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GHG
Reductio

GHG
Storage

Citation

Forest/shrublands

Forest/shrublands

Forest/shrublands

Forest/shrublands

Forest/shrublands

Reduced degradation:
forest and shrubland

Avoided conversion of
forest and shrubland

Fire management

Improved plantations

Improved/natural
forest management in
logged forest

Stopping further spread of
invasive species and pathogens,
managing for drought and
extreme weather

Avoided carbon emission
resulting from changing forest
types after deforestation;
increasing carbon storage
through continued forest and
shrub growth

Additional CO, (and other GHG)
sequestration by managed
forest fire (prescribed fire or fire
control) compared to
unmanaged wildfire.
Regeneration of biomass after
fires.

Reducing harvests, extending
harvest rotation length, and
improving the disposal of
logging residues/slash through
mulching/chipping of slash
Natural regeneration of natural
forests and the reduction of CO,
emissions to the atmosphere
due to the cessation of natural
forest logging; extension of
logging rotations; reduced-
impact logging practices that
avoid damage to non-
commercial trees; voluntary

1,2,12, 26,27

1,3,4,13, 14,16, 17, 19, 20, 23, 25,
34

1,3,9,12,13,19, 25, 34

1,3,9,12,13, 14, 16, 19, 34

1,2,3,4,9, 12, 14, 16, 19, 20, 24, 25,
34



Forest/shrublands

Forest/shrublands

Forest/shrublands

Urban forest
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Reduced
deforestation: forest
and shrubland
conservation; forest
and shrubland
protection

Reforestation;
restoration of forest
and shrubland

Afforestation

Reduced urban forest
degradation

certification programs;
regulatory requirements that
limit impacts from logging;
improved land tenure

Includes all forms of
deforestation not included in
other activities/pathways;
conservation of old-growth
forest

Additional CO, sequestration
potential from restoring forest
(including slash land, barren
land, mountain, sloping
cropland, or after wildfire) or
shrubland to areas that were
previously forest or shrubland.
Improving forest and shrubland
quality (e.g. replanting with
native species). Also includes
restoring tidal and riparian
forest.

Encouraging conversion of other
land cover types, including
urban, to forest or shrubland
Stopping further spread of
invasive species and pathogens,
managing for drought and
extreme weather

2,9,14,24

1,2,3,4,9, 12, 13, 14, 15, 16, 17, 18,
19, 20, 23, 30, 34

2,8,9,12,16, 24, 34

2,4,9,31,32,33



Urban forest

Wetland

Wetland

Wetland

Wetland

Wetland

Wetland
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Afforestation in
developed areas

Avoided
wetland/peatland
conversion;
wetland/peatland
protection

Reduced wetland,
peatland, seagrass
degradation

Peatland restoration

Reduced seagrass
degradation and
conversion; seagrass
protection

Coastal and terrestrial
wetland restoration

Seagrass restoration

Encouraging conversion of other
land cover types within urban
areas to urban forest;
incorporating more trees in
urban areas

Avoided CO, emission of above-
and belowground biomass and
soil carbon due to avoided loss
of wetlands and peatlands

Improved water quality;
improved development
practices like reduction of
sediment loads and temperature
controls; avoiding hydrological
disturbance

Avoided oxidation and leaching
of soil carbon balanced against
methane emission due to soil
rewetting

Improved water quality;
implementing sustainable
coastal development practices
and fisheries practices; reducing
risk of disturbance

Avoided oxidation of soil carbon
and enhanced ecosystem carbon
sink due to soil rewetting in
mangroves, salt marshes, and
seagrass beds.

Additional carbon sequestration
in below-ground biomass and
soil carbon by restoring seagrass

1,9, 15, 18,19, 31, 33

1,2,3,4,9,14,17,34

2,9,12,17, 23, 24, 25

1,2,3,13,16,17, 18, 22, 23, 24

2,9,12,19, 36,37, 38, 39,40

1,2,3,4,9,12,17,18, 22,33

19, 37, 39, 40



Avoided CO, emissions of

Avoided grassland belowground biomass and soil
Grassland/rangeland conversion; grassland carbon by avoiding the X X 1,2,3,9, 16,19, 23, 34
protection conversion of grassland to urban
or cropland

Optimizing grazing intensity,
planting legumes in pastures,
improving feed (inclusion of
energy-dense feeds (e.g., cereal
grains) in the ration), animal
management (e.g., improved
Grassland/rangeland Impr.oved/rotational livestock t?reeds, increased x x 1,3,9,12, 15, 16, 19, 23, 34, 54
grazing reproductive performance,
health, and liveweight gain);
additional carbon sequestration
in above- and belowground
biomass and soil carbon by
grassland fencing management
and pasture sowing
Prevent conversion to invasive
annual plant-and juniper- X X 9,13, 35, 42, 43, 44, 45, 46, 54
dominated systems
Additional CO, (and other GHG)
Grassland fire sequestratipn by managec.i fire;
Grassland/rangeland other practices that contribute X X 24, 25, 34, 44, 45, 47
management o
to lower fire risk not captured by
other activities/pathways
Additional carbon sequestration
in below-ground biomass and
soil carbon by restoring deep-
Grassland/rangeland Grassland restoration rooted native perennial grasses X X 3,9,12,13,15, 16, 19, 34
to areas impacted by invasive
species. Restoring native
riparian grass species.

Reduced grassland

I I
Grassland/rangeland degradation
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Croplands

Croplands

Croplands

Croplands
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Nutrient management

Improve irrigation
strategies and
efficiencies

Prescribed/rotational
grazing

No-till/reduced tillage

Converting idle or unproductive
cropland to native grasses.

Improving crop nutrient
management can reduce N,O
emission by reducing the
overuse of fertilizer and
improvement in N fertilizer use
efficiency. Improve N application
timing; replace N fertilizer with
soil amendments such as
compost or manure

Irrigating at appropriate times
reduces overall GHG emissions
from soils

Managing the harvest of
vegetation with grazing and/or
browsing animals to reduce crop
residue and reduce GHG of
providing other feed to
livestock; increase organic
carbon stocks in soils

Limiting soil disturbance to
manage amount, orientation,
and distribution of crop and
plant residue on the soil surface
year-round

1,3,4,9, 12,13,16, 19, 25, 34

9,10, 48, 49

9,12, 15,19, 25, 34

4,9, 11, 12,13, 14, 15, 57



Croplands

Croplands

Croplands

Croplands

Croplands
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Conservation
agriculture/cover
crops/strip cropping

Biochar/compost
amendments

Legume
crops/legumes in
pastures

Trees in
croplands/agroforestry

Avoid conversion of
agriculture

Additional soil carbon
sequestration by cover crops
(i.e., green manure crops), crop
rotation, edge-of-field
herbaceous conservation
practices, and strip cropping.
Area suitable for planting cover
crops includes cropland already
planted with a perennial or
winter crop.

Amending agricultural soils with
biochar can increase the soil
carbon pool by converting labile
carbon to recalcitrant carbon
through pyrolysis. Biochar

mainly comes from crop residue.

Applying composted organic
wastes to cropland or pastures.
Increase carbon sequestration in
soils and reduce need for
application of N; growing forage
grasses and legumes in a way
that provides food sources for
livestock while increasing soil
carbon storage

Trees in windbreaks and riparian
areas, alley cropping, and
farmer-managed natural
regeneration (FMNR)

Avoid conversion to urban land
cover

1,3,4,9, 12,13, 15, 16, 18, 19, 20, 21,
22,34,57

3,4,12, 14, 15, 16, 19, 23, 24, 34, 48,
55, 56, 57

4,5, 15,16, 23, 34

1,2,4,9,12, 15, 16, 18, 19, 20, 23, 24,
25, 28, 34

9, 50, 51, 52



Integrating trees, forage crops,
and livestock systems on the

Croplands Silvopasture same land through planting of - X 4,6,9,12, 15, 53
trees and forages on same lands
that animals graze
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