# *Comparison of data from Oregon tsunami scenarios to the ASCE 7 2475-yr scenario and tsunami force calculations*

Joseph Zhang

#### Virginia Institute of Marine Science Center for Coastal Resource Management

Designing for Tsunamis: New Oregon Data & Anticipated changes to the Building Code, Portland, OR, May 2015



## Outline

□ Prior DOGAMI tsunami CSZ sources and simulations

- Simulation with ASCE 7 source and comparisons for 3 coastal regions of Oregon
- □ Energy Grade Line analysis for DOGAMI and ASCE scenarios
- □ Main goals
  - To see if we can utilize any of the existing sources for ASCE force calculation
  - To compare results (max. surface elevation and speed) from ASCE method and our 2D model

#### **Cross-scale tsunami modeling for OR coastal communities**



#### SCHISM: Semi-implicit Cross-scale Hydroscience Integrated System Model

- A derivative product of SELFE, distributed with Apache v2 license
- Galerkin finite-element and finite-volume approach: *generic* unstructured grids (mixed triangles and quadrangles)
  - ELCIRC (Zhang et al. 2005), UnTRIM (Casulli 1990; 2010), SUNTANS (Fringer 2006): finitedifference/volume approach ->orthogonal grid
- \* Semi-implicit time stepping: no mode splitting  $\rightarrow$  large time step and no splitting errors
- ◆ Eulerian-Lagrangian method (ELM) for advection → more efficiency & robustness
- All matrices are positive, definite, sparse and symmetric (robust solver)
- Hybrid SZ coordinates or LSC<sup>2</sup> (Zhang et al. 2015) in the vertical: one grid with 1D/2D/3D capability
- Configurable
  - Cartesian or spherical coordinates
  - > 2D or 3D
  - Hydrostatic or non-hydrostatic
- Mass conservative transport (upwind/TVD/...)



www.schism.wiki





Color code: Open-released Ready-to-be-released In-development Free-from-web

#### Evacuation maps for OR coastal communities



http://www.oregongeology.org/tsuclearinghouse/



Tsunami Evacuation Zone Map Viewer Search by address or coastal area. web map | iPhone app | Android app 

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Tsunami Evacuation Brochures For coastal communities. Fact Sheet

#### Model set-up

- Use same high-resolution grids we generated before for each region of OR coast
  - Large domain to avoid wave reflection
  - Variable grid resolution: offshore, 20m @ shoreline, reaching ~5m onshore (up to 4.4 million nodes, 9 million triangles)
- PMEL Unit sources from Yong Wei for ASCE simulations
- Parameters: 0 friction (conservatism; also tested n=0.025); 1 vertical layer (2DH)
- 2-12 hour simulations that cover wave generation, propagation and inundation
- Outputs: elevation & velocity at all nodes and times every 40 sec; maximum of elevation & velocity

#### Seaside









#### 

#### Max. elevation (ASCE source)





#### Max. Velocity (ASCE source)



#### Seaside comparison @100m isobath



#### 

### Inundation comparison



Newport

#### Source (c/o Yong Wei)



Source models



#### Max. Elevation (ASCE source)





#### Newport comparison @ 100m isobath





#### Inundation comparison



#### Effects of bottom friction



#### Bandon



Source models

#### Max. elevation



#### Max. velocity



#### 

#### Bandon comparison @ 100m isobath





### Inundation comparison





# Energy Grade Line analysis comparisons Preliminary results

#### 

### Energy Grade Line Analysis



direction of analysis, starting at the point of Runup

Figure 6.6-1 Energy Method for Overland Tsunami Inundation Depth and Velocity

R = Design tsunami runup elevation above NAVD88 datum  $x_R$  = Design inundation distance inland from NAVD88 shoreline  $z_i$  = Ground elevation above NAVD88 datum at point i

ASCE 7, Chapter 6

#### EGL with Yong's sources



### Newport, transect 4

ASCE source (*n*=0)





EGL (ASCE 7) SCHISM

XXL1

#### 

### Newport, transect 4

ASCE source (*n*=0)



### Newport, transect 5





Ę



### Seaside, transect 1



## Seaside, transect 2

L1



Ê



## Seaside, transect 3

30 -20 -10 -

20

Speed

5000

4000

2000

1000



### Bandon, transect 6



### Bandon, transect 7

- Input Transect Profile

Shoreline Point

Runup Point

- Input Transect Profile

ASCE7 Tsunami Elevation

ASCE7 Momentum Flux

- Input Transect Profile Shoreline Point Runup Point

- Input Transect Profile ASCE7 Tsunami Elevation SCHISM 200

ASCE7 Momentum Flux

200

200

- SCHISM 200

200

200

200

SCHISM



### Bandon, transect 8

![](_page_37_Figure_1.jpeg)

### **Preliminary conclusions**

- ASCE tsunami inundation is similar to L1
- Some similarities are observed between EGL and our model results
- Need to redo EGL analysis to use more resolution in transects; also the momentum flux calculation needs to be revised for both EGL and our model