix: W	ater	Batch: \	W2H0339	
Batch: W2H0339			<u> </u>				<u> </u>	
Formaldehyde	67000		15000	ug/l	5	08/04/22 18:52	EPA 8315A	M-02, M-06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water Blank (22H0139-BLK1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 17:37 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 1.00 2.00 Acrylonitrile ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 5.00 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 ND Dibromochloromethane 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---ND 0.200 1,1-Dichloroethane 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution Result % REC RPD Limit Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water Blank (22H0139-BLK1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 17:37 ND 0.250 0.500 ug/L 1,2-Dichloropropane 1,3-Dichloropropane ug/L ND 0.500 1.00 1 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 trans-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 Ethylbenzene ND 0.250 0.500 ug/L 1 Hexachlorobutadiene ND 2.50 5.00 ug/L 1 10.0 2-Hexanone ND 5.00 ug/L 1 Isopropylbenzene ND 0.500 1.00 ug/L 1 ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 5.00 10.0 Methylene chloride ND ug/L 1 ND 10.0 4-Methyl-2-pentanone (MiBK) 5.00 ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 Naphthalene ND 2.00 1.00 ug/L 1 n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 0.500 1.00 Styrene 1 ug/L 1,1,1,2-Tetrachloroethane ND 0.200 0.400 1 ug/L 1.1.2.2-Tetrachloroethane ND 0.250 0.500 ug/L 1 ------Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 Toluene ND 0.500 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.200 0.400ug/L 1 0.500 ND 0.250 1,1,2-Trichloroethane ug/L 1 ---Trichloroethene (TCE) ND 0.200 0.400 ug/L 1

Surr: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % Dilution: Ix

1.00

0.500

0.500

0.500

0.200

0.500

0.250

2.00

1.00

1.00

1.00

0.400

1.00

0.500

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

Apex Laboratories

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant la final

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0139 - EPA 5030C							Wa	ter				
Blank (22H0139-BLK1)			Prepared	: 08/03/22	12:28 Ana	lyzed: 08/03	/22 17:37					
Surr: Toluene-d8 (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	tion: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (22H0139-BS1)			Prepared	: 08/03/22	12:28 Ana	lyzed: 08/03	/22 16:42					
EPA 8260D												
Acetone	38.6	10.0	20.0	ug/L	1	40.0		97	80-120%			
Acrylonitrile	20.4	1.00	2.00	ug/L	1	20.0		102	80-120%			
Benzene	19.9	0.100	0.200	ug/L	1	20.0		100	80-120%			
Bromobenzene	19.3	0.250	0.500	ug/L	1	20.0		96	80-120%			
Bromochloromethane	21.9	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromodichloromethane	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
Bromoform	22.6	0.500	1.00	ug/L	1	20.0		113	80-120%			
Bromomethane	21.6	5.00	5.00	ug/L	1	20.0		108	80-120%			
2-Butanone (MEK)	41.9	5.00	10.0	ug/L	1	40.0		105	80-120%			
n-Butylbenzene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
sec-Butylbenzene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
tert-Butylbenzene	19.1	0.500	1.00	ug/L	1	20.0		96	80-120%			
Carbon disulfide	21.4	5.00	10.0	ug/L	1	20.0		107	80-120%			
Carbon tetrachloride	22.8	0.500	1.00	ug/L	1	20.0		114	80-120%			
Chlorobenzene	20.1	0.250	0.500	ug/L	1	20.0		101	80-120%			
Chloroethane	28.2	5.00	5.00	ug/L	1	20.0		141	80-120%			Q
Chloroform	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
Chloromethane	21.1	2.50	5.00	ug/L	1	20.0		106	80-120%			
2-Chlorotoluene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
4-Chlorotoluene	18.3	0.500	1.00	ug/L	1	20.0		92	80-120%			
Dibromochloromethane	21.1	0.500	1.00	ug/L	1	20.0		106	80-120%			
1,2-Dibromo-3-chloropropane	19.7	2.50	5.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromoethane (EDB)	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Dibromomethane	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,2-Dichlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
1,4-Dichlorobenzene	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dichlorodifluoromethane	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,1-Dichloroethane	21.3	0.200	0.400	ug/L	1	20.0		106	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

CAO Stimson Lumber Co. Project: PO Box 68 Project Number: [none] Forest Grove, OR 97204 Project Manager: Brian Bartlett A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water LCS (22H0139-BS1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 16:42 1,2-Dichloroethane (EDC) 21.7 0.200 0.400 ug/L 20.0 109 80-120% 1,1-Dichloroethene 23.0 0.200 0.400 ug/L 1 20.0 115 80-120% ---------20.0 cis-1,2-Dichloroethene 21.0 0.200 0.400 ug/L 1 105 80-120% trans-1,2-Dichloroethene 21.0 0.200 0.400 ug/L 1 20.0 105 80-120% 20.9 0.250 20.0 0.500 105 80-120% 1,2-Dichloropropane ug/L 1 20.0 1,3-Dichloropropane 20.0 0.500 1.00 ug/L 1 100 80-120% 2,2-Dichloropropane 20.4 0.5001.00 ug/L 1 20.0 102 80-120% 20.0 103 1,1-Dichloropropene 20.7 0.500 1.00 ug/L 1 80-120% 0.500 1.00 20.0 cis-1,3-Dichloropropene 20.0 ug/L 1 100 80-120% trans-1,3-Dichloropropene 21.7 0.500 1.00 ug/L 1 20.0 108 80-120% Ethylbenzene 20.0 98 19.6 0.250 0.500 1 80-120% ug/L 2.50 20.0 Hexachlorobutadiene 20.6 5.00 ug/L 1 103 80-120% 97 39.0 5.00 10.0 40.0 2-Hexanone ug/L 1 ---80-120% ---Isopropylbenzene 19.8 0.500 1.00 ug/L 1 20.0 99 80-120% 20.1 0.500 1.00 20.0 101 80-120% 4-Isopropyltoluene ug/L 1 ---Methylene chloride 20.9 5.00 10.0 ug/L 1 20.0 104 80-120% 42.2 5.00 10.0 40.0 106 4-Methyl-2-pentanone (MiBK) 1 80-120% ug/L Methyl tert-butyl ether (MTBE) 21.4 0.500 1.00 1 20.0 107 80-120% ug/L Naphthalene 18.9 1.00 2.00 20.0 94 80-120% ug/L 1 -----n-Propylbenzene 19.2 0.250 0.500 ug/L 1 20.0 96 80-120% 20.8 0.500 1.00 20.0 104 80-120% Styrene ug/L 1 ---1,1,1,2-Tetrachloroethane 20.0 0.200 0.400 ug/L 1 20.0 100 80-120% 1,1,2,2-Tetrachloroethane 20.3 0.250 0.500 ug/L 1 20.0 102 80-120% Tetrachloroethene (PCE) 20.3 0.200 0.400 ug/L 1 20.0 102 80-120% Toluene 19.2 0.500 1.00 20.0 96 80-120% ug/L 1 ------1,2,3-Trichlorobenzene 20.2 1.00 2.00 ug/L 1 20.0 101 80-120% 1,2,4-Trichlorobenzene 19.8 1.00 2.00 20.0 99 80-120% ug/L 1 ---1,1,1-Trichloroethane 21.5 0.200 0.400 ug/L 1 20.0 107 80-120% 1.1.2-Trichloroethane 19.8 0.250 0.500 ug/L 1 20.0 99 80-120% Trichloroethene (TCE) 20.3 0.200 0.400 ug/L 1 20.0 101 80-120% Trichlorofluoromethane 23.1 1.00 2.00 20.0 80-120% ug/L 1 116 1,2,3-Trichloropropane 19.1 0.500 1.00 ug/L 1 20.0 95 80-120% 1,2,4-Trimethylbenzene 20.4 0.500 1.00 ug/L 1 20.0 102 80-120% 1,3,5-Trimethylbenzene 19.9 0.500 1.00 ug/L 1 20.0 100 80-120%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0139 - EPA 5030C							Wa	ter				
LCS (22H0139-BS1)			Prepared	: 08/03/22	12:28 Anal	yzed: 08/03/	/22 16:42					
/inyl chloride	21.9	0.200	0.400	ug/L	1	20.0		109	80-120%			
n,p-Xylene	40.3	0.500	1.00	ug/L	1	40.0		101	80-120%			
-Xylene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Recor	very: 104 %	Limits: 80	-120 %	Dilı	ition: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Ouplicate (22H0139-DUP1)			Prepared	: 08/03/22	12:28 Anal	lyzed: 08/03/	/22 18:22					
OC Source Sample: Non-SDG (A2	H0069-01)											
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
crylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
enzene	ND	0.100	0.200	ug/L	1		ND				30%	
romobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
romochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
romodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Units Dilution Result RPD Limit Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water Duplicate (22H0139-DUP1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 18:22 QC Source Sample: Non-SDG (A2H0069-01) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% ---ND 0.200 0.400 1,1-Dichloroethene ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND ND 30% 0.200 0.400 ug/L 1 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 0.250 Ethylbenzene ND 0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 ND 30% Isopropylbenzene 1.00 1 ug/L ---ND 0.500 ND 4-Isopropyltoluene 1.00 ug/L 1 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 ND 30% 10.0 ug/L Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ------30% Naphthalene ND 1.00 2.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene 0.250 ug/L 1 ND 0.500 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 1.00 2.00 ND 30% ug/L 1 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 0.200 0.400 ND 1,1,1-Trichloroethane 1 30% ug/L 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunell la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0139 - EPA 5030C							Wa	ter				
Duplicate (22H0139-DUP1)			Prepared	1: 08/03/22	12:28 Ana	yzed: 08/03	/22 18:22					
QC Source Sample: Non-SDG (A2	H0069-01)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
QC Source Sample: Hydrosieves (A2H0036-0	<u>4)</u>										
EPA 8260D Acetone	503	100	200	ug/L	10	400	125	94	39-160%			
	206	10.0	20.0	ug/L ug/L	10	200	ND	103	63-135%			
Acrylonitrile Benzene	200	1.00	2.00	·	10	200	ND ND	105	79-120%			
Bromobenzene	189	2.50	5.00	ug/L ug/L	10	200	ND ND	95	80-120%			
Bromodenzene Bromochloromethane	227	5.00	10.0	ug/L ug/L	10	200	ND ND	93 114	78-123%			
Bromodichloromethane	218	5.00	10.0	ug/L ug/L	10	200	ND ND	109	79-125%			
Bromoform	214	5.00	10.0	ug/L ug/L	10	200	ND ND	107	66-130%			
Bromomethane	228	50.0	50.0	ug/L ug/L	10	200	ND ND	114	53-141%			
2-Butanone (MEK)	426	50.0	100	ug/L ug/L	10	400	ND ND	106	56-143%			
a-Butylbenzene	211	5.00	10.0	ug/L	10	200	ND ND	105	75-128%			
ec-Butylbenzene	216	5.00	10.0	ug/L	10	200	ND	103	77-126%			
ert-Butylbenzene	198	5.00	10.0	ug/L	10	200	ND	99	78-124%			
Carbon disulfide	233	50.0	100	ug/L	10	200	ND	117	64-133%			
Carbon tetrachloride	248	5.00	10.0	ug/L	10	200	ND	124	72-136%			
Chlorobenzene	202	2.50	5.00	ug/L	10	200	ND	101	80-120%			
Chloroethane	293	50.0	50.0	ug/L	10	200	ND	147	60-138%			
		5.00		_								
Chloroform	220	3.00	10.0	ug/L	10	200	ND	110	79-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to buil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water Matrix Spike (22H0139-MS1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 23:32 TEMP QC Source Sample: Hydrosieves (A2H0036-04) 2-Chlorotoluene 5.00 10.0 ug/L 10 200 ND 98 79-122% 185 5.00 10.0 10 200 ND 92 4-Chlorotoluene ug/L 78-122% Dibromochloromethane 202 5.00 10.0 ug/L 10 200 ND 101 74-126% 1,2-Dibromo-3-chloropropane 191 25.0 50.0 ug/L 10 200 ND 95 62-128% 1,2-Dibromoethane (EDB) 196 2.50 5.00 ug/L 10 200 ND 98 77-121% 200 Dibromomethane 214 10.0 ND 107 79-123% 5.00 ug/L 10 1,2-Dichlorobenzene 194 2.50 5.00 ug/L 10 200 ND 97 80-120% 200 5.00 200 ND 100 80-120% 1,3-Dichlorobenzene 2.50 ug/L 10 1,4-Dichlorobenzene 195 2.50 5.00 ug/L 10 200 ND 98 79-120% Dichlorodifluoromethane 255 5.00 10.0 ug/L 10 200 ND 128 32-152% 1,1-Dichloroethane 222 2.00 4.00 ug/L 10 200 ND 111 77-125% 1,2-Dichloroethane (EDC) 218 2.00 4.00 10 200 ND 109 73-128% ug/L 254 200 ND 1,1-Dichloroethene 2.00 4.00 ug/L 10 127 71-131% 200 cis-1,2-Dichloroethene 213 2.00 4.00 10 ND 107 78-123% ug/L trans-1,2-Dichloroethene 227 2.00 4.00 ug/L 10 200 ND 114 75-124% 1,2-Dichloropropane 211 2.50 5.00 ug/L 10 200 ND 105 78-122% 1,3-Dichloropropane 196 5.00 10.0 ug/L 10 200 ND 98 80-120% 219 5.00 10.0 200 ND 110 60-139% 2,2-Dichloropropane ug/L 10 226 200 ND 113 79-125% 1,1-Dichloropropene 5.00 10.0 ug/L 10 5.00 10.0 200 ND cis-1,3-Dichloropropene 184 10 92 75-124% ug/L trans-1,3-Dichloropropene 211 5.00 10.0 10 200 ND 105 73-127% ug/L Ethylbenzene 200 2.50 5.00 ug/L 10 200 ND 100 79-121% Hexachlorobutadiene 219 25.0 50.0 ug/L 10 200 ND 109 66-134% 2-Hexanone 384 100 400 ND 96 57-139% 50.0 ug/L 10 208 5.00 10.0 200 ND 104 72-131% Isopropylbenzene ug/L 10 200 212 5.00 10.0 10 ND 106 77-127% 4-Isopropyltoluene ug/L Methylene chloride 210 50.0 100 10 200 ND 105 74-124% ug/L 400 ND 67-130% 4-Methyl-2-pentanone (MiBK) 410 50.0 100 ug/L 10 102 Methyl tert-butyl ether (MTBE) 212 5.00 10.0 ug/L 10 200 ND 106 71-124% Naphthalene 189 10.0 20.0 10 200 ND 94 61-128% ug/L n-Propylbenzene 203 2.50 5.00 ug/L 10 200 ND 102 76-126% 209 5.00 10.0 200 ND 105 Styrene 10 78-123% ug/L

Apex Laboratories

1,1,1,2-Tetrachloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

78-124%

98

Dunnell la fraid

196

2.00

4.00

ug/L

10

200

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0139 - EPA 5030C Water Matrix Spike (22H0139-MS1) Prepared: 08/03/22 12:28 Analyzed: 08/03/22 23:32 TEMP QC Source Sample: Hydrosieves (A2H0036-04) 97 1,1,2,2-Tetrachloroethane 2.50 5.00 ug/L 10 200 ND 71-121% Tetrachloroethene (PCE) 2.00 4.00 10 200 213 ug/L ND 107 74-129% 194 200 97 80-121% Toluene 5.00 10.0 ug/L 10 ND 1,2,3-Trichlorobenzene 204 10.0 20.0 ug/L 10 200 ND 102 69-129% 1,2,4-Trichlorobenzene 203 10.0 20.0 ug/L 10 200 ND 102 69-130% 200 1,1,1-Trichloroethane 228 2.00 4.00 ND ug/L 10 114 74-131% 2.50 1,1,2-Trichloroethane 192 5.00 ug/L 10 200 ND 96 80-120% 200 Trichloroethene (TCE) 215 2.00 4.00 ND 107 79-123% ug/L 10 200 Trichlorofluoromethane 265 10.0 20.0 ug/L 10 ND 132 65-141% 1,2,3-Trichloropropane 184 5.00 10.0 ug/L 10 200 ND 92 73-122% 1,2,4-Trimethylbenzene 204 5.00 10.0 ug/L 10 200 ND 102 76-124% 200 1,3,5-Trimethylbenzene 204 5.00 10.0 10 ND 102 75-124% ug/L 247 2.00 10 200 ND 124 58-137% Vinyl chloride 4.00 ug/L 400 m,p-Xylene 414 5.00 10.0 10 ND 103 80-121% ug/L 2.50 5.00 78-122% o-Xylene 190 ug/L 10 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 104 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 80-120 % 96% 4-Bromofluorobenzene (Surr) 97% 80-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 23

Dunell by fruit

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Aldeh	ydes by	EPA Meth	od 8315A	١					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W2H0339 - EPA 8315/Dri	z., L-L SF	=					Wat	ter				
Blank (W2H0339-BLK1)			Prepared	: 08/03/22	13:50 Ana	lyzed: 08/04	/22 12:44					
EPA 8315A Formaldehyde	ND		30	ug/l	1							
LCS (W2H0339-BS1)			Prepared	: 08/03/22	13:50 Ana	lyzed: 08/04	/22 13:01					
EPA 8315A												
Formaldehyde	140		30	ug/l	1	100		140	44-173%			
Matrix Spike (W2H0339-MS1)			Prepared	: 08/03/22	13:50 Ana	lyzed: 08/04	/22 13:17					
OC Source Sample: Non-SDG (2He	02150-02)											
EPA 8315A												
Formaldehyde	4520		600	ug/l	1	2000	2960	78	32-164%			M-0
Matrix Spike Dup (W2H0339-M	MSD1)		Prepared	: 08/03/22	13:50 Ana	lyzed: 08/04	/22 18:16					
QC Source Sample: Non-SDG (2H)	02150-02)											
Formaldehyde	11600		3000	ug/l	5	2000	2960	430	32-164%	88	20%	M-02, M-06 MS-01, R-0

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0036 - 08 25 22 0934

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample Initial/Final	Default Initial/Final	RL Prep Factor
Lab Number Batch: 22H0139	Matrix	Method	Sampled	Prepared	imual/Tinai	IIIIIIIII/TIIIIII	Tactor
A2H0036-01	Water	EPA 8260D	08/01/22 10:21	08/03/22 12:28	5mL/5mL	5mL/5mL	1.00
A2H0036-02	Water	EPA 8260D	08/01/22 10:04	08/03/22 12:28	5mL/5mL	5mL/5mL	1.00
A2H0036-03	Water	EPA 8260D	08/01/22 11:11	08/03/22 12:28	5mL/5mL	5mL/5mL	1.00
A2H0036-04	Water	EPA 8260D	08/01/22 10:49	08/03/22 12:28	5mL/5mL	5mL/5mL	1.00
A2H0036-05	Water	EPA 8260D	08/01/22 09:51	08/03/22 12:28	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]

Forest Grove, OR 97204 Project Manager: Brian Bartlett A2H0036 - 08 25 22 0934

Weck Laboratories, Inc.

SAMPLE PREPARATION INFORMATION

		Ald	dehydes by EPA Metl	nod 8315A			
Prep: EPA 8315/Drtz	., L-L SF				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: W2H0339							
A2H0036-01	Water	EPA 8315A	08/01/22 10:21	08/03/22 13:50	1ml/10ml	100ml/10ml	100.00
A2H0036-02	Water	EPA 8315A	08/01/22 10:04	08/03/22 13:50	1ml/10ml	100ml/10ml	100.00
A2H0036-03RE1	Water	EPA 8315A	08/01/22 11:11	08/03/22 13:50	1ml/10ml	100ml/10ml	100.00
A2H0036-04	Water	EPA 8315A	08/01/22 10:49	08/03/22 13:50	1ml/10ml	100ml/10ml	100.00
A2H0036-05RE1	Water	EPA 8315A	08/01/22 09:51	08/03/22 13:50	1ml/10ml	100ml/10ml	100.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +21%. The results are reported as Estimated Values.

Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

TEMP Sample was received outside of recommended temperature. See Case Narrative.

Weck Laboratories, Inc.

M-02 Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.

M-06 Due to the high concentration of analyte inherent in the sample, sample was diluted prior to preparation and/or analysis. The MDL and MRL were raised due to this dilution.

MS-01 The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.

R-02 The RPD was outside of QC acceptance limits due to possible matrix interference.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la final

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex	Labor	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

a James 11 la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jumel la frait

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stimson Lumber Co.</u> Project: <u>CAO</u>

PO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0036 - 08 25 22 0934

Company: Stimson Lumber		Project Mgr.	1 Mgr.						¥.	Project Name:	ате:	CAO	_		İ			Project #:	1,4				
Address: 49800 SW Scoggins Valley Rd., Gaston, OR 97119	Rd., Gasi	ton, OR	97119			Phone:		503-359-3403	-3403		Email: 1	Email: bbartlett@stansonlumber.com	Østunsc	alumbe	r.com			PO#	78	2022004884	<u>\$</u>		
Sampled by:									6.5					Ē	S	CAALYSIS REQUEST	UEST						
Site Location:			ļ						<u> </u>			- <u>'</u> ''	181				Ca, Mg, (a, Tì,		(5.6	(
OR WA CA					ЕКЗ	1			SOC	s			/լ լյու <u>յ</u>		(8		e, Cd, b, Hg, Ag, P		TINI-OO	00-b E			
AK ID					INIAT	qepλqe				OOA			- 72				122. K, Se K, Se 135.						
SAMPLETD	CAB ID#	DATE	LIME	XIXTAM	# OE COM	315 Formal	260 Acetono	8700 BLE NALLH-C	8260 RBD	oleH 0928	OOA 0978	WIS 0758	8082 PCB 8270 Semi	8081 Pest	BCBA M	Priority M	I, Sb, As, Ir, Co, Cu, In, Mo, Ni, I, Zn Y, Zn OTAL D	TCLP Me	.KN (EPA 3	hosphorus (rchive
Press Pit	1	8/1/2022	2 1021	HZ0	-	8 ×	8 ×		ļ			1	╁				L N O		₩	-		-	
Whitewater Chest	-	8/1/2022			_	×	×		ļ			-		1	ļ				-			\vdash	-
Machine Chest		8/1/2022		-	~	×	×							ļ	_				ļ			-	-
Hvdrosieves		8/1/7022	-	-	٧	×	×	-						-					<u> </u>		-	-	├-
Header Box		8/1/2022		+		×	×	-	-			-	-	-	_							┼	-
							-																
							\dashv		_		+				_				-		+		
Normal Turn Around Time (TAT) = 10 Business Days	ım Arou	nd Time	(TAT):	= 10 Bus	iness D	ays					SPECI	SPECIAL INSTRUCTIONS	STRU		SSI				4			-	_
	1 Day	Δ.	2 Day		3 Day																		
TAT Requested (circle)	4 DAY	Ā	5 DAY		ŏ	Other: ASAP	ASA																
SAMF	LES AR	E HELD	FOR 30	DAYS						Π				8									
RELINQUISHED BY: Signature:	Date:	stc: 8/1/2022	Date: Signarde:	E BY		12	ŭ	Date:	12	2	RELINQU Signature:	RELINQUISHED BY: Signature:	HED B	e e			Date:	RECEIVED BY: Signature:	ED BY:		ğ	Date:	
Printed Name: Brian Bartlett	Time:	11:13	Printed	Jame:	£ 3	H	Ħ	Time:	13		Printed Name	Name:					Time:	Printed Name	ame:		ļĒ.	Time:	
Company:			Company) È	1		,				Company:	ıy:						Company:					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0036 - 08 25 22 0934

APEX LABS COOLER RECEIPT FORM
Client: Stimson Lumber Element WO#: A2 HO 36
Project/Project #:
Delivery Info:
Date/time received: 37/10 By:
Delivered by: ApexClientESSFedExUPSX SwiftSenvoySDSOther
Cooler Inspection Date/time inspected: 5/11/2 @ 443 By:
Chain of Custody included? Yes X No Custody seals? Yes No No
Signed/dated by client? Yes X No
Signed/dated by Apex? Yes No
Temperature (°C) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Received on ice? (Y/N) / \(\lambda\)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other) Qel Qel
Condition: Out out
Cooler out of temp?(V)N) Possible reason why: Down Coolers Methods . Green dots applied to out of temperature samples? Coolers Methods . Out of temperature samples form initially (Coolers Methods . Sample Inspection: Date/time inspected: 67 12 @
Bottle labels/COCs agree? Yes No Comments: No Jake 15 on 2/2 Ambers LOV All Sample 5. COC/container discrepancies form initiated? Yes No X
Containers/volumes received appropriate for analysis? Yes Y No Comments:
Do VOA vials have visible headspace? Yes X No NA
Comments 3/3 VOHS FOY all Samples, Sediment in all
Water samples: pH checked: Yes_No_NA_pH appropriate? Yes_No_NA_borniples.
Comments:
Additional information: 12983055036880 1966 " 4827 10972
Labeled by: Witness: Cooler Inspected by:
B 055

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, August 11, 2022 Brian Bartlett Stimson Lumber Co. PO Box 68 Forest Grove, OR 97204

RE: A2H0269 - CAO - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2H0269, which was received by the laboratory on 8/9/2022 at 10:05:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1

4.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]

Forest Grove, OR 97204 Project Manager: Brian Bartlett A2H0269 - 08 11 22 1559

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Whitewater	A2H0269-01	Water	08/08/22 10:02	08/09/22 10:05
Headbox	А2Н0269-02	Water	08/08/22 10:07	08/09/22 10:05
Machine Chest	А2Н0269-03	Water	08/08/22 10:21	08/09/22 10:05
Press Pit	А2Н0269-04	Water	08/08/22 10:29	08/09/22 10:05
Hydrosieves	А2Н0269-05	Water	08/08/22 10:38	08/09/22 10:05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0269 - 08 11 22 1559

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	erminations	s			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Whitewater (A2H0269-01)				Matrix: W	ater			
Batch: 22H0351								
Total Suspended Solids	7620		500	mg/L	1	08/09/22 17:42	SM 2540 D	
Headbox (A2H0269-02)				Matrix: Wa	ater			
Batch: 22H0351								
Total Suspended Solids	15300		500	mg/L	1	08/09/22 17:42	SM 2540 D	
Machine Chest (A2H0269-03)				Matrix: W	ater			
Batch: 22H0351								
Total Suspended Solids	23800		500	mg/L	1	08/09/22 17:42	SM 2540 D	
Press Pit (A2H0269-04)				Matrix: W	ater			
Batch: 22H0351								
Total Suspended Solids	393		83.3	mg/L	1	08/09/22 17:42	SM 2540 D	
Hydrosieves (A2H0269-05)				Matrix: Wa	ater			
Batch: 22H0351				·	·			·
Total Suspended Solids	305		125	mg/L	1	08/09/22 17:42	SM 2540 D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0269 - 08 11 22 1559

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0351 - Total Suspen	ded Solid	s	·				Wat	ter				
Blank (22H0351-BLK1)			Prepared	: 08/09/22	17:42 Ana	lyzed: 08/09	/22 17:42					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (22H0351-DUP1)			Prepared	: 08/09/22	17:42 Anal	lyzed: 08/09	/22 17:42					
QC Source Sample: Non-SDG (A2	H0260-01)					·						
Total Suspended Solids	240		125	mg/L	1		290			18.9	10%	Q-0
Duplicate (22H0351-DUP2)			Prepared	: 08/09/22	17:42 Ana	lyzed: 08/09	/22 17:42					
QC Source Sample: Non-SDG (A2	H0268-01)											
Total Suspended Solids	18.5		12.5	mg/L	1		18.0			2.74	10%	
Reference (22H0351-SRM1)			Prepared	: 08/09/22	17:42 Ana	lyzed: 08/09	/22 17:42					
SM 2540 D												
Total Suspended Solids	1030			mg/L	1	945		109	85-115%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0269 - 08 11 22 1559

SAMPLE PREPARATION INFORMATION

		So	lid and Moisture Dete	erminations			
Prep: Total Suspend	ded Solids				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0351							
A2H0269-01	Water	SM 2540 D	08/08/22 10:02	08/09/22 17:42			NA
A2H0269-02	Water	SM 2540 D	08/08/22 10:07	08/09/22 17:42			NA
A2H0269-03	Water	SM 2540 D	08/08/22 10:21	08/09/22 17:42			NA
A2H0269-04	Water	SM 2540 D	08/08/22 10:29	08/09/22 17:42			NA
A2H0269-05	Water	SM 2540 D	08/08/22 10:38	08/09/22 17:42			NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0269 - 08 11 22 1559

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnel la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0269 - 08 11 22 1559

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex	Labor	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Comments to family

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0269 - 08 11 22 1559

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0269 - 08 11 22 1559

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jumel la frait

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co. Project: CAO

PO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0269 - 08 11 22 1559

Stimson Lumber		Project Mgr.	Mgr:						Po	Project Name:	ате:	3	CAO				3	-	Project #:	淮				
Address:					,	Phone:					Email	Bba	rtlett(6	stims	onlun	Email: Bbartlett@stimsonlumber.com	E	βų	PO#	202	2022005074	0.000		
Sampled by:														Ž	ALY	SIS RE	ANALYSIS REQUEST							
Site Location:									ļ		~~~~)si				Ca, Mg, Ma, Tl,			(pu				
OR WA CA					SKS				\$O	s	List		ի հա		(8									
AK ID ———————————————————————————————————	LAB ID#	DATE	LIME	XIATAM	# OE CONTAINI	NWTPH-HCID	MWTPH-Dx	8700 BLEX	8760 RBDM VC	8760 Halo VOC	8760 VOCs Full	SHV4 WIS 0728	8270 Semi-Vols	8087 PCBs	8081 Pest RCRA Metals (8	Priority Metals (Al, Sb, As, Ba, B Cr, Co, Cu, Fe, F Mn, Mo, Mi, K, Se V, Zn		TCLP Metals (8	COD (Chemical Oxyge Cotal Suspended So				Агсһіче
Whitewater		8-Ang	1002	H ₂ 0	-			ļ						 	\vdash	-	,		I^{-}	×				
Headbox		8-Aug	1007	H ₂ 0	-															×				
Machine Chest		8-Aug	181	H_20	- 1															×				1 1
Press Pit		8-Aug	6201	$\mathrm{H}_{2}\mathrm{0}$	-						-									×				
Hydrosieves		8-Aug	1938	H ₂ 0	-		-													×				- 1
												\exists												
							\dashv				1							-	\dashv	\dashv	8.			
The state of the s														+	+	-								- 1
							+		-			\top	+	t	-	-		-		+				- 1
Nornal Tum Around Time (TAT) = 10 Business Days	m Around	d Time (TAT) = 1() Busine	ess Day	s.	-	+			SPEC	SPECIAL INSTRUCTIONS	NSTR	-Incil	ONS	_		1	1	\dashv				- 1
	1 Day		2 Day	,	3 Day						-	Please report to MDL	э герс	of to !	ΜDΓ									
TAT Requested (circle)	4 DAY		5 DAY		Oth	Other: ASA	3					рН те	asurec	d with	n 15 r	nin of	pH measured within 15 min of collection:							
	LES ARE	HELD	OR 30 DA	3				- 1		9 a								-						- 1
RELINQUISHED BY: Signature: The state of th	Date: > 8/6	Date: K/Grz	Date: Signfure: Signfure:	S Pax:	1	12	Date:	, (X)	16	. 2	RELINQ Signature:	RELINQUISHED BY Signature:	SHED	BY:			Date;		RECEIVE Signature:	RECEIVED BY Signature:		Date:	. 8	
Printed Name:	Time:		Printed	(sume:	2	#	Į.	Time:	200	a	Printec	Printed Name	45		80 80		Time:		Printed Name:	Name:		Time:		
Company:	4		Сотрапу	.	A	3		1	3		Company:	any:							Company:	 				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0269 - 08 11 22 1559

APEX LABS COOLER RECEIPT FORM
Client: Himson Lumber Element WO#: A2+10269
Project/Project #: A
Delivery Info: Date/time received: Sq122@ 1005 By: J5. Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Date/time inspected: Sq122@ 1001 By: J5 Chain of Custody included? Yes No Custody seals? Yes No
Signed/dated by client? Yes V No No No
Cooler #1 Cooler #2 Cooler #3 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition: Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Sample Inspection: Date/time inspected: No Comments:
Bottle labels/COCs agree? Yes No Comments:
COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments:
Do VOA vials have visible headspace? Yes No NA
Additional information: 17 983 055 01 6130 5025
Labeled by: Witness: Cooler Inspected by:

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, September 15, 2022 Brian Bartlett Stimson Lumber Co. PO Box 68 Forest Grove, OR 97204

RE: A2H0989 - WWTP - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2H0989, which was received by the laboratory on 8/31/2022 at 12:35:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 20.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Headbox	А2Н0989-01	Water	08/30/22 10:45	08/31/22 12:35
Whitewater	А2Н0989-02	Water	08/30/22 09:15	08/31/22 12:35
Machine Chest	А2Н0989-03	Water	08/30/22 08:22	08/31/22 12:35
Press Pit	А2Н0989-04	Water	08/30/22 09:30	08/31/22 12:35
Hydrosieves	А2Н0989-05	Water	08/30/22 10:05	08/31/22 12:35

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0989 - 09 15 22 1003

ANALYTICAL CASE NARRATIVE

Work Order: A2H0989

Temperature Exceedance-

Samples were received at 20.6 $^{\circ}$ C, which exceeds the regulatory requirements for proper storage at less than or equal to 6 $^{\circ}$ C.

Affected samples or specific analyses have been qualified with "TEMP" in this report.

Cameron O'Brien Project Manager 8/31/22

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

ANALYTICAL SAMPLE RESULTS

	Pı	urgeable Organ	ic Compo	unds by EPA 6	24.1			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method R	ef. Notes
Headbox (A2H0989-01RE1)				Matrix: Wate	er	Batch:	2210191	R-04, TEMP, V-01
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5	09/08/22 21:16	EPA 624.1	
Acetone	623	50.0	100	ug/L	5	09/08/22 21:16	EPA 624.1	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	<i>I</i>	09/08/22 21:16	EPA 624.1	
Toluene-d8 (Surr)			102 %	85-120 %	5 I	09/08/22 21:16	EPA 624.1	
4-Bromofluorobenzene (Surr)			90 %	75-120 %	1	09/08/22 21:16	EPA 624.1	
Whitewater (A2H0989-02RE1)				Matrix: Wate	er	Batch:	2210191	R-04, TEMP, V-01
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5	09/08/22 21:44	EPA 624.1	
Acetone	560	50.0	100	ug/L	5	09/08/22 21:44	EPA 624.1	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 109 %	Limits: 80-120 %	5 1	09/08/22 21:44	EPA 624.1	
Toluene-d8 (Surr)			102 %	85-120 %	<i>I</i>	09/08/22 21:44	EPA 624.1	
4-Bromofluorobenzene (Surr)			90 %	75-120 %	5 I	09/08/22 21:44	EPA 624.1	
Machine Chest (A2H0989-03RE1)				Matrix: Wate	er	Batch:	2210191	R-04, TEMP, V-01
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5	09/08/22 22:11	EPA 624.1	
Acetone	733	50.0	100	ug/L	5	09/08/22 22:11	EPA 624.1	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 108 %	Limits: 80-120 %	<i>I</i>	09/08/22 22:11	EPA 624.1	
Toluene-d8 (Surr)			101 %	85-120 %	5 I	09/08/22 22:11	EPA 624.1	
4-Bromofluorobenzene (Surr)			88 %	75-120 %	1	09/08/22 22:11	EPA 624.1	
Press Pit (A2H0989-04RE1)				Matrix: Wate	er	Batch:	2210191	R-04, TEMP, V-01
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5	09/08/22 20:49	EPA 624.1	
Acetone	109	50.0	100	ug/L	5	09/08/22 20:49	EPA 624.1	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 110 %	Limits: 80-120 %	5 1	09/08/22 20:49	EPA 624.1	
Toluene-d8 (Surr)			102 %	85-120 %	<i>I</i>	09/08/22 20:49	EPA 624.1	
4-Bromofluorobenzene (Surr)			94 %	75-120 %	<i>1</i>	09/08/22 20:49	EPA 624.1	
Hydrosieves (A2H0989-05RE1)				Matrix: Wate	er	Batch:	2210191	R-04, TEMP, V-01
4-Methyl-2-pentanone (MiBK)	ND	25.0	50.0	ug/L	5	09/08/22 20:22	EPA 624.1	
Acetone	293	50.0	100	ug/L	5	09/08/22 20:22	EPA 624.1	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 110 %	Limits: 80-120 %	<i>l</i>	09/08/22 20:22	EPA 624.1	
Toluene-d8 (Surr)			102 %	85-120 %	5 1	09/08/22 20:22	EPA 624.1	
4-Bromofluorobenzene (Surr)			93 %	75-120 %	1	09/08/22 20:22	EPA 624.1	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 4 of 22

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

ANALYTICAL SAMPLE RESULTS

	Sei	mivolatile Orga	nic Comp	ounds by EPA	625.1			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
Headbox (A2H0989-01)				Matrix: Wate	er	Batch:	2210025	R-04, TEMP
Phenol	73.0	51.9	104	ug/L	40	09/01/22 19:05	EPA 625.1	J
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 31 %	Limits: 40-110 %	40	09/01/22 19:05	EPA 625.1	S-05
2-Fluorobiphenyl (Surr)			10 %	50-110 %	40	09/01/22 19:05	EPA 625.1	S-05
Phenol-d6 (Surr)			14 %	8-424 %	40	09/01/22 19:05	EPA 625.1	S-05
p-Terphenyl-d14 (Surr)			12 %	50-135 %	40	09/01/22 19:05	EPA 625.1	S-05
2-Fluorophenol (Surr)			16 %	20-110 %	40	09/01/22 19:05	EPA 625.1	S-05
2,4,6-Tribromophenol (Surr)			78 %	40-125 %	40	09/01/22 19:05	EPA 625.1	S-05
Whitewater (A2H0989-02)				Matrix: Wate	er	Batch:	2210025	R-04, TEMP
Phenol	52.2	46.0	92.0	ug/L	40	09/01/22 19:41	EPA 625.1	J
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 36 %	Limits: 40-110 %	40	09/01/22 19:41	EPA 625.1	S-05
2-Fluorobiphenyl (Surr)			10 %	50-110 %	40	09/01/22 19:41	EPA 625.1	S-05
Phenol-d6 (Surr)			14 %	8-424 %	40	09/01/22 19:41	EPA 625.1	S-05
p-Terphenyl-d14 (Surr)			14 %	50-135 %	40	09/01/22 19:41	EPA 625.1	S-05
2-Fluorophenol (Surr)			16 %	20-110 %	40	09/01/22 19:41	EPA 625.1	S-05
2,4,6-Tribromophenol (Surr)			70 %	40-125 %	40	09/01/22 19:41	EPA 625.1	S-05
Machine Chest (A2H0989-03)				Matrix: Wate	er	Batch:	2210025	R-04, TEMP
Phenol	47.8	42.6	85.1	ug/L	40	09/01/22 20:17	EPA 625.1	J
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 53 %	Limits: 40-110 %	40	09/01/22 20:17	EPA 625.1	S-05
2-Fluorobiphenyl (Surr)			10 %	50-110 %	40	09/01/22 20:17	EPA 625.1	S-05
Phenol-d6 (Surr)			13 %	8-424 %	40	09/01/22 20:17	EPA 625.1	S-05
p-Terphenyl-d14 (Surr)			7 %	50-135 %	40	09/01/22 20:17	EPA 625.1	S-05
2-Fluorophenol (Surr)			19 %	20-110 %	40	09/01/22 20:17	EPA 625.1	S-05
2,4,6-Tribromophenol (Surr)			85 %	40-125 %	40	09/01/22 20:17	EPA 625.1	S-05
Press Pit (A2H0989-04)				Matrix: Wate	er	Batch:	2210025	TEMP
Phenol	106	40.4	80.8	ug/L	40	09/01/22 20:53	EPA 625.1	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 47 %	Limits: 40-110 %	40	09/01/22 20:53	EPA 625.1	S-05
2-Fluorobiphenyl (Surr)			21 %	50-110 %	40	09/01/22 20:53	EPA 625.1	S-05
Phenol-d6 (Surr)			19 %	8-424 %	40	09/01/22 20:53	EPA 625.1	S-05
p-Terphenyl-d14 (Surr)			13 %	50-135 %	40	09/01/22 20:53	EPA 625.1	S-05
2-Fluorophenol (Surr)			35 %	20-110 %	40	09/01/22 20:53	EPA 625.1	S-05
2,4,6-Tribromophenol (Surr)			107 %	40-125 %	40	09/01/22 20:53	EPA 625.1	S-05
Hydrosieves (A2H0989-05)				Matrix: Wate	er	Batch:	2210025	R-04, TEMP
Phenol	68.2	46.5	93.0	ug/L	40	09/01/22 21:29	EPA 625.1	J

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chund Co frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Stimson Lumber Co. Project: **WWTP** PO Box 68 Project Number: [none] Forest Grove, OR 97204 Project Manager: Brian Bartlett A2H0989 - 09 15 22 1003

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	janic Comp	ounds	by EPA	625.1			
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref	Notes
Hydrosieves (A2H0989-05)				Mat	rix: Wat	er	Batch:	2210025	R-04, TEMP
Surrogate: Nitrobenzene-d5 (Surr)		Recor	very: 29 %	Limits:	40-110 %	6 40	09/01/22 21:29	EPA 625.1	S-05
2-Fluorobiphenyl (Surr)			27 %		50-110 9	6 40	09/01/22 21:29	EPA 625.1	S-05
Phenol-d6 (Surr)			14 %		8-424 9	6 40	09/01/22 21:29	EPA 625.1	S-05
p-Terphenyl-d14 (Surr)			25 %		50-135 %	6 40	09/01/22 21:29	EPA 625.1	S-05
2-Fluorophenol (Surr)			15 %		20-110 %	6 40	09/01/22 21:29	EPA 625.1	S-05
2,4,6-Tribromophenol (Surr)			91 %		40-125 %	6 40	09/01/22 21:29	EPA 625.1	S-05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Р	urgeable (Organic C	ompoun	ds by EPA	624.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0191 - EPA 5030C							Wat	er				
Blank (22I0191-BLK1)		Prepared:	09/08/22 09:	00 Analyz	ed: 09/08/2	2 11:45						
EPA 624.1												
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Acetone	ND	10.0	20.0	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 107 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	85	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	75	-120 %		"					
LCS (22I0191-BS1)		Prepared:	09/08/22 09:	00 Analyz	ed: 09/08/2	2 10:51						
EPA 624.1												
4-Methyl-2-pentanone (MiBK)	39.6	5.00	10.0	ug/L	1	40.0		99	67 - 130%			
Acetone	36.9	10.0	20.0	ug/L	1	40.0		92	39 - 160%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	85	-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	75	-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EP	A 625.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l0025 - EPA 3510C (Acid Extrac	tion)					Wate	er				
Blank (22I0025-BLK2)		Prepared:	09/01/22 11:	19 Analyz	zed: 09/01/22	2 17:16						
EPA 625.1												
Acenaphthene	ND	0.0909	0.182	ug/L	1							
Acenaphthylene	ND	0.0909	0.182	ug/L	1							
Anthracene	ND	0.0909	0.182	ug/L	1							
Benz(a)anthracene	ND	0.0909	0.182	ug/L	1							
Benzo(a)pyrene	ND	0.0909	0.182	ug/L	1							
Benzo(b)fluoranthene	ND	0.0909	0.182	ug/L	1							
Benzo(k)fluoranthene	ND	0.0909	0.182	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0909	0.182	ug/L	1							
Chrysene	ND	0.0909	0.182	ug/L	1							
Dibenz(a,h)anthracene	ND	0.0909	0.182	ug/L	1							
Fluoranthene	ND	0.0909	0.182	ug/L	1							
Fluorene	ND	0.0909	0.182	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.0909	0.182	ug/L	1							
l-Methylnaphthalene	ND	0.0909	0.182	ug/L	1							
2-Methylnaphthalene	ND	0.0909	0.182	ug/L	1							
Naphthalene	ND	0.0909	0.182	ug/L	1							
Phenanthrene	ND	0.0909	0.182	ug/L	1							
Pyrene	ND	0.0909	0.182	ug/L	1							
Carbazole	ND	0.0909	0.182	ug/L	1							
Dibenzofuran	ND	0.0909	0.182	ug/L	1							
2-Chlorophenol	ND	0.0909	0.182	ug/L	1							
4-Chloro-3-methylphenol	ND	0.182	0.364	ug/L	1							
2,4-Dichlorophenol	ND	0.0909	0.182	ug/L	1							
2,4-Dimethylphenol	ND	0.0909	0.182	ug/L	1							
2,4-Dinitrophenol	ND	0.455	0.909	ug/L	1							
4,6-Dinitro-2-methylphenol	ND	0.455	0.909	ug/L	1							
2-Methylphenol	ND	0.0909	0.182	ug/L	1							
3+4-Methylphenol(s)	ND	0.0909	0.182	ug/L	1							
2-Nitrophenol	ND	0.182	0.364	ug/L	1							
4-Nitrophenol	ND	0.182	0.364	ug/L	1							
Pentachlorophenol (PCP)	ND	0.182	0.364	ug/L	1							
Phenol	ND	0.364	0.727	ug/L	1							
2,3,4,6-Tetrachlorophenol	ND	0.0909	0.182	ug/L	1							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	ds by EP	A 625.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 2210025 - EPA 3510C (A	cid Extrac	tion)					Wate	er				
Blank (22I0025-BLK2)		Prepared:	09/01/22 11:1	19 Analyz	ed: 09/01/22	2 17:16						
2,4,5-Trichlorophenol	ND	0.0909	0.182	ug/L	1							
Nitrobenzene	ND	0.182	0.364	ug/L	1							
.,4,6-Trichlorophenol	ND	0.0909	0.182	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.364	0.727	ug/L	1							
Butyl benzyl phthalate	ND	0.364	0.727	ug/L	1							
Diethylphthalate	ND	0.364	0.727	ug/L	1							
Dimethylphthalate	ND	0.364	0.727	ug/L	1							
Di-n-butylphthalate	ND	0.364	0.727	ug/L	1							
Di-n-octyl phthalate	ND	0.364	0.727	ug/L	1							
N-Nitrosodimethylamine	ND	0.0909	0.182	ug/L	1							
N-Nitroso-di-n-propylamine	ND	0.0909	0.182	ug/L	1							
N-Nitrosodiphenylamine	ND	0.0909	0.182	ug/L	1							
Bis(2-Chloroethoxy) methane	ND	0.0909	0.182	ug/L	1							
Bis(2-Chloroethyl) ether	ND	0.0909	0.182	ug/L	1							
,2'-Oxybis(1-Chloropropane)	ND	0.0909	0.182	ug/L	1							
Hexachlorobenzene	ND	0.0909	0.182	ug/L	1							
Hexachlorobutadiene	ND	0.0909	0.182	ug/L	1							
Hexachlorocyclopentadiene	ND	0.0909	0.182	ug/L	1							
Hexachloroethane	ND	0.0909	0.182	ug/L	1							
-Chloronaphthalene	ND	0.0909	0.182	ug/L	1							
,2,4-Trichlorobenzene	ND	0.0909	0.182	ug/L	1							
l-Bromophenyl phenyl ether	ND	0.0909	0.182	ug/L	1							
-Chlorophenyl phenyl ether	ND	0.0909	0.182	ug/L	1							
.4-Dinitrotoluene	ND	0.182	0.364	ug/L	1							
,6-Dinitrotoluene	ND	0.182	0.364	ug/L	1							
sophorone	ND	0.0909	0.182	ug/L	1							
Azobenzene (1,2-DPH)	ND	0.0909	0.182	ug/L	1							
Benzidine	ND	0.909	1.82	ug/L	1							Q-52
,3'-Dichlorobenzidine	ND	0.909	1.82	ug/L ug/L	1							Q-52
urr: Nitrobenzene-d5 (Surr)	110		very: 54 %	Limits: 40		Dil	ution: 1x					~
2-Fluorobiphenyl (Surr)		Keco	very: 54 % 65 %		-110 %	Dill	uton: 1x					
2-rworooipnenyi (surr) Phenol-d6 (Surr)			03 % 18 %		-110 % 424 %		,,					
p-Terphenyl-d14 (Surr)			18 % 92 %		424 % -135 %		,,					
p-1erpnenyi-a14 (Surr) 2-Fluorophenol (Surr)			33 %		-135 % -110 %		,,					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to brief

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EP	A 625.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l0025 - EPA 3510C (A	cid Extrac	tion)					Wat	er				
Blank (22I0025-BLK2)		Prepared:	09/01/22 11:	19 Analyz	ed: 09/01/22	2 17:16						
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 84 %	Limits: 40)-125 %	Dilı	ıtion: 1x					
LCS (22I0025-BS2)		Prepared:	09/01/22 11:	19 Analyz	ed: 09/01/22	2 17:52						
EPA 625.1												
Acenaphthene	5.62	0.400	0.800	ug/L	4	8.00		70	47 - 145%			
Acenaphthylene	5.60	0.400	0.800	ug/L	4	8.00		70	33 - 145%			
Anthracene	6.62	0.400	0.800	ug/L	4	8.00		83	27 - 133%			
Benz(a)anthracene	6.70	0.400	0.800	ug/L	4	8.00		84	33 - 143%			
Benzo(a)pyrene	6.54	0.400	0.800	ug/L	4	8.00		82	17 - 163%			
Benzo(b)fluoranthene	7.01	0.400	0.800	ug/L	4	8.00		88 2	24 - 159%			
Benzo(k)fluoranthene	7.19	0.400	0.800	ug/L	4	8.00		90	11 - 162%			
Benzo(g,h,i)perylene	6.66	0.400	0.800	ug/L	4	8.00		83	1 - 219%			
Chrysene	6.81	0.400	0.800	ug/L	4	8.00		85	17 - 168%			
Dibenz(a,h)anthracene	6.64	0.400	0.800	ug/L	4	8.00		83	1 - 227%			
Fluoranthene	6.88	0.400	0.800	ug/L	4	8.00		86	26 - 137%			
Fluorene	6.27	0.400	0.800	ug/L	4	8.00		78	59 - 121%			
ndeno(1,2,3-cd)pyrene	6.49	0.400	0.800	ug/L	4	8.00		81	1 - 171%			
-Methylnaphthalene	4.88	0.400	0.800	ug/L	4	8.00		61	41 - 130%			
2-Methylnaphthalene	4.81	0.400	0.800	ug/L	4	8.00		60	40 - 130%			
Naphthalene	4.37	0.400	0.800	ug/L	4	8.00		55 2	21 - 133%			
Phenanthrene	6.47	0.400	0.800	ug/L	4	8.00		81	54 - 120%			
Pyrene	6.85	0.400	0.800	ug/L	4	8.00		86	52 - 120%			
Carbazole	6.74	0.400	0.800	ug/L	4	8.00		84 (60 - 130%			
Dibenzofuran	5.96	0.400	0.800	ug/L	4	8.00		74	53 - 130%			
2-Chlorophenol	4.11	0.400	0.800	ug/L	4	8.00		51 2	23 - 134%			
l-Chloro-3-methylphenol	6.22	0.800	1.60	ug/L	4	8.00		78	22 - 147%			
2,4-Dichlorophenol	5.45	0.400	0.800	ug/L	4	8.00		68	39 - 135%			
,4-Dimethylphenol	5.64	0.400	0.800	ug/L	4	8.00		70	32 - 120%			
,4-Dinitrophenol	4.92	2.00	4.00	ug/L	4	8.00		62	1 - 191%			
,6-Dinitro-2-methylphenol	6.43	2.00	4.00	ug/L	4	8.00		80	1 - 181%			
-Methylphenol	3.86	0.400	0.800	ug/L	4	8.00		48	30 - 130%			
3+4-Methylphenol(s)	3.82	0.400	0.800	ug/L	4	8.00		48	29 - 130%			
2-Nitrophenol	4.66	0.800	1.60	ug/L	4	8.00		58 2	29 - 182%			
-Nitrophenol	1.04	0.800	0.800	ug/L	4	8.00		13	1 - 132%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		illivolatile	Jigailic	Compour	ius by Lr	A 023.1					
Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
cid Extrac	tion)					Wat	er				
	Prepared:	09/01/22 11:1	9 Analyz	ed: 09/01/22	2 17:52						
5.95	0.800	1.60	ug/L	4	8.00		74	14 - 176%			
1.27	0.128	0.128	ug/L	4	8.00		16	5 - 120%			
6.74	0.400	0.800	ug/L	4	8.00		84	50 - 130%			
6.27	0.400	0.800	ug/L	4	8.00		78	53 - 130%			
4.36	0.800	1.60	ug/L	4	8.00		55	35 - 180%			
6.22	0.400	0.800	ug/L	4	8.00		78	37 - 144%			
6.50	1.60	3.20	ug/L	4	8.00		81	8 - 158%			
6.78	1.60	3.20	ug/L	4	8.00		85	1 - 152%			
6.79	1.60	3.20	ug/L	4	8.00		85	1 - 120%			
6.85	1.60	3.20	ug/L	4	8.00		86	1 - 120%			
7.00	1.60	3.20	ug/L	4	8.00		88	1 - 120%			
6.49	1.60	3.20	ug/L	4	8.00		81	4 - 146%			
1.38	0.400	0.800	ug/L	4	8.00		17	11 - 130%			
5.40	0.400	0.800	ug/L	4	8.00		67	1 - 230%			
6.56	0.400	0.800	ug/L	4	8.00		82	51 - 130%			
5.20	0.400	0.800	ug/L	4	8.00		65	33 - 184%			
4.02	0.400	0.800	ug/L	4	8.00		50	12 - 158%			
4.14	0.400	0.800		4	8.00		52	24 - 130%			
6.98	0.400	0.800	ug/L	4	8.00		87	1 - 152%			
3.67	0.400	0.800	ug/L	4	8.00		46	24 - 120%			
2.82	0.400	0.800	ug/L	4	8.00		35	10 - 130%			
3.38	0.400	0.800	ug/L	4	8.00		42	40 - 120%			
4.82	0.400	0.800	ug/L	4	8.00		60	60 - 120%			
3.95	0.400		·	4	8.00		49	44 - 142%			
6.75	0.400	0.800	_	4	8.00		84	53 - 127%			
6.29	0.400	0.800	_	4	8.00		79	25 - 158%			
6.58	0.800	1.60	·	4	8.00		82	39 - 139%			
6.88	0.800	1.60	_	4	8.00		86	50 - 158%			
			-	4							
		0.800	_	4	8.00		73				
			_								Q-30
			_				268				Q-29
	5.95 1.27 6.74 6.27 4.36 6.22 6.50 6.78 6.79 6.85 7.00 6.49 1.38 5.40 6.56 5.20 4.02 4.14 6.98 3.67 2.82 3.38 4.82 3.95 6.75 6.29 6.58	Result Detection Limit Cid Extraction) Prepared: 5.95 0.800 1.27 0.128 6.74 0.400 6.27 0.400 4.36 0.800 6.22 0.400 6.50 1.60 6.79 1.60 6.85 1.60 7.00 1.60 6.49 1.60 1.38 0.400 5.40 0.400 6.56 0.400 4.02 0.400 4.14 0.400 3.67 0.400 2.82 0.400 3.38 0.400 3.95 0.400 6.75 0.400 6.58 0.800 6.88 0.800 6.88 0.800 5.70 0.400 5.85 0.400 5.85 0.400	Result Detection Limit Reporting Limit Prepared: 09/01/22 11:1 5.95 0.800 1.60 1.27 0.128 0.128 6.74 0.400 0.800 6.27 0.400 0.800 4.36 0.800 1.60 6.22 0.400 0.800 6.50 1.60 3.20 6.79 1.60 3.20 6.85 1.60 3.20 7.00 1.60 3.20 6.49 1.60 3.20 6.49 1.60 3.20 6.49 1.60 3.20 6.49 1.60 3.20 6.49 1.60 3.20 6.49 0.400 0.800 5.20 0.400 0.800 5.20 0.400 0.800 4.02 0.400 0.800 4.14 0.400 0.800 4.82 0.400 0.800 3.38 0.400	Result Detection Limit Reporting Limit Units Prepared: 09/01/22 11:19 Analyz 5.95 0.800 1.60 ug/L 1.27 0.128 0.128 ug/L 6.74 0.400 0.800 ug/L 6.27 0.400 0.800 ug/L 4.36 0.800 1.60 ug/L 6.22 0.400 0.800 ug/L 6.50 1.60 3.20 ug/L 6.78 1.60 3.20 ug/L 6.79 1.60 3.20 ug/L 6.85 1.60 3.20 ug/L 6.49 1.60 3.20 ug/L 6.49 1.60 3.20 ug/L 1.38 0.400 0.800 ug/L 5.40 0.400 0.800 ug/L 6.56 0.400 0.800 ug/L 4.02 0.400 0.800 ug/L 4.02 0.400 0.800 ug/L	Prepared: 09/01/22 11:19 Analyzed: 09/01/22	Result Detection Limit Reporting Limit Units Dilution Spike Amount Edd Extraction) Prepared: 09/01/22 11:19 Analyzed: 09/01/22 17:52 5.95 0.800 1.60 ug/L 4 8.00 1.27 0.128 0.128 ug/L 4 8.00 6.74 0.400 0.800 ug/L 4 8.00 6.27 0.400 0.800 ug/L 4 8.00 6.27 0.400 0.800 ug/L 4 8.00 6.22 0.400 0.800 ug/L 4 8.00 6.50 1.60 3.20 ug/L 4 8.00 6.78 1.60 3.20 ug/L 4 8.00 6.85 1.60 3.20 ug/L 4 8.00 6.85 1.60 3.20 ug/L 4 8.00 6.49 1.60 3.20 ug/L 4 8.00 5.40	Result Limit Limit Units Dilution Amount Result Prepared: 09/01/22 11:19 Analyzed: 09/01/22 17:52 5.95 0.800 1.60 ug/L 4 8.00 6.74 0.400 0.800 ug/L 4 8.00 6.27 0.400 0.800 ug/L 4 8.00 4.36 0.800 1.60 ug/L 4 8.00 6.22 0.400 0.800 ug/L 4 8.00 6.50 1.60 3.20 ug/L 4 8.00 6.79 1.60 3.20 ug/L 4 8.00 6.85 1.60 3.20 ug/L 4 8.00 7.00 1.60 3.20 ug/L 4 8.00 6.49 1.60 3.20 ug/L 4 8.00 5.40 <	Detection Reporting Limit Units Dilution Spike Result % RECEDITION Reporting Limit Units Dilution Spike Result % RECEDITION Result % RECEDITION Prepared: 09/01/22 11:19 Analyzed: 09/01/22 17:52	Result Detection Limit Limit Units Dilution Spike Source Result % REC Limits	Result Detection Limit Limit Units Dilution Spike Result Result % REC Limits RPD	Result

50-110 %

63 %

Apex Laboratories

2-Fluorobiphenyl (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EF	'A 625.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 22l0025 - EPA 3510C (A	cid Extrac	tion)					Wat	er				
LCS (22I0025-BS2)		Prepared:	: 09/01/22 11:	19 Analyz	zed: 09/01/22	2 17:52						
Surr: Phenol-d6 (Surr)		Reco	overy: 17 %	Limits: 8-	-424 %	Dil	ution: 4x					
p-Terphenyl-d14 (Surr)			80 %	50	0-135 %		"					
2-Fluorophenol (Surr)			24 %	20	0-110 %		"					
2,4,6-Tribromophenol (Surr)			87 %	40	0-125 %		"					
LCS Dup (22I0025-BSD2)		Prepared:	: 09/01/22 11:	19 Analyz	zed: 09/01/22	2 18:29						Q-
EPA 625.1												
Acenaphthene	6.35	0.400	0.800	ug/L	4	8.00		79	47 - 145%	12	30%	
Acenaphthylene	6.19	0.400	0.800	ug/L	4	8.00		77	33 - 145%	10	30%	
Anthracene	7.14	0.400	0.800	ug/L	4	8.00		89	27 - 133%	7	30%	
Benz(a)anthracene	7.00	0.400	0.800	ug/L	4	8.00		88	33 - 143%	4	30%	
Benzo(a)pyrene	7.09	0.400	0.800	ug/L	4	8.00		89	17 - 163%	8	30%	
Benzo(b)fluoranthene	7.41	0.400	0.800	ug/L	4	8.00		93	24 - 159%	6	30%	
Benzo(k)fluoranthene	7.57	0.400	0.800	ug/L	4	8.00		95	11 - 162%	5	30%	
Benzo(g,h,i)perylene	7.13	0.400	0.800	ug/L	4	8.00		89	1 - 219%	7	30%	
Chrysene	7.09	0.400	0.800	ug/L	4	8.00		89	17 - 168%	4	30%	
Dibenz(a,h)anthracene	7.11	0.400	0.800	ug/L	4	8.00		89	1 - 227%	7	30%	
Fluoranthene	7.30	0.400	0.800	ug/L	4	8.00		91	26 - 137%	6	30%	
Fluorene	6.95	0.400	0.800	ug/L	4	8.00		87	59 - 121%	10	30%	
ndeno(1,2,3-cd)pyrene	7.10	0.400	0.800	ug/L	4	8.00		89	1 - 171%	9	30%	
l-Methylnaphthalene	5.96	0.400	0.800	ug/L	4	8.00		74	41 - 130%	20	30%	
2-Methylnaphthalene	5.81	0.400	0.800	ug/L	4	8.00		73	40 - 130%	19	30%	
Naphthalene	5.15	0.400	0.800	ug/L	4	8.00		64	21 - 133%	16	30%	
Phenanthrene	6.96	0.400	0.800	ug/L	4	8.00		87	54 - 120%	7	30%	
Pyrene	7.29	0.400	0.800	ug/L	4	8.00		91	52 - 120%	6	30%	
Carbazole	7.22	0.400	0.800	ug/L	4	8.00		90	60 - 130%	7	30%	
Dibenzofuran	6.62	0.400	0.800	ug/L	4	8.00		83	53 - 130%	11	30%	
2-Chlorophenol	4.56	0.400	0.800	ug/L	4	8.00		57	23 - 134%	11	30%	
4-Chloro-3-methylphenol	6.74	0.800	1.60	ug/L	4	8.00		84	22 - 147%	8	30%	
2,4-Dichlorophenol	5.97	0.400	0.800	ug/L		8.00		75	39 - 135%	9	30%	
2,4-Dimethylphenol	5.78	0.400	0.800	ug/L	4	8.00		72	32 - 120%	2	30%	
2,4-Dinitrophenol	5.76	2.00	4.00	ug/L	4	8.00		72	1 - 191%	16	30%	
4,6-Dinitro-2-methylphenol	7.10	2.00	4.00	ug/L	4	8.00		89	1 - 181%	10	30%	
2-Methylphenol	4.19	0.400	0.800	ug/L	4	8.00		52	30 - 130%	8	30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report

PO Box 68Project Number: [none]Report ID:Forest Grove, OR 97204Project Manager: Brian BartlettA2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	emivolatile C	Organic	Compour	nds by EP	A 625.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 2210025 - EPA 3510C (A	Acid Extrac	ction)					Wat	er				
LCS Dup (22I0025-BSD2)		Prepared:	: 09/01/22 11:19	9 Analyz	zed: 09/01/22	2 18:29						Q-19
3+4-Methylphenol(s)	4.22	0.400	0.800	ug/L	4	8.00		53 2	29 - 130%	10	30%	
2-Nitrophenol	5.10	0.800	1.60	ug/L	4	8.00		64 2	29 - 182%	9	30%	
4-Nitrophenol	1.17	0.800	0.800	ug/L	4	8.00		15	1 - 132%	12	30%	
Pentachlorophenol (PCP)	6.44	0.800	1.60	ug/L	4	8.00		80	14 - 176%	8	30%	
Phenol	1.46	0.128	0.128	ug/L	4	8.00		18	5 - 120%	14	30%	
2,3,4,6-Tetrachlorophenol	7.32	0.400	0.800	ug/L	4	8.00		92	50 - 130%	8	30%	
2,4,5-Trichlorophenol	6.82	0.400	0.800	ug/L	4	8.00		85 5	53 - 130%	8	30%	
Nitrobenzene	4.87	0.800	1.60	ug/L	4	8.00		61 3	35 - 180%	11	30%	
2,4,6-Trichlorophenol	6.75	0.400	0.800	ug/L	4	8.00		84 3	37 - 144%	8	30%	
Bis(2-ethylhexyl)phthalate	6.84	1.60	3.20	ug/L	4	8.00		86	8 - 158%	5	30%	
Butyl benzyl phthalate	7.01	1.60	3.20	ug/L	4	8.00		88	1 - 152%	3	30%	
Diethylphthalate	7.16	1.60	3.20	ug/L	4	8.00		89	1 - 120%	5	30%	
Dimethylphthalate	7.24	1.60	3.20	ug/L	4	8.00		90	1 - 120%	5	30%	
Di-n-butylphthalate	7.35	1.60	3.20	ug/L	4	8.00		92	1 - 120%	5	30%	
Di-n-octyl phthalate	6.79	1.60	3.20	ug/L	4	8.00		85	4 - 146%	5	30%	
N-Nitrosodimethylamine	1.53	0.400	0.800	ug/L	4	8.00		19	11 - 130%	10	30%	
N-Nitroso-di-n-propylamine	6.00	0.400	0.800	ug/L	4	8.00		75	1 - 230%	11	30%	
N-Nitrosodiphenylamine	7.05	0.400	0.800	ug/L	4	8.00		88	51 - 130%	7	30%	
Bis(2-Chloroethoxy) methane	5.58	0.400	0.800	ug/L	4	8.00		70 3	33 - 184%	7	30%	
Bis(2-Chloroethyl) ether	4.36	0.400	0.800	ug/L	4	8.00		54	12 - 158%	8	30%	
2,2'-Oxybis(1-Chloropropane)	4.63	0.400	0.800	ug/L	4	8.00		58 2	24 - 130%	11	30%	
Hexachlorobenzene	7.50	0.400	0.800	ug/L	4	8.00		94	1 - 152%	7	30%	
Hexachlorobutadiene	4.61	0.400	0.800	ug/L	4	8.00		58 2	24 - 120%	23	30%	
Hexachlorocyclopentadiene	3.90	0.400	0.800	ug/L	4	8.00		49	10 - 130%	32	30%	Q-24
Hexachloroethane	4.39	0.400	0.800	ug/L	4	8.00		55 4	40 - 120%	26	30%	
2-Chloronaphthalene	5.58	0.400	0.800	ug/L	4	8.00		70	60 - 120%	15	30%	
1,2,4-Trichlorobenzene	4.87	0.400	0.800	ug/L	4	8.00		61 4	14 - 142%	21	30%	
4-Bromophenyl phenyl ether	7.38	0.400	0.800	ug/L	4	8.00		92	53 - 127%	9	30%	
4-Chlorophenyl phenyl ether	7.04	0.400	0.800	ug/L	4	8.00		88 2	25 - 158%	11	30%	
2,4-Dinitrotoluene	7.12	0.800	1.60	ug/L	4	8.00		89 3	39 - 139%	8	30%	
2,6-Dinitrotoluene	7.28	0.800	1.60	ug/L	4	8.00			50 - 158%	6	30%	
Isophorone	6.18	0.400	0.800	ug/L	4	8.00			21 - 196%	8	30%	
Azobenzene (1,2-DPH)	6.42	0.400	0.800	ug/L	4	8.00			61 - 130%	9	30%	
Benzidine	ND	4.00	8.00	ug/L	4	16.0			0 - 140%	-	30%	Q-30

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 625.1 RPD Spike % REC Detection Reporting Source Analyte Result Units Dilution Result % REC Limits RPD Limit Notes Limit Batch 22I0025 - EPA 3510C (Acid Extraction) Water Prepared: 09/01/22 11:19 Analyzed: 09/01/22 18:29 LCS Dup (22I0025-BSD2) Q-19 44.1 16.0 3,3'-Dichlorobenzidine 4.00 8.00 ug/L ---275 1 - 262% 3 30% Q-29 Surr: Nitrobenzene-d5 (Surr) Recovery: 56 % Limits: 40-110 % Dilution: 4x 2-Fluorobiphenyl (Surr) 73 % 50-110 % Phenol-d6 (Surr) 18 % 8-424 % p-Terphenyl-d14 (Surr) 85 % 50-135 % 2-Fluorophenol (Surr) 28 % 20-110 % 40-125 % 2,4,6-Tribromophenol (Surr) 93 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund to finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2H0989 - 09 15 22 1003

SAMPLE PREPARATION INFORMATION

Purgeable Organic Compounds by EPA 624.1							
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I0191							
A2H0989-01RE1	Water	EPA 624.1	08/30/22 10:45	09/08/22 09:00	5mL/5mL	5mL/5mL	1.00
A2H0989-02RE1	Water	EPA 624.1	08/30/22 09:15	09/08/22 09:00	5mL/5mL	5mL/5mL	1.00
A2H0989-03RE1	Water	EPA 624.1	08/30/22 08:22	09/08/22 09:00	5mL/5mL	5mL/5mL	1.00
A2H0989-04RE1	Water	EPA 624.1	08/30/22 09:30	09/08/22 09:00	5mL/5mL	5mL/5mL	1.00
A2H0989-05RE1	Water	EPA 624.1	08/30/22 10:05	09/08/22 09:00	5mL/5mL	5mL/5mL	1.00

Semivolatile Organic Compounds by EPA 625.1 Default RL Prep Prep: EPA 3510C (Acid Extraction) Sample Initial/Final Initial/Final Factor Prepared Lab Number Matrix Method Sampled Batch: 22I0025 A2H0989-01 Water EPA 625.1 08/30/22 10:45 09/01/22 11:21 770mL/5mL 1000mL/5mL 1.30 EPA 625.1 A2H0989-02 Water 08/30/22 09:15 09/01/22 11:21 870mL/5mL1000mL/5mL 1.15 A2H0989-03 Water EPA 625.1 08/30/22 08:22 09/01/22 11:21 940mL/5mL 1000mL/5mL 1.06 EPA 625.1 A2H0989-04 Water 08/30/22 09:30 09/01/22 11:21 990mL/5mL1.01 1000 mL/5 mLA2H0989-05 Water EPA 625.1 08/30/22 10:05 09/01/22 11:21 860mL/5mL 1000mL/5mL 1.16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnel la frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0989 - 09 15 22 1003

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

_	
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-24	The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
TEMP	Sample was received outside of recommended temperature. See Case Narrative.
V-01	Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by hail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0989 - 09 15 22 1003

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex	Labor	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunel la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:WWTPPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0989 - 09 15 22 1003

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daniel la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0989 - 09 15 22 1003

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la final

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co. Project: WWTP

PO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA2H0989 - 09 15 22 1003

		L							H									ſ						-
Southern States Confession		170	Project Nigr.			L			7	Toject	Project Name	- 1	WWTP						Project s					
Address: 49800 SW Scoggins Valley Rd	ry Rd . G	o .uotsi	Gaston, OR 97119			Phone:		503-359-3403	9-340	r.c.	200	Now.	South Mouthous Assume thanks con	nsestan	ale cus				ž	7	2017005508	503		
Sampled by:														9		1	1	7			1	5000		
Site Location:	-	L	L	H	L				-	-	L			-	-	-	ANALYSIS KOOLEST		-	ľ	-		F	+
OR WA CA										·							DE, CO.							
	*****		***):				S , H. Jolski			-				
AK ID					S						38		TI I		worden			ď						
					UNER	an:			AOCE		siJ llu		the ste		(8) 3		12 (13) 18 (13) 18 (13)	OL Y	KPA 23484	401 NBST.	10°401 N			
	ii ·			X		эн-1	z(l-)						y-lu					SSICI					ap,	
	ai 9 z	ara	же	GAT'A		MLLI	ылм	IGTW	LH 09	eH 09		ers 02	198 07	Od 78	ST Pes			TV		A Ectadosi	D) mist		Ayapje	
SAMPLE ID	ורי	_	\dashv	\dashv	-	N.	N		-				.78					TOT		ledent	וכנוו	rceto	(III)	ų a.i.
Headbox	\dashv	X30.202.Z	022 JO45	H20	7		_							-	-	ļ			X	X	' ×	人		1
Whitewater		X302022	022 915	H20	-			-		ļ				-	-	-			X	X	×	大	1	+
Machine Chest		ACOURA!		1	1			+	+		L		t	+	+	+	+	+	1			7	\star	-
THE CHEST	+	87507075	822	_		I	+	+	-	1	I		+	+	+	+	-	,	×	X	X			
Press Pit	+	R307022	930	H20	-		7	-+	\dashv	The state of the s				-				_	$\frac{\times}{\times}$	×	X	X	V	
Hydrosieves	1	x307011	000 516	150	7				-										X	×	×	父	V	ļ
								-					-		-		ļ.,	\vdash	-	_		†	+	_
				_					-	ļ			+	+-	+	-		-	-	-		+	+	\perp
add apartificatives are reparately to	-			L	_		†	+	+	_	I	I	+	+	+	+	+	\dagger	+	_		+	+	_
The state of the s	-		-	-			\dagger	+	+-	-			+	+	-	+	-	\dagger		_	1	+	+	1
The second secon	+-		_	+			-	+	+	_	I	T	+	+	+	_	-	\dashv	+	1		\dagger	-	1
Nemal	um Aroa	Ind Tim	Normal Turn Around Time (TAT) = 10 Business Days	- 10 Bu	Siness L	yay.s	7	1	-	_	SPEC		SPECIAL INSTRUCTIONS	-15	- 8	4			-			1	-	_
	1 Day	> .	2 Day	-	3 Day							Pleas	Please renor to MD	2	ē									
TAT Requested (circle)					,							2	1		2									
	4 DAY	>	SDAY	>-	ŏ	Other: Normal	Norm.	<u>0</u>																
	PLES AF	E HELI	SAMPLES ARE HELD FOR 30 DAYS	DAYS																				
ARLINQUINHED BY:	Date		RECE.	RECEIVED BY: Signature:	c		්	(Jate:			RE1.1	NOUR	KELINQUISHED BY:	87;			, and	1	RECEIVED BY:	D.BY:		1	İ.	l
And the second community of the second secon	28	8/30/2022		6			S	8-31-12	~		,						W Delt		Musel			Alect		
Brian Bartlett	Time.	F. E.E.	Printed	Dizz. Selved	72.0		£ ~	Time: 17.3 \$	-		Printe	Printed Name:			İ		Tinxe:	-	Printed Name	114:		H	lime:	i
Соптрату			Company.	ny.			1	3	j		Company	:Aux						3	Camaraga	- Hitcheston				
Stimson Lumber Co.				入りがく																				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0989 - 09 15 22 1003

Company: Stimson Lumber	Project Mgr	t Mgr:						Pro	Project Name:	me:	WWTP	TP					Project #:	#:				
Address: 49800 SW Scopoins Valley Rd. Gaston. OR 97119	Gaston, OR	97119			Phone:		503-359-3403	3403		Email: bbartlett@stimsonlumber.com	bartlett	gstimso	nlumber	mos:			PO#	14	2022005605	2092		
Sampled by:				85000000000									ANA	LYSI	ANALYSIS REQUEST	UEST						
Site Location:																l, IK, Co,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
OR WA CA																2a, Cr, Mo, N	(A2158 bos					
AK ID				S				S		1st	7111	SI/I III	- 300 - 30		(£	Cq' (Cq' (EPA Med					
	B ID #	UE .	XIAT	E CONTAINER	ALbH-HCID	VTPH-Dx	90 BLEX	90 BBDW AOC	60 Halo VOCs	90 AOC® EMIT	SHV4 MIS 04	85 PCBs	81 Pest	CRA Metals (8)	1) slatsMetals (1	Sb, As, Ba, Be, Fe, Pb, Hg, Mg, Ag, Ua, Tl, V, Zi Al, DISS.	449340 (CASRN 75-07-0;	1 (CYREG 108-3-5! EBV 20	Olein (CASRN 10.	oue	nsjdehyde	
SAMPLEID	DV.	MIT	ΑM	Ο#.	-			850	78		-			ВС	Ιd	Cu, Se, A TOT	Acetal		-			Arc
Headbox	8/30/2022	2 1045	H20	7						-												
Whitewater	8/30/2022	2 915	H20	7							1	-								1		
Machine Chest	8/30/2022	2 822	H20	7							-								-			
Press Pit	8/30/2022	2 930	H20	7																		
Hydrosieves	8/30/2022	2 0:00	H20	7															\dashv			
					1	+	\dashv				\dashv		4									_
					1	+	4	_		\top	\dashv	-	-						-			
						-	-				+								-			
					1	-					+	-						+	-			1
Normal Tun	Normal Tum Around Time (TAT) = 10 Business Days	(TAT)	= 10 Bus	iness D	ays	╁╽	┨			SPECIAL INSTRUCTIONS	AL I	STR	STIC	SSI								
	1 Day	2 Day		3 Day						4	lease	Please report to MDL	t to M	占								
TAT Requested (circle)	4 DAY	5 DAY	>	O	Other: Normal	Jorma	777															
SAMPL	ES ARE HELD	FOR 30	DAYS						Γ													
UISHED BY:	RECEIVED BY:	RECE	IVED BY			b				RELINQUISHED BY	ROUIS	HED B	X:				RECEIVI	RECEIVED BY	Y:		į	
Xignature:	Date: 8/30/2022	Signature:	9			2 100	Date:	22		Signature:	ĕ					L'aire:	olgnatu	ij			Date:	
Printed Name:	Time:	Printed	Printed Name:	Ser		g ~	Time: 17.3 5			Printed Name	Name					Time:	Printed Name	Name:			Тте:	
Company:		Compa	Company:						Π	Company:	ny:						Company:	ığ.				63
			•																			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 WWTP

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A2H0989 - 09 15 22 1003

APEX LABS COOLER RECEIPT FORM
Client: Stimson Lumber Element WO#: A2 H0989
Project/Project #:
Delivery Info:
Date/time received: \$-3(-22 @ 1233 By:
Delivered by: ApexClientESSFedExUPS_X_SwiftSenvoySDSOther
Cooler Inspection Date/time inspected: 8-31-22 @ 1235 By: DS5
Chain of Custody included? Yes × No Custody seals? Yes No No
Signed/dated by client? Yes No
Signed/dated by Apex? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C) 20.6
Received on ice? (Y/N)
Temp. blanks? (Y/N) N
Ice type: (Gel/Real/Other)
Condition:
Cooler out of temp? (V/N) Possible reason why: Shape was ups, get not frozen Green dots applied to out of temperature samples? (Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: 3-31-22 @ 1500 By: D35 All samples intact? Yes No × Comments: 1 to upreserved camber cap was received broken.
Bottle labels/COCs agree? Yes No Y Comments: Hydrosiaves container Times read 1005.
No labels on individual voas-label was a buggy that held the 3 voas together.
COC/container discrepancies form initiated? Yes No _×
Containers/volumes received appropriate for analysis? Yes > No _ Comments:
Do VOA vials have visible headspace? Yes × No NA Comments All years have Headspace. All years have sed ment 15/15.
Water samples: pH checked: YesNo_NA < pH appropriate? Yes_No_NA >
Comments:
Additional information: 17 983 055 03 6798 0695, Formaldehyde concelled by Client.
Labeled by: Witness: Cooler Inspected by:
DJ; Form Y-003 R-00 -

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, October 6, 2022 Brian Bartlett Stimson Lumber Co. PO Box 68 Forest Grove, OR 97204

RE: A2I0707 - CAO - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2I0707, which was received by the laboratory on 9/22/2022 at 1:00:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

15.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

mund la finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co. Project: CAO

 PO Box 68
 Project Number: [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager: Brian Bartlett
 A210707 - 10 06 22 1349

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Headbox	A2I0707-01	Water	09/20/22 10:15	09/22/22 13:00
Whitewater	A2I0707-02	Water	09/20/22 09:57	09/22/22 13:00
Machine Chest	A2I0707-03	Water	09/20/22 09:52	09/22/22 13:00
Press Pit	A2I0707-04	Water	09/20/22 10:34	09/22/22 13:00
Hydrosieves	A2I0707-05	Water	09/20/22 10:09	09/22/22 13:00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

ANALYTICAL CASE NARRATIVE

Work Order: A2I0707

Temperature Exceedance-

Samples were received at 15.3 °C, which exceeds the regulatory requirements for proper storage at less than or equal to 6 °C.

Affected samples or specific analyses have been qualified with "TEMP" in this report.

Diego Salazar Sample Control 9-22-22

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunel la frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2I0707 - 10 06 22 1349

ANALYTICAL SAMPLE RESULTS

	Pι	urgeable Orga	nic Compo	ounds by EPA 6	24.1			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method R	ef. Notes
Headbox (A2I0707-01)				Matrix: Wate	er	Batch:	2210637	TEMP, V-01, V-13
Acrolein	ND	100	100	ug/L	20	09/23/22 08:39	EPA 624.	1
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 106 %	Limits: 80-120 %	5 1	09/23/22 08:39	EPA 624.	I
Toluene-d8 (Surr)			105 %	85-120 %	<i>1</i>	09/23/22 08:39	EPA 624.	I
4-Bromofluorobenzene (Surr)			93 %	75-120 %	1	09/23/22 08:39	EPA 624.	I
Whitewater (A2I0707-02)				Matrix: Wate	er	Batch:	2210716	TEMP, V-01, V-13
Acrolein	ND	100	100	ug/L	20	09/23/22 08:46	EPA 624.	1
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 96 %	Limits: 80-120 %	5 1	09/23/22 08:46	EPA 624.	I
Toluene-d8 (Surr)			107 %	85-120 %	<i>i</i> 1	09/23/22 08:46	EPA 624.	1
4-Bromofluorobenzene (Surr)			98 %	75-120 %	I	09/23/22 08:46	EPA 624.	I
Machine Chest (A2I0707-03)				Matrix: Wate	er	Batch:	2210716	TEMP, V-01
Acrolein	126	100	100	ug/L	20	09/23/22 08:24	EPA 624.	1
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 95 %	Limits: 80-120 %	5 1	09/23/22 08:24	EPA 624.	I
Toluene-d8 (Surr)			106 %	85-120 %	5 1	09/23/22 08:24	EPA 624.	1
4-Bromofluorobenzene (Surr)			99 %	75-120 %	<i>I</i>	09/23/22 08:24	EPA 624.	I
Press Pit (A2I0707-04)				Matrix: Wate	er	Batch:	2210637	TEMP, V-01, V-13
Acrolein	ND	100	100	ug/L	20	09/23/22 09:06	EPA 624.	1
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 107 %	Limits: 80-120 %	5 <i>1</i>	09/23/22 09:06	EPA 624.	
Toluene-d8 (Surr)			106 %	85-120 %	1	09/23/22 09:06	EPA 624.	1
4-Bromofluorobenzene (Surr)			92 %	75-120 %	1	09/23/22 09:06	EPA 624.	I
Hydrosieves (A2I0707-05)				Matrix: Wate	er	Batch:	2210716	TEMP, V-01, V-13
Acrolein	ND	100	100	ug/L	20	09/23/22 09:08	EPA 624.	1
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 96 %	Limits: 80-120 %	5 I	09/23/22 09:08	EPA 624.	I
Toluene-d8 (Surr)			106 %	85-120 %	<i>I</i>	09/23/22 09:08	EPA 624.	I
4-Bromofluorobenzene (Surr)			101 %	75-120 %	<i>1</i>	09/23/22 09:08	EPA 624.	I

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A210707 - 10 06 22 1349

QUALITY CONTROL (QC) SAMPLE RESULTS

		Р	urgeable (Organic (Compound	ds by EPA	4 624.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l0637 - EPA 5030C							Wa	ter				
Blank (22I0637-BLK1)			Prepared	1: 09/22/22	14:36 Anal	yzed: 09/23	/22 02:47					
EPA 624.1												
Acrolein	ND	5.00	5.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	7:	5-120 %		"					
LCS (22I0637-BS1)			Prepared	d: 09/22/22	14:36 Anal	yzed: 09/23	/22 01:53					
EPA 624.1												
Acrolein	15.7	5.00	5.00	ug/L	1	20.0		78	60-140%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			85 %	7:	5-120 %		"					
Duplicate (22I0637-DUP1)			Prepared	d: 09/22/22	14:36 Anal	yzed: 09/23	/22 12:16					_
OC Source Sample: Non-SDG (A2)	10457-36)					-						
Acrolein	ND	50.0	50.0	ug/L	10		ND				60%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	7:	5-120 %		"					
Matrix Spike (22I0637-MS1)			Prepared	d: 09/22/22	14:36 Anal	yzed: 09/23	/22 10:01					
QC Source Sample: Non-SDG (A2)	10457-22)											
EPA 624.1												
Acrolein	12.7	5.00	5.00	ug/L	1	20.0	ND	64	40-160%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			86 %	7:	5-120 %		"					
Matrix Spike Dup (22I0637-MS	SD1)		Prepared	d: 09/22/22	14:36 Anal	yzed: 09/23	/22 10:28					
QC Source Sample: Non-SDG (A2)	10457-22)											
Acrolein	12.7	5.00	5.00	ug/L	1	20.0	ND	64	40-160%	0.08	60%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Stimson Lumber Co.
 Project:
 CAO

 PO Box 68
 Project Number:
 [none]
 Report ID:

 Forest Grove, OR 97204
 Project Manager:
 Brian Bartlett
 A210707 - 10 06 22 1349

QUALITY CONTROL (QC) SAMPLE RESULTS

Purgeable Organic Compounds by EPA 624.1 Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 22I0637 - EPA 5030C Water Matrix Spike Dup (22I0637-MSD1) Prepared: 09/22/22 14:36 Analyzed: 09/23/22 10:28 QC Source Sample: Non-SDG (A2I0457-22) Surr: Toluene-d8 (Surr) Recovery: 100 % Limits: 85-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 87% 75-120 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Forest Grove, OR 97204Project Manager:Brian Bartlett

Report ID: A2I0707 - 10 06 22 1349

QUALITY CONTROL (QC) SAMPLE RESULTS

		F	urgeable (Organic (Compoun	ds by EPA	624.1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0716 - EPA 5030C							Wa	ter				
Blank (22I0716-BLK1)			Prepared	d: 09/22/22	16:37 Ana	lyzed: 09/23/	/22 00:14					
EPA 624.1												
Acrolein	ND	5.00	5.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 94 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	7:	5-120 %		"					
LCS (22I0716-BS1)			Prepared	d: 09/22/22	16:37 Ana	lyzed: 09/22/	/22 23:30					
EPA 624.1												
Acrolein	16.2	5.00	5.00	ug/L	1	20.0		81	60-140%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 93 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	7:	5-120 %		"					
Duplicate (22I0716-DUP1)			Prepared	d: 09/22/22	16:37 Ana	lyzed: 09/23/	/22 01:22					
OC Source Sample: Non-SDG (A2	10445-07)											
Acrolein	ND	5.00	5.00	ug/L	1		ND				60%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			107 %	83	5-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	7:	5-120 %		"					
Matrix Spike (2210716-MS1)			Prepared	d: 09/22/22	16:37 Ana	lyzed: 09/23/	/22 05:48					TEM
OC Source Sample: Non-SDG (A2 EPA 624.1	10493-13)											
Acrolein	13.4	5.00	5.00	ug/L	1	20.0	ND	67	40-160%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 92 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %		5-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	7.	5-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

SAMPLE PREPARATION INFORMATION

		Purgeab	le Organic Compoun	ds by EPA 624.1			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I0637							
A2I0707-01	Water	EPA 624.1	09/20/22 10:15	09/22/22 14:36	5mL/5mL	5mL/5mL	1.00
A2I0707-04	Water	EPA 624.1	09/20/22 10:34	09/22/22 14:36	5mL/5mL	5mL/5mL	1.00
Batch: 22I0716							
A2I0707-02	Water	EPA 624.1	09/20/22 09:57	09/22/22 16:37	5mL/5mL	5mL/5mL	1.00
A2I0707-03	Water	EPA 624.1	09/20/22 09:52	09/22/22 16:37	5mL/5mL	5mL/5mL	1.00
A2I0707-05	Water	EPA 624.1	09/20/22 10:09	09/22/22 16:37	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

TEMP Sample was received outside of recommended temperature. See Case Narrative.

V-01 Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

V-13 Reporting levels raised due to dilution necessary for analysis due to sample foaming in sparge vessel.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnel la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex [Labora	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunel la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunnell la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jumel la frait

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]

PO Box 68 Project Number: [none] Report ID:
Forest Grove, OR 97204 Project Manager: Brian Bartlett A210707 - 10 06 22 1349

1970 1970	Company: Stimson Lumber		Projec	Project Mar		0 0	1				Project	New		040						todic	4					
North The color The colo	Address: A0900 CUF Contrine Vallas	Pd Pd	a	07110			16		\$00.2	1 3	<u> </u>	Bm	tail: bba	artlett@	stimson	hmber.c	EOX					9000	1			
Book Book	Sampled by:	Trans.	i i						5		3					ANAI	YSIS	REGUES			4	200770	3			
Normal Turn Around Time (TAT) = 10 Business Days Normal Turn (TAT) = 10 Business Days State of (circle) Days Da	Site Location:					<u> </u>					<u> </u>							,0	к,		(1.459					
Wilding Coles Wilding Cole	OR WA CA																	Cr, C								
Book Book	AK ID					1						1		1si.I					ď		30.00					
By By By By By By By By					******	NEKS	·										(8)				990 1000000					
Headbox Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Normal Tun Around Time (TAI) D. Basiness Days Received (circle) Received (circle) Received (circle) Received (circle) Normal Tun Around Time (TAI) Normal Tun Tune (TAI) Normal Tune (TAI) Normal Tune (TAI) Normal Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune (Tain Around Time Tune Tune (Tain Around Time Tune Tune (Tain Around Time Tune Tune (Tain Around Time Tune Tune Tune (Tain Around Time Tune Tune Tune Tune (Tain Around Time Tune Tune Tune Tune Tune Tune Tune Tun		#			X			ха-н	H-Gx	LEX						186	Metals		'eeiri					ıλqe		
Headbox	SAMPLEID	CAB ID	DATE	LIME				IdTWN	IdLMN	LH 0978						8081 Pe	ка		TVIO		-			ormaldel		avidar
Whitewater Stock 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 3 120 1	Headbox		9/20/202	J	_	1	-					-	-	-	1			V	L S	-		×		Ā		V
Hydrosteves	Whitewater		9/20/202																			×				
Hydrosteves State H2O 3 H2O 4 H2O	Machine Chest		9/20/202	1	i –								ļ									×				1
Hydrosteves	Press Pit		000000		1	ļ																×				
Normal Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS.	Hydrosieves		00000									 		-				/			-	×			T	
Normal Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS				1	1		ļ					-		-						╁	\vdash					1
Normal Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS.										<u> </u>	-															
Normal Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS 1 Day																										
Normal Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS											\dashv												0.221110011			
Day 2 Day 3 Day 2 Day 3 Day 4 Day 5 Day 5 Day 5 Day 6 Date: A Day 6 Day	T Journal O				= 10 B	- lie					\dashv	8	ECT A	- ING	7101	T OIL		\dashv			\dashv			1		- 1
SAMPLES ARE HELD FOR 30 DAYS Signature: Date: Apply Signature: Date: Apply Signature: Time:	Tooling	1 Day		2 D.	A A	3 Da	y.					<u> </u>	\$	298	pood	1	ىدا≟									
RELIXQUISHED BY: RELIXQUISHED BY: Signature: Date: Signature: Printed Name: Printed Name:	TAT Requested (circle)	4DA	5 -	S DA	Y.	5	ther:	Nor.	mal																	
ED BY: DATE Signature: Time: Time: Date: A		PLES AR	FED	FOR 3	0 DAYS							T														
Time: Printed Name: Time: Printed Name: Time: Printed Name: Time: Printed Name:	UISHED BY:	1986		REC. Signat	EIVED B	£			Date:	1 6	-	-	SLINQ nature:	UISHE	ED BY:					ECEIV	ED BY			Date:		1
Time: Printed Name: Time: Printed Name: Time: Printed Name: Time: Printed Name:	D. T.	5-48	873025 6		3	X			_	7	12/10															
	Inted Name: ian_Barflett	Time:	8	Prints	Name:	<u>3</u>	200		Trme:	4	8		nted N	ame:						nted N	ате:			Fime:		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stimson Lumber Co.Project:CAOPO Box 68Project Number:[none]Report ID:Forest Grove, OR 97204Project Manager:Brian BartlettA210707 - 10 06 22 1349

APEX LABS COOLER RECEIPT FORM
Client: Stimson Lumber Element WO#: A2 10707
Project/Project #: CAO
Delivery Info:
Date/time received: 47472 @ 1300 By: AKK
Delivered by: ApexClientESSFedExUPS_× SwiftSenvoySDSOther
Cooler Inspection Date/time inspected: 912422 @ 1300 By: AKK
Chain of Custody included? Yes No Custody seals? Yes No No
Signed/dated by client? Yes X No No
Signed/dated by Apex? Yes X No Tracking #: 129830550369721407
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C) 15.3
Received on ice? (Y/N)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other)
Condition:
Out of temperature samples form initiated? Yes/NO Sample Inspection: Date/time inspected: 4/21/22 @ 4/30 By: 5/5 All samples intact? Yes > No Comments: Bottle labels/COCs agree? Yes > No Comments:
- To - To - To - To - To - To - To - To
COC/container discrepancies form initiated? Yes No 🗴
Containers/volumes received appropriate for analysis? Yes Y No Comments:
Do VOA vials have visible headspace? Yes × No NA NA
Comments All vons have HS
Water samples: pH checked: YesNoNAx pH appropriate? YesNoNAx
Comments:
Additional information:
Labeled by: Witness: Cooler Inspected by:
D 5 5

Apex Laboratories