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N&WL Sector Activity/Pathway 
Description and/or examples, if 
needed 

GHG 
Reductio 

GHG 
Storage 

Citation 

Forest/shrublands 
Reduced degradation: 
forest and shrubland 

Stopping further spread of 
invasive species and pathogens, 
managing for drought and 
extreme weather 

x x 1, 2, 12, 26, 27 

Forest/shrublands 
Avoided conversion of 
forest and shrubland 

Avoided carbon emission 
resulting from changing forest 
types after deforestation; 
increasing carbon storage 
through continued forest and 
shrub growth 

x x 
1, 3, 4, 13, 14, 16, 17, 19, 20, 23, 25, 
34 

Forest/shrublands Fire management 

Additional CO₂ (and other GHG) 
sequestration by managed 
forest fire (prescribed fire or fire 
control) compared to 
unmanaged wildfire. 
Regeneration of biomass after 
fires. 

x x 1, 3, 9, 12, 13, 19, 25, 34 

Forest/shrublands Improved plantations 

Reducing harvests, extending 
harvest rotation length, and 
improving the disposal of 
logging residues/slash through 
mulching/chipping of slash 

x x 1, 3, 9, 12, 13, 14, 16, 19, 34 

Forest/shrublands 
Improved/natural 
forest management in 
logged forest 

Natural regeneration of natural 
forests and the reduction of CO₂ 
emissions to the atmosphere 
due to the cessation of natural 
forest logging; extension of 
logging rotations; reduced-
impact logging practices that 
avoid damage to non-
commercial trees; voluntary 

x - 
1, 2, 3, 4, 9, 12, 14, 16, 19, 20, 24, 25, 
34 
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certification programs; 
regulatory requirements that 
limit impacts from logging; 
improved land tenure 

Forest/shrublands 

Reduced 
deforestation: forest 
and shrubland 
conservation; forest 
and shrubland 
protection 

Includes all forms of 
deforestation not included in 
other activities/pathways; 
conservation of old-growth 
forest 

x x 2, 9, 14, 24 

Forest/shrublands 
Reforestation; 
restoration of forest 
and shrubland 

Additional CO₂ sequestration 
potential from restoring forest 
(including slash land, barren 
land, mountain, sloping 
cropland, or after wildfire) or 
shrubland to areas that were 
previously forest or shrubland. 
Improving forest and shrubland 
quality (e.g. replanting with 
native species). Also includes 
restoring tidal and riparian 
forest. 

- x 
1, 2, 3, 4, 9, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 23, 30, 34 

Forest/shrublands Afforestation 
Encouraging conversion of other 
land cover types, including 
urban, to forest or shrubland 

- x 2, 8, 9, 12, 16, 24, 34 

Urban forest 
Reduced urban forest 
degradation 

Stopping further spread of 
invasive species and pathogens, 
managing for drought and 
extreme weather 

x x 2, 4, 9, 31, 32, 33 
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Urban forest 
Afforestation in 
developed areas 

Encouraging conversion of other 
land cover types within urban 
areas to urban forest; 
incorporating more trees in 
urban areas 

- x 1, 9, 15, 18, 19, 31, 33 

Wetland 

Avoided 
wetland/peatland 
conversion; 
wetland/peatland 
protection 

Avoided CO₂ emission of above- 
and belowground biomass and 
soil carbon due to avoided loss 
of wetlands and peatlands 

x x 1, 2, 3, 4, 9, 14, 17, 34 

Wetland 
Reduced wetland, 
peatland, seagrass 
degradation 

Improved water quality; 
improved development 
practices like reduction of 
sediment loads and temperature 
controls; avoiding hydrological 
disturbance 

x x 2, 9, 12, 17, 23, 24, 25 

Wetland Peatland restoration 

Avoided oxidation and leaching 
of soil carbon balanced against 
methane emission due to soil 
rewetting 

x x 1, 2, 3, 13, 16, 17, 18, 22, 23, 24 

Wetland 

Reduced seagrass 
degradation and 
conversion; seagrass 
protection 

Improved water quality; 
implementing sustainable 
coastal development practices 
and fisheries practices; reducing 
risk of disturbance 

x x 2, 9, 12, 19, 36, 37, 38, 39, 40 

Wetland 
Coastal and terrestrial 
wetland restoration 

Avoided oxidation of soil carbon 
and enhanced ecosystem carbon 
sink due to soil rewetting in 
mangroves, salt marshes, and 
seagrass beds. 

x x 1, 2, 3, 4, 9, 12, 17, 18, 22, 33 

Wetland Seagrass restoration 
Additional carbon sequestration 
in below-ground biomass and 
soil carbon by restoring seagrass 

x x 19, 37, 39, 40 
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Grassland/rangeland 
Avoided grassland 
conversion; grassland 
protection 

Avoided CO₂ emissions of 
belowground biomass and soil 
carbon by avoiding the 
conversion of grassland to urban 
or cropland 

x x 1, 2, 3, 9, 16, 19, 23, 34 

Grassland/rangeland 
Improved/rotational 
grazing 

Optimizing grazing intensity, 
planting legumes in pastures, 
improving feed (inclusion of 
energy-dense feeds (e.g., cereal 
grains) in the ration), animal 
management (e.g., improved 
livestock breeds, increased 
reproductive performance, 
health, and liveweight gain); 
additional carbon sequestration 
in above- and belowground 
biomass and soil carbon by 
grassland fencing management 
and pasture sowing 

x x 1, 3, 9, 12, 15, 16, 19, 23, 34, 54 

Grassland/rangeland 
Reduced grassland 
degradation 

Prevent conversion to invasive 
annual plant-and juniper-
dominated systems 

x x 9, 13, 35, 42, 43, 44, 45, 46, 54 

Grassland/rangeland 
Grassland fire 
management 

Additional CO₂ (and other GHG) 
sequestration by managed fire; 
other practices that contribute 
to lower fire risk not captured by 
other activities/pathways 

x x 24, 25, 34, 44, 45, 47 

Grassland/rangeland Grassland restoration 

Additional carbon sequestration 
in below-ground biomass and 
soil carbon by restoring deep-
rooted native perennial grasses 
to areas impacted by invasive 
species. Restoring native 
riparian grass species. 

x x 3, 9, 12, 13, 15, 16, 19, 34 
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Converting idle or unproductive 
cropland to native grasses. 

Croplands Nutrient management 

Improving crop nutrient 
management can reduce N₂O 
emission by reducing the 
overuse of fertilizer and 
improvement in N fertilizer use 
efficiency. Improve N application 
timing; replace N fertilizer with 
soil amendments such as 
compost or manure 

x - 1, 3, 4, 9, 12, 13, 16, 19, 25, 34 

Croplands 
Improve irrigation 
strategies and 
efficiencies 

Irrigating at appropriate times 
reduces overall GHG emissions 
from soils 

x - 9, 10, 48, 49 

Croplands 
Prescribed/rotational 
grazing 

Managing the harvest of 
vegetation with grazing and/or 
browsing animals to reduce crop 
residue and reduce GHG of 
providing other feed to 
livestock; increase organic 
carbon stocks in soils 

x x 9, 12, 15, 19, 25, 34 

Croplands No-till/reduced tillage 

Limiting soil disturbance to 
manage amount, orientation, 
and distribution of crop and 
plant residue on the soil surface 
year-round 

x x 4, 9, 11, 12, 13, 14, 15, 57 
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Croplands 
Conservation 
agriculture/cover 
crops/strip cropping 

Additional soil carbon 
sequestration by cover crops 
(i.e., green manure crops), crop 
rotation, edge-of-field 
herbaceous conservation 
practices, and strip cropping. 
Area suitable for planting cover 
crops includes cropland already 
planted with a perennial or 
winter crop. 

- x 
1, 3, 4, 9, 12, 13, 15, 16, 18, 19, 20, 21, 
22, 34, 57 

Croplands 
Biochar/compost 
amendments 

Amending agricultural soils with 
biochar can increase the soil 
carbon pool by converting labile 
carbon to recalcitrant carbon 
through pyrolysis. Biochar 
mainly comes from crop residue. 
Applying composted organic 
wastes to cropland or pastures. 

- x 
3, 4, 12, 14, 15, 16, 19, 23, 24, 34, 48, 
55, 56, 57 

Croplands 
Legume 
crops/legumes in 
pastures 

Increase carbon sequestration in 
soils and reduce need for 
application of N; growing forage 
grasses and legumes in a way 
that provides food sources for 
livestock while increasing soil 
carbon storage 

- x 4, 5, 15, 16, 23, 34 

Croplands 
Trees in 
croplands/agroforestry 

Trees in windbreaks and riparian 
areas, alley cropping, and 
farmer-managed natural 
regeneration (FMNR) 

- x 
1, 2, 4, 9, 12, 15, 16, 18, 19, 20, 23, 24, 
25, 28, 34 

Croplands 
Avoid conversion of 
agriculture 

Avoid conversion to urban land 
cover 

x x 9, 50, 51, 52 
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