<table>
<thead>
<tr>
<th>NAME</th>
<th>OLD NAMES</th>
<th>PRINCIPAL ORE</th>
<th>MINOR MINERALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Mountain</td>
<td>Gold</td>
<td>Gold</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T6S</th>
<th>R45E</th>
<th>Sec. 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PUBLISHED REFERENCES
- Parks & Swartley 16:191
- Swartley 14:62
- Ore. Metal Mines Handbook 14A pg.30

MISCELLANEOUS RECORDS

PRESENT LEGAL OWNER (S)

Address

OPERATOR

Name of claims

Area

Pat.

Unpat.
RED MOUNTAIN PROPERTY

The eastern end of Red mountain can be seen on the way to Norway basin and to the Queen of the West mill. The rest of it is well observed from the apex of the ridge on the George W. Smith claims where, looking north from the snowbank one can see Twin lakes far below the contact of the lighter colored granodiorite with the darker schist of Red mountain above. Nearly all of this eminence (9,500 feet) is bare of vegetation. The rock, of reddish brown color, is almost as solid at the surface as below. Loosened by the action of ice and snow loose rock is not permitted long to remain upon its forbidding walls.

Although not examined much except at the contact with the “granite,” Red mountain appears to have been once a sediment, but due to the regional disturbances occurring before that which permitted the granitic intrusion, it is now a schist. The granodiorite is clearly seen to have intruded into the schists, because along its border are found innumerable inclusions of angular fragments of schist within it. Both porphyry and aplite dikes cut the granite and the schist.

The Red mountain vein is situated close to the contact with granodiorite and roughly parallel to it. Its location can be seen near the right hand border of the picture. The outcrop of the principal shoot has an elevation of about 7,200 feet, but the vein can be seen for a considerable distance to much higher elevations. It is not a contact vein, although locally so considered. The contact of the “granite” with the schist does not appear to be mineralized, although there are effects which appear in the character of the granodiorite. The roughly parallel attitude of the large biotite mica crystals gives an appearance of gneissic texture. Many of the large quartz grains are cracked and wavy, evidencing contact stresses.

The vein has a strike of north 80° east, a dip of 50° north and a maximum width of five feet, but pinches to small dimensions within a few hundred feet. It is seen to cut granite, schist and the granite-porphyry and aplite dikes as well, showing that the vein is later than all of these. It is of the simple quartz type, showing banding in places together with white sericite mica. Iron pyrite, also the green stains of copper are seen in the vein material found near the collar of the shaft. This incline sunk on the vein for about 100 feet is now partially caved. A crosscut (several hundred feet long) at an elevation of 6,600 feet, is being driven to cut the vein, but has not yet reached it. It is still in the granodiorite, although it would appear from the nature of the rock near the face of this crosscut that the tunnel is approaching the contact and perhaps the vein.