Exhibit AA

Electromagnetic Frequencies from Transmission Lines

Nolin Hills Wind Power Project February 2020

Prepared for

d/b/a Nolin Hills Wind, LLC

Prepared by

Tetra Tech, Inc.

Table of Contents

1.0	Introduction	1
2.0	Proposed Transmission Line – OAR 345-021-0010(1)(aa)(A)	
2.1	Assumptions and Methods Used in the Analysis – OAR 345-021-0010(1)(aa)(A)(vi)	1
2.	1.1 Electric and Magnetic Field Background Information	1
2.	1.2 Electromagnetic Frequency Modeling	2
2.2	Distance from Proposed Center Line - OAR 345-021-0010(1)(aa)(A)(i)	4
2.3 001	Occupied Structures within 200 Feet of Proposed Center Line – OAR 345-021-0(1)(aa)(A)(ii) and (iii)	4
2.4	Representative Field Strength along the Proposed Transmission Line – OAR 345-021-0(1)(aa)(A)(iv)	
2.5	Mitigation and Monitoring – OAR 345-021-0010(1)(aa)(A)(v)	
2.6	Proposed Monitoring Program – OAR 345-021-0010(1)(aa)(A)(vii)	6
3.0	Radio and TV Interference	7
4.0	Conclusion	7
5.0	References	7

List of Tables

Table AA-1. Potential Receptors within 200 Feet of Proposed Center Line	. 5
Table AA-2. Overhead Electric Field Calculations	. 5
Table AA-3. Overhead Magnetic Field Calculations	. 6

List of Figures

- Figure AA-1. Typical Double-Circuit Transmission Line
- Figure AA-2. Typical Single-Circuit Transmission Line
- Figure AA-3. Nolin Hills Double-Circuit 230-kV/115-kV Electric Field
- Figure AA-4. Nolin Hills Single-Circuit 230-kV Electric Field
- Figure AA-5. Nolin Hills Double-Circuit 230-kV/115-kV Magnetic Field
- Figure AA-6. Nolin Hills Single-Circuit 230-kV Magnetic Field

List of Attachments

Attachment AA-1. Results of the Bonneville Power Administration Corona and Field Effects Program for the 230-kV/115-kV Double-Circuit Transmission Line

Attachment AA-2. Results of the Bonneville Power Administration Corona and Field Effects Program for the 230-kV Single-Circuit Transmission Line

Acronyms and Abbreviations

AC alternating current

Applicant Nolin Hills Wind, LLC

BPA Bonneville Power Administration

EMF electric and magnetic fields

G gauss

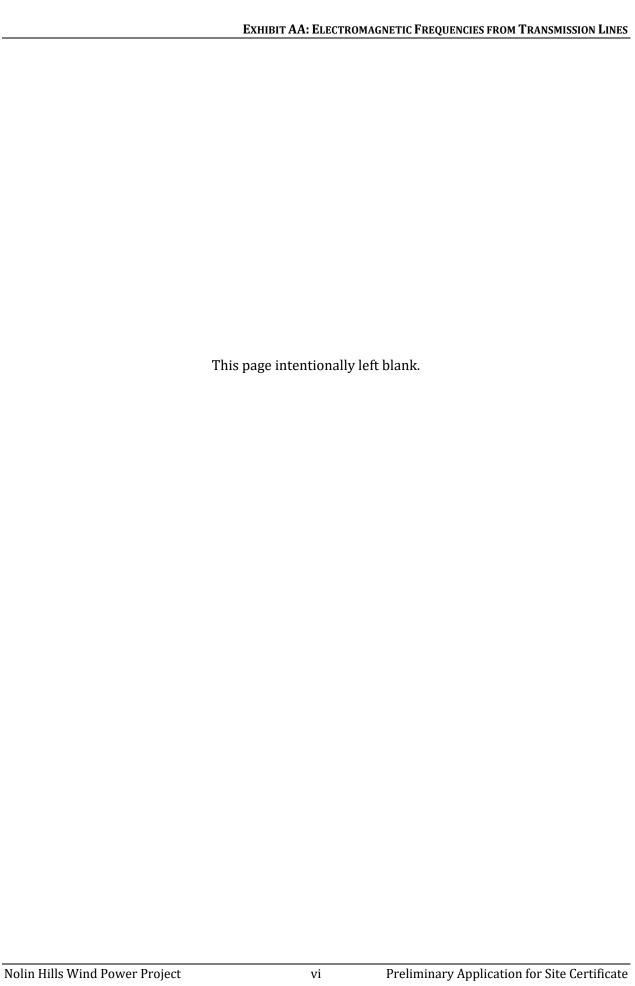
ICNIRP International Commission on Non-Ionizing Radiation Protection

IEEE Institute of Electrical and Electronics Engineers

kA kiloampere

kV kilovolt

kV/m thousands of volts per meter


mG milligauss MHz megahertz

OAR Oregon Administrative Rule
Project Nolin Hills Wind Power Project

ROW right-of-way
TV television

UEC Umatilla Electric Cooperative

V/m volt per meter

1.0 Introduction

This Exhibit AA was prepared to meet the submittal requirements in Oregon Administrative Rule (OAR) 345-021-0010(1)(aa).

2.0 Proposed Transmission Line - OAR 345-021-0010(1)(aa)(A)

OAR 345-021-0010(1)(aa) Exhibit AA. If the proposed energy facility is a transmission line or has, as a related or supporting facility, a transmission line of any size:

(A) Information about the expected electric and magnetic fields, including:

2.1 Assumptions and Methods Used in the Analysis – OAR 345-021-0010(1)(aa)(A)(vi)

(vi) The assumptions and methods used in the electric and magnetic field analysis, including the current in amperes on each proposed transmission line.

2.1.1 Electric and Magnetic Field Background Information

Electric and magnetic fields (EMF) occur throughout nature and are one of the basic forces of nature. Any object with an electric charge on it has a voltage (potential) at its surface and can create an electric field. The change in voltage over distance is known as the electric field. When electrical charges move together (known as "current"), they create forces. These forces are represented by magnetic fields. All electric currents create magnetic fields.

The strength of EMF is related to the voltage and current, respectively, and to the distance away from the source. The strength of the electric field depends on the voltage (higher voltages create higher electric fields) and distance (electric fields grow weaker as the distance from the source increases). The strength of the magnetic field depends on the current or load (higher currents or loads create higher magnetic fields) and distance (magnetic fields grow weaker as the distance from the source increases). For transmission line sources, the arrangement of the conductors (line geometry) and phasing also influence the strength of the EMF.

The electric power distribution system creates alternating current (AC) EMF. In the United States, the power system uses current that alternates 60 times each second (60 hertz). For each electrical circuit, AC power is carried by each of the three-phase conductors. The AC voltage and current in each phase conductor is out of sync with the other two phases by 120 degrees, or one-third of a 360-degree cycle.

Transmission lines also create power-frequency electric and magnetic fields. Since the voltage of a transmission line is held relatively constant (typically within +/-5 percent), the electric field from a transmission line remains steady and is not affected by daily and seasonal fluctuations in usage of electricity by customers. However, the current in a transmission line does fluctuate due to consumer power usage and varies by time of day and also seasonally. Therefore, the magnetic field from a transmission line will also fluctuate (since magnetic field is related to the current or load on the line).

Electric fields are reported in units of volts per meter (V/m) or thousands of volts per meter (kV/m). Magnetic fields are reported in units of gauss (G), or more typically in units of milligauss (mG), which are equal to one-thousandth of a gauss (i.e., 1 mG = 0.001 G).

2.1.1.1 Electric Fields

The State of Oregon has an AC electric field limit of 9 kV/m at one meter above the ground surface in areas accessible to the public, as stated in OAR 345-024-0090.

2.1.1.2 Magnetic Fields

Presently, there are no magnetic field standards for the State of Oregon or federal health standards. Although there are no federal health standards in the United States specifically for 60 hertz, some non-regulatory organizations have developed guidelines: the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). For the general public, the ICNIRP guideline is 2,000 mG (ICNIRP 2010) while the IEEE guideline is 9,040 mG (IEEE 2002).

2.1.2 Electromagnetic Frequency Modeling

2.1.2.1 Modeling Methods

Nolin Hills Wind, LLC (the Applicant) analyzed EMF levels by considering the peak electrical currents expected on the lines. These analyses were conducted conservatively, using the peak electrical currents expected on the lines that produce the highest magnetic fields. Additionally, the double-circuit collector line was modeled so that similar phases were located at the same elevation on each side of the support structure, which results in a conservative analysis. Finally, the modeling was performed at the point midway between transmission structures where the conductors are closest to the ground and where the EMF will be the highest.

The software tool program used for the analyses, Corona and Field Effects Program (Version 3.1), was developed by the Bonneville Power Administration (BPA) and is based on the methods and equations of the *Transmission Line Reference Book* (Electric Power Research Institute 1985).

2.1.2.2 Modeling Assumptions

The following assumptions were made during the development of the models:

Elevation – 1,000 feet;

- Rain rate 1 inch per hour;
- Wind speed 2 miles per hour;
- Detector Information:
 - o Radio interference antenna height 6.6 feet;
 - Television (TV) interference antenna height 9.8 feet;
 - Frequency at which radio interference values are to be calculated 1 megahertz
 (MHz);
 - Frequency at which TV interference values are to be calculated 75 MHz;
 - Magnetic field sensor height 3.3 feet;
 - o Ground conductivity 6.7 millimhos per meter; and
 - Electric field sensor height 3.3 feet;
- 230-kilovolt (kV)/115-kV double-circuit transmission line (Figure AA-1):
 - Width of modeling 200 feet on each side of the centerline. Sample points are taken every 4 feet uniformly in a perpendicular direction to the centerline. The right-ofway (ROW) is estimated at 50 feet on each side of the centerline;
 - Horizontal location of the three conductors 10 feet (A circuit), 13 feet (B circuit), and 10 feet (C circuit) on each side of the double circuit centerline;
 - Height of conductors 24.9 (C circuit), 40.9 (B circuit), and 56.9 (A circuit) feet, respectively;
 - Conductor diameters 1.345 inches:
 - Power 961 amps, or 0.961 kiloamperes (kA);
 - Horizontal location of the two ground wires 6 feet and -6 feet from each side of the double-circuit centerline;
 - o Height of ground wires 63.9 feet; and
 - o Ground wire diameter 0.5 inch;
- 230-kV single-circuit transmission line (Figure AA-2):
 - Width of modeling 200 feet on each side of the centerline. Sample points are taken every 4 feet uniformly in a perpendicular direction to the centerline. The ROW is estimated at 50 feet on each side of the centerline;
 - Horizontal location of the three conductors 10 feet (A circuit), -10 feet (B circuit), and 10 feet (C circuit);
 - Height of conductors 44.9 feet (A circuit), 34.9 feet (B circuit), and 24.9 feet (C circuit);

- o Conductor diameters 1.345 inches;
- o Power 961 amps, or 0.961 kA;
- Horizontal location of the single ground wire 5 feet from on one side of the centerline;
- Height of the single ground wire 54.2 feet; and
- Ground wire diameter 0.5 inch.

2.2 Distance from Proposed Center Line - OAR 345-021-0010(1)(aa)(A)(i)

(i) The distance in feet from the proposed center line of each proposed transmission line to the edge of the right-of-way;

The Nolin Hills Wind Power Project (Project) will interconnect to the regional grid via either publicly owned and operated transmission lines to be constructed locally by the Umatilla Electric Cooperative (UEC), or a new 230-kV transmission line anticipated to be constructed, owned, and operated by the Applicant to the proposed BPA Stanfield Substation.

The Applicant anticipates that the Project will connect to the BPA transmission system via new and upgraded UEC transmission lines from the northern Project substation to the existing UEC Cottonwood Substation, or via a new overhead 230-kV transmission line to the proposed BPA Stanfield Substation north of the Umatilla River. From the Cottonwood Substation, an existing UEC 230-kV transmission line with capacity for the additional power generated by the Project would carry that power north to BPA's McNary Substation. The UEC Cottonwood route is currently considered the primary option, with the BPA Stanfield route as a backup option. The final decision regarding which route will be used will be made by the Applicant based on the final Project construction schedule, BPA and UEC system requirements, anticipated costs, and other factors such as transmission agreements.

The width of the ROW may vary, but will be at a minimum of 50 feet wide along the centerline of each transmission line. This range is within the transmission line corridor width defined in OAR-345-001-0010(13).

2.3 Occupied Structures within 200 Feet of Proposed Center Line – OAR 345-021-0010(1)(aa)(A)(ii) and (iii)

- (ii) The type of each occupied structure, including but not limited to residences, commercial establishments, industrial facilities, schools, daycare centers and hospitals, within 200 feet on each side of the proposed center line of each proposed transmission line;
- (iii) The approximate distance in feet from the proposed center line to each structure identified in (A);

Table AA-1 shows potential receptors within 200 feet of either transmission lines.

Table AA-1. Potential Receptors within 200 Feet of Proposed Center Line

Receptor Number	Type of Structure	Approximate Distance to Transmission Line (Feet)
3	Occupied residence (house)	189
10	Occupied residence (house)	177
47	Occupied residence (house)	93
54	Occupied residence (house)	146
59	Occupied residence (house)	178
71	Occupied residence (house)	107
79	Occupied residence (house)	161
85	Occupied residence (house)	91
107	Occupied commercial building	114

2.4 Representative Field Strength along the Proposed Transmission Line – OAR 345-021-0010(1)(aa)(A)(iv)

(iv) At representative locations along each proposed transmission line, a graph of the predicted electric and magnetic fields levels from the proposed center line to 200 feet on each side of the proposed center line;

Table AA-2 shows the results of the electric field calculations for the overhead 230-kV/115-kV double-circuit transmission lines and 230-kV single-circuit transmission lines. Figures AA-3 and AA-4 provide graphs of the predicted electric field calculations for these lines from the proposed center line to 200 feet on each side of the proposed center line.

Table AA-2. Overhead Electric Field Calculations

			E	lectric Field (kV/m)¹	
Support Structure	Figure	gure Voltage Left Side (200 Feet)		Maximum (Location)	Right Side (200 Feet)	
230-kV/115-kV Double-Circuit Transmission Line	AA-1, AA-3	230 kV	0.052	4.26 (8 feet right of center line)	0.061	
230-kV Single-Circuit Transmission Line	AA-2, AA-4	230 kV	0.042	3.22 (12 feet right of center line)	0.044	
1. Oregon Electric Field Standard is 9 kV/m within the right of way.						

Table AA-3 shows the results of the magnetic field calculations for the overhead transmission lines. Figures AA-5 and AA-6 provide graphs of the predicted magnetic field calculations for these lines from the proposed center line to 200 feet on each side of the proposed center line.

Magnetic Field (mG) **Support Left Side Figure** Voltage Left Side **Right Side Right Side** Structure (200 Centerline **ROW** ROW (200 Feet) Feet) 230-kV/115-kV AA-1, $230 \, kV$ 225.6 Double-Circuit 15.0 30.7 30.7 14.3 AA-5 Transmission Line 230-kV Single-AA-2, Circuit 34.5 kV 3.1 12.0 159.5 12.1 3.1 AA-6 Transmission Line

Table AA-3. Overhead Magnetic Field Calculations

Tables AA-2 and AA-3 show the modeling results at the edges of and the highest values within 200 feet on either side of the centerline of the overhead 230-kV/115-kV double-circuit transmission lines and 230-kV single-circuit transmission lines, respectively. Results from the modeling software can be found in Attachments AA-1 and AA-2 for both support structures. The electric fields on the corridor of the proposed 230-kV/115-kV double-circuit transmission lines do not exceed 9 kV/m (see Figure AA-5). The electric fields on the corridors of the proposed overhead 230-kV single-circuit transmission lines do not exceed 9 kV/m (see Figure AA-6). These figures demonstrate that, for the proposed overhead transmission lines, the maximum electric field modeled is about 4.26 kV/m, which is less than the 9-kV/m standard set forth in OAR 345-024-0090(1).

As identified in Section 2.3, eight occupied residences and one commercial building will be within 200 feet of the overhead transmission lines. However, the maximum electric field modeled based on the 230-kV double-circuit transmission line configuration analyzed is less than 48 percent of the 9-kV/m standard set forth in OAR 345-024-0090(1). Therefore, the potential for human exposure to EMF from either the transmission lines is minimized.

2.5 Mitigation and Monitoring – OAR 345-021-0010(1)(aa)(A)(v)

(v) Any measures the applicant proposes to reduce electric or magnetic field levels.

The highest electric fields within the ROW will be much less than the Oregon standard of 9 kV/m, and therefore no mitigation is required.

As the maximum electrical field modeled in Section 2.4 are lower than the 9-kV/m standard set forth in OAR 345-024-0090(1), no monitoring program is proposed by the Applicant.

2.6 Proposed Monitoring Program - OAR 345-021-0010(1)(aa)(A)(vii)

(vii) The applicant's proposed monitoring program, if any, for actual electric and magnetic field levels.

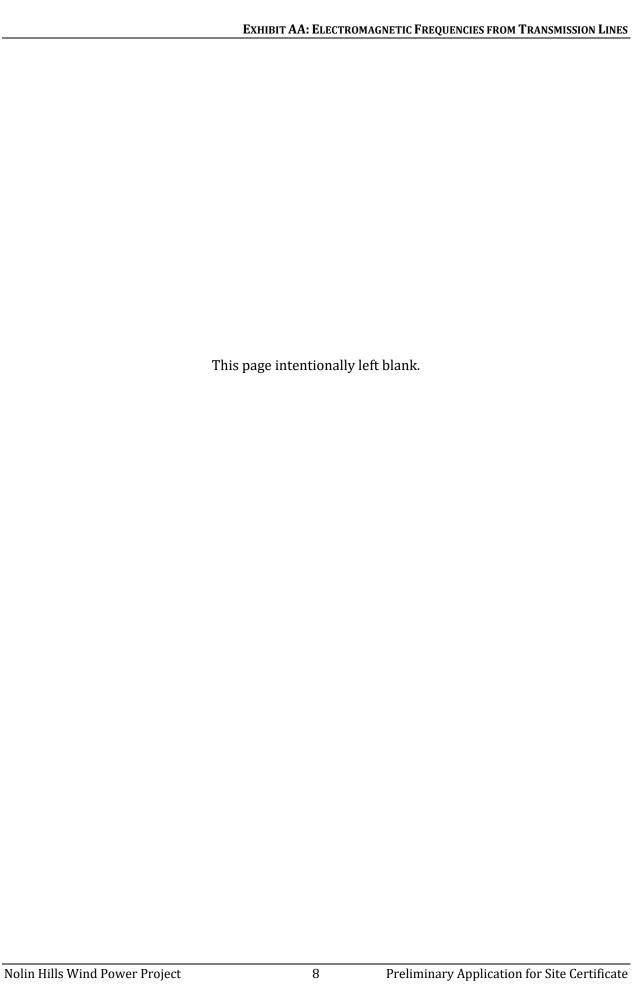
As the maximum electrical field modeled in Section 2.4 is lower than the 9-kV/m standard set forth in OAR 345-024-0090(1), no monitoring program is proposed by the Applicant.

3.0 Radio and TV Interference

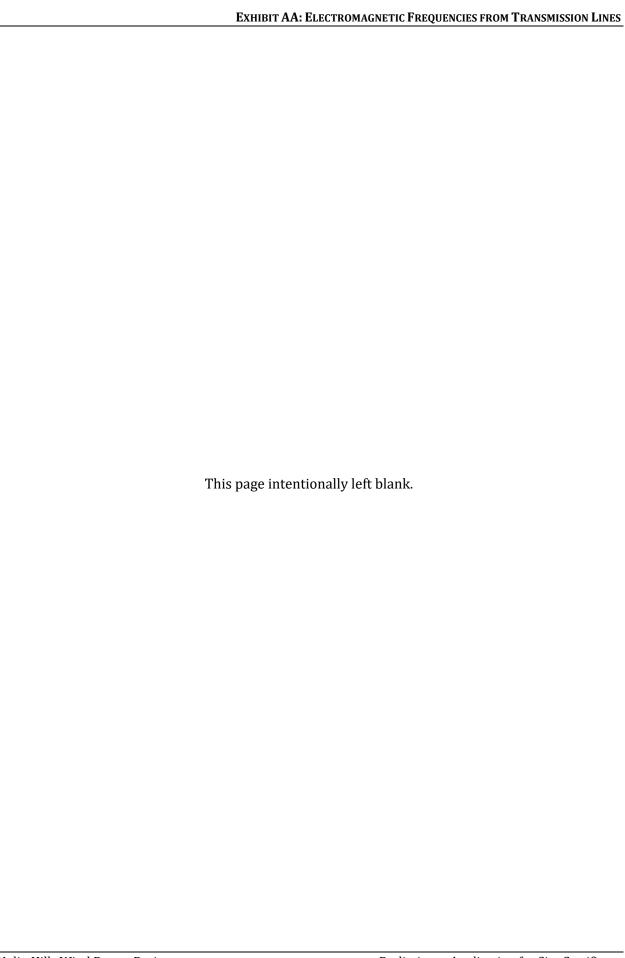
Radio and TV interference is caused by corona discharge from the line. This discharge will be greatest during rainy weather conditions. Interference may be noticed as a humming or buzzing sound on weak AM radio signals or as bands of snow across the picture in TV signals received by an over the air broadcast signal. FM radio signals and digital satellite or cable TV signals will not be affected.

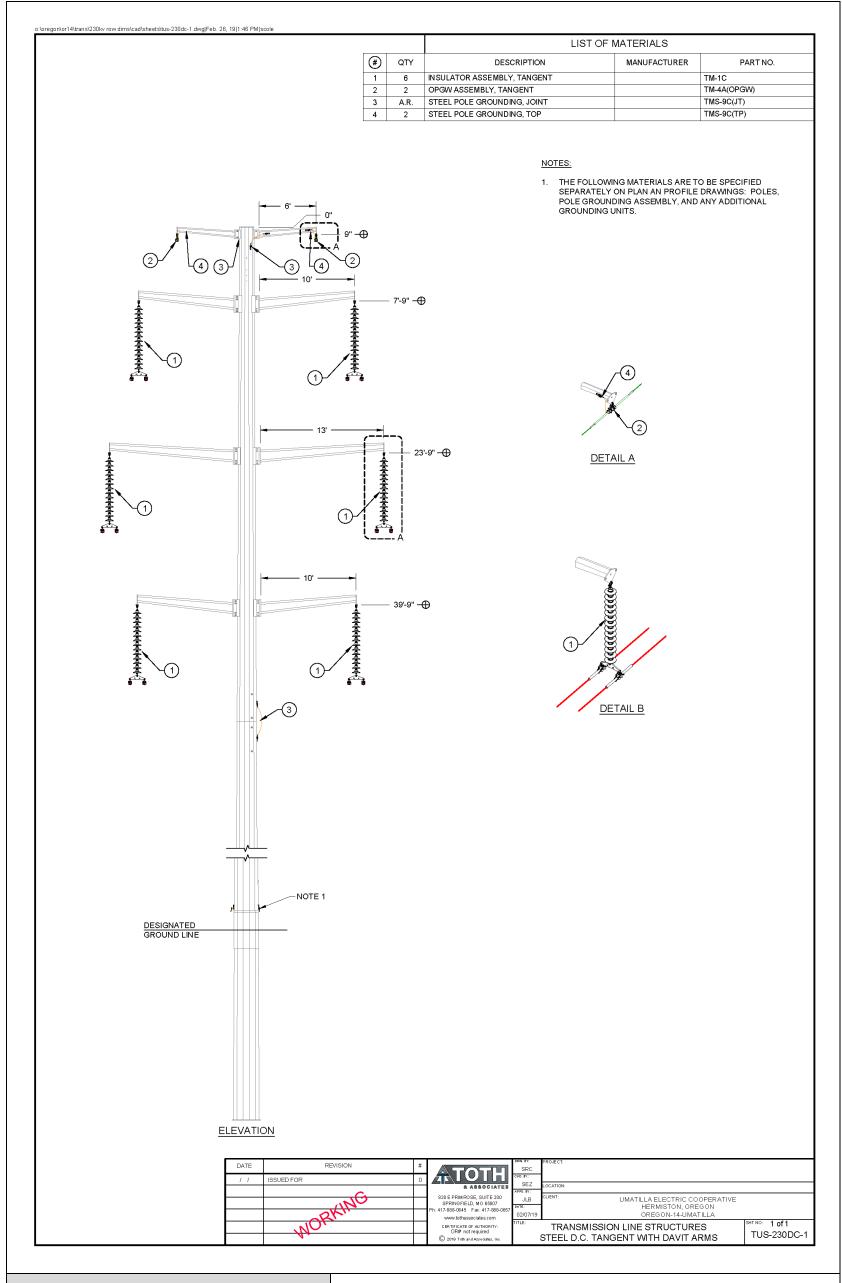
The modeling results show that low levels of AM radio or TV interference may be noted due the corona discharge from the 230-kV transmission line. People listening to weak AM radio signals in their home or vehicle may notice some interference when located close to the transmission line. FM radio signals will not be affected. Satellite TV reception will not be affected because transmission line corona discharge does not affect satellite TV's digital format. Over the air TV signals are now broadcast in a digital format as well, which will not be affected unless the signal strength is extremely weak.

4.0 Conclusion


OAR Chapter 345, Division 21 does not provide an approval standard specific to Exhibit AA. However, compliance with OAR 345-024-0090 is demonstrated by the analysis above, as described in Exhibit DD.

5.0 References


Electric Power Research Institute. 1985. Transmission Line Reference Book. Third Edition.


ICNIRP (International Commission on Non-Ionizing Radiation Protection). 2010. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (Up To 300 GHz). *Health Physics* 99 6: 818-836, December.

IEEE (Institute of Electrical and Electronics Engineers), 2002. IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0 – 3 kHz. IEEE Std C95.6-2002.

Figures

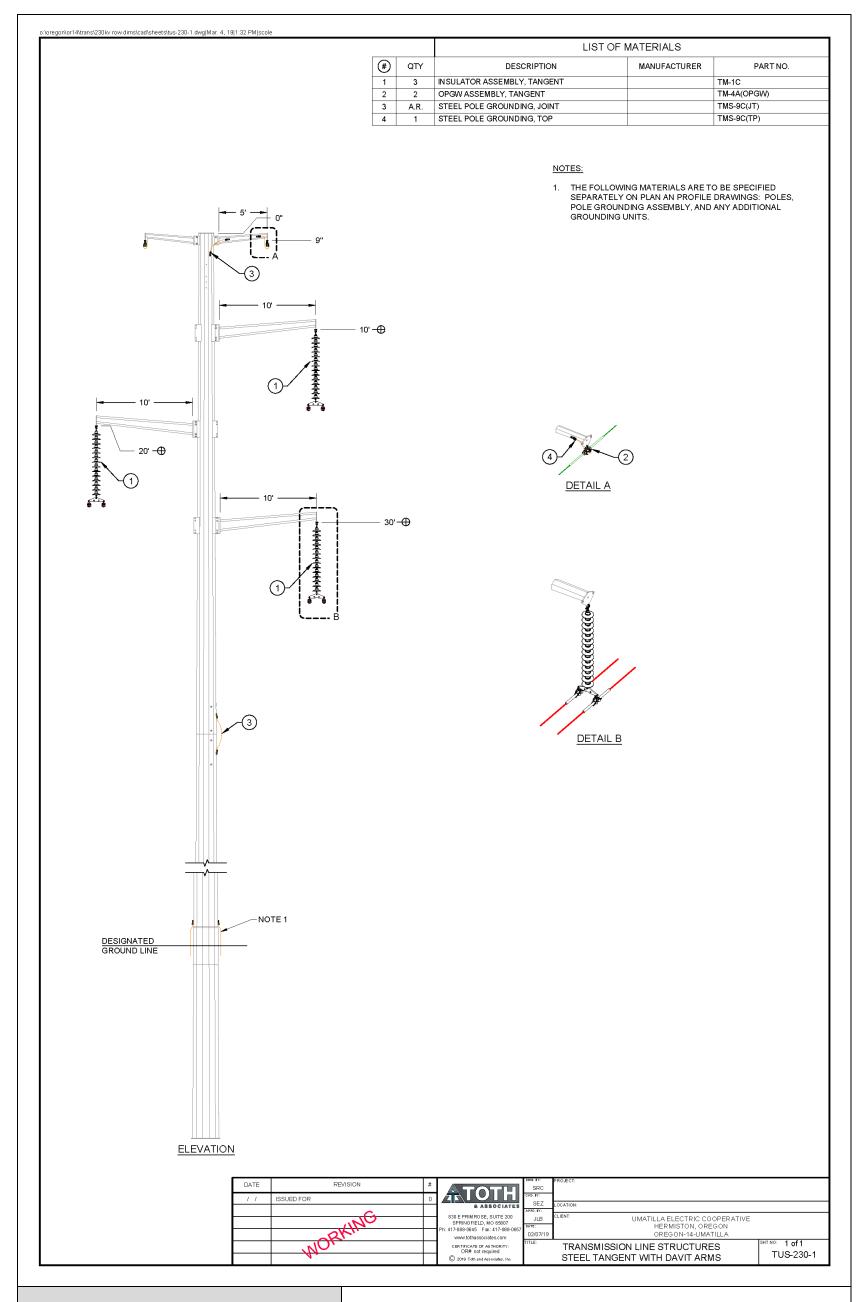


Figure AA-1

Typical Double-Circuit Transmission Line

UMATILLA COUNTY, OREGON

Figure AA-2 Typical Single-Circuit Transmission Line

UMATILLA COUNTY, OREGON



Figure AA-3

Nolin Hills Double-Circuit 230kV/115-kV Electric Field

UMATILLA COUNTY, OREGON

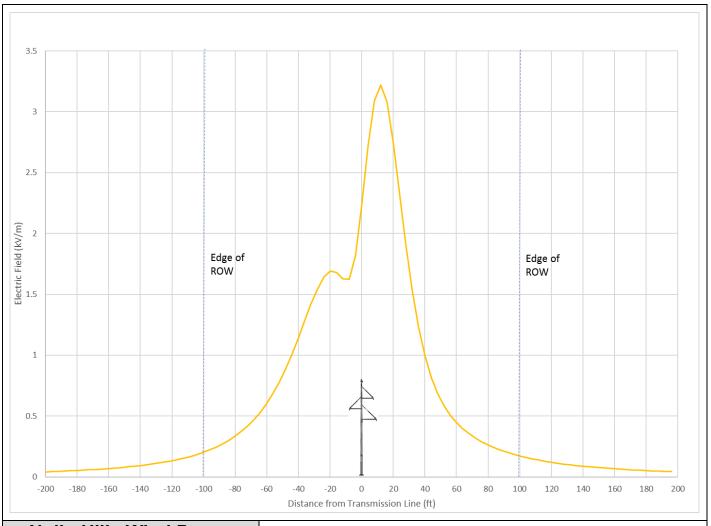


Figure AA-4
Nolin Hills Single-Circuit
230-kV Electric Field
UMATILLA COUNTY, OREGON

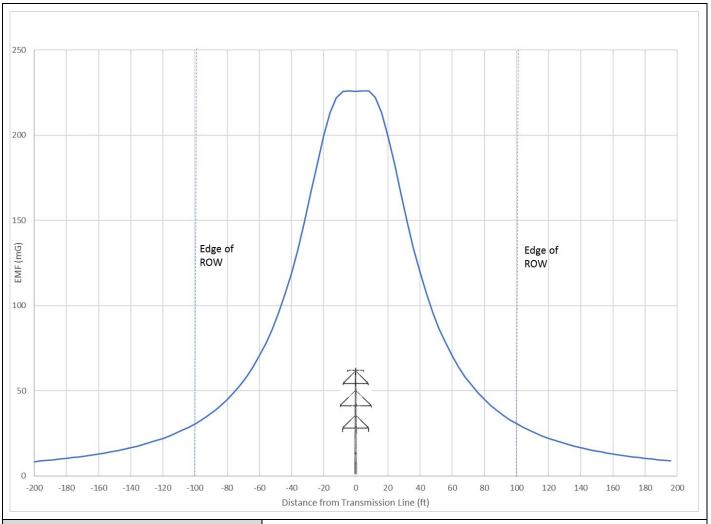


Figure AA-5
Nolin Hills Double-Circuit
230-kV/115-kV Magnetic Field
UMATILLA COUNTY, OREGON

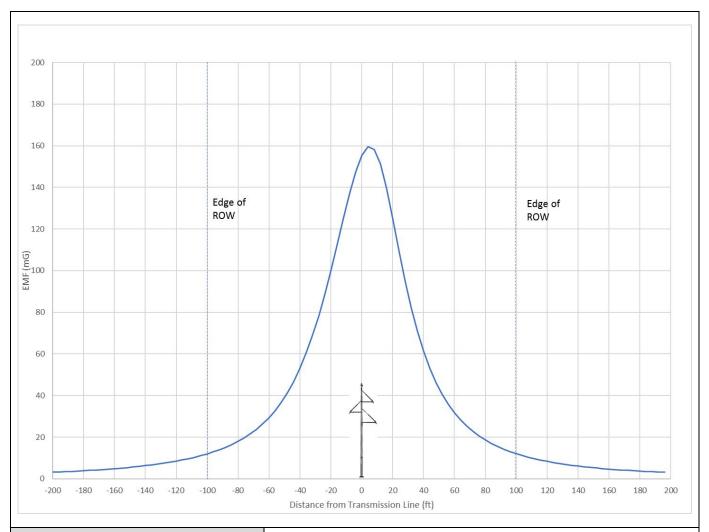
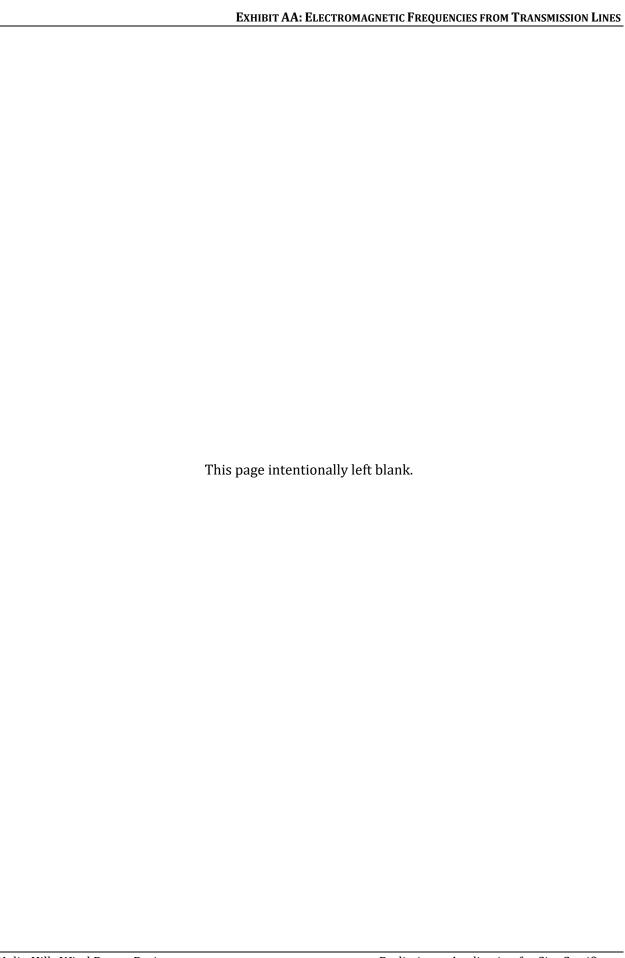



Figure AA-6
Nolin Hills Single-Circuit
230-kV Magnetic Field
UMATILLA COUNTY, OREGON

Attachment AA-1. Results of the Bonneville Power Administration Corona and Field Effects Program for the 230-kV/115-kV Double-Circuit Transmission Line

INPUT DATA LIST

12/16/2019 14:00:51

Nolin Hills UEC Double Circuit Buttercreek North

1,0,6,8,0.0, 2.00, 1.00,1000.00

(ENGLISH UNITS OPTION)

(GRADIENTS ARE COMPUTED BY PROGRAM)

PHYSICAL SYSTEM CONSISTS OF 8 CONDUCTORS, OF WHICH 6 ARE ENERGIZED PHASES

OPTIONS:	ALL								
4.921,	6.562,				0, 75.000,		0, 6.700		
'230A	','A',	10.00,	56.90,	1,	1.345,	.000,	132.800,	.000,	.961,
.000									
'230в	','A',	13.00,	40.90,	1,	1.345,	.000,	132.800,	-120.000,	.961,
.000									
'230c	','A',	10.00,	24.90,	1,	1.345,	.000,	132.800,	120.000,	.961,
.000									
'115A	','A',	-10.00,	56.90,	1,	1.345,	.000,	66.400,	.000,	.958,
.000									
'115B	','A',	-13.00,	40.90,	1,	1.345,	.000,	66.400,	-120.000,	.958,
.000									
'115C	','A',	-10.00,	24.90,	1,	1.345,	.000,	66.400,	120.000,	.958,
.000									
'230G	','A',	6.00,	63.90,	1,	.500,	.000,	.000,	.000,	.000,
.000		•	-	-	-	•	_		
'115G	','A',	-6.00,	63.90,	1,	.500,	.000,	.000,	.000,	.000,
.000	,	•	ŕ	•	•	•	ŕ	ŕ	ŕ
100 -200	.0 4.0)							

1ELECTRIC FIELD CALCULATIONS

Nolin Hills UEC Double Circuit
Buttercreek North

Buccercree	DIST. FROM REFERENCE FEET	HEIGHT FEET	MAXIMUM GRADIENT (KV/CM)	SUBCON. DIAM. (IN)	NO. OF SUBCON.	PHASE ANGLE (DEGREES)
230A 230B 230C 115A 115B 115C 230G 115G	10.00 13.00 10.00 -10.00 -13.00 -10.00 6.00 -6.00	56.90 40.90 24.90 56.90 40.90 24.90 63.90	13.38 13.79 13.17 6.27 6.78 6.11 7.19 5.26	1.35 1.35 1.35 1.35 1.35 1.35 .50	1 1 1 1 1 1 1	.0 -120.0 120.0 .0 -120.0 120.0 .0

SENSOR HT. = 3.3 FEET

DIST FROM

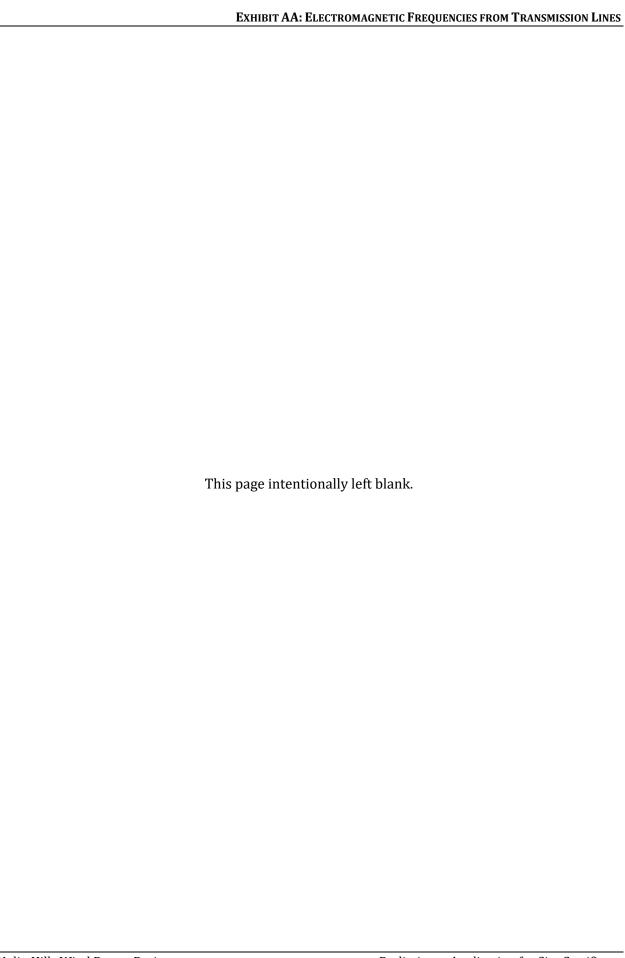
REFERENCE	E-FIELD	Hills Double	e Circuit Corona EY-FIELD	a Output.txt THETAY	EX-FIELD
THETAX FEET (DEGREES)	SPACE POTENTIAL (KV/METER) (VOLTS)	(DEGREES)	(KV/METER)	(DEGREES)	(KV/METER)
-200.0	.052	88.5	.051	150.6	.001
147.0 -196.0 146.7	51.5 .053 53.2	88.5	.053	150.5	.001
-192.0 146.3	.055 55.0	88.4	.055	150.3	.001
-188.0 146.0	.057 56.8	88.4	.057	150.2	.002
-184.0 145.5	.059 58.8	88.4	.059	150.1	.002
-180.0 145.1	.061 60.8	88.4	.061	149.9	.002
-176.0 144.6	.063 63.0	88.4	.063	149.7	.002
-172.0	.065	88.4	.065	149.5	.002
144.0 -168.0 143.4	65.2 .068 67.5	88.4	.067	149.3	.002
-164.0	.070	88.3	.070	149.1	.002
142.7 -160.0	69.9 .072	88.3	.072	148.9	.002
142.0 -156.0	72.4 .075	88.3	.075	148.6	.002
141.2 -152.0	75.1 .078	88.3	.078	148.4	.002
140.2 -148.0	77.8 .081	88.3	.081	148.0	.002
139.2 -144.0	80.6 .084	88.3	.084	147.7	.002
137.9 -140.0	83.6 .087	88.3	.087	147.3	.003
136.6 -136.0	86.6 .090	88.3	.090	146.9	.003
135.0 -132.0	89.8 .093	88.3	.093	146.5	.003
133.1 -128.0	93.0 .096	88.4	.096	146.0	.003
130.9 -124.0	96.3 .100	88.4	.100	145.4	.003
128.2 -120.0	99.7 .103	88.5	.103	144.8	.003
125.0 -116.0	103.0 .106	88.5	.106	144.1	.003
121.0 -112.0	106.4 .110	88.6	.110	143.3	.003
116.0 -108.0	109.7 .113	88.7	.113	142.3	.003
109.6 -104.0	112.8 .116	88.9	.116	141.3	.003
101.2 -100.0	115.8 .119	89.1	.119	140.0	.003
90.3 -96.0	118.3 .121	89.3	.121	138.6	.003
76.4 -92.0	120.4 .122	89.6	.122	136.8	.003
60.3 -88.0 43.6	121.8 .123 122.3	90.0	.123	134.7	.004
			- 1		

Page 2

	Att AA-1_Nolin	Hills Double	Circuit Corona	Output.txt	
-84.0 28.7	.122 121.6	90.6	.122	132.1	.005
-80.0 16.4	.120	91.3	.120	128.8	.007
-76.0	.116	92.2	.116	124.4	.010
6.6 -72.0	114.9 .109	93.4	.109	118.3	.013
-1.3 -68.0	108.3 .101	94.8	.101	109.4	.018
-7.8 -64.0	99.4 .091	95.3	.091	95.6	.024
-13.5 -60.0 -18.5	89.6 .085 83.8	91.0	.085	73.8	.033
-56.0 -23.2	.095 93.6	77.7	.093	44.6	.044
-52.0 -27.6	.135 130.3	70.4	.128	18.1	.059
-48.0 -31.9	.204 197.2	70.2	.193	1	.078
-44.0 -36.0	.306 296.5	71.5	.290	-12.1	.104
-40.0 -39.9	.445 434.0	72.8	.425	-20.5	.138
-36.0 -43.5	.631 618.5	74.0	.607	-26.9	.180
-32.0 -46.8	.876 860.1	75.1	.847	-32.1	.231
-28.0 -49.5	1.188 1168.1	76.3	1.154	-36.5	.288
-24.0 -51.7	1.570 1.545.4	77.6	1.533	-40.0	.343
-20.0 -53.1	2.012 1982.8	79.2	1.976	-42.9	.383
-16.0 -53.6	2.487 2454.0	81.0	2.456	-45.0	.394
-12.0 -53.3	2.954 2920.2	82.8	2.930	-46.4	.372
-8.0 -52.4	3.376 3346.4	84.4	3.361	-47.2	.329
-4.0 -51.5	3.741 3714.4	85.8	3.731	-47.7	.276
.0 -50.4	4.041 4010.2	87.1	4.035	-48.0	.206
4.0 -43.7	4.238 4197.3	88.8	4.237	-48.0	.092
8.0 108.6	4.264 4211.2	91.0	4.263	-47.7	.084
12.0 118.8	4.059 4000.2	93.8	4.050	-46.9	.276
16.0 121.2	3.632 3575.7	96.6	3.608	-45.2	.429
20.0 123.2	3.065 3016.8	99.1	3.026	-42.7	.500
24.0 125.5	2.464 2425.0	101.1	2.417	-39.4	.492
28.0 128.3	1.908 1878.1	102.7	1.862	-35.1	.434
32.0 131.6	1.439 1415.4	103.8	1.398	-30.0	.358
36.0 135.4	1.064 1045.8	104.6	1.030	-23.9	.284
40.0	.776	105.2 Page	.749 e 3	-16.7	.219

		n Hills Double	Circuit Corona	Output.txt	
139.7 44.0	761.6 .560	105.5	. 540	-7.9	.166
144.2	549.4				
48.0 149.0	.403 395.5	105.4	. 389	3.0	.126
52.0 154.1	.294 288.6	104.4	.285	16.8	.095
56.0	.222	101.5	.218	33.6	.071
159.3 60.0	219.9 .182	97.0	.181	52.2	.053
164.8	181.2			69.9	
64.0 170.6	.164 163.6	92.8	.164		.040
68.0 177.0	.159 158.2	90.4	.159	84.8	.030
72.0	.159	89.7	.159	96.3	.023
-176.0 76.0	157.9 .160	89.7	.160	105.0	.018
-168.1 80.0	158.9 .160	89.9	.160	111.6	.014
-159.2	159.5				
84.0 -149.2	.160 159.1	90.3	.160	116.8	.011
88.0	.158	90.6	.158	120.9	.009
-138.2 92.0	157.6 .155	90.9	.155	124.3	.007
-126.7 96.0	155.1 .152	91.1	.152	127.0	.006
-115.3	151.9				
100.0 -104.7	.148 148.1	91.3	.148	129.3	.006
104.0 -95.3	.144 143.8	91.4	.144	131.3	.005
108.0	.139	91.5	.139	133.0	.005
-87.2 112.0	139.3 .135	91.6	.135	134.5	.005
-80.3 116.0	134.7		.130	135.8	
-74.6	.130 129.9	91.7			.004
120.0 -69.8	.125 125.2	91.8	.125	136.9	.004
124.0	.121	91.8	.121	138.0	.004
-65.8 128.0	120.6 .116	91.8	.116	138.9	.004
-62.4 132.0	116.0 .112	91.8	.112	139.7	.004
-59.4	111.5				
136.0 -56.9	.107 107.2	91.9	.107	140.4	.004
140.0 -54.7	.103 103.1	91.9	.103	141.1	.003
144.0	.099	91.9	.099	141.7	.003
-52.8 148.0	99.1 .095	91.9	.095	142.2	.003
-51.0 152.0	95.3 .092	91.8	.092	142.8	.003
-49.5	91.6				
156.0 -48.2	.088 88.1	91.8	.088	143.2	.003
160.0	.085	91.8	.085	143.7	.003
-47.0 164.0	84.7 .082	91.8	.082	144.0	.003
-45.9	81.5	_	4		

Page 4


	Att AA-1_Nolin	Hills Double	Circuit Corona	Output.txt	
168.0	.078	91.8	.078	144.4	.002
-44.9	78.5				
172.0	.076	91.8	.076	144.8	.002
-44.0	75.6				
176.0	.073	91.7	.073	145.1	.002
-43.2	72.8				
180.0	.070	91.7	.070	145.4	.002
-42.4	70.1				
184.0	.068	91.7	.068	145.7	.002
-41.7	67.6				
188.0	.065	91.7	.065	145.9	.002
-41.1	65.2				
192.0	.063	91.7	.063	146.2	.002
-40.5	62.9				
196.0	.061	91.6	.061	146.4	.002
-39.9	60.8				
1MAGNETIC FIELD	CALCULATIONS				

SENSOR HT. = 3.3 FEET

DIST FROM REFERENCE FEET	B-FIELD (GAUSS)	THETA	BY-FIELD (GAUSS)	THETAY	BX-FIELD (GAUSS)	THETAX
-200.0 -196.0 -192.0 -188.0 -184.0 -176.0 -176.0 -176.0 -168.0 -164.0 -160.0 -156.0 -152.0 -144.0 -140.0 -136.0 -122.0 -118.0 -124.0 -120.0 -116.0 -112.0 -108.0 -104.0 -100.0 -96.0 -96.0 -96.0 -96.0 -97.0 -88.0 -84.0 -80.0 -76.0	.00843285 .00876851 .00912435 .00990329 .00990329 .01033015 .01078479 .01126963 .01178737 .01234098 .01293380 .01356955 .01425237 .01498694 .01577847 .01663288 .01755683 .01855784 .01964448 .02082646 .02211489 .02352248 .02506379 .02675557 .02861717 .03067096 .03294291 .03546320 .03826709 .04139581 .04489767 .04882940 .05325770 .05826097 .06393124 .07037605 .07771998	21.3 21.7 22.6 23.6 24.1 24.6 25.8 26.1 27.8 28.5 29.0 30.9 31.7 33.7 34.8 37.7 38.3 41.1 42.6 44.3 46.1 48.1	.00309390 .00327779 .00347633 .00349100 .00392343 .00417548 .00444920 .00474696 .00507138 .00542544 .00581256 .00623657 .00670186 .00721347 .00777711 .00839939 .00908787 .00985130 .01069978 .01164500 .01270056 .01388229 .01520866 .01670124 .01838537 .02029071 .02245219 .02491084 .02771495 .03092127 .03459635 .03881796 .04367632 .04927500 .05573080 .06317162 .07173046 Page 5	-22.3 -22.4 -22.4 -22.5 -22.5 -22.6 -22.7 -22.8 -22.8 -22.9 -23.0 -23.1 -23.2 -23.3 -23.4 -23.5 -23.6 -23.8 -23.9 -24.1 -24.5 -24.7 -25.0 -25.3 -25.6 -25.9 -26.8 -27.8 -27.8 -29.9 -21.9 -21.9 -22.9 -23.9 -24.7 -25.0 -25.9 -26.8 -27.8 -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -29.9 -30.8 -31.7 -32.9	.00785940 .00814865 .00845334 .00877450 .00911327 .00947083 .00984849 .01024762 .01066973 .01111641 .01158937 .01209041 .01262149 .01318464 .01378200 .01441583 .01508842 .01580212 .01655928 .01736213 .01821275 .01911288 .02006374 .02106576 .02211819 .02321862 .02436225 .02554090 .02674176 .02794555 .02912406 .03023687 .03122680 .03201389 .03248759 .03249708 .03184110	-31.9 -32.0 -32.1 -32.1 -32.3 -32.4 -32.6 -32.8 -32.8 -32.8 -33.5 -33.5 -33.5 -33.6 -34.9 -34.3 -34.6 -34.9 -35.6 -36.5 -37.5 -38.9 -39.7 -40.7 -41.7 -41.0 -44.5 -46.3 -48.5 -51.6

	Δ † † ΔΔ-1	Nolin Hills	Double Ci	rcuit Corona	Output txt	
-52.0	.08610509	71.0	.08153219	-34.1	.03026345	-59.4
-48.0	.09568854	75.4	.09266687	-35.5	.02747894	-66.4
-44.0	.10663440	80.3	.10513950	-37.1	.02333698	-78.1
-40.0	.11909370	85.8	.11877900	-38.8	.01865475	258.6
-36.0	.13316320	92.0	.13308260	-40.5	.01836988	215.0
-32.0	.14880510	99.1	.14697230	-42.3	.02983184	176.9
-28.0	.16571240	107.1	.15847880	-42.3 -44.1	.05197949	158.2
-24.0	.18311440	116.2	.16450070	-44.1 -45.7	.08247465	148.5
-20.0	.19959810	126.3	.16107460	-47.0	.11900990	142.9
-20.0 -16.0	.21318330	137.3		-47.0 -47.9		139.4
-12.0	.22202020	148.7	.14483580 .11564920	-47.9 -48.3	.15700590 .18977180	137.4
-8.0				-48.2		136.4
	.22568440	159.8 170.2	.07807843	-46.2 -47.9	.21183180	136.4
-4.0	.22594370	170.2 179.9		-47.9 -40.5	.22264530	136.1 136.1
.0	.22560510	-179.3 -170.3	.00024727	132.0	.22560490	136.1 136.1
4.0	.22603200		.03810817	132.0	.22281310	
8.0	.22584220	-159.9	.07773233	131.7	.21212830	136.4
12.0	.22221890	-148.8	.11544200		.19013290	137.4
16.0	.21339560	-137.4	.14476190	132.1	.15736740	139.4
20.0	.19980440	-126.4	.16110170	133.0	.11932820	142.9
24.0	.18330380	-116.3	.16458970	134.3	.08273257	148.5
28.0	.16588060	-107.2	.15859750	135.9	.05217795	158.2
32.0	.14895180	-99.1	.14709940	137.6	.02997665	176.8
36.0	.13328990	-92.0	.13320610	139.4	.01845108	214.7
40.0	.11920290	-85.8	.11889310	141.2	.01867382	258.3
44.0	.10672840	-80.3	.10524190	142.9	.02333766	-78.3
48.0	.09576970	-75.4	.09275721	144.4	.02747907	-66.5
52.0	.08617536	-71.1	.08161121	145.9	.03026667	-59.5
56.0	.07778102	-67.1	.07179925	147.1	.03184746	-54.7
60.0	.07042927	-63.6	.06323136	148.3	.03250587	-51.2
64.0	.06397783	-60.4	.05578266	149.3	.03249802	-48.5
68.0	.05830192	-57.5	.04932006	150.1	.03202532	-46.3
72.0	.05329382	-54.8	.04371552	150.9	.03123874	-44.5
76.0	.04886138	-52.3	.03885214	151.6	.03024895	-43.0
80.0	.04492610	-50.1	.03462622	152.2	.02913603	-41.8
84.0	.04142116	-48.0	.03094744	152.8	.02795722	-40.7
88.0	.03828978	-46.1	.02773795	153.3	.02675302	-39.7
92.0	.03548356	-44.3	.02493111	153.7	.02555167	-38.9
96.0	.03296124	-42.6 -41.1	.02247011	154.1	.02437251	-38.2
100.0	.03068752 .02863217		.02030659 .01839948	154.4 154.7	.02322835	-37.6
104.0		-39.6		155.0	.02212738	-37.0
108.0 112.0	.02676919	-38.3 -37.0	.01671383 .01521991	155.3	.02107441 .02007188	-36.5 -36.0
112.0	.02507618 .02353379	-37.0 -35.8	.01389238	155.5	.01912053	-36.0 -35.6
120.0	.0233379	-33.6 -34.7	.01369236	155.7	.01821994	-35.6 -35.3
124.0	.02083595	-34.7 -33.7	.01270303	155.9	.01821994	-33.3 -34.9
124.0	.01965319	-33.7 -32.7	.01070717	156.1	.01656562	-34.9
132.0	.01856587	-32.7 -31.8	.00985800	156.2	.01580808	-34.6 -34.4
136.0	.01756424	-30.9	.00909395	156.4	.01509401	-34.4 -34.1
140.0	.01663973	-30.9	.00840493	156.5	.01442108	-33.9
144.0	.01578481	-29.2	.00778216	156.7	.01378694	-33.3
148.0	.01499282	-28.5	.00778210	156.8	.01318928	-33.7
152.0	.01425783	-27.8	.00670609	156.9	.01262586	-33.3
156.0	.01357463	-27.1	.00624046	157.0	.01202360	-33.3
160.0	.01293854	-26.4	.00581613	157.1	.01159324	-33.1
164.0	.01234541	-25.8	.00542874	157.1	.01112006	-32.8
168.0	.01234341	-25.2	.00507442	157.2	.01067318	-32.6 -32.7
172.0	.01173131	-24.6	.00474978	157.3	.01007318	-32.7
176.0	.01078842	-24.1	.00474378	157.4	.00985156	-32.5
180.0	.010733356	-23.6	.00417791	157.4	.00947374	-32.3
184.0	.00990649	-23.1	.00392569	157.5	.00911602	-32.2
188.0	.00950503	-22.6	.00369311	157.6	.00311002	-32.1
192.0	.00912719	-22.2	.00347830	157.6	.00845581	-32.1
196.0	.00312713	-21.7	.00327963	157.7	.00815099	-32.0
130.0	.000.7113	1	Dago 6	±3	. 5551555	32.0

Attachment AA-2. Results of the Bonneville Power Administration Corona and Field Effects Program for the 230-kV Single-Circuit Transmission Line

Att AA-2_Nolin Hills Single Circuit Corona Output.txt

CORONA AND FIELD ÛEFFECTS PROGRAM VER. Û Source: Bonneville Power Administration

INPUT DATA LIST

12/16/2019 13:55:54

Nolin Hills UEC Single Circuit

NH to Buttercreek 1,0, 3, 4,0.0, 2 2.00. 1.00,1000.00

(ENGLISH UNITS OPTION)

(GRADIENTS ARE COMPUTED BY PROGRAM)

PHYSICAL SYSTEM CONSISTS OF 4 CONDUCTORS, OF WHICH 3 ARE ENERGIZED PHASES

OPTIONS: ALL 4.921, 6.562, '230A','A', 1.000, 75.000, 1, 1.345, 9.842, 3.280, 6.700, 3.280 .000, 44.90, 1, 10.00, .000, 132.800, .000, .961, .000 '230B ','A', -10.00, 34.90, 1, 1.345, .000, 132.800, -120.000, .961, .000 '230C ','A', 10.00, 24.90, 1, 1.345, .000, 132.800, 120.000, .961, .000 '230G 54.15, 1, ','A', 5.00, .500, .000, .000, .000, .000, .000 100 -200.0 4.0

1ELECTRIC FIELD CALCULATIONS

Nolin Hills UEC Single Circuit NH to Buttercreek

MI CO BUC	DIST. FROM REFERENCE FEET	HEIGHT FEET	MAXIMUM GRADIENT (KV/CM)	SUBCON. DIAM. (IN)	NO. OF SUBCON.	PHASE ANGLE (DEGREES)
230A 230B	10.00 -10.00	44.90 34.90	13.39 12.98	1.35 1.35	1	.0 -120.0
230B 230C	10.00	24.90	13.50	1.35	1	120.0
230G	5.00	54.15	4.73	.50	1	.0

SENSOR HT. = 3.3 FEET

DIST FROM REFERENCE THETAX FEET (DEGREES)	E-FIELD SPACE POTENTIAL (KV/METER) (VOLTS)	THETA (DEGREES)	EY-FIELD (KV/METER)	THETAY (DEGREES)	EX-FIELD (KV/METER)
-200.0	.042	87.9	.042	104.9	.002
91.4 -196.0	42.0 .044	87.9	.044	104.3	.002
90.7 -192.0 90.0	43.9 .046 46.0	87.8	.046	103.7	.002
-188.0 89.3	.048 48.2	87.8	.048	103.0	.002

104 0			Circuit Corona		002
-184.0 88.6	.051 50.5	87.7	.051	102.3	.002
-180.0 87.8	.053 53.1	87.7	.053	101.7	.002
-176.0 87.1	.056 55.8	87.6	.056	101.0	.002
-172.0 86.3	.059 58.7	87.6	.059	100.2	.003
-168.0	.062	87.5	.062	99.5	.003
85.5 -164.0	61.9 .065	87.4	.065	98.7	.003
84.7 -160.0	65.4 .069	87.3	.069	97.9	.003
83.9 -156.0	69.1 .073	87.3	.073	97.1	.004
83.1 -152.0	73.2 .078	87.2	.078	96.3	.004
82.2 -148.0	77.6 .083	87.1	.082	95.4	.004
81.4 -144.0	82.5 .088	87.0	.088	94.5	.005
80.5 -140 <u>.</u> 0	87.8 .094	86.9	.094	93.6	.005
79.6 -136.0	93.7 .100	86.8	.100	92.7	.006
78.7 -132.0	100.1 .107	86.7	.107	91.7	.006
77.8 -128.0	107.2 .115	86.6	.115	90.7	.007
76.8 -124.0	115.0 .124	86.5	.124	89.7	.008
75.9 -120.0	123.8 .134	86.4	.133	88.6	.009
74.9 -116.0	133.5 .144	86.3	.144	87.5	.010
73.9 -112.0	144.3 .157	86.1	.156	86.4	.011
72.9 -108.0	156.4 .170	86.0	.170	85.3	.012
71.9 -104.0	170.1 .186	85.9	.185	84.1	.014
70.9 -100.0	185.4 .203	85.7	.202	82.9	.016
69.8 -96.0	202.8 .223	85.6	.222	81.7	.018
68.7 -92.0	222.6 .245	85.4	.244	80.4	.020
67.7	245.1				
-88.0 66.5	.271 270.8	85.2	. 270	79.2	.023
-84.0 65.4	.301 300.3	85.1	. 299	77.9	.027
-80.0 64.2	.335 334.2	84.9	.333	76.5	.031
-76.0	.374	84.7	. 372	75.2	.035
63.0 -72.0	373.3 .419	84.5	. 417	73.8	.041
61.8 -68.0	418.6 .472	84.4	. 469	72.4	.047
60.4 -64.0	471.0 .533	84.2	.530	70.9	.055
59.0 -60.0	531.8 .603	84.1	.600	69.4	.063
		Page	· 2		

F.7. F		n Hills Single	e Circuit Coron	a Output.txt	
57.5 -56.0	602.2 .685	84.0	.681	67.9	.073
55.9 -52.0	683.6 .779	84.0	.775	66.3	.084
53.9 -48.0	777.2 .886	84.0	.881	64.7	.095
51.6	883.8				
-44.0 48.7	1.007 1003.5	84.1	1.001	63.0	.106
-40.0 44.8	1.139 1134.5	84.4	1.133	61.1	.116
-36.0 39.1	1.279 1272.9	84.9	1.274	59.0	.122
-32.0	1.419	85.6	1.415	56.6	.122
29.9 -28.0	1410.6 1.546	86.6	1.543	53.7	.119
13.9 -24.0	1534.6 1.643	88.0	1.642	49.8	.123
-12.5 -20.0	1627.4 1.690	89.7	1.690	44.4	.162
-42.2 -16.0	1670.6 1.678	91.3	1.677	36.2	.247
-62.2	1656.1				
-12.0 -72.7	1.626 1609.1	91.5	1.626	23.6	.362
-8.0 -78.2	1.624 1616.9	87.9	1.623	5.2	.482
-4.0 -81.5	1.820 1802.3	81.8	1.803	-16.3	.570
.0	2.239	79.9	2.206	-34.2	.588
-84.5 4.0	2191.8 2.724	82.2	2.699	-46.1	.507
-90.0 8.0	2658.7 3.093	86.0	3.085	-53.7	.342
-104.5 12.0	3023.2 3.219	90.0	3.219	-58.9	.208
-149.7	3154.5				
16.0 158.7	3.079 3024.3	93.7	3.072	-63.2	.268
20.0 140.3	2.742 2700.5	96.6	2.724	-67.3	.356
24.0 132.5	2.319 2288.6	98.6	2.292	-71.9	.381
28.0 127.7	1.897 1876.6	99.8	1.869	-77.1	.353
32.0	1.528	100.2	1.504	-82.9	.301
123.7 36.0	1514.6 1.228	100.1	1.209	-89.4	.244
119.8 40.0	1220.0 .996	99.5	.982	-96.4	.192
115.6 44.0	990.7 .819	98.7	.810	-103.5	.149
111.0	816.4				
48.0 _105.9	.687 684.7	97.9	.680	-110.5	.116
52.0 100.4	.586 584.5	97.1	.581	-117.2	.090
56.0 94.7	.508 507.0	96.4	. 505	-123.4	.071
60.0	.446 445.6	95.8	. 444	-129.0	.057
88.7 64.0	.396	95.3	. 395	-134.0	.046
82.7	395.9	Dag	0.3		

Page 3

	Att AA-2_Nolin	Hills Single	Circuit Corona	Output.txt	
68.0 76.8	.355 354.7	95.0	.354	-138.4	.038
72.0 71.2	.320 319.9	94.7	.319	-142.4	.032
76.0	.290	94.5	.289	-145.9	.027
65.9 80.0	290.1 .264	94.3	.264	-149.1	.023
61.0 84.0	264.2 .242	94.1	.241	-151.9	.020
56.5 88.0	241.5 .222	94.0	.221	-154.5	.017
52.4 92.0	221.5 .204	93.9	.203	-156.8	.015
48.7 96.0	203.7 .188	93.7	.188	-158.9	.013
45.3 100.0	187.9 .174	93.6	.173	-160.8	.012
42.2 104.0	173.7 .161	93.5	.161	-162.6	.011
39.4 108.0	161.0 .150	93.4	.149	-164.3	.010
36.8 112.0	149.5 .139	93.3	.139	-165.8	.009
34.5 116.0	139.2 .130	93.2	.130	-167.3	.008
32.3 120.0	129.8 .121	93.2	.121	-168.6	.007
30.3 124.0	121.2 .114	93.1	.113	-169.9	.006
28.5 128.0	113.5 .106	93.0	.106	-171.1	.006
26.7 132.0	106.4 .100	92.9	.100	-172.2	.005
25.1 136.0	99.9 .094	92.8	.094	-173.3	.005
23.6 140.0	94.0 .089	92.8	.089	-174.3	.004
22.2 144.0	88.6 .084	92.7	.084	-175.3	.004
20.9 148.0	83.6 .079	92.6	.079	-176.2	.004
19.6 152.0	79.0 .075	92.6	.075	-177.1	.003
18.4 156.0	74.7 .071	92.5	.071	-177.9	.003
17.3 160.0	70.8 .067	92.4	.067	-178.8	.003
16.2 164.0	67.2 .064	92.4	.064	-179.5	.003
15.1	63.8				
168.0 14.1	.061 60.7	92.3	.061	179.7	.003
172.0 13.2	.058 57.8	92.3	.058	179.0	.002
176.0 12.3	.055 55.1	92.2	.055	178.3	.002
$180.0 \\ 11.4$.053 52.5	92.2	.053	177.7	.002
184.0 10.6	.050 50.2	92.1	.050	177.0	.002
188.0	.048 47.9	92.1	.048	176.4	.002
192.0	.046	92.1 Page	.046	175.8	.002

.002

Att AA-2_Nolin Hills Single Circuit Corona Output.txt 45.9 .044 92.0 .044 175.2 43.9 9.0 196.0 .044 8.3 43.9 1MAGNETIC FIELD CALCULATIONS 175.2

SENSOR HT. = 3.3 FEET

DIST FROM REFERENCE FEET	B-FIELD (GAUSS)	THETA	BY-FIELD (GAUSS)	THETAY	BX-FIELD (GAUSS)	THETAX
-200.0 -196.0 -192.0 -188.0 -184.0 -180.0 -176.0 -176.0 -168.0 -164.0 -160.0 -156.0 -144.0 -140.0 -136.0 -120.0 -116.0 -112.0 -108.0 -112.0 -100.0 -92.0 -88.0 -84.0 -96.0 -92.0 -88.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -72.0 -68.0 -64.0 -60.0 -72.0 -68.0 -74.0 -100.0 -110.0 -100.0	.00314909 .00327712 .00341304 .00355752 .00371127 .00387511 .00404991 .00423668 .00443650 .00465063 .00465063 .00488042 .00512744 .00539341 .00568029 .00599030 .00632595 .00669009 .00708597 .00751731 .00798837 .00850406 .00907005 .00969290 .01038026 .01114104 .01198569 .01292649 .01397795 .01515727 .01648489 .01798521 .01968743 .02162659 .02384478 .02162659 .02384478 .02639260 .03273150 .03668060 .04127759 .04663524 .05287560 .06012062 .06847470 .07799604 .08865727 .10030120 .11260510 .12506610 .13700090 .14752380	-70.3 -69.4 -69.4 -69.6 -68.0 -68.0 -67.0 -65.3 -66.0 -65.3 -62.7 -60.0 -58.0 -57.9 -60.0 -58.0 -57.9 -54.4 -41.3 -45.4 -41.3 -36.3 -33.3 -23.7 -13.6 -23.7 -13.6 -23.7 -13.6 -23.7 -13.6 -23.7 -13.6 -23.7 -13.6 -23.7	.00307442 .00319568 .00332406 .00346013 .00360448 .00375777 .00392074 .00409418 .00427896 .00447607 .00468654 .00491158 .00515246 .00541061 .00568763 .00598526 .00630544 .00665029 .00702219 .00742373 .00785777 .00832747 .00883626 .00938786 .00998629 .01063582 .01134093 .01210616 .01293604 .01383473 .01480571 .01585133 .01480571 .01585133 .01480571 .01585133 .01480571 .01585133 .01480571 .01585133 .01480571 .01585133 .01697213 .01942887 .02075277 .02213101 .02356561 .02508878 .02680904 .02899706 .03220887 .03737049 .04565079 .05803761 .07480793 .09509324 .11658130 .13546990 .14689420 .0989	46.6 46.2 45.9 45.7 45.1 44.8 44.2 43.5 41.9 40.4 43.7 41.9 40.4 39.3 38.7 31.5 28.7 24.8 33.7 31.5 28.7 24.8 21.7 22.7 22.7 21.7 22.7 22.7 22.7 22.7	.00250990 .00261080 .00271803 .00283212 .00295368 .00308341 .00322206 .00352963 .00370059 .00388459 .00408301 .00429742 .00452964 .00478172 .00505604 .00535533 .00568276 .00604202 .00643742 .00687401 .00735773 .00789561 .00849599 .00916883 .00992603 .01078189 .01175367 .01286220 .01413272 .0155583 .01728859 .01925572 .02155084 .02423745 .02738919 .03108843 .03542158 .04046823 .04627957 .05283955 .06000059 .06738890 .07428717 .07953899 .08158921 .07888903 .07111335 .06215644 .06388669	-53.0 -53.5 -54.0 -55.1 -55.7 -56.3 -57.5 -58.9 -57.5 -61.3 -62.1 -63.0 -64.0 -65.0 -67.1 -68.2 -69.4 -70.7 -72.0 -73.4 -74.9 -74.9 -74.9 -79.7 -81.4 -83.2 -85.1 -87.1

	Att AA-2	Nolin Hills	Sinale Ci	rcuit Corona	Output.txt	
.0	.15548710	112.2	.14608780	267.1	.08467324	142.9
4.0	.15949500	129.4	.13067450	260.9	.11433190	128.0
8.0	.15824690	147.2	.10412420	249.3	.13830260	119.8
12.0	.15127460	164.8	.07832495	227.6	.14714190	114.3
16.0	.13950390	-178.3	.06799472	196.8	.13945660	109.5
20.0	.12492580	-162.7	.07163842	172.0	.12080710	104.1
24.0	.10963260	-148.8	.07625270	157.6	.09871171	97.5
28.0	.09510680	-136.5	.07640863	149.1	.07852692	89.5
32.0	.08210028	-125.8	.07255061	143.4	.06253964	80.1
36.0	.07083938	-116.5	.06643008	139.0	.05089280	70.0
40.0	.06126333	-108.4	.05949540	135.4	.04273105	60.0
44.0	.05318855	-101.3	.05263657	132.1	.03698835	50.7
48.0	.04639819	-95.1	.04630633	129.0	.03278099	42.6
52.0	.04068386	-89.6	.04068338	126.1	.02951113	35.8
56.0	.03586180	-84.8	.03579505	123.2	.02682170	30.1
60.0	.03177660	-80.5	.03159434	120.5	.02451413	25.4
64.0	.02829966	-76.6	.02800389	117.9	.02248084	21.5
68.0	.02532572	-73.2	.02493925	115.4	.02066248	18.2
72.0	.02276910	-70.2	.02232020	112.9	.01902397	15.3
76.0	.02056005	-67.5	.02007539	110.6	.01754225	12.9
80.0	.01864183	-65.1	.01814367	108.5	.01620010	10.7
84.0	.01696808	-62.9	.01647365	106.4	.01498342	8.9
88.0	.01550086	-61.0	.01502271	104.5	.01387985	7.2
92.0	.01420893	-59.3	.01375566	102.6	.01287832	5.7
96.0	.01306653	-57.8	.01264358	100.9	.01196873	4.3
100.0	.01205223	-56.5	.01166265	99.3	.01114189	3.1
104.0	.01114823	-55.4	.01079325	97.7	.01038946	1.9
108.0	.01033957	-54.4	.01001917	96.3	.00970391	.9
112.0	.00961370	-53.6	.00932695	94.9	.00907843	1
116.0	.00896000	-53.0	.00870539	93.7	.00850694	-1.0
120.0	.00836948	-52.5	.00814510	92.5	.00798398	-1.8
124.0	.00783445	-52.2	.00763820	91.3	.00750468	-2.6
128.0	.00734836	-52.1	.00717804	90.3	.00706468	-3.3
132.0	.00690557	-52.2	.00675896	89.3	.00666012	-4.0
136.0	.00650123	-52.5	.00637614	88.3	.00628754	-4.7
140.0	.00613115	-53.0	.00602546	87.4	.00594386	-5.3
144.0	.00579167	-53.7	.00570336	86.6	.00562633	-5.9
148.0	.00547965	-54.8	.00540677	85.8	.00533250	-6.5
152.0	.00519230	-56.1	.00513302	85.0	.00506020	-7.0
156.0	.00492723	-57.7	.00487980	84.3	.00480745	-7.5
160.0	.00468231	-59.7	.00464507	83.6	.00457252	-8.0
164.0	.00445565	-62.0	.00442705	83.0	.00435383	-8.4
168.0	.00424560	-64.6	.00422418	82.4	.00414997	-8.9
172.0	.00405064	-67.4	.00403505	81.8	.00395968	-9.3
176.0	.00386944	-70.4	.00385845	81.2	.00378182	-9.7
180.0	.00370074	-73.4	.00369328	80.7	.00361537	-10.1
184.0	.00354342	-76.4	.00353856	80.2	.00345940	-10.5
188.0	.00339641	-79.2	.00339342	79.7	.00331307	-10.8
192.0	.00325880	-81.8	.00325708	79.2 78.8	.00317562	-11.2 -11.5
196.0	.00312972	-84.1	.00312884	/0.0	.00304637	-11.3