McIntyre Group (copper - gold) Baker, County

Owner: Claude McIntyre, Baker, Oregon

Location: T. 7§, R. 7S E adjoining Mother Lode or Balm Creek Mining Area.

Area: 11 unpatented claims.

No history - production or equipment

No production.

No equipment.

No underground development. Poor open cuts and surface trenches.

Description: Property is in the same belt of mineralization as the Balm Creek holdings. Is undeveloped with only poor open cuts and trenches. Outcrops few and far between. The Old Man claim is very good prospect, outcropping of Gossan heavy "iron" quartz showing pyrite in spots. One of the claims has much float of barytic ore - no ledge or vein discovered as yet. Another point of prospective worth is that on the supposed continuation of the Balm Creek vein and Poorman Vein - partially exposed but insufficient for sampling purposes.

Main country rock is altered greenstone with capping of basalt and vesicular lavas. There is evidence of a subsided "crater" near the Old Man claim which would bear greater investigation. A granite exposure is said to occur near the mouth of Balm Creek. Apparently this is very good prospective property and should have a systematic method of exploration which might uncover veins of good width and of mineralable grade. Especially in view of its proximity to the Mother Lode vein.

Only "grab" sample assays have been made to date which are poor indication of possibilities.

Informant: A. V. Quine.

Fall, 1937.

-- Recommendations: Open cuts to expose vein and well-mine for sampling
1. Name of property: Quartz Property
 Operating company (or individual): Not operating - owner: Claude McIntyre
 Address: Baker, Oregon
 Location of property: Adjoining Mother Lode or Balm Creek Mining Company
 Acreage of holdings: 11 claims - unpatented

2. History of property, past and recent:
 No history - only small open cuts made - undeveloped.

3. History of production:
 No production

4. Development:
 Number of levels, lengths of drifts and cross-cuts, raises, etc.:
 No development

5. General description and equipment on hand, topography, country rocks, elevation, timber, water, snow fall, climate, power, etc.
 It is in same belt of mineralization as the Balm Creek holdings. Property entirely undeveloped with only poor open cuts & trenches available. Occurrences few & far between. Advised him to open cut & trench sufficiently to expose veins & widths & well rock for sampling purposes. The Old Man Claim is very good prospect. Cutcrop of gossan heavy "iron" & showing pyrite in spots. One of his claims has much float of barite ore - no ledge or vein discovered as yet. Another of

6. Geology - General and local.
 Ore geology - type of deposit, i.e., vein, mineralized zone, bed; contact relations, attitude and orientation, vein minerals, gangue, type of mineralization, alteration, enrichment, etc.
 Prospective worth is that on the supposed continuation of the Balm Creek vein & Poorman vein - partially exposed but insufficient for sampling purposes. Main country rock is altered greenstone with capping of basalt & vesicular lavas. There is evidence of a subsided crater(s) near the Old Man claim which would be of greater interest for investigation. A granitic exposure is said to occur near mouth of Balm Creek. Did not check this due to lack of

7. Metallurgy - nature of ore, hard or soft, free-milling, base, direct shipping, etc.
 Kind of mill and equipment in use or planned, current daily tonnage of ore or concentrates, approximate value, freight rates to smelter, etc.

 In my opinion this is a very good prospective property and I believe a systematic method of exploration would uncover veins of good width & suitable grade especially in view of the proximity of the Mother Lode veins. Only grab assays have been made to date which

8. Remarks - economics:
 High or low cost, principal drawbacks, reasons for success or failure, apparent life of operation based on apparent quantity of ore available.
 I believe only serve as a poor indication of possibilities.

 [Signature]
 [W. H. Jones]
 [Huntington, Oregon]
SAMPLE:

1. Old Man, top oxide gen. sample, strong barium, heavy sulphide, black iron. No colors.
2. Old Man, wheelbarrow, no barium, quartz and oxide gen. sample.
3. Quartz sample, Old Man, ear tree, light barium, heavy sulphide, black iron. No colors.
4. Etta May, heavy barium and black sands. No colors.
5. Baby Lode, 2/3 quartz vein white, heavy barium & black sands.
6. Old Man loc. hole, red oxide, heavy sulphide & sands. No barium or colors.
8. Baby Lode, west BC shaft, south wall rock, trace sand, no colors.
9. Baby Lode, west BC shaft, quartz sample, heavy black sand, light barium.
10. Baby Lode, west BC shaft, cut sample, 10' face, wall to wall, heavy sand, no colors, light barium.
11. Sanger, main vein, 2 cuts, middle vein 25' winze, heavy sands, 1 color, 10" -- 15".
12. Sanger, main vein, 3 cuts, 12" rear end of tunnel, heavy sulphide and sands, no colors.
13. Sanger, main middle vein, 2 cuts, front end, 6"-10", heavy sands, 6 coarse and many fine colors.
14. Sanger, specimen white quartz, well mineralized, heavy sands and sulphide, no colors.
15. Sanger, center vein, near winze, 12" cut across fracture intersection, heavy sand and sulphide, red oxide, no colors.
16. Sanger, wall rock, 4' each wall, some tale, light sulphide, iron, no colors.
State Department of Geology and Mineral Industries

State Assay Laboratory

2102 Court Street
Baker, Oregon

<table>
<thead>
<tr>
<th></th>
<th>GOLD</th>
<th>SILVER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ounces per ton.</td>
<td>Ounces per ton.</td>
</tr>
<tr>
<td>No. 1</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.015</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>0.035</td>
<td>0.76</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>Trace</td>
</tr>
<tr>
<td>9</td>
<td>0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>0.02</td>
<td>0.22</td>
</tr>
<tr>
<td>12</td>
<td>0.04</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>0.10</td>
<td>Trace</td>
</tr>
<tr>
<td>14</td>
<td>0.03</td>
<td>0.6</td>
</tr>
<tr>
<td>15</td>
<td>0.04</td>
<td>0.28</td>
</tr>
<tr>
<td>16</td>
<td>0.15</td>
<td>0.4</td>
</tr>
<tr>
<td>Location</td>
<td>Sample Count</td>
<td>Result</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>Goossan</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>McIntyre, Barite Float</td>
<td>1</td>
<td>Tr</td>
</tr>
<tr>
<td>McIntyre, Barite Ore</td>
<td>2</td>
<td>Tr</td>
</tr>
</tbody>
</table>

Leslie L. Motz, State Assayer,
T7S
R43E near Ranger Mine

Baker
COUNTY

Eagle Creek
AREA

about 5000
ELEVATION

Road or Highway

about 16 mi. Medical Springs
DISTANCE TO
and Lumber Co. Railroad
SHIPPING POINT

PRESENT LEGAL OWNER (S) C.B. Siler

Address 4050 3rd Ave., Tacoma, P.

OPERATOR

Name of claims Area Pat. Unpat.

11 claims x

EQUIPMENT ON PROPERTY Complete small scale mining and milling equipment
Owners
Mr. G. B. Silar, 4058 S. C. St., Tacoma, Washington.
Mr. Rice (estate) 1410 N. 6th St., Tacoma, Washington.

Location
The mine is in the Sanger District, Eagle Creek Area, Union County, Oregon, and its general location as taken from a report on the McIntyre group, page 49, Bull. 14A, State of Oregon, Department of Geology and Mineral Industries, is T. 7; R. 43 E. The property as sold to the present owners presumably includes all or part of the 11 claims listed therein.

History
The mine was bought by Mr. Rice and Silar early this year. Mr. Rice had been working on the property since 1939. The present compressor house is reported to have been built at that time, the mill during 1941 and 1942. This work together with an indefinite amount of underground development was largely done by Mr. Rice and his son or an occasional hired helper. Such a helper, Mr. Martin Kosinic and Mr. Rice met their death underground on May 1, 1940, due to engine exhaust fumes transferred there through the airline.

Equipment
Buildings, other than residence cabins, include a mill, a compressor house, and a hoist house. A lean-to roof sloping from the compressor house to an earth bank makes an open air, but effectively sheltered general utility shed. Various items of equipment will be listed and described in their appropriate place during the ensuing discussion of these buildings.

* McIntyre is the name of the former owner of the mine, and the name under which his group of claims was known. It is used here arbitrarily in the absence of any other known, official name.
Mall The mill is situated on a side hill as is best seen in pictures 1, 3 & 4. It contains a Chile-type Baxter mill, a corduroy table, a jig and an amalgamating barrel. A 10 x 4 Blake Crusher is located outside the main building but in an extension thereof. These items are belt driven, and powered by a 6 cylinder Studebaker gasoline engine located in the main mill building. A hoist (picture 2) for the mill ore bin (Pictures 1 & 3) constitutes the highest unit of the mill. It is belt driven by the same engine which runs the mill equipment. The vehicle for this transfer is a home made car of small capacity. It does not dump, but instead, opens on a side and must be mucked clean.

The head frame is a conventional one with a storage bin for ore and waste, these products being pulled from different chutes to cars on separate tracks as is shown in picture 1.

Compressor House The compressor house occupies the foreground of picture 4. It, like other buildings, is tightly walled with ship lap and roofed with composition roofing. Two sets of 2½ foot square windows on opposite sides and a door on each of the ends provide ventilation. A Worthington Compressor powered by a Mack truck engine is mounted, together with such accessories as radiators, extra cooling medium containers, air receiver, etc., on a steel frame. A couple flooring boards have been left out under a part of this unit and the engine exhausts through this hole. Compressor and engine oil and an assortment of small tools stored there.
General utility shed A lean-to roof (Pictures 5&6) slopes from the compressor house to an earth bank which forms the opposite wall. This completely covers the collar. The headframe and ore bin is situated squarely across one of the open ends and since this is close, it affords protection to that side of the shed. The shed normally houses the forge, and is evidently for storing currently used underground materials and tools, and as a convenient and protected spot for repairing mine equipment.

Hoist house This small building stands apart from the other buildings, and is to be seen at the extreme right of picture 4. The hoist of unknown make, is powered by a single cylinder horizontal Fuller Johnson, gas engine of 5 h.p. Although the hoist drum may prove to have a diameter smaller than desirable for the cable used, this installation above all, was commendably neat. The engine exhausted through the roof.

No attempt was made to itemize miscellaneous equipment, but the impression gained was that there was an abundance of small tools, hose, piping, etc., either in new, or in very good second hand condition. There was a Gardner-Denver air powered mine pump.

Observations on Safety precautions will in contrast to most other machine installations at the mine, those in the mill tended to be simplified. Guards for belt driven equipment were notably absent and in one case the jagged end of a line shaft stuck out into the mainay at head level. More serious, however, was the engine installation. This was adequately vented, but the vent pipe ran down from the engine to the ground level which it followed to the
outside of the building, passing at the bottom of steps leading from the above mentioned manway with the protruding linsmait. The possibilities of spilling a can of gasoline on this exhaust pipe are very real, especially as the service door to the mill is so situated that all fuel must be brought down these steps.

The operator of the hoist for transferring ore to the mill ore bin was essentially no view of the car and mucker at the headframe ore bin, (Picture 7) and there is no signal system to guide him. A man could very well be caught in front of the car and seriously squeezed. In the event that the hoistman tended drawing the ore bin, as was probably the case considering the small scale of operations to date, it meant leaving an idling hoist. In this connection it obviously is the hoistman's duty to climb to the top of the mill ore bin and empty the car, thus working away from and idling hoist even if a helper was on duty at the lower ore bin.

No provisions have been made for a runaway and an unsuspecting worker coming out of the compressor house would be directly in the path, (Picture 1 & 4).

In fact, a kink in the rails a short distance above the headframe would doubtless derail the car and throw it squarely into the forge area of the service shed if the point where it cut loose was above this kink. No platform or screen has been constructed above the main door to the mill (Picture 3) to shield those below from rocks falling from the car, and considering the steepness of the incline and the fact that the car is small and not built up on the downside, a considerable amount of rock probably does fall.

The compressor house, although the engine exhaust here was carried to the outside of the building at the time of this examination (Picture 4) through a temporary installation made by the rescue workers, it is believed that this
engine was adequately vented normally, having been damaged during the winter. In fact, it is reported that Mr. Rice had noted this break in the line and had mentioned repairing it at an early date. The fatalities caused by these fumes were due to a combination of negligence and coincidence rather than by a fundamentally thoughtless set up, negligence in that repairs to a known break were put off till 'manana', and coincidence in that for this once the wind blew the fumes back under the building instead of away from it, or that it was so cold that the windows and doors of the compressor house were left shut so that the compressor was forced to suck the fumes back through the only vent hole left, namely that in the floor. However adequately these fumes may have been handled prior to this particular time, an incensurable fire hazard exists in that the gasoline tank for the engine straddles the frame above this exhaust, so that gasoline spilled in filling the tank is likely to pour over the hot exhaust pipe. A fire thus started could be situated within 7 feet of the collar, in a building that is built as a part of the collar of the shaft, actually using one of the collar timbers for a foundation. Picture 9 is a generalized sketch of this compressor-engine setup.

Utility Shed. The very existence of this shed over the only exit from the mine is a major violation of safety principles. It not only would spread any fire started in the compressor house, but it is in itself a potential source of fire. Thus, the forge is normally stationed under one corner of the roof, the far one on the right in picture 5. A gasoline drum is conveniently supported against this roof as seen in
If I

Summary and
Conclusions.

For the most part, buildings were neatly and soundly constructed, and mechanical installations were fundamentally true and substantial. There was a distinct orderliness that reflected a pride in craftsmanship, and whether the equipment was entirely suitable for the job at
hand, from a standpoint of economical operation, or not, its arrangement showed a plan and consideration for future development. However, the imagination and ingeniousness that went into the work was sadly wanting in respect to many safety measures. Some of these, such as lack of belt guards, a net under the overhead transfer, a signal system for the transfer hoistman, etc., while serious enough, may have been scheduled before a larger operating crew was hired.

But many very real fire hazards exist. These are made all the more deadly by the proximity of all buildings to each other by the fact that some of them encompass and are an integral part of the collar, and by virtue of their wooden construction. A fire from any cause, whether from these hazards, an outright accident, or a forest fire, would wreak havoc with all installations as fire fighting equipment was negligible and containers of gasoline were scattered indiscriminately around. The well-being of men underground would be seriously jeopardized in such an event.

Respectfully Submitted

N. S. Wagner