

Benthic Periphyton as a Source of Gyanotoxins in Three Oregon Rivers Used for Municipal Drinking-Water Supply

Kurt Carpenter
Research Hydrologist
U.S. Geological Survey
Oregon Water Science Center
Portland, Oregon

Protecting Drinking Water Sources from Cyano-HAB Impacts in the Willamette Basin Willamette Basin Partners' Workshop
April 28, 2021

HABs Can Involve..

Phytoplankton AND Benthic "Periphyton"

Clackamas River Basin

2016-18 Study of Drinking Water Sources

64 Sampling Sites

- Clackamas, North Santiam, and McKenzie Rivers
- Main-stem, upper and lower basin tributaries, reservoirs, springs, and raw source water at DWTPs

"Multiple Lines of Evidence" Sampling Approach

- Cyanobacteria colonies and mats (n=81) hand-picked during visual surveys
- Plankton net tows (n=84) from reservoirs and riverine sites to identify cyanobacteria and cyanotoxins in transport to downstream DWTP intakes
- SPATTs (n=122) Deployment of solid-phase adsorbent toxin trackers in drinking-water intakes, tributaries, main-stem sites, and a few reservoirs

Cyanotoxin Analyses

- Cyanotoxins extracted following 3 freeze-thaw cycles
- Microcystins, cylindrospermopsins, anatoxins, and saxitoxins analyzed
- Analyze with Enzyme-Linked Immunosorbent Assays (ELISA) for 4 cyanotoxins

 Positive detection when extract concentration exceeded the lowest standard.. so conservative

<u>Results</u>

- 91% of 81 samples tested positive for one or more cyanotoxins
- Seven benthic samples from the Clackamas Basin contained all 4 cyanotoxins - two samples of Nostoc "ears" and five samples of Microcoleus

Nostoc parmeloides ("Ears")

Tested Positive: Cylindrospermopsins Microcystins Anatoxins Saxitoxins

Microcoleus ("Mats")

Oscillatoria ("Mats") Common in many habitats and rivers, streams, and wetlands

Wollea

Upper Clackamas River, in mats of stalked diatoms (Cymbella janischii)

Tested Positive:

Cylindrospermopsins Microcystins Saxitoxins

Results

- 91% of 81 samples tested positive for one or more cyanotoxins
- Only 7 samples tested negative for all 4 toxins
- Microcoleus,
 Oscillatoria
 and Nostoc
 were the most
 common toxic
 benthic taxa
- Genes often present along with toxins

Benthic Cyanobacteria Commonly Found in Plankton Net Tows

Conclusions

- Presence of all 4 primary cyanotoxins confirmed in numerous samples of benthic cyanobacteria
- Plankton net tow samples contained cyanobacteria, including Nostoc (especially) in transport to drinking water intakes
- Since toxins are intracellular, risk is unknown but frequent detection in SPATTs indicates that some toxin is dissolved in water
- Toxins might associate with <u>sediments</u> or <u>organic</u> <u>carbon</u> and be transported downstream

Thank You!

Acknowledgements

Clackamas River Water Providers (Kim Swan)

City of Estacada (Chris Lewis)

Clackamas River Water (Suzanne DeLorenzo and Tracy Triplett)

Clackamas County Water Environment Services (Andrew Swanson)

City of Lake Oswego (Kari Duncan)

North Clackamas County Water Commission

South Fork Water Board (John Collins)

Eugene Water and Electric Board (David Donahue and Karl Morgenstern)

City of Salem (Brandin Hilbrandt)

US Army Corp of Engineers (Holly Bellringer, Norman Buccola, Tina Lunder USGS (Barry Rosen, Terry Slonecker)

Kurt Carpenter kdcar@usgs.gov 503.251.3215

Summary

- 544 cyanotoxin detections in 289 samples from 59 sites
- Anatoxin-a and microcystins were detected in 63% and 60% of SPATTs
- All 4 cyanotoxins detected in 8% of samples (all sample types)

		Total (ADDA)			
		Microcystins/ Cylindro-			
		Nodularins	spermopsin	Anatoxin-a	Saxitoxin
All 289 samples	Detections	202	78	135	129
	% detection	70%	27%	47%	45%
84 net tows	Detections	66	21	23	66
	% detection	79%	25%	27%	79%
122 SPATTs	Detections	73	21	77	32
	% detection	60%	17%	63%	26%
78 Cyanobacteria	Detections	59	32	34	31
colonies/mats	% detection	76%	41%	44%	40%
5 Planktonic		4	4	1	0
cyanobacteria		80%	80%	20%	0%
	Color Legend:	> 50%	40-50%	15-30%	0%

