RECORD IDENTIFICATION
RECORD NO. 0054986
RECORD TYPE X1M
COUNTRY/ORGANIZATION USGS
MAP CODE NO. OF REC.

REPORTER
NAME ... PETERSON, JOCELYN A.
DATE ... 76 08
UPDATED .. 81 03
BY ... FERNS, MARK L. (BROOKS, HOWARD C.)

NAME AND LOCATION
DEPOSIT NAME PINTO GROUP
COUNTRY CODE US
COUNTRY NAME UNITED STATES
STATE CODE OR
STATE NAME OREGON
COUNTY .. LAKE
DRAINAGE AREA 1S523001 CALIFORNIA
PHYSIOGRAPHIC PROV. 12 BASIN AND RANGE
LAND CLASSIFICATION 41

QUAD SCALE 1: 24000
QUAD NO OR NAME DOG LAKE
LATITUDE 42-02-00N
LONGITUDE 120-38-18W
UTM NORTING 4655970.0
UTM EASTING 6955000.0
UTM ZONE NO +10

TWP 041S
RANGE 018E
SECTION 05
MERIDIAN WILLAMETTE

POSITION FROM NEAREST PROMINENT LOCALITY: 30 MI SW OF LAKEVIEW
LOCATION COMMENTS: SOUTH EDGE SEC 6, LOCATED AT CENTER OF SECTION EDGE

COMMODITY INFORMATION
ORE MATERIALS (MINERALS, ROCKS, ETC.): CINNABAR

MAIN ORE MINERALS: CINNABAR

EXPLORATION AND DEVELOPMENT
STATUS OF EXPLOR. OR DEV. 2
YEAR OF DISCOVERY........... 1959
PRESENT/LAST OWNER........... DAN MORRISON, GORDON HUNTLEY, GEORGE BATHAN, GEORGE JOHNSTON, 1963

DESCRIPTION OF DEPOSIT
DEPOSIT TYPES:
DISSEMINATED
FORM/SHAPE OF DEPOSIT:
SIZE/DIRECTIONAL DATA
SIZE OF DEPOSIT........... SMALL

DESCRIPTION OF WORKINGS
SURFACE AND UNDERGROUND

PRODUCTION
NO PRODUCTION

GEOLOGY AND MINERALOGY
AGE OF HOST ROCKS............. TERT
HOST ROCK TYPES.............. SILICIC TUFS
IGNEOUS ROCK TYPES........... RHYOLITE DIKES
PERTINENT MINERALOGY......... OPALITE

IMPORTANT ORE CONTROL/LOCUS: CINNABAR IS LOCALLY DISSEMINATED IN OPALITE AND TUFS AND COATS FRACTURES. ASSAY VALUES ARE VERY LOW

LOCAL GEOLOGY

SIGNIFICANT LOCAL STRUCTURES:
ROCKS ARE GREATLY SHEARED

SIGNIFICANT ALTERATION:
HOST ROCKS ARE OPALIZED TO VARYING DEGREE OVER A LARGE AREA

GENERAL REFERENCES
The following was adapted from a report compiled by N. V. Peterson of the Department of Geology and Mineral Industries who visited the property in August 1959.

Location: Six claims along the south edge of Section 6, T 41 S., R. 18 E.

Owners: Dan Morrison, Gordon Huntley, George Batman and George Johnston.

History & Development: Claims were located and development of the prospect was begun by the owners in 1959. Development consists of several bulldozer cuts, one hand-dug shaft and 1 short tunnel about 25 feet long.

Geology: The prospect occurs along the crest of a north trending triangular shaped ridge consisting of pumice lapilli tuffs, fine grained clayey tuffs and tuff breccias. The rocks are extremely sheared and contain scattered zones of intense alteration, iron-staining and local silicification. Boulders of chalcedony are widely scattered locally in abundance. Cinnabar is occasionally found as fine disseminations in the chalcedony boulders. Locally cinnabar occurs as thin coatings along fractures and as sparse disseminations in the altered tuffs.

The many widespread dikes and irregular masses of rhyolite scattered
throughout the area are believed to have been responsible for the widespread shearing and alteration of the tuffs. Hydrothermal solutions carrying small amounts of cinnabar apparently permeated the whole ridge top. Chalcedony fills irregular fractures in the tuffs and locally completely replaces the tuffs. Cinnabar had not yet been found in the bedrocks at the time of visit.
Weekend July 51 - August 1
Brant Pass - Monarch,
regrett etc.

Guy B. Monke

Leave Brant Pass 9:00 A.M.
arrive 5 corners 1:45 P.M.
Meet with Dan, Morris and
Lakeview to visit Camp
Prospect, Southwest of Lakeview

From the old Goose Lake
Timber Co. Camp - take the
Dry Creek Road - 8 1/2

Cross Dry Creek 8 1/2
North
Turn Right at sign - Hoes McNam
Creek - 91.6 miles

Turn Left across Creek
Angle on map about 45 right
into South edge of sec. 6, T.41S,
R.18E.

LP59-15-3 rock samples.
1. White bleached silicified
primic, lapilli, tuff
2. Basalt - capping - diktite tuff

1. Extensive rhyolite - dike
The Pinto Group of claims are near the border of the center sec. 6, T. 41 S., R. 18 E.

The claims are held by location by partners including: Pan Monson, bingo Johnston, S. Goodhardt, George Bateman.

Workings consist of several bulldozer cut, hand dug cast, one short tunnel about 30' long and one shaft 45' deep.

The claims are staked on a north northeast trending ridge. They form a less heart shaped or triangular with the point to the north. The body extends down into sec. 7.

The rocks that occur on top of the ridge are highly altered, primary taffy, clayey tuffs, buff breccia. They are highly broken and where not kaolinized(?). They have zones of silification and sparsal cristal planar mineralization. Much clay alteration and iron staining. There is abundant quartz...
Quartz are yet in also consist of opal-chalcedony, tepee-matrix.

The Cinnabar usually occurs as veins or veinlets in the flux, but is also found as coating on clay shales, etc. and locally, sparsely disseminates in distinct crystals.

Remnants of basalt flows are seen on the flanks of the ridge where they possibly lapped up on the higher plains.

To the south about 1 mile there is a narrow rhyolite cleft. Fitzwater Point to the east appears to be a center of acid volcanic activity and lithophysal rhyolite is reported from nearby localities.

The tuffs are generally incompressible and were sheared by faulting and intrusive action, then hot solutions and gases permeated the whole rhyolite, with resulting clay alteration and veinal-like silicification. In one east-west trending pyt vein was seen in broken tuff, but most...
These flows quartz cobbles & boulders are residual accumulations and only.

One Rattlesnake #1 for 1959 on road along Dry Creek.

Road to Hawthorne + Hawthorne 7:00 P.M.
Quarry Mountain Area

1. Angel Peak Mine - sec. 32, T. 37 S., R. 17 E.
 Production - 34 flakes
 Ref. Brookes
 ✓

2. Crow Prospect - NE
c
 sec. 34
 ✓

3. Mauripinta Group -
 24 and 35 T. 37 S., R. 16 E.
 9 claims
 ✓

4. Rosalita Prospect -
 sec. 5, T. 38 S., R. 17 E.
 ✓
Mercury

Carrie Property - sec. 34, T. 32 S., R. 16 E.
production: known 2½ flasks
north/south zone of multiple shearing, brecciation, hydrothermal alteration last activity known - 1958

References - Brooks, R. C. P., 1941 USGS Bull. 936-B

Pinto group - sec. 6, T. 41 S., R. 18 E.
production: none

References - Brooks

Map

Batman Prospect - sec. 4, T. 41 S., R. 18 E.
about 1½ miles east of Pinto group.

Map

Chewaucan river - sec. 9, 16 E., T. 34 S., R. 18 E.
on banks Chewaucan River near Benfield dam site.
soft adit - discovered about 1935.

Map

O'Leary Prospect

Devin Ranch Prospect
Pinto Claims - Cinnabar - Dan Morris, George Johnston, George Huntley, George Bateman. 6 claims near the center south of sec. 6, T. 41 S., R. 18 E.

Workings - several bull dozer cuts - heading shafts - one short tunnel - 25' long - one shaft - 45' deep.

The rocks that occur on top of a head slope ridge that extends down into sec. 7, are highly altered pumice tuffs, clayey tuffs, lapilli tuffs, and tuff breccia - extremely broken with zones of silicification - much clay alteration, or staining. There is abundant quartz float up to 2' in diameter - resembles vein quartz at times. There is Cinnabar occurring as vein disseminated in the quartz - Cinnabar is also found locally, sparsely disseminated in the altered tuffs and as fracture coatings.

There are remnants of basalt flows on the flanks of the hill that may represent flows that layed up on the high in the area.

The tuffs are generally incompetent and were shown by exposure, alteration, and gases have permeated the whole ridge top. Quartz is found mainly as float - one small vein 3" wide strikes N 85° E vertical was seen in the tuffs.
Quicksilver
Summers Lake
Peasley Area

Chewaucan River Occurrence
sec. 9, T. 35 S., R. 18 E.
Ref. Brooks
Short circuit on bank of Chewaucan River discovered 1925.

Currie Prospect
sec. 36, T. 35 S., R. 16 E.
Ref. Brooks & Ross
Production 21 fluids.

O'Leary Prospect
sec. 5, T. 35 S., R. 18 E.
10 mi. S. of Peasley

Prospects on Winter Ridge in vicinity of Summers Lake.
Claim record: Lake County.
Sample Record

STATE DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES

PROJECT SAMPLE RECORD

- **QG-202, 203, 204, 205, 206**
- **Hg**

Samples Submitted by: Max Schafer (DOGAMI)

Address: P.O. Box 417, Grants Pass, Ore.

Date: 7-16-56

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mine or Prospect</th>
<th>Type</th>
<th>District</th>
<th>S.</th>
<th>T.</th>
<th>R.</th>
<th>Assay For</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-202 - P-</td>
<td>Manzanita</td>
<td>channel</td>
<td>Lake County</td>
<td>26,27,34,35-37</td>
<td>S.</td>
<td>16 E.</td>
<td>Hg</td>
</tr>
<tr>
<td>i-203 - P-</td>
<td></td>
<td>grab</td>
<td></td>
<td>26,27,34,35-37</td>
<td>S.</td>
<td>16 E.</td>
<td>Hg</td>
</tr>
<tr>
<td>i-204 - P-</td>
<td></td>
<td>grab</td>
<td></td>
<td>26,27,34,35-37</td>
<td>S.</td>
<td>16 E.</td>
<td>Hg</td>
</tr>
<tr>
<td>i-205 - P-</td>
<td></td>
<td>channel</td>
<td></td>
<td>26,27,34,35-37</td>
<td>S.</td>
<td>16 E.</td>
<td>Hg</td>
</tr>
<tr>
<td>i-206 - P-</td>
<td></td>
<td>grab</td>
<td></td>
<td>26,27,34,35-37</td>
<td>S.</td>
<td>16 E.</td>
<td>Hg</td>
</tr>
</tbody>
</table>

Descriptions:

- **QG-202** — Clayey rhyolite with cinnabar stain.
- **203** — Rhyolite with cinnabar on fractures.
- **204** — Rhyolite tuff with leaching and quartz & cinnabar min.
- **205** —
- **206** — Fine-grained rhyolite tuff with no visible mineralization.

Results:

<table>
<thead>
<tr>
<th></th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-19961</td>
<td>QG-202</td>
</tr>
<tr>
<td>P-19962</td>
<td>QG-203</td>
</tr>
<tr>
<td>P-19963</td>
<td>QG-204</td>
</tr>
<tr>
<td>P-19964</td>
<td>QG-205</td>
</tr>
<tr>
<td>P-19965</td>
<td>QG-206</td>
</tr>
</tbody>
</table>
DIGMORE CLAIMS (Hg)

Owner: Land is owned by deed (?) to William Rehart, Lakeview. A lease-partnership deal on the mercury occurrence was given to John and Weyland Roush, Lakeview.

Location: The occurrence is located in the NE4, sec. 12, T. 38 S., R. 20 E., Lake County. The prospect is reached by traveling north on Highway 395 approximately 7 miles, to the Salt Creek road, then east on the Salt Creek road about 2½ miles. The prospect is just north of the Salt Creek road.

Development: Exploration in progress June 9, date of visit. Methods were removal of the 1-foot or less of soil cover, and trenching with bulldozer, and digging of prospect pits. Object of exploration is to deal with private company for mining.

Geology: Mercury mineralization is present in a bedded series of altered volcanic tuffs. Clayey tuffs, tuffs, and opalized rocks are present. Some of the opalized rocks are brecciated. Banding parallel to bedding is common in the opalized rocks.

The brittle opalized rocks are badly fractured and bedding planes are well developed. Some vertical fractures or shears can be found.

The mercury is present as cinnabar (HgS). The mineral is partly associated with the opalization, partly coating fractures in opalized material, and partly disseminated in clayey altered tuffs.

The cinnabar is in streaks and bands throughout the opalized rock, giving the material a reddish banded appearance. Breccia fragments often contain cinnabar. The greater part of the material is of this type - a
typical banded or reddish opaline material.

Mercury is frequently more heavily concentrated in narrow seams or fractures which are usually vertical. The hard, brittle, broken rock is heavily coated with cinnabar for 6 inches to 1 foot on each side of the fracture. These fractures contain very sparse manganese staining and some hematite and limonite. No other minerals were noted at any spot on the property.

Some cinnabar is found disseminated throughout small areas of clayey tuff. At the time of the examination this type of ore seemed to be minor in amount.

It is evident that the banded cinnabar is very closely associated with the silicification (opalization) of tuffaceous or other porous rocks. The mineralization must have been contemporaneous with at least part of the silicification. Since cinnabar is also coating fractures there must have been later mineralization after some movement of the ground. Whether this mineralization is supergene or not, is not known, but there were no signs of leaching of mercury in the areas examined.

Economics: The deposit offers a possibility for a large low-grade operation. There are reported occurrences to the east of the deposit which were not examined, but it is felt that there must be continuous mineralization for possibly 500 feet. A mineralized zone 300 feet by 100 feet was examined, and the possibilities are very good for extending this distance.

The deposit is very similar to those described by Yates in U.S.G.S. Bull. 931-N, Quicksilver Deposits of the Opalite District, Malheur County, Oregon, and Humboldt Co., Nevada.
Exploration: The primary purpose of exploration work should be to extend the surface deposits to their full extent. The only hope of the property probably is to develop a surface operation of large tonnage.

Diamond drilling was attempted at the prospect with little success. Little core was recovered, and this was principally from barren rock. At a very shallow depth, water was lost, and no cuttings were recovered. Thus no sample at all was recovered.

<table>
<thead>
<tr>
<th>Samples:</th>
<th>QG-145</th>
<th>Pit #1</th>
<th>0.6 lb./T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>146</td>
<td>Pit #2</td>
<td>4.0 "</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>Pit #4</td>
<td>0.3 "</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td>Pit #6</td>
<td>1.6 "</td>
</tr>
</tbody>
</table>

Report by: Max Schafer July 1956

Visited: June 9, 1956.

* * * * *