#### Upper Klamath and Lost River Subbasins Temperature TMDL Development

**Technical Approach Overview** 

Tribal Coordination Aug. 27, 2018

Ryan Michie Senior Water Quality Analyst Oregon Department of Environmental Quality



#### **Presentation Overview**

TMDL Elements Modeling and Analysis Stage 1 Waterbodies Stage 2 Waterbodies



#### **303(d)** Temperature Impaired Waters



24 impaired segments - 2012 303(d) list



#### **TMDL Elements**

Waterbody Name and Location Pollutant Water quality standard and beneficial uses Loading Capacity Excess Load Sources or Source categories Wasteload Allocations Load Allocations Margin of Safety Seasonal Variation **Reserve Capacity** 



#### $TMDL = WLA_{ps} + LA_{nps} + LA_{bg} + MOS + RC$





#### **Technical Approach Overview**

| Technical Approach / Implementation Support                                            | TMDL<br>Development<br>Stage |
|----------------------------------------------------------------------------------------|------------------------------|
| No modeling<br>(Basic TMDL calculation )                                               | Stage 1                      |
| Vegetation Assessment<br>Solar radiation and effective shade modeling                  | Stage 1                      |
| Stream Temperature Modeling<br>Various implementation and TMDL attainment<br>scenarios | Stage1 and<br>Stage 2        |
| Range of conditions analysis/sensitivity analysis (TBA pending resources)              | Stage 2                      |



#### **TMDL Loading Capacity Equation**

# $LC = (T_C + HUA) \times Q_R \times C_F$

| <i>LC</i> = | Loading Capacity (kilocalories/day).                                                                                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $T_C =$     | The applicable temperature criteria (°C).                                                                                                        |
| HUA =       | The 0.3°C human use allowance allocated to point sources, nonpoint sources, margin of safety, or reserve capacity.                               |
| $Q_R =$     | The daily average river flow rate, upstream (cubic feet per second [cfs]).                                                                       |
| $C_F =$     | Conversion factor using cfs: (2,446,622 kcal-s/°C-ft <sup>3</sup> -day)                                                                          |
|             | $\frac{1 m^3}{35.314 ft^3} \times \frac{1000 kg}{1 m^3} \times \frac{86,400 sec}{1 day} \times \frac{1 kcal}{1 kg \times 1^\circ C} = 2,446,622$ |



#### **Loading Capacity Stream Flow Ranges**

| Flow<br>Condition | Statistical<br>Representation | Applicable River<br>Flow Range                                                | Description                                                                                                                                                             |
|-------------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low               | 7Q10                          | Q <sub>R</sub> < 95 <sup>th</sup> percentile                                  | Lowest 7-day average flow that occurs (on average) once every 10 years (7Q10).                                                                                          |
| Dry               | 95 <sup>th</sup> percentile   | 95 <sup>th</sup> percentile $\leq Q_R$<br>< 50 <sup>th</sup> percentile       | Flow that is exceeded approximately 95%, or the vast majority, of the time.                                                                                             |
| Mild              | 50 <sup>th</sup> percentile   | $50^{\text{th}}$ percentile $\leq Q_R$<br>< 25 <sup>th</sup> percentile       | Flow that is considered within the typical or <i>normal</i> range; includes the median flow for a stream.                                                               |
| Moderate          | 25 <sup>th</sup> percentile   | 25 <sup>th</sup> percentile ≤ Q <sub>R</sub><br>< 10 <sup>th</sup> percentile | Flow that is exceeded only 25% of the time, considered to be <i>above</i> the normal range.                                                                             |
| High              | 10 <sup>th</sup> percentile   | $10^{\text{th}} \text{ percentile} \leq Q_R$<br>< 5 <sup>th</sup> percentile  | Flow that is exceeded only 10% of the time,<br>considered to be <i>far above</i> the normal range;<br>often associated with the rainy season and<br>higher storm flows. |
| Very High         | 5 <sup>th</sup> percentile    | $Q_R \ge 5^{th}$ percentile                                                   | Flow that is infrequently exceeded; represents very high flows that do not occur often.                                                                                 |



#### **Stream Flow Data Sources**

USGS/OWRD Gaged Stream (e.g. Spencer Creek)

**Ungaged Sites** 

- USGS StreamStats Cooper (2005) and Risley et al. (2008)
- Model Outputs (e.g. Lost River CE-QUAL-W2)

Cooper, R. M., 2005, Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon: U. S. Geological Survey Scientific Investigations Report 2005-5116, 134 p.

Risley, J., Stonewall, A., and Haluska, T., 2008, Estimating flow-duration and low-flow frequency statistics for unregulated streams in Oregon: U.S. Geological Survey Scientific Investigations Report 2008-5126, 22 p.



#### **USGS StreamStats**





#### Johnson Creek Loading Capacity (Draft)



| Flow<br>Condition | Representative<br>Flow Estimate<br>(cfs) | Applicable Flow<br>Range | Thermal<br>Loading<br>Capacity<br>(kcal/day) |
|-------------------|------------------------------------------|--------------------------|----------------------------------------------|
| Low               | 7                                        | <8 cfs                   | 3.33E+08                                     |
| Dry               | 8                                        | 8 cfs to <19 cfs         | 3.97E+08                                     |
| Mild              | 19                                       | 19 cfs to <51 cfs        | 9.54E+08                                     |
| Moderate          | 51                                       | 51 cfs to <119 cfs       | 2.54E+09                                     |
| High              | 119                                      | 119 cfs to <181 cfs      | 5.91E+09                                     |
| Very High         | 181                                      | ≥181 cfs                 | 8.99E+09                                     |



#### **Modeling Process**

#### **Model Development**

Data gathering (historic data, field monitoring)

Model input preparation and configuration

#### **Model Evaluation**

Calibration / Corroboration (predicted vs. measured conditions)

Peer review

#### **Model Scenarios**

Analysis of TMDL Alternatives – Compliance Scenarios



#### **Model Overview**

| River              | Klamath River                          | Lost River                                | Tributaries          |
|--------------------|----------------------------------------|-------------------------------------------|----------------------|
| Model Extent       | Upper Klamath Lake<br>to Pacific Ocean | Malone Dam to<br>Klamath Straits<br>Drain | See slide 17         |
| Model              | CE-QUAL-W2,<br>RMA, EFDC               | CE-QUAL-W2                                | Heat Source          |
| Model Period       | 2000 and 2002                          | 1999 and 2004                             | July 2001, July 2005 |
| Model<br>Developer | Tetra Tech                             | Tetra Tech                                | ODEQ                 |



#### **Klamath River Model Overview**





#### **Klamath River Model Scenarios**

Current Condition (2000, 2002) Natural Condition Baseline (T1BSR)

- Dams and reservoirs removed
- Point sources removed
- Upstream boundary based on Upper Klamath Lake
- Everything else same as current



#### **Lost River Model Overview**



DEQ State of Oregon Department of Environmental

## **Tributary Solar Only Models**

|                                        |                         |                   | Simulation |
|----------------------------------------|-------------------------|-------------------|------------|
| Model Output                           | Stream                  | Simulation Period | Extent     |
|                                        | Antelope Creek          |                   | 1.77       |
| Solar Radiation and<br>Effective Shade | Barnes Valley Creek     |                   | 23.9       |
|                                        | Horse Canyon            | luby 15, 2005     | 3.81       |
|                                        | Lapham Creek            | July 13, 2003     | 7.44       |
|                                        | Long Branch             |                   | 8.11       |
|                                        | North Fork Willow Creek |                   | 5.43       |





## **Tributary Temperature Models**

| Model Output | Stream        | Simulation<br>Period        | Simulation Extent                                      |
|--------------|---------------|-----------------------------|--------------------------------------------------------|
|              | Jenny Creek   | July 2001                   | Confluence with Johnson Creek to OR/CA border: 23.7 km |
| Temperature  | Spencer Creek | July 2001                   | Headwaters to mouth: 25.2 km                           |
|              | Miller Creek  | July – Early<br>August 2001 | Gerber Reservoir to mouth: 14.57 km                    |





#### **Stage 1 Temperature Impaired Waters**

| Subbasin            | 202(d) ID | Stream Name             | Length        |
|---------------------|-----------|-------------------------|---------------|
| Subbasin            | 303(d) ID | Stream Name             | (River Miles) |
| Lost River          | 24458     | Antelope Creek          | 14.1          |
|                     | 2182      | Antelope Creek          | 1             |
|                     | 12738     | Barnes Valley Creek     | 14            |
|                     | 12737     | Ben Hall Creek          | 8.7           |
|                     | 12766     | Buck Creek              | 12.8          |
|                     | 24459     | East Branch Lost River  | 2.4           |
|                     | 2166      | Horse Canyon Creek      | 2.2           |
|                     | 12726     | Lapham Creek            | 4             |
|                     | 12732     | Long Branch Creek       | 4.6           |
|                     | 24463     | Lost River              | 60.6          |
|                     | 1994      | North Fork Willow Creek | 2.3           |
|                     | 12729     | Rock Creek              | 4.3           |
| Upper Klamath River | 12872     | Beaver Creek            | 5.5           |
|                     | 2158      | Grizzly Creek           | 3             |
|                     | 2180      | Hoxie Creek             | 3.6           |
|                     | 2159      | Johnson Creek           | 9.4           |
|                     | 2163      | Keene Creek             | 7.2           |
|                     | 2178      | Keene Creek             | 2.2           |
|                     | 2168      | Mill Creek              | 3.9           |
|                     | 2181      | South Fork Keene Creek  | 3.1           |
|                     | 12815     | Spencer Creek           | 18.9          |



#### **Stage 1 Waterbodies**

No temperature modeling – basic TMDL calculation

Modeling of management scenarios shows attainment of applicable criteria (e.g. Spencer Creek)



#### **Stage 1 Waterbodies Next Steps**

## Allocations and Human Use Allowance Complete TMDL and WQMP Draft Document



#### **Stage 2 Temperature Impaired Waters**

| Subbasin            | 303(d) ID | Stream Name   | Length<br>(River Miles) |
|---------------------|-----------|---------------|-------------------------|
| Lost River          | 1993      | Miller Creek  | 9.6                     |
| Upper Klamath River | 1984      | Jenny Creek   | 17.8                    |
|                     | 12840     | Klamath River | 24.1                    |

#### Additional modeling required



# Potential Management Strategies Considered for Revised model scenarios

Streamside vegetation (site potential)

Natural flows for headwaters and tributaries (surface withdrawals returned, no groundwater pumping, no diversions), including associated temperature changes

No dams or modified dam management

Channel morphology improvements

No point sources discharges to waterbody

Climate change factors (e.g. air temperatures)



## **Stage 2 Waterbodies Next Steps**





#### **Additional Background Information**

#### Upper Klamath and Lost River Subbasins Nutrient TMDLs (2017) Appendix A, B, C, F

https://www.oregon.gov/deq/wq/tmdls/Pages/TMDLs-Klamath-Basin.aspx#klamath2017





## Thank you!

#### **Extra Slides**



27

### **Lost River Model Overview**



