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Introduction Differences in earthquake rupture scenarios for the Cascadia subduction
zone contribute large uncertainties for simulations of tsunami inundation used to mitigate risk
along the U.S. Pacific Northwest coast. Marine and coastal paleoseismic evidence now offer rare
insight into rupture variability over multiple Cascadia earthquake cycles.
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To explore an array of geologically reasonable Cascadia tsunami scenarios, we 1) characterize

earthquake sources consistent with paleoseismology and forearc structure, 2) use elastic models Portland /4 Seafloor spreading ridge

of vertical coseismic deformation as inputs to simulate tsunami inundation at Bandon, Oregon, North |\ Verticalstrike-slip fault
and 3) compare simulation results with tsunami deposits in Bradley Lake, ~10 km south of Bandon. P;:‘tfi‘ Americd / submarine channels
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We use Okada’s (1985) fault dislocation model B. Shallow buried rupture 2 B
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Decoupled regions (grey lense-shaped areas) of the central Structure of the Cascadia accretionary wedge west of northern Oregon (Goldfinger, 012 | f: Coast
Cascadia margin (Priest et al., 2009) interpreted from 1994). Characteristics of the younger outer wedge (light blue) include low surface slope P — - Cape Blanco =
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Validating Tsunami Simulations Tsunami simulations using the hydrodynamic model SELFE are compared to 13 tsunami deposits at
Bradley Lake. Deposits of the 1700 tsunami require minimum slip of 13 m using a regional symmetric slip model. Augmenting uplift with a splay fault /. Hydrodynamic Model SELFE
reduces slip by ~1 m. Earlier tsunamis, likely smaller than the 1700 wave, probably reached the lake when coastal erosion shifted the shoreline farther S— -
landward. Simulations with these conditions require minimum slip of ~9 m accrued over 280 yr —still longer than the shortest intervals between
turbidites (~130-260 yr) that correlate with tsunami deposits in the lake. Disparities between the shortest turbidite recurrence intervals and tsunami
evidence implying larger coseismic slip suggest release of strain stored over prior earthquake cycles or underestimation of tsunamis by the simulations.
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5. Conceptual Framework
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depoilteldllar%dwarl;:l—thlgmmdgdsand sheets SemitanENel : Historical aerial photography (left) show changes in vegetation and coastal geomorphology over the last
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Photographs of Bradley Lake, located near Bandon, Oregon, USA. (Left) View of Bradley Lake to the west. to run tsunami simulations.

looking west toward barrier sand dune. (Middle) Standing on top of the barrier sand dune that
dams Bradley Lake looking west toward the Pacific Ocean. (Right) Looking east from the sand dune
toward the improvised drilling platform used to core lake sediment.

AD 1700 Tsunami Simulation

Time after earthquake:
17mini9s

Kelsey et al. (2005) concluded that these
events were best explained by Cascadia
tsunamis that inundated Bradley Lake on _
r average every 390 years. Debris

Time after earthquake:
19min20s

Time after earthquake:
15mini9s

Time after earthquake:
13min19s

4 — il

forer = 00,1020 G

_h-ri & DAL 18 |u.IJ'l'I-"a1.j F-.- = rq-n-1 Ti Il.;:';:'_l:hw. ||i F-.. = rqf;|'|1'|l';,‘;:-_|:p||qi' ||i

Pacific Ocean 2r£d pulse

Barrier sand dune Bradley Lake tsunami deposit. |

Drilling platform The photo at right shows the <o
‘ sequence of deposits related to

a tsunami that entered the lake

| about 1,000 years ago. Mud clasts

1%t pulse

Bradley Lake ‘ Snapshots of a tsunami simulation. Results of the AD 1700 tsunami simulation using a splay fault source
Black box in above figure shows | model, 360 year recurrence interval (or ~12 m slip) run on the 1700 landscape with the AD 1700 tide
the location of the sand deposit hindcast by Mofjeld et al. (1997). Along the southern Cascadia subduction zone, turbidite recurrence

in the context of the lake Eroded contact H ; intervals range between 175 - 340 yrs |mply|ng 6-11 mof S|Ip per event.
stratigraphy.
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However, results from the AD 1700 simulations suggest longer recurrence intervals (360 - 400 years) and
hence larger slips (12 - 13 m) are necessary to trigger a tsunami that reaches Bradley Lake.

8. Cascadia Tsunami Simulations

at Bandon, Oregon 9. Maximum Flow Depth and Velocity Fields 10. Tsunami Time Histories
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Inundation lines for selected Cascadia tsunami scenarios using splay Maximum flow depth at Bandon, Oregon for Cascadia tsunami Maximum flow velocity at Bandon, Oregon for Cascadia tsunami Time histories for Cascadia tsunami scenarios showing wave height
fault earthquake source models. Open circle marks reference point used scenario M-1. scenario M-1. versus time after earthquake (top) and flow speed versus time (bottom).

for time histories plotted at far right. See map (far left) for location of reference point.






