Appendix I

Comparison of 2019 Klamath River Temperature TMDL Allocations to 2013 – 2018 Source Discharge Data

September 2019

TMDL Program

700 NE Multnomah Portland, OR 97232 Phone: 503-229-5630 Contact: Ryan Michie

www.oregon.gov/DEQ

DEQ is a leader in restoring, maintaining and enhancing the quality of Oregon's air, land and water.

Prepared by: Ryan Michie, Senior Analyst Oregon Department of Environmental Quality, Watershed Management Section 700 NE Multnomah St., Suite #600, Portland, OR 97232 www.oregon.gov/deq

Alternative formats: DEQ can provide documents in an alternate format or in a language other than English upon request. Call DEQ at 800-452-4011 or email <u>deginfo@deq.state.or.us</u>

Table of Contents

I.1.	Purpose	5
I.2.	Data Sources	6
I.3.	Equations	6
I.4.	Monthly summaries	12
I.5.	Klamath River	19
I.6.	Klamath Falls WWTP	21
I.7.	South Suburban WWTP	25
I.8.	Lost River Diversion Channel	29
1.9.	Klamath Straits Drain	33

Figures

Figure I- 1. Percent of days with an exceedance at the point of discharge in the Klamath Riv	er. 13
Figure I-2. Maximum monthly percent thermal loading (ETL) reduction in the Klamath River tachieve allocations.	to
Figure I-3. Maximum monthly river temperature change (dT) in the Klamath River.	
Figure I-4. Link River daily maximum temperature and daily average flow at USGS station	
11507500	20
Figure I-5. Klamath Falls WWTP change in Klamath River temperature at the point of discha	-
Figure I-6. Klamath Falls WWTP thermal loading in the Klamath River	22
Figure I-7. Klamath Falls WWTP effluent discharge flow to the Klamath River	23
Figure I-8. Klamath Falls WWTP effluent discharge temperature to the Klamath River	24
Figure I-9. South Suburban WWTP change in Klamath River temperature at the point of	
discharge	
Figure I-10. South Suburban WWTP thermal loading in the Klamath River	
Figure I-11. South Suburban WWTP effluent discharge flow to the Klamath River	
Figure I-12. South Suburban WWTP effluent discharge temperature to the Klamath River	
Figure I-13. Lost River Diversion Channel change in Klamath River temperature at the point	
discharge.	
Figure I-14. Lost River Diversion Channel thermal loading in the Klamath River.	
Figure I-15. Lost River Diversion Channel discharge flow to the Klamath River.	
Figure I-16. Lost River Diversion Channel discharge temperature to the Klamath River	32
Figure I-17. Klamath Straits Drain change in Klamath River temperature at the point of	~~
discharge.	
Figure I-18. Klamath Straits Drain thermal loading in the Klamath River.	
Figure I-19. Klamath Straits Drain discharge flow to the Klamath River	
Figure I-20. Klamath Straits Drain discharge temperature to the Klamath River	36

Tables

Fable I-1. Maximum monthly thermal load reduction to achieve TMDL allocations (2013-2018).	
1	6
Гable I-2. Maximum monthly change in river temperature (dT) (2013-2018)1	6
Fable I-3. Maximum monthly percent thermal load reduction to achieve TMDL allocations (2013	3-
2018)	7
Fable I-4. Calculated maximum reduction to the effluent/source daily average flow needed to	
achieve TMDL allocations (2013-2018). Calculated with no reduction to effluent/source	
emperatures1	7
Fable I-5. Calculated maximum reduction to the effluent/source daily maximum temperatures	
needed to achieve TMDL allocations (2013-2018). Calculated with no reduction to	
effluent/source flows1	8

I.1. Purpose

This report summarizes the Klamath River and source discharge data from 2013-2018 and how these data compare to the allocations contained in the 2019 Upper Klamath and Lost Subbasins Temperature TMDL. Sources evaluated include Klamath Falls WWTP (Spring Street WWTP), South Suburban WWTP, and warming from Klamath Straits Drain, and Lost River Diversion Channel.

This report is intended as an informational document to assist DEQ and the interested public understand the potential impact of the Klamath River temperature TMDL allocations.

The plots and table summaries in this report contain the following information for years 2013-2018:

- The Klamath River daily mean temperature and daily mean flow.
- For each source, the change in Klamath River temperature at the point of discharge and the difference between that change and the allocated change in river temperature.
- The maximum difference between the current source loading and the TMDL allocated load.
- The current source discharge flow and the calculated maximum reduction to daily mean source discharge flow needed to achieve the allocation. Discharge temperature is the same as current.
- The current source discharge temperature and the calculated maximum reduction to daily mean discharge temperature needed to achieve the allocation. Discharge flow is the same as current.

Please refer to attached spreadsheets for daily data used for plotting and table summaries.

I.2. Data Sources

Source	Discharge Flow	Discharge Temperature	River Flow and Temperature
Klamath Falls WWTP (KF)	DMRs	DMRs	
Klamath Straits Drain (KSD)	USGS 11509340 KSD near Worden	USGS 420451121510000 KSD near Highway 97	Year 2013 - 2018 USGS 11507500 Link River at Klamath Falls
Lost River Diversion Channel (LRDC)	Net flow derived from measurements at USBOR gages at Lost River Diversion Dam (LRD) Downstream gage (QJ), minus diversions at Station 48, and Miller Hill Pump Plant, OR (MHPO).	USBOR Gage LRVO - Lost River Diversion Channel at Tingley	See Figure I-4
South Suburban WWTP (SS)	DMRs	DMRs	

I.3. Equations

Wasteload Allocation Equation

The following equation was used to calculate the thermal waste load allocations.

$$WLA = (\Delta T) \cdot (Q_E + Q_R) \cdot C_F$$
 Equation 2 3

where,

WLA = Waste load allocation (kilocalories/day).

- $\Delta T =$ The maximum temperature increase (°C) using 100% of river flow not to be exceeded by each individual source from all outfalls combined.
- Q_E = The daily mean effluent flow (cfs).
- Q_R = The daily mean river flow rate, upstream (cfs).

When river flow is <= 7Q10, Q_R = 7Q10. When river flow > 7Q10, Q_R is equal to the mean daily river flow, upstream.

Upper Klamath and Lost Subbasins Temperature TMDL – Appendix I

 C_F = Conversion factor using flow in cubic feet per second (cfs): 2,446,665

 $\frac{1 f t^3}{1 sec} \cdot \frac{1 m^3}{35.31 f t^3} \cdot \frac{1000 kg}{1 m^3} \cdot \frac{86400 sec}{1 day} \cdot \frac{1 kcal}{1 kg \cdot 1^{\circ} C} = 2,446,665$

WLA Permit Compliance Equation

The following equation shall be used to determine compliance with the waste load allocation (WLA).

 $ETL = (T_E - T_R) \cdot Q_E \cdot C_F$

Equation 24

where,

- *ETL* = The daily excess thermal load (kilocalories/day) used to evaluate compliance with the waste load allocation (WLA) from Equation 2 3.
 - T_R = The point of discharge applicable river temperature (°C).

 T_R is the daily mean river temperature at Link River (USGS 11507500) is used as an appropriate estimate for T_R . Daily mean river temperatures immediately upstream of the outfall may also be used for T_R as long as adjustments are made to eliminate any warming or cooling between the outflow from Upper Klamath Lake and that location not attributed to natural sources.

Between October 1 and May 31, if the daily maximum river temperatures > = 28° C, T_R = 28° C.

- T_E = The daily mean effluent temperature (°C)
- Q_E = The daily mean effluent flow (cfs or MGD)
- $C_F = Conversion factor for flow in cubic feet per second (cfs): 2,446,665$ $\frac{1 ft^3}{1 sec} \cdot \frac{1 m^3}{35.31 ft^3} \cdot \frac{1000 kg}{1 m^3} \cdot \frac{86400 sec}{1 day} \cdot \frac{1 kcal}{1 kg \cdot 1^{\circ}C} = 2,446,665$

Conversion factor for flow in millions of gallons per day (MGD): 3,785,411 $\frac{1 m^3}{264.17 gal} \cdot \frac{1000 kg}{1 m^3} \cdot \frac{1000000 gal}{1 million gal} \cdot \frac{1 kcal}{1 kg \cdot 1^{\circ}C} = 3,785,441$

Calculating Current Change in Temperature

The following equation is used to determine compliance with the allowed ΔT allocated in the TMDL.

$$\Delta T_{current} = \left(\frac{Q_E}{Q_E + Q_R}\right) \cdot (T_E - T_R)$$
 Equation I-1

where,

 $\Delta T_{Current}$ = The current river temperature increase (°C) using 100% of river flow.

 $Q_E =$ The daily mean effluent flow (cfs).

 $Q_R =$ The daily meanriver flow rate, upstream (cfs).

> When river flow is <= 7Q10, Q_R = 7Q10. When river flow > 7Q10, Q_R is equal to the mean daily river flow, upstream.

- $T_E =$ The daily mean effluent temperature (°C)
- $T_R =$ The point of discharge applicable river temperature (°C).

 T_R is the daily mean river temperature at Link River (USGS 11507500) is used as an appropriate estimate for T_R . Daily mean river temperatures immediately upstream of the outfall may also be used for T_R as long as adjustments are made to eliminate any warming or cooling between the outflow from Upper Klamath Lake and that location not attributed to natural sources.

Between October 1 and May 31, if the daily maximum river temperatures > = $28^{\circ}C$, $T_{R} = 28^{\circ}C$.

Calculating Acceptable Effluent Temperatures

The daily mean effluent temperatures (°C) acceptable under the allowed ΔT and the waste load allocation (WLA).

 $T_{E_{_WLA}} = \frac{(Q_E + Q_R) \cdot (T_R + \Delta T) - (Q_R \cdot T_R)}{Q_E}$ Equation I-2a $T_{E_{_WLA}} = \frac{(WLA)}{Q_E \cdot C_F}$ where, $T_{E_{_WLA}} =$ Daily mean effluent temperature (°C) allowed under the waste load allocation.

WLA = Waste load allocation (kilocalories/day).

- $\Delta T =$ The maximum temperature increase (°C) using 100% of river flow not to be exceeded by each individual source from all outfalls combined.
- Q_E = The daily mean effluent flow (cfs).
- Q_R = The daily mean river flow rate, upstream (cfs).

When river flow is <= 7Q10, Q_R = 7Q10. When river flow > 7Q10, Q_R is equal to the average daily river flow, upstream.

 T_R = The point of discharge applicable river temperature (°C).

 T_R is the daily mean river temperature at Link River (USGS 11507500) is used as an appropriate estimate for T_R . Daily mean river temperatures immediately upstream of the outfall may also be used for T_R as long as adjustments are made to eliminate any warming or cooling between the outflow from Upper Klamath Lake and that location not attributed to natural sources.

Between October 1 and May 31, if the daily maximum river temperatures > = 28° C, T_R = 28° C.

 $C_F = Conversion factor for flow in cubic feet per second (cfs): 2,446,665$ $\frac{1 ft^3}{1 sec} \cdot \frac{1 m^3}{35.31 ft^3} \cdot \frac{1000 kg}{1 m^3} \cdot \frac{86400 sec}{1 day} \cdot \frac{1 kcal}{1 kg \cdot 1^{\circ}C} = 2,446,665$

Calculating Acceptable Effluent Flows

The daily average effluent flow (cfs) acceptable under the allowed ΔT and the waste load allocation (WLA).

$$Q_{E_{_WLA}} = \frac{(Q_R \cdot T_R) - ((T_R + \Delta T) * Q_R)}{T_R + \Delta T - T_E}$$
Equation I-3a
$$Q_{E_{_WLA}} = \frac{(WLA)}{(T_E - T_R) * C_F}$$
Equation I-3b
where,

 Q_{E_WLA} = Daily mean effluent temperature (cfs) allowed under the waste load allocation.

WLA = Waste load allocation (kilocalories/day).

- $\Delta T =$ The maximum temperature increase (°C) using 100% of river flow not to be exceeded by each individual source from all outfalls combined.
- T_E = The daily mean effluent temperature (°C).
- Q_R = The daily mean river flow rate, upstream (cfs).

When river flow is <= 7Q10, Q_R = 7Q10. When river flow > 7Q10, Q_R is equal to the average daily river flow, upstream.

 T_R = The point of discharge applicable river temperature (°C).

 T_R is the daily mean river temperature at Link River (USGS 11507500) is used as an appropriate estimate for T_R . Daily mean river temperatures immediately upstream of the outfall may also be used for T_R as long as adjustments are made to eliminate any warming or cooling between the outflow from Upper Klamath Lake and that location not attributed to natural sources.

Between October 1 and May 31, if the daily maximum river temperatures > = 28° C, T_R = 28° C.

 $C_F = Conversion factor for flow in cubic feet per second (cfs): 2,446,665$ $\frac{1 ft^3}{1 sec} \cdot \frac{1 m^3}{35.31 ft^3} \cdot \frac{1000 kg}{1 m^3} \cdot \frac{86400 sec}{1 day} \cdot \frac{1 kcal}{1 kg \cdot 1^{\circ}C} = 2,446,665$

I.4. Monthly summaries

SS WWTP **KF WWTP** LRDC KSD 100% -90% -80% · 70% -0.03 deg-C Allocation 60% -50% -40% 0.05 deg-C Allocation 60% 50% 40% 30% · 20% -10% -0% -9 10 11 12 1 2 3 10 11 12 1 2 3 4 5 2 3 4 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12 4 5 6 7 8 9 6 7 8 1 1 2 3 4 Month

Percent of days with an exceedance (2013-2018) based on allocation

Figure I- 1. Percent of days with an exceedance at the point of discharge in the Klamath River.

Upper Klamath and Lost Subbasins Temperature TMDL – Appendix I

SS WWTP LRDC KSD **KF WWTP** 100% -90% -80% · 70% -0.03 deg-C Allocation 60% -50% -40% 30% 20% Percent Reduction 10%· 0% 100% · 90% 80% -70% -0.05 deg-C Allocation 60% 50% -40% 30% · 20% -10% -0%-10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 1 1 2 3 4 Month

Maximum Percent ETL Reduction (2013-2018) based on allocation

Upper Klamath and Lost Subbasins Temperature TMDL – Appendix I

Figure I-2. Maximum monthly percent thermal loading (ETL) reduction in the Klamath River to achieve allocations.

Upper Klamath and Lost Subbasins Temperature TMDL – Appendix I

KF WWTP SS WWTP LRDC KSD 1.00 -0.75 -0.03 deg-C Allocation 0.50 -0.05 deg-C Allocation 0.50 0.25 -0.00 6 7 8 9 10 11 12 1 Month 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 1 1 2 3 4 5 6 7 8 9 10 11 12

Maximum Change in River Temperature (2013-2018)

Figure I-3. Maximum monthly river temperature change (dT) in the Klamath River.

Source	Reduction Variable	Unit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KF WWTP	Thermal Load (ETL)	kcals/day	3.50E+08	2.42E+08	1.59E+08	3.64E+07	0	0	0	0	0	6.44E+07	1.06E+08	2.72E+08
KSD	Thermal Load (ETL)	kcals/day	1.63E+08	1.04E+09	2.07E+09	1.72E+09	9.50E+08	1.13E+09	6.45E+08	3.13E+08	1.75E+08	7.02E+07	1.08E+08	2.22E+08
LRDC	Thermal Load (ETL)	kcals/day	9.03E+08	2.99E+09	4.46E+09	8.22E+08	7.84E+08	4.21E+07	1.15E+08	3.26E+08	3.91E+08	5.10E+08	3.12E+08	1.76E+09
SS WWTP	Thermal Load (ETL)	kcals/day	2.34E+07	2.64E+06	0	0	0	0	0	0	0	0	0	0

Table I-1. Maximum monthly thermal load reduction to achieve TMDL allocations (2013-2018).

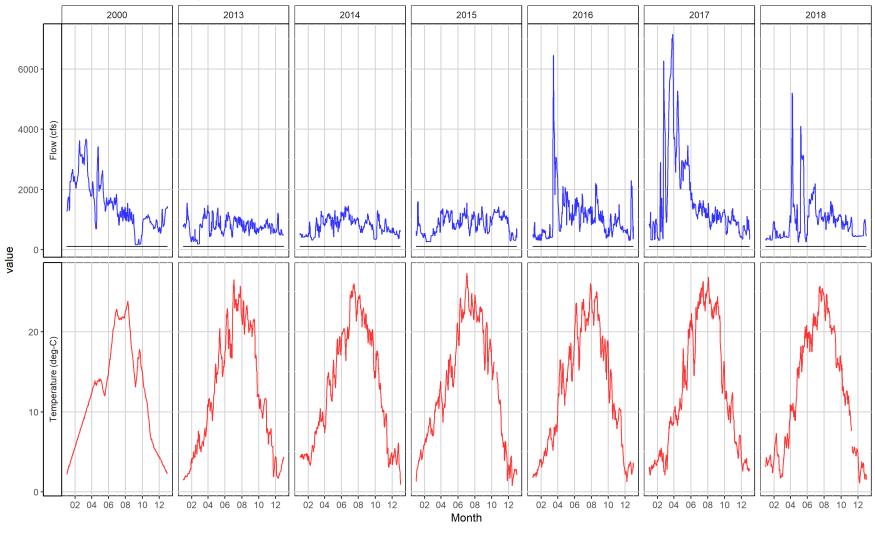
 Table I-2. Maximum monthly change in river temperature (dT) (2013-2018).

Source	Variable	Unit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KF WWTP	Current Temp Change	Degrees Celsius	0.46	0.33	0.18	0.05	0.03	0.02	0	0.01	0.03	0.09	0.1	0.38
KSD	Current Temp Change	Degrees Celsius	0.17	0.49	0.7	0.79	0.53	0.54	0.27	0.19	0.14	0.07	0.11	0.29
LRDC	Current Temp Change	Degrees Celsius	0.36	1.00	0.93	0.17	0.37	0.08	0.14	0.24	0.32	0.25	0.25	0.68
SS WWTP	Current Temp Change	Degrees Celsius	0.06	0.03	0.02	0.01	0.01	0.01	0.01	0	0.03	0.01	0.01	0.03

Source	Reduction Variable	Unit	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KF WWTP	Thermal Load (ETL)	Percent kcals/day	93	91	83	40	0	0	0	0	0	66	70	92
KSD	Thermal Load (ETL)	Percent kcals/day	83	94	96	96	94	91	81	74	65	56	71	90
LRDC	Thermal Load (ETL)	Percent kcals/day	92	97	97	82	92	40	64	79	84	88	88	96
SS WWTP	Thermal Load (ETL)	Percent kcals/day	50	6	0	0	0	0	0	0	0	0	0	0

Table I-3. Maximum monthly percent thermal load reduction to achieve TMDL allocations (2013-2018).

Table I-4. Calculated maximum reduction to the effluent/source daily average flow needed to achieve TMDL allocations (2013-2018). Calculated with no reduction to effluent/source temperatures.

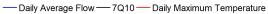
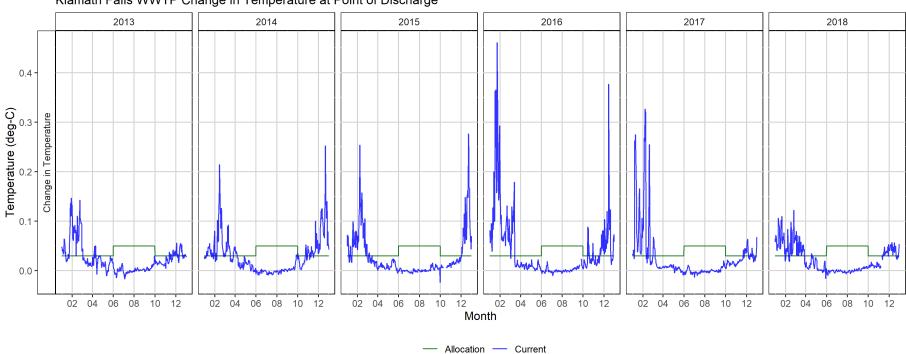

Source	Reduction Variable	Unit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KF WWTP	Discharge Flow	Cubic feet/second	12.4	17.1	7.6	1.9	0	0	0	0	0	3.4	3.4	10.3
KSD	Discharge Flow	Cubic feet/second	62.3	227	355.2	254.2	171.1	173.9	112.2	94.8	59.1	34.5	52.1	75.2
LRDC	Discharge Flow	Cubic feet/second	785	830.2	893.4	230.8	357.4	15	49.7	80.8	111.3	178.1	119.1	673.7
SS WWTP	Discharge Flow	Cubic feet/second	3.3	0.3	0	0	0	0	0	0	0	0	0	0

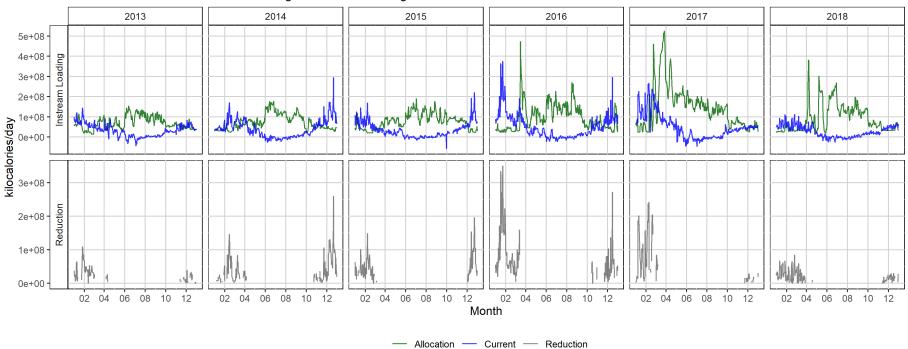
Source	Reduction Variable	Unit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KF WWTP	Discharge Temperature	Degrees Celsius	11.4	10.1	8.4	2.9	0	0	0	0	0	5.2	9	11.6
KSD	Discharge Temperature	Degrees Celsius	0.9	3.4	5.8	3.5	2.4	3	2.2	1.3	0.8	0.7	1.1	1.5
LRDC	Discharge Temperature	Degrees Celsius	0.7	3.2	3.9	1.4	3.9	0.5	0.7	1.5	1.8	1.3	1.3	1.7
SS WWTP	Discharge Temperature	Degrees Celsius	1.5	0.2	0	0	0	0	0	0	0	0	0	0

Table I-5. Calculated maximum reduction to the effluent/source daily maximum temperatures needed to achieve TMDL allocations (2013-2018). Calculated with no reduction to effluent/source flows.

I.5. Klamath River

Link River Flow and Temperature, USGS 11507500


Figure I-4. Link River daily maximum temperature and daily average flow at USGS station 11507500.

I.6. Klamath Falls WWTP

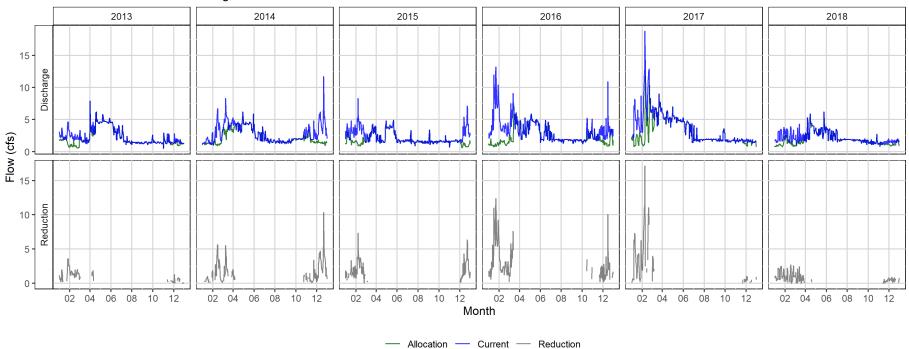

Klamath Falls WWTP Change in Temperature at Point of Discharge

Figure I-5. Klamath Falls WWTP change in Klamath River temperature at the point of discharge.

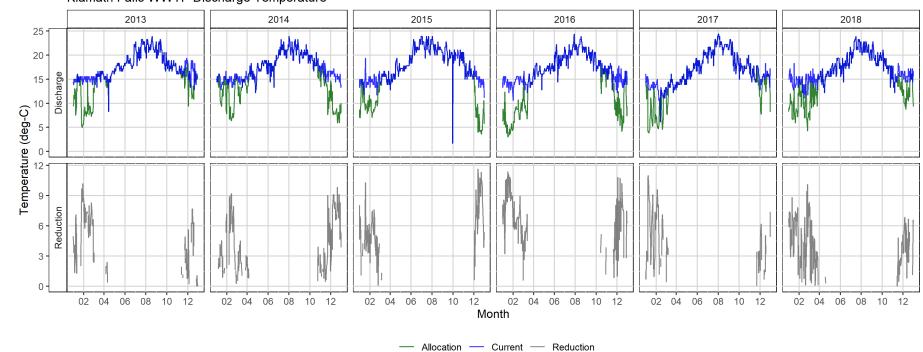

Klamath Falls WWTP Instream Loading at Point of Discharge

Figure I-6. Klamath Falls WWTP thermal loading in the Klamath River.

Klamath Falls WWTP Discharge Flow

Figure I-7. Klamath Falls WWTP effluent discharge flow to the Klamath River.

Klamath Falls WWTP Discharge Temperature

Figure I-8. Klamath Falls WWTP effluent discharge temperature to the Klamath River.

I.7. South Suburban WWTP

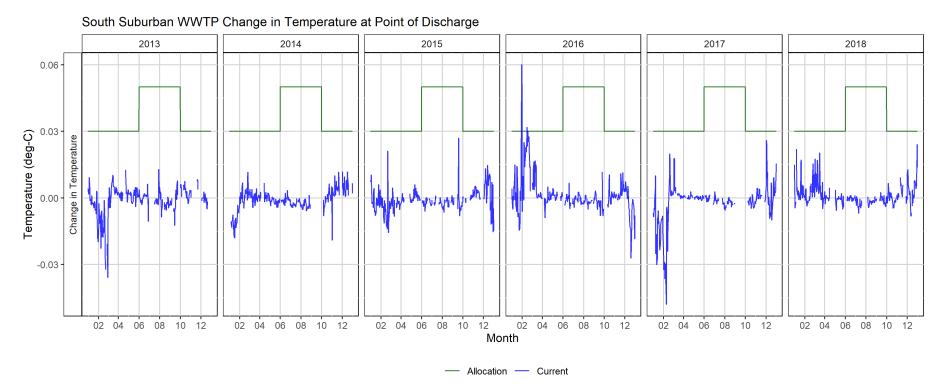
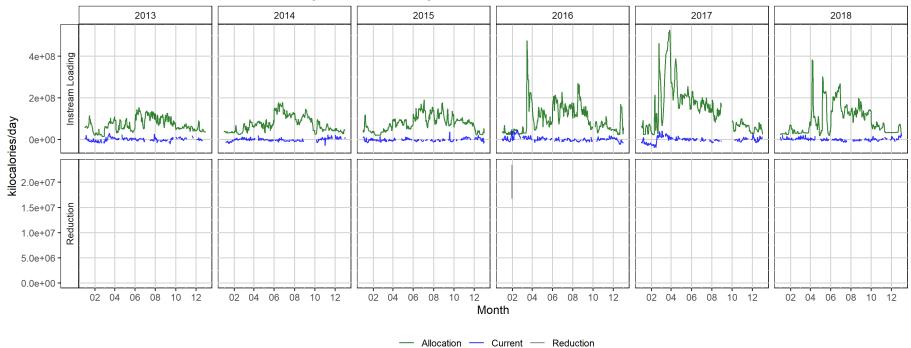
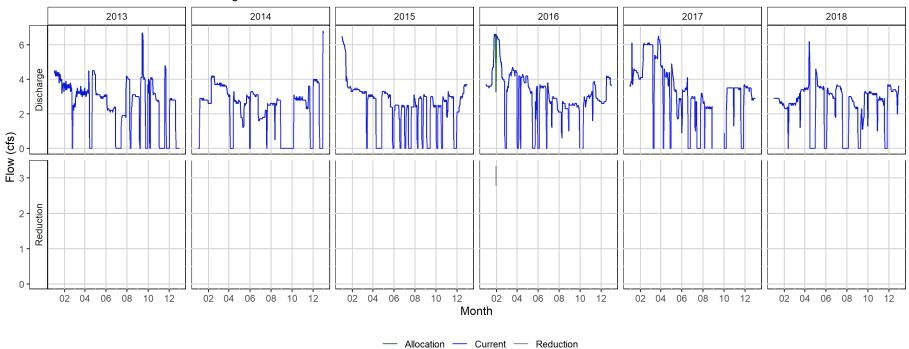




Figure I-9. South Suburban WWTP change in Klamath River temperature at the point of discharge.

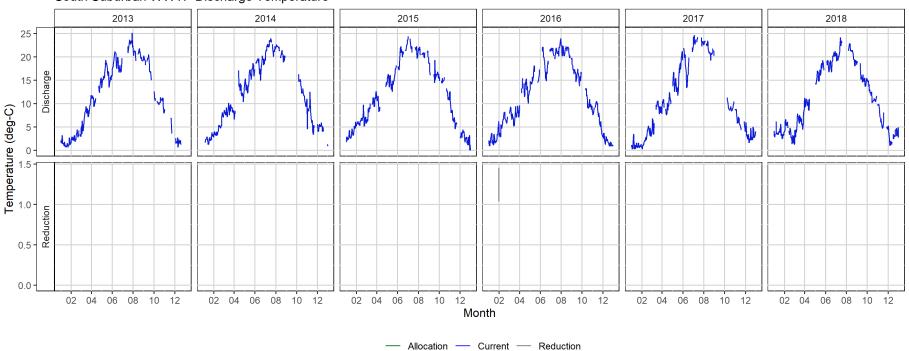

South Suburban WWTP Instream Loading at Point of Discharge

Figure I-10. South Suburban WWTP thermal loading in the Klamath River.

South Suburban WWTP Discharge Flow

Figure I-11. South Suburban WWTP effluent discharge flow to the Klamath River.

South Suburban WWTP Discharge Temperature

Figure I-12. South Suburban WWTP effluent discharge temperature to the Klamath River.

I.8. Lost River Diversion Channel

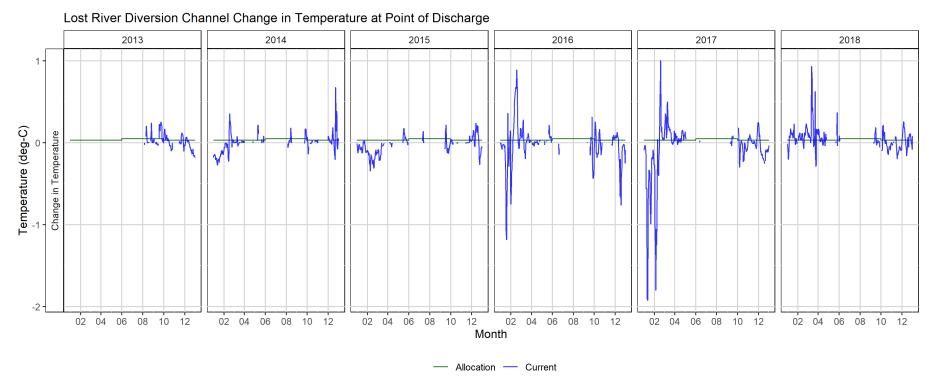
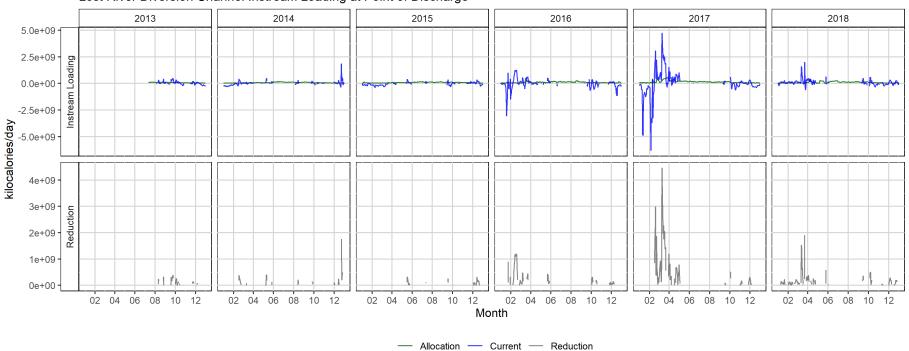
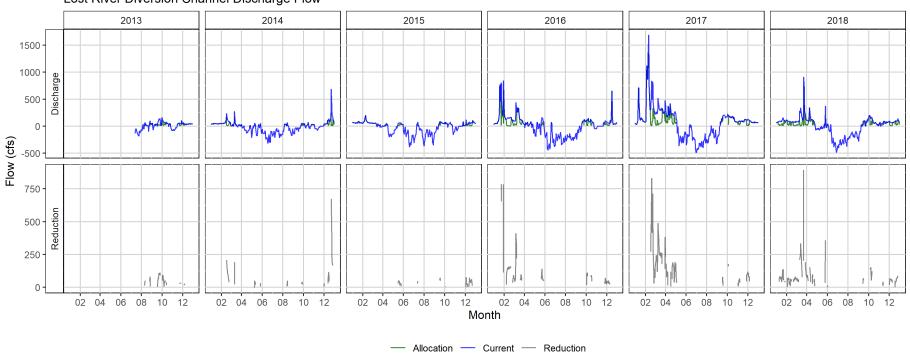




Figure I-13. Lost River Diversion Channel change in Klamath River temperature at the point of discharge.

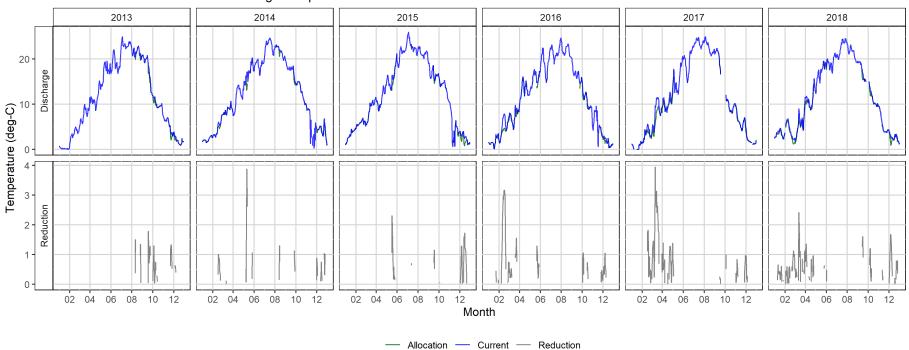

Lost River Diversion Channel Instream Loading at Point of Discharge

Figure I-14. Lost River Diversion Channel thermal loading in the Klamath River.

Lost River Diversion Channel Discharge Flow

Figure I-15. Lost River Diversion Channel discharge flow to the Klamath River.

Lost River Diversion Channel Discharge Temperature

Figure I-16. Lost River Diversion Channel discharge temperature to the Klamath River.

I.9. Klamath Straits Drain

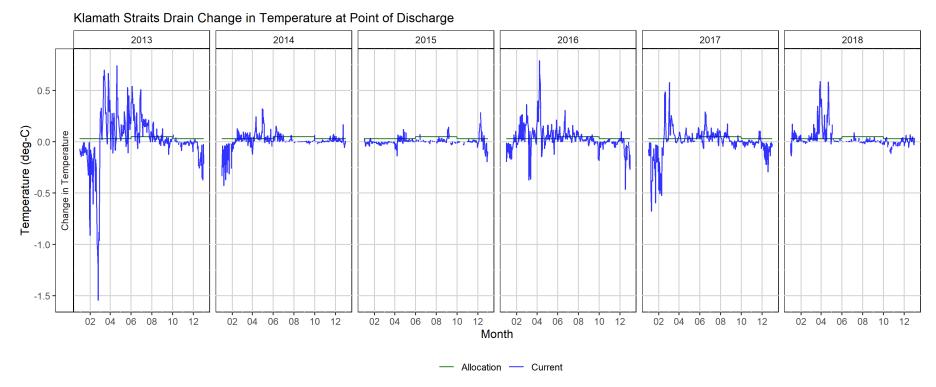
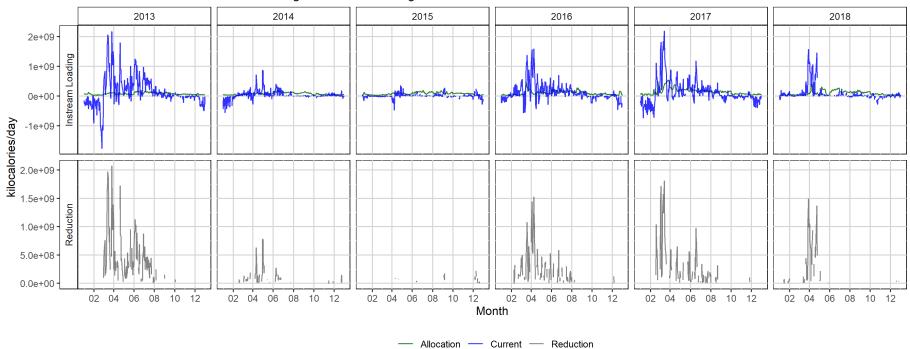



Figure I-17. Klamath Straits Drain change in Klamath River temperature at the point of discharge.

Klamath Straits Drain Instream Loading at Point of Discharge

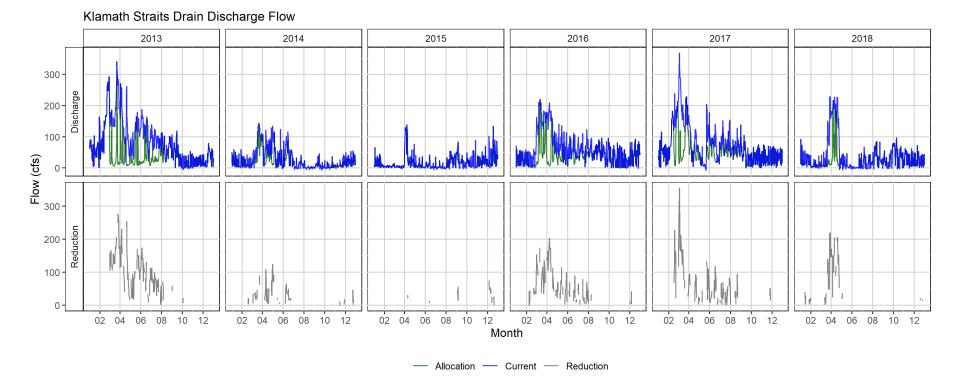
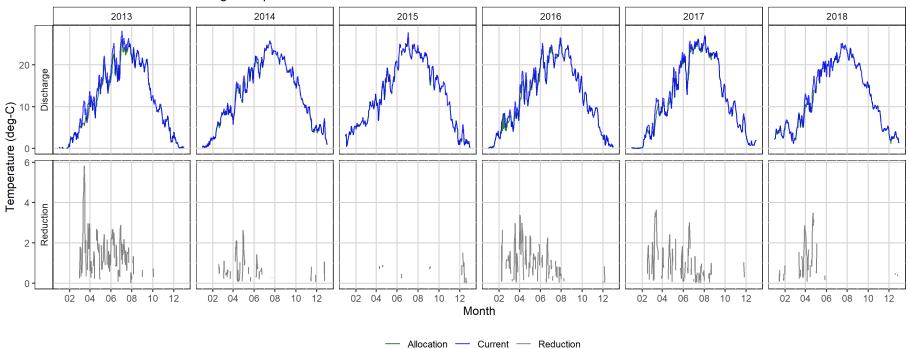



Figure I-19. Klamath Straits Drain discharge flow to the Klamath River.

Klamath Straits Drain Discharge Temperature

Figure I-20. Klamath Straits Drain discharge temperature to the Klamath River.