- Pros. # 1--Claim # 8.
  In Bank of road 100 ft. NE of culvert on Pabbit Lake fork of Deer Creek. Sulphides and heavy black Gossan.
- Pros. # 2--Claim #4. 250 ft. SW of Tunnel # 1. Heavy Gossan in abundance with Sulphides.
- Pros. # 3--Claim # 4.
  100 ft. NW of Tunnel # 1. Rock is questionable as to being in place in trail.
- Pros. # 4--Claim # 1.

  Approx. -400 ft. N of Tunnel # 1. Heavy mineralization both in place and scattered, covering an area 80 x 150 ft.
- Pros. # 5--Claim # 10.

  Approx. 550 Ft. NW of Tunnel # 1. Sulphides and Gossan in Location cut for Claim.
- Pros. # 6.

  Pros. # 7.--Claim # 9.

  Approx. 450 ft. SW of Tunnel # 1. Sulphides and Ochre in slope of road.
- Pros. # 8--Claim # 9.
  Approx. 200 ft. W on road from SE cor. of Claim # 9. Ochre and Sulphides.
  - Pros. # 10-Claim # 6.

    Approx. 125 ft. East of Tunnel # 5. ()ld Location site in hard rock formation.
  - Pros. # 11-Claim # 6.
    Approx. 250 ft. East from Tunnel # 5 and on trail.
  - Pros. # 12-Claim # 6.
    Approx. 50 ft. West of point where trail leaves road to go
    to Tunnel # 5. In slope of road.
- Pros. # 13-Claim # 6.
  Approx. 500 ft. West of Tunnel # 5. In road slope. 100 ft.
  East of 2nd Gulch.
- Pros. # 15-Claim # 6.
  Approx. 435 ft. West of Tunnel # 5, in slope of road.
- Pros. # 16-Claim # 6.

  Approx. 430 ft West of Tunnel # 5. In road approx. 2 ft. f from ditch. Seems to be a good vein in hard green-stone dipping vertically. Top has been scraped off by road construction.
- Pros. # 17-Claim # 6.

  Approx. 400 ft. West of tunnel # 5. In slope of road about

  5ft. ip from ditch. Sulphides with quartz stringer adjoining.
- Pros. # 18-Claim # 6.
  Approx. 375 ft. West of Tunnel # 5. Quartz and Sulphides about 8 ft. up from road in slope.
- Pros. # 19-Claim # 6.

  About 7 ft. North of Pros. # 18 and about 2 ft. above ditch.

  Extremely heavy in Sulphides and upon working it we found it to be about three ft. wide, extending doen into road and dipping steenly.

(Continued)

- Pros. # 20-Claim # 6.
  In first creek West of Tunnel # 5. 8 ft. from road. Mineral indication only.
- Pros. # 21-Claim # 6.
  Approx. 300 ft. East of Tunnel # 5. 8 ft. up in slope of road.

CRIB MINERAL RESOURCES FILE 12

RECORD IDENTIFICATION

RECORD NO...... M061742

RECORD TYPE .... X1M

COUNTRY/ORGANIZATION. USGS

NAME AND LOCATION

DEPOSIT NAME..... BABCICK

COUNTRY NAME: UNITED STATES

STATE CODE..... DR

STATE NAME: OREGON

COUNTY JOSEPHINE

COMMODITY INFORMATION

COMMODITIES PRESENT..... CR

EXPLORATION AND DEVELOPMENT

STATUS OF EXPLOR. OR DEV. 8

PRESENT/LAST OPERATOR .... M. A. DELAND

PRODUCTION

YES

SMALL PRODUCTION

ANNUAL PRODUCTION (DRE.COMMOD..CONC..GVERBURD.)

ITEM ACC AMOUNT THOUS. UNITS YEAR GRADE REMARKS

1 DRE ACC .030 TDNS 1917 36% CR203

.030 TONS 36.00 % CR203 (WEIGHTED AVERAGE GRADE) 21 TOTAL

GENERAL REFERENCES

1) THAYER, T. P., 1974, UNPUBL. DATA

CRIB MINERAL RESOURCES FILE 12

RECORD IDENTIFICATION

RECORD NO..... MO61116

RECORD TYPE .... X1M

COUNTRY/ORGANIZATION. USGS

DEPOSIT NO...... DDGMI 100-341A

MAP CODE NO. DE REC ..

REPORTER

UPDATED..... 81 02

BY ..... FERNS, MARK L. (BROOKS, HOWARD C.)

NAME AND LOCATION

DEPOSIT NAME..... BABCOCK COPPER PROSPECT

MINING DISTRICT / AREA/SUBDIST. WALDO

COUNTRY CODE ..... US

COUNTRY NAME: UNITED STATES

STATE CODE..... OR

STATE NAME: OREGON

COUNTY JOSEPHINE

DRAINAGE AREA...... 17100311 PACIFIC NORTHWEST

PHYSIOGRAPHIC PROV. . . . . . . 13 KLAMATH MOUNTAINS

LAND CLASSIFICATION ..... 41

QUAD SCALE QUAD NO DR NAME

1: 62500 DREGON CAVES

LATITUDE LONGITUDE

42-12-11N 123-25-55W

UTM ZDNE ND UTM NORTHING UTM EASTING 4672194.3 464350-0 +10

TWP .... 395 RANGE .... DOW

SECTION. D5

COMMODITY INFORMATION COMMODITIES PRESENT..... CU STATUS OF EXPLOR. OR DEV. 2

DESCRIPTION OF DEPOSIT

DEPOSIT TYPES:
MASSIVE SULFIDE
FORM/SHAPE OF DEPOSIT: LENSES

SIZE/DIRECTIONAL DATA
SIZE OF DEPOSIT..... SMALL

DESCRIPTION OF WORKINGS UNDERGROUND

COMMENTS (DESCRIP. OF WORKINGS):
ABOUT 200 FEET IN ONE ADIT

PRODUCTION
NO PRODUCTION
23.CU, DCCUR

CU

GEDLOGY AND MINERALOGY

AGE OF HOST ROCKS..... PERM-TRI
HOST ROCK TYPES.... METABASALT GREENSTONE

LOCAL GEOLOGY
NAMES/AGE OF FORMATIONS, UNITS, OR ROCK TYPES
1) NAME: APPLEGATE GROUP
AGE: PERM-TRI

GENERAL REFERENCES

1) RAMP, L. AND PETERSON, N.V., 1979, GEDLOGY AND MINERAL RESDURCES OF JOSEPHINE COUNTY, DREGON; DOGMI BULL. 100, 45P

| То:        |                        |                        | Pag<br>Date: | ge <u>1</u><br>4/27/83 | of1                                   |
|------------|------------------------|------------------------|--------------|------------------------|---------------------------------------|
|            | & Ready Timber Co.     | P.O.Box 519            | Date         |                        | 9                                     |
| Cave J     | unction, OR. 97523     |                        | Inv.#        | 810075                 |                                       |
| REPORT OF  | ANALYSIS: (all results | are expressed in ppm o | or as noted) |                        |                                       |
| Sample No: | Co                     |                        |              |                        | · · · · · · · · · · · · · · · · · · · |
|            | * *                    |                        |              | 3                      |                                       |
| 81F-122    | 306                    |                        |              | *                      |                                       |

L. TLE fore

|            |              |                  |               |                  | Page .   | of _ | 1 |
|------------|--------------|------------------|---------------|------------------|----------|------|---|
| To:        |              |                  |               | 1                | Date:6/  | 5/81 |   |
| Rough &    | Ready Timber | Co.              |               | _                |          |      | * |
| P.O.Box    | 519, Cave Ju | nction, OR.      | 97523.        | _                | Inv.# 81 | 0103 |   |
| REPORT OF  | ANALYSIS:    | (all results are | e expressed i | in ppm or as not | ed)      |      |   |
| Sample No: | Au<br>oz/ton | Ag<br>oz/ton     | Со            | Ni               | Cu       | · (  | · |
|            |              |                  |               |                  |          | 4. · |   |
| Claim 15   | BDL          | .158             | 344           | 58.2             | 10.62%   |      |   |

# Assay Office

### MEMORANDUM OF ASSAY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | sion of G |          |        |        |       | O.    |                                               | (             | Res   | 14    |          | "TRANS  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|--------|--------|-------|-------|-----------------------------------------------|---------------|-------|-------|----------|---------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MINER    | S' EXC    | HANE     | E BU   | IILDIN | IG    |       |                                               |               | pu    |       |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 432 WEST | MAIN STR  | EET - QI | JINCY, | CALIFO | RNIA  | 95971 |                                               |               |       |       | · 10     |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •        |           | ME       | МО     | RAN    | IDL   | JM    | OF,                                           | ASS           | AY    |       |          |         |      |
| Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d R. Y   | rauss     | - Pre    | side   | nt     |       |       |                                               |               |       |       | Apr      | . 3,    |      |
| MADE FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ER TON OF |          |        |        | DUPOI | S     | , COP                                         | PER, C        |       | TE    | EAD, OR  |         | T    |
| SAMPLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | GOLD      |          | 1      | SIL    | VER   |       | CDBA                                          | I I           |       |       |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AT       |           | OUNCE    | AT     |        |       | DUNCE | AT                                            | PE            | R LB. | AT    | -        | R LB.   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OZS.     | 100's     | crs.     | OZS.   | 100'8  |       | CTS.  | %                                             |               | CTS.  | %     | -        | CTS.    | *    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |           |          |        | -      |       |       | n . na                                        | = 1           | 5 lb  | s./ T | nn n     |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           | 3/       |        | -      |       |       | 3.00                                          |               |       | 1     | 1        |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |          |        | -      |       |       |                                               |               |       |       |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        | -         |          |        |        |       | -     |                                               |               | _     | -     |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |           | -        | -      |        |       |       |                                               |               | 1     |       | -        |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        | -         | -        | -      | -      |       | -     | -                                             |               | -     |       | <u> </u> |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        | -         | -        | -      |        |       | -     | <u>  `                                   </u> |               | -     | l     | -        |         | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ -      | -         | -        | -      | -      |       | -     | -                                             |               | -     | -     | -        | -       | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        |           | -        | -      | -      |       | -     |                                               |               | -     | -     | -        | -       | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        |           | _        | -      |        |       |       |                                               |               |       |       | -        | -       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _        |           |          |        |        |       | -     |                                               |               | -     | -     | -        |         | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |          |        |        | 1     | 1     | 11                                            |               |       | 11    |          |         | 1    |
| i in in it is a second of the |          |           |          |        |        |       | _     | 1                                             | dill          | 1.    | E.    | MI       | 1/2/    | ,    |
| ASSAY NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |           |          |        |        |       | 8     | Υ                                             | Tar Care Trib | rkt   | WILL  | IAN E.   | MILLER. | ASSA |
| CHARGES \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.110   | Faid J    |          |        |        |       |       |                                               |               | _     |       |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           | C        | HEM    | STRY   | Tou   | ches  | EVERY                                         | THIN          | G     |       |          |         |      |

|        | *       | -    |       |      | -    |      | AVOIR |     | -     | 00   | PER.   |        | -    | EAD, OR | × 1   |    | TAL |
|--------|---------|------|-------|------|------|------|-------|-----|-------|------|--------|--------|------|---------|-------|----|-----|
| BAMPLE | NO.     |      | GOI   |      |      |      |       | VER |       |      |        |        |      |         |       |    |     |
|        |         | OZS. | 100'8 | ER C | UNCE | OZS. | 100'8 | PER | OUNCE | 76 I | 8<br>8 | ER LB. | AT % | PE      | R LB. | 8  | CT  |
|        |         |      |       |      |      |      |       |     |       |      |        |        |      |         |       |    |     |
| laim   | na 15   |      |       |      |      |      |       |     |       | 3.4  |        | 84     |      |         |       | 57 | 12  |
|        |         |      |       |      |      |      |       |     |       |      |        |        |      |         |       |    |     |
|        | 1,      |      |       |      |      |      |       |     |       |      |        |        |      |         |       |    |     |
|        |         |      |       |      |      |      |       |     |       |      |        |        |      |         |       |    |     |
|        |         |      |       |      |      |      |       |     | -     | -    |        |        |      | -       |       |    | _   |
|        |         |      |       |      |      |      |       |     |       |      |        |        |      |         |       |    |     |
|        |         | II   |       |      |      |      |       |     | -     |      |        | -      |      |         |       |    | _   |
|        |         | -    |       |      |      |      |       |     | -     |      |        | -      |      | -       | -     |    | -   |
|        |         |      |       |      |      |      |       |     | -     | -    |        | -      |      | -       |       |    |     |
|        | 4 64 15 |      |       |      |      | -    |       |     |       |      |        | -      | -    |         |       | -  | -   |
|        | 13      | 11   |       | -    |      |      |       |     | -     | -    | 7:     | 11     | 5    | 50      | (1)   |    |     |

## BABCOCK ASSAYS

| Sample : | # | Au<br>oz/t | As<br>ppm | Sb<br>ppm      | Cu<br>ppm | Zn  | Со   | Hg<br>ppb | Pb |
|----------|---|------------|-----------|----------------|-----------|-----|------|-----------|----|
| 118714   |   | -0.001     | -14       | <del>-</del> 5 | 198       | 101 | 66   | 190       | 3  |
| 118715   |   |            | 14        |                | 76        | 17  | 131  | 220       | 3  |
| 118716   |   |            | 17        |                | 53        | 16  | 63   | 340       | 3  |
| 118717   |   |            | -14       | -              | 54        | 21  | 110  | 20        | 2  |
| 118718   |   |            | -14       |                | 40        | 37  | 63   | 85        | 1  |
| 118719   |   |            | -14       |                | 73        | 38  | 119  | 110       | 1  |
| 118720   |   |            | -14       | 1              | 79        | 25  | 50   | 125       | -1 |
| 118721   |   |            | 20        |                | +1500     | 54  | 330  | 105       | -1 |
| 118722   |   |            | 17        |                | 404       | 103 | 74   | 90        | 6  |
| 118723   |   |            | 25        | ł              | +1500     | 51  | .18% | 320       | 3  |
| 118724   |   |            | 25        |                | +1500     | 53  | 820  | 285       | 1  |
| 118725   |   |            | 25        |                | +1500     | 59  | 430  | 115       | 2  |
| 118726   |   |            | 150       | 1              | +1500     | 39  | 570  | 120       | 3  |
| 118727   |   |            | 31        |                | +1500     | 92  | 270  | 95        | 3  |
| 118728   |   |            | 15        |                | 594       | 140 | 37   | 35        | -1 |
| 118729   |   |            | 31        |                | 808       | 43  | 260  | 775       | -1 |
| 118730   |   |            | 15        |                | 93        | 47  | 230  | 35        | -1 |
| 118731   |   |            | 28        |                | 732       | 104 | 41   | 60        | 2  |
| 118732   |   |            | 28        |                | 126       | 18  | 27   | 65        | 3  |
| 118733   |   |            | 15        |                | 296       | 70  | 74   | 130       | 3  |
| 118734   |   |            | 31        |                | 93        | 82  | 65   | 530       | 3  |
| 118735   |   |            | 31        |                | +1500     | 50  | .11% | 270       | 4  |
| 118736   |   |            | 12        |                | 214       | 26  | 79   | 190       | 1  |
| 119000   |   |            | 23        | }              | 155       | 10  | 34   | 110       | 4  |

- 118714 Dump grab meta volcanic frags., massive sulfide frags. and dirt.
- 118715 Silicious, pyritiferous. Magnetite bearing vein from exhalite.
- 118716 Sulfide magnetite qtz. rock from face of adit. (60' long)
- 118717 Qtz. stringers with disseminate sulfide (pyrite) approx. 3-6% sulfide.
- 118718 Qtz. blebs and stringers in a volcanic matrix. Disseminate pyrite cubes up to 1/4".
- 118719 Propylitized volcanics containing hairline veinlets and disseminations of pyrite.
- 118720 Magnetite qtz., some disseminated pyrite. 6"-1' beds interbedded with andesite volcanics.
- 118721 Pyrite-qtz-magnetite exhalite. Minor azurite stain.
- 118722 Massive pyrite, may be minor qtz. in matrix.

- ---

- 118723 Massive pyrite-chalcopyrite. Minor qtz. 2' thick zone.
- 118724 High graded sample. Pyrite-chalcopyrite-magnetite-quartz. Local chalcopyrite veinlets cut magnetite.
- 118725 High grade from massive sulfide lense. Chalcopyrite-magnetite-qtz.
- 118726 Gossan? Spongy qtz. and punky iron oxides, some fairly massive qtz.
- 118727 Tuffacious andesite? Contains abundant disseminated pyrite and pyrite as fracture fillings.
- 118728 Tuffacious andesite? Qtz. phenocrysts? And disseminated pyrite.
- 118729 Thin zone of spongy fe-ox gossen in andesite.
- 118730 2" iron oxide stained zone in andesite. Abundant pyrite molds.
- 118731 Chloritized? Volcanics with pyrite molds and rare disseminate pyrite minor qtz. blebs.
- 118732 Oxidized and leached andesite. Local strong limonite and hematite stain. Abundant pyrite molds and locally diss. pyrite.
- 118733 Chip sample adit rib 80' from portal. Andesite. Abundant diss. pyrite, pyrite stringers, qtz.-pyrite stringers.
- 118734 Chip sample adit rib 40' from portal same as 33
- 118735 Grab from dump of incline, pyrite-qtz.-magnetite, locally some chalcopyrite.

### Page 2

- 118736 From rib of adit 25' from portal, qtz.-pyrite-magnetite.
- Massive sulfide, magnetite-quartz-pyrite, qtz. white; massive some qtz. veinlets, pyrite and magnetite as massive zones and stringers.

Assay Office

A Division of GOMIL CHEMICAL CO. MINERS' EXCHANGE BUILDING

432 WEST MAIN STREET - QUINCY, CALIFORNIA 95971

PHONE: 916-283-2280

CABLE ADDRESS:

"TRANSPHERE"

QUINCY, U.S.A.

### MEMORANDUM OF ASSAY

|             |          |          |      |      |      |         | DUPO  |       |     | PER, O |       |      | AD, OR |                                       | 1        | TAL    |
|-------------|----------|----------|------|------|------|---------|-------|-------|-----|--------|-------|------|--------|---------------------------------------|----------|--------|
| MPLE NO.    |          | GOI      |      |      |      |         | VER   |       |     |        |       |      |        |                                       | -        |        |
|             | AT       | 100'S    | ER O | UNCE | OZS. | 1 100's | PER ( | CTS.  | % I | S PE   | R LB. | AT % |        | R LB.                                 | • 8      | CTE    |
|             | ozs.     | 100 8    | •    | C13, | 028. | 100 8   | -     | Cis.  | 70  | •      | CIS.  | 7/0  | *      | CIS.                                  |          | GII    |
|             |          |          |      | -    |      |         |       |       | 2 0 |        | 0.0   |      | _      | - T                                   | 10       | -      |
|             | -        |          |      |      | -    | -       |       |       | 2.8 |        | 86    |      | -      |                                       | 48       | 16     |
|             | -        |          |      |      | -    | -       |       | -     |     |        |       |      | -      | -                                     |          | -      |
|             |          |          |      |      |      | -       |       |       |     |        |       |      |        |                                       | -        | _      |
|             | 1        |          |      |      |      |         |       |       |     |        |       |      |        | -                                     | _        |        |
|             |          |          |      |      |      | 12      |       |       |     | 2      |       |      |        |                                       |          |        |
|             |          |          |      |      |      |         |       | I I I |     |        |       |      |        |                                       |          |        |
|             |          |          |      |      |      |         |       |       |     |        |       |      |        |                                       |          |        |
| 11.0        |          |          |      |      |      |         |       |       |     |        |       |      |        |                                       |          |        |
|             |          |          |      |      |      |         |       |       |     |        |       |      |        |                                       |          |        |
|             |          |          |      |      |      |         |       |       |     |        |       |      |        | 7                                     |          |        |
|             | -        |          |      |      | _    | -       | ,     |       |     | -      |       |      |        |                                       | -        | _      |
|             | - 11 - 1 |          |      |      |      |         |       |       |     | 76     | 1     | -    | 1111   | /                                     | 11       |        |
| NO          |          | The same | 3    |      | 20   | ,       | 1.    | my    | 6   | Carbbe | ·     | 8 1  | 1/16   | · · · · · · · · · · · · · · · · · · · | ******** | ****** |
| es \$ 15.11 | 3 Pat    | d att    | М    | (    | 1    | 1 11    |       |       |     |        |       | WILL | AM E.  | MILLER.                               | ASSA     | ER.    |

| AREA:     | Babcock | Pros  | ect, | Jose | ephine | County, | Oregon |  |
|-----------|---------|-------|------|------|--------|---------|--------|--|
| COLLECTOR | R:1     | 1. A. | Hepr | )    |        |         |        |  |
| DATE:     |         | June  | 4, 1 | 981  |        |         |        |  |



GEOCHEMICAL SAMPLING

|                  |                      |                           |      |           |     |           | LAB       | . ANALY   | /SIS      | ,  |                                                  |   |
|------------------|----------------------|---------------------------|------|-----------|-----|-----------|-----------|-----------|-----------|----|--------------------------------------------------|---|
| SAMPLE<br>NUMBER | LOCATION             | REMARKS                   | TYPE | Au<br>ppb | Ag  | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | Co<br>ppm |    |                                                  |   |
| 50991            | Claim 6; Adit 3      | Chl sch 5% pyr chip 5'/6" | R    | < 10      | <.4 | 3380      | < 4       | 118       | 286       |    |                                                  |   |
| 60992            | Claim 6; Adit 3      | 90% pyr chip R            |      | 10        | <.4 | 1590      |           | 35        | 1440      |    |                                                  |   |
| 60.993           | Claim 2; Adit 4      | 40% mag, 20% pyr High     |      | s 10      | <.4 | 2500      |           | 34        | 55        | J. |                                                  |   |
| 60994            | Claim 2; Adic 4      | 50% pyr, 40% mag High     |      | < 10      | 5.4 | 3560      |           | 33        | 581       |    |                                                  |   |
| 60995            | Claim 6; Adit 5      | Chl sch 5% pyr chip R     |      | < 10      | 5.4 | 811       |           | 68        | 73        |    |                                                  |   |
| 60996            | Little Joe           | Chl sch 5% pyr chip R     |      | < 10      | <.4 | 58        | < 4       | 89        | 148       |    |                                                  |   |
| 60997            | Claim 8              | 90% mag, 1% pyr chip R    |      | < 10      | <.4 | 100       | < 4       | 70        | 102       |    |                                                  |   |
| 60998            | Claim 15; Prospect 2 | 65% pyr, 25% mag chip R   |      | 30        | <.4 | E8720     |           | 57        | 1680      |    |                                                  | T |
| 60999            | Claim 15             | Qtz, 15% pyr High         |      | 60        | < 4 | 7670      |           | 43        |           |    |                                                  |   |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  |   |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  |   |
|                  |                      |                           |      |           |     |           | -         |           |           |    |                                                  |   |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | T |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  |   |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | 1 |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | 1 |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | 1 |
|                  |                      |                           | -    |           |     |           |           |           |           |    |                                                  | 1 |
|                  |                      |                           |      |           |     |           |           |           |           |    | -                                                | + |
|                  |                      |                           |      |           |     |           |           |           |           |    | <del>                                     </del> | 1 |
|                  |                      |                           |      |           |     |           |           |           |           |    | -                                                | - |
|                  |                      |                           |      |           |     |           |           |           |           | ,  | -                                                | + |
|                  |                      |                           |      |           |     |           |           |           |           |    | -                                                | - |
|                  |                      |                           | -    |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           | -    |           |     |           |           |           |           |    | -                                                | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           |           |    | -                                                | - |
|                  |                      |                           | -    |           |     |           |           |           |           |    | -                                                | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     | -         |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           | •         |    |                                                  | - |
|                  |                      |                           |      | 1.        |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  | - |
|                  |                      |                           |      |           |     |           |           |           |           |    |                                                  |   |

Assay Office

A Division of GOMIL CHEMICAL CO. MINERS' EXCHANGE BUILDING

432 WEST MAIN STREET - QUINCY, CALIFORNIA 95971

PHONE: 916-283-2280

CABLE ADDRESS:

"TRANSPHERE"

### MEMORANDUM OF QUALITATIVE SPECTROGRAPHIC ANALYSIS

Fred R. Krauss, President May 21,

| LESS THAN 0.01% | .01 TO .10% | .10 TO 1.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 TO 10.0%                                                         | MAJOR          |
|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|
| Magnesium-Trace | Zinc .06    | Aluminum .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Copper 2.6                                                           | Carbon, Silica |
| Strentium-Trace | Lead .O2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iron 18.51                                                           |                |
| Nickel- Trace   |             | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L sa                                                                 | 71.91 %        |
|                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lime 1.0                                                             |                |
|                 |             | A 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                |
|                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sportogrephic is n                                                   |                |
| None            |             | District Control of the Control of t | i, for paid, sever of a<br>rend . En y . End<br>in too cataling reco | used براتریک   |
| 2 * 2           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | velue of the above                                                   |                |

ASSAY NO. 5 3683

China

ILLIAM E MILLER, ASSAYER

CHEMISTRY Touches EVERYTHING

Assay Office

A Division of GOMIL CHEMICAL CO. MINERS' EXCHANGE BUILDING

PHONE: 916-283-2280 CABLE ADDRESS: "TRANSPHERE"

### MEMORANDUM OF QUALITATIVE SPECTROGRAPHIC ANALYSIS

| - 10k    |          |             |     | <u> </u>    | •••••• |         | DATE         | Apr. 27.     |                |
|----------|----------|-------------|-----|-------------|--------|---------|--------------|--------------|----------------|
| LESS THA | AN 0.01% | .01 TO .10° |     | .10 TO 1.0° | 7.     | 1.0 TO  | 10.0%        | MAJO         | OR             |
| ASSAY N  | loBabco  | ck No. 3    |     |             |        |         |              |              |                |
| Tungste  | n-Trace  | Lead        | .01 | Sulphur     | .62    | Copper  | 3.2          | Carbon,      | Silic          |
| Magnesi  | um-Trace | Zinc        | .06 | Aluminum    | .51    | Iron    | 8.2          |              | - ·            |
| Barium-  | Trace    | Potassium   | .04 | Sodium      | .42    | Calcium | 1.0          | 85.8         | U %            |
|          |          |             |     | Manganese   | .14    |         |              |              |                |
|          |          |             |     |             |        |         |              |              | and the second |
|          |          |             |     | •           |        | 50      | actor and    | is not recon |                |
| Rare E   | arths    |             |     |             |        | for     | gold, etty   | or platinus  | n,             |
| Nor      |          |             |     |             |        |         |              | orecord the  |                |
|          |          |             |     |             |        | Va      | lue of the a | cove metals  |                |

Page \_\_\_\_1 \_\_\_ of \_\_\_1 Date: \_\_\_\_5/7/81 To: Rough & Ready Timber Co. P.O.Box 519 Cave Junction, OR. 97523.

Inv.# 810082

**REPORT OF ANALYSIS:** (all results are expressed in ppm or as noted)

Co Cu Sample No: oz/ton oz/ton

Little Joe .013 .060 402 86

|                      |                |               | •      |      |        |        |         |
|----------------------|----------------|---------------|--------|------|--------|--------|---------|
| Sample Mark:         | Gold<br>oz/ton | Silver oz/ton | Copper | Zinc | Cobalt | Nickel |         |
| TAB 12               | 027 0011       | 027 (011      | ppm    | ppm  | ppm    | ppm    |         |
| 2648 1120            | -0.001         | 0.03          | 220    | 75   | 35     | 50     |         |
| 49                   | -0.001         | -0.04         | 100    | 75   | , 30   | 35     |         |
| 50                   | -0.001         | 0.05          | 280    | 80   | 30     | 30     |         |
| 51                   | -0.001         | -0.01         | 210    | 295  | . 35   | 40     |         |
| 52                   | -0.001         | -0.01         | 235    | 105  | 30     | 50     |         |
| 53                   | -0.001         | 0.06          | 160    | 110  | 30     | 40     |         |
| 54                   | -0.001         | 0.04          | 160    | 110  | 30     | 40     |         |
| 55 *                 | -0.001         | -0.01         | 120    | 90   | 30     | 45     |         |
| 56                   | -0.001         | 0.09          | 245    | 85 , | 35     | 60     |         |
| 57                   | 0.001          | 0.10          | 110    | 85   | 35     | 40     |         |
| 58                   | -0.001         | -0.01         | 55     | 90   | 40     | 35     |         |
| 59 //80              | -0.001         | 0.12          | 40     | 85   | 45     | 30     |         |
| 60 1180 - 1184.2     | 0.001          | 0.10          | 220    | 25   | 225    | 705    |         |
| 61 1184.2 - 1185     | 0.005          | 0.07          | 0.23%  | . 40 | 375    | 675    |         |
| 62                   | 0.001          | 0.05          | 20     | 25   | 30     | 95     |         |
| 63                   | 0.001          | -0.01         | . 25   | 25   | 35     | 95     |         |
| 64                   | 0.002          | 0.08          | 25     | 30   | 30     | 100    |         |
| 65 1200 - 1202.4     | 0.001          | 0.11          | 100    | 75   | 90     | 355    |         |
| 2666 1202 4 - 1204.4 | -0.001         | 0.03          | 5      | 25   | 30     | 160    |         |
| 3977                 | -0.001         | -0.01         | 520    | 10   | 0.19%  | 10     | , p. s. |
|                      |                |               |        |      |        |        |         |

BABCOCK 1

HUNTER MINING LABORATORY, INC.

| ine           | Station   | IP                | OP    |   | OP | IP   | 0P    | 177<br>IP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55<br>OP | Flower 70 | Receiver in CEAD Cable Length | Comments                              |
|---------------|-----------|-------------------|-------|---|----|------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------------------|---------------------------------------|
| 3.2.          | C+1000 E  | -3                | 1-1.1 |   |    | -2   | +1.0  |           | +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1+4.2    | +30       | 465                           |                                       |
|               | 04900 E   | 1                 | 1-1.2 |   |    |      | 1+1.2 |           | <br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1+5.0    | +25       |                               |                                       |
|               | 0+300 E   |                   | 19    |   |    | - 9  |       |           | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 3.0    | +50       |                               |                                       |
|               | 0 + 700 E |                   | -1.2  |   |    |      | +.7   |           | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +3.5     | + 50      |                               |                                       |
|               | 0+ 600 E  | -2                | 9     |   |    | - 2. | +2.0  |           | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 135       |                               | -                                     |
|               | 0+500 E   | -                 | 1-1.2 |   |    | - 5  | 9     |           | the second secon | -2.4     | +30       |                               |                                       |
|               | CHADOE    | The second second | 1-1.4 |   | 1  | ~2   | 16    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +.5      | 420       |                               |                                       |
| 4             | 0+ 300 E  |                   | 1-1.6 |   |    |      | -1.3  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.2     | +30       | À                             |                                       |
| 1             | C+200E    | -4                | -1.2  |   |    | -6   | 9     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.4     | +400      | •                             | 1                                     |
| - 1           | CHINE     | -6                | -9    |   |    | -5   | -     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +6.0     | +350      |                               |                                       |
| 1             | 0+00 -    |                   | 1-,7  |   |    | -8   |       |           | <br>-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.C     | 4.50 /    | -1.                           |                                       |
|               | O HOU W   |                   | 1-1.0 |   |    | -6   | 41.3  | -         | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +6.8     | +5.5      | -3                            |                                       |
|               | 0+260 W   |                   | 1-1.2 |   |    | -6.5 | _     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +7.0     | 1600      | -5                            |                                       |
| -4            | 0+300 W   |                   | 1-1.9 |   |    | 44   | 71.0  | i         | <br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.0     | +15"      | -8                            | STA 450 151                           |
| 100           | 0+400W    | wil.              | 130   |   |    | +50  | +26   |           | 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +13      | +5~       | 7                             | , , , , , , , , , , , , , , , , , , , |
| - Corporation | 0+50cm    | +55               | 1-28  |   |    | + 55 | +2.3  |           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +14      | -10 /     |                               |                                       |
| U             |           |                   | 1     |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | + HO      |                               |                                       |
|               |           |                   | l     |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 130       |                               |                                       |
| 4             |           |                   |       |   |    |      |       | i         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |
| C             |           |                   | 1     |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |
| 2             |           |                   | 1     |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |
| 0             |           |                   |       |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |
| 2             |           |                   |       | 1 |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               | · i                                   |
| 7             |           |                   |       |   |    |      |       |           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | •                             |                                       |
|               |           |                   | !     |   |    |      |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |
|               |           |                   | 1     |   |    |      |       |           | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |                               | -                                     |
|               |           |                   | 1     |   |    |      |       |           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           |                               |                                       |
|               |           |                   | 1     |   |    |      |       |           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | -                             | 7                                     |
|               |           |                   |       |   |    |      |       |           | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           |                               |                                       |
| `~            |           |                   | 1     |   |    |      | 1     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                               |                                       |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | w (FF IN)       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KTA IN          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 61200 W -24  -7   -24  +3   -24  +3   -55    61200 W -25  -7   -20  +7   -22  +3   -50    21150 W -70   10   -21  +10   -18  +9   -55    0100 W -140 +7 0   -12  +9   -21  +8   -55    0100 W -2  +7  -7   +9   -25  +8    0100 W -2  +7  -7  +9   -25  +8    0100 W -2  +7  -7  +9   -25  +8    0100 W -2  +7  -7  +9   -25  +9    0100 W -2  +7  -7  +9    0100 W -2  +7  -7  +9    0100 W -2  +7  -7  -7  +9    0100 W -2  +7  -7  -7  +9    0100 W -2  +7  -7  -7  -7  -7  -7  -7  -7  -7  -7  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 01200 W -24   -77   -24   +3.5 - 55   -24   +3.5 - 55   -24   +3.5 - 55   -24   +3.5 - 55   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.3 - 50   -22   +3.5 - 55   New York of the control of the contro |                 |
| 20-100 W -20 100 V -21 170 -21 100 -25 -25 NEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 7 0-100 W -110+70 1 -12+90 1 -29 148 2 -55 NEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 7 0865 N -22 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | À               |
| 7 0865 N -22 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 12. 3 . 5 . 5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABIT            |
| 2 0 - 10 - 25 - 27 - 27 - 27 - 27 - 20 140 - 55 Sich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 F 201 L     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| C - 10 1 - 10 1 - 10 - 12 4 5 - 10 + 3.5 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| -16 +3.8 -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 2-1-2 +2 +3 -25 -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| C1 41 8 101-8 1 -101+8 -9 +4.5 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| wow 4 -3 1-12 1 -3 1+7 -3.5 +45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 0 050 0 -151-12 -14 14 3 -13 +21 -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 01450 = -20 -37   -20   +50 -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| (3 02000 ± -13 1-1.0 1 -14 +.9 -11 14.5 -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *               |
| 0+560 2 -20 -11 -21 +5 -21 +40 -42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| 04 600 0 -13 -1-1 1 -13 + 3 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 1 0+650 E -18 1-11 1 -18 4 4 1 -17 135 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| C+ 300 E - 19 - 1.1 - 19 + .7 - 19 = 40 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 2178 2 -19 1-12 1-19 +14 -19 13.8 -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 6- KIN = -171-1.1 -13 +5 -181+4.0 -45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 1 0+100 2 -101-1.2 -19 + 6 -19 + 38 -66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 - 41        |
| 6 + MgC 12 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D               |
| 1 0-4-5 = 1251 test   120 +3.4 -5 \ 10 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D               |

# GEOCHEMICAL SAMPLING

| RESULTS PLOTTED BY:    | MAP:                                  | DATE:       |
|------------------------|---------------------------------------|-------------|
| COLLECTOR: M. BERNARDI | AREA: OPHIOLITE COBACT RECONNAISSANCE | PIET D MAP. |

п SA \$ 9 ny 35 45 4.5 30 135 345 9.5 45 45 405 135 30 25 50 20 0 35 0 9 S ٩ 2 2. 8 7. 2 2 2. 7. 2. 2. 2. VALUES IN PPM EXCEPT WHERE NOTED 77 42 42 2 > 2 > 2> 27 2 > 2 > 2> 7 4 2 > 2 > 2> 2> 22 2 > 2> ЬP < 2 7> 184 244 4 24 4 10 17 2 25 63 29 = 4 22 84 34 12 69 3 13 9 51 31 uZ 790 1215 2.27,1065 1.047.940 775 230 52 12 80 187 42 200 52 40 11.427. 970 164 9 89 σ 181 140 650 780 220 580 310 2800 80 64 910 350 85 38 43 20 310 78 89 85 00 2 Сn !N STREAM TYPE ROIF воск CHLORITIZED GREENSTONE W/5%, SUCIDES GREENSTONE W/MAGNETHE + PYRITE STRANGLY GIZ-VEINED GREENSTONS MASSIVE SULFIDE: 70% PYRITE, 30% QTZ GOSSAHOUS GREENSTONE 11/57. PYRITS MACAIETITE - BEARING MASSIVE SUIFIDE MAGNETITE - REARING MASSIVE SUIFIDE SULFIDES PYRTIC GOSSANOUS GREENSTONE C.G. GREENSTONE W/TR. SULFIDES SILICEOUS MAGNETITE-RICH ROCK HARIZON GREENSTONE IN TR. SUIGIDES GUSSAN + SULGIDE FROM DUMP GOSSAN W/GTZ + NAAGNETITS C.P. - RICH MASSAVE SULFIDE GOSSANOUS GREENSTONE GREENSTONE W/5% DIS. DARK GRAY ARGILLITE CHLORITIZED GREENSTONE RANDOM CHIP - ADIT # REMARKS SILICEOUS MAGNETITE HORIZON MAGNETITE HORIZON MAGNETITE HORIZON GTZ VEIN MATERIAL GOSSAN W/ST. FEOX GREENSTONE MACNETITE GREENSTONE GOSSAN PROSPECT LOCATION = = = 2 = = : : = = = : = = = = = = = = = = = : SUMMER, 1982 BABCOCK =) = : = = = Ξ = = = = = = =| : = = = = = = = = = = = SAMPLE 3298 330B 302B 322B 304B 308B 3238 324B 3268 327B 303 B 318 B 325B 328B 301B 307B 309B 311 B 319B 3208 321B 306B 310 B 3178 305 B 3138 315 B 3148 3168 DATE:

|                  |                         | GEOCHEMICAL SAMPLING               |      |      |        |       |        |      |      |      |      |          |      |          |           |    |    |
|------------------|-------------------------|------------------------------------|------|------|--------|-------|--------|------|------|------|------|----------|------|----------|-----------|----|----|
| OLLECTOR:_       | M. BERNARDI             | RESULTS PLOTTED BY:                |      |      |        |       |        |      |      |      |      |          |      |          |           |    |    |
|                  | IOLITE COBALT RECONNAIS |                                    |      |      |        |       | _      |      |      |      |      |          |      |          |           |    |    |
| TIELD MAP:_      |                         | DATE:                              |      |      |        |       |        |      |      |      |      |          |      |          |           |    |    |
| DATE:S           | UMMER, 1982             |                                    |      |      |        |       |        |      | W    |      |      |          |      |          |           |    |    |
|                  | 1                       |                                    |      | TY   | PE     | VALUE | S IN P | +M E | ACE. | 21 ( | HEK  | <u> </u> | 016. | <u> </u> |           |    | _  |
| SAMPLE<br>NUMBER | LOCATION                | REMARKS                            | ROCK | SOIL | STREAM |       |        | -    | N:   | Cu   | ပ္ပ  | Zn       | Pb   | γ¢       | (d4q)<br> | As | Ho |
| 331B             | BARCOCK PROSPECT        | GOSSANOUS GREENSTONE FROM PROSPECT | x    |      |        |       |        |      |      | 57   | 73   | 30       | <2   | . 2      | 45        |    |    |
| 332B             | 11 11                   | GOSSANOUS GREENSTONE FROM DUMP     | Y    |      |        |       |        |      |      |      | 116  |          |      |          |           |    |    |
| 333 B            | 11 11                   | GOSSAN FROM SMALL PROSPECT PIT     | ×    |      |        |       |        |      |      | 96   |      |          | <2   |          |           |    |    |
| 334B             | u u                     | QTZ-MAGNETITE GOSSAN FROM DUMP     | ×    |      |        |       |        |      |      | 51   |      |          | 42   |          |           |    |    |
| 335 B            |                         | 11 11 11                           | x    |      |        |       |        |      |      |      | 46   |          |      |          |           |    |    |
| 336B             | 11 11                   | PURITIC MASSIUB SULFIDE FROM DUMP  | ×    |      |        |       |        |      |      |      | 116  |          |      |          |           |    |    |
| 337B             | 11                      | SERP. GREENSTONE W/MASSING SULFIDE |      |      |        |       |        | 8.   |      | 4600 | 396  | 30       | 42   | ·z       | 15        |    |    |
| 338 B            | 11 14                   | MAGNOTITE GOSSAN                   | x    |      |        |       |        |      |      |      | 1365 |          |      |          |           |    |    |
| 339 A            | t) it                   | PYRITE-RICH MASSIVE SULFIDE        | х    |      |        |       |        |      |      |      | 82   |          |      |          | 15        |    |    |
| 340B             | 11 11                   | PYRITIC GREENSTONE                 | x    |      |        |       |        |      |      | 1 1  | 120  |          |      |          | 10        |    |    |
| 341 B            | STANDARD PROPERTY       | CUOX-STAINED VOLCANIC + VEIN       | x    |      |        |       |        |      |      |      | 77   |          |      |          |           |    |    |
| 342B             | FITZSIMMONS PROSPECT    | FEOX-STAINED MAFIC VOICANIC        | х    |      |        |       |        |      |      |      | 8    |          |      |          |           |    |    |
| 343 R            | BABCOCK PROSPECT        | GREENSTONE                         | X    |      |        |       |        |      |      | 41   | 16   | 22       | <2   | .2       | 5         |    |    |
| 344B             | д п                     | GREENSTONE                         | х    |      |        |       |        |      |      | 9    | -95  | 18       | ۷2   | .2       | 20        |    |    |
| 345B             | 14 11                   | GREENSTUNE - SERPENTINE CONTACT    | x    |      |        |       |        |      |      | 74   | 54   | 25       | 42   | ,2       | <5        |    |    |
| 346B             | n 16                    | GABBEO                             | х    |      |        |       |        |      |      | 13   | 22   | 69       | 42   | .2       | <5        |    | _  |
| 347B             | п п                     | GREENSTONE W/17. PYRME             | х    |      |        |       |        |      |      | 148  | 21   | 24       | 42   | .2       | <5        |    |    |
| 348 B            | . n . n                 | GREENSTONE                         | x    |      |        |       |        |      |      | 945  | 22   | 20       | 42   | . 2      | < 5       |    |    |
| 3498             | n n                     | CHLORITZED VOLCANIC                | х    |      |        |       |        |      |      | 77   | 35   | 74       | <2   | . 2      | < 5       |    |    |
| 350B             | 11 11                   | MASSIVE QUARTZ VEINS               | χ    |      |        |       |        |      |      | 17   | 2    | 2        | <2   | .2       | < 5       |    |    |
| 351 B            | 0 0                     | SILICEOUS GREENSTONE               | х    |      |        |       |        |      |      | 48   | 23   | 42       | <2   | .2       | < 5       |    |    |
| 352B             | n u                     | atz-VEINED GREENSTINE              | X    |      |        |       |        |      |      | 44   | 28   | 50       | 42   | .2       | <5        |    |    |
| 353B             | n n                     | SILICEOUS GOSSAN                   | х    |      |        |       |        |      |      | 254  | ш    | 12       | 2    | .2       | 5         |    |    |
| 354B             |                         | GOSSAN FROM ADIT                   | X    |      |        |       |        |      |      | 1875 | 59   | 32       | 4    | 1.1      | 55        |    |    |
| 355B             | 11 11                   | atz-SERICHE GOSSAN                 | х    |      |        |       |        |      |      | 309  | 45   | 77       | 5    | .z       | 30        |    |    |
| 354B             | n at                    | QTZ-SERICITE GOSSAN                | X    | · ·  |        |       |        |      |      | 347  | 7    | 6        | 3    | . 2      | 70        |    |    |
| 357B             | 15 B                    | GREENSTONE                         | х    |      |        |       |        |      |      | 72   | 29   | 55       | 2    |          | <5        |    |    |
| 3581             | ii n                    | SILICEOUS GREENSTONE               | X    |      |        |       |        |      |      | 47   | 26   | 46       | 42   | .2       | < 5       |    |    |
| 3500             | 11 13                   | MASSIUM SINE WILLDY DY MAS         | V    |      |        | 1     |        |      |      | 1047 | 795  | 42       | . 4  | 9        | 110       |    |    |

GOSSANOUS GREENSTONE FROM WINZE

### GEOCHEMICAL SAMPLING

| OLLECTOR:        | M. BERNARDI                | RESULTS PLOTTED BY:                  |      |      |        |       |       |     |       |       |         |      |     |     |            |    |    |
|------------------|----------------------------|--------------------------------------|------|------|--------|-------|-------|-----|-------|-------|---------|------|-----|-----|------------|----|----|
|                  | IOLITE COBALT RECONNAISSAN | NCE MAP:                             |      |      |        |       |       |     |       |       |         |      |     |     |            |    |    |
|                  |                            | DATE:                                | -    |      |        |       |       |     |       |       |         |      |     |     |            |    |    |
| ATE:             | UMMER, 1982                |                                      |      |      | ,      | /A11# | FS IN | PPM | EX.E  | DT L  | HER     | F 11 | OTE | D   |            |    |    |
|                  |                            |                                      |      | TY   | PE     | 1     | •     |     |       |       | · III G |      |     |     |            |    |    |
| SAMPLE<br>NUMBER | LOCATION                   | REMARKS                              | ROCK | SOIL | STREAM |       |       |     | N. S. | Cu    | ဝ       | Zu   | Pb  | ΛE  | (dqq)<br>- | As | Ho |
| 361 B            | BABCOCK PROSPECT           | GREENSTANE                           | X    |      |        |       |       |     |       | 425   | 35      | 54   | Z   |     |            |    | _  |
| 362B             | u u                        | QTZ-MAGNETITE GOSSAN                 | ×    |      |        |       |       |     |       | 135   | 79      | 26   | 5   | . 2 | 50         |    |    |
| 363B             | u n                        | atz- Rich Gossan                     | χ    |      |        |       |       |     |       | 164   |         | 9    |     |     | 25         |    |    |
| 364B             | 13                         | n n                                  | х    |      |        |       |       |     |       | 117   | 13      | 17   | <2  |     |            |    |    |
| 345 B            | n n                        | QT2-MAGNETITE CHIP AT PORTAL         | х    |      |        |       |       |     |       |       | 83      |      |     |     |            |    |    |
| 3668             | jt. 11.                    | GOSSAN + GREENSTONB 5'CHIP           | X    |      |        |       |       |     |       | 1     |         |      |     |     | 45         |    |    |
| 367B             | 11 12                      | GOSSAN + GREENSTONE S' CHIP          | Х    |      |        |       |       |     |       |       | 35      |      |     |     |            |    |    |
| 368B             | at u                       | GREENSTONE 5' CHIP                   | Х    |      |        |       |       |     |       |       | 135     |      |     |     |            |    |    |
| 369 B            | 11 11                      | GREENSTONE                           | x    |      |        |       |       |     |       | II .  | 32      |      |     |     |            |    |    |
| 3708             | SIX MILE CREEK AREA        | CUOX-STAINED SERPENTINITE            | х    |      |        |       |       |     |       | 1.847 | 246     | 38   | 5   | .6  | 10         |    |    |
| 3718             | SIX MILE CREEK             | SERPENTINITE                         | x    |      |        |       |       |     |       | 102   | 37      | 26   | 42  | .2  | 45         |    |    |
| 400B             | BABCOCK PROSPECT           | GREENSTONE                           | X    |      |        |       |       |     |       | 380   | 30      | 58   | <2  | .2  | 10         |    |    |
| 401B             | к в                        | 11.                                  | х    |      |        |       |       |     |       | 82    | 26      | 66   | <2  | .2  | <5         |    |    |
| 402B             | п                          | GOSSANDUS GREBNISTONB W/TR. SULFIDES | x    |      |        |       |       |     | 1     |       | 24      |      |     |     | <5         |    |    |
| 403B             | 11 0                       | SILICEOUS GOSSAN                     | х    |      |        |       |       |     |       | 320   | 151     | 28   | <2  | .2  | 280        |    |    |
| 4048             | h n                        | MASSING ATZ GOSSAN                   | x    |      |        |       |       |     |       | 470   | 4       | 9    | <2  | .z  | 5          |    | -  |
| 405B             | n o                        | ATZ GOSSAN                           | х    |      |        |       |       |     |       | 230   | 96      | 14   | <2  | .2  | 30         |    |    |
| 406B             | . II M                     | GRBENSTAND                           | х    |      |        |       |       |     |       | 60    | 34      | 24   | < 2 | .2  | <5         |    |    |
| 500B             | ts ji                      | GREENSTONE W/TR. SULFIDES            | х    |      |        |       |       |     |       | 113   | 45      | 60   | <2  | . 2 | < 5        |    |    |
| 501B             | 4)                         | OTZ-PYRITE COSSAN                    | x    |      |        |       |       |     |       | 4800  | 495     | 17   | <2  | . 2 | 20         |    |    |
| 502B             | 44 43                      | GTZ-MAGNETHS-PYRITE GOSSAN           | x    |      |        |       |       |     |       |       | 125     |      |     | .6  | 70         |    |    |
| 503B             | 41, 10                     | ATZ-SERICITE GOSSAN                  | х    |      |        |       |       |     |       |       | 19      |      | -   | .z  | 15         |    |    |
| 504B             | āl el                      | GREENSTONE WITE SULFIDES             | X    |      |        |       |       |     |       |       | 26      |      | 1   | .2  | < 5        |    |    |
| 505B             | u µ                        | SILICIFIED GREENSHONE WITE, SULFIDES | ×    |      |        |       |       |     |       |       | 28      |      |     |     | < 5        |    |    |
| 5068             |                            | GIZ-MAGNETITE HORIZIN W/TR. PYRITE   | х    |      |        |       |       |     |       | 280   | 114     | 64   | 42  | .z  | . 15       |    |    |
| 507 R            | SEIAD CREEK EAST FORK, CA  | QTZ-SERICITE SCHIST                  | х    |      |        |       |       |     |       | 91    |         | 35   | 42  | .2  | 25         |    |    |
| 508B             | DIXIE CREEK                | PORPHYRITIC BASALT                   | х    |      |        |       |       | 3   |       | 47    |         | 12   | 2   | ٠2  | <5         |    |    |
| 509B             |                            | BLEACHED VEIN FROM ADIT ENTRANCE     | x    |      |        |       |       | 4   |       | 9310  | 164     | 395  | 4   | 11  | 225        |    |    |
| 5108             | STANDARD MINE              | ALTERED ANDESITE DIKE                | x    |      |        |       |       |     |       |       |         |      |     |     |            |    |    |
| 511B             | en st                      | MIN. PORPHYRITIC BASALT              | X    |      |        |       |       | 2   |       | 6840  | 40      | 114  | 2   | ,2  | 40         |    |    |
|                  |                            |                                      |      |      |        |       |       |     |       |       |         |      |     |     |            |    |    |

Just at the present time the principle topic of discussion in mining circles is the Copper seams and Copper fields of Valdo. V.A. Whimple of the Whipple Copper mines arrived in the City last night bringing with him a bag of ore samples from his property. Much of the ore is one-third Copper while all of it contains from 12 to 30 percent of this metal. Other samples of ore are on exhibition from the newly discovered field on Little Crayback. This rock too is of fine quality, and the ledges from which it is taken are outstanding in their immensity. Claims are rapidly being staked and development will proceed. Little Grayback, which has hitherto been naught but a primeval forest to which the scattered hunters and campers infrequently visited in search of game, is destined to become the richest Copper field of the Facific Coast.

### August 29--1901 ---- Copper on Grayback

The recent Copper strike on Little Grayback by Babcock and Kitterman, bids fair to prove itself among the most important yet inside the County. According to reports, the newly discovered lode consists of twelve parralel ledges cutting diagonally through Little Grayback. Each ledge being from 100 feet to 3000 feet apart. (Note: I think this was a typographical error. I think they meant 300 feet). Some of these ledges are of exceptional proportions, being several hundred feet in width, with outcroppings appearing on both sides of the mountain. From these various ledges ore has been removed and assayed. The returns show a presence of from 10 to 18 percent Copper which is a most remarkable showing to be found at the surface.

### Grayback Copper District in the Illinois Valley--1901

In the range of mountains across from Maldo, a new Copper District has been discovered and is being opened. The district is located four or five miles South of the old town of Lerby, and directly in the Sucker and Alt-'house Districts, where Gold was first discovered in Oregon. Here has been found two parallel belts of Serpentine, running almost due East and West. North of these belts of Serpentine, the summit of the hills show much Limestone and Shale, while South of them, huge porphoritic rocks and Diorite, black with Iron and rusted by the rains of several countless ages, crop out and rise to a height of several feet in many instances. These outcrops are Copper Gossan and show the existence of huge ledges of Copper beneath. These ledges run North and South, extending from the low range of hills South of Kerby, in the Grayback range of mountains in the North slope of the Siskiyous.

Several mines but recently discovered in this District are meeting with great success in their development. A number of tunnels have been driven and shafts sunk from them, in all of which good Copper values are found. Gold is also carried in quantity. In fact, many of the outcroppings assayed as high as \$120 per ton in Copper and Gold. It would be mere guess work to give the width of the great ledges of this District, but it is known that they underlie the whole outcropping of the Gossan and are practically one huge vein of several hundred feet in width.

The District is an entirely new one in the matter of systematic and extensive development, but it has the appearance of assuring a permanent and important mining District. It is very exceptional that ore running as high in Copper and Gold is found near the surface, as it is here, for it is a well known fact to all Copper miners that Copper will almost entirely leach out, where under the influence of water and the oxidation of the atmosphere.

The formations of the entire District are most favorable for permanent Copper ledges, being Diorite, Porphyry, and Quartzite, the whole course of the belt.

(Continued)

The situation of this belt is all that could be desired, as one can drive a buggy to the foot of the hills and to within a few hundred vards of the workings. At the foot of the hill are fertile valleys watered by Bear and Sucker Creeks and other streams, from which water and power can be derived for nine or more months in the year. There is an abundance of Sugar Pine over all parts of the District to supply timbers for the tunnels and stopes.

### Grayback Copper--- 1901

At the recently discovered Copper mines on Little Grayback, Josephine County, there is much activity. Nearly everything has been taken up, representing 50 claims. The greater part are being developed as fast as is possible. In some of the older claims, tunnels have been run to a depth of 50 and 75 feet or opened up by shafts to this depth. The ledges exposed show widths rangeing from 10 to 150 feet, carrying Copper values of 11 to 30 percent.

### Copper mine on Little Grayback--1905

Some very handsome specimens of Copper ore were received at the mining exhibit this week from the Little Grayback Copper Mines owned by W.L. Babcock of Althouse, and located on Grayback mountain near the headwaters of Deer Creek.

The ore carries Copper at the rate of  $17\frac{1}{2}$  per cent and \$3per ton in Gold. The ledge shows a width of 15 feet and upwards. The property is under development and has the most favorable indications for becoming a valuable and productive mine when fully opened up and equipped.

PROJECT NAME:

BABCOCK

OWNER(S):

FORMERLY: MERIDIAN MINERALS CO (LESSEE, OPERATOR)

METAL(S):

COPPER GOLD SILVER COBALT

EXPL. STATUS:

EXPLORATION

ACTIVITY STATUS: INACTIVE

(PAST PRODUCER)

MINESEARCH #:

058228

MOST RECENT SOURCE: NOVEMBER 1985

LOCATION

STATE:

OREGON

COUNTY:

JOSEPHINE

TOWN:

KERBY

LONGITUDE:

123.23.46

LATITUDE:

42.14.10

THE PROPERTY IS IN SEC 5 AND 8, T39S, R6W IN JOSEPHINE COUNTY.

### GENERAL COMMENTS

MERIDIAN EXPLORED THE PROPERTY UNTIL THE END OF 1984, AT WHICH TIME THE LEASE WAS TERMINATED. (PC 11/85)

### WORK HISTORY

1980'S: SEVERAL COMPANIES INVESTIGATED THIS PROSPECT.

1984: MERIDIAN CONDUCTED AN EXPLORATION PROGRAM ON A VOLCANOGENIC MASSIVE SULFIDE DEPOSIT. (OG 4/85)

MERIDIAN PUT DOWN FOUR DD HOLES. THE LEASE WAS TERMINATED THEREAFTER. (PC 11/85)

### COMPANY INFORMATION

Meridian Minerals Co N. 6619 Cedar Rd Spokane, WA 99208 (509) 455-7224

BIBLIOGRAPHY

MILS SEQUENCE # 0410330688 Oregon Geology 4/85

Personal conversation 11/85

BABCOCK PROSPECT

JOSEPHINE COUNTY, OREGON

by

Mitchell L. Bernardi

# CONTENTS

|                                               |          |         |         | PAGE |
|-----------------------------------------------|----------|---------|---------|------|
| Summary                                       |          |         |         | 1    |
| Location and ownership                        |          |         |         | 2    |
| History and development                       |          |         |         | -2   |
| General geology                               | . ,      |         |         | 5    |
| Detailed geology of the prospect              |          |         |         | 5    |
| Geochemical results                           |          |         |         | 11   |
| Rock sampling                                 |          |         |         | 11   |
| Regional soil-sampling survey                 |          |         |         | 12   |
| Ground magnetometer survey                    |          |         |         | 15   |
| Conclusions and recommendations               |          |         |         | 16   |
| Bibliography                                  |          |         |         | 17   |
| Appendix A. Descriptions and analyses of rock | samples  | taken   | at      | - "  |
| the Babcock prospect                          |          |         |         | A-1  |
| Appendix B. Analyses of soil samples taken at | the Babo | cock pr | rospect | B-1  |

## ILLUSTRATIONS

|   | FIGURE |                                                         |   | PAGE      |   |
|---|--------|---------------------------------------------------------|---|-----------|---|
|   | 1,     | Location map and general roadside geology - Babcock     |   |           |   |
|   |        | prospect                                                |   | 3         |   |
|   | 2.     | Claim and land status map - Babcock prospect            | • | 4         |   |
|   | 3.     | Babcock prospect location and its relationship to the   |   |           |   |
|   |        | general geology of the Klamath Mountain Range           | ٠ | . б       |   |
|   | 4.     | Adit no. 5 geology                                      | • | 10        |   |
|   |        |                                                         |   |           |   |
|   | TABLE  |                                                         |   |           |   |
| ė | 1.     | Whole-rock geochemistry of metapillow basalt and green- |   |           |   |
|   |        | stone host rock, Babcock prospect, southwestern Oregon. | ٠ | 13        |   |
|   |        |                                                         |   |           |   |
|   | PLATE  |                                                         |   | all plate | 8 |
|   | 1.     | Babcock prospect - detailed geology- outcrop areas      |   | in pocket |   |
|   | 2      | Babcock prospect - rock geochemistry overlay            |   |           |   |
|   | 3.     | Babcock prospect - soil geochemistry overlay - Cu       |   |           |   |
|   | 4.     | Babcock prospect - soil geochemistry overlay - Zn       |   |           |   |
|   | 5.     | Babcock prospect - soil geochemistry overlay - Co       |   |           |   |
|   | 6.     | Babcock prospect - soil geochemistry overlay - Ni       |   |           |   |
|   | 7.     | Babcock prospect - soil geochemistry overlay - Au       |   |           |   |
|   | 8.     | Babcock prospect - soil geochemistry overlay - Ag       |   |           |   |
|   | 9.     | Ground magnetometer survey line and station locations   |   |           |   |
|   | 10.    | Ground magnetometer survey profiles - lines LO thru L3W |   |           |   |
|   |        | and lines LBO through LB2W                              |   |           |   |

### SUMMARY

Of the 15 properties evaluated during the 1982 Klamath Mountains ophiolite cobalt reconnaissance program, the Babcock prospect was determined
to have the best potential for cobalt-bearing Cyprus-type massive sulfide
mineralization similar to that found at Noranda's Turner-Albright deposit,
the premier cobalt-bearing Cyprus-type deposit in the Klamaths. The Turner-Albright serves as the model for this type of mineralization in the
region. At the Babcock, cobalt values to 0.14% were found where they
occur in magnetite-pyrite-chalcopyrite-bearing material mostly associated
with beds and lenses of siliceous magnetite rock. In addition to this
cobalt-bearing material, three cupreous gossans of sizeable extent occur
at the prospect. Host rocks are ophiolitic greenstone and metapillow
basalt of the Applegate Group of Late Triassic age.

Results of detailed geologic and geochemical work on the Babcock indicate an excellent potential for Cyprus-type yolcanogenic sulfide mineralization at it. Favorable host rocks, structure, and geochemistry are all present. In spite of this favorability, the small size of the Cyprus-type deposits in the Klamaths, as exemplified by the Turner-Albright, leaves little potential for this deposit type to yield the 60 million pounds of cobalt wanted by Molycorp management. Consequently, no further work is recommended on the Babcock.

### LOCATION AND OWNERSHIP

The Babcock prospect is located in secs. 5, 6, 7, and 8, T38S, R6W, Willamette Meridian, Josephine County, Oregon (Fig. 1). This area is approximately 10 miles east of Cave Junction, Oregon and contains Little Grayback Peak and the headwaters region of the Deer Creek South Fork. The property is owned on an equal partnership basis by the local lumber magnate Fred Krauss of Selma, Oregon and Glenn Young of Kerby, Oregon.. Currently, their property holdings comprise 14 unpatented lode claims which were originally staked by Mr. Young in 1955 and are on both BLM and Siskiyou National Forest land (Fig. 2).

The property is reached from Grants Pass, Oregon by traveling 28 miles south on U. S. Highway 199 (Redwood Highway) to Selma, Oregon and thence heading east approximately 17 miles up the Deer Creek-Deer Creek South Fork road. From this point, the upper part of the property is reached by continuing on this road which skirts around the headwaters of the Deer Creek drainage to the Rabbit Lake-Little Grayback Peak region, whereas the lower part is reached by taking a spur road which crosses Deer Creek and heads south and west into the heart of the project area (Fig. 1).

### HISTORY AND DEVELOPMENT

The Babcock property was submitted to Molycorp in late February, 1982, by Mr. Steve McTimmonds, representative and agent for the property owners. Geochemical data sent to us by Mr. McTimmonds revealed that high-graded samples previously taken at the prospect by the owners contained to 11%. Cu and 0.19% Co. As a result of these encouraging assays, I conducted a reconnaissance over the property on March 15. Assay data generated from this reconnaissance substantiated the owners values, and, as a result, further detailed work was recommended and subsequently carried out. This work, the results of which are contained herein, includes detailed mapping, rock sampling, and a magnetometer survey over the property, as well as a regional soil-sampling survey that covers the area and its general surroundings.

The property was originally worked in the early 1900's for copper and gold by Mr. Babcock, a local prospector who the property is named after. Five adits were driven by the prospector, however production records are unknown. Present development consists of these five adits, two of which are now caved and/or filled with water, three copper prospects on Little Grayback ridge, numerous prospect pits, and a number of bulldozed spur roads (Pl. 1). Most of the adits were driven into heavily iron-stained gossan, with the original discovery adit; adit no. 1 (now caved), reported to be over 600-feet long.

### GENERAL GEOLOGY .

The Babcock prospect lies within greenstone and metapillow basalt of the Applegate Group of Late Triassic age. The Applegate Group is one of the major ophiolitic rock units underlying southwestern Oregon, where it composes the northern half of the Western Paleozoic and Triassic belt, one of four linear west-facing arcuate belts that make up the Klamath Mountain Range (Fig. 3). Within the Klamaths, this belt is one of two which hosts Cyprus-type volcanogenic massive sulfide shows and prospects, of which the Babcock is one.

Volcanic rock types most commonly found composing the Applegate Group include those mentioned above as well as andesite, andesitic tuffs, and flow breccia. In places, these rocks are intruded by abundant diabase and gabbro dikes as is typical of most ophiolite sequences. Metasedimentary rocks in the Applegate Group include argillite, black slaty shale and siltatone, chert, volcanic wacke, quartzite, metaconglomerate, and limestone. Most, if not all, of the above rocks are believed to have formed in a back-arc basin and marginal oceanic crust ophiolitic environment (Churkin and Eberlein, 1977; Irwin and others, 1977).

### DETAILED GEOLOGY OF THE PROSPECT

Prior to this evaluation, no detailed mapping of the Babcock prospect and its immediate surroundings were available. General reference was made to the property by Ramp (1979, Table 1, prospect no. 341a) who described it

as a volcanogenic copper show with massive pyrite layers and lenses in Triassic Applegate Group metapillow basalt and greenstone. Results of our mapping (Pl. 1), which was carried out at a scale of 1" = 500', revealed that the volcanogenic mineralization has indeed occurred in the above rock types, but that additional rock types indicative of an ophiolite sequence as well as critical lithologic and structural relationships concerning the mineralization were present.

The regional structural trend of the prospect area strikes between N60°E and N70°E and dips 35 to 55 degrees to the southeast. Attitudes were difficult to obtain because of the generally massive nature of the basaltic host rock, however they were measured on gossan and capping black shale and argillite southeast of Deer Creek as well as on individual basaltic flow units along the ridgeline southeast of Little Grayback Peak (Pl. 1). The consistency of the structural trend through the project area is remarkable tonsidering the structural complexities that are generally found associated with the mélange of an ophiolite terrain.

The stratigraphy of the project area, based on the succession of lithologies present and when compared with the typical stratigraphy of ophiolites, appears to be upright with the rocks occurring in ascending order to the southeast. Specifically, greenstone and metapillow basalt lie in the northwestern part of the project area and are overlain by phyllite and cherty metaconglomerate to the southeast. This stratigraphy agrees well with that of typical ophiolite complexes as depicted by Hollister (1981) where pillow basalt and greenstone (layer 3) are overlain by an uppermost chert-sedimentary rock sequence (layer 4). Although abundant pillow structures occur on the backside (northwest) of the project area, their orientations were found to be too variable to be useful in determining the tops and bottoms of flows.

A major fault zone was recognized just southeast of and parallel to the Deer Creek drainage where it is occupied by a number of small serpentinite bodies and lenses (Pl. 1). This fault may be of profound importance as it appears to be a boundary separating mineralization and gossan to the northwest from non-mineralized material to the southeast. Although the adjacent Deer Creek drainage was originally speculated to occupy a fault zone, no evidence supporting this conclusion could be found.

The majority of the host metapillow basalt and greenstone is light to dark gray-green, fine to medium grained, and contains trace disseminated pyrite. Much of the host is chloritized and contains epidote with some light quartz veining. Similar to the host pillow basalts at Noranda's Turner-Albright deposit, the Babcock host rocks do not appear to be altered adjacent to mineralized areas and gossan. Contacts between the host and the gossans, and their associated mineralization are sharp. Hyalclastite breccias indicative of autobrecciation of the host flow rocks are associated with two of the gossans at the Babcock, and, as previously mentioned, abundant pillows are present along the backside of the project area (Fig. 1 and Pl. 1). Both the breccia and the pillows are indicative of deposition in a subaqueous environment.

Additional rock types found in the project area, which help complete the ophiolite stratigraphy, include 1) Triassic Applegate Group black slaty shale and argillite, 2) metaconglomerate composed of chert, quartzite, phyllite, and argillite clasts, 3) diorite and gabbro, 4) serpentinite, and 5) the gossan and cobalt-bearing siliceous magnetite rock described below. All of these rocks are conformable with the overall structural trend of the project area (Pl. 1).

Cobalt mineralization at the Babcock is associated with thin beds and lenses of siliceous magnetite-sulfide rock, whereas copper mineralization is mostly associated with three main areas of gossan. For the purposes of this report, these gossans have been designated as the Main, Deer Creek, and Ridge Top gossans (Pl. 1).

The main gossan, which lies just southeast of the Deer Creek drainage, extends for at least 1,000 feet along a N60°E strike and is between 80-

and 150-feet thick. It is roughly lens shaped and appears to be conformable with the enclosing host rocks. Detailed mapping of adit no. 5 (Fig. 4) driven into the gossan reveals disrupted blocks, clots, and stringers of pyritic sulfide material, pyritic greenstone host rock, and gossanous greenstone below the gossan cap. Similar to gossans at the Turner-Albright deposit which are overlain by thin mudstone layers, the Main gossan is overlain by a thin, black argillite unit that probably was laid down during a period of quiescence following the exhalative event producing the mineralization.

In contrast to the Main gossan, both the Deer Creek and Ridge Top gossans are extremely siliceous. Because of this characteristic, it is speculated that each owes its provenance to originally being slightly metal-enriched cherty horizons that were probably partially remobilized during the low-grade greenschist facies metamorphism that affected the entire Applegate Group terrain. Similar to the Main gossan, gossans of this latter type also exist at the Turner-Albright deposit where they underlie semi-massive sulfide mineralization (McAleer, 1982). It is noteworthy that all three of the Babcock gossans are similar in size to those of the Turner-Albright deposit (Pl. 1 and Cunningham, 1979).

Magnetite horizons with the highest cobalt values (to 0.14%) lie stratigraphically below the Main gossan and above the Deer Creek gossan. Most of the magnetite horizons in the project area are slightly siliceous and may contain the sulfides pyrite and chalcopyrite, or be void of them. Where they do contain both sulfide phases, they are enriched in cobalt (more is said regarding this relationship in the Rock Geochemistry section of this report). None of the horizons are greater than 2-feet thick and all appear conformable with the enclosing greenstone host rocks. Except for a 500-foot long cobalt-rich horizon that extends between adits 3 and 4 (Pl. 1), the majority of them rarely exceed 50 feet in length due to their pinch-and-swelled and overall disrupted nature.

### GEOCHEMICAL RESULTS

### Rock Sampling

Eighty rock samples were taken concurrent with the detailed mapping to ascertain the overall geochemical signature of the project area and to try to delineate areas and/or zones of cobalt and massive sulfide mineralization. All samples were collected by either myself or summer hire A. Ambrose and each was analyzed for Cu, Zn, Co, Pb, Ag, and Au by Bondar-Clegg Laboratories, Vancouver, B.C., using atomic absorption methods. Sample assays and locations are presented as Plate 2 of this report and sample descriptions are contained in Appendix A.

As was hoped, the assay data clearly define areas of both cobalt and cupreous volcanogenic sulfide mineralization, the former mostly associated with beds and lenses of siliceous magnetite rock, whereas the latter are mainly tied to areas of surface gossan exposures. Generally speaking, the rock geochemistry data reveal that both the cobalt and volcanogenic sulfide mineralization lies within an approximately 4-mile-wide. N65°E-trending zone that parallels the regional geologic trend of the project area (Pls. 1 and 2). This fact is further substantiated by the results of the soil-sampling survey described in the following section. Furthermore and most important in regard to the cobalt mineralization, the rock assay data verify a relationship observed in the field where magnetite rock containing the mineralogical assemblage magnetite-pyrite-chalcopyrite was thought to contain the highest concentrations of cobalt. Specifically, magnetite horizon samples 303B, 305B, and 338B, all with the above mineralogical assemblage, contained 1065 ppm, 940 ppm, and 1365 ppm Co, respectively, whereas samples 321B and 327B of non-sulfide-bearing siliceous magnetite horizon material contained only 38 ppm and 3 ppm Co, respectively (Appendix A; P1. 2).

Detailed examination of Plate 2 in combination with the geologic map reveals that the Babcock has a geochemical signature that is typical of many Cyprus-type massive sulfide deposits. First, the greatest concentrations

of gold and zinc at the prospect are found in the upper portion of the Main gossan as exemplified by samples 317B and 318B that contain 405 ppb and 135 ppb gold and 184 ppm and 244 ppm Zn, respectively. As pointed out by Large (1977), this crude zonation and upward enrichment of gold and zinc has been documented for many Cyprus-type deposits. Second, the rock geochemistry data indicate a lead- and silver-deficient environment at the Babcock which is normal for cupreous Cyprus-type deposits (Hutchinson, 1973; Large, 1977). Lead and silver values at the prospect do not exceed 16 ppm and 1.1 ppm, respectively. Third, high cobalt values are associated with high copper values over magnetite horizons containing the cobalt-bearing mineralogical association mentioned above, however high concentrations of copper also occur independently of high cobalt over areas underlain by gossan. Finally and as previously mentioned, it is important to note that the greatest cobalt values at the prospect occur in the magnetite horizons just stratigraphically below the Main gossan (Pls. 1 and 2; App. A). This crude zonation of cobalt and magnetite is also found just below the gossans and associated mineralization at the Cyprus-type deposits of the Troodos Complex, Cyprus (Constantinou and Govett, 1973).

Table 1 lists the whole-rock geochemistry of two samples of host meta-pillow basalt and greenstone from the Babcock prospect. Also included in this table for comparison purposes is the whole-rock average chemical composition of 124 spilites as listed in Hyndman (1972). Comparison of the Babcock host rocks with Hyndman's average spilite shows that the former are indeed of spilitic affinity but that they are slightly enriched in Al<sub>2</sub>O<sub>3</sub> and MgO, and slightly depleted in CaO, K<sub>2</sub>O, and TiO<sub>2</sub>. Most important, the Na<sub>2</sub>O contents of the Babcock rocks are typical of spilites which are characteristically enriched in sodium.

### Regional Soil-sampling Survey

The latter part of October was spent conducting a soil-sampling survey over the Babcock property and a 2½-mile-long area along its general northeasterly geologic trend. The sampling was conducted with the hope that the results

TABLE 1. WHOLE-ROCK GEOCHEMISTRY OF METAPILLOW BASALT AND GREENSTONE HOST ROCK, BABCOCK PROSPECT, SOUTHWESTERN OREGON.

| ELEMENT                        | SAMPLE NO.<br>367B | SAMPLE NO.<br>369B | AVERAGE OF 124 SPILITES (FROM HYNDMAN, 1972) |
|--------------------------------|--------------------|--------------------|----------------------------------------------|
|                                |                    | 4                  |                                              |
| S10 <sub>2</sub>               | 50.50              | 50.50              | 48.8                                         |
| TiO <sub>2</sub>               | .80                | 1.00               | 1.3                                          |
| A1 <sub>2</sub> 0 <sub>3</sub> | 17.20              | 17.00              | 15.7                                         |
| Fe <sub>2</sub> 0 <sub>3</sub> | 3.45               | 5.70               | 3.8                                          |
| FeO                            | 7.20               | 6.05               | 6.6                                          |
| Mn0                            | .18                | .19                | .15                                          |
| Mg0                            | 7.50               |                    | 6.1                                          |
| CaO                            | 5.30               | 4.50               | 7.1                                          |
| Na <sub>2</sub> 0              | 3.50               | 4.60               | 4.4                                          |
| K <sub>2</sub> 0               | <.10               | <.10               | 1.0                                          |
| P <sub>2</sub> O <sub>5</sub>  |                    |                    |                                              |
| TOTAL                          | 95.73              | 96.54              | 95.29                                        |

<sup>--:</sup> not analyzed for

might reveal areas of copper and zinc anomalism similar to those found at and along the trend of Noranda's Turner-Albright deposit. Seven lines were run in the general area of the Babcock with lines trending N25°W, normal to the overall structural grain of the region, and ranging from 3,500 to 5,400 feet in length. A total of 181 samples were taken by myself and D. Antrim with spacing of 100 feet or 200 feet used depending on topography and location of the lines. All of the samples were sent to Bondar-Clegg Labs, Vancouver, B. C., and analyzed for Cu, Zn, Co, Ni, Au, and Ag by atomic absorption methods. Line and sample locations as well as individual overlay sheets for each element are presented as Plates 3 through 8 of this report.

Examination of the overlays in combination with the geologic map reveals the following: 1) anomalous copper values to 5,500 ppm overlie the copper prospects on Little Grayback ridge and the Main gossan area; 2) slightly anomalous cobalt values to 211 ppm occur over areas underlain by serpentinite (as would be expected) and the area at and downslope from the Ridge fop gossan; 3) zinc anomalism to 318 ppm occurs near areas underlain by gossan and in two additional areas that are unexplained; 4) slightly anomalous silver values of 0.6 ppm and 0.4 ppm are in soils overlying the Main gossan; 5) anomalous gold values to 490 ppb overlie the upper part of the Main gossan and correlate well with the locations of the previously mentioned rock samples that are anomalous in gold; 6) an unexplained gold anomaly of 285 ppb occurs on L4; and 7) anomalous nickel values to 2400 ppm are exclusively associated with areas underlain by serpentinite.

In summary, anomalous copper, gold, and some cobalt and zinc values exist mostly at or near areas underlain by gossan. Although the soil survey detected two new areas of zinc anomalism, it did not detect any additional areas of cobalt or copper anomalism that were not discovered during the mapping and rock sampling. It should be mentioned that anomalous concentrations of the above four elements would be expected to and do occur in a Cyprus-type volcanogenic massive sulfide system.

#### GROUND MAGNETOMETER SURVEY

Because of the occurrence of the cobalt at the Babcock with the magnetite-sulfide rock, a ground magnetometer survey was carried out in an attempt to delineate the zone containing this material and the size and extent of the individual horizons and bodies. The survey was conducted by Molycorp geophysicist C. Campbell and summer hire A. Ambrose during the first half of July. The data were corrected for diurnal variation utilizing short loops of four hours or less and are of good quality as evidenced by its reproducibility. Seven lines were run on a N25°W azimuth, perpendicular to the regional geologic trend, in order to obtain maximum cross-sectional information. Readings were taken every 100 feet with line spacing of 100 feet. Survey line and station locations are presented as Plate 9 of this report and the profiles are presented as Plate 10.

Results of the survey showed that in nearly all instances, there is little character except for a few single point anomalies which represent very small localized distortions of the total magnetic field (Pl. 10). These anomalies were not found to be consistent enough to be utilized in tracing the geologically favorable magnetite horizons. Because it was found that the magnetite occurs in thin beds and lenses generally less than two feet thick, it was concluded that the survey would require very tight station spacing (5 to 15 feet) in order to map the surface trace of the material.

Accordingly and subsequent to the above survey, one of the most favorable magnetite horizons that lies between adit nos. 3 and 4 and contains cobalt values to 0.14% was essentially "mapped" by magnetometer along its strike to check for continuity and extent. The horizon could be traced approximately 400 feet before it was no longer detected. Additional magnetite horizons and the magnetite-chalcopyrite prospects on the Little Grayback Peak ridgeline were also checked but showed only between 10 and 50 feet of strike length, thus yielding little potential for extensive cobalt mineralization.

#### CONCLUSIONS AND RECOMMENDATIONS

Although results of this evaluation indicate that the Babcock has an excellent potential for hosting cobalt-bearing Cyprus-type mineralization, its lack of potential in attaining any great size requires that no further work be done on it. This conclusion is based on the geologic similarity of the Babcock with Noranda's Turner-Albright deposit, which contains only just over 5 million tons of ore with about 3 million pounds of cobalt (McAleer, 1982). Potential concentrations of cobalt on this order of magnitude are far below Molycorp's goal of finding 60 million pounds of cobalt in any one geographical area.

#### BIBLIOGRAPHY

- Churkin, Michael, Jr., and Eberlein, G.D., 1977, Ancient borderland terranes of the North American cordillera: Correlation and microplate tectonics: Geological Society of America Bulletin, v. 88, p. 769-786.
- Constantinou, G., and Govett, G.J.S., 1973, Geology, geochemistry, and genesis of Cyprus sulfide deposits: Economic Geology, v. 68, p. 843-858.
- Cunningham, C.T., 1979, Geology and geochemistry of a massive sulfide deposit and associated volcanic rocks, Blue Creek district, Southwestern Oregon (M.S. thesis): Corvallis, Oregon State University, 165 p.
- Hollister, V.F., 1981, Relationship of sulfide mineralization to ophiolite complexes in North America: Mining Engineering, v. 33, no. 4, p. 421-424.
- Hutchinson, R.W., 1973, Volcanogenic sulfide deposits and their metallogenic significance: Economic Geology, v. 68, p. 1223-1246.
- Hyndman, D.W., 1972, Petrology of igneous and metamorphic rocks: New York, McGraw-Hill, 533 p.
- Irwin, W.P., Jones, D.L., and Pessagno, E.A., Jr., 1977, Significance of Mesozoic radiolarians from the pre-Nevadan rocks of the southern Klamath Mountains, California: Geology, v. 5, p. 557-562.
- Large, R.P., 1977, Chemical evolution and zonation of massive sulfide deposits in volcanic terrains: Economic Geology, v. 72, p. 549-572.
- McAleer, J.F., 1982, Noranda's J.V. proposal on the Turner-Albright property SW Oregon, memo to E.H. Lindsey: Spokane, Molycorp, Inc. regional office, 5 p.
- Ramp, Len, 1979, Geology and mineral resources of Josephine County, Oregon:
  Oregon Department of Geology and Mineral Industries Bulletin 100, 45 p.

## APPENDIX A

DESCRIPTIONS AND ANALYSES OF ROCK SAMPLES TAKEN AT

THE BABCOCK PROSPECT

GEOCHEMICAL SAMPLING

| DLLECTOR: M. BERNARDI                | RESULTS PLOTTED BY: |
|--------------------------------------|---------------------|
| REA: OPHIOLITE COBALT RECONNAISSANCE | MAP:                |
| IELD MAP:                            | DATE:               |

| IELD MAP:_       |            |         |                                      |      |      |        |       |       |      |     |       |                |        |      |     |     |       |    |          |
|------------------|------------|---------|--------------------------------------|------|------|--------|-------|-------|------|-----|-------|----------------|--------|------|-----|-----|-------|----|----------|
| ATE: _Su         | MMER, 1982 |         |                                      |      |      | 1      | / 4 : | r < 1 | N PP | u F | X/e-C | T 1            | AHF    | 26   | N~T | ΕĎ  |       |    |          |
|                  | 1          |         | 1.                                   | T    | T    | PE     | ALU   | 69.1  | N PP |     | 7001  |                | DVIII. | B.Y. |     |     |       |    |          |
| SAMPLE<br>NUMBER | Lo         | CATION  | REMARKS                              | ROCK | SOIL | STREAM |       |       |      |     | ž.    | n <sub>O</sub> | ပ္     | Zn   | 1.6 | AE  | (ppb) | As | Ha       |
| 301B             | BABCOCK P  | ROSPECT | CHORITIZED GREENSTONE W 5% SULIDES   | X    |      |        |       |       |      |     |       | _              |        | 48   | 42  | .2  | 40    |    | _        |
| 302B             | 11         | 11      | NASSIVE SULFIDE: 70% PYRITE, 30% QTZ | x    |      |        | -     |       |      |     |       | 790            | 1215   |      | 62  | . 3 | 35    |    | -        |
| 303B             | 84         | -11     | MAGNETITE - REARING MASSIVE SULFINE  | X    |      |        |       |       |      |     | 1     | 2.27           | 1065   | 42   | <2  | .6  | 75    |    | _        |
| 304B             | 11         | *1      | SILICEOUS MAGNETITE-RICH ROCK        | x    |      |        |       |       |      |     |       | 140            | 61     | 14   | <2  | .3  | 20    |    | _        |
| 305 B            | •1         | 11      | MAGNETITE-BEARING MASSIVE SUIFIDE    | x    |      |        |       |       |      |     |       | 1.049          | 940    | 34   | 16  | .2. | 30    |    | _        |
| 304B             | 48         | 11      | 4 11 11 41                           | X    |      |        |       |       |      | _   | _     | 650            | 775    | 10   | <2  | .2  | 40    |    | -        |
| 3078             | 11         | ,,      | MAGNETITE HORIZON                    | x    |      |        |       |       |      |     |       | 143            | 40     | 17   | 42  | .2  | 45    |    |          |
| 3088             | +8         | н       | VAGNETITE HORIZON                    | x    |      |        |       |       |      |     | _     | 66             | 46     |      | <2  | .2  | <5    |    | -        |
| 309B             |            |         | CZ VEIN MATERIAL                     | X    |      |        | -     | _     |      | -   |       | 12             | 4      | 12   | <2  | ٠2  | <5    |    | -        |
| 310 B            | n ·        |         | GREENSTONE W/5% DIS. SULFIDES        | x    |      |        |       |       |      | _   |       | 80             | 230    | 52   | <2  | . د | 30    |    | -        |
| 311 B            | 84         | 80      | CPY RICH MASSING SULFIDE             | x    |      |        |       |       |      | _   |       | 1427           | 970    | 63   |     | . 8 | 135   |    | <u> </u> |
| 313B             |            | , n     | CELORITIZED GREENSTONE               | x    |      |        |       | _     |      | _   |       | 64             | 27     | 62   | < 2 | . 3 | 395   |    | -        |
| 3148             | 14         | n       | CG. GREENSTONE W/TR. SULFIDES        | x    |      | _      |       |       | _    | _   | -     | 220            | 9      |      | < 2 | .2  | 95    |    | -        |
| 315 B            | 11         | и       | GOSEANOUS GREENSTONS                 | X.   |      |        |       | _     | -    | _   |       | 580            | 6      |      | < 2 | . 2 | 45    |    | -        |
| 316B             | . **       | **      | GOSSAN                               | χ    |      |        |       | _     |      | _   | _     | 310            | 9      |      | <2  | . 2 |       |    | -        |
| 3178             | '41        | 41      | PYRITIC GOSSANDUS GREENSTONE         | х    |      |        |       |       |      | _   |       | 910            | 52     | 184  | <2  | . 2 | 425   |    | -        |
| 3188             | 11         | 41      | GOSTAN W/ST. FOOX                    | x    |      |        |       |       |      | _   |       | 350            | 12     | 244  | 42  | . 3 | 135   |    | -        |
| 3198             | . 11       | 11      | STENGLY GTZ-VEINER GREENSTONE        | x    |      |        |       |       |      | _   |       | 78             | 18     | 44   | <2  | , 2 | 30    |    | _        |
| 3208             | 11         | 41      | DARK GRAY ARGILLITE                  | x    |      |        |       |       |      |     |       | 68             | 13     | 97   | 7   | . 2 | 25    |    | _        |
| 321B             | 11         | 11      | MAGNETITE HORIZON                    | x    |      |        |       |       |      |     |       | 310            | 38     | 10   | <2  | . 2 | 35    |    | _        |
| 322B             | 11         | n       | GREENSTONE W/MAGNETHE + PYRITE       | x    |      |        | 1     |       |      |     |       | 800            | 187    | 22   | <2  | . 2 | 50    |    | _        |
| 3238             | - 11       | ii      | GOSSAN W/QTZ + MAGNETITE             | х    | ~.   |        |       |       |      | _   |       | 780            | 164    | 51   | <2  | . 2 | 10    |    | -        |
| 324B             | 11         |         | GASSAHOUS GREENSTONE IL/ 57" PYRITE  | х    |      | 1      | - 1   |       |      |     |       | 85             | 92     | 84   | 42  | . 2 | 5     |    | _        |
| _325B            | 11         | 11      | GREBNISTONE                          | x    |      |        | -     |       |      |     |       | 85             | 27     | 69   | <2  | . ٤ | 5     |    | -        |
| 324 B            | 61         | 31      | GREENSTONE                           | x    |      |        | 4     |       |      |     | 1     | 59             | 25     | 44   | < 2 | ٤.  | 10    |    |          |
| 327B             | 14         | 11      | SILVENUS MAGNETITE HORIZON           | X    |      |        | 1     |       | - 1  |     |       | 100            | 3      | 9    | <2  | ٠2  | 20    |    | -        |
| 329B             |            | 11      | FRANDOM CHIP - ANIT # 2              | x    |      |        | -     |       |      |     |       | 56             | 181    | 31   | 62  | . 2 | 10    |    | -        |
| 3298             |            | 11      | GUSSAN + SULFIDE FROM DUMP           | x    |      |        | -     |       |      |     |       | 86             | 200    | 13   | (2  |     | < 5   |    | 1        |
| 330B             | 11         | **      | GREENSTONE WITE SULFIDES             | _X_  |      |        | 4.81  | -     |      |     |       | 16             | . 52   | 44   | 42  | . 2 | < 5   |    | _        |

GEOCHEMICAL SAMPLING

COLLECTOR: M. BERNARDI
AREA: OPHIOLITE COBALT RECONNAISSANCE
PIELD MAP:
DATE: SUMMER, 1982

RESULTS PLOTTED BY:
MAP:
DATE:

| DATE: S | SUMMER, 1982          |                                    |      | ×      | VALUES IN PPM EXCEPT WHERE NOTED | LHERE ANOTE!     | 0       | 1   |
|---------|-----------------------|------------------------------------|------|--------|----------------------------------|------------------|---------|-----|
|         |                       |                                    |      | TYPE   |                                  |                  |         | 1   |
| SAMPLE  | LOCATION              | REMARKS                            | носк | STREAM | N!                               | o)               | \$ nv   | 6H  |
| 331B    | BARCOCK PROSPECT      | COSSANDUS GREENSTONE FROM PROSPECT | ×    |        | 57                               | 7 73 30 42       | .2 45   | 1   |
| 3328    |                       | - 1                                | ×    |        | 71                               | 22 16 37 62      | 22 2.   | 1   |
| 3338    | , n ,                 | OM SMA                             | ×    |        | 9                                | 2 8 6 76         | .2 35   | 1   |
| 3348    |                       | GTZ-MACINETITE GOSSAN FROM DUMP    | ×    |        | 5                                | 22 72 01 15      | 5> 2.   | 1   |
| 335 B   | . 10                  | и и и и                            | ×    |        | 9                                | 2> 81 74 19      | S) 2.   | 1   |
| 336B    | 11 11                 | PYRITIC AMASSIVE SUIFIDE FROM DUMP |      |        | 400                              | 27 9 711 00      | 02 2.   | 1   |
| 3378    | " "                   | S. AMASSING S.                     | ×    |        | 4400                             | 00 396 30 42     | 51 2.   | . 1 |
| 338.8   | **                    | TITE GASSAN                        |      |        | 8                                | 940 1365 14 42   | .2 <5   | -1  |
| 339.B   | **                    | PYRITE- PICH MASSIVE SUITIDE       | ×    |        | 71                               | 22 05 28 191     | 51 2.   | 1   |
| 340B    | ***                   |                                    | ×    |        | 7                                | 74 120 44 42     | 01 2    | 1   |
| 341 B   | STANDARD PROPERTY     | CION-STAINED VOICANIC + VEIN       | ×    |        | 1,587                            | 19 77 144 42     | 2.3 345 | ٠,  |
| 342 B   | FITESIMMONIS PROSPECT | FIC VOIC                           | ×    |        |                                  | 110 B 30 <2      | ,2 5    | 1   |
| 3438    | 0                     |                                    | ×    |        | 4                                | 1 16 22 42       | 5 2.    | 1   |
| 344B    |                       | GREENSTONE                         | ×    |        |                                  | 9 45 18 42       | 02 7.   | 1   |
| 345 B   | , 11                  | GRAENSTUNE - SERPENTINE CONTACT    | ×    |        | 7                                | 74 54 25 47      | 2 45    | . 1 |
| 3460    |                       |                                    | ×    |        |                                  | 13 22 69 42      | .2 <5   | 1   |
| 347B    | :                     | GREENSTAND W/19, PYRITE            | ×    |        | 4)                               | 2> 42 12 841     | .2 <5   | . 1 |
| 3468    |                       | GREENSTONIE                        | ×    |        | 4                                | 27 02 22 546     | .2 <5   | 1   |
| 3448    | :                     | CHIORITMED VOICANIC                | ×    |        |                                  | 77 35 74 42      | 5> 2.   | 1   |
| 350B    | :                     | MASSIVE GUARTZ VEINS               | ×    |        |                                  | 2> 2 2 2 1       | 2 45    | 1   |
| 351 B   |                       | V                                  | ×    |        | 4                                | 48 23 42 <2      | 5 > 2.  | ī   |
| 352B    |                       | GTZ- VEINED GREENSTINE             | ×    | r'     | 4                                | 44 28 50 42      | \$> 2.  | î   |
| 3538    |                       | SILICEGUS (SOSSAN                  | ×    |        | 52                               | 2 21 11 45       | 5 2.    | 1   |
| 354B    | :                     |                                    | ×    |        | 1875                             | 25 59 32 4       | 1.1 55  | 1   |
| 355B    | 1                     | ATZ-SERICHE GOSSAN                 | ×    |        | 3                                | 309 45 77 5      | 05 2.   | 1   |
| 35CE    | т п                   | "GTZ - SERICITE GOSSAN             | ×    |        | 3                                | 347 7 6 3        | 02 2.   | Ī   |
| 357B    |                       | GREENSTONS                         | ×    | _      |                                  | 2 55 52 21       | .2 <5   | i   |
| 3588    | :                     | SILICEOUS GREENSTUNE               | ×    |        | T                                | 47 26 46 62      | \$ 2.   | 1   |
| 3548    | •                     | N                                  | ×    |        | 401,                             | 1047, 785, 42, 4 | .9 110  | 1   |

KAP:

REA: OPHIDLITE COBALT RECONNAISSANCE

1982

SUMMER

ATE:

IELD MAP

HERNARDI

SLLECTOR: M

DATE:

PH SA 225 40 280 45 (d49) 20 25 3 45 < 5 45 0 45 45 30 < 5 45 20 15 52 < 5 40 53 9 < 5 2 2 2 2. 2. .2 2 7. 2 34 VALUES IN PPM EXCEPT WHERE ANTED 2> 2 7 77 2> 42 2> 47 2> 27 2> 2> 42 42 2> 27 2> 2> 2> 2> 2 4 2 bp 09 114 38 39 0 58 57 24 अ 9 38 4 54 4 395 2 I 12 uZ C 10 495 13 83 240 24 34 45 164 112 151 19 28 9 76 72 egC 425 949 430d 244 9310 135 280 430 55 99 57 102 320 60 113 53 620 87 103 47 Cn !N M STREAM TYPE ZIOS ROCK × × × CONSANDUS GREENSTANS LUTTA. SUICIDES TIL-MAGNETITE HORIZAN WITE. PRETTS SILICITIES GREENSTONS WITE, SUICIDES BLEACHED IKIN FROM ADIT FATTRANKE GOSSAN GTZ-MASNISTITG CHIP AT PORTAL SOSSAN + GREENSTONE S'CHIE S' CHIP GREENSTONS WITH. SURFIDES SREENSTONE WITH SUIFIBES SEPENTINITE MIM. PORPHYRITIC BASALT GTZ-MAGNETITE GOSSAN ALTERED ANDESITE DIKE Chr. - MAGNETHS - PYRITE AR-SERICITE GOSSAN GREENSTONE GOSSAN SCHIST REMARKS CHIE CAZ- PYRITE GOSSAN PORPHYRITIC BASALT OTE- RICH GOSSAN GOSSAN GTZ - SERICITE CUCA-STAINED SEPPENTIVITE MASSING GTZ GREENSTONE GREENSPANE GREENSTONE GREENSTONE GREBNSTONE OTE GOSSAN GOSSAN + SILICEOUS JUNIORR ADIT STANDARD MINE 3 EAST FORK SIX MILE CREEK AREA PROSPECT PROSPECT LOCATION SIX MILE CREEK STANDARD MINE : = : -: . -2 -: = = SEIAD CREEK DIXIE CREEK RABCOCK BABCOCK = : = = = . = : : 5 = : : 9 : = 3 SAMPLE 509B 507 B 3108 SIIR 405B 501 B 5043 505B 504B 369 B 3718 402B 403 8 404 B 500 B 502 B 508 B 3628 368B 370B 400B 404B 401B **S03B** 3618 344B 366 B 3478 3638 365 B

RESULTS PLOTTED BY:

## APPENDIX B

# ANALYSES OF SOIL SAMPLES TAKEN AT THE

BABCOCK PROSPECT

- R-1 -

CLIENT: MOLYCORP INC. GEOLOGIST: M-BERNARDI NUMBER OF SAMPLES: 181

AGEOLOGIST , PRIORITY:

REPORT NUMBER: BV122-3609 PROJECT: NONE GIVEN " DATE: 18-007-82

SEE APPENDIX FOR EXPLANATION OF DIGESTION, ANALYSIS, SAMPLE TYPE, AND SIEVE SIZE CODES.

|   |       |      |      | EL       | EME | NT |   | CU    | ZN   | AG    | NI     | CO      | AU  |   |                     |
|---|-------|------|------|----------|-----|----|---|-------|------|-------|--------|---------|-----|---|---------------------|
|   | DIGE  | CITE | u /  | ANALYSIS |     |    |   | J/1   | J/1  | 3/1   | J/1    | J/1     | F/1 |   |                     |
|   |       |      |      | NUMBER/  |     |    |   | PPM   | PPH  | PPM   | PPM    | · PPH · | PPB |   |                     |
|   |       |      |      |          |     |    |   |       | 27.0 |       |        |         |     |   |                     |
|   | 0001  | LO   | 500  |          | 0   | 1  |   | 85    | 102  | .0.2  | 56     | 24      | 15  |   |                     |
|   | 0002  | LO   | 501  |          | D   | 1  |   | 104   | 114  | 0.3   | 64     | 27      | 10  |   |                     |
|   | 0003  | LO   | 502  |          | D   | 1  |   | 55.   | 78   | 0.2   | 99     | 23      | L 5 | 4 |                     |
|   | 0004  |      |      |          | D   | 1  |   | 26    | 28   | 0.2   | 44 '   |         | 15  |   |                     |
|   | 0005  |      |      |          | D   | 1  |   | 48    | 72   | 0.2   | 310    | 47      | L 5 |   |                     |
|   | 0006  | 1.0  | 505  |          | D   | 1  |   | 32    | 64   | 0.2   | 222    | 24      | L 5 |   |                     |
|   | 0007  |      |      |          | D   | 1. |   | 76    | 60   | 0.2   | 76     | 19      | L 5 |   |                     |
|   | 8000  |      |      |          | D   | 1  |   | 360   | 60   | 0.6   | 126    | 22      | 490 |   |                     |
|   |       |      |      |          |     |    |   | 114   | 73 . | 0.4   | 49     | 32      | 70  |   |                     |
|   | 0009  |      |      |          | D   | 1  |   |       |      | 0.2   | 44     | 41      | 160 |   | •                   |
|   | 0010  | LO   | 509  |          | Ò   | 1. |   | 550   | 318  | 0.2   | 3 1 77 | 74      | 100 |   |                     |
| 1 | 211   | LO   | 510  | 6        | D   | 1  | • | 158   | 82   | 0.2   | 60-    | 45      | L 5 |   | per'n OCT 1 9 1982, |
| ( | - /12 |      | 511  |          | D   | 1  |   | 88    | 92   | 0.2   | 52     | 24      | 5   |   | שנה ש מנו ב או שמבי |
|   | 0013  |      |      |          | D   | 1  |   | 200   | 74   | 0.2   | 60     | 25      | 65  |   |                     |
|   | 0014  |      |      |          | D   | ì  |   | 440   | 130  | 0.2   | 76     | 77      | L 5 |   |                     |
|   |       |      |      |          | D   | 1  |   | - 148 | 76   | 0.2   | 116    | 46      | L 5 |   |                     |
|   | 0015  | LU   | 214  |          | U   | 1  | , | . 140 | 70   | V. L  |        |         | -   |   |                     |
|   | 6016  | LO   | S15  |          | D   | 1  |   | 250   | 72   | 0.2   | - 36   | 28      | L 5 |   |                     |
|   | 0017  |      |      |          | D   | 1  |   | 200   | 120  | 0.2   | 54     | 43      | 5   |   |                     |
|   | 0018  |      |      |          | D   | 1  |   | 220   | 94   | 0.2   | 52     | 33      | 5   |   | 13                  |
|   | 0019  |      |      |          | D   | 1  |   | 131   | 84   | . 0.2 | 50     | 35      | L 5 |   |                     |
|   | 0020  |      |      |          | D   | 1  |   | 120   | 102  | 0.2   | 60     | 35      | L 5 |   |                     |
|   | 0020  | LU   | 317  |          | U   |    |   | 120   |      | ***   | -      | i.      |     |   |                     |
|   | 0021  | 10   | 520  |          | D   | 1  |   | 116   | 80   | 0.2   | 52     | 32      | L 5 |   |                     |
|   | 0022  |      | 521  |          | D   | 1  |   | 92    | 100  | 0.2   | 56     | 37      | L 5 |   |                     |
|   | 0023  |      | 00   |          |     | 1  |   | 120   | - 52 | 0.2   | 56     | 40      | L 5 | • | •                   |
|   | 0024  |      |      |          | D   | 1  |   | 85    | 76   | 0.3   | 56     | 35      | L 5 |   |                     |
|   | 0025  |      |      | **       | D   | 1  |   | 148   | 100  | 0.2   | 57     | 54      | L 5 |   |                     |
|   | (1723 | 220  | ,    |          | -   |    |   |       |      |       |        |         |     |   | • •                 |
|   | 0026  | LB   | 0 06 |          | D   | 1  |   | 118   | 136  | 0.3   | 52     | 38      | L 5 |   | 0 *                 |
|   | 0027  |      |      |          | D   | 1  |   | 112   | 104  | 0.2   | 50     | 76      | L 5 |   | ٠ ٧,                |
|   | 6028  |      |      |          |     | 1  |   | 123   | 99   | 0.2   | 52     | 86      | L 5 |   | 1 och               |
|   | 6027  |      |      |          |     |    |   | 166   | 62   | 0.2   | 52     | 107     | 20  |   | V. Joseph           |
|   | 0030  |      |      |          | n   | 1  | * | 50    | 68   | 0.2   | 76     | 105     | 5   |   | Bateoch             |
|   | 0050  | F.0  | V 17 |          | -   | •  |   |       |      |       | U.L.   |         |     |   | ,                   |
|   | 0031  | LA   | 15   |          | D   | 1  |   | 158   | 110  | 0.2   | 120    | 71      | L 5 |   |                     |
|   | 132   |      |      |          | D   | 1  |   | 70    | 96   | 0.2   | 5?     | 44      | L 5 |   |                     |
| 1 | 0(-33 |      |      |          | D   | 1  |   | 96    | 144  | 0.2   | 52     | 75      | 10  |   |                     |
|   | 0034  |      |      |          | D   | 1  |   | 116   | 94   | 0.2   | 72     | 43      | L 5 |   |                     |
|   | 0035  |      |      |          | D   |    |   | 71    | 124  | 0.2   | 63     | 40      | L 5 |   |                     |
|   | 6623  | CE   | . 22 |          | . 0 |    |   |       |      |       |        |         |     |   |                     |

PROJECT: NONE GIVEN

DATE: 18-0CT-82

CLIENT: MOLYCORP INC. GEOLOGIST: M-BERNARDI AGEOLOGIST , PRIORITY: NUMBER OF SAMPLES: 181 SEE APPENDIX FOR EXPLANATION OF DIGESTION, ANALYSIS, SAMPLE TYPE, AND SIEVE SIZE CODES. AU CO AG NI CU ZN ELEMENT J/1 1/1 J/1 F/1 J/1 J/1 DIGESTION / ANALYSIS CODE PPM PPB PPM PPH PPM PPM REC# /SAMPLE NUMBER/ T/ S 5 0.3 32 23 76. 38 0036 - LBO 24 39 26 10 108 0.2 34 0037 LBO 26 5 42 21 0.2 42 108 0041 LB0 28 D 1 L 5 0.2 32 80 88 .52 0042 LB0 30 L 5 47 33 72 55 0.2 0043 L2.00 L 5 45 29 0.2 72 88 D 0044 L2 01 1 19 L 5 52 0.2 0045 L2 02 36 78 1 5 L 184 38 59 83 0.2 1 0046 L2 03 20 54 0.2 92 37 1 0047 L2 04 5 60 490 40 0.2 42 D .1. 0048 L2 05 -128 . 25 10 0.2 88 61 0049 L2 06 . D 1 25 15 93 0.2 70 230 )50 L2 07 D 1 37 5 64 0.2 D 560 82 0051 L2 08 L 5 41 460 100 0.2 76 0052 L2 09 D . 1 L 5 0.2 57 34 104 0053 L2 10 166 92. 60 27 L 5 0.2. 260 D 0054 L2 11 1 57 51 L 5 0.2 520 88 D 0055 L2 12 1 44 10 68 98 0.2 430 0056 L2 13 D 1 L 5 57 50 400 96 0.2 0057 L2 14 1 32 10 0.2 57 240 76 0058 L2 15 59 33 0.2 90 130 D 1 0059 LZ 16 5 39 100 0.2 54 270 D 1 0060 L2 17 . 5 0.2 44 32 166 43 0061 L2 18 L 5 60 39 0.2 72 144 D 0062 L2 19 1 10 90 90 0.2 0063 L2 20 .. L 5 41 76 0.2 63 114 D 1 0064 L2 21 60 52 1 5 0.2 128 56 0065 LB2 00 D 1 15 53 53 138 0.2 103 0066 LP2 01 L 5 51 64 130 . 132 0.2 D 1 0067 LB2 02 L 5 95 124 104 0.2 0068 LB2 04 88 L 5 74 0.2 56 196 0069 LB2 06 1 93 L 5 52 114 0.2 150 1070 LB2 08

56

102

78

45

72

80

78

82

92

230

103

82

D

71 LF2 10

0072 LR2 12

0073 LB2 14

0.2

0.2

0.2

5

5

L 5

PROJECT: NONE GIVEN

DATE: 18-001-82

|      |               | MOLYCO   |          |          |         |           | _        |           |       |       | REPURI      |
|------|---------------|----------|----------|----------|---------|-----------|----------|-----------|-------|-------|-------------|
|      | 6EDL061       |          |          |          | A       | eEOL0613  |          |           |       |       | PROJECT     |
|      | NUMBER        | OF SAMP  | LES: 181 |          |         | PRIC      | RITY:    |           |       |       | DATE: 18    |
|      | SEE APP       | ENDIX F  | OR EXPLA | NATION D | F DIGES | TION, ANA | LYSIS, S | AMPLE TYP | E, AN | SIEVE | SIZE CODES. |
|      |               | ELEMEN   | T        | CU       | ZN      | . AG      | NI       | CO        | A     | U     |             |
| DIGE | STION / ANALY | SIS CODE |          | J/1      | 3/1     | J/1       | J/1      | J/1       | F/    | L     |             |
|      | /SAMPLE NUMB  |          |          | PPM      | PPN     | PPM       | PPM      | PPM -     | PP    | В     |             |
| 6074 | LB2 15        | D        | ı        | 260      | 100     | 0.2       | 84       | 47        | L     | 5     |             |
|      | L3 S-10       | D        | 1        | 82       | 80      | 0.2       | 65       | 20        |       | 15    |             |
|      | L3 S-08       | D :      |          | , 72     | 94      | 0.2       | 56       | 28        |       | 5     |             |
|      | L3 S-06       | D        |          | 54       | 124     | 0.2       | . 61     | 25        |       | 5     |             |
| 0081 |               | D :      | 1        | 66       | 106     | 0.2       | 58       | 23        | 1     | 5     |             |
| 0082 | L3 5-02       | D        | ı        | 31       | 48      | 0.3       | 20       | 13        | L     | 5     |             |
|      | L3 S-01       | D 1      |          | 23       | 56      | 0.2       | 25       | 11        | 1     | 5     |             |
|      | L3 S00        | D        | 1        | 64       | 52      | 0.2       | 50       | 26        | L     | 5     |             |
|      | L3 S02        | D 1      |          | 56       | 86      | 0.3       | 1240     | 211       |       | 5     |             |
|      | L3 S04        | . D'     | l' '     | 36       | 102     | 0.2       | 52       | 28        | L     | 5     |             |
| 0087 | L3 505        | · D 1    |          | 42       | 76      | 0:3       | - 40     | . 21      | . !   | 5     |             |
|      | L3 S06        | D        |          | 46       | 60      | 0.2       | 32       | 16        | L     | 5     |             |
|      | F2 208        | D 1      |          | 48       | 62      | 0.2       | 42       | 20        | L     | 5     |             |
|      | L3 S10        | D        |          | 28       | 136     | 0.2       | 41       | × 33      | L     | 5     | *           |
|      | L3 512        | D 1      |          | 59       | 98      | 0.2       | 48       | 23        | L     | 5     |             |
| 0000 | L3 S14        | D 1      |          | 63       | 82      | 0.2       | 53       | 31        | L     | 5     |             |
|      | L3 514        | D 1      |          | 30       | 200     | 0.3       | 40       | 38        | - 1   |       |             |
|      | L3 S18        | D 1      |          | 46       | 124     | 0.2       | 40       | 28        | L     |       |             |
|      | L3 S22        | D 1      |          | 36       | 135     | 0.2       | 36       | 31        |       | 5     |             |
| 0096 | L3 524        | D 1      |          | 34       | 84      | 0.2       | 30       | 17        | L     |       |             |
|      |               |          |          |          |         |           |          |           | ,     |       | *           |
| 0097 | L3 526        | D 1      |          | 99       | 98      | 0.2       | 44       | 29        | 20    |       |             |
| 0098 | L3 S28        | D :      |          | 44       | 110     | 0.2       | 46       | 29        | L     |       |             |
| 0099 | L3 S30        | D 1      |          | 76 .     | 60      | 0.3       | 40       | 28        | 1     |       |             |
| 0100 |               | D        |          | 68       | 126     | 001       | 151      | 24        | L     |       |             |
| 0101 | L4 5-4        | D 1      |          | 59       | 108     | 0.4       | 188      | 30        | 1     | )     |             |
| 0102 | L4 S-2        | D        | l        | 52       | 78      | 0.3       | 540      | 55        | 1     |       |             |
| 0103 | L4 500        | D 1      |          | 90       | 112     | 0.3       | 124      | 52        | L     |       |             |
| 0104 | L4 S02        | D        |          | 64       | 94      | 0.2       | 60       | 34        | 1     |       |             |
|      | L4 S04        | . D      |          | 88       | 126     | 0.3       | 100      | 49        | 28    |       |             |
|      | L4 S06        | D'       | 1        | 94       | 106     | 0.2       | 251      | 48        | 3     | 0     |             |
| 0107 | L4 S08        | D        | l        | 106      | 80      | 0.3       | 620      | 72        | 2     |       |             |
|      | L4 S10        | D        | 1        | 88       | 92      | 0.4       | 190      | 33        | 3     |       |             |
|      | L4 S12        | D        | I        | 96       | 132     | 0.3       | 214      | 53        |       | 5     |             |
|      | L4 514        | D        | 1        | 94       | 82      | 0.3       | 66       | 16        |       | V     |             |
|      | L4 516        | D        | 1        | 72       | 80      | 0.4       | 37       | 16        | L     | 5     |             |
|      |               |          |          |          |         |           |          |           |       |       |             |

CLIENT: MOLYCORP INC.

PROJECT: NONE GIVEN

DATE: .18-0CT-82

|      |      | NUMBER OF   | SAM | PLES  | : 181      |          |           | IORITY:    |          |     | V mass |       |      | DATE: .18 |
|------|------|-------------|-----|-------|------------|----------|-----------|------------|----------|-----|--------|-------|------|-----------|
|      |      | SEE APPEND  | II  | FOR E | EXPLANATIO | N OF DIE | ESTION, A | NALYSIS, S | AMPLE TY | PE, | AND    | SIEVE | SIZE | CODES.    |
|      |      | *           |     |       | -          |          |           | NY         | CO       | -   | AU     |       |      |           |
|      |      | . EL        |     |       | CU         |          |           |            |          |     | F/1    |       |      |           |
|      |      | / ANALYSIS  |     |       | J/1        |          |           |            | J/1      |     |        |       |      |           |
| REC. | /SAM | PLE NUMBER/ | 1/  | S     | PPH        | PPI      | PPH       | PPM        | · · PPM  |     | PPB    |       |      |           |
| 0112 | 14   | 518         | D   | 1     | 51         | 72       | 0.2       | 124        | 39       | ,   | 15     |       |      |           |
| 0113 |      |             | D   | 1     | 50         | 100      | 0.2       | 660        | 62       | 1   | . 5    |       |      |           |
| 0114 |      |             | D   | 1     | . 61       |          |           |            | 54       | 1   | . 5    |       |      |           |
| 0115 |      |             | D   | 1     | 44         |          |           |            | 45       | 1   | L 5    |       |      |           |
| 0116 |      |             |     | 1     | 86         |          |           |            | 66       |     | 10     |       |      |           |
| 0117 | 1.4  | 528         | D   | 1     | 200        | 92       | 0.3       | 188        | 38       |     | 5      |       |      |           |
| 0121 | L4   |             | D.  | 1     | 70         | 88       | 0.3       | 132        | 34       | l   | . 5    |       |      |           |
| 0122 |      |             | D   | 1     | 49         |          | 0.2       | 175        | 20       |     | 20     |       |      |           |
| 0123 |      |             | D   | 1     | 33         |          |           |            | 152      | 1   | . 5    |       |      |           |
| 0124 |      |             | D.  | 1     |            |          |           |            | 108      | 1   | . 5    |       |      | •         |
| 0124 | LT   |             |     | -4    |            |          |           |            | 3 ×      |     |        |       |      |           |
| 0125 | 15   | S-24        | D   | 1 .   | 66         | 106      | 0.3       | - 64       | . 37     | ı   | . 5    |       |      |           |
|      |      | 5-22        |     | 1     | 63         |          |           |            | 21       | 1   | . 5    |       |      |           |
| v127 |      | 5-20        |     | 1     | 116        |          |           |            | 25       |     | 10     |       |      |           |
|      |      |             | D   | 1     | 90         |          |           |            | 29       | 1   | . 5    |       |      |           |
| 0128 |      |             |     | 1     | 81         |          |           |            | 28       |     | . 5    |       |      |           |
| 0129 | L3   | 2-10        | D   |       |            | 100      | ***       | -          |          |     |        |       |      |           |
| 0130 | 15   | 5-14        | D   | 1     | 49         | 82       | 0.3       | . 53       | 26       | 1   | . 5    |       |      |           |
| 0131 |      |             | D   | 1     | 44         |          |           |            | 18       | l   | . 5    |       |      |           |
| 0132 |      |             | D   | 1     | 47         |          |           |            | 25       | 1   | . 5    |       |      |           |
| 0133 |      |             | D   | 1     | 40         |          |           |            | 30       | L   | . 5    |       |      |           |
| 0134 |      |             | D   | 1     | 56         |          |           |            | 20       | l   | . 5    |       |      |           |
| 0134 | LJ   | 3 00        |     | •     | -          |          |           |            |          |     |        |       |      |           |
| 0135 | L5 ! | 5-04        | D   | 1     | 114        | 64       | 0.2       | 60         | 28       | L   |        |       |      |           |
| 0136 |      |             | D   | 1     | 158        | 74       | 0.2       | 60         | 39       | l   |        |       |      |           |
| 0137 |      |             | D   | 1     | 182        | . 85     | 0.2       | 72         | 65       |     | . 5    |       |      |           |
| 0138 |      |             | D   | 1     | 84         | 120      | 0.3       | 71         | 35       | l   | . 5    |       |      |           |
| 0139 |      |             |     | 1     | . 56       | 94       | 0.3       | 46         | 27       |     | 5      |       |      |           |
|      |      | -           |     |       | •          |          |           |            |          |     |        |       |      |           |
| 0140 | L5   | S06         | D   | 1     | 126        | 114      | 0.3       | 63         | 40       |     | . 5    |       |      |           |
| 0141 |      |             | D   | 1     | 166        |          | 0.2       | 104        | 32       |     | . 5    |       |      |           |
| 0142 |      |             | D   |       | 116        |          | 0.2       | 82         | 35       |     | 5      |       |      |           |
| 0143 |      |             | D   |       | 162        |          | 0.2       | 56         | 32       | 1   | . 5    |       |      |           |
| 0144 |      |             | D . |       | 44         |          |           | 40         | 27       |     | 10     |       |      |           |
| 0177 | LU   |             | -   |       |            |          |           |            |          |     |        |       |      |           |
| 0145 | 15   | S16         | D   | 1     | 103        | 100      | 0.2       | 68         | 32       |     | . 5    |       |      |           |
| 0145 |      |             | D   |       | 110        |          |           |            | 22       | 1   | L 5    | i     |      |           |
| 47   |      |             | D   |       | 62         |          |           |            | 21       |     | 5      |       |      |           |
| 0148 | 15   | 522         | D   |       | 82         |          |           |            | 34       | 1   | L 5    |       |      | 9         |
| 0149 |      |             | D   |       | 45         |          |           |            | 19       | 1   | L 5    |       |      |           |
| 0147 | LJ   | J. 7        | u   |       | 10         |          |           |            |          |     |        |       |      |           |

AGEOLOGIST , PRIORITY:

CLIENT: MOLYCORP INC.

GEOLOGIST: M-BERNARDI

NUMBER OF SAMPLES: 181

PROJECT: NONE GIVEN

DATE: 18-0CT-82

CLIENT: HOLYCORP INC. AGEOLOGIST , GEOLOGIST: M-BERNARDI PRIORITY: NUMBER OF SAMPLES: 181 SEE APPENDIX FOR EXPLANATION OF DIGESTION, ANALYSIS, SAMPLE TYPE, AND SIEVE SIZE CODES. AU NI AG ELEMENT CU ZN J/1 F/1 J/1 J/1 J/1 J/1 DIGESTION / ANALYSIS CODE PPB PPH PPM PPH . REC# /SAMPLE NUMBER/ T/ S 0.2 47 52 80 D 1 0150 L5 526 L 5 28 106 0.2 48 47 D 1 0151 L5 S28 32 10 49 0.2. 47 96 0152 L5 S30 D 1 L 5 31 . 68 124 0.2 172 0153 L6 S-8 D 1 L 5 29 0.2 63 124 140 0154 L6 S-6 33 L 5 184 0.2 60 360 0155 L6 S-4 5 0.2 52 47 120 D 1 0156 L6 S-2 53 10 5500 124 0.2 D 0157 L6 S00 0.2 53 88 L 5 89 500 0161 L6 502 D 1 18 92 36 0.2 63 0162 L6 S04 5 89 76 0.2 37 0163 L6 506 - D 1 -32 0.2 60 164 L6 S08 56 108 D 1 28 L 5 0.2 60 92 96 -165 L6 S10 31 L 5 62 94 112 0.2 0166 L6 S12 D 1 32 0167 L6 514 20 48 D 1 60 . 88 0.2 0168 L6 S16 5 96 23 32 0.2 37 0169 L6 S18 20 5 70 0.2 48 0170 L6 520 D 1 L 5 0.2 56 34 48 116 0171 L6 522 18 0.2 47 0172 L6 -523 5 11 44 52 0.2 36 0173 Lb 524 D 1 0.2 120 29 90 52 0174 L7 S00 60 32 56 .0.2 0175 L7 S02 .0.2 5 32 64 60 48 0176 L7 S04 D 1 38 5 120 0.2 58 0177 L7 SQ6 39 5 72 78 68 0.2 D 1 0178 L7 S08 35 80 0.2 72 78 0179 L7 S10 5 64 31 0.2 59 80 0180 L7 S12 D 1 32 L 5 114 0.2 60 0181 L7 S14 66 27 68 90 0.2 0182 L7 S16 L 5 33 116 57 126 0.2 D 1 0183 L7 S18 10 33 104 0.2 56 0184 L7 S20 D 148 0.2 87 47 20 125 1 15 L7 S22

22

27

10"

L 5

38

44

76

114

48

43

D 1

0186 L7 S24

0187 L7 S26

0.2

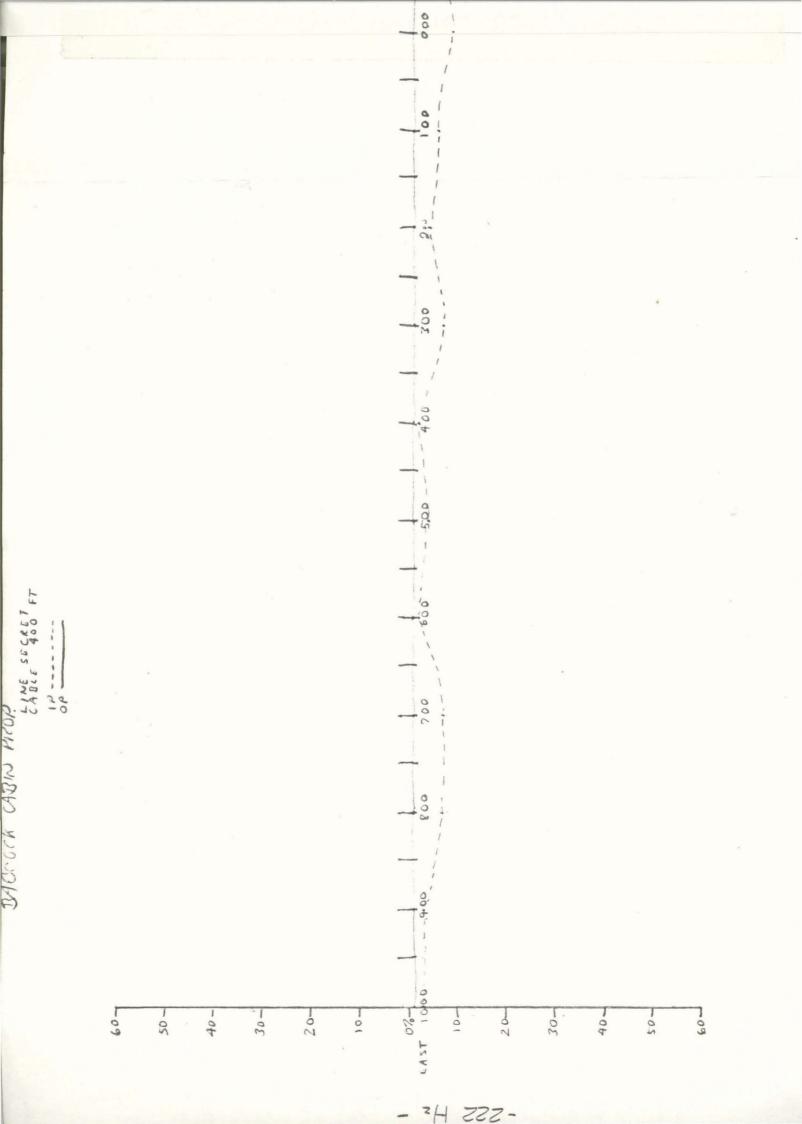
0.2

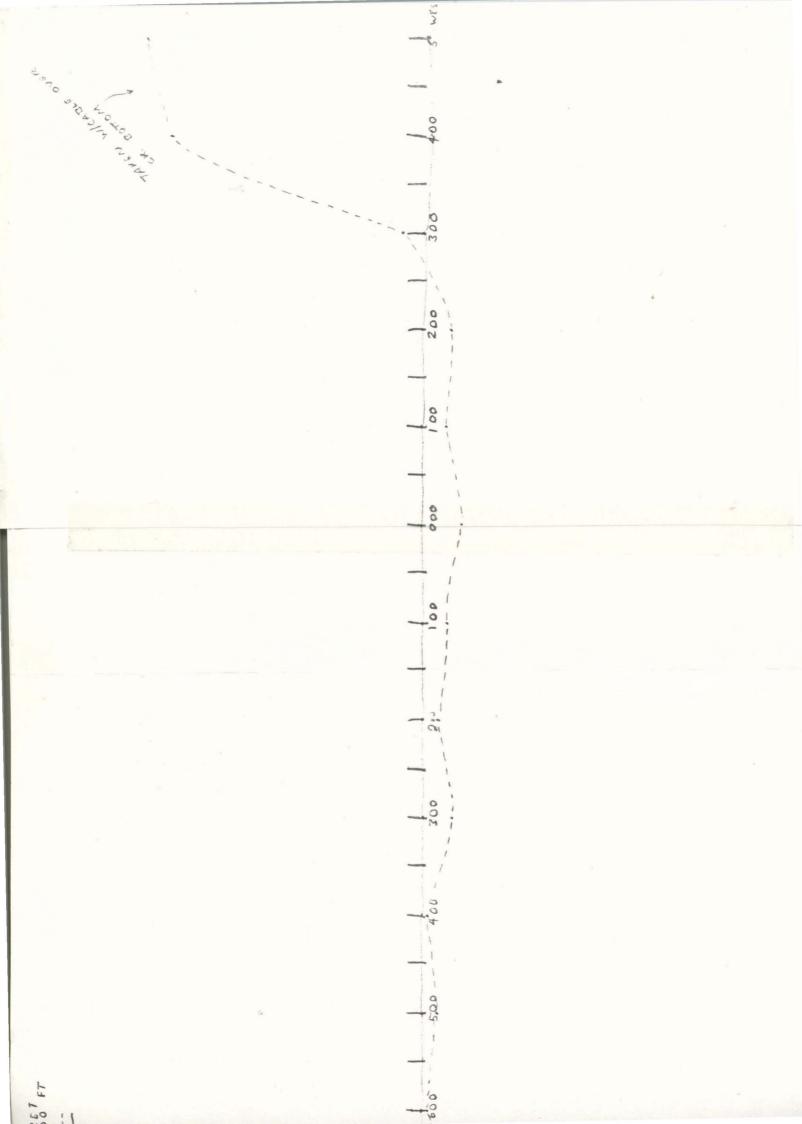
. CLIENT: MOLYCORP INC.

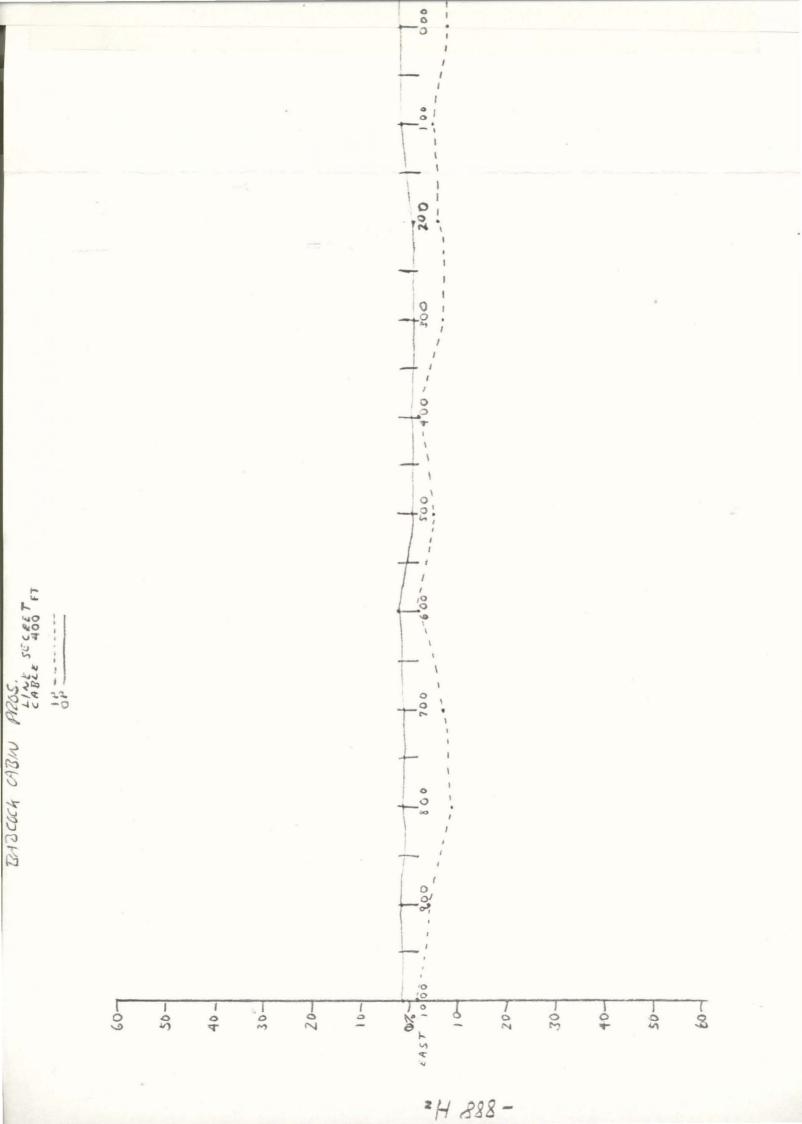
GEOLOGIST: M-BERNARDI
AGEOLOGIST,
NUMBER OF SAMPLES: 181
PRIORITY:
PRIORITY:
DATE: 18-OCT-82

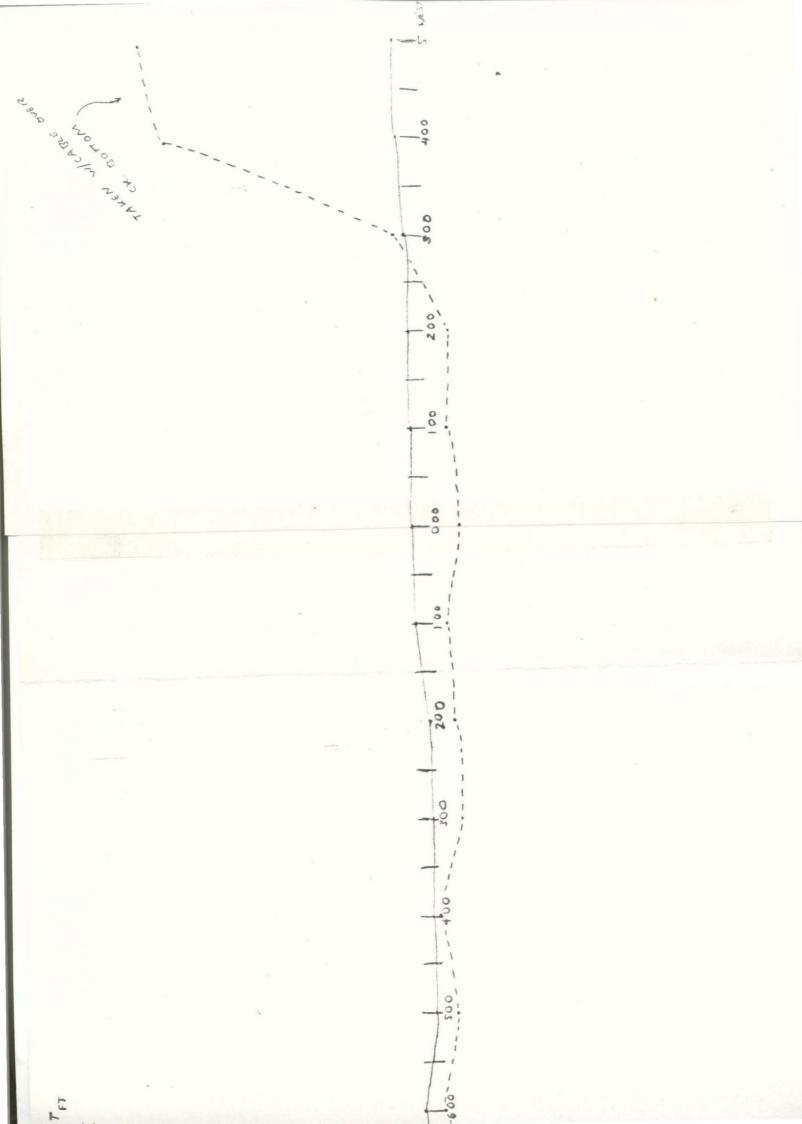
SEE APPENDIX FOR EXPLANATION OF DIGESTION, ANALYSIS, SAMPLE TYPE, AND SIEVE SIZE CODES.

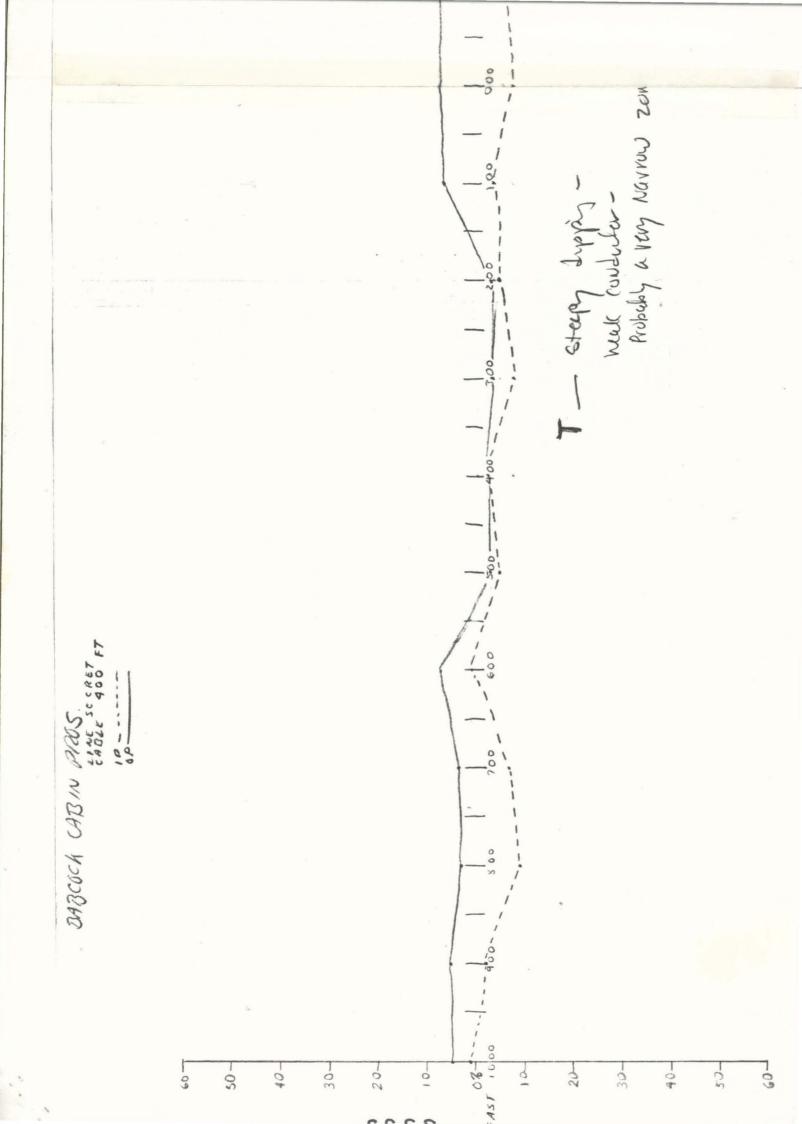
| . • EL                | EMENT  |        | CU  | - ZN | AG  | NI    | CO  | AU  |
|-----------------------|--------|--------|-----|------|-----|-------|-----|-----|
| DIGESTION / ANALYSIS  | CODE   |        | J/1 | 3/1  | J/1 | J/1   | J/1 | F/1 |
| RECT /SAMPLE NUMBER/  | T/ S   |        | PPN | PPM  | PPN | PPN · | PPH | PPB |
|                       |        | -      |     | •    |     |       |     |     |
| 0188 - L7 S28         | D 1    |        | 42  | 112  | 0.2 | 47    | 27  | L 5 |
| 0189 L7 S30           | D 1    |        | 48  | 130  | 0.2 | 48    | 29  | 15  |
| 0190 L7 532           | D 1    | ٠.     | 124 | 126  | 0.2 | 56    | 29  | 5   |
| 0191 L7 S34           | D 1    |        | 103 | 76   | 0.2 | . 66  | 35  | L 5 |
| 0192 L7 S36           | D 1    |        | 70  | -56  | 0.2 | 48    | 27  | L 5 |
|                       |        |        |     |      |     |       |     |     |
| 0193 L7 S38           | D 1    |        | 56  | 84   | 0.2 | 50    | 21  | 15  |
| SAMPLE # L6 523 IS WA | HITING | FOR AU |     |      |     |       |     |     |

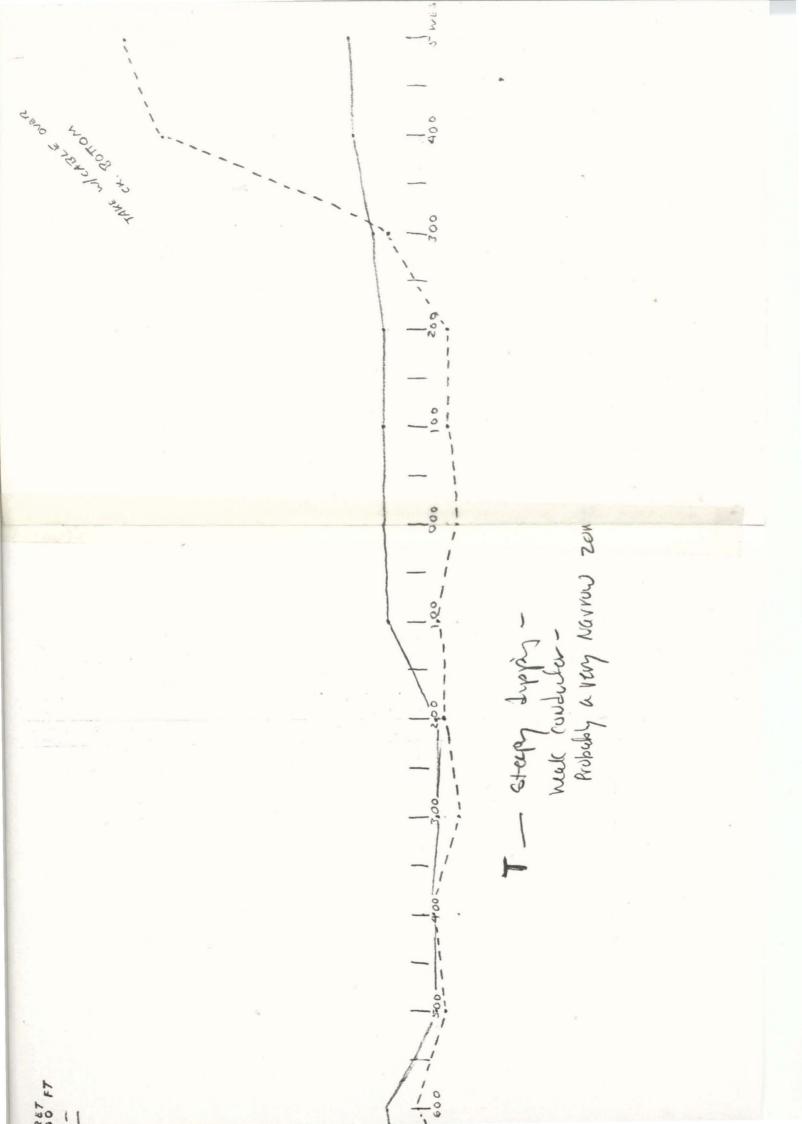

---FND---


| Sample Mark:         | Gold<br>oz/ton | Silver<br>oz/ton | Copper ppm | Zine<br>ppm | Cobalt ppm | Nickel<br>ppm |   |
|----------------------|----------------|------------------|------------|-------------|------------|---------------|---|
| 2648 1120            | -0.001         | 0.03             | 220        | 75          | 35         | 50            |   |
| 49                   | -0.001         | -0.04            | 100        | 75          | 4 30       | 35            |   |
| 50                   | -0.001         | 0.05             | 280        | 80          | 30         | 30            |   |
| 51                   | -0.001         | -0.01            | 210        | 295         | . 35       | . 40          |   |
| 52                   | -0.001         | -0.01            | 235        | 105         | 30         | 50            |   |
| 53                   | -0.001         | 0.06             | 160        | 110         | 30         | 40            |   |
| 54                   | -0.001         | 0.04             | 160        | 110         | 30         | 40            |   |
| 55 +                 | -0.001         | -0.01            | 120        | 90          | 30         | 45            |   |
| . 56                 | -0.001         | 0.09             | 245        | 85          | 35         | 60            |   |
| 57                   | 0.001          | 0.10             | 110        | 85          | 35         | 40            |   |
| 58                   | -0.001         | -0.01            | 55         | 90          | 40         | 35            |   |
| 59 //84              | -0.001         | 0.12             | 40         | 85          | , 45       | 30            |   |
| 60 1180 - 1184.2     | 0.001          | 0.10             | 220        | 25          | 225        | 705           |   |
| 61 1184.2 - 1185     | 0.005          | 0.07             | 0.23%      | . 40        | 375        | 675           |   |
| 62                   | 0.001          | 0.05             | 20         | 25          | 30         | 95            |   |
| 63                   | 0.001          | -0.01            | 25         | 25          | 35         | 95            |   |
| 64                   | 0.002          | 0.08             | 25         | 30          | 30         | 100           |   |
| 65 1200 - 1202.4     | 0.001          | 0.11             | 100        | 75          | 90         | 355           |   |
| 2666 1202 4 - 1204.4 | -0.001         | 0.03             | 5          | 25          | 30         | 160           |   |
| 3977                 | -0.001         | -0.01            | 520        | 10          | 0.19%      | 10 ,          | * |


BABCOCK 1


HUNTER MINING LABORATORY, INC.


9th Scale














|     | Line | Station   | IIP   | dO    | IP | OP | IP. I  |      | IP   OP |   | IP (     | OP 40 | Elevation | Cable Length | Comments     |
|-----|------|-----------|-------|-------|----|----|--------|------|---------|---|----------|-------|-----------|--------------|--------------|
| W   | B.C. | 3 0981 to | -3    |       |    |    | -2 +   | 0.14 |         | + | + 1 1    | 4.2   | +30       | His          |              |
| 1   |      | CHADO E   | -3    | 7:1-  | -  |    | 1+1 +- | 7.7  |         | 1 | 7 1      | 45.0  | +25       |              |              |
|     |      | 0+800 E   | 12-   | 5.    |    |    | + 16-  | 6.   |         | ( | 7        | 13.0  | +50       |              |              |
|     |      | 0 + 700 E | 1     | 7:1-  |    |    | + 6-   | 7.   | _       | 1 | 71+      | +3.5  | + 50      |              |              |
|     |      |           | -2    | 6.1   | _  |    | +2+    | +2.0 |         | + | 4.5 47.0 | 7.0   | 138 ×     |              |              |
|     |      |           | 17-   | -1.2  | _  |    | -15.   | 5    |         | 1 | -15-     | -2.4  | +30       |              |              |
| 1   |      | 0+400 E   | -21   | 7.1   | -  |    | -2 1   | 7.6  | _       | 1 | -2.51    | 7.5   | 420       |              |              |
|     | 1    | Ot 300 E  | -7    | 9.1-  | _  |    | -16-   | -1.3 | _       | 8 |          | -3.2  | +30       |              |              |
|     |      | 0+200E    | -4    | 7:1-  |    | 1  | 2      | 6.   | _       | ( | 5 -3     | -3.4  | +40×      | , e e e      |              |
| 1 1 | 2/   | 01100E    | 1 6   | 6.    | _  |    | 1-5-1  | +1.2 |         | 1 | 4 1 +    | 16.0  | 45V       |              |              |
| 1   | 9    | 000+0     | 6     | L" /  |    |    | + 8 -  | +1.5 |         | 1 | 8        | 17.0  | 130       | -1.          |              |
| 1   |      | 0 +100 W  | 9/    | -1.0  | -  |    | -6 +1. | 1.3  |         | 1 | + 9-     | 8.9+  | +550      | -3           |              |
|     |      | 0+260 W   | -7-   | 7:1-  |    | ,  |        | +1.4 |         | 1 | + 3-     | 77.0  | 1600      | -5           |              |
|     | 1    |           | +3    | -1.3  | _  | ,  | 1+ ++  | 8    |         | + | 0        | 19.0  | +15/      | 201          | 577 450 151- |
|     | 2    |           | ditte | 13.50 | _  | ,  | + 20 + | 45.6 | -       | + | 452 413  | 2     | +51       |              |              |
| 7 7 | 74   | M005+0    | +85   | -2.8  | -  |    | +551+  | +2.8 | _       | 7 | 160 +14  | 4     | 101       |              |              |
|     | 0    |           | -     |       | _  |    | -      |      |         |   | -        |       | CONTA     |              |              |
| . 1 |      |           |       |       | _  |    | -      |      |         |   | -        |       | 130       |              |              |
| ,   | 4    |           |       |       | -  |    | -      |      |         |   | -        |       |           |              |              |
|     | ')   |           | -     |       | -  |    | -      |      |         |   | -        |       |           |              |              |
| , 1 | 20   |           | _     |       | _  |    |        |      | _       |   | _        |       |           |              |              |
| 1   | 2    |           | -     |       |    |    |        |      | -       |   |          |       |           |              |              |
| 1   | V    |           |       |       | -  |    |        |      | -       |   | -        |       |           |              |              |
|     | 7    |           | -     |       | -  |    | -      |      |         |   | - +      | -     |           |              |              |
|     |      |           |       |       | -  |    | -      |      |         |   | -        |       | •         |              |              |
| 1   |      |           | -     |       |    |    | -      |      | -       |   | -        | -     |           |              |              |
|     |      | *         | -     |       | _  |    | -      |      | _       |   | -        |       |           |              |              |
| 1   |      |           | -     |       | -  |    | -      |      | -       |   |          |       |           |              | ٨            |
| ,   |      |           |       |       |    |    | -      |      | -       |   | -        |       |           |              |              |
|     |      |           | -     |       | -  |    | -      |      |         |   | -        |       |           |              |              |
| -   |      |           | -     | _     | -  |    |        |      | _       |   | -        | _     |           |              |              |

| , 51 | Station                                  | IP OP      | IP OP | IP I        | OP     | IP OP | IP IP | OP    | Blevation | Cable Length    | Comments |
|------|------------------------------------------|------------|-------|-------------|--------|-------|-------|-------|-----------|-----------------|----------|
| 2:   | CH 500 1~                                | 10000      |       | -11 +       | 5.     |       | -     | 1+4+  | + 70%     | 100             |          |
|      | C+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 51-151-    | _     | + - 2 -     | S      |       | 1     | 1+4.8 | 420%      | OUE/ CA (ST) LC |          |
|      | 多二次を10                                   | 125-1-8    |       | + 122-      | )×     |       | 7 (   | 43.8  | 145       |                 |          |
|      | 1 1 TO 1 1 10                            | -208       |       | +21+        | 5.     | _     | 2     | 14.0  | -60       |                 |          |
| 2    | W 001 1                                  | -24 -18    |       | -23 +       | Š      | _     | -24   | 1+3.4 | S         |                 |          |
| 0    | W 025+ 0                                 | 1-24 1-,7  |       | -241+       | 8.     | _     | 75-   | +3.5  | 55.       |                 |          |
| 9    | 64 300 W                                 | -251-7     |       | 17417       | +.7    |       | -22   | +3.3  | 150       |                 |          |
| 1    | 0 1150 W                                 | -201中的     | -     | +112:       | 171.74 |       | - 1.8 | 1400  | - 53      |                 |          |
| /    | W 00110                                  | 2014 5.41- | 3,-   | +181-       | 1+9.0  |       | 61    | 18 26 | 755       | AC CEAR         |          |
| 2    | 01 co ~                                  | -26 120    |       | +120-       | 79.C   | _     | 125-  | 0.8+1 | 55-       | BELOW ABIT      |          |
| 1    | 1810                                     | -257       | _     | 4 -         | 6.4    | _     | -30   | 14.0  | -55       | BELOW ADIT      |          |
| 78   | CUSO L                                   | 1.1-1 81 - | -     | + 81 -      | 15.    |       | 51-   | 13.5  | -50       |                 |          |
|      | C \ 100 E                                | 10-101-    |       |             | 4.5    |       | -70   | +3.5  | 0)7-      | *               |          |
|      | O1 153 E                                 | 1.1-161-   |       | + 121-      | 8      |       | 1     | +3.8  | 077-      |                 |          |
|      | J (00.11)                                | (-)-1 +    |       | +2+         | ٥.     | _     | +2    | + 53  | -25       |                 |          |
|      | C1 150 K                                 | 101-       | _     | +101-       | 4.8    |       | 6.    | 14.5  | Ø         |                 |          |
|      | 5. ors to                                | -3 1-1.2   | _     | -3 1+,      | 1.     |       | -3,5  | 74.5  | j         |                 |          |
| 4    | 2 0% 0                                   | -151-12    |       | + (-(-1)-)- | 2      | _     | -13   | 12:1  | -25       |                 |          |
| 2    | 01.430 E                                 | 70 -30     | _     | 1+102-      | 1.7    | _     | ~20   | 15.0  | 04-       |                 |          |
|      | sta O E                                  | 0.1-1 61-  |       | + 11-       | 5.     |       | =     | 14.5  | 135       |                 |          |
| D 5  | 51 500 E                                 | 1.1-1.21-  |       | -1217       | 6      |       | 71-   | +4.5  | -35       |                 |          |
| 7    | 2 55 - 2                                 | -20 -1.1   | _     | -2(-+       | 5,     |       | 12-   | j.4.0 | 7.17      |                 |          |
| 4    | 01 600 L                                 | +11-101-   | -     | -13 +       | 5      | -     | - (3  | 14.8  | 0 + 40    |                 |          |
| 5    | U+65U É                                  | - 18 1-1.1 | -     | + 81-       | 7. +   |       | 1-17  | +3.5  | 04-       | *               |          |
| >    | (+) 701) E                               | 1.1-1.1    | _     | + 1017      | 7      |       | 61-   | 1+40  | -46       | W.              |          |
|      | J1770 E                                  | 201-181-   | _     | + 61-       | 7,     |       | 5 (-  | 13.8  | -40       |                 |          |
|      | 5.1 K/SU E                               | 1-1-121-   |       | + 81-       | 80     |       | 8-1   | 146   | -45       |                 |          |
|      | c+ (20 2                                 | ~191-1.2   |       | + 61-       | 9 +    | _     | 0-1   | _ 1   | 79_       | 1               | <b>b</b> |
|      | 64 400 E                                 | t:11 ):1   | _     |             | C      |       | 2)    | 0,7+  | 160       | Bow As cut.     |          |
|      | 1 61503 F                                | -2001-134h |       | -           | 3 000  |       | 000   | +3.4  | - (       | IN RIP CUST     |          |

# Assay Office

A Division of GOMIL CHEMICAL CO.
MINERS' EXCHANGE BUILDING

432 WEST MAIN STREET - QUINCY, CALIFORNIA 95971

Clark

PHONE: 916-283-2280 CABLE ADDRESS: 'TRANSPHERE' <u>Melificiposio and filiposio sincing and and sincing definition of the constant and and sincing and sincing sincing to</u>

## MEMORANDUM OF ASSAY

|            | PI      | R TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OF 2                   | 2000 P | OUNDS                       | AVOIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DUPO                      | IS    | COF  | PER, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R     |      | EAD, O | R      | TO           | TAL |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------|--------|--------------|-----|
| SAMPLE NO. |         | GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LD                     |        |                             | Annual Control of the | VER                       |       | COB  | ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |        |        | ATT THE      |     |
|            | AT      | The same of the sa | ment of the end-blooms | UNCE   | Section of the principle of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | description, and a supple | OUNCE | AT   | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R LB. | AT   | P      | ER LB. |              |     |
|            | ozs.    | 100.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | CTS.   | OZS.                        | 100'5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                         | CTS.  | %    | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CTS.  | %    | -      | CTS.   |              | CTE |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        | 100                         | 2 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | -     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |        | ,      |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |       | 0.08 | = 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 16  | ./ 1 | qn     | -      |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100   |      |        | Take.  |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 78.6   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100   |      |        |        | a definition |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |        |        |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |        |        |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dan.                   |        | gar.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |        |        |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ton.                   |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |        |        |              |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                     |        | JA.                         | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | -     |      | Control of the Contro | -     | 1    |        |        | 40.00        |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | BUS :  |                             | 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.03 |      |        |        |              |     |
|            | 100     | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                     |        |                             | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.5  |      | 440    |        | 7            |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | 78.5 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      |        |        |              |     |
| 12 800     | g = (%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |      | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     | P    | 5m     | 111    |              |     |
| AY NO      |         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | . 7  | delle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     | 6.   | Mel    | len!   |              |     |

CHEMISTRY Touches EVERYTHING